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Overview of Torsion Design Methods 

 

Camilo Granda Valencia and Eva Lantsoght 
 

 
Synopsis: Large torsional moments, which need to be considered in a design, can result among others, in structures 
with an asymmetric layout or loading. To find the required longitudinal and transverse reinforcement to resist these 

torsional moments, the link between the three-dimensional action of the torsional moment and sectional analysis 
methods is necessary. This paper reviews the existing methods and code provisions for torsion. First, an overview of 
the principles of torsion from the mechanics perspective is given. Then, a survey of the available mechanical models 

for torsion is presented. Finally, the code provisions for torsion of ACI 318-19, CSA-A23.3-04, AASHTO-LRFD-
17, EN 1992-1-1:2004, and the fib Model Code 2010 are summarized. Additionally, current research topics on 

torsion in structural concrete are summarized. It is expected that with this paper, engineers will have a useful 
overview and background knowledge for the design and assessment of torsion -critical elements. 
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INTRODUCTION 
In general, concrete structures are subjected to four principal actions: axial force, shear, bending moment, and 
torsion. Engineers and researchers focused on the understanding of the first three phenomena in concrete structures 

because these usually control the design of a member, i.e. they control the resulting reinforcement layout. For 
example, beams are typically designed for sectional moment and shear. Columns work as flexion-compression 

elements, around both axes of the cross-section. Nevertheless, torsion is a special topic. It was left apart because 
generally its influence on the resulting design is limited. For this reason, building codes accounted for torsion’s 
small influence in the safety factors

1
. Throughout the 1960s, extensive research on torsion was made. As a result, the 

first design recommendations for torsion made by the American Concrete Institute (ACI) were formulated in 1969
2
. 

These recommendations led to the inclusion of provisions for torsion in the 1971 edition of the ACI Building Code, 
ACI 318-71

3
. The research carried out over the past decades led to a better understanding of the behavior of concrete 

members subjected to a torsional moment. The Space Truss Analogy, the Skew-Bending Theory, and other theories 
provided mechanical models to predict the behavior of concrete structures under torsion after cracking.  

 
Torsion can be defined as the moment that twists an element around its axis. This torsional moment causes shearing 
stresses at each point of the cross-section of an element. These stresses change according to the proximity to the 

member’s axis
4
. In circular cross-sections, the stress caused by a torsional moment is zero at the neutral axis and 

reaches the maximum value on the outermost fiber, see Figure 1(a). For rectangular cross-sections, the shear stress is 
also zero at the neutral axis and at the corners. It increases towards its maximum value at the surface of the longest 

side, see Figure 1(b).  

 
(a)      (b) 

Figure 1—Shear stresses (τ) due an applied torsional moment (T) on a circular (a) and rectangular solid (b) element 

 
Torsion can be a result of primary or secondary actions. The primary action occurs when the member can only 
support the action of an external load by generating a torsional moment. This is also called equilibrium torsion and 

is common in statically determinate structures. Equilibrium torsion is important for the stability of the structure. This 
occurs, for example, when a load acts on a fixed-end beam, but it is applied eccentric with respect to the z-axis, like 
in Figure 2.  As a result, a torsional moment is generated around this axis.  

 
Torsion can also be found as a result of secondary actions in statically indeterminate structures. This happens 

because the structure needs to satisfy compatibility requirements. In this case a twist is required to maintain the 
compatibility, not a torsional moment

5
. Spandrel continuous beams supporting other secondary beams or slabs are 

often subjected to this phenomenon, as shown in Figure 3.  
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Figure 2—Equilibrium torsion at the ends of the beam, generated by the action of a point load 

 

 

 
Figure 3—3D Frame system where spandrel beams AB and CD are subjected to compatibility torsion due to the 

load on the secondary beams joints  

 
More complex and asymmetric concrete structures are designed every year around the world thanks to the reduction 
times in analysis and design when using structural software. As a result, the effect of torsion on concrete structures  

has become more important. For example, horizontally curved bridges and cantilever members should be designed 
for torsion. Standardization institutions like American Concrete Institute (ACI)

6
, Canada Standards Association 

(CSA)
7
, American Association of State Highway and Transportation Officials (AASTHO)

8
, the European 

Normalization Committee (CEN)
9
, and the International Federation for Structural Concrete (fib)

10
 have developed 

provisions for situations when torsion needs to be considered. The design philosophy that each code uses is:  

 

 ACI 318-19
6
 uses a thin-tube and space truss analogy. 

 CSA (CSA-A23.3-04)
7
 uses a General Design Method for torsion derived from the Modified Compression 

Field Theory (MCFT); it includes the tensile contribution of concrete. 
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 AASHTO-LRFD-17
8
 code provisions for torsion are obtained from the MCFT. The torsion equations on 

this code are similar to the CSA-A23.3-04 ones. A Strut and Tie Model can also be used as an alternative 

for design. 

 Eurocode (EN 1992-1-1:2004)
9
 uses a spatial truss model with an equivalent thin-walled tube and wall 

thickness for the torsion design. 

 The fib Model Code 2010
10

 uses a variable angle truss model, generalized stress field approach, or a 
simplified modified compression field theory, depending on the Level of Approximation. 
 

The assumptions that lie at the basis of each of these models, and the resulting mechanics, will be discussed in the 
section about the mechanical models. The resulting code provisions will be given in the section with the code 
provisions. 

 
 

BRIEF HISTORY OF TORSION RESEARCH 
 

Mechanics of torsion 

In this section, an overview of the history of torsion mechanics is given. Kurrer in “The History of the Theory of 
Structures” shows various important investigations on this topic

11
. The first known person to study the effect of 

torsion on materials, as a consequence of his research on electric charges, was Coulomb. Using his torsion balance, 

he deduced that the torsional moment is proportional to the torsional angle
12

. About 40 years later, Navier was the 
first to postulate a theoretical equation to compute the torsional moment on shafts with a circular cross-section. The 

two assumptions that he made were: 1) the shape of the cross-section cannot change after twist, and 2) plane 
sections must remain plane. The latter assumption implies  that warping does not occur

13
.  

 

Later, it was found that there are two possible ways in which a structural member can resist torsion: by circulatory 
torsion or by warping torsion. Saint-Venant developed in 1847 the first theory, in which he stated that the cross-
section of an element counters the effect of torsion by producing a circulatory shear flow (torsional shear multiplied 

by the wall thickness) on its plane. This means that the shear stress  resisting the external torsional moment is 
constant within the flow area, see Figure 4(a). This effect usually occurs in solid and hollow members , which are 

free to bend around their axis
4
. The second way in which structural members can withstand torsion is by warping 

torsion. It was first investigated by Timoshenko in 1905
14

 and further researched by Vlasov in 1940
15,16

. Warping 
torsion produces different shear stresses along the same circumference, see Figure 4(b). Consequently, the planar 

sections do not remain plane due to the changing strain at points over a determined circumference. Longitudinal 
bending results from these strains. Warping torsion arises when the entire section or part of it is restrained, for 
example, by end conditions

4,17
. This is usually expected in members formed by at least three connected walls , or 

with a fixed-end support.  
 

Both resisting torsional moments need to be in equilibrium with the applied torsional moment (T) on the member. 
This means that T=Ts +Tw where Ts is the Saint-Venant torsion and Tw is the warping torsion. Both happen at the 
same time, consequently; there is not a clear way to classify sections according to how they resist torsion. Some 

practical examples have demonstrated that the action of one of the resisting methods can be neglected compared to 
the effect of the other. Nevertheless, there are other cases where neither of them is predominant over the other; this 
case is called mixed torsion

18
. One example of mixed torsion is an I-shaped simply supported beam. If the torsional 

moment is applied at midspan, the cross-sections at the left and right of it experience warping torsion. Close to the 
ends, the beam can twist freely, therefore Saint-Venant torsion occurs. 

 
In 1890 Bach, in his book, “Elasticität und Festigkeit” presented all the torsion cases proposed by Saint-Venant and 
interpreted them theoretically. Bach tested numerous cast-iron and hard lead bars under torsion. Using the results 

between the proposed theory and the experiment, Bach developed a simple proof equation to check the shear stress 
for the Saint-Venant torsion in bars, equilateral triangles, and regular hexagons

11
. In 1896, Bredt offered a promising 

solution to the Saint-Venant torsion problem. His solution equation states that the sum of the tangential shear forces  

(τ) per unit area (ds) on a closed curve within the cross-section under the effect of an external torsional moment is 
equal to two times the area enclosed by the forces  (Am), shear modulus (G) and the product of rotation (θr)

11
, i.e.: 

 

2 m rds A G    (1) 
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(a)       (b) 

Figure 4—Circulatory torsion (a) and warping torsion (b) shear stresses on C-shaped members 
 

 
Torsion in reinforced concrete 
Graf and Mörsch were the first researchers to study torsion in plain and reinforced concrete. They tested different 

circular, square, and rectangular beams to study the effect of the reinforcement on the ultimate strength for elements 
under torsion

17
. In 1929, Rausch published his dissertation, in which he presented the 3D-truss analogy for torsion. 

