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Owerview of Torsion Design Methods

Camilo Granda Valencia and Eva Lantsoght

Synopsis: Large torsional moments, which needto be considered in a design, can result among others, in structures
with an asymmetric layout or loading. To find the required longitudinal and transversereinforcement to resist these
torsional moments, thelink between the three-dimensional action of the torsional moment and sectional analysis
methods is necessary. This paper reviews theexisting methods and code provisions for torsion. First, an overview of
the principles oftorsion fromthe mechanics perspective is given. Then, asurvey of the available mechanical modelk
for torsion is presented. Finally, the code provisions for torsion of ACI 318-19, CSA-A23.3-04, AASHTO-LRFD-
17, EN 1992-1-1:2004, and the fib Model Code 2010 are summarized. Additionally, current research topics on
torsion in structural concrete are summarized. It is expected that with this paper, engineers will have a useful
overview and background knowledge for the design and assessment of torsion -critical elements.
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INTRODUCTION

In general, concrete structures are subjected to four principal actions: axial force, shear, bending moment, and
torsion. Engineers and researchers focused onthe understanding of thefirst three phenomena in concrete structures
because these usually control the design of a member, i.e. they control the resulting reinforcement layout. For
example, beams are typically designed for sectional moment and shear. Columns work as flexion-compression
elements, around both axes of the cross-section. Nevertheless, torsion is a special topic. It was left apart because
generally its influence on theresulting design is limited. For this reason, building codes accounted for torsion’s
small influence in the safety factors'. Throughout the 1960s, extensiveresearch on torsion was made. As a result, the
first design recommendations for torsion made by the American Concrete Institute (ACI) were formulated in 1969°.
These recommendations led to the inclusion of provisions for torsion in the 1971 edition of the ACI Building Code,
ACI 318-71%, The research carried out over the past decades led to a better understanding of the behavior of concrete
members subjected to a torsional moment. The Space Truss Analogy, the Skew-Bending Theory, and other theories
provided mechanical models to predict the behavior of concrete structures under torsion after cracking.

Torsion canbe definedas the moment that twists an element around its axis. This torsional moment causes shearing
stresses at each pointofthe cross-section of an element. These stresses change according to the proximity to the
member’s axis*. In circular cross-sections, the stress caused by a torsional moment is zero at the neutral axis and
reaches the maximum value on the outermost fiber, see Figure 1(a). For rectangular cross-sections, the shear stress is
also zero at the neutral axis and at the corners. It increases towards its maximum value at the surface of the longest
side, see Figure 1(b).
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Figure 1—Shear stresses () due an applied torsional moment (T) on a circular (a) and rectangular solid (b) element

Torsion can be a result of primary or secondary actions. The primary action occurs when the member can only
support the action ofan external load by generating a torsional moment. This is also called equilibrium torsion and
is common in statically determinate structures. Equilibriumtorsion is important for the stability of the structure. This
occurs, forexample, when a load acts on a fixed-end beam, but it is applied eccentric with respect to the z-axis, like
in Figure 2. As aresult, a torsional moment is generated around this axs.

Torsion can also be found as a result of secondary actions in statically indeterminate structures. This happens
because the structure needs to satisfy compatibility requirements. In this case a twist is required to maintain the
compatibility, not a torsional moment®. Spandrel continuous beams supporting other secondary beams or slabs are
often subjected to this phenomenon, as shown in Figure 3.
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Figure 2—Equilibriumtorsion at the ends of the beam, generated by the action of a point load
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Figure 3—3D Frame systemwhere spandrelbeams AB and CD are subjected to compatibility torsion due to the
load on the secondary beams joints

More complexand asymmetric concretestructures are designed every year around the world thanks to the reduction
times in analysis and design when using structural software. Asaresult, the effect of torsionon concrete structures
has become more important. Forexample, horizontally curved bridges and cantilever members should be designed
for torsion. Standardization institutions like American Concrete Institute (ACI)®, Canada Standards Association
(CSA)’, American Association of State Highway and Transportation Officials (AASTHO)®, the European
Normalization Committee (CEN)°®, and the International Federation for Structural Concrete (fib)'* have developed
provisions for situations when torsion needs to be considered. The design philosophy that each code uses is:

e ACI318-19° uses a thin-tube and space truss analogy.
e CSA (CSA-A23.3-04)" uses a General Design Method for torsion derived fromthe Modified Compression
Field Theory (MCFT); it includes the tensile contribution of concrete.
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e AASHTO-LRFD-17° code provisions for torsionare obtained from the MCFT. The torsion equations on
this code are similar to the CSA-A23.3-04 ones. A Strut and Tie Model can also be used as an alternative
for design.

e Eurocode (EN 1992-1-1:2004)° uses a spatial truss model with an equivalent thin-walled tube and wall
thickness for the torsion design.

e The fib Model Code 2010 uses a variable angle truss model, generalized stress field approach, ora
simplified modified compression field theory, depending on the Level of Approximation.

The assumptions that lie at the basis of each ofthese models, and theresulting mechanics, will be discussed in the
section about the mechanical models. The resulting code provisions will be given in the section with the code
provisions.

BRIEF HISTORY OF TORSION RESEARCH

Mechanics of torsion

In this section, an overview ofthe history of torsion mechanics is given. Kurrer in “The History of the Theory of
Structures” shows various importantinvestigations on this topic*'. The first known person to study the effect of
torsion on materials, as a consequence of his research onelectric charges, was Coulomb. Usinghis torsion balance,
he deduced that the torsional moment is proportional to the torsional angle*?. About 40 years later, Navier was the
first to postulatea theoretical equation to compute the torsional moment on shafts with a circular cross-section. The
two assumptions that he made were: 1) the shape of the cross-section cannot change after twist, and 2) plane
sections must remain plane. The latter assumption implies that warping does not occur®,

Later, it was found thatthere are two possible ways in which a structural member can resist torsion: by circulatory
torsion or by warpingtorsion. Saint-Venant developed in 1847 the first theory, in which he stated that the cross-
section ofan element counters the effectoftorsion by producinga circulatory shear flow (torsional shear multiplied
by the wall thickness) on its plane. This means that the shear stress resisting the external torsional moment is
constant within theflowarea, see Figure 4(a). This effect usually occurs in solid and hollow members, which are
free to bend around their axis*. The second way in which structural members can withstand torsion is by warping
torsion. It was first investigated by Timoshenko in 1905™ and further researched by Mlasov in 1940"*®. Warping
torsion produces differentshear stresses alongthe same circumference, see Figure 4(b). Consequently, the planar
sectionsdo notremain plane dueto the changing strain at points over a determined circumference. Longitudinal
bendingresults fromthese strains. Warping torsion arises when the entire section or part of it is restrained, for
example, by end conditions™*". This is usually expected in members formed by at least three connected walls, or
with a fixed-end support.

Both resistingtorsional moments need to be in equilibrium with the applied torsional moment (T) on the member.
This means that T=T;+T,, where T;is the Saint-Venant torsion and T,, is the warping torsion. Both happen at the
same time, consequently; there is nota clear way to classify sections according to how they resist torsion. Some
practical examples have demonstrated that the action of oneofthe resisting methods can be neglected compared to
the effect of the other. Nevertheless, there are other cases where neither of themis predominant over the other; this
case is called mixed torsion®®. One example of mixed torsion is an I-shaped simply supported beam. If the torsional
moment is applied at midspan, the cross-sections at theleft and right of it experience warping torsion. Close to the
ends, the beam can twist freely, therefore Saint-Venant torsion occurs.

In 1890 Bach, in his book, “Elasticitdt und Festigkeit” presented all the torsion cases proposed by Saint-Venant and
interpreted themtheoretically. Bach tested numerous cast-ironand hard lead bars under torsion. Using the results
between the proposedtheory andthe experiment, Bach developed a simple proofequation to checkthe shear stress
for the Saint-Venanttorsion in bars, equilateral triangles, and regular hexagons™. In 1896, Bredt offered a promising
solutionto the Saint-Venant torsion problem. His solutionequation states thatthe sumofthe tangential shear forces
(z) perunitarea (ds)on a closed curvewithin the cross-section under the effect of an external torsional moment is
equalto two times the area enclosed by the forces (A,), shear modulus (G) and the product of rotation (6,)", i.e.:

[zds=2A60,G @)
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Figure 4—Circulatory torsion (a) and warping torsion (b) shear stresses on C-shaped members

Torsion in reinforced concrete

Graf and Mérsch were thefirst researchers to study torsion in plain and reinforced concrete. They tested different
circular, square, and rectangular beams to study theeffect of the reinforcement on the ultimate strength forelements
undertorsion®’. In 1929, Rausch published his dissertation, in which he presented the 3D-truss analogy for torsion.
Rausch provided an equation to predictthe torsional resistance of reinforced concrete members based on the space
truss model?. This method lies at the basis for the current torsion design provisions.

