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Aqueous foams are an important model system that displays coarsening dynamics. Coarsening in dispersions
and foams is well understood in the dilute and dry limits, where the gas fraction tends to zero and one, respectively.
However, foams are known to undergo a jamming transition from a fluidlike to a solidlike state at an intermediate
gas fraction φc. Much less is known about coarsening dynamics in wet foams near jamming, and the link to
mechanical response, if any, remains poorly understood. Here we probe coarsening and mechanical response
using numerical simulations of a variant of the Durian bubble model for wet foams. As in other coarsening
systems we find a steady state scaling regime with an associated particle size distribution. We relate the time rate
of evolution of the coarsening process to the wetness of the foam and identify a characteristic coarsening time that
diverges approaching jamming. We further probe mechanical response of the system to strain while undergoing
coarsening. There are two competing timescales, namely the coarsening time and the mechanical relaxation time.
We relate these to the evolution of the elastic response and the mechanical structure.

DOI: 10.1103/PhysRevE.98.012607

I. INTRODUCTION

Aqueous foams are composed of gas bubbles dispersed in
a continuous liquid phase. They are not thermodynamically
stable, and the number and size of bubbles in a foam evolves
in time. The three principal mechanisms driving temporal evo-
lution are drainage, coalescence, and coarsening [1]. Drainage
removes liquid between the bubbles via gravity. In addition,
the liquid phase is exposed to evaporation. Coalescence, where
bubbles join when thin films rupture between them, primarily
takes place when the gas fraction is high. The final mechanism,
namely coarsening, is the focus of the present work. Coarsen-
ing occurs when gas diffuses from smaller bubbles to larger
ones due to the difference in their internal pressure [2].

Foams can be categorized by their gas volume fraction φ

[1]. At low φ the foam is “wet” and bubbles mostly retain their
spherical shape. In “dry” foams the gas fraction is high and
bubbles assume polyhedral shapes, with neighboring bubbles
separated by thin films of liquid. Coarsening is best under-
stood in the extreme limits of perfectly dry foams (φ → 1)
and “bubbly liquids” (φ → 0) [1]. However, geometric and
mechanical properties of foams are known to undergo a
sharp transition at an intermediate gas fraction φc (≈0.84
in 2D and 0.64 in 3D) known as the jamming transition
[3–9]. Close to but below φc, the system is a highly viscous
liquid. Above φc, the average number of contacts per bubble
exceeds a critical threshold and the system is solidlike, with
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an elastic storage modulus that exceeds its loss modulus
on timescales that are short compared to coarsening-induced
rearrangements. On either side of the transition, material
properties are highly sensitive to the distance to jamming�φ =
φ − φc. Surprisingly, while the significance of the jamming
transition for structure and mechanics is well known, there
is little understanding of the interplay between jamming and
coarsening-driven dynamics. We expect such an interplay on
two broad grounds. First, coarsening alters the bubble size
distribution, which in turn influences φc. Hence the distance to
jamming can vary dynamically, even when the gas fraction is
constant. Second, coarsening introduces new timescales, and
dynamical processes that are “slow” and “fast” compared to the
evolution of the bubble size distribution are likely to proceed
differently.

Our focus is on the so-called scaling state, where the
bubble number density evolves in a unique self-similar fashion
independent of the initial configuration [10] driven by the
minimization of the total interfacial energy between the two
phases [11]. This state is reached during prolonged coarsening
in foams [1,12–14]. The system reaches the scaling state
on some timescale τc that is characteristic of the coarsening
dynamics. For longer times, the growth of bubbles reaches an
asymptotic limit with the average radius following a power
law:

〈R〉
〈Rin〉 �

{
1, t � τc,

(t/τc)α, t � τc,
(1)

where 〈Rin〉 is the average bubble radius at time t = 0. The
exponent α can assume different values. In the dry limit, all
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gas exchange occurs though the thin films separating bubbles;
in bubbly liquids, by contrast, gas exchange is mediated
by diffusion through the continuous fluid phase, with close
analogies to ripening and domain growth. As a result of these
distinct mechanisms, coarsening in the φ → 1 and φ → 0
limits is characterized by distinct exponents α = 1/2 and α =
1/3, respectively. Experiments have confirmed the existence of
the scaling state and the respective exponents in the dry foam
and bubbly liquid limits [2,12–14]. There is some numerical
evidence that Eq. (1) is applicable for intermediate φ, with
an effective exponent α that interpolates between the limiting
cases [15]. To date, however, there have been no studies that
systematically probe coarsening in the vicinity of the jamming
point, nor is the φ dependence of the coarsening time τc known.