Rausch provided an equation to predict the torsional resistance of reinforced concrete members based on the space 
truss model

19,20
. This method lies at the basis for the current torsion design provisions. 

 

More researchers started to study torsion in structural concrete at the beginning of the second half of the twentieth 
century. In 1959, Lessig used equilibrium equations to propose a skew-bending theory for the failure mechanism of 
torsion

21
. This theory assumes that a beam under torsion will have a skewed failure surface. Lessig proposed two 

failure modes. The first one has a compression zone near the top face of the beam, while the second failure mode 
uses a compression zone along the side face. In 1962, Yudin

22
 realized that the skew-bending theory proposed by 

Lessig was not able to determine three unknows: the longitudinal reinforcement area, the web steel area, and the 
depth of the compression zone. To solve this, Yudin proposed three equilibrium equations , while Lessig’s analysis 
only used two: the equilibrium of moments about the neutral axis of the member, and the equilibrium of forces along 

the normal to the compression zone. Yudin’s equations were: equilibrium of moments about an axis through the 
centroid of the compression zone and parallel to the longitudinal axis of the beam, equilibrium of moments about an 
axis through the centroid of the compression zone and perpendicular to the longitudinal axis , and equilibrium of 

forces along the normal to the compression zone. Nevertheless, this analysis is limited to only symmetrically 
reinforced elements. 

 
Elfgren developed a method to determine the capacity of elements under combined shear, moment and torsion

16
. He 

used a truss analogy to predict the ultimate load carried by multiple sets of reinforced beams and tested these at 

Chalmers University of Technology. Elfgren established an interaction equation which can be used to plot an 
interaction surface. This model predicts accurately the strength of reinforced concrete beams subjected to torsional 
moment, shear force and bending moment. 

 
Collins and Mitchell introduced another approach to study torsion in structural concrete in 1973

23
. They presented 

the diagonal compression field theory for beams under pure torsion. They considered equilibrium equations, 
geometry of deformations, and stress-strain relationships of the concrete and steel to propose their theoretical model. 
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The basis of their approach is  a truss analogy model, and their main assumption is that after cracking the concrete 
will not carry tension, therefore, the torsion will be resisted by a field of diagonal compression  in the concrete. 

Afterwards, in 1985, Hsu and Mo developed a variation of the compression field theory. In this case, they softened 
the concrete stress-strain curve and called the new model the softened truss model (STM)

19
. In the STM equilibrium, 

compatibility and softened stress-strain relationships are combined to develop a theory that has shown good results 

in predicting the test results of reinforced concrete structures subjected to shear and torsion
24

. Rahal and Collins 
have developed analytical computational models to calculate the response of concrete members subjected to 

combined torsion and bending
25

 and to combined torsion and shear
26

. 
 

MECHANICAL MODELS FOR TORSION 

 
Reinforced concrete before and after cracking under torsion 
Prior to cracking, reinforced concrete members  subjected to torsion can be analyzed as homogenous plain concrete 

sections. Therefore, their behavior can be predicted using Saint-Venant’s theory
27

. After the element cracks, the 
study of its behavior becomes more complicated. From now on, the structural member acts as a composite section, 

and Saint-Venant’s theory can no longer be used because cracking violates the material homogeneity premise of the 
elastic theory. When the web of the beam cracks , its capacity to transmit diagonal tension forces is reduced. The 
load is then carried by diagonal compression members between the cracks and by the steel reinforcement resisting 

tension. Together, they form a truss-like mechanism
4
. 

 
Shear truss analogy  

The shear truss analogy was first proposed by Ritter at the end of the twentieth century
28

. It is a strut-and-tie model 
and considers that a cracked reinforced concrete beam under shear will have diagonal cracks which separate the 

concrete into multiple struts. They modeled the beam as a plane truss consisting of longitudinal and transverse 
reinforcement to carry the load. In this assumption, the top and bottom longitudinal bars act as the top and bottom 
chords of the truss, while the transverse reinforcement and concrete struts work as the web members. To simplify 

this model, the strut’s inclination is assumed to be 45°
29

.  
 
3D space truss analogy 

To apply the concept of a truss model to members to subjected torsion, the truss model needs to be extended to a 
three-dimensional model, i.e. a space truss analogy. A member subjected to torsion is treated as a space truss formed 

by a series of joined planar trusses
20

. The concrete member reinforced with longitudinal and transverse 
reinforcement resists torsion by producing a circulatory shear flow at the outermost part of the cross -section. Each 
straight segment of the tube walls behaves like a planar truss in which the shear stresses are resisted as in the shear 

truss analogy. Struts only carry axial compression; longitudinal and transverse reinforcement carries the tension 
forces, see Figure 5.  

 

 
Figure 5—Space truss analogy for an asymmetrical beam under torsion. The tension forces are supported by the 

longitudinal and transverse reinforcement (black and blue) and the concrete struts resist compression (red) 
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Skew-bending theories 
This theory is characterized by the assumption of a skewed failure surface. This surface is generated by a helically-

shaped crack on three faces of a rectangular beam. On the fourth face, the helical crack is connected by a 
compression zone. The failure surface intersects the longitudinal and transverse reinforcement. The forces in the 
steel reinforcement generate the required internal forces and moments to carry external loads. Failure occurs when 

the steel starts to yield
30

. At failure, the two parts of the member separated by the failure surface rotate against each 
other about a neutral axis on the inside edge of the compression zone. Then, the associated equilibrium equations at 

the ultimate limit state can be derived
27

. 
 
Thin-walled tube analogy 

The most efficient cross-section to resist torsion is a thin tube. The thin-walled tube analogy states that the shear 
stresses and shear flow are constant around the cross-section of a member. This shear flow is enclosed by an area of 
pre-determined thickness. Therefore, solid and hollow sections can be calculated in the same way as tubes

31
, see 

Figure 6. Concrete members can be modelled as tubes because the concrete core does not contribute to the element’s 
torsional strength

27
. Within the walls of the tube, the external torsion is resisted by a shear flow, defined as the 

torsional shear multiplied by the thickness of the tube. 
 

 
(a)          (b) 

Figure 6—Original section (a) and the same member after the thin-walled tube analogy is applied (b) 
 

Compression Field Theory (CFT) 

The CFT is a model developed by Mitchell and Collins that considers equilibrium conditions, geometry of 
deformation and the strain-stress characteristics of the steel and concrete. This model predicts the shear strength of a 
reinforced concrete member after it cracks. This theory, based on the truss analogy, assumes that after cracking, the 

torsion shear stresses are carried by a field of diagonal compression in the concrete and balanced by the tension 
developed in the longitudinal and transverse reinforcement

23
. In 1986, Vecchio and Collins expanded the CFT to the 

Modified Compression Field Theory (MCFT). The CFT assumed that the cracks of the diagonal field compression 
in the concrete were only able to withstand shear and compression. Nevertheless, between the concrete’s cracks 
tension stresses exist. To have a more accurate answer of the reinforced concrete element’s capacity under shear and 

torsion, the MCFT uses experimentally verified average stress-strain relationships instead of assuming them. Also, it 
considers the tension in the cracked concrete

32
. Although the MCFT can predict the shear and torsional strength with 

great precision, the process of solving the equations of this theory by hand is complex. For this reason, Bentz, 

Vecchio and Collins developed a simplified MCFT using the Membrane-2000 computer program to get more 
practical expressions. This method showed excellent predictions of the shear strength. The accuracy between the 

simplified MCFT and the full theory is almost the same
33

. 
 

CODE PROVISIONS FOR TORSION 

All the equations in this section are expressed in SI units. The conversion factors are: 1 kN = 0.225 kip, 1 kN·m = 
8.849 kip·in, 1 mm = 0.0394 in and 1 MPa = 145 psi. 

