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Summary
In the transition from fossil fuels to renewable energy sources, wind energy is ex
pected to play a vital role. To make wind energy competitive with fossil fuelbased
energy sources, it is essential to reduce the socalled Levelized Cost of Energy
(LCoE). This performance indicator takes into account both the costs of construc
tion and maintenance of a power plant, and the energy generated by this plant
over its entire lifetime. A straightforward way to reduce the LCoE of wind turbines
is by grouping them together to create wind farms, as this reduces construction and
maintenance costs. This practice does have a downside: in wind farms, turbines
interact with each other through their wakes, which has a negative effect on perfor
mance. As a result, optimizing wind farm performance in terms of optimizing LCoE
is not as easy as finding the optimum for each individual turbine. Wind farm control
is the field of research that investigates the optimization of wind farms as a whole.
Wind farm control can improve the LCoE in two different ways: by 1) increasing
power generation, and 2) decreasing Damage Equivalent Loads (DELs). These two
objectives conflict, as maximizing one usually results in a decreased performance
of the other.

The research objective of this dissertation is to develop and validate novel pitch
control technologies that further decrease the levelized cost of wind energy. A wind
turbine has a number of settings that can be controlled. The angle that the blades
of a turbine make with respect to the wind is one of these settings. This angle
is referred to as the blade pitch angle. In this dissertation, existing pitch control
strategies are validated by executing scaled wind tunnel experiments. These exper
iments bring the technologies one step closer to the application in commercial wind
farms. Furthermore, a novel pitch technology is introduced that creates an addi
tional control degree of freedom to the optimization of wind farms. The results that
are obtained with respect to these technologies are described here by answering
the dissertation subquestions.

First, Individual Pitch Control (IPC) technologies that aim to mitigate turbine
loads are compared in wind tunnel experiments with realistic, reproducible wind
conditions. This is accomplished by fitting an active grid to the open jet wind tun
nel at the University of Oldenburg. The active grid is fitted with 80 servomotors that
can rotate flaps to disturb the wind as desired. With this approach, wind profiles as
measured in the field can be mimicked and reproduced to test control algorithms.
Two different control strategies have been evaluated: Conventional Individual Pitch
Control (CIPC) and datadriven Subspace Predictive Repetitive Control (SPRC). CIPC
is a wellestablished load mitigation technology that has been validated in field ex
periments. SPRC on the other hand has only been evaluated in simulations and
wind tunnel experiments with a uniform wind profile. In these experiments, dif
ferent wind speeds and turbulent flow conditions are evaluated, and, as a result,
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this technology is brought one step closer to implementation on commercial wind
farms. The performance of SPRC is shown to be better than achieved with CIPC. On
average, a slightly higher blade load reduction is achieved with less the pitch action.
This indicates that the increased strain on the pitch bearings, which is considered
a major drawback of IPC, is also lower with SPRC. These experiments therefore
display the potential of SPRC compared to current stateoftheart technologies.

The second pitch control strategy that is investigated in this dissertation is Dy
namic Induction Control (DIC) with periodic excitation. Unlike SPRC, this strategy
aims to increase wind farm power generation. This technology shows great promise
in simulation studies, but has not been assessed in an experimental environment
yet. Scaled wind tunnel experiments have been performed in the wind tunnel at
the Politecnico di Milano. In these experiments, three G1 turbine models are placed
in the tunnel, aligned with the wind direction. Periodic DIC is applied to the first
turbine to induce wake mixing such that the downstream turbines can increase their
power generation. The periodic excitation is varied in amplitude and frequency to
find the optimal settings. Compared to the baseline case where all turbines are
operated at their individual optimum, a wind farm power increase of up to 4% is
recorded. The stateoftheart alternatives to DIC, static induction and yaw control,
are also tested in order to enable a comparison. Static induction is found to be less
effective, losing power with respect to the baseline case, while yaw control yields
a similar power gain as DIC. These scaled wind tunnel experiments therefore show
that DIC is a viable alternative to existing wind farm power maximization control
technologies.

One major drawback of DIC is that the periodic variations in the pitch angles
lead to increased dynamic loads on the turbine blades and tower. These loads can
lead to more frequent damage to the turbine, which could negate the benefit of
increased power generation. The effect that DIC has on the loads of a turbine are
therefore investigated by means of aeroelastic simulations with and without DIC.
The Damage Equivalent Load (DEL) of different turbine components is evaluated in
both cases, to assess the effect of DIC on the lifetime. Due to the low frequency of
excitation, it is found that the blade and hub DELs increase only slightly. The most
significant load increment is observed at the tower. Overall, the increase in terms
of percentage is similar to the gain in power, with only the tower experiencing a
significantly higher DEL. This dissertation therefore confirms the potential of DIC
as a possible wind farm power maximization technology.

With the potential of DIC validated in wind tunnel experiments, the question is
raised whether there exist other dynamic control strategies that are perhaps even
more effective. In the search for such a technology, this dissertation proposes a
novel pitch control strategy which intends to increase wind farm power generation.
This strategy uses the Individual Pitch Control (IPC) capabilities of modern wind
turbines to dynamically manipulate the location of the wake. This dynamic manipu
lation leads to increased wake mixing similar to DIC, but without the large variations
on the turbine thrust force. As the proposed technology results in a helical wake, it
is called the helix approach. A proof of concept of this approach is given by means
of highfidelity flow simulations. The helix approach is applied to the upstream unit
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of a twoturbine wind farm, and the power generation and thrust force of both tur
bines are analyzed. These simulations indicate that the helix approach is a more
effective power maximization technology than DIC. The power production of the
twoturbine wind farm is increased by up to 7.5%, whereas DIC achieves a 4.6%
increase in these simulations. Furthermore, the variations of the thrust force on
both turbines is reduced significantly with respect to DIC, indicating that the helix
approach results in lower tower loads.

The contribution of this dissertation comprises the advancement of two existing
pitch control strategies for wind turbines in wind farms, and the introduction of a
third, novel technology. The next crucial step in verifying the effectiveness of these
approaches is taken by validating results from the literature in scaled wind tunnel
experiments. The results from these experiments solidify the conclusion that these
technologies can reduce the levelized cost of wind energy when applied to com
mercial wind farms. Furthermore, the proposed helix approach introduces a new
degree of freedom to be used in wind farm control. This result is therefore not only
a relevant addition to existing literature, but also opens up countless possibilities
for additional research.





Samenvatting
Windenergie speelt een cruciale rol in de transitie van fossiele brandstoffen naar
duurzame alternatieven. Om windenergie competitief te maken met bestaande
energiebronnen, is het essentieel om de zogenaamde Levelized Cost of Energy
(LCoE), ofwel genivelleerde energiekosten, terug te brengen. Deze graadmeter
staat voor de verhouding van de investeringen voor de aanleg en het onderhoud
van turbines over de gehele levensduur ten opzichte van de opgewekte energie.
Een voor de hand liggende manier om de LCoE terug te dringen is door turbines bij
elkaar te plaatsen in windparken. Derhalve wordt het overgrote deel van de wind
energie opgewekt in zulke parken. Hier zijn echter ook nadelen aan verbonden: in
windparken ontstaat interactie tussen verschillende turbines, wat de prestaties van
turbines negatief beïnvloedt. Het optimaal laten functioneren van een windpark is
daarom niet zo simpel als het vinden van de optima van de invididuele turbines.
Windparkregeling is het onderzoeksgebied dat zich richt op de optimalisatie van
een windpark als geheel. Dit kan de LCoE op twee verschillende manieren verla
gen: door 1) het opgewekte vermogen te doen toenemen, en 2) de schade als
gevolg van de belastingen te verminderen. Deze twee doelstellingen zijn tegenstrij
dig, aangezien het maximalizeren van de één vaak leidt tot verminderde prestaties
bij de ander.

Het onderzoeksdoel van dit proefschrift is om nieuwe bladhoeksturingstechnie
ken te ontwikkelen en valideren die de genivelleerde kosten van windenergie verla
gen. Een windturbine heeft een aantal instellingen die dit kunnen beïnvloeden, waar
de hoek van elke wiek ten opzichte van de wind, ook wel de bladhoek genoemd, er
één van is. In dit proefschrift worden bestaande bladhoekaanstuurtechnieken ge
valideerd door windtunnelexperimenten uit te voeren. Deze experimenten brengen
de technieken een stap dichterbij de toepassing in commerciële windparken. Daar
naast wordt een nieuwe bladhoekaanstuurtechniek geïntroduceerd die een extra
vrijheidsgraad toevoegt aan het optimalisatieprobleem van windparken. De resul
taten met betrekking tot deze technieken wordt hier beschreven door de deelvragen
van dit proefschrift te beantwoorden.

Ten eerste zijn verschillende technieken die Individuele Bladhoekaansturing (IBA)
gebruiken om bladbelastingen te verminderen vergeleken in windtunnelexperimen
ten met realistische, reproduceerbare condities. Dit laatste is bewerkstelligd door
middel van een actief raster aangebracht op de open windtunnel van de Univer
siteit van Oldenburg. Het actieve raster gebruikt 80 servomotoren om kleppen te
roteren, die zo de wind naar gelang kunnen verstoren. Op deze manier kunnen
gemeten windprofielen worden nagebootst en gereproduceerd om regeltechnische
algoritmes te testen. Twee verschillende technieken zijn onderzocht: conventionële
individuele bladhoekaansturing (CIBA) en een datagestuurde techniek genaamd
Subspace Predictive Repetitive Control (SPRC). CIBA is een gevestigde regeltech
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niek voor het verlichten van bladbelastingen die reeds gevalideerd is in veldexpe
rimenten. SPRC daarentegen is nog enkel onderzocht in simulaties en windtunnel
experimenten met een uniform windprofiel. Verschillende windsnelheden en turbu
lentieprofielen zijn onderzocht, en op deze manier wordt deze technologie een stap
dichterbij implementatie op commerciële windturbines gebracht. SPRC overtreft de
prestaties van CIBA in deze experimenten. Gemiddeld genomen worden de bladbe
lastingen iets meer gereduceerd met minder bladhoekbediening. Dit laatste is een
indicatie dat de toename van de belasting op de lagers van de wieken, wat als het
belangrijkste nadeel van IBA wordt gezien, lager zijn met SPRC. Deze experimenten
tonen zodoende het potentieel van SPRC vergeleken met de huidige stand van de
techniek op het gebied van IBA.

De tweede bladhoekregeltechniek die onderzocht wordt in dit proefschrift is dy
namische inductieaansturing (DIA) met een periodieke excitatie. In tegenstelling
tot SPRC wordt deze strategie gebruikt om het gegenereerde vermogen van wind
parken te doen toenemen. Deze techniek heeft veelbelovende resultaten behaald
in simulatiestudies, maar is nog nooit getest in een experimentele omgeving. Ge
schaalde experimenten zijn uitgevoerd in de windtunnel op de Politecnico di Milano
waarbij drie G1 turbinemodellen in de tunnel zijn geplaatst, uitgelijnd met de wind
richting. Periodieke DIA is toegepast op de voorste turbine om de menging van het
zog te bevorderen opdat de achterste turbines meer vermogen kunnen genereren.
De amplitude en frequentie van de periodieke excitatie is gevarieerd om de optimale
instellingen te vinden. In vergelijking met de standaardcasus waar alle turbines op
hun individuele optimum opereren is een winst in vermogen van 4% geregistreerd.
De gebruikelijke alternatieven van DIA, statische inductie en gieraansturing, zijn te
vens getest om als vergelijking te dienen. Statische inductie is aanmerkelijk minder
effectief, en verliest zelfs vermogen ten opzichte van de standaardcasus. Gieraan
sturing levert een vergelijkbare toename in vermogen op als DIA. Deze windtunnel
experimenten tonen daarom aan dat DIA een rendabel alternatief is voor bestaande
technieken die het gegenereerde vermogen van windparken maximaliseren.

Een belangrijk nadeel van DIA is het feit dat de periodieke variaties in de blad
hoeken verhoogde dynamische belastingen op de wieken en de toren tot gevolg
hebben. Deze belastingen kunnen leiden tot het vaker voorkomen van schade aan
de turbine, wat het profijt van het verhoogde vermogen teniet zou kunnen doen.
Daarom zijn aeroelastische simulaties met en zonder DIA uitgevoerd om te bepalen
welke invloed DIA heeft op de levensduur van windturbines. De schadeequivalente
belastingen (SEB’s) van verschillende turbinecomponenten is bestudeerd in beide
cases om te beoordelen wat het effect van DIA is op de levensduur van een tur
bine. Vanwege de lage excitatiefrequentie blijken de SEB’s van de wieken en de naaf
slechts licht toe te nemen. Enkel de toren blijkt een significante belastingtoename
te ervaren. De toename is over het geheel genomen van dezelfde orde grootte als
de toename in vermogen, met uitzondering van de toren. Dit proefschrift beves
tigt zodoende het potentieel van DIA als een mogelijke technologie voor het doen
toenemen van het vermogen van windparken.

Nu het potentieel van DIA gevalideerd is in windtunnelexperimenten, rijst de
vraag of er ook andere dynamische regelstrategiën bestaan die wellicht zelfs nog
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effectiever zijn. In de zoektocht naar een dergelijke techniek draagt dit proefschrift
een nieuwe bladhoekaanstuurtechniek aan die als doel heeft het vermogen van
windparken te doen toenemen. Deze strategie gebruikt de IBAcapaciteiten van
moderne windturbines om de locatie van het zog dynamisch te sturen. Dit leidt
tot verhoogde menging in het zog net zoals met DIA, maar dan zonder de grote
variaties in de stuwkracht op de turbine. Aangezien deze techniek leidt tot een
schroefvormig zog, is het de helixaanpak genoemd. De werking van dit concept is
aangetoond door simulaties met hoge betrouwbaarheid uit te voeren. De helixaan
pak is toegepast op de voorste turbine twee met de wind uitgelijnde turbines en
het vermogen en de stuwkracht van beide turbines is geanalyseerd. Deze simulaties
duiden aan dat de helixaanpak effectiever is in het maximaliseren van vermogen
dan DIA. Het vermogen van dit park bestaande uit twee windturbines neemt toe
met 7.5%, terwijl DIA een toename van 4.6% behaald in deze simulaties. Boven
dien zijn de variaties van de stuwkracht op beide turbines significant lager dan met
DIA, wat aanduidt dat de helixaanpak leidt tot lagere torenbelastingen.

De bijdrage van dit proefschrift is zodoende dat twee bestaande bladhoekregel
technieken vooruitgebracht zijn, terwijl een derde, nieuwe techniek geïntroduceerd
wordt. De volgende cruciale stap in de verificatie van deze technieken is bewerk
stelligd door de resultaten vanuit de literatuur te valideren met geschaalde wind
tunnelexperimenten. De resultaten van deze experimenten versterken de conclusie
dat deze technieken de genivelleerde kosten van windenergie kunnen verbeteren
wanneer ze worden toegepast op commerciële windparken. Bovendien introduceert
de voorgestelde helixaanpak een nieuwe vrijheidsgraad die gebruikt kan worden in
windparkregelingen. Dit resultaat is daarom niet alleen een relevante toevoeging
tot de bestaande literatuur, maar opent tevens de deur voor talloze aanvullende
onderzoeken.





1
Introduction

A mind needs books like a sword needs a whetstone,
if it is to keep its edge.

Tyrion Lannister,
on the importance of reading.

This opening chapter presents an introduction into the world of wind energy
research through the eyes of a control engineer. The relevance of this scien
tific field is illustrated, and a brief overview of the state of the art is given.
Taking this as a starting point, ongoing challenges can be extracted that this
dissertation strives to tackle. The contributions of this dissertation can be
summarized by its objective: to develop and validate novel pitch control tech
nologies that further decrease the levelized cost of wind energy.





1.1. Wind energy in the Netherlands
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3

1.1. Wind energy in the Netherlands

D aily news in the year 2020 was dominated by the outbreak of COVID19.
However catastrophic, the worldwide pandemic also had a silver lining from
an environmental point of view. As countries went into lockdown to prevent

the spread of the coronavirus, factories were shut down and international traffic
came to a standstill. Subsequently, CO2emissions were temporarily reduced by an
estimated 17% worldwide (Le Quéré et al., 2020) and air pollution was significantly
decreased (Berman and Ebisu, 2020). In some regions, the improvement in air
quality might even result in a health benefit that outweighs the deaths attributed
directly to a COVID19 infection (Chen et al., 2020). These benefits are a side
effect of the lockdown measures taken for entirely different reasons and cannot be
considered a longterm solution. However, they do show that drastic measures can
be effective.

Climate change is still, by the words of Sir David Attenborough, ”our greatest
threat in thousands of years” (Attenborough, 2018). Solving this threat is a chal
lenge in which renewable energy sources in general, and wind energy in particular,
play a key role (Panwar et al., 2011). According to the latest DNVGL Energy Tran
sition Outlook, renewable energy delivers over 60% of global power by 2050, with
half of that coming from wind (DNVGL, 2020). This report also predicts that wind
will be the largest contributor to the world electricity generation by that time, see
Figure 1.1. One would expect that the Netherlands are, for both historical and ge
ographical reasons, at the center of the global transition to wind as a major energy
source.

Figure 1.1: The historical and projected electricity generation by power station type. Taken and adapted
from DNVGL (2020).



1

4 1. Introduction

Historically, windmills are as Dutch as stroopwafels (a Dutch cookie) and Oran
jegekte (the nationwide euphoria that occurs when the national football team per
forms well). Engineer Jan Adriaanszoon Leeghwater famously used windmills to
drain the Beemster area around 1609, thus creating the first socalled polder, a
piece of land reclaimed from a lake. Dutch windmills would be used to reclaim
land for almost two centuries, until steamdriven pumping stations took over at the
beginning of the 19th century. The windmills at Kinderdijk are one of the most
popular Dutch tourist attractions, and were added to the list of UNESCO world her
itage sites in 1997. Ask a person who has never been in the Netherlands to draw
a (stereotypical) Dutch person, and the result will most likely be someone wearing
klompen (wooden shoes), eating kaas (cheese) in front of a molen (windmill) with
tulpen (tulips) in his hand.

A transition to wind energy would make even more sense out of geographical
motives. Partly due to the many polders in the Netherlands, over one fourth of
the land area lies below sea level – as shown in Figure 1.2. This includes most of
the densely populated area known as the Randstad, a conurbation that covers the
cities of Amsterdam, Rotterdam, The Hague and Utrecht, and almost everything in

Figure 1.2: A map of the Netherlands showing land height with respect to the sea. All blue area’s are
below sea level. Taken from Actueel Hoogtebestand Nederland (AHN).
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Figure 1.3: The share of energy coming from renewable sources for all EU member states, with the
Netherlands in last place at 7.4%. This is 6.6% below the 2020 target of 14%. Data obtained from
Eurostat (2020).

between (including Delft). Over 8 million people live in the Randstad (Centraal Bu
reau van de Statistiek, 2019), approximately half of the entire Dutch population. A
relatively small increase in sea level associated with global warming could therefore
have catastrophic consequences for the Netherlands. All the more reason for the
Netherlands to prioritize a timely energy transition.

Despite the two reasons elaborated above, the opposite is true. As shown in
Figure 1.3, the Netherlands is currently last in the European Union when it comes
to implementing renewable energy sources (Eurostat, 2020). The share of wind
energy in the total Dutch electricity usage is currently below 10% (Centraal Bureau
van de Statistiek, 2019), whereas for example Denmark has a wind energy share
of 47% (Wind Denmark, 2020).

These are troubling statistics, but the Netherlands are planning to make up
for lost ground. In 2019, the Dutch government pledged in the Klimaatakkoord
(Rijksoverheid) that by 2030, offshore wind energy should account for 40% of the
national electricity demand. This is an increase by a factor 10 with respect to the
current situation. The government aims to achieve this by building six large wind
farms in the North Sea, as shown in Figure 1.4. The year 2020 saw the connection
of the first turbines of the 731 MW Borselle III wind farm to the electricity network.

Clearly, further investments into offshore wind farms are expected to be made
in the upcoming decade. To give a perspective: the Prinses Amalia wind farm
shown in Figure 1.4, small in comparison to the newly planned wind farms, cost
an estimated 390 million euros. Although future projects are expected to be more
cost efficient, the scale of these plans leads to investments into billions of euros.

Clearly, the transition towards sustainable energy sources is a worldwide chal
lenge, not just a Dutch one. However, the situation in the Netherlands illustrates
how urgent the problem is, and the role that wind energy plays in solving it. As
illustrated in Figure 1.1, wind energy is expected to supply roughly one third of
the global electricity demand by the year 2050. The following section explains why
wind farms are crucial in achieving this.
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Figure 1.4: Dutch plans for wind farms in the North Sea, as described by Rijksoverheid (2020). The
dark green wind farms are already in operation, while lighter green area’s are planned.
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1.2. Wind turbines and wind farms

T he expectations given in DNVGL (2020) evidently show that wind farms
play a major role in the global energy transition in general and, as stated
in Rijksoverheid (2019), for the Dutch energy transition in particular. This

is where wind farm control comes into play. Before going into detail, the basic
concepts of a wind turbine, as well as the complications associated with grouping
turbines together, are briefly explained.

A wind turbine can be defined as a machine that converts the kinetic energy of
wind into electricity. The vast majority of wind energy worldwide is generated by
socalled horizontalaxis wind turbines. These turbines have a number of blades
(usually 2 or 3) that rotate around a horizontal axis. Although also vertical axis
wind turbines are still an active field of research, this thesis only considers this type
of wind turbine.

To give an idea of how such a turbine works, Figure 1.5 shows a simplified
representation of the streamtube around a turbine. The turbine is represented
here as a rotor disk that exerts a force on the flow, resulting in a streamtube that
expands. As the turbine extracts energy from the wind, the velocity of the flow
behind the rotor disk is lower than in front of the rotor disk.

In 1919, Betz showed that the absolute limit of the steady state energy extrac
tion ratio from a wind stream is 16/27, approximately 59%. Modern wind turbines
come close to reaching this Betz limit. Such optimal energy extraction results in a
velocity behind the turbine that is 1/3 of the velocity in front of the turbine. This
area of lower wind speed is generally called the wake of a turbine. Not only is the
kinetic energy lower in a wake, but the turbulence in the wind is also higher.

Figure 1.5: A schematic representation of the flow of the wind around a turbine, represented here as a
rotor disk. The graph below shows the approximate velocity in the streamtube as a function of distance.
Close behind the turbine, the velocity is at its lowest, after which it slowly converges back to the inflow
wind speed due to interaction with the freestream flow around the streamtube.
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As shown in Figure 1.5, the speed in the wake slowly increases again as the
distance to the turbine increases. This process is called wake recovery and is caused
by the interaction between the flow in the rotor streamtube and the surrounding air
flow. Around the streamtube, the wind has not been slowed down by the turbine,
resulting in mixing between the lowvelocity flow in the streamtube and the high
velocity flow around it. Therefore, at a large enough distance behind the turbine,
the velocity is recovered to the freestream velocity 𝑈∞. Usually, this distance is
(much) larger than the distance between turbines in a wind farm, depending on
the wind direction.

In wind farms, turbines are placed together. This methodology has a number of
(mostly economically motivated) advantages, see, e.g., Boersma et al. (2017):

• The amount of land or sea required for generating a certain amount of energy
is reduced;

• Deployment and maintenance costs are reduced;

• Connection to the power grid is easier and cheaper.