Here we model coarsening using a variant of the Durian
bubble model [4]. This is a soft sphere model, describing the
evolution of the spatial configuration of overlapping spheres
resembling bubbles, droplets, or soft particles in a dispersed
system. Even though the model is rather simple, it has been
proven very useful in the research of jamming in foams and
emulsions [16,17]. To further advance its capabilities to study
coarsening, we have implemented interbubble gas diffusion
as an additional degree of freedom to our set of dynamical
equations. This is done in the spirit of Gardiner et al. [18],
who studied coarsening in the bubble model at gas fractions far
above the jamming limit. At this range the model successfully
reproduced the asymptotic limit, Eq. (1), with the appropriate
scaling of the average radius.

The present work represents a numerical study of coars-
ening in the bubble model near jamming. We present several
main results. We verify and characterize the scaling state in the
bubble model near jamming. Properties such as the coarsening
time τc, exponent α, and the shape of the scale-invariant bubble
size distribution, are all sensitive to the relative amplitude
of gas exchange via thin films and through the continuous
phase; we probe these dependencies systematically. We find
that the form of the bubble size distribution at small radii
shows signatures of the dominate gas exchange mechanism.
Similarly, the coarsening time is nearly constant when gas
exchange via the continuous phase dominates, but diverges
at a critical gas fraction when gas exchange is predominantly
through thin films. Finally, we show that coarsening dra-
matically influences mechanical response near jamming. We
characterize the complex shear modulus G∗ and the viscous
relaxation time τr , both of which depend sensitively on the
sample age, the coarsening time, and the gas fraction.

II. BUBBLE MODEL WITH COARSENING

We model foams using Durian’s bubble model [4,19] in
D = 2 spatial dimensions. The bubble model describes foams
at the bubble level as packings of randomly distributed soft
spheres (or disks in 2D) that repel elastically when they
overlap. This is a reasonable approximation below jamming
as well as somewhat above, where bubbles’ shapes remain
weakly distorted spheres. Clearly the approximation becomes
unrealistic in the dry foam limit, where bubbles in real foams
are polyhedra. Nevertheless, the bubble model remains well
defined for arbitrary gas fraction φ, which is simply the ratio
of the volume of all spheres to the system’s volume.

FIG. 1. (a) A schematic illustration summarizing the essential
parameters of the model incorporating the interaction between
two overlapping soft spheres. (b)–(d) Visualizations of a series of
snapshots of the simulation: (b) shows the initial structure before
coarsening, (c) is an intermediate stage, and (d) is the structure in the
scaling state.

The particles in the bubble model interact via a harmonic
pair potential proportional to their overlap

Fij = F0

(
Ri + Rj − |ri − rj |

Ri + Rj

)
ri − rj

|ri − rj | , (2)

as illustrated in Fig. 1(a). Dynamics are implemented in the
fully overdamped limit: the bubbles are massless, and the force
due to bubble overlap Fi must at all times be compensated by
the drag force Fd

i = −μ0(vi − 〈vj 〉). Here 〈vj 〉 is the velocity
of the background fluid often computed as the average velocity
of the neighboring bubbles, and μ0 is the viscosity of the fluid.
Since we impose no external deformation to our system, we
set 〈vj 〉 = 0. Then, the bubbles follow a quasistatic equation
of motion with

vi = 1

μ0

N∑
i 
=j

Fij , (3)

which can be integrated in a molecular dynamics fashion
to obtain the evolution of the foam. From considerations of
dimensionality we assume that F0 = T0〈Rin〉. In this case,
the dynamics of the system is determined by ratio μ0/T0.
Therefore, the timescale in the simulation can be chosen so
that Eqs. (2) and (3) become

dxi

dt
=

N∑
i 
=j

〈Rin〉
(

Ri + Rj − |ri − rj |
Ri + Rj

)
ri − rj

|ri − rj | , (4)

where t is dimensionless time, scaled with μ0/T0. The main
merits of the model are that it is sufficiently simple, while
it still allows us to easily vary the foam properties such as
polydispersity, volume fraction, and dimensionality.