 

ACI 318-19 
ACI 318-19 first checks if torsion can be neglected. If the following expression from §9.5.4.1 is satisfied, torsional 

effects do not need to be considered:  
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u thT T   (2) 

 
Tu is the factored torsional moment. ϕ, the reduction factor for the nominal capacity of torsion, is equal to 0.75. Tth is 
the threshold torsional moment given by §22.7.4. For solid sections it is: 

 

2

2

2

0.083                                       Non-prestressed member

0.083 1               Prestressed member
0.33

0.083 1      
0.33

cp

c

cp

cp pc

th c

cp c

cp u

c

cp g c

A
f

p

A f
T f

p f

A N
f

p A f









 

     Non-prestressed member under axial load

 (3) 

 

In statically indeterminate structures where Tu ≥ ϕTcr, it is permitted to reduce Tu to ϕTcr due to redistribution of 
internal forces after cracking. This applies to typical and regular framing conditions . ϕTcr is the cracking torsional 

moment and is defined in §22.7.5.1. Equation (3) is valid for solid cross-sections. For hollow cross-sections, all the 
Acp terms in Equation (3) are substituted with Ag, the gross area of the concrete cross-section. f′c [MPa] is the 
specified compressive strength of the concrete, Acp is the area enclosed by the outside perimeter of the concrete 

cross-section, pcp is the outside perimeter of concrete’s cross-section, fpc [MPa] is the compressive stress in the 
concrete, after allowance for all prestress losses, at the centroid of the cross-section resisting the externally applied 
loads or at the junction of the web and flange where the centroid lies within the flange. In a composite member, it is 

the resultant compressive stress at the centroid of the composite section, or at the junction of the web and flange, 
when the centroid lies within the flange, due to both prestress and moments resisted by the precast member acting 

alone, Nu is the factored axial force, taken as negative for tension and positive for compression , λ is a coefficient 
which accounts for the properties of lightweight concrete (see §19.2.4). 
 

The shear strength provided by the concrete Vc according to §22.5.5.1 is determined as: 
 

0.17   with  in [MPa]c c w cV f b d f   (4) 

 
bw is the web width or diameter of a circular section and d is the effective depth. The last expression applies to 
reinforced concrete members without axial force and with Av ≥ Av,min. Av in Equation (4) is the required transverse 

reinforcement for shear and Av,min is the minimum transverse reinforcement for shear force.  For other cases in 
reinforced concrete members, §22.5.5.1 through §22.5.5.1.3 are governing. For prestressed members, the shear 
strength provided in concrete is listed in §22.5.6 and §22.5.7. 

 
The next expression from §22.7.7.1 checks if the dimensions of the member are large enough to avoid crushing of 

the concrete: 
 

22

2

2

0.66        for solid sections
1.7

   

0.66          for hollow sections
1.7

u u h c

c

w woh

u u h c

c

w woh

V T p V
f

b d b dA

V T p V
f

b d b dA





 (5) 

 
If Equation (5) is fulfilled, the reinforcement for torsion can be designed. For hollow sections with a variable wall 

thickness, the maximum value of the left side of Equation (5) should be evaluated, which is often at the point of the 
cross-section where shear and torsional stresses can be added. Vu  is the factored shear force, ph is the perimeter of 

the centerline of the outermost closed transverse torsional reinforcement, Aoh is the area enclosed by ph. §22.7.7.1.1 
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mentions that for prestressed members the value of d in Equation (5) should be greater than 0.8h, where h is the 
overall height of the element. 

 
According to §22.7.6.1, θ, the angle between the struts and the tension chord, can be taken as any value between 30 
and 60 degrees. §22.7.6.1.2 states that θ is usually 45° for reinforced concrete members with Apsfse < 0.4(Apsfpu + 

Asfy) and 37.5° for prestressed elements with Apsfse ≥ 0.4(Apsfpu + Asfy). Aps is the area of the prestressed longitudinal 
tension reinforcement, As is the area of the non-prestressed longitudinal tension reinforcement, fse is the effective 

stress in prestressing reinforcement after allowance for all prestress losses, fpu is the specified tensile strength of 
prestressing reinforcement, and fy is the yield strength for non-prestressed longitudinal reinforcement. The required 
area of transverse reinforcement of one leg of a closed stirrup At for torsion is: 

 

tan  
1.7

t u

oh yt

A T

s A f



  (6) 

 

s is the spacing between the stirrups , fyt is the specified yield strength of the transverse reinforcement. 
 
The next step is to calculate the required area of longitudinal steel for torsion Al: 

 

2cot
ytt

l h

y

fA
A p

s f
    (7) 

 
§9.5.4.3 mentions that the longitudinal and transverse reinforcement required for torsion need to be added to the 

reinforcement demanded by shear force, bending moment and axial force actions. 
For the transverse reinforcement limit, §9.6.4.2 states that for members under torsion and shear, the stirrups for 

torsion and shear effects  cannot be less than: 
 

min

0.062
2

max     

0.35

w

c

ytv t

w

yt

b
f

fA A

bs

f

  (8) 

 
In Equation (8), Av is the required area of two legs of a closed stirrup for shear. If the analyzed element is only 
experiencing torsion, the value of the Av term in Equation (8), is equal to zero. The minimum area of longitudinal 

steel reinforcement Al,min for torsion can be calculated with §9.6.4.3 as: 
 

,min

0.42

min    
0.42 0.175

c cp ytt

h

y y

l

c cp ytw

h

y yt y

f A fA
p

f s f
A

f A fb
p

f f f

  (9) 

 
According to §9.7.6.3.3 the limits to the stirrup spacing are: 

 

min    8

300 mm

hp

s   (10) 

 

§9.5.4.3 states that the final amount of longitudinal and transverse reinforcement needs to be added to the required 
reinforcement for shear force, bending moment and axial effects.  
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When the cross-section and the reinforcement of the member are designed, the ACI 318-19 §22.7.6.1 gives two 
equations to analyze the torsional strength Tn. Once the member cracks under the effect of a torsional moment, the 

strength is provided primarily by the transverse and longitudinal reinforcement . The concrete contribution to the 
torsional strength is neglected: 
 

1.7
cot

min     
1.7

tan

oh t yt

n
oh l y

h

A A f

s
T

A A f

p





  (11) 

 
Finally, the torsional strength should be greater than or equal to the factored applied torsional moment.  

 

n uT T   (12) 

 

CSA-A23.3-04 
According to §11.2.9.1, reinforcement for torsion should be provided when the factored torsional moment Tf 

exceeds ¼ of the pure torsional cracking resistance Tcr, given in CSA-A23.3-04 Eq. 11-2 as:  
 

2

0.38 1   
0.38

p cpc

cr c c

c c c

fA
T f

p f





  (13) 

 

In statically indeterminate structures, where redistribution of torsional moments can occur, §11.2.9.2 specifies that Tf 
can be reduced to 0.67Tcr at the face of the support. For hollow sections, Ac is the area enclosed by the outside 
perimeter of the concrete cross-section, including the area of holes. In Equation (13), for hollow cross-sections, Ac 

can be replaced with 1.5Ag (gross concrete area) if the wall thickness is less than 0.75Ac / pc. pc is the outside 
perimeter of the cross-section, fcp [MPa] is the average compressive stress in the concrete due to the effective 

prestress force only (after allowance for all prestress losses), f′c [MPa] is the specified compressive strength of 
concrete, ϕc = 0.65 is the material factor for concrete, ϕp = 0.9 is the material factor for prestressing tendons, and λ is 
the factor that accounts for lightweight concrete, see §8.6.5.  

 
Equations 11-18 and 11-19 in the CSA-A23.3-04 code give minimum dimensions to avoid concrete crushing: 
  

2

22

2

0.25                     for hollow sections
1.7

   

0.25        for other sections
1.7

f p f h

c c

w v oh

f p f h

c c

w v oh

V V T p
f

b d A

V V T p
f

b d A





 (14) 

 
Vf is the factored shear, Vp is the component in the direction of the applied shear of the effective prestressing force 
factored by ϕp, dv is the effective shear depth, taken as the greater of 0.9d or 0.72h, where h is the overall height of 

the member, and d is the effective depth (d cannot be less than 0.8h for prestressed members and circular sections), 
bw is the minimum web width within d or the diameter of a circular cross-section, Aoh is the area enclosed by the 

centerline of the exterior closed transverse torsion reinforcement, including the area of holes, ph is the perimeter of 
the centerline of the closed transverse torsion reinforcement. If the wall thickness of the box section is less than Aoh / 
ph, the second term on the left side of Equation (14) should be replaced by Tf / (1.7Aoht). Where t is the wall 

thickness at the location where the stresses are being checked. 
 
Next, it is needed to compute the longitudinal strain εx at mid-depth of the member due to the factored loads. With 

this variable, the angle of the diagonal compression field can be obtained to calculate the required transverse 
reinforcement. The longitudinal strain is computed substituting Equation 11-20 on Equation 11-13 of §11.3.6.4, 
which leads to: 
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2

2

f h f

f p f p po

v o

x
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d A
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   (15) 

 
If the value of Equation (15) is negative, εx can be taken as zero. Mf is the factored moment and cannot be less than 

(Vf -Vp)dv, Ao is the area enclosed by the shear flow path including the area of holes, which can be taken as 0.85Aoh 
according to §11.3.10.3, Nf is the factored axial load, positive for tension and negative for compression. Ap is the 

area of prestressing tendons, fpo is the stress in the prestressing tendons when the strain in the surrounding concrete 
is zero (may be taken as 0.7fpu,CSA for bonded tendons outside the transfer length and fpe for unbonded tendons), 
fpu,CSA [MPa] is the specified tensile strength of the prestressing tendons,  fpe is the effective stress in the prestressing 

tendons after allowance for all prestress losses, Es is the modulus of elasticity of non-prestressed reinforcement, Ep is 
the modulus of elasticity of prestressing tendons, As is the area of non-prestressed tension reinforcement, and Ap is 
the area of tendons on the flexural tension side of the member. The bending moment and shear force on Equation 

(15) are absolute values. The axial load is positive for tension and negative for compression. Once the longitudinal 
strain is computed, the angle of inclination of the diagonal compressive stresses, θCSA, is defined in §11.3.6.4, Eq. 

