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Abstract
We develop a Gravity Assist Mapping to quantify the effects of a flyby in a
two-dimensional circular restricted three-body situation based on Gaussian Process
Regression (GPR). This work is inspired by the Keplerian Map and Flyby Map. The
flyby is allowed to occur anywhere above 300 km altitude at the Earth in the system
of Sun-(Earth+Moon)-spacecraft, whereas the Keplerian map is typically restricted
to the cases outside the Hill sphere only. The performance of the GPR model and
the influence of training samples (number and distribution) on the quality of the pre-
diction of post-flyby orbital states are investigated. The information provided by this
training set is used to optimize the hyper-parameters in the GPR model. The trained
model can make predictions of the post-flyby state of an object with an arbitrary ini-
tial condition and is demonstrated to be efficient and accurate when evaluated against
the results of numerical integration. The method can be attractive for space mission
design.
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Introduction

In the past decades, valuable insight about celestial bodies in our Solar System has
been gained using spacecraft, such as Jupiter visited by Galileo [1]. Provided the
payload capacity of launch vehicles is sufficient, it is possible to fly a direct trans-
fer to the above destination. However, it is not necessarily the first choice due to the
required propellant mass. In order to reduce the propellant consumption, typically a
gravity assist (GA) technique is used. For instance, a combination of flybys at Venus
and Earth was performed by Galileo before arriving at the final target Jupiter. In the
preliminary design, the patched conics approach is commonly used to investigate
flybys, which splits a multi-body problem into a succession of two-body problems
[2–5]. This model has a fundamental assumption: the trajectory of the spacecraft is
driven by one celestial body only. In addition to traditional GA’s, distant encounters
can be used to construct low-energy trajectories between the moons of giant plan-
ets [6–8]. However, the patched conics model cannot be used to study low-energy
trajectories or describe the phenomena such as the invariant manifolds. The Circu-
lar Restricted Three-Body Problem (CR3BP) framework is typically used to conduct
these studies [9–11].

Unlike the patched-conics model, the secondary keeps affecting the spacecraft
in the CR3BP model. Distant encounters can be modelled in the CR3BP. However,
there is no clear boundary condition for such a flyby because the motion of the
spacecraft is always affected by the secondary. The Keplerian map is a useful tool to
study the flyby effects in the CR3BP. This concept was first introduced by Petrosky
and Broucke to study the chaotic behavior of comets near Jupiter [12]. They stud-
ied perturbation theory in the CR3BP framework to investigate the energy change
of a particle with negligible mass after each flyby. The Keplerian map was further
improved by Shevchenko with quite elementary methods [13]. Ross and Scheeres
exploited the concept of the Keplerian map to investigate semi-analytically high-
altitude flybys in the Planar Circular Restricted Three-Body Problem (PCR3BP) [6].
It can predict well the variation of Keplerian energy during a flyby by calculating
quadratures of energy-kick functions. However, the assumption of constant orbital
elements using Picard’s method fails if the spacecraft is very close to the secondary.
It focuses only on the cases of a Jacobi constant around 3.0 and has poor accuracy
for high three-body energies. Later, the Keplerian map for the fully spatial case was
developed for the initial-value problem, which allows for applications to low-energy
spacecraft mission design [14]. In order to model the variation of the orbital elements
of a massless particle in the CR3BP, Alessi and Sánchez developed a type of Kep-
lerian map, called Kick map, based on semi-analytical formulations in the spatial
CR3BP [15]. It is worth noting that the integration of this formulation is done numer-
ically, which requires a computational effort similar to that of the propagation in the
CR3BP. Moreover, this estimation is prone to higher error when the massless particle
reaches a distance to the secondary smaller than the Hill radius (typically, about 0.01
AU in the Sun-(Earth+Moon)-spacecraft system). Motivated by the Keplerian map
and the Tisserand-Poincaré graph, Campagnola et al. developed a flyby map to study
flybys in the PCR3BP [16]. The flyby map has a wider domain of applicability than
the Keplerian map. It found two types of flybys and illustrated that the direct type
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exists at all energies and is more efficient than the retrograde type. The GPR-based
Gravity Assist Mapping aims at developing an accurate and efficient method of quan-
tifying the flyby effects. This method holds the advantage of a prominent accuracy at
the cost of a low computational efficiency, because the state of the particle must not
be integrated during the encounter.

Inspired by the Keplerian map and the flyby map, we develop a Gravity Assist
Mapping (GAM) based on Gaussian Process Regression (GPR), a machine-learning
technique. The method is used for quantifying flyby effects in the PCR3BP. It
works for a broad range of energy levels, i.e. beyond the domain of applicability the
Keplerian map, and requires smaller computational cost.

In this research, the dynamical model of a PCR3BP is presented first in Section
Planar Circular Restricted Three-Body Problem. In Section Gravity Assist Mapping,
it is described how the GPR model is to learn the features of flybys from training
samples generated by PCR3BP equations of motion. The covariance function, the key
module of the GPR model, is improved based on the analysis of flyby dynamics. The
number and distribution of training samples are selected by taking the Root-Mean-
Square Error (RMSE) and the Mean-Absolute-Percentage Error (MAPE) of test
samples as criterion. In Section Performance of GPR-based Gravity Assist Mapping,
the performance of the mapping technique is assessed. By training the model with
the information provided by hundreds of training samples, the GPR-based approach
can accurately capture the features of flybys. Finally, the conclusions are drawn in
Section Conclusions.