Due to the surface tension γ , there is a pressure difference
�p (the Laplace pressure) between the gas and fluid phases.
In a spherical bubble the Laplace pressure �p = 2γ /R is
proportional to the inverse of the bubble’s radius R. Hence
smaller bubbles have a higher Laplace pressure, which tends
to drive gas from smaller bubbles to larger ones. To take
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this into account in the bubble model, Gardiner, Dlugogorski,
and Jameson (henceforth GDJ) proposed a scheme where, in
addition to their elastic and viscous interactions, the bubbles
are allowed to exchange gas via two distinct mechanisms [18].
The rate of change of each bubble’s volume Vi (=πR2 in 2D)
is the sum of two terms,

dVi

dt
= V̇ tf

i + V̇
cp
i . (5)

The first term V̇ tf
i is the result of gas exchange through the thin

film that separates two bubbles in contact. It is proportional
to their contact area Aij [a length of contact line in 2D, see
Fig. 1(a)] and the difference in their Laplace pressures,

V̇ tf
i = K

∑
j∈i

Aij

(
1

Rj

− 1

Ri

)
, (6)

where K is the diffusion parameter, encapsulating the prop-
erties of the liquid film and the bubbles, such as the effective
permeability, surface tension, and temperature. The sum runs
over bubbles j in contact with i. Note that V̇ tf

i tends toward
zero as two bubbles lose contact. The second term in Eq. (5),
V̇

cp
i , models gas exchange intermediated by the continuous

fluid phase. This occurs in a mean fieldlike fashion,1

V̇
cp
i = 2π〈Rin〉κ(1 − φ)K

(
1

〈R〉 − 1

Ri

)
. (7)

The dimensionless prefactor κ encodes the relative strength
of liquid-intermediated diffusion versus diffusion through thin
films. The proportionality with 〈Rin〉 is introduced on dimen-
sional grounds, while the ad hoc prefactor of 1 − φ imposes
the reasonable requirement that no gas exchange occur via the
continuous liquid phase when the liquid fraction vanishes. For
the specific case of a foam monolayer sandwiched between
two plates, recent calculations from Schimming and Durian
[20] imply a value of κ that varies smoothly with gas volume
fraction and bubble radius. Here, for simplicity and generality,
we sweep φ at constant κ while reporting results for several
values of κ .

The simulation procedure is as follows. The simulations
begin by first randomly distributing the bubbles in a periodic
rectangle (2D) at the initial volume fraction of φ = 0.45. The
initial number of bubbles varied between the simulations. The
κ = 0 cases had 3000 bubbles. Our tests involving 10 000
bubbles showed no significant improvement on the data,
while considerably increasing the computational cost. The
computational demand was lesser for the cases where κ > 0,
and all of these were run with 10 000 bubbles allowing for
longer simulation times. For each bubble an initial radius is
assigned according to a Gaussian distribution with the mean
〈Rin〉 = 0.006 and standard deviation 0.21〈Rin〉. To reach the
target volume fraction φ0 we then compress the structure by
rescaling the dimensions of the simulation cell at a constant
velocity. After the compression, we equilibrate the system by
allowing the bubble positions to relax until the energy changes

1Note that Gardiner et al. use 〈1/R〉 in place of 1/〈R〉 in Eq. (7).
Our alteration ensures that the gas exchange summed over all bubbles
is zero and the gas fraction remains invariant in time.

less than 0.0001% for 1000 iterations. This gives us an initial
structure, such as the one shown in Fig. 1(b). Finally, we turn
on the coarsening and run the simulations until the number
of bubbles is smaller than a cutoff, which we take to be 300,
and the bubble size distribution has reached the scaling state
[Fig. 1(c)]. The differential equations (4)–(7) are integrated
using a second-order adaptive step size predictor-corrector
scheme with error tolerances set to 1×10−6. In all the plots
involving time, we have used the timescale t∗ = (K/〈Rin〉2)t .
As small bubbles tend to shrink, at some point there exist
bubbles with a negligibly small volume. For convenience,
bubbles that shrink below a threshold 1×10−6 are removed,
with their gas content again redistributed among the remaining
bubbles in proportion to their radius and conserving φ.