There are however also disadvantages and challenges associated with placing
turbines together in wind farms. Most of these challenges are caused by wakes:
when turbines are located close to each other, downstream machines can be af
fected by the wake of upstream turbines. These downstream machines not only
have lower power generation due to the reduced wind speed, but also experience
higher loads because of the increased turbulence. It is this interaction that moti
vates wind farm control: without wake interaction, individual turbine control usually

Figure 1.6: A famous photograph by Christian Steiness of the Horns Rev wind farm in Denmark, which
clearly shows the wakes behind turbines. The downstream rows of turbines experiences lower wind
speeds and higher turbulence intensities as a result of the operation of the upstream turbines.
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suffices. It is for this reason exactly that Figure 1.6 is part of almost every presen
tation involving wind farm control. It shows a wind farm in Denmark where, due to
unique weather conditions, the interaction between turbines is plainly visible.

When all turbines in a wind farm experience the freestream flow, the control
problem is relatively simple. In that case, operating all turbines at their individ
ual optimum also leads to the best wind farm performance. However, if there are
turbines located in the wake of other turbines, solving the individual turbine con
trol problems might no longer lead to the overall optimal performance (Johnson
and Thomas, 2009). This is where wind farm control comes into play. In wind
farm control, some turbines (usually the ones located upstream) are operated at
suboptimal individual conditions such that downstream turbines can increase their
performance. The goal of this approach is always to increase the performance of
the wind farm as a whole. How this performance is defined, is further elaborated
in the upcoming section.

1.3. Control objectives and inputs

C ontrol engineers like to see the world as a collection of systems that they aim
to control in such a way that the system behaves as desired. To achieve this,
they use sensors to measure the state that the system is in, and actuators

to manipulate this state. The challenge of control engineers is to develop a con
trol algorithm that prescribes control signals to the actuators such that the output
of the system, usually called the plant, exhibits the desired behaviour. A typical
way control engineers visualize this is by means of a block scheme, as shown in
Figure 1.7.

In wind farm control, the desired behaviour can generally be described as min
imizing the Levelized Cost of Energy (LCoE). The LCoE takes into account all costs
associated with building and operating wind turbines in a wind farm (e.g., Ashuri
et al., 2014). As a control engineer, the LCoE can be improved in two, often con
flicting, ways:

Figure 1.7: A general representation of a control system as typically used by control engineers. In wind
farm control, the plant is the wind farm consisting of the turbines and the wind flow field. The turbines
often fulfill both the role of actuator and sensor. The desired behaviour is generally related to minimizing
the Levelized Cost of Energy (LCoE).
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1. By increasing the overall power capture of the wind farm. If a higher amount
of energy can be extracted from the wind with the same amount of costs, the
LCoE is also decreased.

2. By reducing the occurrence of damage or failures to the turbines. As damage
need to be repaired and lead to a temporarily nonoperational turbine, de
creasing the occurrence of failures decreases the LCoE. An obvious approach
to accomplish this is by minimizing the loads experienced by the turbines, as
these usually cause the failures.

Although there is research that aims at optimizing both these objectives simul
taneously, most research focuses on either load mitigating control or power maxi
mization control. Both individual objectives are therefore discussed in more detail
in Sections 1.4 and 1.5, respectively.

The flow of the wind through the farm can be considered the state of the plant.
The turbines therefore play an important dual role in wind farm control: they func
tion both as sensor and as actuator. Turbines are usually equipped with all kinds
of sensors, such as a wind vane, an anemometer and load sensors. Furthermore,
the power generation of a turbine can also be considered a measurement that not
only gives information about the output of the plant, but also about the state. The
turbine behaves as an actuator, since the control settings of the turbine affect the
wind behind the turbine (see Section 1.2). Considering that the freestream wind
flow can not be controlled, the turbines are the only way the control engineer can
influence the state of this plant.

Modern wind turbines can impact the flow of the wind in a number of different
ways. First of all, the flow field can be manipulated by controlling the angle of the
rotor disk with respect to the wind. This is called the yaw angle of a turbine. By
giving the yaw angle an offset, the wake can be steered in a desired direction, for
example away from a downstream turbine. Although this is a very interesting and
popular research field (see, e.g., Doekemeijer (2020)), it is not the focus of this
thesis.

Secondly, the energy extraction of a turbine from the flow can be manipulated:
a lower energy extraction means higher wind speeds in the wake. This can be
achieved by controlling either the angle of attack of the blades with respect to the
wind, called pitching, or the torque of the turbine generator. In this thesis, blade
pitch control is the main method used to change the turbine energy extraction.

The yaw angle, pitch angles and generator torque do not only influence the flow
field, but also the performance of the turbine itself. A yaw offset or a pitch angle
resulting in lower energy extraction naturally also means that the power generation
of the wind turbine in question goes down. Furthermore, pitch angles play a large
role in the loads experienced by a turbine, specifically by the blades. How these
control inputs can be used to optimize the wind farm control objectives mentioned
above, is elaborated in the following sections.
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1.4. Load mitigating control

T he most effective way to reduce turbine damage is by minimizing the fatigue
loads, as these normally cause turbine breakdown (Sutherland, 1999; Spudic
et al., 2010). For individual turbines, these fatigue loads are caused by the

rotation of the blades, leading to:

• Gravitational loads, caused by gravity: when it is moving upwards, a blade
experiences a different gravitational load than when it is moving downwards.
This results in a blade load with a frequency of once per rotation of the blade
(1𝑃).

• Aerodynamic loads, loads caused by the wind. As the wind is never uniform
over the entire rotorswept area, variations in wind speed and direction lead
to 1𝑃 loads on the blades.

• Tower shadow, loads caused by blades passing the tower. This leads to a 1𝑃
load on the blades and an 𝑛𝑃 load on the tower, where 𝑛 is the number of
blades of the turbine.

By controlling the angle of attack of a blade with respect to the wind, such
periodic loads can be mitigated. Controlling the angle of attack of a blade is called
pitching, and when each blade has a different pitch angle, this is usually named
Individual Pitch Control (IPC). IPC is a widely investigated method for mitigating
periodic loads on turbine blades, but as this leads to a pitch angle that deviates
from the steadystate optimum, the power capture of the turbine goes down slightly
(Bossanyi, 2003, 2005). This shows that the objectives of load minimization and
power maximization often conflict.

The initial research presented in Bossanyi (2003) used a relatively simple ap
proach with PIcontrollers to minimize the horizontal and vertical moments acting
on the rotor disk. This simple approach is already able to reduce loads by 20–
40%. More recently, field tests have validated this conventional IPC approach
(e.g. Bossanyi et al., 2013; van Solingen et al., 2016) and Mulders et al. (2019) has
suggested a simple adjustment to further improve load mitigation.

A different approach is proposed in Navalkar et al. (2014). The authors use
measurements of the bending moments acting on the blades to identify a linear
model, which is employed to find the optimal control input, exploiting the fact that
the blade loads exhibit repetitive behavior. As subspace identification methods are
used, the approach is called Subspace Predictive Repetitive Control (SPRC). The
approach has produced promising results in simulations (Navalkar et al., 2014) and
wind tunnel experiments with uniform flow conditions (Navalkar et al., 2015). More
over, recent analysis has shown that SPRC, unlike the conventional IPC approach,
is still effective in the case of blade faults (Liu et al., 2020). However, to further
validate this approach, experiments in realistic wind conditions would be necessary.
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1.5. Power maximization control

A s briefly mentioned in Section 1.3, the most straightforward approach to de
crease the cost of wind energy from a control engineers perspective is to
increase the power generation of existing wind farms. This is therefore a

popular research topic in wind farm control. In this section, the most promising
wind farm power maximization strategies are briefly discussed.

An easily implementable approach to wind farm control is to simply apply turbine
control to the individual turbines. This results in all turbines operating in such a
way that they maximize their own power generation. Assume now that there is no
interaction between a wake and the freestream flow around it. In other words:
the energy extracted from the wind is never recovered. This case is discussed in
detail in Rotea (2014). The following sections demonstrate that, in this case, the
turbine control strategy does not result in the optimal wind farm power generation.

1.5.1. Greedy control
Using the blade pitch angles and generator torque of a turbine (see Section 1.3),
the Axial Induction Factor (AIF) 𝑎 of a turbine can be controlled. The AIF is a
measure for the velocity reduction caused by a turbine, defined as:

𝑎 = 𝑈inf − 𝑈𝑟
𝑈𝑖𝑛𝑓

, (1.1)

where 𝑈inf is the freestream velocity and 𝑈𝑟 the rotor velocity. According to
the Betz limit, the optimal AIF is 𝑎 = 1/3. Operating turbines using the optimal AIF
is often referred to as greedy control, since this implies that each turbine greedily
extracts as much energy from the wake as possible.

In the case of no wake recovery, the wind speed in the wake can be calculated
using the AIF:

𝑈𝑤 = (1 − 2𝑎)𝑈∞, (1.2)

where 𝑈𝑤 is the wind speed in the wake, and 𝑈∞ is the wind speed in front of the
turbine.

Next, a wind farm consisting of three turbines that are perfectly aligned with
the wind, as shown in Figure 1.8, is given. Since the downstream turbines are
positioned in the wake of the upstream turbine, they experience a lower wind speed.
It is straightforward to deduce from Equation (1.2) that the wind speed in the
wake of a turbine operating at the Betz limit is 𝑈𝑤 = 𝑈∞/3. In other words, the
downstream turbine experiences a wind speed that is a factor 3 lower with respect
to the upstream turbine.

The power generation of a wind turbine is given by the equation

𝑃 = 1
2𝜌𝐴𝑈

34𝑎(1 − 𝑎)2, (1.3)

where 𝑈 is the incoming wind speed, and 𝜌 (air density) and 𝐴 (rotor disk area) are
considered to be constant. Clearly, the power scales with the wind speed cubed.
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Figure 1.8: Schematic representation of a simple wind farm consisting of three turbines, as seen from
above. The wind flows from left to right, and slows down as each turbine extracts energy from the wind.
This results in a significantly lower power generation for the downstream turbines.

Therefore, a turbine that experiences a wind speed that is a factor 3 lower has
a power generation that is a factor 33 = 27 lower. If a third turbine is located
behind this second one, its power generation is another factor 27 lower, i.e., a
factor 272 = 729 with respect to the first turbine. It can be shown that in this case,
the energy extraction of a row of 𝑁 turbines quickly converges towards a maximum
as 𝑁 increases. As 𝑁 → ∞, the energy extraction approaches

𝑃max = lim
𝑁→∞

(
𝑁

∑
𝑛=1

1
(3𝑛−1)3)𝜂B =

27
26 ⋅

16
27 =

16
26 , (1.4)

with 𝜂B = 16/27 ≈ 0.593 the Betz limit. Clearly, the maximum energy extraction
obtained from an infinitely long row of turbines, 𝑃max = 16/26 ≈ 0.615, is only
slightly higher than the energy extraction of a single turbine operating at the Betz
limit. With three turbines, the energy extraction is already at 99.99% of this limit.
Adding more turbines to this row would evidently be futile, as they would contribute
less than 0.01% to the overall power.

1.5.2. Axial induction control
In the previous section, the AIF of each turbine was set at the individual optimum of
𝑎 = 1/3. But suppose now that the axial induction factor of upstream turbine can
be lowered1. In that case, the power generation of this derated turbine would go
down, but the wind speed in the wake would increase. This strategy is called Axial
Induction Control (AIC). Can the increased velocity in the wake lead to downstream
turbines compensating for the power loss at the derated turbine? Can AIC, in other
words, lead to more effective farmwide energy capture?

To answer this question, the same case of a threeturbine wind farm with no

1In theory, the AIF can also be increased above the value of 1/3. However, this approach makes no
sense from a power maximization point of view, as both the power generation of the turbine and the
wind speed in the wake would in that case decrease with respect to the greedy optimum. The optimal
value of the AIF of each turbine therefore lies in the domain 0 ≤ 𝑎 ≤ 1/3.
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wake recovery is investigated. The control challenge is to find the set of AIFs

(𝑎1, 𝑎2, 𝑎3)

that maximizes the total power

𝑃tot = 𝑃1 + 𝑃2 + 𝑃3, (1.5)

with 𝑃𝑛, 𝑛 = 1, 2, 3, the power generation of turbine 𝑛.
Analogous with Equation (1.3), the power of each individual turbine is now given

as
𝑃𝑛 =

1
2𝜌𝐴𝑈

3
𝑛4𝑎𝑛(1 − 𝑎𝑛)2, (1.6)

where 𝑈𝑛 is the wind speed in front of turbine 𝑛. Obviously,

𝑈1 = 𝑈∞.

Using Equation (1.2), 𝑈2 and 𝑈3 can be expressed as a function of 𝑈∞ and control
inputs 𝑎1 and 𝑎2:

𝑈2 = (1 − 2𝑎1)𝑈∞
𝑈3 = (1 − 2𝑎2)𝑈2
= (1 − 2𝑎2)(1 − 2𝑎1)𝑈∞.

By substituting these expressions in Equation (1.6), the power generation of each
individual turbine can be written as

𝑃1 =
1
2𝜌𝐴𝑈

3
∞ (4𝑎1(1 − 𝑎1)2)

𝑃2 =
1
2𝜌𝐴𝑈

3
∞ ((1 − 2𝑎1)3 ⋅ 4𝑎2(1 − 𝑎2)2)

𝑃3 =
1
2𝜌𝐴𝑈

3
∞ ((1 − 2𝑎2)3 ⋅ (1 − 2𝑎1)3 ⋅ 4𝑎3(1 − 𝑎3)2) .

As expected, the power of all turbines is a function of 𝑎1, while 𝑎3 only influences
𝑃3. From the above equations, it follows that the objective given in Equation (1.5)
can be written as a function of the individual AIFs. The optimal AIF settings can
then be found recursively by determining the root of the derivative with respect to
the control input2:

(𝑎1, 𝑎2, 𝑎3) = (0.14, 0.2, 0.33).
Applying these AIFs to determine the total power shows a power extraction from
the wind of 65.3%. Considering again an infinitely long row of turbines, the limit
of power extraction goes towards 2/3 of the available energy (Rotea, 2014). This
2For a detailed derivation of the optimal AIFs for a cascade of aligned turbines in the theoretical case of
no wake recovery, the interested reader is referred to Rotea (2014).



1.5. Power maximization control

1

15

shows that, in theory, AIC can lead to a wind farm power increase of 5.1% with
respect to greedy control. This simple example therefore shows that, in specific
scenario’s, AIC is a viable option to increase wind farm power generation.

Naturally, some level of wake recovery is always present in wind farms. This
result is therefore not an accurate estimate of the potential of AIC, but more likely
an indication of the upper limit. Recent studies show that the real benefit of AIC
is much smaller, and in some cases even nonexisting (Campagnolo et al., 2016a;
Fleming et al., 2017). As a result, the focus of wind farm control is shifting towards
different power maximization strategies.

1.5.3. Wake redirection control
An alternative to axial induction control is called wake redirection control. As the
name suggests, this approach aims to manipulate the direction of the wake in
stead. Consequently, the wake of upstream turbines can be steered away from
downstream turbines, such that these can increase their power capture. Although
this thesis does not focus on wake redirection control for power maximization, a
short introduction into this subject is given in this section.

Wake redirection can be achieved in a number of different ways:

• Yawing the rotor of a turbine with respect to the wind direction, as first inves
tigated in Jiménez et al. (2010). This leads to a horizontal deflection of the
wake;

• Tilting the rotor of a turbine, as first suggested in Annoni et al. (2017);

• By means of individual pitch control, as coined in Fleming et al. (2014).

Yaw and tilt control are essentially two sides of the same coin. Both use the
principle that by placing the rotor disk under an angle with the wind, the wake
can be deflected. The most fundamental difference between these two methods
is the fact that modern turbines have yaw capabilities, but lack the tilt degreeof
freedom. As a result, wake redirection by yaw is the more heavily investigated
method in literature. This approach has seen promising results in wind tunnel
experiments (Bastankhah and PortéAgel, 2016; Campagnolo et al., 2016b,c) as
well as in recent field tests (Fleming et al., 2019, 2020; Doekemeijer et al., 2020).
Recently, this technology has also been introduced as a commercial product for
implementation in wind farms (Siemens Gamesa Renewable Energy, 2019).

The third approach, using IPC to manipulate the direction of the wake, is very
interesting from a scientific perspective, as pitching blades can be achieved more
quickly and easily than yawing a turbine. The concept of IPC wake steering is visu
alized in Figure 1.9. However elegant, the initial results showed that the achievable
deflection of the wake was limited (Fleming et al., 2014). Subsequently, wake
steering by IPC has seen very limited further investigation in literature.

1.5.4. Dynamic control
Although the methods that have been described in the previous sections are all very
different, they do have one important thing in common. Given the flow conditions,
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Figure 1.9: An illustration of how the direction of a wake can be manipulated using individual pitch
control. The color of a blade represents its induction factor. As the blades rotate, the pitch angle, and
subsequently the induction, is adjusted. In the example shown here, the induction in the right half plane
is lower than in the left half plane. Subsequently, the resulting force on the rotor plane redirects the
wake to the left.

all these strategies search for the optimal steadystate control settings that maxi
mize power generation. When this static optimum is reached, the control input, be
it the induction factor or the yaw angle of a turbine, is kept constant – assuming
of course the flow conditions do not change. But could the power generation be
further increased when timevarying signals are considered? In other words: what
if the control signals are allowed to be dynamic?

It was this exact question that was investigated in Goit and Meyers (2015). In
this paper, an advanced control algorithm was used to determine the optimal dy
namic induction of turbines in a wind farm. The result is an input signal that exhibits
large fluctuations over time, and an increase in energy capture of up to 19% is re
ported. As demonstrated in Section 1.5.2, this energy gain is much higher than the
theoretical limit of static induction. By varying the turbine input over time, mixing
can be enhanced such that downstream turbines experience a much lower wake
deficit than achievable with static control. Consequently, dynamic control strategies
are also called wake mixing strategies. Evidently, the potential of dynamic induction
in terms of power maximization is much higher than of its static counterpart.

There are of course some complications to the approach used in Goit and Meyers
(2015). First of all, the control algorithm that determines the optimal induction
factors is so complicated that the computational effort is significant. As a result,
implementation on an actual wind farm is troublesome as it would take too long to
determine the next control input. Secondly, the large spikes in the induction signal
would lead to a substantial increase of the loads on the turbines. This approach
therefore strongly conflicts with the other variable that determines the LCoE of
turbines: the occurrence of damage to the turbines.

Nonetheless, the concept of dynamic control settings is an interesting one, and is
recently seeing an increasing amount of interest. Perhaps, simpler and less invasive
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methods can balance an increased energy capture with practical applicability and
acceptable loads.

One such approach is suggested in Munters and Meyers (2018a). The authors
noticed that the induction signal of upstream turbines in earlier research (Munters
and Meyers, 2016, 2017) resembled a sine wave. Instead of any dynamic input
signal, it is suggested to restrain the induction signal to a sinusoid. This approach
kills two birds with one stone: the control problem becomes considerably easier
(only the optimal amplitude and frequency of the sine wave is to be determined)
and the control signals are smooth now (leading to lower turbine loads). Natu
rally, the potential energy gain is also lower than in the unconstrained approach.
Nonetheless, with a wind farm of 4 aligned turbines, an increase of 6% is reported
(Munters and Meyers, 2018a).

As this is a relatively new approach to the wind farm control problem, there is
still a lot to be investigated. The studies mentioned above show the effectiveness of
dynamic induction in simulations. Can these results be reproduced in wind tunnel
experiments or field tests? How do dynamic control strategies affect the turbine
loads? Can dynamic control signals other than a sine wave on induction be as
effective, or perhaps even more effective, in inducing wake mixing? Future research
is necessary to answer these questions.

1.6. Dissertation objective

T he previous sections give a short but broad overview of the state of the art
of wind turbine and wind farm control. In this section, the contributions of
this dissertation are outlined. First, a motivation is given for the research

presented in this thesis. Next, the research objective is introduced, along with
a number of smaller subquestions. Finally, the outline of this dissertation is de
scribed.

1.6.1. Motivation
In Section 1.3, two wind farm control objectives are posed: maximizing energy
capture and minimizing fatigue damage. In both fields of research, new control
approaches are being developed, and promising results are being presented. With
these new control technologies, the first step is usually to conduct tests in a simu
lation environment.

To further assess technologies that show promise in simulations, conducting
scaled wind tunnel experiments is an attractive way to proceed. With wind tunnel
experiments, it is possible to evaluate technologies in the real world. Models of
complex systems such as a wind farm are never perfect, and results from physical
experiments can validate the reliability of such models. Compared to fullscale
field tests, conducting scaled wind tunnel experiments has a number of important
advantages:

• Controllability: flow conditions can be set as desired.

• Reproducibility: flow conditions can be reproduced such that a fair comparison
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between control strategies can be made.

• Low risk: as new technologies have not yet been tested on actual turbines,
there is always the chance of something going wrong or breaking down. In
scaled experiments, the consequences of such a failure are much less severe.

• Time: as size scales, so does time. Therefore, with scaled experiments, a
large amount of data can be gathered in a relatively short time span.

• Cost: although using a wind tunnel is not free of charge, it is much cheaper
than doing lengthy experiments on real turbines.

• Availability: wind turbine manufacturers and wind farm operators are often
hesitant to test new, experimental technologies on their expensive turbines.

All these advantages together make that wind tunnel experiments are a log
ical intermediate step to bridge the gap between simulations and field tests. In
this dissertation, this order of testing new technologies is therefore upheld. Novel
technologies, both for load mitigation and power maximization, are first tested in
a simulation environment. When these simulations produce positive results, these
are then validated in wind tunnel experiments. Hence, the next step towards im
plementation in fullscale wind turbines and wind farms can be taken.

1.6.2. Research questions
The research presented in this dissertation aims to further decrease the levelized
cost of wind energy with novel control technologies. This leads to a research ob
jective that is defined as:

Research objective:
Develop and validate novel pitch control technologies that further decrease
the levelized cost of wind energy.

As this objective is rather broad, a number of subquestions have been formu
lated. These subquestions give a more specific direction to fulfilling the research
objective. The first subquestion is related to reducing turbine blade loads. Differ
ent IPC strategies have already been developed in literature (see Section 1.4), and
wind tunnel experiments could mean the next step in developing these methods.
The first subquestion is therefore formulated as:

I: How do different individual pitch control technologies that aim to mitigate
blade loads compare in wind tunnel experiments that generate realistic, re
producible wind conditions?

Apart from increasing the turbine lifetime by mitigating loads, the cost of wind
energy can also be improved by increasing wind farm power generation. As elabo
rated in Section 1.5.4, dynamic control strategies form a new and exciting solution
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to this challenge. Such methods show promising results in simulations, but have
yet to be proven to work in an actual setup. Therefore, the second subquestion is
defined as:

II: How does periodic dynamic induction control perform with respect to wind
farm power generation in scaled wind tunnel experiments?

Since dynamic control strategies are expected to increase turbine loads, these
should also be evaluated. This leads to the third subquestion:

III: How much do the turbine damage equivalent loads rise when dynamic
control technologies are applied, and are these increased loads compensated
for by the higher power generation?

As dynamic control is a young field of research, it is likely that dynamic induction
is not the only viable control solution. Perhaps, other technologies prove to be more
effective in balancing power maximization with minimal turbine loads. Therefore,
the final subquestion is formulated as:

IV: Can an alternative dynamic control technology be developed that maxi
mizes power generation while minimizing additional turbine loads?

In this dissertation, research by means of simulations and wind tunnel experi
ments is conducted to answer the questions posed here. The answers provide valu
able knowledge in helping wind become an even more competitive energy source.

1.6.3. Outline of the dissertation
This dissertation combines three articles that have been peerreviewed and pub
lished in scientific journals on either control engineering or wind energy. Each
publication has its own chapter, with independent introductions and conclusions.
These chapters can therefore be read more or less independently from the rest
of the dissertation. Each chapter contains two of the three core elements of the
dissertation: wind tunnel experiments, individual pitch control and enhanced wake
mixing. The mutual relation between the different chapters is schematically given in
Figure 1.10. More specifically, the content of these chapters is described as follows:

Chapter 2 evaluates the effectiveness of IPCdriven load mitigation technolo
gies. To this effect, wind tunnel experiments have been conducted at the
University of Oldenburg. The wind tunnel is equipped with an active grid such
that real turbulent flow profiles can be mimicked and reproduced. Different
IPC strategies are compared based on the results of these experiments.