Planar Circular Restricted Three-Body Problem

In the preliminary design of a space mission, simplified dynamical models are com-
monly used to reduce the computational effort. In this research, the PCR3BP model
is used for constructing GA trajectories.

The PCR3BP assumes a system with three bodies: a massless particle and two
massive primaries P1 and P2 with mass M1 and M2, respectively. Generally, we refer
to body P2 with the smaller mass as the secondary. The motion of the particle is
driven by the simultaneous gravitational pull of both primaries. The primaries are
assumed to rotate around the barycenter of the system in circular orbits. The orbital
plane of these two massive bodies is taken as the reference plane. Characteristic
quantities are commonly defined such that a normalized model can be applied to any
three-body system.

In the rotating reference frame, which has the barycenter as origin, the frame
rotates at the same angular velocity as the primaries do around this barycenter. The
equations of motion in non-dimensional units for the particle (spacecraft) are given
as [17] ⎧

⎨

⎩

ẍ − 2ẏ = x − (1−μ)

r31
(x + μ) − μ

r32
(x − 1 + μ)

ÿ + 2ẋ = y − (1−μ)

r31
y − μ

r32
y

(1)

where μ = M2/(M1 + M2) represents the mass parameter, and r1 and r2 the nor-
malized distances between the particle and the primary and secondary respectively.
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In this paper, the Sun-(Earth+Moon)-spacecraft system is used with a mass ratio of
3.036×10−6. Obviously, Equation 1 is analytically unsolvable. Moreover, the trajec-
tory solutions are very sensitive to the initial conditions. This leads to the difficulty
of assessing flyby effects accurately. Given an initial condition, the flyby effects can
be calculated using the numerical propagation of the CR3BP equations of motion.

Gravity Assist Mapping

GPR is a regression method to estimate the relation between inputs and outputs in
terms of a specific model. Krige first developed GPR for the estimation of the dis-
tribution of gold [18]. For astrodynamics purposes, GPR was adopted to efficiently
assess the accessibility of main-belt asteroids and found thousands of potential mis-
sion targets [19]. It has also been used for modelling the gravity field of small bodies
or the optimization of low-thrust trajectories [20, 21]. GPR is able to learn effectively
the correlation between inputs and outputs of a process. A GPR-based method will be
developed here to evaluate the post-flyby state of the spacecraft in a PCR3BP system.

GPR Fundamentals

As a supervised learning tool, GPR is used to predict the output at arbitrary input
based on empirical information. Such information is obtained by observing the output
of a group of independent input data in a specific input space. In this section, we will
discuss the elementary aspects of GPR; the interested reader is referred to [22]. In
this work, both input and output are the Keplerian elements of the spacecraft state
in an inertial reference frame. The origin is centered at the largest primary and all
the bodies are contained in the X-Y plane. The connection between the state of the
spacecraft before flyby and after flyby can be described by a mapping function:

F : [aA, eA, ωA] �→ [aB, eB, ωB ] (2)

where a is the semi-major axis, e the eccentricity and ω the argument of periapsis.
Subscripts A and B denote before- and post-flyby, respectively. Each of the orbital
elements represents a feature of the state vector. One set of input vector and corre-
sponding output vector comprises a so-called sample. In the inertial frame, Fig. 1
shows the osculating orbital elements of the spacecraft at the initial condition. The
frame is centred at the primary and the X-axis points to the vernal equinox. Two
assumptions are made for these initial conditions: the spacecraft starts from the
apoapsis (i.e. θ = −π ); the initial true anomaly of the secondary θP 2 is selected such
that it arrives at the negative X-axis when the spacecraft (in terms of initial osculat-
ing orbit) reaches periapsis. The time span before the secondary reaches the negative
X-axis is set to be half of the orbital period of the initial osculating orbit of the space-
craft. Therefore, the relationship of phasing between the spacecraft and the secondary
is described by the argument of periapsis ω only. When ω = 180◦, the minimum dis-
tance between the particle and the secondary happens at the periapsis passage and a
flyby effect can be expected (See Appendix A for more details).
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Fig. 1 Osculating orbit of the spacecraft in the inertial frame centered at the primary

The output will be predicted by GPR using the general function f

f : x �→ y (3)

where x = [aA, eA, ωA] is a vector, and y represents one of the variables of the post-
flyby state [aB, eB, ωB ]. Obviously, the dimension of the output vector determines
the number of GPR models. In our case, the output vector consists of three elements,
so three GPR models are required to build the Gravity Assist Mapping.

The method of Bayesian inference is used to predict the value of the output y with
respect to the input x. This procedure works on a Gaussian process which is basically
an infinite collection of random variables. Selecting an arbitrary finite number of
this collection can form a joint Gaussian distribution [22]. For the GPR method, the
random variable is taken as the value of the function f (x). The Gaussian process
based on the function f (x) is specified by [23]

f (x) ∼ GP(m(x), k(x, x′)) (4)

where x′ is an input vector in the input space. k(x, x′) represents the covariance
function if x �= x′ and the variance of x if x = x′. m(x) is the mean function.