III. SCALING STATE

We now probe the evolution of bubble sizes as a function
of time. We first identify the scaling state, and then probe how
the coarsening time changes as the relative strength κ of gas
diffusion through the contacts and via the continuous phase is
varied.

In Fig. 2(a) we plot the average bubble size 〈R〉 as a
function of time for a system with volume fraction φ = 0.90
and κ = 0.1. Consistent with Eq. (1), there is an initial transient
after which the observable develops a power-law dependence
on time. This is the scaling state. The average bubble radius
in the scaling state follows a power-law 〈R〉 ∼ t∗α . By fitting
this form to late-time data [Fig. 2(a)], for this particular system
we find an exponent α ≈ 0.425. Due to dimensional consid-
erations and the conservation of total volume, one expects
the same exponent α to describe the growth 〈N〉 ∼ t∗−Dα

of the mean number of bubbles 〈N〉. This scaling relation is
verified in Fig. 2(b). To further characterize the scaling state,
we plot the probability density function (PDF) of bubble sizes
R/〈R(t∗)〉 in Fig. 2(c). During the transient the PDF broadens
beyond the initial Gaussian distribution. In the scaling state
PDF (R/〈R(t∗)〉) ceases to evolve with time. Hence the bubble
size distribution is invariant up to an overall change in scale.

We now probe the dependence of the coarsening process
on both gas fraction and the dimensionless parameter κ , which
quantifies the relative strength of gas exchange through thin
films and via the continuous phase. We focus on gas fractions
roughly in the vicinity of the gas fraction 0.84 where jamming
occurs in bidisperse disk packings [21]. In experimental sys-
tems, the value ofκ can be expected to depend in a complex way
on the interplay between the gas solubility, volume fraction,
and the permeability of the surfactant layer. However, in
contrast to experiments, in numerics it is straightforward to
tune the value of κ . We therefore investigate the limit where
κ is sent to zero. We are motivated by the observation that in
static packings near jamming, both the mean overlap and the
mean contact area between bubbles vanish as the gas fraction
approaches φc from above. This suggests that gas exchange
via the contacts should be strongly sensitive to the system’s
proximity to the jamming transition.

In Fig. 3 we plot the average radius as a function of time,
with a run time of T = 200. We keep κ = 0.1 and vary the
gas fraction from 0.82 (below jamming) to 0.95 (well above
jamming). In each case the system approaches a scaling state,
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FIG. 2. (a) Time evolution of the average bubble size for gas fraction φ = 0.9 and κ = 0.1 The dashed curve has a slope 0.425. (b) The
number of bubbles decays in time, approaching a power law with exponent −0.87 (dashed curve). (c) The probability density function (PDF)
of bubble radii R, expressed in units of the mean bubble size 〈R(t∗)〉 at time t∗. Time increases from blue to red (see legend).

but the apparent exponent α in the scaling state clearly varies.
Intriguingly, power-law fits suggest α ≈ 0.30 and 0.45 for the
lowest and highest values of φ, respectively. These are similar
to the theoretical values 1/3 and 1/2 associated with dilute
and dry foams. This observation suggests that changes in the
scaling state reflect the dominant gas exchange mechanism.
(The small differences between our numerical estimates of α

and the theoretical predictions are likely due to finite system
sizes and run times, and, for the case of large φ, the fact that the
bubble model fails to capture the polygonal shape of bubbles
in dry foam.)

In order to quantify the dependence of the scaling state
on both φ and κ , in Fig. 4 we investigate both the exponent
α and the coarsening time τc as a function of gas fraction φ

for different values of κ . As shown in Fig. 4(a), the apparent
α is an increasing function of φ for finite κ . For the special
case of κ = 0 (all gas exchange occurs through thin films),
the coarsening time grows dramatically (discussed below) and
it becomes impractical to estimate α for φ < 0.9. Above this
value α ≈ 0.45.