11-12 as: 
 

29 7000    CSA x    (16) 

 
For special members like slabs or footings with an overall thickness less than 0.35 m, footings in which the distance 
from the point of zero shear to the face of the column, pedestal, or wall is less than three times the effective shear 

depth of the footing, beams with an overall thickness less than 0.25 m, beams cast integrally with slabs where the 
depth of the beam below the slab is not greater than one-half the width of web or 0.35 m, and concrete joist 
construction defined in §10.4, the angle of the struts can be taken as 42°. §11.3.6.3 also mentions that if the yield 

strength of the longitudinal reinforcement does not exceed 400 MPa and f′c is smaller than 60 MPa, θCSA can be 
taken as 35°.  

The next step is to get the required area of transverse reinforcement for torsion, At using Equation (17) : 
 

tan   
1.7

ft

CSA

s oh yt

TA

s A f



  (17) 

 
s is the spacing between stirrups for torsion, fyt is the specified yield strength of transverse reinforcement, and ϕs = 

0.85 is the resistance factor for non-prestressed reinforcement. Combining Equations 11-14 and 11-21, the 
longitudinal reinforcement area Ast needed to withstand a torsional moment is given by: 

 

2
2 0.45

0.5 0.5 cot
1.7

  

f h f

f f s p CSA

v oh

st s

y

M p T
N V V V

d A

A A
f



 (18) 

 

fy is the specified yield strength of non-prestressed longitudinal reinforcement for torsion.  
 
The maximum spacing s between stirrups follows the expression described in §11.3.8.1: 

 

0.7
min    

600 mm

vd
s   (19) 

 

The CSA-A23.3-04 code provisions for torsion do not specify any minimum longitudinal or transverse 
reinforcement for torsion. §11.2.7 indicates that a longitudinal reinforcing bar or bonded prestressing tendon shall be 
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placed in each corner of closed transverse reinforcement required for torsion. The nominal diameter of the bar or 
tendon shall be not less than s/16. 

The torsional moment resistance Tr is only provided by the transverse reinforcement and  is defined in §11.3.10.3 as: 

1.7 cot   t

r s oh yt CSA

A
T A f

s
    (20) 

 

The torsional strength Tr should be greater than or equal to the applied torsional moment: 
 

r fT T   (21) 

 
AASHTO-LRFD-2017 
Torsion must be considered, according to §5.7.2.1 Eq. 5.7.2.1-3, if: 

 

0.25u crT T   (22) 

 

Tu is the applied factored torsional moment over the analyzed member. ϕ, the resistance factor is given in §5.5.4.2 
and is equal to 0.90 for normal and lightweight concrete. To determine the torsional cracking moment, Tcr, first K, 

the effective length factor for compression members , must be computed according to Eq. 5.7.2.1-6: 
 

,
1 2.0

0.335

pc AAS

c

f
K

f
  (23) 

 

fpc,AAS [MPa] is the unfactored compressive stress in concrete after prestress losses have occurred, taken either at the 
centroid of the cross-section resisting transient loads or at the junction of the web and flange where the centroid lies 
in the flange. f′c [MPa] is the design compressive strength of concrete, λAAS is the concrete density modification 

factor given in §5.4.2.8. Tcr is provided in Eq. 5.7.2.1-4 and 5.7.2.1-5 as: 
 

2

0.329           for solid shapes
   

0.329 2         for hollow shapes

cp

c

ccr

c o e

A
K f

pT

K f A b





  (24) 

 
Ao is the area enclosed by the shear flow path, including inner holes, Acp is the area enclosed by the outside perimeter 

of the concrete cross-section, pc is the outside perimeter of the concrete cross-section, be is the effective width of the 
shear flow path taken as the minimum thickness of the exterior webs or flanges comprising the closed box section. 
be should account for the presence of ducts, the diameters of ungrouted ducts or one-half the diameters of grouted 

ducts need to be subtracted from the web or flange thickness at the location of these ducts. be cannot exceed Acp / pc 
unless a more refined analysis is used. 

 
To compute the required transverse reinforcement, εs needs to be determined, which is the net longitudinal tensile 
strain in the section at the centroid of the tension reinforcement. It can be obtained from §5.7.3.4.2, Eqs. 5.7.3.4.2-4, 

5.7.3.4.2-5 and 5.7.3.4.2-6 
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 (25) 
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§5.7.2.1 mentions that in statically indeterminate structures where redistribution of torsional moment can occur over 

a determined element, Tu can be taken as ϕTcr. Mu is the factored applied moment and cannot be less than |Vu-Vp|dv, 
Nu is the factored applied axial load, taken as positive for tension and negative for compression, Vu is the factored 
sectional shear, Vp,AAS is the component of prestressing force in the direction of the shear force, Aps,AAS is the area of 

prestressing steel on the flexural tension side of the member, As is the area of non-prestressed tension reinforcement, 
ds is the distance from the extreme compression fiber to the centroid of the non-prestressed tensile reinforcement 

measured along the centerline of the web, dv is the effective shear depth taken as the distance between the resultants 
of the tensile and compressive forces due to flexure, ph,AAS is the perimeter of the centerline of the closed transverse 
torsion reinforcement for solid members, or the perimeter of the centroid of the transverse torsion reinforcement in 

the exterior webs and flanges for hollow members , and fpo,AAS is a parameter taken as the modulus of elasticity of 
prestressing steel multiplied by the locked-in difference in strain between the prestressing steel and the surrounding 
concrete. For usual levels of prestressing, fpo can be taken as 0.7fpu for both pretensioned and post-tensioned 

members. fpu is the specified tensile stress of prestressing steel. Es is the modulus of elasticity for steel reinforcement 
and Ep is the modulus of elasticity of prestressing steel. Now, with the longitudinal tensile strain εs, the angle of 

inclination of diagonal compressive stresses , θAAS is defined by §5.7.3.4.2, Eq. 5.7.3.4.2-2: 
 

29 3500AAS s    (26) 

 
According to §5.7.3.4.1 θAAS can be taken as 45° for the following cases: concrete footings with a distance less than 
3dv from the point of zero shear to the face of the column, piers or walls with or without transverse reinforcement, 

and other non-prestressed concrete sections not subjected to axial tension, containing at least the minimum 
transverse reinforcement specified in §5.7.2.5 or having an overall depth of less than 0.40 m.  
 

To design the transverse reinforcement for torsion At Eq. 5.7.3.6.2-1 is used: 
 

tan   
2

t u

AAS

o yt

A T

s A f



  (27) 

 
The required stirrups for torsion should be added to those needed for shear. The total transverse provided transverse 
reinforcement should not be less than the sum of the required transverse reinforcement for shear and torsion. s is the 

spacing between stirrups and fyt is the yield strength of transverse reinforcement.  
 

The required area of longitudinal reinforcement for torsion Al is given by Eq. 5.7.3.6.3-1 and 5.7.3.6.3-2. The 
longitudinal reinforcement for torsion should be added to the required reinforcement for bending moment: 
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                 for hollow sections

 (28) 

 
Vs is the shear resistance provided by the transverse reinforcement, fy is the yield strength for the longitudinal 
reinforcement, fps is the average stress in the prestressing steel at the time for which the nominal resistance of the 

member is required. The longitudinal steel reinforcement for solid sections should be distributed uniformly around 
the perimeter. For box sections, interior webs should not be considered in the calculation of the longitudinal 
torsional reinforcement. The values of ph,AAS and Al should be for the box shape defined by the outermost webs and 

the top and bottom slabs of the box girder. Also, Al needs to be distributed around the outermost webs and top and 
bottom slabs of the box girder. 
  (29) 

To compute the maximum stirrup spacing, the shear stress vu stated in §5.7.2.8, Eq. 5.7.2.8-1 is required: 
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u p

u

v v

V V
v

b d




  (30) 

 
bv is the web width adjusted for the presence of ducts as specified in §5.7.2.8. For circular cross -sections, bv is the 

diameter of the cross-section, modified for the presence of ducts where applicable. The maximum spacing of the 
stirrups is provided in §5.7.2.6, Eq. 5.7.2.6-1 and 5.7.2.6-2: 

 

0.8 600 mm     if 0.125
   

0.4 300 mm     if 0.125

v u c

v u c

d v f
s

d v f
  (31) 

 
The AASHTO-LRFD-2017 code does not give any equation to compute the minimum longitudinal or transverse 

reinforcement for torsion.  
 