Chapter 3 presents the results of scaled wind tunnel experiments executed at
the Politecnico di Milano. In these experiments, periodic dynamic induction



1

20 1. Introduction

Figure 1.10: The three core components of this dissertation, showing which of these elements is dis
cussed in each chapter.

is applied on the upstream turbine of a threeinline wind farm setup. The
energy capture is evaluated and an analysis of the turbine loads using dynamic
induction is performed.

Chapter 4 introduces a novel dynamic control technology called the Helix ap
proach. This strategy uses individual pitch control to enhance wake mixing
and maximize wind farm power generation. A proof of concept is given by
means of highfidelity flow simulations.

Finally, Chapter 5 combines the conclusions of the individual chapters to form
an overarching conclusion of the dissertation. In this chapter, the research objec
tive is evaluated and the corresponding subquestions are answered, reflecting on
the contributions of this dissertation and formulating recommendations for future
research.



2
Datadriven individual
pitch control for load

mitigation
Research is what I’m doing

when I don’t know what I’m doing.

– Dr. Wernher von Braun,
on the process of conducting scientific research.

A commonly appliedmethod to reduce the cost of wind energy, it is to alleviate
the periodic loads on the turbine blades using Individual Pitch Control (IPC) in
order to increase the lifetime and decrease the maintenance cost. However,
current stateoftheart IPC methodologies significantly increase the duty cy
cle of the pitch actuators. In this chapter, a datadriven individual pitch con
trol methodology called Subspace Predictive Repetitive Control (SPRC) is em
ployed. SPRC is investigated as a solution to alleviating periodic loads on
a scaled 2bladed wind turbine in turbulent wind conditions, whilst keep
ing the actuator duty cycle to a minimum. An openjet wind tunnel with an
innovative active grid is employed to generate reproducible turbulent wind
conditions. Significant load reductions are achieved even under these high
turbulent conditions, resulting in improved overall performance compared to
conventional IPC.



The contents of this chapter have been published as a peerreviewed research paper in the Control
Engineering Practice journal:

J.A. Frederik, L. Kröger, G. Gülker and J.W. van Wingerden, Datadriven repetitive control: Wind tunnel
experiments under turbulent conditions, Control Engineering Practice 80 105 (2018).
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2.1. Introduction

I n the quest to make the cost of wind energy increasingly competitive with con
ventional energy sources such as fossil fuels, wind turbine structures become
increasingly larger and more slender in order to increase their rated power

(Van Kuik et al., 2016). Consequently, the loads experienced by the blades of
turbines also increase, and it becomes of vital importance to mitigate these loads.

The majority of dynamic loads on wind turbine rotors have a periodic nature,
caused by wind shear, tower shadow, gravity and partial wake overlap from upwind
turbines (Bossanyi, 2003). To reduce these deterministic loads, Individual Pitch
Control (IPC) is a method receiving an increasing amount of attention (Barlas and
van Kuik, 2010). In IPC, the pitch angle of each blade is, as the name suggests,
controlled individually to decrease the outofplane bending moments. This method
is relatively easy to implement, since most modern wind turbines already have
individual pitch capabilities, as well as measurements of the bending moments. By
applying periodic pitch angles to the blades on top of the collective pitch, significant
load alleviations can be achieved (Bossanyi, 2003).

Many different IPC approaches are studied in literature. Initially, the focus
was mainly on controlling the load occurring once per rotation (1P) using Linear
Quadratic Gaussian (LQG) controllers to solve the MultipleInput MultipleOutput
(MIMO) problem (Bossanyi, 2000; Selvam et al., 2009). However, since the 1P
loads are symmetric, these loads do not cause the largest loads on the nonrotating
parts of the wind turbine structure. These parts experience the largest loads at the
blade passing frequency 𝑁P, with 𝑁 the number of blades of the turbine (Bossanyi,
2005). One method of alleviating these 𝑁P loads is by applying the MultiBlade Co
ordinate (MBC) transformation (Bir, 2008), which transforms the loads into a static
reference frame. This allows the use of simple linear Singleinput Singleoutput
(SISO) control methods, such as PIcontrollers (Bossanyi, 2005; van Solingen and
van Wingerden, 2015).

An important downside of IPC is the substantial increase of the pitch actua
tor duty cycle. Subsequently, the wear on the bearings of the blades is also in
creased. In the proposed IPC methods, this effect could be enlarged at higher
wind turbulence intensities, as these methods might attempt to also control the
nondeterministic loads. However, this is a research area that has not yet received
a lot of attention. Furthermore, the mentioned IPC algorithms assume constant
operating conditions, and are usually not able to adapt to changing rotor velocities.

A novel IPC methodology that deals with both these problems is proposed in
Navalkar et al. (2014). This methodology is called Subspace Predictive Repetitive
Control (SPRC) and combines subspace identification (Van der Veen et al., 2013)
with repetitive control. By using measurement data to do online identification,
the model can be refined during operation. Furthermore, the repetitive control
law targets only the specified deterministic loads, thus lowering the actuator duty
cycle. SPRC shows promising results in simulations (Navalkar et al., 2014) and
in wind tunnel experiments with laminar flow conditions (Navalkar et al., 2015).
These laminar flow conditions are however not a realistic representation of the
wind conditions that a turbine in the field would experience.
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In this chapter, experiments are presented that form the next vital step in as
sessing the relevance of SPRC as an IPC algorithm. Using the open jet wind tunnel
of ForWind at the University of Oldenburg, which is equipped with a novel active
grid, realistic turbulent wind conditions can be created. Furthermore, the active
grid makes it possible to reproduce these conditions, thus enabling an evaluation
of different control methodologies.

The structure of this chapter is as follows: in Section 2.2, the experimental setup
is described. This section contains a description of the flow conditions as created
by the active grid (2.2.1), a description of the wind turbine (2.2.2), and an overview
of the realtime environment (2.2.3). Section 2.3 covers the SPRC algorithm and
its modifications, and Section 2.4 then shows the results of this algorithm subject
to turbulent wind conditions. Finally, conclusions are drawn in Section 2.5.

2.2. Test Setup

T his section describes the test setup used to conduct the experiments. First,
the wind tunnel equipped with the novel active grid is explained, followed
by a description of the twobladed controloriented wind turbine. Finally, an

overview of the realtime environment is given.

2.2.1. Active Grid
The experiments shown in this chapter have been conducted in a lowspeed wind
tunnel of the University of Oldenburg. This tunnel has a cross section of 3 × 3m
and can reach wind speeds up to 30m/s. On the inlet of this tunnel, an active grid
is mounted as shown in Figure 2.1. This active grid consists of 20 servomotors
at each side that are connected to an axis mounted with rigid square flaps, as
introduced by Makita (1991). Consequently, the 80 different axes of the active grid
can be actuated individually. The change of the angle 𝛾 of the rigid square flaps
with respect to the inflowing wind results in either a blockage or a deflection of the
inflow.

By dynamically varying 𝛾 over time, various turbulent flow fields with specific
characteristics such as atmospheric turbulence can be generated at certain positions
in the test section (Knebel et al., 2011; Heißelmann et al., 2016). A comprehensive
overview of the work in active grid research can be found in the review article of
Mydlarski (2017). By repeating a predefined dynamic sequence of input angles 𝛾,
defined as an excitation protocol, it is possible to accurately reproduce turbulent
flow fields.

To validate the new control concepts of the model wind turbine in turbulent con
ditions and to validate the reproducibility of the inflow, the flow field acting on the
wind turbine is characterized. This was realized using a 2D hotwire system by Dan
tec Dynamics. This sensor consists of a thin wire suspended between two prongs
and measures the wind speed and direction. An xwire of the type 55P51 was used
and operated at a sampling rate of 20 kHz with a lowpass filter at 10 kHz. For the
data acquisition an 18bit National Instruments AnalogtoDigital (A/D) converter
was used. These sensors were used to measure the wind speed at the location of
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Figure 2.1: The active grid mounted on the 3×3m wind tunnel inlet in open test section configuration.

the hub of the model turbine at 20 mesh sizes (3m) distance to the active grid.
Additionally, the hotwire was shifted 1m to either side to determine differences in
the flow field in the range of the wind turbine diameter.

Using the active grid described above, different wind conditions can be created.
In this chapter, the active grid was used in four different modes: two static and two
active cases. For the static cases, the angle of attack of the active grid flaps was set
to a constant angle of 0∘, corresponding to the orientation of the flaps with minimal
blockage, and 45∘. In the active cases, two excitation protocols were used. The
first one, called the lidar mode, is based on atmospheric wind data measured with
Light Detection And Ranging (LiDAR), and creates a wind field with intermittent
behavior. The second one, called the gusts mode, is creating a mexican hatlike
wind field with single gusts.

The flow fields of all these modes were investigated for three different mean
wind velocities of 4m/s, 4.5m/s and 5m/s. In the following, the different protocols
are characterized briefly for the 5m/s test cases, in terms of reproducibility, flow
characteristics, Turbulence Intensity (TI) and the dynamics in the power spectra.
The wind speed is measured with a sampling rate of 20 kHz. A full characterization
of all modes, including supplementary measurements shifted to the outer radius of
the wind turbine and further analysis to determine the reproducibility and intermit
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Figure 2.2: Three exemplary wind speed time series generated by the lidar excitation protocol smoothed
by a moving average filter for a better comparison. An unfiltered wind speed time series is shown as
reference in light gray.

tency of the flow fields, is presented in Kröger et al. (2018).
To show the reproducibility, three wind speed time series are shown in Fig

ure 2.2 smoothed by a moving average filter over 1000 samples (i.e., 0.05 s). In
light gray, an unsmoothed time series is shown as a reference. These turbulent
flow fields were generated by repeating the lidar excitation protocol of the active
grid. As shown, the main dynamic features in the flow are highly reproducible,
whereas the higherfrequency components show differences in the direct compar
ison. By inspection of the smoothed power spectra of all four test cases shown
in Figure 2.3, further analysis of the dynamics of the flow fields is performed. To
show the resemblance between the flow fields generated by repeated excitation,
the spectra of five repeated time series are plotted on top of each other, appearing
for all test cases nearly as a single line.

As a reference, the −5/3 law of the natural decay of turbulence postulated
by Kolmogorov (1941) is also shown, to compare the results with the theoretical
values. This is valid for the higher frequency ranges of all test cases. The data of
the two actively driven test cases both show a significant increase of the energy in
the lower frequency ranges of 0.1 − 10Hz, corresponding to structures in the flow
with sizes of 0.5−50m. This results in more realistic turbulent structures acting on
the model wind turbine compared to using regular grids, with integral length scales
in the range of their mesh width (Kröger et al., 2018).

To describe the variability of the wind field the TI is used. The TI is defined as
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Figure 2.3: Power spectra of all four active grid modes. For every mode the spectra of five repetitions
are shown. The −5/3 law of the natural decay of turbulence is represented by the dashed line as a
reference.

the ratio of the standard deviation and the mean of the wind speed time series:

TI = 𝜎𝑢
⟨𝑢⟩ .

As every test case was repeated five times, the mean value of the TI over these
experiments were determined for the different modes and are shown in Table 2.1.
Note that although the gusts mode has relatively low average TIs, this mode creates
the largest variations in wind velocity. As a consequence, it might result in higher
load variations on the blades than would be expected based on the TI. The TI was
determined at the hub of the turbine (centerline) as well as at the tip of the blades
(shifted) to account for the complete rotorswept area.

Table 2.1: The average turbulence intensities for different modes of the active grid.

Mode Centerline TI [%] Shifted TI [%]
Static 0∘ 2.5 2.7
Static 45∘ 3.7 5.1
Lidar 8.8 10.1
Gusts 4.2 7.2
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2.2.2. Wind Turbine
The wind turbine model that is used for these experiments is presented in Navalkar
et al. (2015). It is a twobladed directdrive wind turbine that is placed upwind of the
wind tunnel. The drive train is shown in Figure 2.4a. The blades are connected with
hub through a rigid connection with the shaft of Dynamixel MX106 servomotors.
These servomotors enable rotation of the blades around the longitudinal axis of
the blade. The Dynamixel servomotors have a bandwidth of approximately 15Hz.
The azimuth angle of the blades is measured through a position encoder located
in the main shaft. For other experiments executed with this turbine, see, e.g.,
Van Solingen et al. (2014).

The blades used for this experiments are designed and presented in Navalkar
et al. (2016) and shown in Figure 2.4b. A Macro Fiber Composite (MFC) piezoelectric
sensor is affixed to each blade, located at the root of the blade. These piezo’s are
used to measure the strain on the blades, which relates directly to the outofplane
bending moments.

With these blades and the wind conditions described in the previous subsection,
rotor speeds of up to approximately 330 rpm (5.5Hz) can be achieved. Considering
the bandwidth of the servomotors, therefore periodic loads up to twice the rotor
speed (2P) can be controlled.

Note that the blades also contain freefloating flaps that can be used for control
by changing the input voltage of the MFC piezobenders attached to these flaps.
These piezobenders have a much higher bandwidth than the servomotors, but the
control authority is significantly lower. For results obtained with these flaps, see,
e.g., Navalkar et al. (2016). The experiments shown in this chapter are obtained
without using the piezobenders on the freefloating flaps as a control input. Fur
thermore, the wind turbine tower has free yaw capabilities, since it is mounted
using two bearings. For the experiments performed for this chapter, the yaw angle
of the tower is fixed using a clamp.

To simulate the generator torque of the turbine, the generator is connected in
series to a dump load (not shown in the figure). The generator torque is then
controlled by setting the current to the dump load.

Torque Transducer

Slip Rings

Blades

Speed Encoder

(a) Drive train (b) Blade

Figure 2.4: Photographs of the drive train (a) and the blade (b) of the twobladed wind turbine used for
the experiments.
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Figure 2.5: A schematic representation of the interconnection between the data acquisition boards
(DAQs) and the controller. The blue blocks run at 200Hz, while the red blocks sample at 2kHz. The
inputs are the voltages of the bending moments (𝑉BM) and the piezo flaps (𝑉pz,in), as well as the rotor
word azimuth 𝜓. Outputs are the generator torque 𝑇𝑞, the desired flap voltage 𝑉pz,out and the desired
pitch angles 𝛽pitch.

2.2.3. Realtime environment
As described above, the system contains 3 actuators (two servomotors controlling
the pitch angle and the dump load controlling the generator torque) and sensors
(measuring the loads on both blades and the azimuth angle). The communication
between the sensors and actuators is realized through Simulink RealTime (Math
works, 2015). The desired controller is developed in MatlabSimulink, and subse
quently compiled on a target computer.

The target computer, an HP workstation Z600, communicates with the wind
turbine through a National Instruments PCI6259 data acquisition board (DAQ) as
shown schematically in Figure 2.5. The DAQs have a sampling time of 2 kHz, while
the shaft position encoder and the Dynamixel servo motors operate at 200Hz. The
controller is configured at the same sampling frequency, since the computation time
of the SPRC algorithm on the target computer is slightly below 0.005 s. With a more
powerful target computer, it is most likely possible to further decrease this compu
tation time. To enable communication between the signals with different sampling
frequencies, the Rate Transition functionality in Simulink is used (Mathworks, 2015).

2.3. Subspace Predictive Repetitive Control

I n this section, the Subspace Predictive Repetitive Control (SPRC) methodology
is described. In the following subsection, the motivation for using SPRC is given.
Subsequently, Section 2.3.2 elaborates on the identification, and Section 2.3.3

covers the Repetitive Control (RC) implementation.
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2.3.1. Motivation
As mentioned in the introduction, the dominant frequencies of periodic wind turbine
blade loads during operation are dependent on the rotor speed. The onceper
revolution load frequency is called 1P, and its higher harmonics 2P, 3P, etc. As
these frequencies form the majority of the loads in wind turbines, the control effort
can also be restricted to these frequencies. This can be achieved by using basis
functions containing sinusoids of the required frequencies, see Section 2.3.3.

Due to the periodic nature of the loads, RC is an effective methodology to handle
these loads. RC determines the optimal control sequence for the next period, and
iterates this process over time. Subsequently, the control signal also adapts to
changing operating conditions. This makes RC suitable for wind turbine control,
as the wind flow is highly variable in realworld operating conditions. Varying rotor
speed can be a problem for RC in turbine load control, since this essentially changes
the period of the RC problem. However, in this chapter, modifications to the RC
algorithm are presented that negate this problem.

To find the optimal RC sequence, a model of the system is necessary. By using
datadriven subspace identification methods, the derived model is able to adapt
to changing operating conditions. As new data becomes available, it replaces old
data based on a forgetting factor 𝜆. This procedure is further explained in the next
section.

These combined features of SPRC make the methodology suitable for the task
at hand. First, subspace identification is executed online, and the obtained system
is used to adapt the RC law. The optimal control sequence is then implemented
over the next rotation period to achieve the desired load disturbance rejection.

2.3.2. Subspace Identification
The wind turbine system is identified online using Markov parameters, and this iden
tified system is then used to establish a repetitive control law using basis functions.
This method is similar to the one presented in Navalkar et al. (2014), although es
sential additions have been made to improve performance for varying rotor speed.

The wind turbine system is assumed to be represented by a discrete Linear
TimeInvariant (LTI) system with unknown periodic disturbances (Houtzager et al.,
2012)1:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐸𝑑𝑘 + 𝐾𝑒𝑘 (2.1)
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐹𝑑𝑘 + 𝑒𝑘 , (2.2)

where 𝑥𝑘 ∈ ℝ𝑛 is the state vector, 𝑢𝑘 ∈ ℝ𝑟 the input vector; in this case the
pitch angles of both blades. The output vector 𝑦𝑘 ∈ ℝ𝑙 contains the blade loads as
measured by the MFCs mounted on the blades. Disturbance 𝑑𝑘 ∈ ℝ𝑚 represents the
periodic component on the load of the blades, and 𝑒𝑘 ∈ ℝ𝑙 the aperiodic component.
Rewriting these equations in descriptor form, the following statespace equations

1The framework is also able to work with periodic timevarying systems. For representation reasons, an
LTI system is chosen here.
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are obtained:

𝑥𝑘+1 = �̃�𝑥𝑘 + 𝐵𝑢𝑘 + �̃�𝑑𝑘 + 𝐾𝑦𝑘 (2.3)
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐹𝑑𝑘 + 𝑒𝑘 , (2.4)

with �̃� = 𝐴 − 𝐾𝐶 and �̃� = 𝐸 − 𝐾𝐹. The difference operator 𝛿 is then defined as:

𝛿𝑑𝑘 = 𝑑𝑘 − 𝑑𝑘−𝑃 = 0,

where the subscripts indicate the time instance, and 𝑃 is the time of one full rota
tion of the blades. Similarly, the (nonzero) signals 𝛿𝑢, 𝛿𝑦 and 𝛿𝑒 can be defined.
Applying the 𝛿notation on the innovation system yields a representation where the
𝑑term disappears:

𝛿𝑥𝑘+1 = �̃�𝛿𝑥𝑘 + 𝐵𝛿𝑢𝑘 + 𝐾𝛿𝑦𝑘 (2.5)
𝛿𝑦𝑘 = 𝐶𝛿𝑥𝑘 + 𝛿𝑒𝑘 . (2.6)

Next, the stacked vector 𝛿𝑈(𝑝)𝑘 for a given past window 𝑝 is defined as:

𝛿𝑈(𝑝)𝑘 =
⎡
⎢
⎢
⎣

𝑢𝑘 − 𝑢𝑘−𝑃
𝑢𝑘+1 − 𝑢𝑘+1−𝑃

⋮
𝑢𝑘+𝑝−1 − 𝑢𝑘+𝑝−1−𝑃

⎤
⎥
⎥
⎦
, (2.7)

and similarly 𝛿𝑌(𝑝)𝑘 . Then, by elevating (2.5), the state vector 𝛿𝑥𝑘+𝑝 can be written
as:

𝛿𝑥𝑘+𝑝 = �̃�𝑝𝛿𝑥𝑘 + [𝒦(𝑝)
𝑢 𝒦(𝑝)

𝑦 ] [𝛿𝑈
(𝑝)
𝑘

𝛿𝑌(𝑝)𝑘 ,]

with:

𝒦(𝑝)
𝑢 = [�̃�𝑝−1𝐵 �̃�𝑝−2𝐵 … 𝐵] (2.8)

𝒦(𝑝)
𝑦 = [�̃�𝑝−1𝐾 �̃�𝑝−2𝐾 … 𝐾] . (2.9)

Here, similar to Houtzager et al. (2012), it is assumed that the system given in
Equations (2.5) and (2.6) is asymptotically stable, controllable and observable. It
is important to select 𝑝 sufficiently large, such that �̃�𝑗 ≈ 0∀𝑗 ≥ 𝑝, (Chiuso, 2007).
For such 𝑝, the equation above can be simplified to:

𝛿𝑥𝑘+𝑝 ≈ [𝒦(𝑝)
𝑢 𝒦(𝑝)

𝑦 ] [𝛿𝑈
(𝑝)
𝑘

𝛿𝑌(𝑝)𝑘
] . (2.10)

Substituting this result into (2.6) yields

𝛿𝑦𝑘 ≈ [𝐶𝒦(𝑝)
𝑢 𝐶𝒦(𝑝)

𝑦 ] [𝛿𝑈
(𝑝)
𝑘

𝛿𝑌(𝑝)𝑘
] + 𝛿𝑒𝑘 . (2.11)
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During online identification, the values of the parameters 𝐶𝒦 are estimated based
on the measurements 𝑦 and 𝑢. These parameters define the behavior of the wind
turbine system, and are called the Markov parameters Ξ ∈ ℝ𝑙×((𝑟+𝑙)⋅𝑝)):

Ξ = [𝐶𝒦(𝑝)
𝑢 𝐶𝒦(𝑝)

𝑦 ] . (2.12)

A batchwise computation of the Markov estimates Ξ̂ at time instant 𝑘 is then per
formed by finding the unique solution to the leastsquares equation

Ξ̂𝑘 = argmin
Ξ̂𝑘

𝑘

∑
𝑖=−∞

‖𝛿𝑦𝑖 − 𝜆Ξ̂𝑘 [
𝛿𝑈(𝑝)𝑖−𝑝
𝛿𝑌(𝑝)𝑖−𝑝

]‖
2

2
. (2.13)

In this algorithm, a forgetting factor 𝜆 of between 0 and 1 is introduced to adapt to
changes in the system dynamics. To improve the robustness of the identification,
a large value (e.g., 𝜆 = 0.99999) is chosen, which, as a rule of thumb, represents a
window of 106 samples (Gustafsson, 2000). Subsequently, the summation given in
(2.13) no longer needs an infinite past window. From the definition of Ξ as shown
in (2.12), it follows that Ξ̂ at time instant 𝑘 contains estimates of the following
matrices:

Ξ̂𝑘 =[ ̂𝐶𝐴𝑝−1𝐵 ̂𝐶𝐴𝑝−2𝐵 … 𝐶𝐵 ̂𝐶𝐴𝑝−1𝐾 ̂𝐶𝐴𝑝−2𝐾 … 𝐶𝐾]
𝑘
. (2.14)

It is important that the input of the system is persistently exciting and of a suf
ficiently high order, in order to guarantee a unique solution of the leastsquares
problem (2.13) (Verhaegen and Verdult, 2007). The recursive equivalent of this
problem is then solved using a QR recursive leastsquares algorithm as presented
in van der Veen et al. (2012).