Commonly, the prior value for m(x) is taken to be zero before obtaining more
information about the mapping. After training the model, the posterior value will
be inferred, which is not confined to be zero [22]. Therefore, the module k(x, x′)
becomes the only determinant of the process. The information about the Gaussian
process in Equation 4 can be gained by observing flyby effects for known inputs. The
observation of an output (one feature of the post-flyby state) for a given input (before-
flyby state) is actually generated using the propagation in the PCR3BP model. The



The Journal of the Astronautical Sciences

input and corresponding output compose a so-called training sample. Assuming we
have N training samples, the training dataset D is defined as

D = {(X, Y )|X = [x1, x2, . . . , xN ], Y = [y1, y2, . . . , yN ]} (5)

where X and Y are the training input matrix (the states before flyby) and the output
vector (the selected feature of the post-flyby states), respectively. The output pre-
dicted by the GPR is assumed to differ from the ground truth by a value that follows
a Gaussian distribution. Given the training inputs, the joint Gaussian distribution of
outputs obtained from the GPR is:

Y ∼ N (0, K(X, X)) (6)

where K is the covariance matrix consisting of N2 covariance functions, written as

K(X, X) =

⎛

⎜
⎜
⎜
⎝

k(x1, x1) k(x1, x2) · · · k(x1, xN)

k(x2, x1) k(x2, x2) · · · k(x2, xN)
...

...
. . .

...
k(xN, x1) k(xN, x2) · · · k(xN, xN)

⎞

⎟
⎟
⎟
⎠

(7)

Assuming that y∗ is the prediction for a new input vector x∗, then the training outputs
Y and the predicted output y∗ form a joint Gaussian distribution:

(
Y

y∗
)

∼ N
(

0,

(
K(X, X) K(X, x∗)
K(x∗, X) k(x∗, x∗)

))

(8)

where K(X, x∗) represents the vector of N covariance functions calculated at
each entry of training inputs X and new input x∗. Clearly, because of symmetry,
K(x∗, X) = K(X, x∗)T .

By conditioning the joint Gaussian distribution in Equation 8 on the observa-
tions, the predicted distribution of output y∗ has a Gaussian form and is completely
specified by the mean μ(y∗) and the covariance cov(y∗).

y∗|x∗, X, Y ∼ N (μ(y∗), cov(y∗)) (9)

The values of μ(y∗) and cov(y∗) can be evaluated by

μ(y∗) = K(X, x∗)T K(X, X)−1Y (10)

and

cov(y∗) = k(x∗, x∗) − K(X, x∗)T K(X, X)−1K(X, x∗) (11)

Generally, the expected value μ(y∗) can be taken as the predicted output y∗. Once
a GPR model has been built, the prediction can be obtained by matrix multiplication
of the N × 1 vector K(X, x∗), the N × N matrix K(X, X)−1 and the 1 × N vector
Y . Equation 10 can be further simplified into:

y∗ = K(X, x∗)T Qtrain (12)
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where Qtrain = K(X, X)−1Y is precalculated. The prediction efficiency improves
about N times after this simplification. When performing the evaluations for N∗ new
inputs, the outputs are obtained by

Y ∗ = K(X, X∗)T Qtrain (13)

where Y ∗ = [y∗
1 , y

∗
2 , ..., y

∗
N∗ ] is a vector of predicted outputs and K(X, X∗) is an

N∗ × N matrix.

GPR Covariance Function

The covariance function describes the relation between samples by evaluating a func-
tion in terms of inputs. It is the most basic and essential module for any GPR model.
The covariance functions can have various mathematical expressions and parame-
ters which are called hyper-parameters. A perfect covariance function contributes to
obtaining an exact representation of mapping between input and output. In addition,
the generalization of a GPR model depends heavily on the choice of the covariance
function. Unfortunately, a universal rule is not available for such a choice [24]. In our
research, it needs to capture the dynamics of flybys in the PCR3BP. Two criteria are
considered to evaluate the performance of the covariance function. One criterion is
to minimize the cost function:

fcost = − logp(y|x) (14)

where the marginal likelihood p(y|x) describes the probability of obtaining the true
training output given a training input. This process is equivalent to maximize the
following function [22]:

logp(y|x) = −1

2
yT K−1y − 1

2
log |K| − N

2
log 2π (15)

Equation 15 is also the objective function to optimize the hyper-parameters using
training samples. The value of logp(y|x) is always negative. A logp(y|x) closer
to zero means that the possibility of observing true outputs is higher. Another cri-
terion is to minimize the difference between the numerically propagated outputs of
the PCR3BP and the predictions by the GPR. The differences are evaluated on test
samples with inputs generated randomly in the input space.