More researchers started to study torsionin structural concrete at the beginning of the second half of the twentieth
century. In 1959, Lessig usedequilibriumequations to proposea skew-bendingtheory for the failure mechanism of
torsion®. This theory assumes thata beamunder torsion will have a skewed failure surface. Lessig proposed two
failure modes. The first one has a compression zone near the top face of the beam, while the second failure mode
uses a compression zonealong the side face. In 1962, Yudin? realized that the skew-bending theory proposed by
Lessig was notable to determine three unknows: the longitudinal reinforcement area, the web steel area, and the
depth of the compressionzone. To solve this, Yudin proposed threeequilibriumequations, while Lessig’s analysis
only usedtwo: the equilibriumof moments about the neutral axis of the member, and the equilibriumof forces along
the normalto the compression zone. Yudin’s equations were: equilibrium of moments about an axis through the
centroid of the compression zone and parallel to the longitudinal axis of the beam, equilibrium of moments about an
axis throughthe centroid of the compression zone and perpendicular to the longitudinal axis, and equilibrium of
forces along the normal to the compression zone. Nevertheless, this analysis is limited to only symmetrically
reinforced elements.

Elfgren developeda methodto determine the capacity of elements under combined shear, moment andtorsion®. He
used atrussanalogyto predict the ultimate load carried by multiple sets of reinforced beams and tested these at
Chalmers University of Technology. Elfgren established an interaction equation which can be used to plot an
interaction surface. This model predicts accurately the strength of reinforced concrete beams subjected to torsional
moment, shear force and bending moment.

Collins and Mitchellintroduced another approach to study torsionin structural concrete in 1973%. They presented
the diagonal compression field theory for beams under pure torsion. They considered equilibrium equations,
geometry of deformations, and stress-strain relationships of the concreteand steel to proposetheir theoretical model.
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The basis of theirapproachis atrussanalogy model, and their main assumption is that after cracking the concrete
will not carry tension, therefore, the torsion will be resisted by a field of diagonal compression in the concrete.
Afterwards, in 1985, Hsu and Mo developed a variation of the compressionfield theory. In this case, they softened
the concrete stress-strain curve and called the new model the softened truss model (STM)™. In the STM equilibrium,
compatibility and softened stress-strain relationships are combinedto develop a theory thathas shown good results
in predicting the test results of reinforced concrete structures subjected to shear and torsion®. Rahal and Collins
have developed analytical computational models to calculate the response of concrete members subjected to
combined torsion and bending® and to combined torsion and shear?.

MECHANICAL MODELS FOR TORSION

Reinforced concrete before and after cracking under torsion

Prior to cracking, reinforced concrete members subjected to torsion can be analyzed as homogenous plain concrete
sections. Therefore, their behavior can be predicted using Saint-Venant’s theory®’. After the element cracks, the
study of its behavior becomes more complicated. Fromnowon, the structural member acts as a composite section,
and Saint-Venant’s theory can nolonger be used because cracking violates the material homogeneity premise of the
elastic theory. Whenthe web of thebeamcracks, its capacity to transmit diagonal tension forces is reduced. The
load is then carried by diagonal compression members betweenthe cracks and by the steel reinforcement resisting
tension. Together, they forma truss-like mechanism®.

Shear truss analogy

The shear truss analogy was first proposed by Ritter at the end of the twentieth century %, It is a strut-and-tie model
and considers thata cracked reinforced concrete beam under shear will have diagonal cracks which separate the
concreteinto multiple struts. They modeled the beam as a plane truss consisting of longitudinal and transverse
reinforcement to carry theload. In this assumption, thetopand bottomlongitudinal bars act as the top and bottom
chords ofthe truss, while the transverse reinforcement and concrete struts work as the web members. To simplify
this model, the strut’s inclination is assumed to be 45°%°.

3D space truss analogy

To apply the conceptofatruss modelto members to subjected torsion, the truss model needs to be extended to a
three-dimensional model, i.e. a space truss analogy. A member subjected to torsion is treated as a spacetruss formed
by a series of joined planar trusses®. The concrete member reinforced with longitudinal and transverse
reinforcement resists torsion by producinga circulatory shear flow at the outermost part of the cross-section. Each
straight segmentofthe tube walls behaves like a planar truss in which theshear stresses are resisted as in the shear
truss analogy. Struts only carry axial compression; longitudinal and transverse reinforcement carries the tension
forces, see Figure 5.

T

o

Figure 5—Spacetruss analogy foran asymmetrical beamunder torsion. The tension forces are supported by the
longitudinal and transverse reinforcement (black and blue) and the concrete struts resist compression (red)
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Skew-bending theories

This theory is characterized by the assumption ofa skewed failure surface. This surface is generated by a helically-
shaped crack on three faces of a rectangular beam. On the fourth face, the helical crack is connected by a
compressionzone. The failure surface intersects the longitudinal and transverse reinforcement. The forces in the
steelreinforcementgenerate the required internal forces and moments to carry external loads. Failure occurs when
the steelstartsto yield®. At failure, the two parts of the member separated by the failure surface rotate against each
otherabout a neutral axis on the insideedge of the compressionzone. Then, the associated equilibrium equations at
the ultimate limit state can be derived®’.

Thin-walled tube analogy

The most efficient cross-sectionto resisttorsionis a thin tube. The thin-walled tube analogy states that the shear
stresses andshear flow are constantaround the cross-section of a member. This shear flowis enclosed by an area of
pre-determinedthickness. Therefore, solid and hollow sections can be calculated in the same way as tubes®, see
Figure 6. Concrete members can be modelled as tubes becausethe concrete core does not contribute tothe element’s
torsional strength?’. Within the walls of the tube, the external torsion is resisted by a shear flow, defined as the
torsional shear multiplied by the thickness of the tube.

shear flow

@) (b)

Figure 6—Oiriginal section (a) and the same member after the thin-walled tube analogy is applied (b)

Compression Field Theory (CFT)

The CFT is a model developed by Mitchell and Collins that considers equilibrium conditions, geometry of
deformation andthe strain-stress characteristics of the steeland concrete. This model predicts the shear strength of a
reinforced concrete member afterit cracks. This theory, based on thetruss analogy, assumes that after cracking, the
torsion shear stresses are carried by a field of diagonal compression in the concrete and balanced by the tension
developed in the longitudinal and transverse reinforcement®. In 1986, Vecchio and Collins expanded the CFT to the
Modified Compression Field Theory (MCFT). The CFT assumedthat the cracks of the diagonal field compression
in the concrete were only able to withstandshear and compression. Nevertheless, between the concrete’s cracks
tensionstresses exist. To have a more accurateanswer of the reinforced concrete element’s capacity under shearand
torsion, the MCFT uses experimentally verified average stress-strain relationships instead of assuming them. Also, it
considers the tension in the cracked concrete®. Althoughthe MCFT can predict the shear and torsional strength with
great precision, the process of solving the equations of this theory by hand is complex For this reason, Bentz,
Vecchio and Collins developed a simplified MCFT using the Membrane-2000 computer program to get more
practical expressions. This method showed excellent predictions of the shear strength. The accuracy between the
simplified MCFT and the full theory is almost the same®,

CODE PROVISIONS FOR TORSION
All the equations in this section are expressed in Sl units. The conversion factors are: 1 kN =0.225 kip, 1 kKN-m =
8.849 kip-in, 1 mm =0.0394 in and 1 MPa = 145 psi.