In Fig. 4(b) we plot the coarsening time τc for the same data
sets, estimated as the time where the average radius equals 1.5
times its initial value. In all three cases, the time required to
reach the scaling state increases with decreasing φ. For κ = 0,
the coarsening time appears to diverge. This divergence can

FIG. 3. Time evolution of the average bubble size for κ = 0.1 and
φ ranging from 0.82 to 0.95.

be quantified by plotting the κ = 0 data on a log-log plot
as a function of �φ = φ − φc [Fig. 4(c), blue squares]. We
find that for a critical gas fraction φc = 0.873, the coarsening
time is well described with a power-law τc ∼ 1/�φβ with
β ≈ 0.8. Estimating the coarsening time from the decay of N ,
rather than the average radius, gives compatible results (not
shown). In the same plot, we estimate the coarsening time
τ nr
c for nonrattler particles (red circles). More precisely, we

calculate the average radius of load bearing particles, which
are the only ones undergoing gas exchange when κ = 0. The
timescale τ nr

c diverges more slowly; a power-law fit gives an
exponent β ≈ 0.4. We note that a naïve extrapolation from
the bubble-bubble gas exchange law, Eq. (6), would predict a
timescale that diverges as 1/A ∼ 1/�φ0.5 in 2D.

Let us now summarize the results of Figs. 2–4. We observe
a scaling state in the GDJ bubble model with coarsening.
The effective exponent α assumes a narrow range of values
0.30–0.45 in the vicinity of the jamming transition, with a
notable dependence both on φ and on the relative strength of
gas exchange through contacts and via the continuous phase.
As the ratio κ is decreased at fixed φ, there is a substantial
increase in the the coarsening time τc. When κ is nonzero,
the coarsening time remains finite in the vicinity of jamming,
while τc appears to diverge at a critical volume fraction when
κ = 0. The above observations lead us to hypothesize that
there are two separate timescales τtf and τcp, associated with
gas exchange through thin films and via the continuous phase,
respectively, and that the coarsening time τc is selected by the
smaller of τtf and τcp.

At gas volume fractions below jamming, nearly all the gas
exchange occurs through the continuous phase, i.e., the V̇ cp

dominates the process. Since V̇ cp depends linearly on κ , so
does also the relative gas flux V̇ cp/V̇ tf. On the other hand when
κ = 0, V̇ tf is the only gas exchange mechanism available.
Then, on the approach to jamming, the relative importance
of V̇ tf should be expected to decrease with the same power law
as τc, V̇ tf being the sole source of this scaling. The same is
expected to occur also at small values of κ . At high kappa, the
process is completely dominated by the V̇ cp giving a scaling
close to 1/3 at all ranges of gas volume fractions.

Above we found that the coarsening time when κ = 0
diverges at a critical volume fraction φc ≈ 0.873. This value
is significantly larger than the more commonly quoted value
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FIG. 4. (a) Power-law exponent α as a function of gas fraction φ for two values of κ = 0.1 and 0.5. (b) The coarsening time τc as a function
of gas fraction φ for varying ratios κ (see legend). The coarsening time is defined as time when 〈R〉/Rin is equal to 1.5. (c) The power-law
divergence of the coarsening time when κ = 0. Blue squares indicate coarsening time when all bubbles were taken into account calculating
〈R〉. Red circles indicate the coarsening time calculated when only nonrattler bubbles were considered.

around 0.842, see, e.g., Refs. [5,21,22]. As our estimation of φc

was made via an indirect method, we now seek to rationalize
it via independent measurements.

The critical volume fraction is known to depend on the
polydispersity of a packing [21,23,24]. We therefore study the
evolution of the bubble size distribution in the scaling state. In
Fig. 5 we plot PDF (R/〈R〉) evaluated at the end of each run.
The PDFs for sufficiently large κ show a gradual linear growth
at small R that gives away to a broad peak near the mean bubble
size. As κ decreases, the bubble size distribution broadens
while simultaneously developing a large peak at small values
of R corresponding to approximately 10% of the maximum
bubble size. To illustrate these differences, in Figs. 5(b)
and 5(c) we compare snapshots of systems with κ = 0.12
and 0 in the scaling state. In the system with κ = 0, voids
between large bubbles tend to be occupied by small ones. The

FIG. 5. (a) Probability distribution function (PDF) of the radius
(normalized by 〈R〉) evaluated at t∗ = 80 for φ = 0.88 and κ ranging
from 0.01 to 1.0. (b) and (c) Systems with κ = 0.12 and κ = 0 at
t∗ = 100, φ = 0.88.

small bubbles are have little or no overlap with their geometric
neighbors—the system on the right is effectively closer to its
jamming transition, even though both systems have the same
gas fraction. The void-filling bubbles of Fig. 5(c) experience
little or no gas exchange until their surrounding bubbles change
their configuration, which leads to the large peak in the PDF.
This phenomenon survives in the scaling state because the
typical size of both voids and bubbles increase in proportion
to 〈R(t∗)〉. The form of the PDF may be a way to distinguish
“small κ” and “large κ” systems experimentally.