The covariance function selected here initially is the Rational Quadratic Automatic
Relevance Determination (RQARD) function [25]. The classical RQ covariance
function is stationary, i.e. it depends on the distances between sample points in
Euclidean space only. The different influence of orbital elements on the flyby effect
cannot be reflected by the RQ covariance function. To distinguish these effects, the
Automatic Relevance Determination (ARD) distance measure is integrated into the
RQ covariance function. Three specific weights la , le and lω (Equation 17 below) will
be optimized based on the sensitivity of the flyby effects to the corresponding orbital
elements. The optimized value of the weight is a reflection of the influence of that
particular feature. The RQARD function is defined as:

kRQARD(x, x′) = σexp

(

1 + (x − x′)T Q(x − x′)
2α

)−α

(16)
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Here σ and α are the magnitude parameter and shape parameter of the output
distribution, respectively. Q is a symmetric matrix containing weights

Q = diag

(
1

l2a
,
1

l2e
,
1

l2ω

)

(17)

where la , le and lω are weights for the elements a, e and ω respectively. Clearly, the
RQARD formulation emphasizes the influence of near-by training samples, whereas
samples further away have less influence.

Some covariance functions can interpret specific model characteristics, such as a
cosine or periodicity. For this research, a new covariance function is built by taking
the influence of the initial argument of periapsis ωA on the variation of the semi-
major axis a during a flyby into consideration. ωA turns out to be the most influential
parameter because it specifies the phasing between the massless particle and the sec-
ondary [6]. Under the predefined boundary, Fig. 2 shows a typical flyby effect of aB

for initial ωA values between 174◦ and 186◦ at [aA, eA] = [1.2591AU, 0.2] in the
Sun+(Earth+Moon)-spacecraft system. The post-flyby aB tends to have a sinusoidal
curve in terms of ωA. This is caused by the phase change of the flyby: the spacecraft
can gain Keplerian energy if the secondary is ahead of it and vice versa. The Kep-
lerian energy is computed for the osculating orbit with respect to the primary when
the spacecraft moves far away from the secondary. For this near-Keplerian orbit, its
Keplerian energy of the spacecraft with respect to the primary is proportional to the
inverse of the semi-major axis [6]. The three-body energy is invariant during the
flyby. In order to model this flyby effect, we incorporate a cosine function of ωA into
the GPR function. The combined covariance function (SUM) is expressed as

kSUM(x, x′) = σexp

(

1 + (x − x′)T Q(x − x′)
2α

)−α

+ p2cos

(
π(ωA − ω′

A)

180h

)

(18)

where σ and α are hyper-parameters defined in Equation 16, and p and h are hyper-
parameters denoting magnitude and phase transition, respectively. When ω′

A has a
value close to ωA, the last term in Equation 18 is approximately equal to its maximum
p2. This leads to a sample with ω′

A gaining more information from a sample with ωA

than from other samples.

Training Samples

As mentioned earlier, the GPR model obtains the empirical information by optimi-
zing hyper-parameters using training samples. The training set, in particular their num-
ber and distribution, determines the performance, accuracy and efficiency of the GPR
model. In principle, the accuracy of prediction improves with the information pro-
vided by an increasing number of training samples. However, a smaller training size
will reduce the computational effort with respect to Equation 12. In order to balance
accuracy and efficiency, the number of training samples is an essential variable which
will be analysed in Section Performance of GPR-based Gravity Assist Mapping.
Taking the Sun-(Earth+Moon)-spacecraft system as an example, the training input
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Fig. 2 Variation of semi-major axis after a flyby. This result is obtained by numerical integration in the
system of Sun-(Earth+Moon)-spacecraft

vectors aA, eA, ωA are randomly generated in the input space such that the initial
radius of periapsis rp, apoapsis ra and ωA meet the conditions

⎧
⎪⎨

⎪⎩

rp ∈ [1.00004464, 1.02],AU
ra ∈ [1.01, 2.02],AU
ωA ∈ [170, 190], deg

(19)

The boundaries are selected to meet a number of requirements. First, the osculat-
ing orbit of the spacecraft has a Minimum Orbit Intersection Distance (MOID) with
the secondary which allows a minimum of 300 km altitude at Earth taking the Galileo
mission as reference [26]. Second, the spacecraft starts outside the Hill sphere such
that the status of the spacecraft with respect to the primary can be defined using the
Keplerian elements. Third, ωA is defined in order to observe an obvious flyby effect;
beyond these boundaries effectively nothing happens (cf. Fig. 2). After generating
sets of [rp, ra, ω], the training inputs can be obtained by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aA = rp + ra

2
,AU

eA = ra − rp

ra + rp

ωA ∈ [170, 190], deg

(20)

Once the training inputs have been generated, the perfect post-flyby states are
acquired by numerical propagation using Equation 1. The numerical propagation
adopts adaptive step-size Runge-Kutta method with a maximum stepsize of 1×10−6

and relative and absolute tolerances of 1 × 10−12, such that the quality of train-
ing samples is ensured. It is of importance to define a termination condition for the
propagation: in principle one orbital period of the initial osculating orbit is defined
as end epoch. The GPR-based Keplerian map is to assess the effect of a single
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Fig. 3 Example of a trajectory in synodical frame. The red star represents Earth. The Sun at (−μ, 0) is
not shown in this figure

flyby. However, the selected boundaries for input space do not guarantee a sin-
gle fly by as shown in Fig. 3. The initial condition of this particular trajectory is
[1.02 AU, 0.007, 177.84◦]. Apparently, the spacecraft has a second close encounter
with Earth at the final stage of the propagation. The second flyby results in an incon-
sistency of the training outputs: most are based on one flyby, some are based on two
such events. There is no clear boundary for a flyby in the PCR3BP, which makes it
difficult to remove second flybys by monitoring the position or velocity of the space-
craft. To overcome this difficulty, the Tisserand parameter is used as the index for the
termination condition [27]:

T = 1 − μ

a
+ 2

√
a(1 − e2) (21)

Using this parameter as termination index is inspired by the value of the Tis-
serand parameter before and after a flyby when the spacecraft is far away from the
secondary [28]. Figure 4 illustrates the evolution of the Tisserand parameter for the
trajectory in Fig. 3. The Tisserand parameter drops dramatically when the first flyby
happens, then it increases rapidly and begins to decrease again when the second close
encounter is coming. To prevent the second flyby, the propagation is terminated when
the Tisserand parameter is maximised after the first drop.

at the top of the curve after the first flyby. In addition, the cases when an Earth
impact takes place are removed for obvious reasons.

Performance of GPR-based Gravity Assist Mapping

In order to evaluate the accuracy of the GPR-based Gravity Assist Mapping, a
set of test samples has been generated whose inputs are randomly distributed over
the input space. To quantify the quality of any combination of GPR model and
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Fig. 4 The evolution history of the Tisserand parameter for the trajectory of Fig. 3. The X-axis shows the
steps of the numerical integration for one orbital period

number and distribution of training samples, the Root-Mean-Square Error and the
Mean-Absolute-Percentage Error are adopted:

RMSE =
√

∑n
i=1(y

i
PCR3BP − yi

GPR)2

n
(22)

and

MAPE = 100%

n

n∑

i=1

∣
∣

yi
PCR3BP − yi

GPR

yi
PCR3BP − xi

PCR3BP

∣
∣ (23)

In principle, an increment of the number of training samples can be expected to
contribute to the reduction of errors because the GPRmodel is offered more empirical
information. So the acceptable error level serves for choosing the size of the training
dataset.

The procedure of building a GPR-based Gravity Assist Mapping is summarized in
the following steps:

(1) Define the mass ratio for a specific three-body system. The Sun-(Earth+Moon)-
spacecraft system is taken as an example with a mass ratio of 3.036×10−6. The
mass ratio is the only key parameter in the PCR3BP, so it is easy to implement
the GPR-based Gravity Assist Mapping for different three-body systems;

(2) Construct the covariance function. RQARD and SUM (Equations 16 and 18)
are used and analyzed here;

(3) Generate training inputs. The input space defined in this work selects a broader
boundary for flyby passage, instead of considering only the distant encounters
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outside the Hill sphere. Training set sampling uses four different distributions
as shown in Fig. 5: Systematic Sampling (SS), Random Sampling (RS), Latin
Hypercube Sampling (LHS), and Stratified Random Sampling (SRS), further
described in Section Accuracy;

(4) Calculate training outputs using the numerical PCR3BP propagation. The ter-
mination conditions on time and the Tisserand parameter are employed to
guarantee the consistency of the training outputs;

(5) Optimize the hyper-parameters based on the training samples, i.e. maximize
the outcome of Equation 15. Conjugate gradient ascent is used to find opti-
mal values of the hyper-parameters. This is used in a multi-start approach to
avoid being trapped in local minima (more precisely: the gradient procedure is
initiated at 10 different initial combinations of hyper-parameter values);

(6) Determine the optimal size of the set of training data. This is done by adding
training samples gradually until a stable error, i.e. the difference between the
outputs of the numerical PCR3BP and the GPR models on the test dataset, is
observed.

(7) Predict the output given a new input. Based on the training samples, the selected
covariance function and the corresponding optimized hyper-parameters, the
prediction can be obtained.

Accuracy

We generate a test set meeting the conditions of Equation 19 to assess the accuracy of
the method. The test set consists of 500 (N∗) input vectors randomly distributed over
the input space, and is kept fixed for all evaluations in a certain application. Their
corresponding outputs are obtained by numerical propagation in the PCR3BP model
and by the GPR model. To evaluate the performance for each model, both the MAPE
and RMSE will be calculated using Equations 22 and 23. The Sun-(Earth+Moon)-
spacecraft system is considered for all applications.

Fig. 5 Illustration of training samples using different distributions
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Systematic Sampling

By assuming that the training data can represent the empirical information of the
entire input space, we create a dataset by systematic sampling:

⎧
⎪⎨

⎪⎩

rp ∈ [1.00004464 : (1.02 − 1.00004464)/Ndivision : 1.02],AU
ra ∈ [1.01 : (2.02 − 1.01)/Ndivision : 2.02],AU
ωA ∈ [170 : (190 − 170)/Ndivision : 190], deg

(24)

Ndivision = 6, 7, 8, 9, 10, 11 indicates to what extent each input feature is
partitioned.