ACI1318-19
ACI 318-19 first checks iftorsion can be neglected. Ifthe following expression from §9.5.4.1 is satisfied, torsional
effects do not need to be considered:
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T, <dT 2

T, is the factoredtorsional moment. ¢, the reduction factor for the nominal capacity oftorsion, is equalto 0.75. Ty, is
the threshold torsionalmoment given by §22.7.4. Forsolid sections it is:

2
0.0831,/f. ﬁ Non-prestressed member
pcp
2
f
T, =10.0831,/f/ a3 1+—F — Prestressed member ©))
Pep 0.331ff,
A N, :
0.0831f/| — | I+ —— Non-prestressed member under axial load
Pep 0.33A A,[f,

In statically indeterminate structures where T,> ¢T,,, it is permitted to reduce T, to ¢T., due to redistribution of
internal forces after cracking. This applies to typical and regular framing conditions. ¢ T, is the cracking torsional
moment and is defined in 822.7.5.1. Equation (3) is valid for solid cross-sections. For hollow cross-sections, all the
A, terms in Equation (3) are substituted with A,, the gross area of the concrete cross-section. /. [MPa] is the
specified compressive strength of the concrete, A, is the area enclosed by the outside perimeter of the concrete
cross-section, p, is the outside perimeter of concrete’s cross-section, f,. [MPa] is the compressive stress in the
concrete, afterallowanceforall prestress losses, at the centroid of the cross-section resisting the externally applied
loads orat the junction of the web and flange where the centroid lies within the flange. In a composite member, it is
the resultant compressive stress at the centroid of the composite section, or at the junction of the web and flange,
when the centroid lies within the flange, dueto both prestress and moments resisted by the precast member acting
alone, N, is the factored axial force, taken as negative for tension and positive for compression, /4 is a coefficient
which accounts for the properties of lightweight concrete (see §19.2.4).

The shear strength provided by the concrete V. according to §22.5.5.1 is determined as:
V, =0.174,[fb,d with f, in [MPa] @)

b, is the web width or diameter of a circular section and d is the effective depth. The last expression applies to
reinforced concrete members withoutaxial force and with A, > A, min. A, in Equation (4) is the required transverse
reinforcement for shear and A, i, is the minimum transverse reinforcement for shear force. For other cases in
reinforced concrete members, §22.5.5.1 through 822.5.5.1.3 are governing. For prestressed members, the shear
strength provided in concrete is listed in §22.5.6 and §22.5.7.

The next expression from822.7.7.1 checks if the dimensions of the member are large enough to avoid crushing of
the concrete:

2 2
V, T, P, V, - . .
Uy < < +0.661/f for solid sections
J(bwd] (1-7&1} "’(bwd j

\Y T, P, Y/ - .
< —°+O.66,ff for hollow sections
(deJ [1-7%] "{bwd j

©)

If Equation (5)is fulfilled, the reinforcement for torsion canbe designed. For hollow sections with a variable wall
thickness, the maximum value ofthe left side of Equation (5) should be evaluated, which is oftenat the point of the
cross-sectionwhere shearand torsional stresses canbe added. V,, is the factored shear force, py, is the perimeter of
the centerline of the outermost closed transverse torsional reinforcement, A, is the area enclosed by py,. §22.7.7.1.1
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mentions that for prestressed members the value of d in Equation (5) should be greater than 0.8h, where h is the
overall height of the element.

Accordingto 822.7.6.1, 6, the angle between the struts and the tension chord, can be takenas any value between 30
and 60 degrees. §22.7.6.1.2 states that ¢ is usually 45° for reinforced concrete members with Ay < 0.4(Anfo, +
Afy) and 37.5° for prestressed elements with Ayfi. > 0.4(Aufu + Asfy). A, is the area of the prestressed longitudinal
tensionreinforcement, A;is the area ofthe non-prestressed longitudinal tension reinforcement, f,, is the effective
stress in prestressing reinforcement after allowance for all prestress losses, f,, is the specified tensile strength of
prestressing reinforcement, andf, is the yield strength for non-prestressed longitudinal reinforcement. The required
area of transverse reinforcement of one leg of a closed stirrup A, for torsion is:

ﬁ > T—”tan 0 (6)
s 1.7¢4A, fyt

s is the spacing between the stirrups, f, is the specified yield strength of the transverse reinforcement.

The next step is to calculate the required area of longitudinal steel for torsion A;:

f

A > Aln p, cot’ @ ©)
s f,

89.5.4.3 mentions that the longitudinaland transverse reinforcement required for torsion need to be added to the

reinforcement demanded by shear force, bending moment and axial force actions.

Forthe transverse reinforcement limit, §9.6.4.2 states that for members under torsion and shear, the stirrups for

torsion and shear effects cannot be less than:

0062/ 2
A+2A F

S 0.35 0
yt

In Equation (8), A, is the required area of two legs of a closed stirrup for shear. If the analyzed element is only

experiencing torsion, the value of the A, termin Equation (8), is equal to zero. The minimum area of longitudinal
steel reinforcement A, i, for torsion can be calculated with §9.6.4.3 as:

vl (A), T
f h

U ©
min — min
| 0.42/T/A, (0.4750,) f,
S R L
y yt y
According to 89.7.6.3.3 the limits to the stirrup spacing are:
Pn
s<min{ 8 (10)
300 mm

§9.5.4.3 statesthat the finalamount of longitudinal and transverse reinforcement needs to be added to the required
reinforcement for shear force, bending moment and axial effects.
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When the cross-section and the reinforcement of the member are designed, the ACI 318-19 §22.7.6.1 gives two
equations to analyze the torsional strength T,. Once the member cracks under the effect of a torsional moment, the
strengthis provided primarily by the transverse and longitudinal reinforcement. The concrete contribution to the
torsional strength is neglected:

LTAAT

0
. S
T, =min (1)
n 1.7 f
&tan 6
Pr
Finally, the torsional strength should be greater than or equal to the factored applied torsional moment.
g1, 2T, (12)

CSA-A23.3-04
According to §11.2.9.1, reinforcement for torsion should be provided when the factored torsional moment T;
exceeds ¥4 of the pure torsional cracking resistance T, given in CSA-A23.3-04 Eq. 11-2 as:

A:Z ’ ¢P fCP
T, =0.3824 | = | [T ,1 e 13
“ ¢C(|OJ ’ +0.381¢c1/fc’ (13

In statically indeterminate structures, where redistribution of torsional moments canoccur, §11.2.9.2 specifies that T;
can be reduced to 0.67T., at the face of the support. For hollow sections, A. is the area enclosed by the outside
perimeter of the concrete cross-section, including the area of holes. In Equation (13), for hollow cross-sections, A,
can be replaced with 1.5A; (gross concrete area) if the wall thickness is less than 0.75A. / p.. p. is the outside
perimeter of the cross-section, f;, [MPa] is the average compressive stress in the concrete due to the effective
prestress force only (after allowance for all prestress losses), /. [MPa] is the specified compressive strength of
concrete, ¢, =0.65 is the material factor for concrete, ¢,=0.9 is the material factor for prestressing tendons, and/ is
the factor that accounts for lightweight concrete, see §8.6.5.

Equations 11-18 and 11-19 in the CSA-A23.3-04 code give minimum dimensions to avoid concrete crushing:

V.-V, Tp, , .
+ > | <0.25¢, f; for hollow sections
b, d, 17A,
14
V-V, Y (T Y , . 4
+ > <0.25¢, f, for other sections
bwdv 17A0h

Vi is the factored shear, V, is the component in the direction of the applied shear of the effective prestressing force
factored by ¢,, d, is the effective shear depth, taken as the greater of 0.9d or 0.72h, where h is the overall height of
the member, and d is the effective depth (d cannot be less than 0.8h for prestressed members and circular sections),
b, is the minimum web width within d or the diameter of a circular cross-section, Ay, is the area enclosed by the
centerline of the exterior closed transversetorsion reinforcement, including the area of holes, py, is the perimeter of
the centerline ofthe closed transverse torsionreinforcement. If the wall thickness of the boxsectionis less than A, /
pr, the second term on the left side of Equation (14) should be replaced by T/ (1.7Asnt). Where t is the wall
thickness at the location where the stresses are being checked.