Tn is the nominal torsional resistance, specified in Eq. 5.7.3.6.2-1 as: 

 

2 cot
  

o t yt AAS

n

A A f
T

s


  (32) 

The factored capacity of the element, ϕTn, should be greater or equal than the factored demand Tu: 
 

n uT T   (33) 

 
EN 1992-1-1:2004 

If the static equilibrium of the structure depends on the torsional resistance of some members of the structure, a full 
torsion design that fulfills both ultimate and serviceability provisions is necessary. However, if torsion is acting in 

statically indeterminate structures and it is present as a secondary effect , i.e. due to compatibility requirements, it 
may be neglected if the structure does not depend on the torsional resistance for its stability. In the last case, a 
minimum amount of longitudinal and transverse torsion reinforcement is needed to control excessive cracking. The 

minimum amounts are given in EN 1992-1-1:2004, §7.3.2, 9.2.1 and §9.2.2  
 
The first step of a torsion design is to check if the cross-sectional dimensions are adequate. For this, the effective 

wall thickness tef expressed in §6.3.2 is required:   
            

2    ef

A
t c

u
    (34) 

 
If the analyzed member has a hollow cross-section, the effective wall thickness should be less than the actual wall 
thickness. A is the total area of the cross-section, including inner hollow areas, u is the perimeter of the cross-

section, and c is the distance between the edge of the member and the centroid of the longitudinal reinforcement . 
The next step is to determine the torsional shear stress within the equivalent thin-walled tube, τt, according to Eq. 

6.3.2 (6.26): 
 

   
2

Ed

t

k ef

T

A t
    (35) 

 
TEd is the design torsional moment and Ak is the area enclosed by the centerlines of the connecting walls, including 
inner hollow areas. The applied shear force, VEd, caused by the design torsional moment TEd obtained from Eq. 6.3.2 

(6.27) is: 
 

   Ed t efV t z    (36) 
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z is the distance along the centerline between the intersection points of the adjacent walls of the equivalent thin -
walled tube, usually taken as the height of the element. The strength reduction factor for cracked concrete in shear, 

ν, is provided in EN 1992-1-1:2004, §6.2.2 (6), Eq. (6.6N): 
 

0.6 1
250

ckf
v   (37) 

 
fck [MPa] is the characteristic compressive cylinder strength of concrete at 28 days. Subsequently, αcw, which is a 

coefficient that takes account the state of the stress in the compression chord, is computed using EN 1992-1-1:2004, 
§6.2.3 (3), Eq. (6.11.aN), (6.11.bN), and (6.11.cN): 
 

1                          for non-prestressed structures
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  (38) 

 
σcp is the mean compressive stress in the concrete due to the design axial force or prestressing. The value of σcp does 

not need to be calculated at a distance less than 0.5cotθEN from the edge of the support. fcd is the design value of the 
concrete compressive strength. θEN is the angle of the strut inclination given in EN 1992-1-1:2004, §6.2.3 (4), Eq. 

(6.7N). The effects of torsion and shear may be added if the angle of the strut inclination is the same. The limits of 
the angle are 21.8° ≤ θEN ≤ 45°. The upper limit of the torsional strength, TRd,max is given in Eq. (6.30) as: 
 

,max 12 sin cos    Rd cw cd k ef EN ENT f A t      (39) 

 
The recommended value of ν1 is ν, see Equation (37). If the design yield strength of the transverse reinforcement, 

fywd, is below 80% of the characteristic yield strength of reinforcement fyk, ν1 can be taken according to Eq. 6.2.3 
(6.10.aN) and 6.2.3 (6.10.bN) as: 
 

1

0.6                      for 60MPa

0.5   for 60MPa
200

ck

ck

ck

f

v f
f

  (40) 

 
VRd,max, the upper limit of the shear strength, is calculated using Eq. (6.9) of EN 1992-1-1:2004, §6.2.3 (2): 
 

, 1

,max    
cot tan

cw w EN cd

Rd

EN EN

b z f
V

 

 
  (41)  

bw,EN is the width of the cross-section and for T, I or L beams it is the width of the web. If the web width contains 
ducts, the web width should be calculated according to §6.2.3 (6). Once TRd,max and VRd,max are obtained, the 

maximum combined shear and torsion capacity should be checked according to Eq. (6.29) to check if crushing of the 
concrete occurs: 

 

,max ,max

1.0Ed Ed

Rd Rd

T V

T V
  (42) 

 

If the inequality is not satisfied, fcd or A need to be modified.  
 
The first step for the torsion design is to compute the required amount of transverse reinforcement Asw. The stirrups 

for torsion must be added to the calculated reinforcement for shear. The code does not specify an equation to 
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calculate the required number of stirrups for torsion. EN 1992-1-1:2004 mentions that the required area of transverse 
torsion reinforcement Asw should be obtained using the same method as for shear stirrups, therefore:  

 

tan    
2

sw Ed

EN

k ywd

A T

s A f
   (43) 

 

s is the spacing of the stirrups. The longitudinal reinforcement, Asl, for torsion needs to be added to the computed 
reinforcement required for flexure. The longitudinal reinforcement should generally be distributed over the length of 
the side, z. EN 1992-1-1:2004, §9.2.3 (3) states that the longitudinal reinforcement bars required for torsion Asl need 

to be organized to have at least one bar at each corner of the stirrups. The remaining steel bars can be distributed 
uniformly around the stirrups’ perimeter inner face. Using Eq. 6.3.2 (6.28) the required longitudinal reinforcement 
for torsion Asl is: 

 

cot   
2

Ed k

sl EN

k yd

T u
A

A f
   (44) 

 
uk is the perimeter of the Ak area and fyd is the design yield strength of the longitudinal reinforcement. 
 

The transverse reinforcement ratio to compute the minimum transverse reinforcement for torsion is given in Eq. 
9.2.2 (9.5N) as: 
 

,min0.08
ck

w w

yk

f

f
    (45) 

 
If torsion arises from compatibility in statically indeterminate structures, then it is unnecessary to consider torsion as 
an ultimate limit state. In this case, minimum longitudinal and transverse reinforcement should be provided to 

prevent excessive cracking. According to Eq. 9.2.2 (9.4) and the value found in Equation (45), The minimum area of 
transverse reinforcement Asw,min  is calculated as: 
 

,min

,min , sin   
sw

w w EN

A
b

s
    (46) 

 
α is the angle between the transverse reinforcement and the longitudinal axis. The maximum spacing of the stirrups 
is defined by EN 1992-1-1:2004, §9.2.3 (3) as: 

 

8

min 0.75 1 cot    

min all dimensions

u

s d     (47) 

 
d is the effective depth of the cross-section. To find the minimum amount of longitudinal reinforcement, which is 

based on a requirement to control excessive cracking, first h
*
, which is the overall height of the cross-section within 

the tensile zone, needs to be determined according to §7.3.2 as: 
 

*
           for 1000 mm

  
1000 mm     for 1000 mm   

h h
h

h
  (48) 

 

h is the overall depth of the cross-section. The next step is to calculate k1, which is a coefficient given in §7.3.2 that 
considers the effects of axial forces on the stress distribution: 
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*
1

1.5        if  is a compressive force

2
      if  is a tensile force

3

Ed

Ed

N

k h
N

h

  (49) 

 
NEd is the axial force at the serviceability limit state acting on the part of the cross -section under consideration 

(compressive force positive), resulting from the characteristic values of prestress and axial forces under the relevant 
load combination.  
 

k c is a coefficient which takes into account the stress distribution within the section immediately prior to cracking 
and of the change of the lever arm. It is defined by Eq. 7.3.2 (7.2) and (7.3) as: 
 

1 ,eff*

1.0                                          for pure tension, any cross section
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 (50) 

 
Act is the area of concrete within the tension zone before the formation of the first crack, b is the overall width of the 

cross-section, or the actual flange width in a T- or L-shaped beam. Fcr is the absolute value of the tensile force 
within the flange immediately prior to cracking due to the cracking moment calculated with fct,eff. fct,eff is the mean 

value of the tensile strength of the concrete, effective at the time when the cracks are first expected to occur. 
 
 k , given in §7.3.2 is a coefficient which accounts for the effect of non-uniform self-equilibrating stresses, which 

lead to a reduction of restraint forces .  
 