With increasing training size, Fig. 6 shows MAPE and RMSE of the test set on
the semi-major axis using the RQARD and SUM covariance functions, respectively.
In this case, the RQARD function performs better than SUM, but MAPE is larger
than 1000%. Obviously, the systematic sampling fails to offer useful information for
the GPR model. This is because the GPR model uses Bayesian inference, a type
of statistical inference, which strongly relies on the assumption of random selection
[29]. If this assumption is not satisfied, as is the case with regular sampling, the basis
for any GPR model drops out and the output is to be considered as unrealistic.

Random Sampling

In this test, we distribute the training inputs randomly over the entire input space.
MAPE and RMSE results are shown in Fig. 7. The SUM function has a better per-
formance than the RQARD function. For the case of 780 training samples, SUM
obtains the lowest MAPE value of 19.7% and an RMSE of 5.8 × 10−3 AU. We gen-
erate another two sets of training samples using different random seed numbers and
perform the predictions using the SUM function. The trends of MAPE and RMSE
with respect to three training data sets show that the random seed number is not an
influential parameter for the level of convergence.

Fig. 6 The error of test samples when the training dataset uses systematic sampling
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Fig. 7 The error of test samples when the training dataset has a random distribution

Latin Hypercube Sampling

LHS is a statistical method to generate random samples especially for multi-
dimensional problems [30]. This method is generally used to avoid clustering of
random samples in a specific subspace. Shown in Fig. 8, the SUM function captures
the model mechanics more quickly than RQARD. In addition, the SUM function has
a lowest MAPE value of 24.1% and an RMSE of 4.9 × 10−3 AU at a training data
size of 900. The LHS has a poorer accuracy than random sampling with respect to
MAPE.

Stratified Random Sampling

Figure 9 shows the number of MAPE values larger than 10% for the subspaces of
ωA using random sampling. Due to the stronger flyby effects around ωA = 180◦
according to Fig. 2, the error for these test points is worse. More training points can

Fig. 8 The error of test samples when the training dataset has an LHS distribution
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Fig. 9 Number of MAPE larger than 10% based on random sampling

be added for the subspace of ωA ∈ [175◦, 185◦] to gain more information over this
subspace.

In order to improve the performance of prediction for the subspace of ωA ∈
[175◦, 185◦], the sampling density of this range can be taken as twice as that of the
remaining area: an SRS method. The training size is increased by 60 every time.
For each 60 training samples, there are 10 samples within [170◦, 175◦], 40 samples
within [175◦, 185◦] and 10 samples within [185◦, 190◦]. Figure 10 shows the corre-
sponding RMSE results. The performance becomes stable when using an increasing
number of training samples. In Figs. 10a and b, the RMSE of these training datasets
converges to the same level with a training data size larger than 1500. The prediction
of ω needs more training samples than that of a and e. This indicates that the GPR
function needs more information to learn the change of ω. We generate another two
groups of training samples using the same SRS method with different random seed
numbers. For the prediction of a, the standard deviation among these three groups is
about 1.0 × 10−4 AU when a number of more than 1500 training samples are used.
The random seed number for generating training dataset is a negligible influence
factor for the performance of GPR models.

Summary of Sampling Methods

We used four types of sampling methods for the generation of the training samples
for comparison. The prediction using RS performs better than that of SS and LHS.
Based on RS, we developed an SRS specifically for this case (h > 300 km) due
to the larger errors for the test samples in the subspace of ωA ∈ [175◦, 185◦]. The
RMSE using SRS is reduced to less than 1/4 of that of RS. By using different training
datasets, the training process of the GPR model is illustrated to be insensitive to the
random seed numbers.
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Fig. 10 The RMSE of test samples when the training dataset adopts a stratified random sampling. The
SUM covariance function is used

Flybys Outside the Sphere of Influence of the Secondary

In this application, the periapsis of the initial osculating orbits of the spacecraft are
chosen such that they are above the sphere of influence of the secondary (SoI):
rp > 1.0062 AU (i.e. rp > rSoI +r2) in the system of Sun-(Earth+Moon)-spacecraft.
Figure 11 shows the errors of the semi-major axis predictions after the flybys. After
some fluctuations for training data sizes between 0 and 1000, the error becomes grad-
ually smaller and stable until the data size reaches 2400. The RMSE is selected as
the main criterion for optimizing hyper-parameters. Using the same set of hyper-
parameters, MAPE could have a slightly different trend compared to that of RMSE.
The performance of predicting eccentricity is presented in Fig. 12. The RMSE of
e decreases to a value of 1.0 × 10−3 using 2000 training samples. The maximum
eccentricity eA among the test cases is 0.33. In Fig. 13, the RMSE of ω becomes
lower than 0.4◦ with more than 1800 training samples. The convergence of optimiz-
ing hyper-parameters for the prediction of the output state is illustrated in Fig. 14:
the hyper-parameters la , le and lω are selected. When the training data size becomes
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Fig. 11 The semi-major axis error of test samples when the training dataset has a random sampling. The
periapsis of initial osculating orbit of the spacecraft is outside the sphere of influence of the secondary

larger than 1000, the GPR model converges gradually to the optimum. Although the
optimization process converged at negative values for the hyper-parameters eventu-
ally, this has no consequences since the quadratic value of them is used (Equation 17).
RS is used in this case because a significant difference of error between different
subspaces is not observed.