Next, it is needed to compute the longitudinal strain ¢, at mid-depth ofthe member due to the factored loads. With
this variable, the angle of the diagonal compression field can be obtained to calculate the required transverse
reinforcement. The longitudinal strain is computed substituting Equation 11-20 on Equation 11-13 of §11.3.6.4,
which leads to:

10
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2
ool A (15)
2 EA+EA,

M 0.9p,T, \
df+Jvf -V, 2{ P f} +05N, ~A f,,

If the value of Equation (15) is negative, &, can be takenas zero. M;is the factored moment and cannot be less than
(Vs-Vp)d,, A, is the area enclosed by the shear flow path including the area of holes, which can be taken as 0.85A,
accordingto §11.3.10.3, Nyis the factored axial load, positive for tension and negative for compression. A is the
area of prestressing tendons, f, is the stress in the prestressing tendons whenthe strain in the surrounding concrete
is zero (may be taken as 0.7f,, cs for bondedtendons outside the transfer length and f,. for unbonded tendons),
foucsa [MPa] is the specified tensile strength of the prestressingtendons, f. is the effective stress in the prestressing
tendons after allowance forall prestress losses, E, is the modulus of elasticity of non-prestressed reinforcement, E is
the modulus of elasticity of prestressing tendons, A is the area of non-prestressed tension reinforcement, and A, is
the area oftendons on the flexuraltensionside of the member. The bending moment and shear force on Equation
(15) are absolute values. The axial load is positive for tensionand negative forcompression. Once the longitudinal
strain is computed, theangle of inclination of the diagonal compressive stresses, sy, is defined in §11.3.6.4, Eq.
11-12 as:

Ous = 29" +7000¢, (16)

Forspecial members like slabs or footings with an overall thickness less than0.35m, footings in which the distance
fromthe point of zero shearto the faceof the column, pedestal, or wall is less than three times the effective shear
depth ofthe footing, beams with an overall thickness less than 0.25 m, beams cast integrally with slabs where the
depth of the beam below the slab is not greater than one-half the width of web or 0.35 m, and concrete joist
constructiondefined in §10.4, the angle of the struts can be taken as 42°. §11.3.6.3 also mentions that if the yield
strength of the longitudinal reinforcement does not exceed 400 MPa and £ is smaller than 60 MPa, fcss can be
taken as 35°.

The next step is to get the required area of transverse reinforcement for torsion, A, using Equation (17) :

A

f
>———tan§g, 17
s LT4Af, 40
s is the spacing betweenstirrups for torsion, f,,is the specified yield strength of transverse reinforcement, and ¢, =
0.85 is the resistance factor for non-prestressed reinforcement. Combining Equations 11-14 and 11-21, the
longitudinal reinforcement area Ay needed to withstand a torsional moment is given by:

M, 2 (045p,T, Y
— 405N +] |V, 05V, -V, T -] TP cot B,
d, L7A,

A = . -A (18)

y

f, is the specified yield strength of non-prestressed longitudinal reinforcement for torsion.

The maximum spacing s between stirrups follows the expression described in §11.3.8.1:

(074,
s <min (19)
600 mm

The CSA-A23.3-04 code provisions for torsion do not specify any minimum longitudinal or transverse
reinforcement for torsion. §11.2.7 indicates that a longitudinal reinforcing bar or bonded prestressing tendon shall be

11
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placed in each corner of closedtransverse reinforcement required for torsion. The nominal diameter of the bar or
tendon shall be not less than s/16.
The torsional moment resistance T, is only provided by the transversereinforcement and is defined in §11.3.10.3 as:

T, =17¢.A, % COt O, (20)

The torsional strength T, should be greater than or equal to the applied torsional moment:

T >T, (21)

r

AASHTO-LRFD-2017
Torsion must be considered, according to §5.7.2.1 Eq. 5.7.2.1-3, if:

T, > 0.254T,, 22)

T, is the applied factored torsional moment over the analyzed member. ¢, the resistance factor is given in 85.5.4.2
and is equalto 0.90 for normal and lightweightconcrete. To determine the torsional cracking moment, T, first K,
the effective length factor for compression members, must be computed according to Eq. 5.7.2.1-6:

f
K= 1+ —2%__ <20 23
\/ 0.3351,[f; @

foc.aas [MPa] is the unfactored compressivestress in concrete after prestress losses have occurred, taken either at the
centroid of the cross-section resisting transient loads or at the junction of the web and flange where the centroid lies
in the flange. /. [MPa] is the design compressive strength of concrete, a5 is the concrete density modification
factor given in 85.4.2.8. T, is provided in Eq. 5.7.2.1-4 and 5.7.2.1-5 as:

(24)

cr

2
0.329K/1\/f_c’% for solid shapes

0.329K/1\i’f_c’2A)be for hollow shapes

A, is the areaenclosed by theshear flow path, includinginner holes, A, is the area enclosed by the outside perimeter
of the concrete cross-section, p. is the outside perimeter of the concrete cross-section, b, is the effective width of the
shear flow path takenas the minimum thickness of the exterior webs or flanges comprising the closed box section.
b. shouldaccountforthe presence of ducts, the diameters of ungrouted ducts or one-half the diameters of grouted
ducts needto be subtracted fromthe web or flange thickness at the location of these ducts. b, cannot exceed A;, / p.
unless a more refined analysis is used.

To compute the required transverse reinforcement, e;needs to be determined, which is the net longitudinal tensile
strain in the section at the centroid of the tension reinforcement. It can be obtained from 85.7.3.4.2, Egs. 5.7.3.4.2-4,
5.7.3.4.2-5 and 5.7.3.4.2-6

2

M 0.9 T

(l d u|J+O.5Nu + \f/f +(2*2‘“J ~V, ans |~ Aueans Foo.aas
for solid sections

MU TUdS

(| y |J+0-5Nu +V, + oA =V, ans |~ Aus.ans Fro.ans
Y for hollow sections
EA + EpAps
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85.7.2.1 mentions that in statically indeterminate structures where redistribution of torsional moment can occur over
a determined element, T, can be taken as ¢ T,. M, is the factored applied moment and cannot be less than |V,-V,|d,,
N, is the factored applied axial load, taken as positive fortensionand negative for compression, V, is the factored
sectional shear, V, aas is the component of prestressing force in the direction of the shear force, Ay aas is the area of
prestressing steel on the flexural tensionside ofthe member, A;is the area of non-prestressedtension reinforcement,
d; is the distance fromthe extreme compression fiber to the centroid of the non-prestressed tensile reinforcement
measured alongthecenterline ofthe web, d, is the effective shear depth taken as the distance between the resultants
of the tensile and compressive forces dueto flexure, pp aas is the perimeter of the centerline ofthe closed transverse
torsion reinforcement for solid members, or the perimeter of the centroid of the transverse torsion reinforcement in
the exterior webs and flanges for hollow members, and f,, axs is a parameter taken as the modulus of elasticity of
prestressing steel multiplied by the locked-in difference in strain between the prestressing steeland the surrounding
concrete. For usual levels of prestressing, f,, can be taken as 0.7f,, for both pretensioned and post-tensioned
members. f,, is the specified tensile stress of prestressing steel. E; is the modulus of elasticity for steel reinforcement
and E, is the modulus of elasticity of prestressing steel. Now, with the longitudinal tensile strain &, the angle of
inclination of diagonal compressive stresses, Oaas is defined by §5.7.3.4.2, Eq. 5.7.3.4.2-2:

Opss = 29" +3500¢, (26)

Accordingto 8§5.7.3.4.1 6xas can be taken as 45° for the following cases: concrete footings with a distance less than
3d, from the point of zero shear to the face ofthe column, piers or walls with or without transverse reinforcement,
and other non-prestressed concrete sections not subjected to axial tension, containing at least the minimum
transverse reinforcement specified in §5.7.2.5 or having an overall depth of less than 0.40 m.

To design the transverse reinforcement for torsion A; Eq. 5.7.3.6.2-1 is used:

A._T
2> qang 27
s 2pAf, 27)

The required stirrups for torsion should be added to those needed for shear. The total transverse provided transverse
reinforcement should not be less thanthe sumofthe required transverse reinforcementfor shear and torsion. s is the
spacing between stirrups and f; is the yield strength of transverse reinforcement.

The required area of longitudinal reinforcement for torsion A, is given by Eq. 5.7.3.6.3-1 and 5.7.3.6.3-2. The
longitudinal reinforcement for torsion should be added to the required reinforcement for bending moment:

2 2

M . :

| u| +OSA+COt9AAS Vfu—Vp —0.5\/S + m 'Aps AAS fps

¢d, ¢ ¢ 2A¢ ' - A forsolid sections

A = f, (28)

ﬁf_yt cotd for hollow sections

s f Py AAS

y

V; is the shear resistance provided by the transverse reinforcement, f, is the yield strength for the longitudinal
reinforcement, f,;is the average stress in the prestressing steel at the time for which the nominal resistance of the
member is required. The longitudinal steel reinforcement for solid sections should be distributed uniformly around
the perimeter. For box sections, interior webs should not be considered in the calculation of the longitudinal
torsional reinforcement. The values of p, aas and A;should be for the boxshape defined by the outermost webs and
the top and bottomslabs ofthe boxgirder. Also, A needs tobe distributed around the outermost webs and top and
bottomslabs of the boxgirder.