1.0         for webs with 0.3 m or flanges with m

0.65       for webs with 0.8 m or flanges with m 

h b
k

h b
 (51) 

 
For other intermediate values of height and width, interpolation is allowed. With these parameters, the minimum 

area of longitudinal steel for torsion Asl,min is given by Eq. 7.3.2 (7.1) and 9.2.1.1 (9.1N): 
 

,eff

,min ,max 0.04  

0.26 0.0013
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sl c EN
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f
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
  (52) 

σs is the absolute value of the maximum stress permitted in the reinforcement immediately after formation of the 
crack. σs is often taken as the yield strength of the reinforcement, fyk. A lower value may however, be needed to 
satisfy the crack width limits according to the maximum bar size or spacing, see §7.3.3 (2). bt denotes the mean 

width of the tension zone, for a T-beam with the flange in compression, only the width of the web is considered for 
calculating the value of bt, fctm is the mean value of the axial tensile strength of the concrete, and Ac,EN is the gross 

area of the concrete. 
 
Next, the torsional capacity TRd of the element is computed: 
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   (53) 

 
Finally, the torsional capacity needs to be larger than or equal to TEd 

 

Rd EdT T    (54) 

 

When the cross-section of the shape is irregular, like a T-section, it can be divided into rectangular subsections. Each 
of these needs to be modeled using the space truss, thin-walled tube analogy to obtain the torsional resistance. The 
overall resistance of the irregular section will be the sum of the subdivisions. The external torsional moment applied 

on each individual subsection is proportional to each uncracked torsional stiffness. The maximum resistance of an 
element under torsion is limited by the capacity of the concrete struts [9].  
 

If torsion is not as important as other actions, a minimum longitudinal and transverse reinforcement for torsion must 
be provided. Warping torsion can be neglected in hollow thin-walled and solid sections. In open thin-walled shapes 

(like T-, I- or L-shapes) the calculation of the effect of warping torsion should be made for every slender cross -
section using a beam-grid model. For other cases, the analysis can be carried out by a truss model. 
 

MC2010 
This code establishes that if static equilibrium depends on the torsional resistance of the elements of the structure, a 
full torsional design must be provided. On the other hand, if torsion arises due to compatibility, generally a torsion 

design is not needed. In cases where compatibility torsion occurs, minimum longitudinal and transverse 
reinforcement for torsion should be provided. 
 

The first step is to check if the dimensions of the cross-section are adequate. For this, the longitudinal strain εx,MC at 
mid-depth of the effective shear depth, needs to be computed. It is defined in §7.3.3.1, Eq. 7.3-14 and 7.3-16 as: 
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(55) 

 

 
Figure 7—Definition of the variables used in Equation (55) 
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MEd is the design bending moment, VEd is the design shear force (MEd and VEd are positive), NEd,MC is the applied 
axial force (positive for tension and negative for compression), zMC is the effective shear depth which cannot be less 

than 0.9d for non-prestressed members, and d is the effective depth. In case of a support that penetrates the beam or 
slab, zMC is replaced with dv,MC, which is the distance from the centroid of the reinforcement layers to the supported 
area. Δe  is the difference between the position of the applied axial load and the centroid of the cross-section, Es is 

the modulus of elasticity of the reinforcing steel, Ep is the modulus of elasticity of the prestressing steel, As is the 
area of longitudinal reinforcement, and Ap,MC is the area of prestressing reinforcement. MEd0, VEd0, and NEd0 are the 

bending moment, shear and normal force without the effect of prestressing. Mp,ind is the secondary moment caused 
by prestressing, Fp is the prestressing force, ep is the eccentricity of prestressing, δp is the tendon angle, zs is the 
distance between the centerline of the compressive chord and the reinforcement, and zp is the distance between the 

tendon axis and the compressive chord. 
 
The design approach of the MC2010 code is by Levels of Approximation. Level I represents the simplest and 

quickest approach, valid for standard design cases. The use of higher Levels of Approximation means more 
computational effort and time but will result in a more accurate solution. For the value of the minimum compressive 

stress field inclination θmin, four levels of approximation can be used. The angle θMC selected to make the 
calculations can be chosen according to §7.3.3.3, Eq. 7.3-35 between: 
 

min 45MC    (56) 

  

The Level of Approximation I for min , using a variable angle truss model approach, states: 

 

min

25      for members with significant axial compression or prestress

30      for reinforced concrete members

40      for members with significant axial tension

  (57) 

 
§7.3.3.3, Eq. 7.3-39 in the MC2010 gives a definition for the minimum angle for a Level of Approximation II (based 

on a generalized stress field approach) and III (represents a general form of sectional shear equations and is based on 
the simplified modified compression field theory), defined as: 
 

min ,20 10,000 x MC    (58) 

 
The Level of Approximation IV states that the angle can be determined using a finite element method. Appropriate 

stress-strain models for the steel and for diagonally cracked concrete should be used. 
 
 Now, the parameter ε1 is required to calculate the strength reduction factor, which will be used later to check if the 

cross-sectional dimensions are adequate. It is defined in §7.3.3.3, Eq. 7.3-41 as: 
 

2

1 , , 0.002 cotx MC x MC MC      (59) 

 

Consequently, k ε, a factor that considers the influence of the state of strain in the web, is computed according to Eq. 
7.3-37 or 7.3-40: 
 

1

0.55                                  for Level I or when 0.0001

1
0.65              for Level II and III 

1.2 55

x

k





 (60) 

 

Eq. (7.3-28) defines ηfc as:   
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1

330
1.0fc

ckf
   (61) 

 

fck [MPa] is the characteristic value of the compressive strength of concrete. The strength reduction factor, k c,MC is 
calculated according to Eq. 7.3-27: 
 

,c MC fck k   (62) 

 
The next step is to compute the maximum shear resistance VRd,max, using θmin found in Equation (57) or (58). VRd,max 

is defined by Eq. 7.3-26 as:  
 

,max min min

z
sin cos    c ck w

Rd

c

k f b
V  


   (63) 

 
§7.2.3.1.4 specifies that γc is the partial safety factor for concrete. γc =1.5 for standard loading and 1.2 for incidental 

loading. bw is the width of the web. The effective panel thickness  tef  is according to §7.3.4.1, Eq. 7.3-54: 
 

   
8

k

ef

d
t   (64) 

 
dk is the diameter of the circle that can be inscribed at the narrowest part of the cross-section. The effective panel 
thickness should have at least a value of twice the distance between the concrete surface and the center of the closest 

layer of longitudinal reinforcement. In the case of box-girders, the effective panel thickness corresponds to the wall 
thickness, if the wall is reinforced on all sides. The upper bound of the torsional resistance TRd,max can be obtained 
from §7.3.4.1, Eq. 7.3-56: 

 

,max 2 sin cos  ck

Rd c ef k MC MC

c

f
T k t A  


  (65) 

 
Ak is the area enclosed by the centerlines of the connecting walls, including inner hollow areas . With VRd,max and 
TRd,max known, the dimensions of the cross-sections can be checked according to §7.3.4.1, Eq. (7.3-55)  

 
2 2

,max ,max

1.0Ed Ed

Rd Rd

T V

T V
  (66) 

 

Where TEd is the applied torsional moment. 
 

The required amount of transverse reinforcement for torsion Asw is obtained by assuming that the torsional moment 
will be resisted only by the stirrups. For this, Eq. 7.3-53 was substituted into Eq. 7.3-29: 
 

tan   
2

sw Ed

MC

w k ywd

A T

s A f
   (67) 

 
fywd is the yield strength of the transverse reinforcement and sw is the spacing of the stirrups.  

 
The required longitudinal reinforcement for torsion, Ast results from substituting Eq 7.3-53 into 7.3-34: 
 

cot

2 2
  

Ed MC
Ed

k

st

yk

T z
V

A
A

f



  (68) 
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fyk is the characteristic value of the yield strength of reinforcing steel in tension.  
 

The minimum area of transverse reinforcement Asw,min required for torsion should also fulfill §7.13.5.2, Eq. 7.13-9. 
 

,min
0.08   with  in [MPa]

sw w

ck ck

w ywd

A b
f f

s f
  (69) 

 
The maximum spacing between stirrups sw is defined in §7.13.5.2 as: 

 

0.75
min    

500 mm
w

d
s   (70) 

 
d is the effective depth. The minimum longitudinal reinforcement for torsion Ast,min according to §7.13.5.2, Eq. 7.13-
8 is: 

 

,min ,0.26   ctm

st t MC

yk

f
A b d

f
  (71) 

 

bt,MC is the width of the tension zone and fctm is the mean value of the axial tensile strength of concrete.  
 

The torsional capacity TRd is computed as: 
 

2
cot

min
4

tan

k sw ywd

w
Rd

k st yd

A A f

s
T

A A f

z





   (72) 

 
Finally, the torsional capacity TRd needs to be larger than the applied torsional moment TEd. 
  