Typically, adaptive control methodologies that combine online identification with
simultaneous control cannot guarantee certain stability and performance character
istics (Dong and Verhaegen, 2008). Therefore, the method proposed in Navalkar
et al. (2015) to first run the controller in identification phase at the beginning of
each experiment is used.

2.3.3. Repetitive Control
For repetitive control, the output needs to be predicted over period 𝑃, with 𝑃 ≥ 𝑝
but usually 𝑃 ≫ 𝑝. To achieve this, the output equation needs to be lifted over 𝑃
to obtain 𝛿𝑃(𝑃)𝑘+𝑃. For this purpose, the Toeplitz matrix �̃�(𝑃) ∈ ℝ(𝑙⋅𝑃)×(𝑙⋅𝑃) and the
extended observability matrix Γ̃(𝑃) ∈ ℝ(𝑙⋅𝑃)×𝑛 are defined:
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�̃�(𝑃) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 …
𝐶𝐵 0 0 …
𝐶�̃�𝐵 𝐶𝐵 0 …
⋮ ⋮ ⋱ ⋮

𝐶�̃�𝑝−1𝐵 𝐶�̃�𝑝−2𝐵 𝐶�̃�𝑝−3𝐵 …
0 𝐶�̃�𝑝−1𝐵 𝐶�̃�𝑝−2𝐵 …
0 0 𝐶�̃�𝑝−1𝐵 ⋱
⋮ ⋮ ⋱ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.15)

Γ̃(𝑃) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐶
𝐶�̃�
𝐶�̃�2
⋮

𝐶�̃�𝑝
0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.16)

Similarly, 𝐻(𝑃) and Γ(𝑃) are defined by replacing all �̃� by 𝐴. Likewise, �̃�(𝑃) is defined
by replacing 𝐵 by 𝐾 in �̃�(𝑃). Using these matrices, the lifted output equation can
be written as

𝛿𝑌(𝑃)𝑘+𝑃 = Γ̃(𝑃)𝛿𝑥𝑘+𝑃 + [�̃�(𝑃) �̃�(𝑃)] [𝛿𝑈
(𝑃)
𝑘+𝑃

𝛿𝑌(𝑃)𝑘+𝑃
] . (2.17)

Substituting the approximation of 𝛿𝑥𝑘 as given in (2.10) yields

𝛿𝑌(𝑃)𝑘+𝑃 = Γ̃(𝑃) [𝒦(𝑃)
𝑢 𝒦(𝑃)

𝑦 ] [𝛿𝑈
(𝑃)
𝑘

𝛿𝑌(𝑃)𝑘
] + [�̃�(𝑃) �̃�(𝑃)] [𝛿𝑈

(𝑃)
𝑘+𝑃

𝛿𝑌(𝑃)𝑘+𝑃
] . (2.18)

Notice that the first (𝑃−𝑝)⋅𝑟 columns of 𝒦(𝑃)
𝑢 and 𝒦(𝑃)

𝑦 are 0. It is also key to note
that all the matrices from (2.18) can be constructed by using the elements of the
Markov estimates Ξ̂. The future output 𝑌(𝑃)𝑘+𝑃 are then predicted using the previous
outputs 𝑌(𝑃)𝑘 and previous and future inputs 𝑈(𝑃)𝑘 and 𝑈(𝑃)𝑘+𝑃. Subsequently, (2.18)
can be rewritten as:

𝑌(𝑃)𝑘+𝑃 = [𝐼𝑙⋅𝑃 ̂Γ(𝑃)𝒦(𝑃)
𝑢

̂Γ(𝑃)𝒦(𝑃)
𝑦 ] [

𝑌(𝑃)𝑘
𝛿𝑈(𝑃)𝑘
𝛿𝑌(𝑃)𝑘

] + �̂�(𝑃)𝛿𝑈(𝑃)𝑘+𝑃 . (2.19)

This result is obtained by using the following equality’s:

(𝐼 − �̃�(𝑃))−1 Γ̃(𝑃) = Γ(𝑃)

(𝐼 − �̃�(𝑃))−1 �̃�(𝑃) = 𝐻(𝑃).
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Subsequently, the system is transformed into a state space representation, such
that classic state feedback control can be applied (Hallouzi et al., 2006):

[
𝑌(𝑃)𝑘+𝑃
𝛿𝑈(𝑃)𝑘+𝑃
𝛿𝑌(𝑃)𝑘+𝑃

]
⏝⎵⎵⏟⎵⎵⏝
�̂�𝑘+𝑃

= [
𝐼𝑙⋅𝑃 ̂Γ(𝑃)𝒦(𝑃)

𝑢
̂Γ(𝑃)𝒦(𝑃)

𝑦
0(𝑟⋅𝑃)×(𝑙⋅𝑃) 0𝑟⋅𝑃 0(𝑟⋅𝑃)×(𝑙⋅𝑃)
0𝑙⋅𝑃 ̂Γ(𝑃)𝒦(𝑃)

𝑢
̂Γ(𝑃)𝒦(𝑃)

𝑦

]

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
�̂�𝑘

[
𝑌(𝑃)𝑘
𝛿𝑈(𝑃)𝑘
𝛿𝑌(𝑃)𝑘

]
⏝⎵⏟⎵⏝

�̂�𝑘

+ [
�̂�(𝑃)
𝐼𝑟⋅𝑃
�̂�(𝑃)

]
⏝⎵⏟⎵⏝
ℬ̂𝑘

𝛿𝑈(𝑃)𝑘+𝑃 . (2.20)

Next, a state feedback controller is synthesized using a Discrete Algebraic Riccati
Equation (DARE). As mentioned in Section 2.3.1, the goal of this IPC implementation
is to target the 1P and 2P loads. As a result, the control signal should only contain
these frequencies. To achieve this, a basis function projection is proposed such
that 𝑈𝑘 only contains sinusoids of the desired frequencies. This is accomplished by
using the following transformation matrix 𝜙 ∈ ℝ(𝑟⋅𝑃)×(4𝑟):

𝜙 =
⎡
⎢
⎢
⎢
⎣

sin 2𝜋
𝑃 cos 2𝜋𝑃 sin 4𝜋

𝑃 cos 4𝜋𝑃
sin 4𝜋

𝑃 cos 4𝜋𝑃 sin 8𝜋
𝑃 cos 8𝜋𝑃

⋮ ⋮ ⋮ ⋮
sin 2𝜋 cos 2𝜋 sin 4𝜋 cos 4𝜋

⎤
⎥
⎥
⎥
⎦

⊗ 𝐼𝑟 , (2.21)

where the symbol ⊗ represent the Kronecker product. Considering that the band
width of the pitch motors limits the control authority to the 1P and 2P frequencies,
only these frequencies are considered. Notice that by taking a linear combination
of the sinusoids in this matrix, a control signal containing only the desired 1P and
2P frequencies is obtained. The control input 𝑈𝑘 is determined using:

𝑈(𝑃)𝑘 = 𝜙𝜃𝑗 , (2.22)

where the subscript 𝑗 represents the rotation count. Subsequently, the vector 𝜃 ∈
ℝ4𝑟, that determines the amplitude and phase of the sinusoids, is updated every
rotation period 𝑃.

Note that the system of (2.20) is quite highdimensional, as �̂� ∈ ℝ((2𝑙+𝑟)⋅𝑃)
2
.

Apart from limiting the frequency content of the control signal, the transforma
tion also reduces the dimensionality of the DARE, as 𝜃 only contains 4𝑟 elements,
substantially reducing the computational load of the problem.

As the pitch angles are now limited to sinusoidal signals with frequencies 1P and
2P, and the system is assumed to be linear over one period 𝑃, the load signals 𝑌𝑘
is also limited to these frequencies. As a result, we can transform this signal using
the same transformation matrix:

𝑌𝑘 = 𝜙�̄�𝑗 . (2.23)

Note that for this transformation to be possible, the number of inputs needs to
be equal to the number of outputs, i.e., 𝑟 = 𝑙. However, this does not limit the
possibilities of the algorithm for load alleviation, since generally the outputs are
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chosen as the root bending moments of each blade, and the inputs are the pitch
angles of the blades. Consequently, both 𝑟 and 𝑙 equal the number of blades.

Similar to (2.23), the lower dimensional signals can be found by using the inverse
transformation 𝜙+, where + represents the MoorePenrose pseudoinverse:

𝜃𝑗 = 𝜙+𝑈𝑘 , �̄�𝑗 = 𝜙+𝑌𝑘 . (2.24)

Using (2.22) and (2.23), we can rewrite (2.20) in the following lower dimensional
form:

[
�̄�(𝑃)𝑗+1
𝛿𝜃(𝑃)𝑗+1
𝛿�̄�(𝑃)𝑗+1

]
⏝⎵⏟⎵⏝

̂�̄�𝑗+1

= [
𝐼𝑙⋅𝑃 𝜙+ ̂Γ(𝑃)𝒦(𝑃)

𝑢 𝜙 𝜙+ ̂Γ(𝑃)𝒦(𝑃)
𝑦 𝜙

0𝑙⋅𝑃 0𝑟⋅𝑃 0𝑙⋅𝑃
0𝑙⋅𝑃 𝜙+ ̂Γ(𝑃)𝒦(𝑃)

𝑢 𝜙 𝜙+ ̂Γ(𝑃)𝒦(𝑃)
𝑦 𝜙

]

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
̂�̄�𝑗

[
�̄�(𝑃)𝑗
𝛿𝜃(𝑃)𝑗
𝛿�̄�(𝑃)𝑗

]
⏝⎵⏟⎵⏝

̂�̄�𝑗

+ [
𝜙+�̂�(𝑃)𝜙
𝐼𝑟⋅𝑃

𝜙+�̂�(𝑃)𝜙
]

⏝⎵⎵⏟⎵⎵⏝
̂ℬ̄𝑗

𝛿𝜃(𝑃)𝑗+1.

(2.25)

The size of this projected matrix �̄� ∈ ℝ12𝑙×12𝑙 is significantly smaller than the orig
inal matrix 𝒜 ∈ ℝ3𝑙𝑃×3𝑙𝑃. As usually 𝑃 ≫ 4, using a basis function transformation
significantly reduces the order of the optimization problem. Moreover, the transfor
mation guarantees that the input 𝑈𝑘 is a smooth signal with the desired frequency
content.

Next, a state feedback control problem is solved to determine the control input
𝜃. The state feedback gain is obtained by minimizing the following quadratic cost
function

𝐽 =
∞

∑
𝑗=0
||(�̄�𝑗)

𝑇 𝑄�̄�𝑗 + (𝛿𝜃𝑗)
𝑇 𝑅𝛿𝜃𝑗||

2

2
, (2.26)

where 𝑄 and 𝑅 are weighing matrices for the state and input vector respectively.
As in LQR problems, the state feedback control gain can be found by solving the
DARE at iteration 𝑗 using an initial estimate of 𝑃𝑅:

𝑃𝑅,𝑗+1 = 𝑄+�̄�𝑇
𝑗 (𝑃𝑅,𝑗 − 𝑃𝑅,𝑗ℬ̄𝑇𝑗 (𝑅 + ℬ̄𝑇𝑗 𝑃𝑅,𝑗ℬ̄𝑗)−1ℬ̄𝑇𝑗 𝑃𝑅,𝑗)�̄�𝑗 .

Subsequently, the optimal state feedback gain 𝐾𝑓 is defined as:

𝐾𝑓,𝑗 = (𝑅 + ℬ̄𝑇𝑗 𝑃𝑅,𝑗ℬ̄𝑗)
−1
ℬ̄𝑇𝑗 𝑃𝑅,𝑗�̄�

Now, it is possible to determine the control input vector 𝛿𝜃𝑗, which, after a trans
formation, can be implemented on the wind turbine. Using the state feedback law:

𝛿𝜃𝑗+1 = −𝐾𝑓,𝑗�̄�𝑗 . (2.27)

Then, using 𝛿𝜃𝑗+1 = 𝜃𝑗+1 − 𝜃𝑗 and introducing variables 𝛼 and 𝛽:
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𝜃𝑗+1 = 𝛼𝜃𝑗 − 𝛽𝐾𝑓,𝑗 [
�̄�𝑗
𝛿𝜃𝑗
𝛿�̄�𝑗
] . (2.28)

In order to add the possibility to manipulate the convergence characteristics of the
algorithm, the tuning parameters 𝛼 and 𝛽 are included. Both 𝛼 and 𝛽 are defined in
the interval [0, 1], and give a weight on new and older data respectively. The input
signal 𝑈𝑘 can now be determined by using the inverse basis function transformation
as given in (2.22).

One problem that needs to be dealt with, is the potential variation of rotor speed
due to, e.g., wind turbulence or changing inflow wind speed. Therefore, a phase
shift between input and output could occur. To prevent this, the rotor azimuth
𝜓𝑘 measured through the shaft encoder, which is equal to the angle 2𝜋𝑘/𝑃 at
time instant 𝑘, can be used. As a result, the algorithm is also able to account for
variations in rotor velocity. In this chapter, the parameter 𝑃, which represents one
full rotation, is chosen slightly smaller than the expected rotation period, in order
to guarantee a new control sequence at the end of each rotation. This sequence is
then implemented when the rotation is completed. The control input at time instant
𝑘 now becomes

𝑢𝑘 = ([sin𝜓𝑘 cos𝜓𝑘 sin 2𝜓𝑘 cos 2𝜓𝑘] ⊗ 𝐼𝑟) 𝜃𝑗 , (2.29)

where input 𝑢𝑘 ∈ ℝ𝑟 represents the individual pitch angles that are implemented
on the wind turbine system at time instant 𝑘.

2.3.4. Benchmark controller
As a benchmark load alleviation controller, Conventional Individual Pitch Control
(CIPC) is used, first introduced in Bossanyi (2003). In this approach, the MBC
transformations (Bir, 2008) are used to obtain the yaw and tilt moments on the
rotor plane. Subsequently, a notch filter and ProportionalIntegral (PI) controller
are applied, followed by the inverse MBC transformation, to determine the indi
vidual pitch actions. Figure 2.6 shows a schematic representation of this control
methodology.

In terms of controller implementation, CIPC can be considered less complex than
SPRC. The main reason for this is the fact that no system identification is necessary,

Figure 2.6: A schematic representation of the conventional IPC algorithm, that is used as a benchmark
individual pitch controller in this chapter.
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instead using the relatively straightforward MBC transformations. However, similar
to the SPRC algorithm, some controller parameters do need to be tuned in CIPC
to guarantee performance. In this case, these parameters are the gains of the
PIcontrollers shown in Figure 2.6.

2.4. Results

T he control methodology presented in Section 2.3 is evaluated in the wind
tunnel setup presented in Section 3.4. As discussed in Section 2.2.1, four
different wind conditions have been studied for three different wind speeds.

First, the results for constant wind conditions is presented, followed by the experi
ments with changing wind conditions.

2.4.1. Constant operating conditions
The results of the SPRCIPC implementation on the scaled wind turbine in constant
operating conditions are presented. All figures shown are for an inflow wind speed
of 5m/s.

SPRC is compared with Conventional IPC (CIPC, see Bossanyi (2003)) to eval
uate the performance of the control algorithm. This is done by executing 120 s
experiments for both control strategies, as well as a baseline experiment with no
IPC. For clarity, the time domain figures show the loads over smaller time intervals,
whereas the power spectra and load reductions are determined using the data of
the entire 120 s interval. With a sampling interval of 200Hz, this results in data sets
of 24000 load measurements.

The loads on the blades for the three previously introduced strategies, for the
static 0∘ grid mode, are shown in Figure 2.7a. This figure shows that both methods
significantly decrease the periodic loads. With CIPC, the variance of the blade loads
is reduced with 61.7%, while with SPRC the reduction is even larger: 86.8%.

Figure 2.8 shows the individual pitch action of the blades when SPRC is applied.
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Figure 2.7: Time domain (left) and frequency domain (right) plot of the loads on blades 1 (top) and 2
(bottom) of the turbine for three different situations: the baseline case where no IPC is implemented,
CIPC and SPRC. The inflow wind speed is 5m/s with a static 0∘ grid configuration (centerline TI: 2.5%),
resulting in a rotor speed of 230 rpm.
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Figure 2.8: The individual pitch angles for blade 1 (blue) and blade 2 (red) as applied on the turbine by
the SPRC algorithm. The inflow wind speed is 5m/s with a static 0∘ grid configuration (centerline TI:
2.5%), resulting in an rotor speed of 230 rpm.

Clearly, the signals are not symmetrical. This is caused by the rotor imbalance and
other system imperfections, which SPRC accounts for by generating pitch angles for
each blade individually. These signals are constructed using exclusively sinusoids
of 1P and 2P frequency.

The frequency domain plot of the signals shown in Figure 2.7a are depicted in
Figure 2.7b. As expected, this figure shows large peaks at the frequencies 1P and
2P. At higher harmonics (3P, 4P, etc.) these peaks become significantly smaller,
validating the choice to only apply control on the 1P and 2P frequencies. Figure
2.7b also shows that SPRC achieves a substantial reduction of the 1P and 2P loads
compared to both the baseline case and Conventional IPC.

It is clear that at constant, low turbulent conditions, SPRC achieves a larger load
reduction than conventional IPC. These results are in line with the experiments with
no turbulence done by Navalkar et al. (2015). In the following, it is shown that
positive results can also be achieved at higher turbulent wind conditions generated
by the active grid.

The excitation protocol that generates the highest turbulence is the lidar mode
(see Table 2.1). As a result, significantly higher blade loads are expected for this
mode compared to the results shown above. This can also be observed in Figure
2.9a. The peak loads in this figure are more irregular than in Figure 2.7a due to
the loads induced by turbulence. Nonetheless, both control strategies still clearly
produce load reductions, although it is less clear to see which of the two performs
better. Evaluating the variance of the blade loads shows a reduction of 57.0% for
CIPC and 65.1% for SPRC.

The power spectrum of these measurements with the active grid in lidar mode
are shown in Figure 2.9b. Notice that the rotor speed slightly decreased compared
to Figure 2.7b, from 230 rpm to 210 rpm. This can be explained by the active grid:
the inflow velocity is 5m/s before the active grid. As the grid is enabled, it reduces
the wind velocity perpendicular to the turbine, resulting in a decrease of the rotor
speed.

Figure 2.9b also exhibits a much broader peak around the 1P and 2P frequen
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Figure 2.9: Time domain (left) and frequency domain (right) plot of the loads on both blades of the
turbine for three different situations: the baseline case of no IPC, CIPC and SPRC. The inflow wind speed
is 5m/s with a lidar grid configuration (centerline TI: 8.8%), resulting in a rotor speed of 210 rpm.

cies than the lowTI case. Due to the turbulence, the rotor speed fluctuates more.
Consequently, the power spectrum shows a 1P peaks over a broad range of fre
quencies in which the rotor speed moves. Despite the changing rotor speed, Figure
2.9b clearly shows a reduction of the 1P loads attained by both controllers, and
SPRC also achieves a 2P load reduction.

Similar results are obtained for the experiments at different wind speeds and
with other grid modes active. All these results are summarized in Table 2.2. This
table also shows the performance of SPRC when it only targets the 1P loads.

Notice that out of the 12 experiments, SPRC outperforms CIPC in 10. Only in one
case (Static 45∘ with 4m/s), SPRC is unable to reduce the variance of the loads.
On average, SPRC for 1P and 2P achieves a reduction of load variance of 59%,
whereas conventional IPC leads to an average reduction of 49%. Furthermore, on
average, the variance of the pitch signals is 21% lower for SPRC compared to CIPC,
indicating that the performance improvement does not come at the cost of a higher
actuator duty.

Based on these results, it can be said that SPRC is able to reduce blade loads
in more realistic high turbulent wind conditions. Next, the performance of SPRC in
changing operating conditions is discussed.

Table 2.2: Load reductions compared to baseline (no control) for all investigated inflow conditions. The
numbers indicate the reduction of the variance of the load in% for all 4 grid modes. The different inflow
velocities of the experiments (4, 4.5 and 5m/s) are also given.

Static 0∘ (TI: 2.5%) Static 45∘ (TI: 3.7%) Lidar (TI: 8.8%) Gusts (TI: 4.2%)
4m/s 4.5m/s 5m/s 4m/s 4.5m/s 5m/s 4m/s 4.5m/s 5m/s 4m/s 4.5m/s 5m/s

CIPC [%] 38.7 56.8 61.7 55.9 74.4 37.1 17.6 50.6 57.0 38.0 52.8 47.7
SPRC
1P [%] 57.3 53.1 61.7 1.1 62.6 47.2 17.4 44.4 23.4 6.4 84.4 72.0
1P2P [%] 73.1 82.9 86.8 20.2 44.2 93.0 27.8 52.4 65.1 59.4 81.3 57.7
Var(𝑢)
1P [%] 24.1 36.0 35.6 36.5 15.0 12.8 44.2 5.1 12.8 72.7 26.0 3.8
1P2P [%] 29.0 25.8 2.4 70.4 61.4 32.9 29.0 43.7 10.7 51.4 29.7 4.6
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2.4.2. Changing operating conditions
The authors of Navalkar et al. (2015) show that SPRC is able to adapt to changing
operating conditions in a laminar wind flow. In this section, it is shown that similar
results can be obtained in more turbulent wind conditions. Experiments are con
ducted where either the collective pitch angles or the wind speed is changed during
operation. The performance of SPRC in these changing conditions is evaluated.

With adaptive SPRC, the system parameters are being identified continuously:
as defined in (2.13), new values of the Markov parameters are determined at every
time instant 𝑘. Due to this feature, the algorithm is able to quickly adapt to changing
operating conditions. As new measurements show a change in behavior, the system
parameters are changed accordingly.

The first adaptive experiment was conducted with a wind speed of 4.2m/s using
the Gusts grid protocol. Figure 2.10a shows the effect of changing the collective
pitch during operation, resulting in a decrease of rotor speed from 240 to 210 rpm.
The blade loads and pitch angles for both blades are shown for SPRC and the
baseline case of no control. This figure shows that the loads are again reduced
after a short increase in blade loads when the pitch is changed at approximately 40
seconds.

The amplitudes 𝜃 of the sinusoids that determine the pitch signal of blade 1 are
shown in Figure 2.11. Here, it can be seen that the control input is quickly changed
after the change of operating conditions. The oscillations in Figure 2.11 show that
the algorithm converges to the optimal values in approximately 15 seconds, and
subsequently it can be seen in Figure 2.10a that the loads are reduced at the end
of the experiment.

Figure 2.10b shows the power spectral density of the loads. As the rotor speed is
changed due to the altered collective pitch, two peaks are visible at each harmonic.
This figure demonstrates that SPRC significantly reduces the 1P and 2P blade loads
of the turbine even when operating conditions are altered.

In the second experiment, the effect of a change in wind speed on the effec
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Figure 2.10: Adaptive SPRC versus no IPC for a change in collective pitch angle (from 2 to 10∘). Shown
on the left are the blade loads over the time of the experiments. The vertical line indicates the moment
the collective pitch angles are changed. On the right, the power spectrum of the blade moments is
shown.
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Figure 2.11: The values of 𝜃 for blade 1, see (2.29). The vertical line indicates the moment the collective
pitch angles are changed.
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Figure 2.12: Adaptive SPRC (red) versus no control (blue) for a wind speed change from 4.5m/s to
5m/s after approximately 40 seconds. In these experiments, the static 45∘ grid protocol was used. The
upper left figures show the loads of blade 1 and 2 respectively, the lower left figures the rotor speed and
the the values of input 𝜃 for blade 1. The right figures show the power spectrum of the blade moments.

tiveness of SPRC is shown. This experiment is conducted using the static 45∘ grid
protocol. During the experiment, the wind speed is increased from 4.5m/s to 5m/s,
while the collective pitch stays constant at 2∘. This results in a significant increase
in rotor speed: from approximately 200 rpm to 240 rpm.