(29)
To compute the maximum stirrup spacing, the shear stress v, stated in 85.7.2.8, Eq. 5.7.2.8-1 is required:
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_ Vu _¢Vp|
Y hd >

b, is the web width adjusted for the presence of ducts as specified in §5.7.2.8. For circular cross -sections, b, is the
diameter of the cross-section, modified for the presence of ducts where applicable. The maximumspacing of the
stirrups is provided in 85.7.2.6, Eq. 5.7.2.6-1 and 5.7.2.6-2:

0.8d, <600 mm if 0.125f’
g { , ifv, < . 31)

0.4d, <300 mm ifv, >0.125f

The AASHTO-LRFD-2017 code does not give any equation to compute the minimum longitudinal or transverse
reinforcement for torsion.

T, is the nominal torsional resistance, specified in Eg. 5.7.3.6.2-1 as:

T 2AA T, cotb,,
T g
The factored capacity of the element, ¢T,,, should be greater or equal than the factored demand T,:

(32)

o1, 2T, (33)
EN 1992-1-1:2004

If the static equilibriumofthe structure depends onthe torsional resistance of some members of the structure, a full
torsion design thatfulfills both ultimate and serviceability provisions is necessary. However, if torsion is acting in
statically indeterminate structuresandit is present as a secondary effect, i.e. due to compatibility requirements, it
may be neglected ifthe structure does not depend on the torsional resistance for its stability. In the last case, a
minimum amount of longitudinaland transversetorsion reinforcementis needed to control excessive cracking. The
minimum amounts are given in EN 1992-1-1:2004, §7.3.2,9.2.1 and §9.2.2

Thefirststep ofatorsiondesignis to check if the cross-sectional dimensions are adequate. For this, the effective
wall thickness t; expressed in §6.3.2 is required:

t, =B 0 (34)
u

If the analyzed member has a hollow cross-section, the effective wall thickness should be less than the actual wall
thickness. A is the total area of the cross-section, including inner hollow areas, u is the perimeter of the cross-
section, and c is the distance betweenthe edge of the member and the centroid of the longitudinal reinforcement.
The next step is to determine the torsional shear stress within the equivalent thin-walled tube, z,, according to Eq.
6.3.2 (6.26):

TEd

7, = AL (35)

Teq is the design torsional moment and A, is the area enclosed by the centerlines of the connecting walls, including
innerhollowareas. The applied shear force, Veq4, caused by the designtorsional moment T4 obtained from Eq. 6.3.2
(6.27) is:

Ve =71l Z (36)
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z is the distance along the centerline between the intersection points of the adjacent walls of the equivalent thin -
walled tube, usually taken as the height of the element. The strength reduction factor for cracked concrete in shear,
v, is provided in EN 1992-1-1:2004, §6.2.2 (6), Eq. (6.6N):

v=0.6{1—h} (37)
250
f. [MPa] is the characteristic compressive cylinder strength of concrete at 28 days. Subsequently, a.,, which is a

coefficient thattakes accountthe state of the stressin the compressionchord, is computed using EN 1992-1-1:2004,
86.2.3 (3), Eg. (6.11.aN), (6.11.bN), and (6.11.cN):

1 for non-prestressed structures
O'cp
l+f— for0<o, <0.25f,
cd
= 38
%on = 11.25 for 0.25f , <o, <05f, (38)
- ch
25(1 for 0.5f, <o, <1.0f,
cd

o.p IS the mean compressive stress in the concretedueto the designaxial force or prestressing. The value of g, does
not need to be calculated at a distance less than 0.5cot gy fromthe edge of the support. f.4 is the design value of the
concretecompressive strength. &gy is the angle of the strut inclination given in EN 1992-1-1:2004, §6.2.3 (4), Eq.
(6.7N). The effects of torsion and shear may be added if the angle of the strut inclination is the same. The limits of
the angle are 21.8° <6\ < 45°. The upper limit of the torsional strength, Trymax IS given in Eg. (6.30) as:

T

Ri,max = 2Vilgy foq Aty SIN By €COS G (39)
The recommendedvalue of v, is v, see Equation (37). If the design yield strength of the transverse reinforcement,
f,wa, 1S below 80% of the characteristic yield strength of reinforcement f,,, v, can be taken according to Eq. 6.2.3
(6.10.aN) and 6.2.3 (6.10.bN) as:

0.6 forf, <60MPa

ck —

Vv, = 40
710.9-tx .05 for f, > 60MPa o)
200

Vramax, the upper limit of the shear strength, is calculated using Eq. (6.9) of EN 1992-1-1:2004, §6.2.3 (2):

Ay Dy en vy T,
Rd,max = - — (41)

cotg,, +tand,,

b.en is the width of the cross-sectionand for T, I or L beams it is the width of the web. If the web width contains
ducts, the web width should be calculated according to §6.2.3 (6). Once Trgmax aNd Vrgmax are obtained, the
maximum combined shear and torsion capacity should be checked accordingto Eq. (6.29) to checkif crushing of the
concrete occurs:

TTLN’A <10 42)

Rd,max Rd,max

If the inequality is not satisfied, f.4 or A need to be modified.

The first step for the torsion design is to computethe required amount of transversereinforcement Ag,. The stirrups
for torsion must be added to the calculated reinforcement for shear. The code does not specify an equation to
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calculate the required number of stirrups fortorsion. EN 1992-1-1:2004 mentions that the required area of transverse
torsion reinforcement A, should be obtained using the same method as for shear stirrups, therefore:

% > ZA(T;? tan 6, (43)

ywd

s is the spacing of the stirrups. The longitudinal reinforcement, Ay, for torsion needs to be added to the computed
reinforcement required for flexure. The longitudinal reinforcement should generally be distributed over the length of
the side, z. EN 1992-1-1:2004, §9.2.3 (3) states that the longitudinal reinforcementbars required for torsion Ay need
to be organized to have at least one barat each corner of the stirrups. The remaining steel bars can be distributed
uniformly around thestirrups’ perimeter inner face. Using Eq. 6.3.2 (6.28) the required longitudinal reinforcement
for torsion Ay is:

T
A = %cot Ory (44)

yd
Uy is the perimeter of the A, area and f,4 is the design yield strength of the longitudinal reinforcement.

The transverse reinforcement ratio to compute the minimum transverse reinforcement for torsion is given in Eq.
9.2.2 (9.5N) as:

Jf
= 0.08f—°k = Pumin (45)

yk

If torsion arises fromcompatibility in statically indeterminate structures, then it is unnecessary to consider torsion as
an ultimate limit state. In this case, minimum longitudinal and transverse reinforcement should be provided to
prevent excessive cracking. According to Eq.9.2.2 (9.4) and the value found in Equation (45), The minimum area of
transverse reinforcement Agymin is calculated as:

Aw,min

s = pw,minbw,EN Sin a (46)

a is the angle between the transverse reinforcement and the longitudinal axis. The maximum spacing of the stirrups
is defined by EN 1992-1-1:2004, 89.2.3 (3) as:

u

8
$<min40.75d 1+cota (47

min all dimensions

d is the effective depth of the cross-section. To find the minimum amount of longitudinal reinforcement, which is
based onarequirementto control excessive cracking, first h-, which is the overall height of the cross-section within
the tensile zone, needs to be determined according to §7.3.2 as:

. h for h <1000 mm
= (48)

1000 mm  for h >1000 mm

his the overalldepthof the cross-section. The next step is to calculate k; which is a coefficient given in §7.3.2 that
considers the effects of axial forces on the stress distribution:
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15 if N, is acompressive force

_ ) | | _ (49)
k & if N, is a tensile force

Neq is the axial force at the serviceability limit state acting on the part of the cross-section under consideration
(compressive force positive), resulting fromthe characteristic values of prestress and axial forces underthe relevant
load combination.

k. is a coefficient which takes into account thestress distribution within the section immediately prior to cracking
and of the change of the lever arm. It is defined by Eq. 7.3.2 (7.2) and (7.3) as:

1.0 for pure tension, any cross section
Ned
k. =104 1—hb—h <1.0 only for rectangular sections, webs of box sections and T-sections (50)
kl (h*) 1:ct,(-:‘ff
0.9 Fo >0.5 only for flanges of box and T-sections
A:t fct‘eff

A.;is the area of concretewithin the tension zone before the formation of the first crack, b is the overallwidth of the
cross-section, or the actual flange width in a T- or L-shaped beam. F, is the absolute value of the tensile force
within the flange immediately priorto cracking due to the cracking moment calculated with fyes. o etr iS the mean
value of the tensile strength of the concrete, effective at the time when the cracks are first expected to occur.

k,given in §7.3.2 is a coefficient which accounts for the effect of non-uniformself-equilibrating stresses, which
lead to a reduction of restraint forces.