Flybys Outside the Hill Sphere of the Secondary

For the prediction of distant flyby effects, this application investigates the condition
of the radius of periapsis being larger than 1.01 AU (i.e. rp > r2 + rHill ). Figure 15
shows the accuracy of prediction with an increasing number of training samples.
For three orbital elements, the curves flatten out gradually after using 1300 training
samples. The accuracy is better than the case of SoI. MAPE of δa and δe is no more

Fig. 12 The eccentricity error of test samples when the training dataset has a random sampling. The
periapsis of initial osculating orbit of the spacecraft is outside the sphere of influence of the secondary
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Fig. 13 The ω error of test samples when the training dataset has a random sampling. The periapsis of
initial osculating orbit of the spacecraft is outside the sphere of influence of the secondary. The best MAPE
obtained is 5.7%

than 1%. The MAPE of δω has been improved by a factor of two. It shows that the
low-energy case is easier for GPR to learn. This is mainly because the flyby effects
at low energies are less complex than the previous applications, e.g. the retrograde
flybys disappear at such energies [16]. Therefore, less training samples are required
to obtain a reliable model.

The comparison between the performance of our GPR-GAM and the Keplerian
Map (KM) model of Ross et al. [6] (fully reproduced here) is shown in Table 1.
1500 training samples are considered in our GPR model and the SUM covariance
function is selected. The test set has 500 samples with inputs randomly distributed
in the input space and outputs numerically calculated by the PCR3BP propagation.
Both tests are performed in MATLAB 2017b using a laptop of Core i7 CPU and 8.00

Fig. 14 Evolution of optimal hyper-parameters. The flybys are outside the SoI of the secondary
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Fig. 15 The RMSE and MAPE of test samples when the training dataset adopts a stratified random
sampling. The SUM covariance function is used

GB RAM. The RMSE of predicting a using GPR-GAM is only 1/6 of that of the
KM. In addition, the GPR-GAM improves the accuracy of predicting ω to a level of
4.72×10−3 rad. The KM fails to quantify the variation of ω accurately due to simply
evaluating ω in terms of orbital period change. The CPU time of prediction spent on
a single test sample is the same for both a and ω. KM is much slower in predicting a

because of using the numerical integration but is faster in the prediction of ω.

Table 1 The performance of GPR-GAM compared to that of Ross et al. [6] (fully reproduced here)

RMSE Prediction CPU Time* [s]

a [AU] ω [rad] a ω

GPR 2.38 × 10−4 4.72 × 10−3 1.16 × 10−6 1.16 × 10−6

Ross et al. 1.42 × 10−3 1.57 0.064 1.04 × 10−6

*The computational time is obtained by taking the mean value of 1000 repeated experiments. The value is
the CPU time spent on one test sample
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Fig. 16 Time efficiency of the GPR-GAM for one orbital element. Equation 13 is used for the prediction
of multiple inputs. The cost of generating training samples is not included

The time efficiency of the GPR method is demonstrated for up to 300,000 test
samples in Figure 16. When using 1500 training samples for the case outside the Hill
sphere, the total prediction time increases linearly with the number of test samples.
It costs 0.32 s for the evaluation of 300,000 samples. The prediction time per sample
is always lower than 1.2 × 10−6 s. For the case outside the SoI in Figure 16b, the
computational effort is bigger because of using 2400 training samples. It spends only
1.14 s for the same number of test samples and the CPU time per sample is 3.8×10−6

s. When applying GPR to the case outside the Hill sphere, the generation of the
training samples (0.28 s per sample) and training the GPR model (1530 s for 10
multi-starts) cost 1950 s in total. However, the GPR model is off-the-shelf once the
training process is completed, and the values in Table 1 give an accurate estimation
of the computation time needed to predict the flyby effect of a single input.

Table 2 summarizes the performance of GPR for various applications. The accu-
racy of the GPR model becomes better when the closest passage of the spacecraft
moves further from the secondary. The radius of the Hill sphere is close to that of the
SoI but the accuracy improves especially for a and e. The prediction of ω is the worst
which can be further investigated.

Table 2 Summary of the GPR performance for all applications (SUM covariance function)

MAPE [%] RMSE

Flyby distance Distribution a e ω a [AU] e [-] ω [rad]

> 300 km altitude RS 19.7 85.6 97.5 0.0056 0.0062 0.0511

SRS 5.6 22.3 24.5 0.0009 0.0008 0.0082

> SoI RS 3.8 7.8 5.7 0.0003 0.0007 0.0051

> Hill sphere RS 0.4 1.0 3.1 0.0002 0.0002 0.0047

The number of training samples N for the three cases of flyby distance are 2400, 2400, 1500 respectively.
The SRS is not applied to the second and third cases because the error in different parts of the input space
is similar. The values of corresponding hyper-parameters are given in Appendix B
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Conclusions