Rd EdT T    (73) 

 
DISCUSSION 

The previous sections showed that there are two major philosophies for determining the torsional capacity of 
structural concrete members: 1) skewed-bending analysis, and 2) truss analogy (with or without the consideration of 

the concrete’s contribution). However, all the building codes presented in this document use a 3D-truss model and 
the thin-walled tube analogy to predict the failure of the members. According to Hsu

27
, the advantages of this theory 

are: the interaction of shear and torsion with bending and axial load is well-described, the effect of prestress can be 

included in a logical way, it provides a reasonable accuracy between the model and the experimental tests , and the 
distinct advantage over the skewed-bending theory is that the truss analogy can predict the deformation of a member 
throughout the loading history. Within the space truss model, the codes presented here use either a variable angle 

truss or a MCFT method to predict the behavior of concrete members under torsion. One of the differences between 
them is how each one obtains the angle of inclination of the concrete struts or compressive field. The variable angle 

truss method fixes an assumed angle for the inclination of the struts , while the MCFT considers compatibility and 
equilibrium conditions to determine the angle of the compression field. The other difference is that the first method 
does not contemplate the tensile contribution of the concrete to the torsional strength, whereas the MCFT does. 

Nevertheless, other models have shown to predict the behavior of structural members with good accuracy. One of 
the them is the Softened Membrane Model for Torsion

34
 which is an extension of the Softened Membrane Model for 

Shear
35

. Another new model
36

 that follows the skew-bending theory has shown better prediction results on the shear 

strength of hollow circular structural concrete cross -sections compared to the methods used in EN 1992-1-1:2004 
and fib Model Code 2010. This statement is based on the experimental testing of 45 specimens

37
. However, this 

model still needs to be extended to other types of cross -sections and to the torsion design problem. 
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Several subjects of discussion remain concerning torsion in structural concrete. The first topic is the capacity of the 
members resisting loads by warping torsion. All five codes listed here assume that the external torsional moment 

will be resisted by circulatory torsion. Nevertheless, box-, T-, or I-shaped concrete beams tend to produce 
differential shear stresses on their cross-sectional planes to resist torsion, due to the characteristic restriction of their 
connected flanges and webs. None of the codes give clear provisions  on how to deal with members resisting 

torsional moments by warping torsion. A second important subject is the torsion effect on slabs. Point loads on slabs 
close to the edges produce large torsional moments

38
. None of the codes presented in this document give clear 

provisions on how to address the effect of torsion on the shear capacity of concrete slabs at the edges. 
 
One topic of recent research is the torsional behavior of structural concrete members under different physical and 

geometric conditions. Examples include the analysis of limitations of torsional reinforcement to prevent a brittle 
failure

39
. Based on the experiments of 15 beams with the maximum torsional reinforcement ratio as the main 

parameter and 99 existing tests obtained from the literature, it was observed that the ACI 318-19 and JSCE-07
40

 

codes predicted the torsion failure with good accuracy when having the maximum ratio of torsional reinforcement. 
On the other hand, EC2-04 and CSA-14 building codes overestimated the limit between a brittle and ductile failure. 

Another research topic is the torsional performance of beams subjected to pure torsion with low levels of torsional 
reinforcement

41
. In this research it was found that high strength concrete beams (HSC) with  a total torsional 

reinforcement ratio of less than 0.95% presented a brittle failure. On the other hand, HSC and normal strength 

concrete (NSC) specimens with a total torsional reinforcement larger than 0.95% and 0.87%, respectively, showed a 
ductile torsional failure. Moreover, an experimental study

42
 on the comparison of HSC an NSC beams under torsion 

with the same amount of reinforcement concluded that HSC elements provided a higher torsional strength than NSC. 

The uncracked torsional stiffness and the cracked stiffness of HSC beams was approximately 2 times and 1.4 times, 
respectively, compared to the NSC elements. Another example is the torsional behavior of concrete elements using 

CTR (continuous transverse reinforcement)
43

. In summary, it was demonstrated that the pure torsional resistance 
using CTR sometimes exceeds the strength obtained with conventional stirrups. Nevertheless, if the cracks due to 
torsion have the same direction as the CTR, the strength is decreased. Experimental tests of the torsional behavior of 

high-strength reinforced concrete under-reinforced beams showed that torsional strength of these elements is 
independent of the concrete strength as long as the beam is under-reinforced

44
. 

A second topic of research is the use of innovative materials. An example includes beams with glass fiber-reinforced 

polymer (GFRP) bars and stirrups. The advantage of such bars is the superior performance from a durability point of 
view. These bars cost less than carbon fiber-reinforced polymer bars and offer a different solution to the corrosion 

problem. Investigation on this topic concluded that the GFRP-reinforced concrete beams under torsion exhibited a 
similar strength and cracking behavior compared to the counterpart steel reinforced concrete (RC) beams

45
. Waste 

materials like oil palm shell have been tested as a substitute to granite aggregate to produce a lightweight concrete. 

Experimental analysis
46

 on the torsional behavior of oil palm shell concrete (OPSC) compared to normal weight 
concretes (NWC) demonstrated that the OPSC had a 280% larger twist at failure than the NWC and a better 
torsional ductility. Another application is the use of steel fiber reinforced concrete (SFRC). Abundant research has 

been carried out on rectangular SFRC beams
47-52

. However, most beams in real structures have T- or L-shaped 
cross-sections. Therefore, it is important to understand how steel fibers influence the torsional behavior of non -

rectangular beams.  Experimental investigation
53

 on this topic showed that steel fibers can increase the torsional 
strength after cracking and are very effective in preventing a sudden brittle failure in flanged beams that presented a 
steel fiber volume of 3%. 

 
A third topic of current research on torsion is the strengthening of structures that are subjected to torsional moments. 
The various types of wrapping using carbon fiber-reinforced polymer (CFRP) fabrics

54
 showed that the full-

wrapping technique enhances the torsional behavior.However its practical application is limited because the access 
to the sides of the beam is restricted. On the other side, the U-jacket technique is the most achievable and practical 

wrapping.Nevertheless, it showed less effectiveness in strengthening for torsion compared to the extended U-jacket 
and the full wrapping technique. An analytical model

55
 which uses a smeared crack analysis for plain concrete in 

torsion for the pre-cracking behavior and a softened truss theory for the post-cracking performance has shown good 

prediction of the torsional capacity of beams retrofitted with CFRP. CFRP sheets are also used to repair damaged 
RC elements under torsion. After tests were made

56
, it was shown that the torsional capacity of columns was larger 

than the original torsional strength, after they were repaired with CFRP 
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SUMMARY OF CONCLUSIONS 
This study summarizes the provisions for torsion design in structural concrete. All the required provisions given in 

ACI 318-19, CSA-A23.3-04, AASHTO-LRFD-17, EN 1992-1-1:2004, and the fib Model Code 2010 are listed. A 
short literature review on the early stages of torsion research plus brief descriptions of the mechanical models used 
to describe the torsional behavior are given. The two major philosophies, 1) space truss analogy and 2) skew-

bending theory are summarized. All the codes listed here use a 3D truss analogy. The ACI 318-19, EN 1992-1-
1:2004 and Level I of Approximation of the fib Model Code 2010 do not consider the contribution of the concrete to 

the torsional strength. On the contrary, the CSA-A23.3-04, AASHTO-LRFD-17 and Levels II and III of 
approximation in the fib Model Code 2010 include the concrete contribution in the determination of the torsional 
capacity. 

Furthermore, topics outside the scope of current provisions such as  how to design structural concrete elements under 
warping torsion or the effect of torsion on the shear capacity of concrete slabs at the edges are discussed. Finally, an 
overview of recent topics in torsion research was presented. 