B {1.0 for webs with h < 0.3 mor flanges withb < 0.3 m (51)

0.65  for webs with h > 0.8 m or flanges withb > 0.8 m

Forotherintermediate values of height and width, interpolation is allowed. With these parameters, the minimum
area of longitudinal steel for torsion Ag i is given by Eqg. 7.3.2 (7.1) and 9.2.1.1 (9.1N):

kc kfct,eff At

Ay =maxy <0.04A (52)

0.26%btd >0.0013b,d
yk
o, is the absolute value of the maximum stress permitted in the reinforcement immediately after formation of the
crack. g, is often taken as the yield strength of the reinforcement, f,,. A lower value may however, be needed to
satisfy the crack width limits according to the maximum bar size or spacing, see §87.3.3 (2). b, denotes the mean
width ofthe tension zone, fora T-beamwith the flange in compression, only the width of the web is considered for
calculating thevalue of by, f,, is the mean value of the axial tensile strength of the concrete, and A, gy is the gross
area of the concrete.

Next, the torsional capacity Tgq 0f the element is computed:
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—ZA*A;W Py cot by,
Teg =Min 2AAT, e (53)
uk
Finally, the torsional capacity needs to be larger than or equal to Tgq
Tog > Teq (54)

When the cross-section ofthe shapeis irregular, like a T-section, it can be divided into rectangular subsections. Each
of theseneeds to be modeled using thespacetruss, thin-walled tube analogy to obtain the torsional resistance. The
overall resistance of the irregular section will be the sumofthe subdivisions. The external torsional moment applied
on each individual subsectionis proportional to each uncracked torsional stiffness. The maximum resistance of an
element under torsion is limited by the capacity of the concrete struts [9].

If torsion is not asimportantas otheractions, a minimum longitudinal and transverse reinforcement for torsion must
be provided. Warping torsion can be neglected in hollowthin-walled and solid sections. In open thin-walled shapes
(like T-, I- orL-shapes) the calculation of the effect of warping torsion should be made for every slender cross -
section using a beam-grid model. For other cases, the analysis can be carried out by a truss model.

MC2010

This code establishes that if static equilibriumdepends on the torsional resistance of the elements of the structure, a
full torsional designmust be provided. On the other hand, iftorsion arises due to compatibility, generally a torsion
design is not needed. In cases where compatibility torsion occurs, minimum longitudinal and transverse
reinforcement for torsion should be provided.

The first step is to check if the dimensions of the cross-section are adequate. For this, the longitudinal strain & yc at
mid-depth of the effective shear depth, needs to be computed. It is defined in §7.3.3.1, Eq. 7.3-14 and 7.3-16 as:

1 M, +Vgy + Ngy e lJ_r A, for non-prestressed members
2ESAS ZMC ' 2 ZMC
Mgy £ F, cosd e +M . 7 —e
Egme =) 0P : PP P 4V~ Fysing, + N gy — F, €083, pz P (55)
me - MC __ for prestressed members
ZS
2(2 E.A +Z"EpAp,Mcj
MC MC
Strain Profile
| | Mgy
% ca B Neq
®
d Zs Zp Ae e
v ) »T Fd
/ @\ v
LN N ) VEd

Figure 7—Definition of the variables used in Equation (55)
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Megq is the designbending moment, Vg is the design shear force (Mgq and Vgq are positive), Neg e is the applied
axial force (positive fortensionand negative for compression), zyc is the effective shear depthwhich cannot be less
than 0.9d for non-prestressed members, and d is the effectivedepth. In caseofa supportthatpenetrates the beam or
slab, zyc is replaced with d, uc, which is the distance fromthe centroid of the reinforcement layers to the supported
area. A is the difference betweenthe positionofthe applied axial load and the centroid of the cross-section, E is
the modulus of elasticity of the reinforcing steel, E, is the modulus of elasticity of the prestressing steel, A is the
area of longitudinal reinforcement, and A, ¢ is the area of prestressing reinforcement. Mego, Vego, and Neqo are the
bending moment, shear and normal force without theeffect of prestressing. M, nq is the secondary moment caused
by prestressing, F, is the prestressing force, e, is the eccentricity of prestressing, J, is the tendon angle, z, is the
distance between thecenterline ofthe compressivechord andthereinforcement, and z, is the distance between the
tendon axis and the compressive chord.

The design approach of the MC2010 code is by Levels of Approximation. Level I represents the simplest and
quickest approach, valid for standard design cases. The use of higher Levels of Approximation means more
computational effort and time but will result in a more accurate solution. For the value of the minimum compressive
stress field inclination 6, four levels of approximation can be used. The angle 6yc selected to make the
calculations can be chosen according to §7.3.3.3, Eq. 7.3-35 between:

O < O <45 (56)

min —

The Level of Approximation | for ;. , using a variable angle truss model approach, states:

in 1

25" for members with significant axial compression or prestress
6. =130" for reinforced concrete members (57)

min

40" for members with significant axial tension

87.3.3.3, Eq. 7.3-39 in the MC2010 gives a definition for the minimumangle fora Level of Approximation Il (based
on ageneralized stress field approach) and I11 (represents a general formof sectional shear equations and is based on
the simplified modified compression field theory), defined as:

Opin = 20" +10,000z, 0 (59)

The Level of Approximation IVstates thatthe angle canbe determined using a finite element method. Appropriate
stress-strain models for the steel and for diagonally cracked concrete should be used.

Now, the parameter ¢, is required to calculate the strength reduction factor, which will be used later to check if the
cross-sectional dimensions are adequate. It is defined in §7.3.3.3, Eq. 7.3-41 as:

& =&wec + Ene +0.002 cot® G, (59)

Consequently, k., a factor that considers the influence of the state of strain in the web, is computed according to Eq.
7.3-37 or 7.3-40:

0.55 for Level I or when &, < 0.0001

k =
‘ ; <0.65 for Level Il and 111 (60)
1.2+55¢

Eq. (7.3-28) defines 7y as:
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1

3

—_ [?_oj <10 (61)
ck

f.« [IMPa] is the characteristic value ofthe compressivestrength of concrete. The strength reduction factor, k¢ mc is
calculated according to Eq. 7.3-27:

kc,Mc =K1 (62)

The next step is to compute themaximum shear resistance Vg max, USING Gnin found in Equation (57) or (58). Vrdmax
is defined by Eq. 7.3-26 as:

k. f .
V = waZsm 6, COS O, (63)

Rd,max
Ve

87.2.3.1.4 specifies that y. is the partial safety factor for concrete. y. =1.5for standard loading and 1.2 for incidental
loading. b,, is the width of the web. The effective panel thickness t is according to §7.3.4.1, Eq. 7.3-54:

dk

W< (64)

ef

dy is the diameter of the circle that can be inscribed at the narrowest part of the cross-section. The effective panel
thickness should have at least a value of twice the distance between the concrete surface and thecenter ofthe closest
layer of longitudinal reinforcement. In the case of box-girders, the effective panel thickness corresponds to the wall
thickness, ifthe wall is reinforced on all sides. The upper bound of thetorsional resistance Trgmax Can be obtained
from87.3.4.1, Eq. 7.3-56:

Teo.max = 2K, htef A, sin6,,. cos 6, (65)
7

C

Ay is the area enclosed by the centerlines of the connecting walls, including inner hollow areas . With Vgg max and
Tramax kKnOown, the dimensions of the cross-sections can be checked according to §7.3.4.1, Eq. (7.3-55)

2 2
[ Tey J { Ve J <10 (66)
TRd,max VRd,max

Where Tgqis the applied torsional moment.

The required amount of transverse reinforcement for torsion A, is obtained by assuming that the torsional moment
will be resisted only by the stirrups. For this, Eq. 7.3-53 was substituted into Eq. 7.3-29:

% > 2;—;;‘ tan 6, (67)

w ywd
f,wa 1S the yield strength of the transverse reinforcement and s, is the spacing of the stirrups.

The required longitudinal reinforcement for torsion, Ay results fromsubstituting Eq 7.3-53 into 7.3-34:

N Te Z | COt 6,
Ed ZA( 2
f

(68)

A =

yk
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f, is the characteristic value of the yield strength of reinforcing steel in tension.

The minimum area of transverse reinforcement Ag,min required for torsion should also fulfill §7.13.5.2, Eq. 7.13-9.

Avin_ 0.08/T, B ith f, in [MPa] (69)
S, LI

The maximum spacing between stirrups s,, is defined in §7.13.5.2 as:

0.75d
s, < min{ (70)

d is the effective depth. The minimumlongitudinal reinforcement for torsion A i according to 87.13.5.2, Eq. 7.13-
8is:

A =026, d @

yk
bymc is the width of the tension zone and f., is the mean value of the axial tensile strength of concrete.