A model of the Gravity Assist Mapping was proposed based on a machine-learning
method called Gaussian Process Regression. It was trained by a dataset consisting
of thousands of samples generated using numerical integration in the planar CR3BP
framework. The generation of training data takes into account elliptical orbits of low,
moderate and high eccentricity. We determined the size of training samples by choos-
ing a stable RMSE on the test dataset. A covariance function (SUM) was developed
combining the cosine term and the rational quadratic term with automatic relevance
determination (RQARD), which captures well the dynamics of flybys. The GPR-
based model can assess the flyby effect more efficiently given the initial condition of
a particle compared to methods based on numerical integration. The model for vari-
ous planar CR3BP systems can be built by simply changing the mass ratio parameter.
Using a machine-learning method, this work investigated and predicted the flyby
effect instead of numerical integration of the equations of motion in previous con-
tributions. The domain of applicability is beyond that of the Keplerian map. The
GPR-MAP requires to be trained to model the flyby effect of trajectories belonging
to different domain.

The results demonstrate that the GPR-based Gravity Assist Mapping has a good
performance on accuracy. Compared to previous work in literature, significant
improvements have been made, in particular when using a combined covariance
function and stratified random sampling. This can contribute to two main studies in
astrodynamics. On the one hand, the characteristic of the GA in the CR3BP can be
investigated by a great deal of accurate data produced by the GPR model, providing
a deep understanding of the third-body effect. On the other hand, the GPR model can
be considered to design multi-flyby missions, which takes the advantage of a high
efficiency to update the post-flyby status. The developed GPR-GAM is still a pro-
totype. It has some limitations, such as being unable to classify collision orbits in
test samples because they are removed in the training samples. The post-flyby status
near the neighbourhood of the secondary might be neglected using the Tisserand ter-
mination condition. Further improvements include developing a classification model
to categorise collision orbits given an arbitrary initial condition and using a distance
termination condition.

Appendix A: MinimumDistance Between Spacecraft and Secondary

All variables are non-dimensionalized using (M1+M2) for the mass, the semi-major

axis of the secondary aP 2 for the length, and
√

a3P 2/(G(M1 + M2)) for the time. For
the circular orbit of the secondary, the true anomaly θP 2 is set to be 0 at the position
of the positive X-axis. The initial true anomaly of the secondary θinitial

P 2 is selected
such that it arrives at the negative X-axis when the spacecraft (in terms of initial
osculating orbit) reaches periapsis. This is specified by:

θinitial
P 2 = π(1 − (aA)

3
2 ) (25)
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where aA is the semi-major axis of the initial osculating orbit of the spacecraft. The
distance d between the spacecraft and the secondary is defined using the law of
cosines:

d =
√

r21 + r2P 2 − 2r1rP 2cos(γ ) (26)

where r1 represents the distance between the spacecraft and the primary, rP 2 the dis-
tance between the secondary and the primary, γ denotes the angle contained between
r1 and rP 2. Since rP 2 has a constant value of 1, Equation 26 is simplified to:

d =
√

1 + r21 − 2r1cos(γ ) = √
f (r1, γ ) (27)

Assuming a fixed value of γ , the partial derivative ∂f (r1,γ )
∂r1

is:

∂f (r1, γ )

∂r1
= 2r1 − 2cos(γ ) (28)

The value of the right-hand side is always larger than zero given the initial conditions
of this paper. The function f (r1, γ ) is monotonically increasing. When r1 equals the
radius of periapsis rp and γ = 0, d has the minimum value | rp − 1 |. This condition
corresponds to ω = π .

Appendix B: Values of Hyper-Parameters

The optimized values of the hyper-parameters of the models in Table 2 are given
below.

Table 3 The optimized hyper-parameters of GPR-GAM for the first case in Table 2

Output σ α la le lω p h

a −1.2450 −1.2043 2.9608 0.7480 −4.2359 0.5279 −11.7555

e −3.3324 −2.4650 4.8943 1.7674 −8.8055 −0.0180 −10.4190

ω −2.1321 −2.1245 1.7252 1.2615 −3.2145 −0.2121 −7.2210

Table 4 The optimized hyper-parameters of GPR-GAM for the second case in Table 2

Output σ α la le lω p h

a −2.0214 −2.5534 0.2000 −0.8179 3.4195 3.4419 −0.2592

e −1.7113 −2.0229 0.1768 −0.7881 3.6202 2.8485 −0.2926

ω −2.7010 −2.9755 0.5394 2.1231 1.4008 −0.3179 −1.1486
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Table 5 The optimized hyper-parameters of GPR-GAM for the third case in Table 2

Output σ α la le lω p h

a −1.9506 −3.3963 −3.3770 −0.3370 −3.4057 1.9674 −3.1555

e −1.3524 −2.2365 0.2718 −4.2451 −1.9327 4.0959 −4.2971

ω −1.8572 −2.6009 0.7222 3.4731 −1.1252 0.7433 0.8022

Table 6 The optimized hyper-parameters of GPR-GAM for the fourth case in Table 2

Output σ α la le lω p h

a −1.8168 −2.4690 −0.2082 −1.5223 3.2384 0.9166 0.5527

e −1.3950 −2.3792 −0.0306 −1.3639 2.2226 2.9447 −0.3096

ω −1.4090 −2.9224 0.9743 4.7129 0.0638 −0.7502 0.2507
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