The κ = 0 bubble size distribution is significantly broader
than the usual bidisperse packings studied in simulations [21].
We therefore attribute the upward shift in φc to this broadening.
The distinguishing feature of the present system, vis à vis other
polydisperse systems, is that its broad bubble size distribution
is not seeded via an initial condition. Instead it is dynamically
generated through coarsening, and there is feedback between
the evolution of the bubble size distribution and the system’s
proximity to the jamming transition.

To provide an independent test of the shift in φc, in
Fig. 6(b) we plot the mean coordination number z for varying
φ as a function of time. In determining z, we assume that
the system’s evolution is quasistatic, so that rattlers can be
meaningfully identified and removed. Jamming occurs at the

FIG. 6. Mean coordination number z(t∗) − 4 for varying φ as a
function of time.
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critical coordination number zc = 2D = 4 in two dimensions,
in accord with a constraint counting argument that dates to
Maxwell. One clearly sees that packings for φ � 0.88 satisfy
z > zc for the entire run time, while φ = 0.87 dips below
4 approximately halfway through the run—while the initial
condition was jammed, the scaling state samples unjammed
packings.

In order to estimate φc more accurately, we have probed
the interval 0.87 � φ � 0.88 in steps of 0.001 for longer runs
to T = 103. At these long times the system reaches sizes
N ∼ O(100) (recall that N ∼ 1/t∗Dα) and the coordination
number experiences large fluctuations, which restricts the
precision of our estimate. We find that for volume fractions
φ � 0.872 the mean coordination unambiguously drops below
zc within the run time, while for φ � 0.877 it clearly remains
above zc. For 0.873 � φ � 0.876, the coordination number
fluctuates on either side of zc, so the system’s evolution passes
through both jammed and unjammed configurations. These
observations lend independent support to the determination
of φc from the divergence in τc presented above.

IV. MECHANICS

In the previous section we identified signatures of the
jamming transition in the scaling dynamics of coarsening
foams. We now seek to correlate these effects with features of
the mechanical response. Our interest lies specifically with the
interplay between a growing coarsening time and the foam’s
mechanical response. As the coarsening time actually diverges
when κ = 0, we focus on this case.

Bubbles store energy when distorted and dissipate energy
when sliding past each other, which gives rise to viscoelastic
response [4,25]. Foam viscoelasticity can be probed both ex-
perimentally and numerically by measuring the complex shear
modulus G∗(ω) = G′(ω) + ıG′′(ω), defined as the complex
ratio of shear stress and strain amplitude under harmonic forc-
ing at angular frequency ω [26]. The real and imaginary parts
of G∗ are known as the storage and loss moduli, respectively.
Previous work has shown that the amplitude and shape of the
complex modulus depend sensitively on the distance to the
jamming transition in systems without coarsening [9,27–33].

For reference, we recall that simple viscoelastic solids
(frequently referred to as Kelvin-Voigt solids) have a constant
storage modulus G0 and a linear loss modulus η0ω; their
ratio G0/η0 selects a characteristic relaxation time. Deviations
from the Kelvin-Voigt form are associated with a spectrum
of relaxation times (rather than a single timescale), but the
timescale τr where the loss and storage moduli cross, i.e.,
G′(1/τr ) = G′′(1/τr ), is still an important reference point. It
indicates a crossover from predominantly solidlike response at
low frequencies to predominantly liquidlike response at high
frequencies.