The torsional capacity Tgq is computed as:

2A Aty cotd

. S
Tey = Min w (72)
4 f
AR g
z

Finally, the torsional capacity Tgq needs to be larger than the applied torsional moment Tgg.
Tog 2 Teq (73)

DISCUSSION

The previous sections showed that there are two major philosophies for determining the torsional capacity of
structural concrete members: 1) skewed-bending analysis, and 2) truss analogy (with or without the consideration of
the concrete’s contribution). However, all the building codes presented in this document use a 3D-truss model and
the thin-walled tube analogy to predictthe failure of the members. Accordingto Hsu?’, the advantages of this theory
are: the interaction of shear andtorsion with bending and axial load is well-described, the effectof prestress can be
included in alogicalway, it provides a reasonable accuracy between the model and the experimental tests, and the
distinct advantage over the skewed-bending theory is that thetruss analogy can predict the deformation of a member
throughout the loading history. Within thespace truss model, the codes presented here use either a variable angle
truss ora MCFT method to predictthe behavior of concrete members undertorsion. One ofthe differences between
themis howeach oneobtains the angle of inclination of the concrete struts or compressive field. The variable angle
truss method fixes an assumed angle for the inclination of the struts, while the MCFT considers compatibility and
equilibriumconditions to determine the angle of the compressionfield. The other difference is that the first method
does notcontemplatethe tensile contribution of the concrete to the torsional strength, whereas the MCFT does.
Nevertheless, other models have shown to predict the behavior of structural members with good accuracy. One of
the themis the Softened Membrane Model for Torsion® which is an extension of the Softened Membrane Model for
Shear®. Another new model® that follows the skew-bending theory has shown better prediction results on the shear
strengthofhollow circular structural concrete cross-sections compared to the methods used in EN 1992-1-1:2004
and fib Model Code 2010. This statement is based on the experimental testing of 45 specimens®. However, this
model still needs to be extended to other types of cross-sections and to the torsion design problem.
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Several subjects of discussion remain concerningtorsion in structural concrete. Thefirst topic is the capacity of the
members resisting loads by warping torsion. All five codes listed here assume that the external torsional moment
will be resisted by circulatory torsion. Nevertheless, box-, T-, or I-shaped concrete beams tend to produce
differential shear stresses on their cross-sectional planes toresist torsion, due to the characteristic restriction of their
connected flanges and webs. None of the codes give clear provisions on how to deal with members resisting
torsional moments by warping torsion. A second importantsubject is the torsioneffect on slabs. Pointloads on slabs
close to the edges produce large torsional moments®. None of the codes presented in this document give clear
provisions on how to address the effect of torsion on the shear capacity of concrete slabs at the edges.

Onetopic of recent researchis the torsional behavior of structural concrete members under different physical and
geometric conditions. Examples include the analysis of limitations of torsional reinforcement to prevent a brittle
failure®. Based on the experiments of 15 beams with the maximum torsional reinforcement ratio as the main
parameter and 99 existing tests obtained fromthe literature, it was observed that the ACI 318-19 and JSCE-07*
codes predicted the torsion failure with good accuracy when having the maximum ratio of torsional reinforcement.
On the other hand, EC2-04 and CSA-14 building codes overestimated the limit between a brittle and ductile failure.
Anotherresearch topic is the torsional performance of beams subjectedto pure torsion with low levels of torsional
reinforcement™. In this research it was found that high strength concrete beams (HSC) with a total torsional
reinforcement ratio of less than 0.95% presented a brittle failure. On the other hand, HSC and normal strength
concrete (NSC) specimens with a total torsional reinforcement larger than 0.95% and 0.87%, respectively, showed a
ductile torsional failure. Moreover, an experimental study*? on the comparison of HSC an NSC beams under torsion
with the same amount of reinforcement concluded that HSC elements provided a higher torsional strength than NSC.
The uncrackedtorsional stiffness and the cracked stiffness of HSC beams was approximately 2 times and 1.4 times,
respectively, comparedto the NSCelements. Another example is the torsional behavior of concrete elements using
CTR (continuous transversereinforcement)*. In summary, it was demonstrated that the pure torsional resistance
using CTRsometimes exceeds the strength obtained with conventional stirrups. Nevertheless, if the cracks due to
torsion have the same directionas the CTR, the strength is decreased. Experimental tests of the torsional behavior of
high-strength reinforced concrete under-reinforced beams showed that torsional strength of these elements is
independent of the concrete strength as long as the beam is under-reinforced*.

A secondtopic of research is the use of innovative materials. An example includes beams with glass fiber-reinforced
polymer (GFRP) bars and stirrups. The advantage of such barsis the superior performance froma durability pointof
view. These bars cost less than carbon fiber-reinforced polymer bars and offera different solution to the corrosion
problem. Investigation on this topic concluded that the GFRP-reinforced concrete beams under torsion exhibited a
similar strengthand cracking behavior compared to the counterpart steel reinforced concrete (RC) beams*. Waste
materials like oil palmshellhave beentested as a substitute to granite aggregateto produce a lightweight concrete.
Experimental analysis* on the torsional behavior of oil palm shell concrete (OPSC) compared to normal weight
concretes (NWC) demonstrated that the OPSC had a 280% larger twist at failure than the NWC and a better
torsional ductility. Another application is theuse of steel fiber reinforced concrete (SFRC). Abundant research has
been carried out on rectangular SFRC beams "%, However, most beams in real structures have T- or L-shaped
cross-sections. Therefore, it is important to understand how steel fibers influence the torsional behavior of non-
rectangular beams. Experimental investigation® on this topic showed that steel fibers can increase the torsional
strengthafter cracking and are very effectivein preventing a sudden brittle failure in flanged beams that presented a
steel fiber volume of 3%.

A third topic of current research ontorsionis the strengthening of structures thatare subjected to torsional moments.
The various types of wrapping using carbon fiber-reinforced polymer (CFRP) fabrics* showed that the full-
wrapping technique enhances thetorsional behavior.However its practical application is limited because the access
to the sides ofthe beamis restricted. On the other side, the U-jacket technique is the most achievable and practical
wrapping.Nevertheless, it showed less effectiveness in strengthening for torsion compared to the extended U-jacket
and the fullwrapping technique. An analytical model®® which uses a smeared crack analysis for plain concrete in
torsion forthe pre-cracking behavioranda softened truss theory for the post-cracking performance has shown good
prediction of the torsional capacity of beams retrofitted with CFRP. CFRP sheets are also used to repair damaged
RC elements under torsion. After tests were made®, it was shown that thetorsional capacity of columns was larger
than the original torsional strength, after they were repaired with CFRP
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SUMMARY OF CONCLUSIONS

This study summarizes the provisions for torsion design in structural concrete. Allthe required provisions given in
ACI 318-19, CSA-A23.3-04, AASHTO-LRFD-17, EN 1992-1-1:2004, and the fib Model Code 2010 are listed. A
short literature review on the early stages oftorsion research plus brief descriptions of the mechanical models used
to describe the torsional behavior are given. The two major philosophies, 1) space truss analogy and 2) skew-
bending theory are summarized. All the codes listed here use a 3D truss analogy. The ACI 318-19, EN 1992-1-
1:2004 and Level | of Approximation ofthe fib Model Code 2010do not consider the contribution of the concreteto
the torsional strength. On the contrary, the CSA-A23.3-04, AASHTO-LRFD-17 and Levels Il and Il of
approximation in the fibo Model Code 2010 include the concrete contribution in the determination of the torsional
capacity.

Furthermore, topics outside thescope of current provisions suchas howto design structural concrete elements under
warping torsion or the effectoftorsion onthe shear capacity of concrete slabs at the edges are discussed. Finally, an
overview of recent topics in torsion research was presented.