The results of this experiment are shown in Figures 2.12a and 2.12b. Comparing
with Figure 2.10a shows that a changing wind speed has a smaller effect on the
performance of SPRC than changing the collective pitch. As can be seen in the
bottom right figure, the control input only changes marginally after the wind speed
is increased. The upper figures show that with SPRC, the loads barely increase when
the wind speed increases, even though in the baseline case there is a substantial
increase.

The two example cases in this section show that adaptive SPRC, where the sys
tem parameters are updated using online subspace identification, is able to quickly
adjust the optimal RC when circumstances alter, resulting in a varying rotor speed,
even in realistic turbulence conditions.
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2.5. Conclusions

T his chapter presents a series of unique wind tunnel experiments that have
been conducted by implementing a large active grid on an open jet wind
tunnel. It is shown that with this active grid, it is possible to produce wind

conditions similar to real world conditions. Furthermore, the active grid creates
reproducible wind conditions, which enables a fair evaluation of different control
methodologies.

Using a twobladed scaled wind turbine, the effectiveness of Subspace Predic
tive Repetitive Control (SPRC) for individual pitch control in highturbulent wind
conditions is evaluated. Dedicated changes were made to the SPRC algorithm to
ensure performance in the case of a varying rotor speed. The results of the wind
tunnel experiments show that it is possible to reduce the variance of the blade
loads significantly using SPRC under realistic highturbulent wind conditions. This
is achieved by specifically targeting the 1P and 2P loads on the blades using basis
functions.

A comparison with Conventional Individual Pitch Control (CIPC) shows that over
all, SPRC outperforms CIPC in both low and high turbulent experiments. SPRC
shows better performance in both blade load reduction and pitch actuator duty
cycle. Averaged over all the different experiments, SPRC achieves a reduction of
the blade load the variance of 59%, an improvement of 10% compared to CIPC.
Furthermore, the variance of the pitch angles is on average 21% lower than with
CIPC. It can therefore be concluded that the SPRC algorithm is successful at tar
geting only the relevant disturbances, and subsequently the load reduction is not
obtained at the cost of a higher actuator duty cycle. This is supported by the power
spectra of the blade loads, which shows a considerable reduction of the loads at
the 1P and 2P frequencies.

Finally, the results presented here show that adaptive SPRC is able to handle
changes in operating conditions, resulting in a varying rotor speed, even in high
turbulent wind conditions. Changes in pitch angles and in wind speed were applied,
and in both cases, the algorithm quickly converges to a new optimum, maintaining
performance.

In conclusion, the performance of datadriven repetitive individual pitch con
trol under realistic wind conditions was demonstrated for the first time. Based on
the results shown here, it can be concluded that SPRC is a very promising control
methodology to achieve a load reduction of turbine blades.
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Dynamic induction control

ἢ δοκοῦσί τί σοι τυφλῶν διαφέρειν ὁδὸν ὀρθῶς πορευομένων
οἱ ἄνευ νοῦ ἀληθές τι δοξάζοντες;

Or do you think that those who hold a correct opinion without understanding
differ noticeably from blind men who go the right way?

– Socrates, as quoted by Plato,
on the importance of solid argumentation.

As wind turbines in a wind farm interact with each other, a control problem
arises that has been extensively studied in literature: how can we optimize
the power production of a wind farm as a whole? A traditional approach
to this problem is called induction control, in which the power capture of an
upstream turbine is lowered for the benefit of downstream machines. In re
cent simulation studies, an alternative approach, where the induction factor
is varied over time, has shown promising results. In this chapter, the poten
tial of this Dynamic Induction Control (DIC) approach is further investigated.
Only periodic variations, where the input is a sinusoid, are studied. A proof
of concept for this periodic DIC approach is given by execution of scaled wind
tunnel experiments, showing for the first time that this approach can yield
power gains in realworld wind farms. Furthermore, the effects on the Dam
age Equivalent Loads (DEL) of the turbine are evaluated in a simulation en
vironment. These indicate that the increase in DEL on the excited turbine is
limited.



The contents of this chapter have been published as a peerreviewed research paper in the Wind Energy
Science journal:

J.A. Frederik, R. Weber, S. Cacciola, F. Campagnolo, A. Croce, C. Bottasso and J.W. van Wingerden,
Periodic dynamic induction control of wind farms: proving the potential in simulations and wind tunnel
experiments, Wind Energy Science 5(1) 245 (2020).

http://dx.doi.org/10.1002/we.2513
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3.1. Introduction

T he interaction between wind turbines in a wind farm through their wake is
a field of research as old as wind farms themselves. The wake of a turbine
has a wind field with a lower velocity and a higher Turbulence Intensity (TI),

resulting in a lower power production and higher relative loads for downstream
turbines. To exploit this interaction between turbines, induction control (sometimes
called ”derating”), with induction defined as the inwake speed deficit, has been a
popular research topic in recent years. The concept of this control approach is
schematically shown in Fig. 3.1. Despite initial promising results (Marden et al.,
2013; Gebraad et al., 2013), recent studies indicate that the power gain that can be
achieved with steadystate induction control is limited to nonexisting (Campagnolo
et al., 2016b; Nilsson et al., 2015; Annoni et al., 2016).

An alternative approach, first mentioned in Westergaard (2013), is to actively
manipulate wake recovery. Recent simulation studies (Goit and Meyers, 2015;
Munters and Meyers, 2017) have shown that socalled Dynamic Induction Control
(DIC) improves the power production in small to mediumsized wind farms. This ap
proach, where the induction factor is varied over time, generates a turbulent wind
flow that enables enhanced wake recovery. Consequently, downstream turbines
compensate for the power loss of the upstream turbine, leading to a higher overall
power production of the wind farm. In Munters and Meyers (2017), the optimal
dynamic control inputs are found using a computationally expensive adjointbased
Model Predictive Control (MPC) approach. The thrust coefficient 𝐶′𝑇 of each turbine
is used as the control input. This input is only constrained by different wind turbine
response times 𝜏 and maximum allowable thrust coefficient settings 𝐶′max𝑇 , resulting

Figure 3.1: A schematic representation of a wind turbine in a flow field, showing the working principles
of static (left) and dynamic induction control (right). On the top, the turbine is simplified as a rotor disk,
and its streamtube  the area where the wind speed is affected by the turbine settings  is depicted.
The force 𝐹𝑇 exerted on the wind is shown for different induction settings 𝑎, where red depicts ”greedy”
settings that result in optimal single turbine power capture (𝑎 = 1/3). The orange (𝑎 ≈ 0.3) and yellow
(𝑎 ≈ 0.25) lines depict arbitrary static derating settings that can be achieved by changing either the
generator torque or the collective pitch angles of the turbine. The green lines represent periodic DIC.
The bottom figures show the corresponding wind velocity profiles, with respect to inflow velocity 𝑈∞, as
a function of the distance from the turbine. The area highlighted in blue is where a downstream turbine
is typically located.
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in nonsmooth control signals.
In Munters and Meyers (2018a), a simpler approach is suggested: the induction

variation is limited to a sinusoidal signal implemented on an actuator disk. This
approach is here dubbed periodic DIC. A grid search with different amplitudes and
frequencies is performed to find the periodic dynamic signal that results in the
maximum energy extraction in a highfidelity simulation environment. The effect of
this approach on the streamtube and downstream wind velocity is shown in Fig. 3.1.
It should be noted that the applied excitation is very lowfrequent.

However, no experiments have yet been executed that validate this approach
on actual, either scaled or fullsized, wind turbines. Furthermore, the effects of DIC
on the loads of the turbines are yet to be evaluated. This chapter aims to bridge
this knowledge gap by executing a thorough evaluation of DIC both in simulation
environments and in wind tunnel experiments. The effects of DIC on the loads
on turbine level are evaluated using the aeroelastic tool CpLambda (Code for
Performance, Loads, Aeroelasticity by MultiBody Dynamic Analysis, see Bottasso
and Croce (2018); Bottasso et al. (2006)). For the wind tunnel experiments, the
Atmospheric Boundary Layer (ABL) wind tunnel of the Politecnico di Milano (Polimi)
is used (Bottasso et al., 2014). Three G1 scaled turbine models, which have a rotor
diameter of 1.1m and are developed by the Technical University of Munich (TUM)
(Campagnolo et al., 2016a,b,c), are used.

To verify the validity of the periodic dynamic induction approach for fast wake
recovery in a wind farm, a number of wind tunnel experiments in both low and
high Turbulence Intensity (TI) conditions are executed. All experiments are exe
cuted at a belowrated wind speed, i.e., in operating region II. The effect of varying
the amplitude and frequency of the signals is studied, and the performance of this
approach is compared with stateoftheart wind farm power maximization control
strategies. As comparison cases, static induction control and wake redirection con
trol (Fleming et al., 2014), where upstream turbines are yawed with respect to the
wind direction to redirect the wake away from downstream machines, are imple
mented in the wind tunnel. A positive result in these experiments would be an
important step towards proving the validity of this approach in real wind farms.

The structure of this chapter is as follows: in Section 3.2, the DIC strategy
is explained. Sections 3.3 and 3.4 elaborate on the simulation environment and
the experimental setup, respectively. In Section 3.5, the simulation results are
presented, followed by the experimental results obtained in the wind tunnel in
Section 3.6. Finally, the conclusions are drawn in Section 3.7.

3.2. Control Strategy

I n this section, the strategy behind dynamic induction control is discussed shortly.
As mentioned in the introduction, the approach presented in Munters and Mey
ers (2018a) is used as a basis for this chapter: the thrust force of the upstream

wind turbine is excited to induce wake mixing, in order for downstream turbines to
increase their power capture. It is shown that the amplitude and frequency of a
sinusoid determine the overall power production. The optimum found in here is a
Strouhal number of 𝑆𝑡 = 0.25, with an amplitude of the diskbased thrust coefficient



3.2. Control Strategy

3

47

𝐶′𝑇 = 1.5. The Strouhal number is defined as 𝑆𝑡 = 𝑓𝐷/𝑈∞ for a given frequency 𝑓,
rotor diameter 𝐷 and inflow velocity 𝑈∞, while 𝐶′𝑇 = 4𝑎/(1 − 𝑎), with 𝑎 the axial
induction factor (Goit and Meyers, 2015). This diskbased thrust coefficient relates
to the thrust coefficient 𝐶𝑇 as 𝐶𝑇 = 𝐶′𝑇(1 − 𝑎)2. For the G1 models (rotor diameter
𝐷 = 1.1m) and an inflow velocity of 5.65ms−1, this Strouhal number would result
in an excitation frequency of approximately 1.3Hz.

However, there are some fundamental differences between Munters and Meyers
(2018a). First of all, due to the size of the wind tunnel (see Section 3.4), a 3turbine
wind farm is the deepest possible array configuration. The amplitude and frequency
ranges were slightly reduced due to limits on the available time in the wind tunnel.
Furthermore, the number of experiments executed in this chapter is slightly lower.
The amplitudes and frequencies for the wind tunnel experiments are chosen such
that sufficient data points can be investigated around the optimum found in Munters
and Meyers (2018a). For the aeroelastic simulations, three different frequency
points are evaluated to demonstrate the effect on the turbine loads. Finally, a
method should be found to vary the thrust coefficient of a real (scaled) wind turbine.
The thrust coefficient can be manipulated by varying either the collective pitch angle
or the generator torque of the turbine. Of these two, the former approach is the
most straightforward and easy to implement. Therefore, the collective pitch angle
𝛽 of the upstream model was excited periodically. This results in a slightly different
thrust signal, as shown in Fig. 3.2, but simulations show that the difference in
output for these input signals is limited. All these differences are summarized in
Table 3.1

For the tests performed within the research described in this chapter, the stan
dard power controller was augmented in order to enable the rotor thrust coeffi
cients following a specific sine wave function. However, there is not a unique way
of achieving this goal, since a specific thrust coefficient 𝐶𝑇(𝜆, 𝛽) can be obtained by

Figure 3.2: Values of 𝐶𝑇 for different types of input signals, created using a lookup table of the G1
turbine model. The thrust coefficient is shown for three different sinusoidal excitations: on 𝐶𝑇, on 𝐶′𝑇
and on the collective pitch angle 𝛽, tuned such that the amplitude of 𝐶′𝑇 is 1.5. The dashed line shows
the steadystate optimal 𝐶𝑇.
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Table 3.1: Differences between the approach in Munters and Meyers (2018a) and both the simulations
and wind tunnel experiments presented in this chapter. The number of experiments executed here is
slightly lower. As a result, choices are made with regards to the excitation amplitudes and frequencies
that have been investigated.

Munters et al Simulations Experiments
Layout 4 turbines in a row Single turbine 3 turbines in a row

Environment LES code Aeroelastic code Wind tunnel experiments
Control input Sinusoid on 𝐶′𝑇 Sinusoid on 𝛽 Sinusoid on 𝛽

Amplitude of pitch excitation N/A 2 1.7, 2.8, 5
Amplitude of 𝐶′𝑇 excitation 0.5, 1, 1.5, 2 1 1, 1.5, 2

Number of frequency data points 12 3 8
Frequency range in 𝑆𝑡 [] [0.05, 0.6] [0.3, 0.5] [0.09, 0.41]

operating at different combinations of tipspeedratio 𝜆 and blade pitch 𝛽. In turn,
the tip speed ratio can be varied either by changing the reference followed by the
generator torque or changing the blade pitch. In this chapter, a strategy that only
changes the blade collective pitch is adopted. The implementation of this strategy
simply requires changing the collective fine pitch at which the model blades are set
when the machine operates in partial load conditions (region II). The fine pitch was
tuned experimentally, by means of a trial and error procedure conducted with a
standalone model, to achieving the desired mean �̄�𝑇 and amplitude 𝐴 as reported
in Table 3.2. The effects of these control actions in terms of impacts on the power
output of the 3turbine wind farm are discussed in Section 3.6.

Finally, the performance of periodic DIC as a wind farm power maximization
strategy is evaluated. To achieve this, a comparison is made with wind farm power
maximization approaches that have already been investigated more extensively in
literature:

• Greedy control: all turbines operate at their individual optimum, disregarding
wake interaction between turbines. This means that all turbine have an in
duction factor of 𝑎 = 1/3 (or a thrust coefficient of 𝐶𝑇 = 8/9 or 𝐶′𝑇 = 2) and
a yaw angle of 0 degrees with respect to the wind direction.

• Static induction control (also called derating control): the induction settings
of upstream turbines are manipulated such that the wind farm power capture
can be maximized. In this chapter, the induction factor is controlled by means
of the collective pitch angles of the (upstream) turbines, although using the

Table 3.2: Average �̄�𝑇 and amplitude 𝐴𝐶𝑇 of the three different thrust coefficient oscillations whose
results are discussed in Section 3.6, as well as the mean pitch angle average �̄� and amplitude 𝐴𝛽 used
to achieve these signals. Note that, as explained in Section 3.2, these collective pitch settings are not
identical for different frequencies. Instead, they are tuned such that the mean and amplitude of 𝐶𝑇 as
given below are followed as accurately as possible.

Amplitude 𝐶′𝑇 �̄�𝑇 [] 𝐴𝐶𝑇 [] �̄� [deg] 𝐴𝛽 [deg]
𝐴 = 1 0.8 0.17 0.7 1.7
𝐴 = 1.5 0.7 0.3 1.8 2.8
𝐴 = 2 0.5 0.5 4 5
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generator torque is also an option. This strategy has been a popular research
topic in recent years, and has shown both promising (Marden et al., 2013;
Gebraad et al., 2013) and inconclusive (Campagnolo et al., 2016b; Nilsson
et al., 2015; Annoni et al., 2016) results.

• Yaw control (also called wake redirection control): upstream turbines are
yawed with respect to the wind direction such that the wake is steered away
from downstream machines. For this approach, the control inputs are the
yaw angles of the (upstream) turbines with respect to the wind. Yaw control
has been demonstrated to effectively increase the wind farm power capture
in wind tunnel experiments (Campagnolo et al., 2016a) and fullscale experi
ments (Fleming et al., 2017; Howland et al., 2019).

The control inputs that lead to the highest power capture are found using the
static FLOw Redirection and Induction in Steadystate (FLORIS) model (Annoni
et al., 2018; Doekemeijer and Storm, 2018). This parametric model is calibrated
with wind tunnel measurements, as described in Schreiber et al. (2017). The con
trol settings are then implemented on the same wind farm setup in the wind tunnel
such that a fair comparison can be made. In Section 3.6, the results of these ex
periments are evaluated.

3.3. Simulation environment

I n order to evaluate the effect of DIC on turbine level, the aeroelastic tool Cp
Lambda (Code for Performance, Loads, Aeroelasticity by MultiBody Dynamics
Analysis, see Bottasso and Croce (2018); Bottasso et al. (2006)) has been used.

This software is an aeroelastic code based on finite element multibody formulation,
which implements a geometrically exact nonlinear beam formulation (Bauchau,
2011) to model flexible elements such as blade, tower, shaft and drive train. The
generatordrive train model can include speeddependent mechanical losses. The
rotor aerodynamics are modelled via Blade Element Momentum (BEM) theory or a
dynamic inflow model, and may consider corrections related to hub and tiplosses,
tower shadow, unsteadiness and dynamic stall, whereas lifting lines can be attached
to both tower and nacelle to model the related aerodynamic loads.

For the fatigue analysis, the model of a 5 MW reference wind turbine developed
by the National Renewable Energy Laboratory (NREL) was considered (Jonkman
et al., 2009). This reference NREL 5 MW wind turbine, with a 126 m rotor di
ameter and a rated wind speed of 11.4 ms−1, is a wellknown model, widely ana
lyzed in literature and able to represent modern and already working wind turbines.
Each blade is discretized with 30 cubic finite elements, the tower with 20 cubic ele
ments. Additionally, pitch and torque actuators are modeled respectively as second
and first order systems and the model is completed by a standard Proportional
IntegralDerivative (PID) controller (Jonkman et al., 2009). Finally, 10minute wind
time histories of turbulence class “A”, according to Design Load Case (DLC) 1.1 of
IEC 614001 (2004), generated by the software TurbSim (Jonkman and Buhl Jr.,
2006), were given as input to the aeroelastic solver.
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3.4. Experimental Setup

T he experimental results presented in this chapter were gathered by perform
ing dedicated tests within the wind tunnel of the Politecnico di Milano (Polimi),
which is a closedreturn configuration facility arranged in a vertical layout and

equipped with two test rooms. A detailed description of the facility can be found
in Bottasso et al. (2014). The tests were performed within the boundary layer test
section, which has been conceived for civil, environmental and wind energy applica
tions. This section has a large crosssectional area of 13.84× 3.84m, which allows
for low blockage effects even with several relatively large turbine models installed
within the test section.

Roughness elements located on the floor and turbulence generators placed at
the chamber inlet are commonly used to mimic the atmospheric boundary layer to
scale in terms of vertical shear and turbulence spectrum. During the experiments
described later on, two boundary layer configurations were used: one generating
low turbulent (lowTI) and one generating highly turbulent (highTI) flow condi
tions. These conditions roughly correspond to off and onshore operation respec
tively. The flow characteristics are shown in Fig. 3.3 together with the extension of
the model’s rotor disk along the vertical axis. The coefficients of the verticalshear
exponential law, shown in the same picture, that best fit the experimental data are
0.144 and 0.214 for the lowTI and highTI cases, respectively.

3.4.1. Wind turbine models
Three G1 scaled wind turbine models, developed at the Technical University of Mu
nich (TUM), were used to perform the experiments reported in this chapter. This
model type was widely employed and described in detail in previous research (Cam
pagnolo et al., 2016a,b,c) and is shown within the boundary layer test section of

Figure 3.3: Vertical wind speed profile (left) and turbulence intensity (right) as a function of height
above the tunnel floor, for low (lowTI) and high (HighTI) turbulence experiments.
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Figure 3.4: A G1 scaled wind turbine model within the wind tunnel of the Politecnico di Milano. The
yellow and red arrows show the pitch and yaw control possibilities respectively. The yellow spires and
bricks in front of the model create the highTI flow conditions.

Figure 3.5: A schematic top view of the wind farm setup in the wind tunnel. The pitot tube (PT), which
measures the inflow velocity, is located 2 rotor diameters 𝐷 in front of Turbine 1 (T1). The spacing
between the turbines is 5𝐷 and the wind flows from left to right.

the Polimi wind tunnel in Fig. 3.4. The setup of the turbines in the tunnel is shown
in Figure 3.5.

With a rotor diameter of 𝐷 = 1.1m and a rated rotor speed of 850 rpm, the model
was designed to have a realistic energy conversion process and wake behavior: it
exhibits a power coefficient 𝐶𝑃 ≈ 0.41 and a thrust coefficient 𝐶𝑇 ≈ 0.81 for a tip
speed ratio 𝜆 ≈ 8.2 and a blade pitch 𝛽 ≈ 0.4∘.

The turbine is actively controlled with individual pitch, torque and yaw actuators
and features comprehensive onboard sensorization. Three individual pitch actua
tors and connected positioning controllers allow for an overall accuracy of the pitch
system of 0.1 degrees for each blade and the ability to oscillate the blade pitch
with an amplitude of 5 degrees at 15Hz around any desired pitch angle. Strain
gauges are installed on the shaft to measure bending and aerodynamic torsional
loads, as well as at the tower foot to measure foreaft and sideside bending mo
ments. A pitot tube, placed three rotor diameters upstream of the first turbine
model, provides measurements of the undisturbed wind speed at hub height. Fi
nally, air pressure, temperature and humidity transducers allow for measurements
of the air density within the test section. The measurements of these sensors are
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used to determine the performance of the turbine models. The thrust coefficient
is obtained using measurements of the pitot tube wind speed measurement and
foreaft bending moment, while correcting for the effects of the tower and nacelle
drag.

3.4.2. Control system
For each wind turbine model, control algorithms are implemented on a realtime
modular Bachmann M1 system. Demanded values (e.g., pitch angle or yaw angle
references) are then sent to the actuators, where the low level control is performed.
Torque signals, shaft bending moments and rotor azimuth position are recorded
with a sampling rate of 2.5 kHz, while all other measurements are acquired with
a sampling rate of 250Hz. A standard power controller is implemented on each
M1 system based on Bossanyi (2000), with two distinct control regions. Below
rated wind speed, blade pitch angles are kept constant, while the generator torque
reference follows a function of the rotor speed with the goal of maximizing the
energy extraction. Above rated wind speed, the generator torque is kept constant
and a ProportionalIntegral (PI) controller adjusts the collective pitch of the blades
in order to keep the generated power at the desired level. All experiments presented
in this work are performed below rated wind speed.

3.5. Simulation Results

T o evaluate the effects of DIC on the loads of the excited turbine, a full set of
aeroelastic turbulent simulations (DLC 1.1) has been executed. These anal
yses have been conducted on the NREL 5 MW wind turbine with the main

goal of quantifying the effect of this DIC on the fatigue loads. Force and moment
sensors have been placed on the main components of the wind turbine, such as:
tower base and tower top, blade root, hub and drive train. The results presented
in the next sections focus on the main sensors, such as the blade root flap and
edgewise bending moments, tower base foreaft bending and hub torsional mo
ments, as well as some controller data (blade pitch and rotor speed), that highlight
the effects of the controllers.