While the complex shear modulus is meant to describe
steady state dynamics, the structure of coarsening foams in
the scaling state continuously evolves (“ages”) [34,35]. Aging
violates time translational invariance, which is assumed in the
usual definition of the complex shear modulus [36]. Never-
theless, oscillatory rheology is often used to characterize soft
materials, with a focus on frequencies that are fast compared
to the evolution of the structure [34,35]. Here we determine

FIG. 7. Complex shear modulus G∗ for φ = 0.878. Solid lines
depict the storage modulus G′; dashed lines depict the loss modulus
G′′. The color palette corresponds to evolution in time.

the storage and loss moduli via a numerical “experiment”
that disentangles viscous relaxation from coarsening-induced
rearrangements. States are sampled at varying times t∗ from a
coarsening simulation at fixedφ. Coarsening dynamics are then
turned off (all particle sizes are held fixed) and the complex
shear modulus is measured according to the method described
below. In this way it is possible to obtain moduli over the
full range of frequencies 0 � ω � ∞; however, we focus on
timescales that are short compared to the system’s age.

In order to measure the complex shear modulus, we em-
ploy a linearization scheme introduced in Ref. [9]. Given
a particular configuration of bubbles, its collective response
to shear is described by the DN + 1-component vector
u = (�u1,�u2, . . . ,�uD,γ )T , where �ui is the displacement of
bubble i from its reference position, and γ is the shear
strain experienced by the unit cell. The response to a
shear stress σ is given by the solution to the first-order
differential equation

K u(t∗) + B u̇(t∗) = σ (t∗)V eγ , (8)

where eγ is a unit vector along the strain coordinate. The
stiffness matrix K and damping matrix B describe the elastic
and viscous forces on the particles, respectively. K consists
of second derivatives of the elastic potential energy with
respect to the particle and strain degrees of freedom; B is
similarly defined in terms of the Rayleigh dissipation function.
Details are available in Ref. [9]. Linearization is strictly
valid only when deformation amplitudes are infinitesimal;
nevertheless, numerical studies indicate that moduli calculated
in this way remain accurate over a finite strain interval
[30,37,38]. By Fourier-transforming Eq. (8) and solving for the
complex shear strain in response to a sinusoidally oscillating
shear stress with frequency ω, one can determine complex
shear modulus.

In Fig. 7 we plot the storage and loss moduli (solid and
dashed curves, respectively) for a system at φ = 0.878, close
to but above the jamming transition. The storage modulus
displays a low frequency plateau, indicating that the sampled
configurations are jammed solids. (We stress again that the
linearization scheme employed here “turns off” coarsening,
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FIG. 8. (a) Mechanical relaxation time measured from the intersection of G′ and G′′ for different φ as a function of system age. (b) Data
collapse: relaxation times scaled with �φ0.55 as a function of t∗�φ0.55.

hence any softening at asymptotically low frequencies due to
coarsening-induced rearrangements will not be captured.) At
high frequencies there is a second plateau in G′, associated
with affine deformations [9,30]. There is a gradual crossover
between these two plateaus. In similar fashion, the loss mod-
ulus G′′ is asymptotically linear at low and high frequencies,
with a crossover between the two scaling regimes. In previous
work it was shown that this crossover occupies a widening
window in frequency as φ → φ+

c , such that G′ ∼ G′′ ∼ ω1/2

[9]. Experimental measurements of the loss modulus in foams
often show a plateau at low frequency [34,35]. This feature is
absent from our data, and from prior studies of Durian’s bubble
model without coarsening, including ones that probe finite
strain amplitudes with rearrangements [9,30,33]. We conclude
that the plateau results from physics that is not incorporated in
the bubble model.

The storage modulus shows a clear dependence on the
sample age, with an overall downward shift with increasing
age. Their intersection point defines the mechanical relaxation
time τr , which we measure at varying volume fraction and
age—see Fig. 8(a). The relaxation time clearly depends on
both the system age t∗ and the distance to jamming; it grows
larger with increasing age and decreasing distance to jamming
�φ. The dependence of τr on t∗ and �φ can be rationalized
in two steps, beginning with its growth with age.

The age dependence of τr is controlled by the scaling of
G′ and G′′ with t∗. These can be anticipated on dimensional
grounds, by which one expects there to be characteristic elastic
and viscous stress scales:

σel ∼
(

N (t∗) R(t∗)

LD

)
Fel(t

∗), (9)

σvisc ∼
(

N (t∗) R(t∗)

LD

)
Fvisc(t∗). (10)