 
LIST OF NOTATIONS 

b = overall width of the cross-section, or the actual flange width in a T-or L-shaped beam, 
be = effective width of the shear flow path taken as the minimum thickness of the exterior webs or flanges  

comprising the closed box section or flanges comprising the closed box section , 

bt = mean width of the tension zone; for a T-beam with the flange in compression, only the width of the we 
is considered for calculating the value of bt, 

bt,MC = width of the tension zone, 

bv = web width adjusted for the presence of ducts , 
bw = web width or diameter of a circular section, 

bw,EN = web width of the cross-section for T, I or L beams, 
c = distance between the edge of the member and the centroid of the longitudinal reinforcement , 
d = effective depth, 

ds = unit area, 
ds = distance from extreme compression fiber to the centroid of the non-prestressed tensile reinforcement  

measured along the centerline of the web, 

dk = diameter of the circle that can be inscribed at the narrowest part of the cross -section, 
dv = effective shear depth, 

dv,MC = in case of a support that penetrates the beam or slab, it is the distance from the centroid of the 
reinforcement layers to the supported area, 

ep = eccentricity of prestressing, 

f′c = specified compressive strength of concrete, 
fcd = the design value of concrete compressive strength, 
fck = characteristic compressive cylinder strength of concrete at 28 days , 

fcp = average compressive stress in concrete due to the effective prestress force only , after allowance for all 
prestress losses, 

fct,eff = mean value of the tensile strength of concrete, effective at the time when the cracks may first be expected  
to occur, 

fctm = mean value of axial tensile strength of concrete, 

fpc = compressive stress in concrete, after allowance for all prestress losses, at centroid of cross-section 
resisting externally applied loads or at junction of web and flange where the centroid lies within the 
flange. In a composite member, it is the resultant compressive stress at centroid of composite section, or 

at junction of web and flange where the centroid lies within the flange, due to both prestress and 
moments resisted by precast member acting alone, 

fpc,AAS = unfactored compressive stress in concrete after prestress losses have occurred either at the centroid of the  
cross-section resisting transient loads or at the junction of the web and flange where the centroid lies in  
the flange, 

fpe = effective stress in prestressing tendons after allowance for al prestress losses , 
fpo = stress in prestressing tendons when the strain in the surrounding concrete is zero , 
fpo,AAS = parameter taken as modulus of elasticity of prestressing steel multiplied by the locked-in difference in  

strain between the prestressing steel and the surrounding concrete, 
fps  = average stress in prestressing steel at the time for which the nominal resistance of member is required  

fpu = specified tensile strength of prestressing reinforcement, 
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fpu,CSA = specified tensile strength of prestressing tendons , 
fse = effective stress in prestressing reinforcement, after allowance for all prestress losses , 

fy = specified yield strength for non-prestressed longitudinal reinforcement, 
fyd = design yield strength of the longitudinal reinforcement, 
fyk = characteristic yield strength of reinforcement, 

fyt = specified yield strength of transverse reinforcement, 
fywd = design yield strength of the transverse reinforcement, 

h = overall height of the member, 
h

*
 = overall height of the cross-section to calculate the minimum longitudinal reinforcement to control  

excessive cracking, within the tensile zone, 

k  = coefficient which accounts for the effect of non-uniform self-equilibrating stresses, 
k c = coefficient which accounts the stress distribution within the section immediately prior to cracking  

and of the change of the lever arm, 

k c = strength reduction factor, 
k ε = factor which considers the influence of the state of strain in the web, 

k 1 = coefficient that considers the effects of axial forces on the stress distribution, 
nfc = coefficient needed to compute k c, 
pc = outside perimeter of the cross-section, 

pcp = outside perimeter of concrete cross-section, 
ph = perimeter of the centerline of outermost closed transverse torsion reinforcement, 
ph,AAS = perimeter of the centerline of the closed transverse torsion reinforcement for solid members, or the  

perimeter of the centroid of the transverse torsion reinforcement in the exterior webs and flanges for  
hollow members, 

s = center-to-center spacing of stirrups, 
sw = spacing of the stirrups for torsion, 
t = wall thickness at the location where the stresses are being checked, 

tef = effective wall thickness, 
u = perimeter of the cross-section, 
uk = perimeter of the Ak area, 

z = distance along the centerline, between the intersection points of the adjacent walls of the equivalent thin - 
walled tube, usually taken as the height of the element, 

zMC = effective shear depth, 
zp = distance between the tendon axes and the compressive chord, 
zs = distance between the centerline of the compressive chord and the reinforcement , 

A = total area of the cross-section, including inner hollow areas , 
Ac = area enclosed by outside perimeter of concrete cross section, including area holes, 
Acp = area enclosed by the outside perimeter of concrete cross -section, 

Act = area of concrete within tensile zone before the formation of the first crack, 
Ac,EN = cross-sectional area of the concrete, 

Ag = gross area of the concrete cross-section, 
Ak = area enclosed by the centerlines of the connecting walls, including inner hollow areas , 
Al = required area of longitudinal reinforcement to resist torsion, 

Al,min = minimum area of longitudinal reinforcement to resist torsion, 
Am = area enclosed by the shear forces, 
Ao = area enclosed by the shear flow path including area of holes , 

Aoh = area enclosed by centerline of the outermost closed transverse torsional reinforcement , including area  
holes, 

Ap = area of tendons on the flexural tension side of the member, 
Aps = area of prestressed longitudinal tension reinforcement, 
Aps,AAS = area of prestressing steel on the flexural tension side of the member, 

Ap,MC = area of prestressing reinforcement, 
As = area of non-prestressed longitudinal tension reinforcement, 
Asl = area of longitudinal reinforcement bars required for torsion, 

Asl,min = minimum area of longitudinal reinforcement bars required for torsion, 
Ast = area of longitudinal reinforcement for torsion, 

Asw = area of transverse torsion reinforcement, 
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Asw,min = minimum area of transverse torsion reinforcement, 
At = area of one leg of a closed stirrup resisting torsion, 

At,min = minimum area of transverse reinforcement for torsion, 
Av = required area of shear reinforcement. Required area of two legs of a closed stirrup for shear, 
Av,min = minimum transverse reinforcement for shear force, 

Ep = modulus of elasticity of prestressing tendons , 
Es = modulus of elasticity of non-prestressed reinforcement, 

Fcr = absolute value of the tensile force within the flange immediately prior to cracking due to the cracking  
moment calculated with fct,eff, 

Fp = the prestressing force, 

G = shear modulus, 
K = the effective length factor for compression members , 
Mf = moment due to factored loads , 

Mp,ind = secondary moment caused by prestressing, 
Mu = factored applied moment, 

MEd = design bending moment, 
MEd0 = bending moment without the effect of prestressing, 
NEd = axial force at the serviceability limit state acting on the part of the cross -section under consideration  

(compressive force positive), resulting from the characteristic values of prestress and axial forces under  
the relevant load combinations , 

NEd,MC = applied axial force, positive for tension and negative for compression , 

NEd0 = normal force without the effect of prestressing,  
Nf = factored axial load normal to the cross-section. Taken as positive for tension, negative for compression 

Nu = factored axial force, taken as negative for tension and positive for compression, 
Tcr = cracking torsional moment, 
Tf = factored torsional moment, 

Tn = nominal torsional resistance, 
Tr = factored torsional resistance, 
Tth = threshold torsional moment, 

Tu = applied factored torsional moment, 
TEd = applied torsional moment, 

TRd = factored torsional strength, 
TRd,max = upper limit of the torsion strength, 
Vc = shear strength provided by concrete,  

Vf = factored shear force, 
Vp = component in the direction of the applied shear of the effective prestressing force factored by ϕp, 
Vp,AAS = component of prestressing force in the direction of the shear force, 

Vs = shear resistance provided by transverse reinforcement, 
Vu = factored shear force, 

VEd = applied shear force, 
VRd,max = maximum shear resistance, 
α = angle between the transverse reinforcement and the longitudinal axis , 

αcw = coefficient that takes into account the state of the stress in the compression chord, 
γc  = partial safety factor for concrete, 
δp = tendon angle, 

εs = net longitudinal tensile strain in the section at the centroid of the tension reinforcement , 
εx = longitudinal strain at mid-depth of the member due to factored loads , 

εx,MC = longitudinal strain at mid-depth of the effective shear depth, 
ε1 = coefficient required to compute k c, 
θ = angle between the struts and the tension chord, 

θcheck = actual angle of the strut inclination, 
θcheck,MC = actual angle of the compression field, 
θmin = minimum value of the compressive stress field inclination, 

θr = angular rotation, 
θAAS = angle of inclination of diagonal compressive stresses , 

θCSA = angle of inclination of diagonal compressive stresses, measured from the longitudinal axis of the member, 



Granda Valencia and Lantsoght 

26 

 

θEN = assumed angle of the strut inclination, 
θMC = assumed angle of the compression field, 

λ = modification factor which accounts for the properties of lightweight concrete , 
λAAS = concrete density modification factor, 
v = strength reduction factor for cracked concrete in shear, 

v1 = strength reduction factor for cracked concrete in shear when the design yield strength of  
the transverse reinforcement, is below 80% of the characteristic yield strength of reinforcement, 

vu = shear stress, 
ρw = transverse reinforcement ratio, 
ρw,min = minimum transverse reinforcement ratio, 

σcp = mean compressive stress in the concrete, due to the design axial force or prestressing , 
σs = absolute value of the maximum stress permitted in the reinforcement immediately after formation of the  

crack, 

τ = tangential shear forces, 
τt = torsional shear stress, 

ϕ = resistance factor, 
ϕc = resistance factor for concrete, 
ϕp = resistance factor for prestressing tendons, 

ϕs = resistance factor for non-prestressed reinforcement, 
Δe = difference between the position of the applied axial load and the centroid of the cross -section, 
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