DIC was assumed to be activated for wind speeds between 3 and 25 ms−1, to
cover the totality of regions I1/2, II, II1/2 and III. Notice that 25 ms−1 seems
a rather high speed, considering the fact that so far, the effectiveness of DIC has
only been evaluated in region II. In region III, the lower rotor inductions (i.e a
lower inwake speed deficit) may guarantee, together with the high inflow velocity,
the full power region for the downwind rotor(s). Nevertheless, in the 10minute
simulation, the high turbulence intensity (class ”A”) causes a relatively long period
where the mean wind speed is below the rated one and hence DIC may have an
important effect on the wake. From this point of view, extending the authority of
DIC up to 25 ms−1 is to be regarded as a conservative choice. For clarity, the rated
wind speed of 11.4ms−1 is shown in the figures showing the DELs at different mean
wind speeds.

Strouhal numbers of 𝑆𝑡 = [0.3, 0.4, 0.5] and a pitch amplitude 𝛽DIC = 2∘ were
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Figure 3.6: Comparison of pitch activity (left), rotor speed (middle) and power (right) between baseline
(solid red) and DIC controlled with 𝑆𝑡 = 0.4 (dashdotted blue) and 𝑆𝑡 = 0.5 (dashed yellow) turbine
for NTM class “A” at 9 ms−1.

used in the aeroelastic simulations of the 5 MW turbine. Considering the diameter of
this wind turbine model (126 m), the frequency of DIC 𝑓DIC is between 6.94⋅10−3 Hz
at 3 ms−1 (and 𝑆𝑡 = 0.4) and 5.95⋅10−2 Hz at 15 ms−1 (and 𝑆𝑡 = 0.5), which
correspond to a period equal to between 105 and 16.8 s respectively.

Due to the relatively low excitation frequency, the baseline turbine control is
able to trim the machine without a significant additional effort or detrimental per
formance. Moreover, a coalescence between the DIC input frequency and turbine
vibratory modes is not to be expected, at least for onshore or offshore turbines
installed on rigid foundations.

Figure 3.6 shows an example of the time response of the machine with and
without DIC. These simulations have been performed with a Normal Turbulence
Model (NTM) of classA wind (IEC 614001, 2004) with a mean hub wind speed of
9 ms−1, generated with TurbSim (Jonkman and Buhl Jr., 2006). In these condi
tions, the wind turbine baseline control switches between region II, II1/2 and III.
The figure shows the baseline condition, i.e., the one without the DIC controller,
and two simulations with Strouhal number 𝑆𝑡 = 0.4 and 𝑆𝑡 = 0.5. The plot on the
left refers to the pitch activity, the plot in the middle to the rotor speed and the plot
on the right to the power. The collective pitch angle time histories show the DIC
activity superimposed to the trimpitch. As can be seen, the rotor speed and power
production with DIC active behave very similar to that of the baseline case (solid
lines), showing that the addition of the periodic pitch motion is not detrimental in
terms of trimmer performance.

Figure 3.7 shows the power spectral density (PSD) of the rotor speed (left) and
blade root flapwise bending moment with a NTM at 15 ms−1, again for the baseline
case (solidred) and for DIC with Strouhal numbers 𝑆𝑡 = 0.4 and 𝑆𝑡 = 0.5. Both
figures show a new frequency corresponding to the DIC excitation. This peak is far
from the other aeroelastic frequencies of the wind turbine (the first being the tower
foreaft at 𝑓 = 0.31𝐻𝑧), but may have an important role on the fatigue loads.

From the 10minute simulations computed according to DLC 1.1 of IEC 614001
(2004), the stochastic time histories of the wind turbine loads are converted into
simplified DELs through a rainflow analysis and depicted in Fig. 3.8 and 3.9 as a
function of the mean wind speed. These figures show that DELs computed for the
baseline case are almost always lower compared to when DIC is active, as would



3

54 3. Dynamic induction control

Figure 3.7: PSD comparison of the rotor speed (left) and blade root flapwise bending moment (right)
between baseline (solid red) and DIC controlled with 𝑆𝑡 = 0.4 (dashdotted blue) and 𝑆𝑡 = 0.5 (dashed
yellow) turbine for NTM class “A” at 15 ms−1.

be expected based on Fig. 3.7. For each mean wind speed, the DIC frequencies
correspond to Strouhal numbers 0.4 and 0.5. In these figures, DIC was always
active, even for high wind speed values close to the cutout. As a result, the baseline
curves are always lower than the controlled curves. For clarity, the rated wind speed
of 11.4ms−1 is also shown in the figures. As can be seen, the tower base foreaft
bending moment and the blade root flapwise are affected the most by this controller.
As expected, the blade edgewise bending moment is only slightly affected, since
the DEL in edgewise direction is mainly driven by gravity.

In order to have a more comprehensive indication about the impact of DIC on
fatigue loads, one can consider the Weibullweighted DELs, i.e., the DELs weighted
throughout the probability distribution of the wind as expressed by the Weibull
distribution 𝑝𝑤(𝑉)

𝑝𝑤(𝑉) = 𝑘
𝑉(𝑘−1)
𝐶𝑘 e−(

𝑉
𝐶 )
𝑘
, (3.1)

where 𝑘 is the shape parameter and 𝐶 = 2𝑉av/√𝜋 the scale factor and 𝑉av the
average wind speed.

The Weibullweighted DEL, DEL𝑤, is hence computed as

DEL𝑤 = ∫
𝑉CO

𝑉CI
𝑝𝑤(𝑉)DEL d𝑉, (3.2)

where 𝑉CI and 𝑉C0 are respectively the cutin and cutout wind speed.
Considering the class ”A”, where the Weibull distribution has 𝑘 = 2 and 𝑉av =

10 ms−1, it is possible to compute the Weibullweighted DELs for the previously
considered loads. To this aim, as discussed before, DIC would normally be deacti
vated for wind speeds higher than 15ms−1. Therefore, in the second part of region
III (from 17ms−1 to 25ms−1), the DELs would normally be equal to the baseline



3.5. Simulation Results

3

55

Figure 3.8: Comparison between blade root flapwise (left) and edgewise (right) DEL of the baseline
(solid red) and DIC with 𝑆𝑡 = 0.4 (dashdotted blue) and 𝑆𝑡 = 0.5 (dashed yellow) as functions of mean
wind speed. The dashed yellow line indicates the rated wind velocity. Typically, DIC is only implemented
at belowrated inflow velocities.

Figure 3.9: Comparison between tower base foreaft bending moment (left) and hub torsional moment
(right) DEL of the baseline (solid red) and DIC with 𝑆𝑡 = 0.4 (dashdotted blue) and 𝑆𝑡 = 0.5 (dashed
yellow) as functions of mean wind speed. The dashed yellow line indicates the rated wind velocity.
Typically, DIC is only implemented at belowrated inflow velocities.

Table 3.3: Percentage increases of the Weibullweighted DELs and AEP (from 3ms−1 to 25ms−1) of the
excited turbine compared to the baseline for different Strouhal numbers. DIC is deactivated for wind
speeds higher than 15ms−1.

Blade Edgewise Blade Flapwise Tower Foreaft Hub Torsion AEP
𝑆𝑡 = 0.3 +0.21% +2.66% + 7.06% +0.94% 0.46%
𝑆𝑡 = 0.4 +0.40% +1.80% + 7.26% +1.67% 0.54%
𝑆𝑡 = 0.5 +0.41% +4.92% +11.78% +1.80% 0.59%
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values. The Weibullweighted DELs, computed as discussed in full operating region
(from 3ms−1 to 25ms−1) together with the corresponding Annual Energy Produc
tion (AEP), are summarized in Table 3.3. As can be seen, the tower base load is
affected the most (7 to 11%), while loads on the blade flapwise root loads increase
with about 2%. A negligible impact is found in the blade edgewise (+0.4%) and
in the hub (1 to 2%).

It is important to stress that, so far, the analyses have not considered the prob
ability of activation of the DICbased wind farm control, which depends on the
specific farm layout and wind rose. From this point of view, the computed DEL
increments seen before, as well as the AEP decrease, are to be considered as the
worst possible case, as if DIC would always be implemented regardless of wind
direction and subsequent wake interaction. It is therefore possible to assess that
the impact of DIC on turbine fatigue loads for the analyzed NREL 5 MW reference
machine is small compared to the possible gains.

3.6. Experimental Results

I n this section, the results of the experiments executed in the wind tunnel at
Polimi, as described in Section 3.4, are presented. The effects of periodic DIC
on the power production of a 3turbine wind farm are presented for two cases,

similar to onshore and offshore wind conditions. The performance of DIC is com
pared with the stateoftheart wind farm control strategies: greedy control, ”static”
induction control and wake redirection control.

3.6.1. Power production
First, the results with low turbulent wind (TI of approximately 5%) are evaluated.
For this case, 3 different sets of experiments have been conducted, as defined in
Table 3.2. These sets each represent one specific amplitude of excitation of the
upstream machine: an amplitude of 𝐴 = 1, 1.5 and 2 of 𝐶′𝑇 respectively. All other
machines operate at their greedy optimum.

Figure 3.10 shows the mean power of the turbines and the total wind farm. To
account for the small variations in flow conditions, the power is divided by the avail
able power in the wind. As such, these values can be seen as power coefficients.
Increasing the amplitude of the sinus decreases the power coefficient of turbine 1,
while it increases the power coefficient of the downstream machines. However, for
higher 𝐴, the loss at turbine 1 is too significant to compensate for by the down
stream turbines. The unexpectedly high power loss at turbine 1 could partly be
caused by a rotor imbalance that is worsened by higher amplitudes of excitation,
leading to significant vibrations of the excited machine. As a result, the case with
the lowest amplitude proves to be the most effective.

The highest increase in power extraction is found with 𝐴 = 1 and 𝑆𝑡 = 0.32,
resulting in a 2.4% gain. It should be noted that this gain is mostly obtained at
turbine 2, while the power at turbine 3 is only marginally higher than in the baseline
case. This corresponds to the conclusions drawn in Munters and Meyers (2018a),
where a positive effect is observed for turbine 2, but not for machines further
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Figure 3.10: �̄�𝑃 of the wind farm in low TI conditions for different amplitudes 𝐴 of 𝐶′𝑇, as defined in
Table 3.2. The bottom right figure shows the total power conversion compared to the baseline case.

downstream. Table 3.4 gives an overview of the effect of different amplitudes and
frequencies on the power production of the 3turbine model wind farm.

For the sake of reproducibility, Fig. 3.11 shows the measurements of thrust
coefficients 𝐶𝑇 and 𝐶′𝑇, as well as the pitch signal and rotor speed during 10 s of
experiments in the optimal control settings (𝑆𝑡 = 0.32, 𝐴 = 1). It should be noted
that the thrust coefficient is obtained by using the definition

𝐶𝑇 =
𝐹𝑇

0.5𝜌𝐴𝑟𝑈2∞
, (3.3)

where 𝐹𝑇 is the thrust exerted on the rotor by the wind, 𝜌 the air density, 𝐴𝑟
the rotor area and 𝑈∞ the inflow wind velocity. 𝐹𝑇 is determined using the foreaft
bending moment, compensating for tower and nacelle drag, and the pitot measure
ments in front of turbine 1 (see Fig. 3.5) are used as data for 𝑈∞. This results in
a 𝐶𝑇signal disturbed by high frequency noise. For this purpose, a lowpass filter
with a passband frequency of 12.5Hz was designed. This filter removes the high
frequency noise signals, while keeping the excitations caused by DIC (at 𝑓 ≤ 2.3Hz)

Table 3.4: An overview of the total power increase with respect to the baseline case by applying dynamic
induction control with different amplitudes (𝐴, rows) and frequencies (columns) for the low TI case. In
bold are the experiments that lead to the highest power capture for each amplitude, showing an optimum
around 𝑆𝑡 = 0.28.

Frequency [Hz] 0.5 0.8 1 1.3 1.6 1.8 2.1 2.3
Strouhal [] 0.09 0.14 0.18 0.23 0.28 0.32 0.37 0.41
𝐴 = 1.0 0.04% 0.24% +2.20% +1.30% +1.6% +2.4% +2.3% +1.2%
𝐴 = 1.5 3.92% 1.44% 0.27% +0.20% +1.3% +1.0% 0.20% 0.92%
𝐴 = 2.0 11.76% 9.89% 7.97% 6.61% 7.30% 7.41% 9.09% 8.80%
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intact. Furthermore, a sinusoid is fitted on the measurement data using the MATLAB
function lsqcurvefit. This function determines the amplitude, offset and phase
of the sinusoid that best fit the data. The original data, filtered data and fitted
sinusoid are all shown in Fig. 3.11. Finally, the pitch excitation and rotor speed
are depicted, the latter clearly showing oscillations caused by DIC. However, these
oscillations are relatively small compared to variations caused by changing wind
conditions, as the baseline rotor speed shows.

Finally, the reliability of these results are examined. To do this, the results are
divided into four segments of 60 seconds. These shorter segments of measure
ments, still containing 15000 measurement points and between 30 (0.5Hz) and
138 (2.3Hz) sine cycles, are then used to determine the variance of the measure
ments.

Figure 3.12 shows box plots of these data sets for 𝐴 = 1, normalized by the
steady state optimal 𝐶𝑃 of turbine 1. This figure shows that the variance becomes
larger at each downstream row due to the increased turbulence. As a result, the
variance is significant in the total power production: up to ±2% of the power.
However, this figure also shows that the variance is lower than the power gained
by using dynamic induction control: the lowest values of the box plot around the
optimal frequency of 1.8Hz are still higher than the baseline value. This analysis
therefore indicates that the power increase is significant, as it is not a coincidental
result of measurement errors.

Next, the results of the experiments with high turbulence intensity conditions
(TI of approximately 10%) are shown. The results for all the amplitudes and fre
quencies that were studied are shown in Fig. 3.13. The main conclusion that can be
drawn from this figure, is that the effect of exciting the first turbine on the power
production of this turbine is lower in these conditions. Due to the turbulence, the
baseline power production of this turbine is already slightly lower than in low TI

Figure 3.11: Clockwise, the measured 𝐶𝑇, 𝐶′𝑇, rotor speed and pitch angles of turbine 1 are shown
during 10 s of the optimal 𝑆𝑡 = 0.32, 𝐴 = 1 DIC experiments in low TI. In the first two figures, the
unfiltered data, lowpass filtered data and a best sinusoidal fit are shown. In the fourth figure, the rotor
speed during 10 s of the baseline experiment is shown for comparison.
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Figure 3.12: A boxplot showing the variance of the 𝐶𝑃 measurements for the low turbulent, 𝐶′𝑇 = 1
experiments, for all turbines individually as well as for the entire wind farm. The 𝑓 = 0 measurement
represents the baseline case of no dynamic control.

Figure 3.13: �̄�𝑃 of the wind farm for different amplitudes 𝐴 of 𝐶′𝑇, as defined in Table 3.2, in the high
TI case. The bottom right figure shows the total power conversion compared to the baseline case.

conditions. As a result, the power loss at turbine 1 is negligible for the 𝐴 = 1 case.
As the power gain at the downstream turbines is similar, the total power gain for
this case is 4%. This gain is found with 𝐴 = 1 and 𝑆𝑡 = 0.28, as can be seen in
Table 3.5 where the results are summarized.

When the amplitude of the excitation is increased, the power loss at turbine 1
is comparable with the results in low TI conditions. However, since the power gain
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Table 3.5: An overview of the total power increase by applying dynamic induction control with different
amplitudes (𝐴, rows) and frequencies (columns) for the high TI case.

Frequency [Hz] 0.5 0.8 1 1.3 1.6 1.8 2.1 2.3
Strouhal [] 0.09 0.14 0.18 0.23 0.28 0.32 0.37 0.41
𝐴 = 1.0 +1.4% +1.5% +2.4% +1.4% +4.0% +1.8% +0.8% +2.3%
𝐴 = 1.5 3.1% 1.8% 0.9% 0.8% 1.0% 2.3% 3.4% 3.6%
𝐴 = 2.0 8.9% 8.7% 5.2% 6.7% 7.7% 6.3% 8.0% 8.1%

at turbine 2 is slightly lower, the total power is also lower than in the baseline case.
Subsequently, it seems that the amplitude of the excitation is more important than
the frequency in these conditions.

3.6.2. Controller comparison
To emphasize the value of the results shown in the previous subsection, a com
parison of the effectiveness of the periodic DIC approach with stateoftheart wind
farm control approaches is executed in the case of full wake interaction. The optimal
inputs are found using the steadystate FLOw Redirection and Induction in Steady
state (FLORIS) model (Annoni et al., 2018; Doekemeijer and Storm, 2018), which
is calibrated using measurements from the wind tunnel (Schreiber et al., 2017). As
explained in Section 3.2, three different control strategies are implemented in the
wind tunnel: greedy control, static induction control and yaw control.

The results of these experiments are shown in Fig. 3.14. Similar to results in
literature (Campagnolo et al., 2016b), static induction control is found to be unable
to increase the power production of this wind farm. Yaw control on the other hand
results in a benefit of 3.1% As reported earlier, DIC was able to increase the power
production with 2.4% in these conditions. It can therefore be concluded that the
potential profit of periodic DIC is significantly higher than with static induction, while
it is comparable to that of yaw control when full wake interaction is present.

Figure 3.14: The power capture of three stateoftheart control approaches compared with periodic
DIC in low TI conditions. The power capture of the three individual turbines (T13), as well the total
Wind Farm (WF) is shown.
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3.7. Conclusions

T he effect of periodic Dynamic Induction Control (DIC) on both individual wind
turbines and on small wind farms is investigated in this chapter. To this pur
pose, both aeroelastic simulation tools and scaled wind tunnel experiments

are used. The unique wind tunnel experiments with DIC show, for the first time,
that this control approach not only works in a simulation environment, but also
in real world experiments. The results strengthen the results found in simulations
executed by Munters and Meyers (2018a), showing a potential increase in power
production of up to 4%, with most of the gain coming from the first downstream
turbine. Some minor differences were observed as well. First of all, the optimal
Strouhal number is found to be slightly higher in the wind tunnel experiments,
around 𝑆𝑡 = 0.3. Secondly, a smaller optimal amplitude of excitation was found.
This could partly be caused by a slight rotor imbalance, which resulted in significant
power losses at the excited turbine. Although higher gains were observed at turbine
2, the power loss of turbine 1 could not be compensated for at higher amplitudes
of excitation.

A comparison between DIC and static induction control as well as wake redirec
tion control shows that this approach works significantly better than the former and
approximately as good as the latter. This greatly strengthens the premise that DIC
is an effective method to increase the power production of a wind farm as a whole.
Furthermore, by means of the aeroelastic tool CpLambda, it was shown that the
effect of DIC on the Damage Equivalent Loads (DEL) of the excited wind turbine
is relatively small. For the given wind turbine example, the weighted blade root
edgewise DEL was in the order of 0.3 to 0.4% higher than in the baseline greedy
control case.

In all, it can be concluded that the dynamic induction control approach shows
great promise, as now both simulations and scaled experiments show that it is
possible to achieve a power gain. However, some minor differences are found
between simulation studies in literature and the experiments presented here, which
still need to be adressed. Future research can therefore be directed into clarifying
these differences, as well as executing additional experiments, for example with
different inflow velocities inside and outside the region II regime.

As the amplitude and frequency of the excitation are shown to be important
control parameters, it would be a very interesting challenge to develop an algorithm
that is able to optimize these parameters. Furthermore, additional analysis on the
increased loads on the (downstream) turbines can be done to investigate the effect
of these loads on the lifetime of turbines, as well as the tradeoff between power
and load effects. Another possible approach would be to investigate the effects
of applying periodic DIC on intermediate wind turbines on the performance of the
wind farm. Finally, application on fullscale wind turbines could be the last step in
proving the validity of this approach.





4
The helix approach

Veniet tempvs qvo posteri nostri
tam aperta nos nescisse mirentvr.

There comes a time when our descendants will be astonished
that we did not know things that are so straightforward to them.

– Lucius Annaeus Seneca the Younger,
on how scientific discoveries can seem obvious once revealed.

Wind farm control using dynamic concepts is a research topic that is receiv
ing an increasing amount of interest. The main concept of this approach is
that dynamic variations of the wind turbine control settings lead to higher
wake turbulence, and subsequently faster wake recovery due to increased
mixing. As a result, downstream turbines experience higher wind speeds,
thus increasing their energy capture. The current state of the art in dynamic
wind farm control is to vary the magnitude of the thrust force of an upstream
turbine. Although very effective, this approach also leads to increased power
and thrust variations, negatively impacting energy quality and fatigue load
ing. In this paper, a novel approach for the dynamic control of wind turbines
in a wind farm is proposed: using individual pitch control, the fixedframe tilt
and yaw moments on the turbine are varied, thus dynamically manipulat
ing the wake. This strategy is named the helix approach since the resulting
wake has a helical shape. Large eddy simulations of a twoturbinewind farm
show that the helix approach leads to enhanced wake mixing with minimal
power and thrust variations.



The contents of this chapter have been published as a peerreviewed research paper in the Wind Energy
journal:

J.A. Frederik, B.M. Doekemeijer, S.P. Mulders and J.W. van Wingerden, The helix approach: Using
dynamic individual pitch control to enhance wake mixing in wind farms, Wind Energy. 23(8) 1739
(2020).

http://dx.doi.org/10.1002/we.2513
http://dx.doi.org/10.1002/we.2513
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4.1. Introduction

T he interaction between wind turbines in a wind farm through their wakes is
a phenomenon that has been studied for decades (Lissaman, 1979; Jensen,
1983; Katic et al., 1987), and is still a relevant topic today (Bastankhah and

PortéAgel, 2016; Annoni et al., 2018). For the purpose of power maximization
and load minimization, this interaction can be manipulated using techniques from
the control engineering community. A comprehensive survey on wind farm mod
elling and control can be found in Boersma et al. (2017). In wind farm control, two
different approaches can be distinguished: induction control (sometimes called de
rating control) and wake redirection control (sometimes called wake steering). The
former approach uses the induction factor, i.e., the inwake velocity deficit, of the
turbines as control input, whereas the latter approach exploits the yaw angle of
turbines. Both approaches follow the same strategy: the upstream machines in a
wind turbine array lose power due to locally suboptimal induction or yaw settings,
and downstream machines experience higher wind speeds which increases their
power generation.

The examples of induction control and wake redirection control are plentiful.
Induction control has shown promising results in different simulation environments
using modelfree optimization (Marden et al., 2013; Ciri et al., 2017) or Model Pre
dictive Control (MPC) (Vali et al., 2016). However, recent studies with highfidelity
simulation models (Annoni et al., 2016), scaled wind tunnel experiments (Campag
nolo et al., 2016b) and fullscale experiments (van der Hoek et al., 2019) indicate
that the potential wind farm power gain of induction control is minor to nonexistent.
Therefore, the focus in the literature for power maximization in wind farms is shifted
towards wake redirection. Wake deflection through yaw is first modelled in Jiménez
et al. (2010), and is also investigated on fullscale turbines using lidar measure
ments (Raach et al., 2016). Both scaled wind tunnel experiments (Campagnolo
et al., 2016a) and fullscale tests (Fleming et al., 2017; Howland et al., 2019) indi
cate that this strategy can effectively increase the power generation of a wind farm.
All these references have in common that they focus on steadystate optimal con
trol of a wind farm. Therefore, timevarying control inputs that purposely influence
the inherently dynamic nature of the wind are disregarded.

To the best of the authors’ knowledge, the first mention of dynamic control being
used to increase the performance of wind farms is in an industrial patent (Wester
gaard, 2013). This patent describes different control methods involving either dy
namic induction, dynamic yawing or wake deformation through cyclic pitch signals.
What these control methods have in common, is that they aim to increase wake
mixing by changing the control inputs over time. Wake mixing is the phenomenon
where the wake interacts with the adjacent, higher velocity, freestream flow. As
a result, the wake recovers some of the energy extracted by the upstream turbine,
such that a downstream turbine experiences a higher wind velocity. However, only
the general idea is described; no experiments or simulations are performed, and
the effectiveness of these methods is not evaluated.