Here N , R, Fel, and Fvisc are typical values of the particle num-
ber, particle radii, and elastic and viscous forces, respectively;
LD is the volume of the unit cell, which is constant. The elastic
force law scales with the dimensionless overlap [cf. Eq. (2)]
and should therefore be independent of time in the scaling
state; hence the time dependence of the typical elastic stress
scales as σel ∼ N (t∗)R(t∗) ∼ t∗−α . By contrast, the typical

viscous force is set by the bubble velocity V ∝ R(t∗) ω. Hence
σvisc ∼ t∗0, consistent with observations. Turning back to τr ,
we note that the relaxation time in systems without coarsening
is insensitive to the distance to jamming; hence the dependence
here is likely to be inherited from the coarsening dynamics.
And indeed, a simple balancing of the viscous and elastic stress
scales would suggest a frequency ωr ≡ 1/τr that depends on
age as ωr ∼ R ∼ t∗α , consistent with the data in Fig. 8(a).

In order to understand the dependence of τr on �φ, we
postulate that the nonrattler coarsening time τ nr

c sets the
natural units for both relaxation time and the age of the
system. This is expressed most naturally in the form of a
scaling ansatz,

τr

τ nr
c

∼ T
(

t∗

τ nr
c

)
, (11)

for some function T (x). Indeed, in Fig. 8(b) we obtain
good data collapse when plotting τr �φβ versus t∗ �φβ .
Treating β as a free parameter, the best collapse is found
for β = 0.55, reasonably close to the value 0.4 determined
independently in Fig. 4(c) and the value 0.5 suggested by
scaling analysis of Eq. (6). Comparable data collapse can
be obtained using 0.5 if one restricts the gas fraction to
values φ < 0.95. As expected, T ∼ xα for large values of x,
when the system’s age is large compared to the coarsening
time τc. It follows that, in the scaling state, the mechanical
relaxation time obeys τr ∼ t∗α/�φβ(1−α). Deviations from a
slope of α occur when the age is smaller than the coarsening
time. We expect that Eq. (11) remains valid when κ > 0,
though in this case the coarsening time no longer diverges
at φc.

V. CONCLUSIONS

We have presented the results of numerical simulations
of the coarsening of foams close to, and slightly above, the
jamming volume fraction. For this purpose, we implemented
the Durian bubble model, with extensions to incorporate gas
diffusion between the bubbles.

Our main observation are: (i) The model captures the
expected t∗α scaling, with an exponent α whose value is
sensitive to the dominant gas exchange mechanism. (ii) The
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shape of the bubble size distribution signals the dominant gas
exchange mechanism. When κ is large, the PDF has a broad
peak near the mean bubble size; when κ is sufficiently small,
a sharp peak at low R emerges. (iii) The coarsening time is
also sensitive to the dominant gas exchange mechanism. When
exchange is predominantly through the continuous phase, τc is
insensitive to the gas fraction. In contrast, when gas exchange
is dominated by contacts between bubbles, τc diverges. (iv)
The foam’s mechanical response is radically influenced by
the coarsening; the mechanical relaxation time τr , where the
oscillatory rheology shows a crossover from liquidlike to
solidlike behavior, shows scaling both with the system’s age
and the nonrattler coarsening time. This establishes a clear
connection between mechanical relaxation and the coarsening
dynamics.

Finally, our results suggest directions for future work.
In order to more deeply understand the enhanced packing
efficiency of the scaling state, it would be necessary to model
the form of the bubble size distribution directly. There may
be fruitful connections to systems undergoing rupture and/or
Apollonian packings [39,40]. Additional questions concern
the dominant mechanism of gas exchange between bubbles.
We expect that by appropriate choice of the gas solubil-
ity and surfactant properties, one might be able to select
different values of κ in experiments. More detailed models

of gas exchange could also potentially be implemented in
simulations. For example, recent work has shown that there
is a non-negligible flux through the plateau borders (i.e.,
through the packing’s fluid-filled voids, rather than through
the increasingly smaller thin film interfaces [20,41] close to
the jamming volume fraction). This would yield additional
terms in Eq. (6). Additionally, in technological applications
foams often undergo shear flow during coarsening; how are
these two forms of driving coupled? In addition, industrial
foams are often formed of thixotropic complex fluids, such as
(nano)particulate suspensions. Coarsening dynamics changes
due to the nonlinear dynamics of the suspending liquid, ulti-
mately stopping completely [41,42]—how can coarsening and
mechanics be characterized and modeled in such cases? Many
of these issues and questions can potentially be addressed with
straightforward extensions of the present model.
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