LIST OF NOTATIONS

b = overall width of the cross-section, or the actual flange width in a T-or L-shaped beam,

b, = effective width of the shear flow path taken as the minimum thickness of the exterior webs or flanges
comprising the closed boxsection or flanges comprising the closed boxsection,

by = mean width of the tension zone; fora T-beam with the flange in compression, only the width of the we
is considered for calculating the value of by,

bimc = width of the tension zone,

b, =web width adjusted for the presence of ducts,

b, =web width or diameter of a circular section,

bwen = web width of the cross-section for T, | or L beams,

c = distance between the edge of the member and the centroid of the longitudinal reinforcement,

d = effective depth,

ds = unit area,

ds = distance from extreme compression fiber to the centroid of the non-prestressed tensile reinforcement
measured along the centerline of the web,

dy = diameter of the circle that can be inscribed at the narrowest part of the cross-section,

d, = effective shear depth,

dymc =incase of a support that penetrates the beam or slab, it is the distance fromthe centroid of the
reinforcement layers to the supported area,

€p = eccentricity of prestressing,

1 = specified compressive strength of concrete,

fed =the design value of concrete compressive strength,

fex = characteristic compressive cylinder strength of concrete at 28 days,

fop = average compressive stress in concrete due to the effective prestress force only, after allowance for all
prestress losses,

fetets = mean value ofthe tensile strength of concrete, effective at the time when the cracks may first be expected
to occur,

fetm = mean value of axial tensile strength of concrete,

foc = compressive stress in concrete, after allowance for all prestress losses, at centroid of cross-section

resisting externally applied loads or at junction of web and flange where the centroid lies within the
flange. In a compositemember, it is the resultantcompressive stress at centroid of composite section, or
at junction of web and flange where the centroid lies within the flange, due to both prestress and
moments resisted by precast member acting alone,

feans = unfactored compressivestress in concrete after prestress losses have occurred either at the centroid of the
cross-sectionresisting transient loads or at the junction ofthe web and flange where the centroid lies in

the flange,
foe = effective stress in prestressing tendons after allowance for al prestress losses,
foo = stress in prestressing tendons when the strain in the surrounding concrete is zero,

foaas = parametertaken as modulus of elasticity of prestressing steel multiplied by the locked-in difference in
strain between the prestressing steel and the surrounding concrete,

fos = average stress in prestressing steel at the time for which the nominal resistance of member is required

fou = specified tensile strength of prestressing reinforcement,
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fucsa = specified tensile strength of prestressing tendons,

fee = effective stress in prestressing reinforcement, after allowance for all prestress losses,

f, = specified yield strength for non-prestressed longitudinal reinforcement,

fa =design yield strength of the longitudinal reinforcement,

Tk = characteristic yield strength of reinforcement,

fit = specified yield strength of transverse reinforcement,

fywa =design yield strength of the transverse reinforcement,

h =overall height of the member,

h* =overall height of the cross-section to calculate the minimum longitudinal reinforcement to control
excessive cracking, within the tensile zone,

k = coefficient which accounts for the effect of non-uniform self-equilibrating stresses,

K¢ = coefficient which accounts the stress distribution within the section immediately prior to cracking
and of the change of the lever arm,

K = strength reduction factor,

k, = factor which considers the influence of the state of strain in the web,

ky = coefficient that considers the effects of axial forces on the stress distribution,

N = coefficient needed to compute K,

Pe = outside perimeter of the cross-section,

Pep = outside perimeter of concrete cross-section,

P = perimeter of the centerline of outermost closed transverse torsion reinforcement,

Prans = perimeter of the centerline of the closed transverse torsion reinforcement for solid members, or the
perimeter of the centroid of the transverse torsion reinforcement in the exterior webs and flanges for
hollow members,

S = center-to-center spacing of stirrups,

Sw =spacing of the stirrups for torsion,

t = wall thickness at the location where the stresses are being checked,

ter = effective wall thickness,

u = perimeter of the cross-section,

Uy = perimeter of the A, area,

z = distancealongthe centerline, between the intersection points of the adjacent walls of the equivalent thin -
walled tube, usually taken as the height of the element,

Zme = effective shear depth,

Z, = distance between the tendon axes and the compressive chord,

Zs = distance between the centerline of the compressive chord and the reinforcement,

A = total area of the cross-section, including inner hollow areas,

A = area enclosed by outside perimeter of concrete cross section, including area holes,

Acp = area enclosed by the outside perimeter of concrete cross-section,

At =area of concrete within tensile zone before the formation of the first crack,

Acen  =cross-sectional area of the concrete,

A, = gross area of the concrete cross-section,

Ay = area enclosed by the centerlines of the connecting walls, including inner hollow areas,

A = required area of longitudinal reinforcement to resist torsion,

Aimin = minimum area of longitudinal reinforcement to resist torsion,

An = area enclosed by the shear forces,

A, = area enclosed by the shear flow path including area of holes,

Adh = areaenclosedby centerline ofthe outermost closed transverse torsional reinforcement, including area
holes,

A, = area of tendons on the flexural tension side of the member,

A = area of prestressed longitudinal tension reinforcement,

Ansans = area of prestressing steel on the flexural tension side of the member,
A,mc  =areaof prestressing reinforcement,

A = area of non-prestressed longitudinal tension reinforcement,

Ay = area of longitudinal reinforcement bars required for torsion,

Agmin  =minimum area of longitudinal reinforcement bars required for torsion,
Ay = area of longitudinal reinforcement for torsion,

Ay =area of transverse torsion reinforcement,
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Aswmin = Mminimum area of transverse torsion reinforcement,

A =area of one leg of a closed stirrup resisting torsion,

Aimin - =minimum area of transverse reinforcement for torsion,

A, = required area of shear reinforcement. Required area of two legs of a closed stirrup for shear,

Amin = minimum transverse reinforcement for shear force,

Eo = modulus of elasticity of prestressing tendons,

E, = modulus of elasticity of non-prestressed reinforcement,

Fer = absolute value of the tensile force within the flange immediately prior to cracking due to the cracking
moment calculated with f; e,

Fo = the prestressing force,

G =shear modulus,

K = the effective length factor for compression members,

M; =moment due to factored loads,

Mpina  =secondary moment caused by prestressing,

M, = factored applied moment,

Meg =design bending moment,

Meg  =bending moment without the effect of prestressing,

Neg = axial force at the serviceability limit state acting on the part of the cross-section under consideration

(compressive force positive), resulting fromthe characteristic values of prestress and axial forces under
the relevant load combinations,
Neamc = applied axial force, positive for tension and negative for compression,

New  =normal force without the effect of prestressing,

N; = factored axial load normalto the cross-section. Taken as positive for tension, negative for compression
Ny = factored axial force, taken as negative for tension and positive for compression,

Ter = cracking torsional moment,

T = factored torsional moment,

T, =nominal torsional resistance,

T, = factored torsional resistance,

T =threshold torsional moment,

Ty = applied factored torsional moment,

Teq = applied torsional moment,

Trd = factored torsional strength,

Tramax = upper limit of the torsion strength,

Ve =shear strength provided by concrete,

V¢ = factored shear force,

V, = component in the direction of the applied shear of the effective prestressing force factored by ¢y,
Voans = component of prestressing force in the direction of the shear force,

Vs =shear resistance provided by transverse reinforcement,

V, = factored shear force,

\ = applied shear force,

Vramax = Mmaximum shear resistance,

o = angle between the transverse reinforcement and the longitudinal axis,

Ocw = coefficient that takes into account the state of the stress in the compression chord,

Ve = partial safety factor for concrete,

Op =tendon angle,

& =net longitudinal tensile strain in the section at the centroid of the tension reinforcement,
&y = longitudinal strain at mid-depth of the member due to factored loads,

emc = longitudinal strain at mid-depth of the effective shear depth,

& = coefficient required to compute k.,

0 = angle between the struts and the tension chord,

Oeneck = actual angle of the strut inclination,

Ocheckmc = actual angle of the compression field,

Onin =minimum value of the compressive stress field inclination,

o, =angular rotation,

Opns = angle of inclination of diagonal compressive stresses,

Ocsa = angle of inclination of diagonal compressive stresses, measured fromthe longitudinal axis of the member,
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Oen = assumed angle of the strut inclination,

Buc =assumed angle of the compression field,

A = modification factor which accounts for the properties of lightweight concrete,
Anas = concrete density modification factor,

v strength reduction factor for cracked concrete in shear,
Vi = strength reduction factor for cracked concrete in shear when the design yield strength of

the transverse reinforcement, is below 80% of the characteristic yield strength of reinforcement,
Vy =shear stress,

Dw = transverse reinforcement ratio,

Pumin = Minimum transverse reinforcement ratio,

Ocp = mean compressive stress in the concrete, due to the design axial force or prestressing,

0s = absolute value of the maximum stress permitted in the reinforcement immediately after formation of the
crack,

T =tangential shear forces,

T =torsional shear stress,

) = resistance factor,

Pe =resistance factor for concrete,

Do = resistance factor for prestressing tendons,

Ps = resistance factor for non-prestressed reinforcement,

A = difference between the position of the applied axial load and the centroid of the cross-section,
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