Recently, dynamic wind farm control has gained interest in the scientific field.
Dynamic Induction Control (DIC) specifically is a research topic that has seen a
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number of publications studying its potential in simulations (Munters and Meyers,
2016, 2017, 2018a) and in scaled wind tunnel experiments (see Chapter 3). To
enable practical implementation, the most recent papers focus on a smaller subset
of dynamic signals, namely sinusoidal signals (Munters and Meyers, 2018a). In
Munters and Meyers (2018a), a grid search is performed using Large Eddy Simula
tions (LES) to determine the amplitude and frequency of the sinusoidal excitation
that maximize the farmwide power generation. In Chapter 3, wind tunnel experi
ments are performed to validate this approach, showing positive results. A different
dynamic control approach is investigated using highfidelity simulations in Kimura
et al. (2019). Here, the yaw angle of a turbine is varied sinusoidally, such that
increased wake meandering is induced.

The abovementioned approaches do have an important drawback: because
of the varying induction factor or yaw angle signals of the upstream turbine, the
thrust force on the rotor varies significantly. As a result, this turbine experiences
substantial power and load fluctuations, which is disadvantageous from a power
quality perspective. In this chapter, a novel approach to dynamic wake mixing is
introduced, which is expected to lead to lower power and thrust variations. This
approach makes use of Individual Pitch Control (IPC), a procedure in which the
blade pitch angles of a wind turbine are controlled independently of each other.

IPC is a wellknown strategy in the wind turbine control community. It is usu
ally applied to alleviate periodic loads on turbines with minimal power loss, as first
proposed in Bossanyi (2003, 2005). Further research into load reducing IPC algo
rithms is still a relevant research direction, for example into using an azimuth offset
(Mulders et al., 2019) or implementing more advanced control strategies (see, e.g.,
Chapter 2). Research where IPC is used to increase the power generation of a
wind farm is limited. Experiments have been conducted where IPC is used for wake
steering (Fleming et al., 2014) or power maximization in case of partial wake over
lap (Fleming et al., 2015). However, the results were inconclusive and no further
research has been published since.

In this chapter, wake steering through individual pitch control is combined with
the concept of dynamic wind farm control to forge a novel approach. This approach,
called Dynamic IPC (DIPC), uses the MultiBlade Coordinate (MBC) transformations
to vary the tilt and yaw moments on the rotor. Thus, the wake is manipulated,
slowly varying its direction over time. This is hypothesized to result in enhanced
wake mixing, such that downstream turbines in a wind turbine array can increase
their power generation with minimal rotor thrust fluctuations. A patent by the
authors describing this concept is pending (van Wingerden et al., 2019).

The main contributions of this chapter are threefold. First of all, the novel DIPC
approach is described. Secondly, a specific DIPC strategy called the helix approach
is defined, which dynamically moves the wake both horizontally and vertically. Fi
nally, the effectiveness of this helix approach is evaluated through highfidelity
simulations. These simulations are executed using the LES code called Simulator
for On/Offshore Wind Farm Applications (SOWFA, see Churchfield and Lee (2012)).
The effects of DIPC both on the wake and on a downstream turbine is investigated.
A thorough comparison is made with existing control strategies to evaluate the
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performance of DIPC.
This chapter is organized as follows: in Section 4.2, the simulation environment

is defined. Section 4.3 describes the working principles of DIPC in general and
the helix approach specifically. The potential of this approach as a wind farm con
trol approach is then demonstrated in Section 4.4 through highfidelity simulations.
Finally, conclusions are drawn and future work is discussed in Section 4.5.

4.2. Simulation Environment

T he proposed control strategy is evaluated in the Simulator fOr Wind Farm Ap
plications (SOWFA, see Churchfield and Lee (2012)), which is a highfidelity
simulation environment developed by the U.S. National Renewable Energy

Laboratory (NREL). SOWFA is a largeeddy solver for the fluid dynamics in the tur
bulent atmosphere. The interaction with one or multiple wind turbines, accounting
for the Coriolis force and Buoyancy effects, is included in SOWFA (Churchfield et al.,
2012). Turbines are modelled as actuator disks or actuator lines as demonstrated
in Sørensen and Shen (2002). The SOWFA source code was adapted to allow for
specifications of a different pitch setpoint for each individual blade, enabling the
implementation of Individual Pitch Control (IPC).

In this work, two different simulation cases are defined. First of all, wind with
a uniform inflow profile is used to demonstrate the working principles of Dynamic
IPC (DIPC). It is recognized that these conditions do not represent realistic working
conditions in an actual wind farm. However, due to the absence of turbulence,
these simulations are perfectly suited to visualize the effects of DIPC on the wake
of a turbine, as presented in Section 4.3.

The second simulation case employs more realistic wind conditions to evalu
ate the potential of Dynamic IPC. These simulations are of a neutral Atmospheric
Boundary Layer (ABL) in which the inflow was generated through a socalled precur
sor simulation. Several properties of both simulation setups are listed in Table 4.1.

Two different wind farm cases are investigated in these conditions. Firstly, sim
ulations with a single turbine, in which the effects on the turbine and wake are
investigated, have been exectuted. Then, a second turbine is added, to assess the
gain in energy capture that can be achieved with DIPC. The second turbine is situ
ated 5 rotor diameters (5𝐷) behind the upstream turbine, the same axial distance
as investigated in Chapter 3. All these results are presented in Section 4.4.

Table 4.1: Details on the numerical simulation scheme in SOWFA for uniform and turbulent flow simu
lations.

Case I: uniform flow Case II: turbulent flow
Turbine DTU 10MW (Bak et al., 2013) DTU 10MW (Bak et al., 2013)

Rotor diameter 178.3 m 178.3 m
Domain size 2.5 km × 1 km × 0.6 km 3 km × 3 km × 1 km

Cell size (outer region) 50m × 50m × 50m 10m × 10m × 10m
Cell size (near rotor) 3.125m × 3.125m × 3.125m 1.25m × 1.25m × 1.25m
Inflow wind speed 9.0m/s 9.0m/s

Inflow turbulence intensity 0.0% 5.0%
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4.3. Control Strategy

I n this section, the Dynamic Individual Pitch Control (DIPC) strategy is further
elaborated, as well as the already existing control strategies with which it is
compared. In Section 4.3.1, static induction strategies are explained, which

includes greedy control, where each turbine operates using its individual steady
state optimal settings. These strategies are currently the industry standard, and
commonly applied in actual wind farms. They therefore serve as a useful baseline
case for cutting edge control concepts such as periodic Dynamic Induction Control
(DIC) and the novel DIPC approach. Periodic DIC, as described in Chapter 3, is
shortly covered in Section 4.3.2, and Section 4.3.3 presents a thorough explanation
of the DIPC approach as proposed in this chapter.

4.3.1. Static Induction Control
Static Induction Control (SIC) is a generic term for all induction control strategies
that use timeinvariant control setpoints that depend on the inflow conditions. The
most simple static induction wind farm control strategy is to operate all turbines
at their individual (static) optimum for power generation. This approach is called
greedy control, as all turbines greedily extract as much power from the wind as
possible. As this approach is the simplest and most commonly applied, greedy
control is considered the baseline case in this chapter.

An alternative approach is to (statically) lower the induction factor, i.e., the
inwake velocity deficit, of upstream turbines such that downstream turbines can
increase their power capture. This has for long been the most popular concept in
wind farm control research, but recent studies show that the achievable gains with
respect to greedy control are minor to nonexistent (Annoni et al., 2016; Campag
nolo et al., 2016b; Nilsson et al., 2015). Nonetheless, SIC for power maximization
remains of interest to the industry. Hence, it is used as a comparison case in this
article to show the potential of DIPC.

4.3.2. Periodic Dynamic Induction Control
A recent research area of interest, as an alternative to SIC, is Dynamic Induction
Control (DIC). With this control method, the induction factor of an upstream tur
bine is varied over time to enhance wake mixing, such that downstream turbines
experience higher wind velocities and can subsequently increase their power gener
ation. Finding the optimal timevarying induction settings is a very complex control
problem (Munters and Meyers, 2017). A more practical approach is proposed in
Munters and Meyers (2018a), where sinusoidal input signals on the thrust force 𝐶′𝑇
are suggested. This method is called periodic DIC and is also used in this chapter.
It is shown to increase the power generation of small wind farms both in simulations
(Munters and Meyers, 2018a) and in wind tunnel experiments (see Chapter 3).

In Chapter 3, for reasons of practical implementation, a periodic excitation is
realized by superimposing a lowfrequent sinusoidal signal on the static collective
pitch angles of the turbine. This approach is also used in this chapter. As the control
signal is now confined to a sinusoid, the control parameters are reduced to the
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Figure 4.1: The average wake velocity at 3𝐷, 5𝐷 and 7𝐷 behind an DICexcited turbine with an pitch
amplitude of 4 degrees, for different Strouhal numbers 𝑆𝑡. The results are normalized with respect to
the baseline case.

amplitude and the frequency of excitation. The frequency is usually characterized
in terms of the dimensionless Strouhal number 𝑆𝑡:

𝑆𝑡 = 𝑓𝑒𝐷
𝑈∞

, (4.1)

where 𝑓𝑒 is the frequency [Hz], 𝐷 the rotor diameter [m] and 𝑈∞ the inflow velocity
[m/s]. As the Strouhal number is dimensionless, it accounts for different turbine
sizes or inflow velocities. In the abovementioned references, an optimal Strouhal
number of 𝑆𝑡 ≈ 0.25 is found. In this chapter, the 10MW reference turbine de
veloped by the Technical University of Denmark (DTU) is used (Bak et al., 2013)
(see Table 4.1). The dimensions of this turbine determine an excitation frequency
of 𝑓𝑒 = 0.0126Hz for an inflow velocity of 9m/s. To verify this optimal frequency,
an extensive evaluation is performed in SOWFA. A single DTU 10MW wind turbine
is placed in laminar flow conditions (see Table 4.1), and the velocity is measured
at integer multiples of the rotor diameters 𝐷 behind the turbine. The results are
presented in Figure 4.1 and show that for a distance ≥ 5𝐷, the optimum is indeed
around 𝑆𝑡 = 0.25. As a physical explanation for the optimal frequency is not yet
investigated, this excitation frequency was used in the simulations presented here.
To take into account the effect of different excitation amplitudes, two different DIC
cases are considered: a low amplitude case with a collective pitch amplitude of 2.5∘
and a high amplitude case of 4∘, respectively.

4.3.3. Dynamic Individual Pitch Control
In this section, the novel Dynamic Individual Pitch Control (DIPC) approach is de
scribed. The goal of this approach is to enhance wake mixing analogous to DIC, but
without the large fluctuations in thrust and power. To achieve this, the individual
pitch angles are altered in such a way that the wake behind the excited turbine is
manipulated dynamically.
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Fundamentally, DIPC works as follows. The individual blade pitch angles of the
turbine can be used to generate a directional moment on the rotor. Consequently,
the direction of the force vector exerted on the airflow can be manipulated. With
DIPC, the direction of this force vector is slowly varied, thereby continuously chang
ing the direction of the wake. This is expected to increase wake mixing without
significant variations in the magnitude of the rotor thrust force.

A directional thrust force can be accomplished by implementing the MultiBlade
Coordinate (MBC) transformation (Bir, 2008). This transformation decouples – or
stated differently: projects – the blade loads in a nonrotating reference frame. As
a result, the measured outofplane blade root bending moments 𝑀(𝑡) ∈ ℝ3 are
projected onto a nonrotating reference frame. For a threebladed turbine, the MBC
transformation is given as:

[
𝑀0(𝑡)
𝑀tilt(𝑡)
𝑀yaw(𝑡)

] = T(𝜓) [
𝑀1(𝑡)
𝑀2(𝑡)
𝑀3(𝑡)

]
⏝⎵⎵⏟⎵⎵⏝

𝑀(𝑡)

, (4.2)

with

T(𝜓) = 2
3 [

0.5 0.5 0.5
cos (𝜓1) cos (𝜓2) cos (𝜓3)
sin (𝜓1) sin (𝜓2) sin (𝜓3)

] ,

where 𝜓𝑏 is the azimuth angle for blade 𝑏, with 𝜓 = 0∘ indicating the vertical up
right position. The collective mode 𝑀0 represents the cumulative outofplane rotor
moment, and 𝑀tilt and 𝑀yaw represent the fixedframe and azimuthindependent
tilt and yawmoments, respectively.

In a similar fashion, the inverse MBC transformation can be used to obtain im
plementable pitch angles based on the fixedframe collective, tilt and yaw pitch
signals, 𝜃0, 𝜃tilt and 𝜃yaw, respectively:

[
𝜃1(𝑡)
𝜃2(𝑡)
𝜃3(𝑡)

]
⏝⎵⎵⏟⎵⎵⏝

𝜃(𝑡)

= T−1(𝜓) [
𝜃0(𝑡)
𝜃tilt(𝑡)
𝜃yaw(𝑡)

] , (4.3)

with

T−1(𝜓) = [
1 cos (𝜓1) sin (𝜓1)
1 cos (𝜓2) sin (𝜓2)
1 cos (𝜓3) sin (𝜓3)

] .

The concept of DIPC is to achieve a dynamically varying tilt and/or yaw mo
ment, such that the wake of the turbine is manipulated in vertical and/or horizontal
direction, respectively, over time. To give a proof of concept, a simple feedforward
strategy is implemented, where a sinusoidal excitation is superimposed on 𝜃tilt and
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Figure 4.2: A schematic representation of how the MBC transformation is used to achieve periodic yaw
and tilt moments on the turbine. Note that the pitch frequency 𝑓𝜃 is slightly different than the rotation
frequency 𝑓𝑟 due to excitation frequency 𝑓𝑒.

𝜃yaw, as shown in Figure 4.2. The excitation frequency of 𝜃tilt and 𝜃yaw is chosen
to be identical to the DIC case, i.e., 𝑆𝑡 = 0.25. Note once more that this is a low
frequent excitation, typically in the range of 10 times slower than the rotational
frequency 𝑓𝑟. It is shown later that the resulting tilt and yaw moments are indeed
sinusoidal with frequency 𝑓𝑒.

When the tilt and yaw pitch angles inserted into the inverse MBC transformation
are constant over time, the resulting pitch angles 𝜃(𝑡) behaves sinusoidally with
frequency 𝑓𝑟. However, when 𝜃0 = 0 and the tilt and yaw pitch angles are sinu
soidal (with frequency 𝑓𝑒), as depicted in Figures 4.2, this leads to a slightly altered
frequency of 𝜃(𝑡). Using (4.3), it can be deduced that:

𝜃𝑏(𝑡) = [ 1 cos(𝜓𝑏) sin(𝜓𝑏) ] [
𝜃0(𝑡)
𝜃tilt(𝑡)
𝜃yaw(𝑡)

]

= 𝜃0 + cos(𝜔𝑟𝑡 + 𝜓0,𝑏)𝜃tilt(𝑡) + sin(𝜔𝑟𝑡 + 𝜓0,𝑏)𝜃yaw(𝑡)
= cos(𝜔𝑟𝑡 + 𝜓0,𝑏) sin(𝜔𝑒𝑡) + sin(𝜔𝑟𝑡 + 𝜓0,𝑏) cos(𝜔𝑒𝑡)
= sin [(𝜔𝑟 + 𝜔𝑒)𝑡 + 𝜓0,𝑏] ,

where 𝜔𝑟 is the rotational velocity [rad/s], and 𝜔𝑒 = 2𝜋𝑓𝑒 [rad/s]. Assuming that
𝜔𝑟 is constant over time, 𝜓𝑏(𝑡) = 𝜔𝑟𝑡 + 𝜓0,𝑏 with 𝜓0,𝑏 the azimuth angle of blade
𝑏 at 𝑡 = 0. Since the excitation frequency is very low (i.e., 𝜔𝑒 ≪ 𝜔𝑟) the frequency
of the resulting sinusoid, 𝑓𝜃, differs only slightly from the rotational frequency 𝑓𝑟.

In Figure 4.2, a shift of 90 degrees between the yawmoment and the tilt moment
is depicted. As a result, the tilt moment is maximal when the yaw moment is zero,
and vice versa. Using the uniform simulation setup in SOWFA, the resulting wake
location over time can be visualized. Figure 4.3 shows this wake at eight instances
during one excitation period 𝑇𝑒 = 𝐷/(𝑆𝑡 ⋅ 𝑈∞) ≈ 80 s. It can be observed here
that this DIPC strategy results in a wake that makes a (counterclockwise) circular
motion. This motion can be considered forced wake meandering, and is expected
to lead to increased wake mixing.

Figure 4.3 displays the wake for a phase delay of 90 degrees between the tilt and
yaw pitch angle, leading to a counterclockwise motion of this wake. This motion
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Figure 4.3: A wake as measured at 3𝐷 behind the turbine at different time instances when the signals
for 𝜃𝑡𝑖𝑙𝑡 and 𝜃𝑦𝑎𝑤 as displayed in Figure 4.2 are applied. Obtained using uniform inflow simulations in
SOWFA.

can be explained by the frequency 𝑓𝜃 of the blade pitch, which is slightly higher than
the rotation frequency 𝑓𝑟. Therefore, one period of pitching requires slightly less
time than one rotation. As wind turbine blades conventionally rotate in clockwise
direction, this results in a wake that rotates in counterclockwise direction. Note that
a clockwiserotating wake can subsequently be created by taking a pitch frequency
that is slightly lower than the rotation frequency 𝑓𝑟. In that case, a phase delay of
270 degrees between the tilt and yaw moment would need to be applied, resulting
in:

𝜃𝑏(𝑡) = cos(𝜔𝑏𝑡) sin(𝜔𝑒𝑡 + 𝜓0,𝑏) − sin(𝜔𝑏𝑡) cos(𝜔𝑒𝑡 + 𝜓0,𝑏)
= − sin [(𝜔𝑏 − 𝜔𝑒 + 𝜓0,𝑏)𝑡] .

The propagation of the wake through space is illustrated in Figure 4.4. As this
DIPC input results in a wake that has a helical shape, this specific approach is
called the helix strategy, respectively in counterclockwise (CCW) or clockwise (CW)
direction.

Earlier in this section, the claim was made that a sinusoidal tilt and yaw moment
can be achieved by simply applying a sinusoidal tilt and yaw angle. To confirm that
this is indeed the case, Figure 4.5 shows the tilt and yaw moment for the CCW
helix strategy. These moments were obtained using the outofplane root bending
moments on the individual blades as obtained from SOWFA, subsequently projected
onto the nonrotating frame using the MBC transformation (4.2). Afterwards, a low
pass filter was applied to account for high frequency noise on the signal.
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Figure 4.4: Wake propagation for different time instances when the helix strategy is applied. The
counterclockwise rotation of the wake can be seen and the near wake clearly exhibits the helix shape
that the approach is named after. The yellow arrow represents the vector of the thrust applied on the
flow.

Figure 4.5: The tilt and yaw moments from a turbine operating with the CCW helix approach. Obtained
using uniform inflow conditions in SOWFA.

4.4. Results

I n this section, the results obtained from the SOWFA simulations with turbu
lent inflow, as described in Section 4.2, are presented. The helix approach is
compared to the baseline greedy control case, as well as with Static Induction

Control (SIC) and Dynamic Induction Control (DIC). First, simulations with a single
turbine are evaluated. These simulations allow for the investigation of the helix
approach on the excited turbine and on the wake behind this turbine. Afterwards,
a second turbine is placed in the wake, 5𝐷 behind the first turbine, to study the
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effect of DIPC on the power generation of this small 2turbine wind farm.

4.4.1. Single turbine
For the single turbine case, a total of 9 different simulations have been carried out.
A comparison between cases is made based on both the performance of the turbine
and the energy available in the wake. The simulation cases are specified below:

1. Baseline case: static greedy control. All other cases are normalized with
respect to this case;

2. Static Induction Control (SIC), 1∘: SIC where the collective pitch angles are
derated with 1∘;

3. SIC, 2∘: Same as case 8, but with the pitch angles derated 2∘;

4. Dynamic Induction Control (DIC), 2.5∘: DIC where the collective pitch angles
are excited sinusoidally with an amplitude of 2.5∘;

5. Counterclockwise (CCW) helix, 2.5∘: the helix approach with a phase offset
between tilt and yaw moments of 90 degrees (as shown in Figure 4.2). This
results in a wake that rotates in counterclockwise direction. The amplitude of
the tilt and yaw angles is chosen such that the variation of the implemented
pitch angles has an amplitude of 2.5∘;

6. Clockwise (CW) helix, 2.5∘: the helix approach with a phase offset between
tilt and yaw moments of 270∘. This results in a wake rotating in clockwise
direction;

7. DIC, 4∘: Same as case 2, but with an amplitude of 4∘;

8. CCW helix, 4∘: Same as case 3, but with an amplitude of 4∘;

9. CW helix, 4∘: Same as case 4, but with an amplitude of 4∘.

First of all, the effect of the helix approach on the wake is investigated. For
this purpose, the mean wind velocity behind the excited turbine is visualized with
respect to the baseline case. The resulting figures show how the applied control
algorithms change the wake properties. Figure 4.6 shows this mean velocity dispar
ity with respect to the baseline case for case 7 (DIC, 4∘). Different crosssections
of the flow field are depicted here to show the effect of DIC on the average wake
velocity. Figure 4.7 depicts the same crosssections for the case 8 (CCW helix, 4∘)
and Figure 4.8 for case 9 (CW helix, 4∘). Remember that, as mentioned in Sec
tion 4.3.3, the optimal amplitude and frequency for the helix approach are as of
yet unknown. The results presented here should therefore be considered a proof
of concept for this approach, not an upper limit of its potential.

Based on these figures, a number of conclusions are drawn. First of all, it is clear
that all three strategies successfully increase the average wind velocity in the wake.
DIC and CCW helix seem to be equally effective at 3𝐷, while the helix approach
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Figure 4.6: The mean wind speed in a wake with respect to the baseline case when DIC is applied (case
7). The turbine location is indicated in black. The top figures give a top and side view of the flow, and
the bottom figures show vertical slices at different distances behind the excited turbine. The red areas
indicate that DIC increases the wind velocity in the wake significantly, while blue areas indicate where
the wind speed is decreased.
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Figure 4.7: The mean wind speed in a wake with respect to the baseline case when CCW helix is applied
(case 8), similar to Figure 4.6.

performs increasingly well further downstream. In general, the CW helix appears to
be less effective than the CCW helix. Figure 4.8 reveals that the lower performance
of the CW approach is caused by the lower velocity in the center of the wake, which
is considerably more distinct than in Figure 4.7.
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Figure 4.8: The mean wind speed in a wake with respect to the baseline case when CW helix is applied
(case 9), similar to Figures 4.6 and 4.7.

Figure 4.9: The power (top) and thrust (bottom) signals of the wind turbine for the baseline, DIC, CCW
helix and CW helix case.

The average kinetic energy increase in the wake at 5𝐷 behind the turbine is
23.8% for DIC, 36.7% for CCW helix and 19.3% for CW helix. This indicates that
the power increase that can be expected of a second, waked turbine when the CCW
helix is applied is higher than in the DIC case.

The mean wake velocities are nonetheless not the most significant difference
between DIC and the helix approach. The main advantage of the helix approach
becomes clear when the power and thrust signals of the excited turbine are ex
amined, as shown in Figure 4.9. These plots shows that, as expected, DIC results
in large variations of both the power generation and the thrust force. Both helix
approach simulations show no such variations: the power and thrust are in both
cases very similar to the baseline case, although slightly lower. This is also con
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firmed when the variance of these signals is calculated. Compared to the baseline
case, the variance of the power and the thrust increases with 80% and 583%,
respectively, when DIC is applied. With the helix approach, on the other hand, the
variance of these signals is more or less the same as in the baseline case.

This significant improvement with regards to the thrust and power variations
does not come completely free of charge. Since individual pitch control is used
for the helix method, the pitch rate, and subsequently the actuator duty cycle,
is higher than with DIC. As visualized in Figure 4.2, the frequency of the pitch
signal is determined by the rotational frequency 𝑓𝑟 ≈ 0.12Hz, slightly altered by the
excitation frequency. The pitch signals in DIC, on the other hand, have a much lower
frequency of 𝑓𝑒 ≈ 0.0126Hz, resulting in a very low average pitch rate variation of
0.08 ∘/min. As a consequence of the higher pitch frequency, the pitch rate variance
of the helix approach with a 4 degree amplitude is 12.5∘/min and 8.1∘/min for the
CCW and CW direction, respectively. Note that although this is significantly higher
than with DIC, such a pitch rate should not be considered unreasonably high. In
fact, the pitch rate is comparable to that used in load alleviating IPC strategies such
as Bossanyi (2003, 2005).

All the results mentioned above, both in terms of turbine performance and wake
recovery, are summarized in Table 4.2. This table includes the results obtained for
the cases with SIC and with a smaller pitch amplitude of 2.5∘. As expected, the
lower amplitude has less effect on both the excited turbine and the wake recovery.
Apart from that, no significant discrepancies are found between the 2.5∘ and 4∘

cases. The SIC results show that, in general, the power lost at the upstream turbine
is comparable, while the energy gained in the wake is lower than with the CCW
helix approach. Even more so than DIC, SIC seems to be less effective at larger
downstream distances. It can therefore be concluded that the helix approach is
more effective in increasing the potential energy capture of a wind farm than SIC.

Table 4.2: Turbulent inflow, single turbine results. All but the pitch variation are relative results with
respect to the baseline case.
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Power 1.0% 3.1% 1.1% 1.1% 1.0% 2.8% 2.8% 2.6%
Variation of power 2.2% 5.8% +79.5% 3.5% 1.5% +194.1% 7.9% 5.2%
Variation of thrust 11.2% –22.1% +583.2% 1.5% +1.2% +1423% 3.7% +0.3%
Energy at 3𝐷 +14.1% +31.7% +20.3% +20.5% +7.2% +42.6% +47.4% +21.9%
Energy at 5𝐷 +3.7% +8.3% +13.3% +16.6% +6.5% +23.8% +36.7% +19.3%
Energy at 7𝐷 +2.0% +3.7% +7.3% +12.4% +5.5% +13.4% +25.6% +14.7%
Pitch variation [∘/min] 0 0 0.08 4.94 3.22 0.20 12.52 8.13
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4.4.2. Twoturbine wind farm
In this section, the performance of a twoturbine wind farm is discussed. The same
cases of the single turbine simulations are used, but a second turbine is now placed
5𝐷 behind the first turbine. In all cases, the second turbine operates at its static
optimum, i.e., the different control strategies are only implemented on the upstream
machine.

The results that are presented here, focus again on the cases with a pitch am
plitude of 4 degrees. The power and thrust signals of both turbines in these simu
lations are shown in Figure 4.10. From this figure, it follows that the power gains
obtained at turbine 2 are similar with both dynamic control strategies. However,
the plot also shows that DIC not only increases the variations in power and thrust of
the excited turbine, but also of the downstream turbine. This effect is significantly
less pronounced for the helix strategies.

Figure 4.10: The power (top) and thrust (bottom) signals of turbines 1 (left) and 2 (right) for cases 1, 5,
6 and 7. The variations in power and thrust associated with DIC are not present with the helix approach.
As a result, the power and thrust variations at the downstream turbine are also significantly lower.

Table 4.3: Turbulent inflow, twoturbine results. All results are relative with respect to the baseline case.
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Power T1 1.0% 3.1% 1.1% 1.1% 1.0% 2.8% 2.8% 2.6%
Power T2 +1.6% +5.3% +14.6% +17.2% +6.3% +27.3% +39.5% +18.0%
Total power generation 0.3% 1.0% +2.8% +3.4% +0.8% +4.6% +7.5% +2.5%
Variance of power T1 2.2% 5.8% +79.6% 3.4% 1.4% +194.0% 7.9% 5.1%
Variance of power T2 11.0% 17.6% +280.8% +143.0% +82.2% +583.6% +239.4% +187.2%
Variance of thrust T1 11.3% 22.1% +580.7% 1.5% +1.1% +1416.7% 3.9% +0.4%
Variance of thrust T2 13.0% 25.9% +165.1% +71.6% +45.5% +340.9% +123.1% +99.9%
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Figure 4.11: Power generation of the twoturbine wind farm for different control strategies, showing
the limited power loss at turbine 1 with all methods. The power gain at turbine 2 results in a farmwide
increase in power generation.

All findings with respect to power and thrust are summarized in Table 4.3. Notice
that the energy increase at 5𝐷 as predicted in Table 4.2 corresponds very well with
the actual power increase of a turbine at 5𝐷. As a result, the CCW helix approach
with a 4∘ pitch amplitude increases the power generation of this 2turbine wind farm
with 7.5%. This is considerably higher than the 4.6% gain obtained with DIC. The
overall energy capture of all strategies is shown in Figure 4.11.

Apart from the power generation, it is also interesting to investigate the varia
tions of power and thrust. With both helix approaches, the power and thrust vari
ations of the excited turbine are, in general, slightly reduced. Due to the increased
wake velocity and turbulence, the downstream turbines experience a significantly
higher power and thrust variations than in the baseline case. However, compared
to DIC, these variations are much lower. As a result, the fatigue loads that might
lead to structural damage of the wind turbine are expected to be substantially lower
than with DIC.

A final note should be made with respect to the performance of the helix ap
proach: as the research presented in this chapter serves mainly as a proof of con
cept, the optimal settings for the helix approach are as of yet unknown. In this
study, it was assumed that the optimal excitation frequency is identical to the op
timal DIC frequency. As such, the 7.5% power gain found here can be considered
conservative, as a different dynamic input signal might lead to better performance.

4.5. Conclusions

T his chapter proposes a novel wind farm pitch control strategy. The strategy
involves using Individual Pitch Control (IPC) to dynamically vary the direction
of the thrust force exerted on the flow by a wind turbine, leading to a helical

wake that increases mixing. As a result, downstream turbines experience higher
wind speeds and subsequently have a higher power generation. Due to the helical
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shape of the wake, this approach is named the helix approach. A proof of concept
is given for this novel dynamic wind farm control strategy.

The strategy is tested using highfidelity LES simulations, proving that the helix
approach is effective at increasing wake recovery: the energy in the wake can
be increased by up to 47%. Furthermore, it is observed that a helix rotating in
counterclockwise direction results in better wake recovery than a helix rotating in
clockwise direction. Simulations with a second turbine in the wake of the controlled
turbine, located 5 rotor diameters downstream, show that the energy capture can
be increased with up to 7.5% for this twoturbine wind farm. As the optimal control
settings for the helix approach have not yet been evaluated, this gain should be seen
as an indication of its potential, not as an upper limit.

The helix approach is compared with different existing control strategies. The
current simulations show that it is a more effective method to increase the energy
capture of a wind farm than both static derating and dynamic induction control.
Compared to the latter, the helix approach results in power and thrust variations
that are over a factor 2 lower. Furthermore, unlike yawbased wake redirection, the
operational strategy used in the helix approach does not deviate from the operating
range for which the turbine was designed. This should allow for a much quicker
adaptation of the technology by the industry, perhaps delivering the first wind farm
control methodology that can reliably increase the power generation in existing wind
farms without the need for slow certification protocols and fundamental turbine
redesign.

This chapter should be considered as a proof of concept. As the helix approach,
or dynamic IPC in general, is a completely novel concept, this chapter only shows
that it can be an effective wind farm control strategy. To determine its full po
tential, further exploration is necessary. Future research possibilities include, but
are limited to, studying the difference between the clockwise and counterclockwise
helix, finding the optimal blade excitation signals, investigating the damage equiva
lent load effects on both the excited and downstream turbine, applying closedloop
control on the yaw and tilt moments, increasing the farm size to study the effect
on turbines further downstream, executing scaled wind tunnel experiments and full
scale tests on an actual wind turbine or wind farm.
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Conclusion and

recommendations
De waarheid is nooit precies zoals je denkt dat hij zal zijn.

The truth is never exactly as you think it will be.

– Johan Cruijff,
on the deceitfulness of scientific truth.

The closing chapter of this dissertation wraps up the research presented and
produces the overarching conclusions. Two existing pitch control strategies
that have the potential to improve the levelized cost of wind energy are vali
dated by means of successful wind tunnel campaigns. A third novel technol
ogy was developed and evaluated in highfidelity simulations. The novelty of
these technologies implies that the maturity level is still relatively low. Subse
quently, an elaborate list of recommendations for future research is included
to further mature these technologies.
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Conclusions

T he research objective formulated in Chapter 1 of this dissertation was to de
velop and validate novel pitch control technologies that further decrease the
levelized cost of wind energy. This dissertation contributed to developing two

existing control technologies that achieve this in different ways, and proposes a
third, novel approach. Each of these methods could improve the performance of
large scale wind farms in the future. As the results presented in this dissertation
are positive, these technologies open up a wide range of new research opportuni
ties that could further decrease the levelized cost of wind energy. By answering
the research subquestions posed in Chapter 1, the contribution of this dissertation
with respect to the literature is highlighted.

I: How do different individual pitch control technologies that aim to mitigate
blade loads compare in wind tunnel experiments that generate realistic, re
producible wind conditions?

Two different Individual Pitch Control (IPC) strategies are evaluated in Chapter 2:
datadriven Subspace Predictive Repetitive Control (SPRC) and Conventional IPC
(CIPC). SPRC is a technology that uses subspace identification to obtain a linear
model of the turbine and applies repetitive control to mitigate loads. The results
show that, in realistic wind conditions, SPRC performs slightly better than CIPC,
with average load reductions of 59% and 49%, respectively. Apart from improved
load alleviation, SPRC is also found to achieve this with an average 21% lower pitch
actuation. This indicates that SPRC not only alleviates blade loads, but also reduces
wear on the blade pitch bearings – which is considered the major downside to IPC.

It is essential for load alleviation technologies that they are able to adapt to
changes in wind conditions, as this commonly occurs in the field. The results pre
sented in Chapter 2 show that SPRC is able to adapt to changing operating condi
tions. The subspace identification process refines the turbine model and the repet
itive control action is adjusted accordingly to retain load mitigating performance. It
can therefore be concluded that SPRC can be considered as a viable alternative to
conventional IPC.

II: How does periodic dynamic induction control perform with respect to wind
farm power generation in scaled wind tunnel experiments?

Chapter 3 presents the results of the first set of wind tunnel experiments in
which dynamic wake mixing was used to increase the energy capture of a wind
farm. The outcome was telling: where Campagnolo et al. (2016a) showed in similar
experiments that the benefit of static induction control is minimal, periodic Dynamic
Induction Control (DIC) was able to increase wind farm power capture by 4%. In
the case that was investigated, with full wake interaction between turbines, DIC
displayed similar effectiveness as wake redirection by yawing.

This outcome confirms the results of simulation experiments (Munters and Mey
ers, 2018a), showing that DIC is a viable technology to enhance wake mixing for
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wind farm power maximization purposes. This approach is more effective than
static induction, and the gain in power yield in case of full wake interaction is com
parable to wake redirection control. It can be considered as an alternative to wake
redirection control, which is already being implemented in wind farms (Siemens
Gamesa Renewable Energy, 2019).

III: How much do the turbine damage equivalent loads rise when dynamic
control technologies are applied, and are these increased loads compensated
for by the higher power generation?

To answer this subquestion, aeroelastic simulations with and without DIC have
been executed, which are presented in Section 3.5. To determine the effect of DIC
on the lifetime of the components of the controlled turbine, the Damage Equivalent
Load (DEL) on the blades, tower and hub is computed.

When DIC is applied with a frequency that corresponds to the optimum found
in Section 3.6, the hub and blade DELs increase slightly. However, these negative
effect are smaller than or similar to the positive effect on power generation. The
DEL experienced by the tower on the other hand, increases at a substantially higher
rate. These results therefore do not give a uniform answer to whether or not the
benefit of additional power generation outweighs the increased loads. To draw
a final conclusion on whether the balance of power and load increase with DIC is
positive, additional research, for example on the downstream turbines, is necessary.

IV: Can an alternative dynamic control technology be developed that maxi
mizes power generation while minimizing additional turbine loads?

In Chapter 4, a novel, patentpending (van Wingerden et al., 2019) dynamic
control technology is introduced: the helix approach. This technique uses individual
pitch control instead of collective pitch to enhance wake mixing, and is validated
using highfidelity simulations. The outcome of these simulations indicate that helix
approach results in more wake mixing and subsequently a higher wind farm power
generation. The energy capture of an aligned 2turbine wind farm can be increased
with up to 7.5%, compared to 4.6% for DIC. It can therefore be concluded that
the helix approach is a viable, possibly more potent control technology to maximize
wind farm power generation.

The helix approach does not make use of variations in the thrust force, and is
therefore expected to result in lower tower loads than DIC. This is demonstrated in
Section 4.4, where the variations in tower thrust are shown to decrease when the
helix approach is implemented, whereas DIC leads to a substantial increase. There
fore, the helix approach could prove to be not only a more desirable control tech
nology from a power maximization perspective, but also from a loads perspective.
Nevertheless, additional research on this new technology is necessary to further
strengthen these conclusions. Regardless, it is undeniable that the helix approach
adds a control degree of freedom which can be exploited to find optimal solutions
to the wind farm control problem.
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Recommendations

N ew research also brings to light new research questions. This is especially
true for the research presented in this dissertation, as novel technologies are
proposed and investigated. As the maturity level of these technologies is still

relatively low, many questions still remain to be investigated. This section lists the
most important open questions related to this dissertation, sorted by subject.

Subspace Predictive Repetitive Control
• The next crucial step towards implementation of SPRCbased IPC in commer
cial wind turbines is a set of field experiments. A comparison could be made
with field tests that have already been executed with conventional IPC (see,
e.g., Bossanyi et al., 2013; van Solingen et al., 2016).

• Recent simulation experiments have shown that SPRC, unlike conventional
IPC, maintains load mitigating performance in case of blade actuator faults
(Liu et al., 2020). This is an interesting result that could be an important
argument to favor SPRC above conventional IPC. To validate these results,
wind tunnel experiments or field tests with a dysfunctional or disabled blade
need to be conducted.

• In this dissertation, SPRC was tested on a horizontalaxis wind turbine, which
is the most common type of commercial turbine. However, the principles could
also be implemented on verticalaxis turbines, where the MBC transformation
used in conventional IPC is not applicable.

Enhanced wake mixing
This section mentions recommendations that apply to dynamic pitch strategies for
enhanced wake mixing, of which DIC and the helix approach are examples. The
following two sections list recommendations that apply specifically for DIC and the
helix approach, respectively.

• In this dissertation, two different dynamic wake mixing strategies have been
evaluated. Both methods are effective in terms of increasing power gener
ation, but these technologies might only be scratching the surface. Other
dynamic control strategies might emerge that prove to be even more effec
tive. Research into alternative dynamic control strategies could therefore be
a very interesting future research topic. This includes, but is not limited to:

– Using different control degrees of freedom of a turbine. This dissertation
investigates only pitch action, both collective and individual. Research is
also being conducted in dynamic yawing (Munters and Meyers, 2018b;
Kimura et al., 2019), but perhaps the generator torque or, in the future,
the turbine tilt angle could also be used effectively.

– This dissertation focuses on sinusoidal signals, but different timevarying
control signals might prove to be more effective.
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– Applying dynamic control strategies on waked wind turbines. Munters
and Meyers (2018a) show that, at least in a simulation environment,
a sinusoidal signal on the second turbine in a row is not effective in
increasing wind farm power. Nevertheless, this result only proves that it
does not work in this specific case. This does not guarantee that dynamic
control strategies can never work on downstream turbines.

– Combining dynamic wake mixing with other control strategies. For ex
ample, DIC could be combined with IPC to alleviate loads, or with yaw
control to further increase the control authority on the wake of a turbine.

• The results of this dissertation show that dynamic wake mixing works as a
power maximization technique. However, it does not fully answer the question
why it works. The physics behind dynamic wake mixing are not completely
understood yet. Answering the following questions could perhaps shed some
light on this phenomenon:

– The results of both simulations and wind tunnel tests show that certain
excitation frequencies work better than others. It is not fully understood
yet why this is the case. Perhaps, dynamic modeling of the flow, for
example with Dynamic Mode Decomposition (DMD) (see, e.g., Schmid,
2010; Kutz et al., 2016), could explain this result.

– In Munters and Meyers (2018a), it is hypothesized that the optimal ex
citation frequency relates to the Strouhal number, which scales the fre
quency for rotor diameter and wind speed. Although plausible, this hy
pothesis has not been thoroughly tested as of yet. If the optimum scales
with the Strouhal number, it should be the same for different turbine
sizes, turbine spacing and wind speeds. Experiments in which one or all
of these parameters are changed could prove or disprove the Strouhal
hypothesis.

– Wind tunnel experiments with Particle Image Velocimetry (PIV) measure
ments (see, e.g., Tescione et al., 2014) could explain what is happening
in the wake of a turbine operating with dynamic control. Analysis of PIV
data could therefore help clarify the physics behind the effectiveness of
dynamic wake mixing.

• This dissertation shows that dynamic wake mixing can work under constant
operating conditions. In actual wind farms, the operating conditions are sub
ject to change, which usually requires the control approach to adapt. There
fore, for application in commercial wind farms, a closedloop control algorithm
would need to be developed that determines the optimal dynamic control
strategy based on the current operating conditions.

• Chapters 3 and 4 have demonstrated that in case of full wake interaction,
dynamic control can compete with the stateoftheart static control tech
nologies. The case of partial wake overlap has not yet been investigated, and
could reveal the true potential of dynamic wake mixing.
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Dynamic Induction Control
• The results presented in this dissertation show that, in contrast with results
found in simulations (Munters and Meyers, 2018a), increasing the amplitude
of excitation had a negative effect on the wind farm power generation. In the
wind tunnel, the power drop of the upstream turbine at higher amplitudes
was substantially higher than in simulation experiments. It is hypothesized
that this is partly caused by rotor instability of the utilized G1 turbine models.
However, further research is necessary to validate this hypothesis.

• The load analysis presented in Chapter 3 looks only at the excited turbine. It
can be expected that downstream turbines also experience increased loads,
as turbulence is induced with DIC. Future research could therefore be directed
towards the overall load experienced by a wind farm that applies DIC. This
could give the full picture of how the benefit of increased power generation
balances with the drawback of higher farmwide loads.

• Field tests of DIC would mean the final crucial step towards implementation
in commercial wind farms. These tests should analyse both the overall power
capture and the load impact of DIC on the wind farm.

Helix approach
• Chapter 4 gives a proof of concept of the helix approach. To validate these
results, the following additional experiments could be executed:

– Experiments with different wind speeds and turbulence intensities can
be conducted to confirm that the helix approach works under different
operating conditions.

– In this dissertation, only a simple 2turbine wind farm has been investi
gated. Experiments with different wind farm layouts could give a better
indication of the full potential of this technology.

– By conducting wind tunnel experiments and field tests, the next crucial
steps towards proving the effectiveness of this strategy and applying it
to commercial wind farms could be taken. Plans for wind tunnel ex
periments with the helix are currently being planned at the TU Delft.
Meanwhile, the helix approach is also part of the plans for the Hollandse
Kust Noord wind farm. These plans aim to execute field experiments
with the helix by the year 2023.

• A complete load analysis on a turbine that applies the helix approach, as well
as on potential downstream turbines, is paramount in assessing whether this
technology is able to improve the levelized cost of wind energy.

• In Section 4.4, it was demonstrated that a helix rotating in counterclockwise
direction is more effective in terms of wake mixing than a clockwise helix.
This result is not fully understood yet, and could be an interesting topic for
future investigations.
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• In the simulations performed in Chapter 4, it was assumed that the optimal
frequency of the yaw and tilt excitation is the same as for DIC. Experiments
where this frequency is varied are necessary to confirm this hypothesis.
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argument. But most of all, we have an insane amount of fun together. In our own
heads, the party always revolves around us. No matter how long it has been, it
never feels awkward when we meet up again. Our skiing trip and participation in
the EXTC tennis tournament are two of the highlights of my year. Perhaps we will
grow too old for EXTC at some point not too far into the future. But I sincerely hope
we will continue to go skiing together until we are no longer able to go downhill –
and perhaps even longer.

Finally, I would not have become the person I am today without my family: my
parents, Hans and Dorothé, my brothers, Kevin and Martin, and more recently also
my sisterinlaw Melissa and my wonderful nephews Tijler and Quinn. Thanks to
my family, my youth was as carefree as I could have wished for, but at the same
time they helped me become an independent young adult.

Kev, I know it was sometimes hard for you to grow up as the ”little brother
of”, especially at school. At the same time, it wasn’t always easy for me to have
a little brother who is (at least) as athletic, competitive, clever and witty as I am.
We drove each other to madness sometimes, but also to greater heights. As we
grew up, combativeness and envy evolved into respect – although, naturally, we
still don’t like losing to each other.

Mart, although we did not really grow up together, you have always felt just
as much a brother to me as Kevin. I love our nerdy discussions about Nintendo
games, and having to teach you the basics of Pokémon when you started playing
Go. You and Melissa serve as a role model of what I hope my life will look like in
12 years – although I could do without the X5.

Pap, you are probably my biggest fan and largest critic in one. I will never forget
the time I came home with a report filled with 7’s and 8’s, and you asked me why I
didn’t get any 9’s. I was thoroughly insulted at first, but a few months later these
7’s and 8’s had turned into 8’s and 9’s. You didn’t say it because you weren’t proud
of the results that I got, but because you knew I could do better. In your own
unorthodox way, you always push me to do the very best I can. I have the utmost
respect for the way you continue working way past the retirement age, and still
find the time to pursue a PhD. I know it’s a struggle sometimes, but don’t give up:
I know you will finish it if you put your mind to it.

Mam, from a relatively young age, you told me and Kevin that we should move
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out of the house as soon as possible. It was only years later that I discovered that
when we actually did, it broke your heart. However, you felt like this was the best
way to teach us to take care of ourselves. I will be eternally grateful for this act of
selflessness. The last couple of years haven’t always been easy for you, but you
never seem to let it get to you. I sincerely hope I have the same strength you have
in times of adversity.

They say you do not choose your family. Perhaps that’s for the best, because I
cannot imagine having chosen a better family. Even if I don’t always say it or even
show it, I love you and I am extremely grateful to have you in my life.

Friday March 29th, 2013 is a date I won’t easily forget. A day earlier, I had
flown back from Austria after spending 3 months there, to be able to attend my
Huischfeest at Huize de Camping that same night. Barely recovered, Marlies –
who also just returned from travels abroad – invited me to a small gathering of
people from Ariston’80. It later turned out to be a memorable night. Not because
anything special happened that night – absolutely nothing happened that night –
but because Marlies met her nowhusband Guido, and I met Saimi. Despite my
ridiculous goggletan and the fact that we barely spoke to each other that night,
you later admitted that I immediately caught your attention. Naturally, this feeling
was mutual. Saimi, you are the sweetest, most patient and caring person I have
ever met. I know I am not always the easiest person to live with, but you always
know how to cope with me. When I am with you, I never feel like I have to pretend.
Without writing a single word (apart from the cover), this dissertation belongs partly
to you as well. You really are too good for this world, and I love you with all my
heart.

Last but not least, to all the people who have managed to make it this far into
my dissertation: thank you for sticking with me. I look forward to what the future
might bring.

Joeri Alexis Frederik
Delft, Januari 2021
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