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Abstract

Supervised learning approaches have proven to be
useful in diagnosing Osteoarthritis from X-ray im-
ages, aiding professionals in an otherwise time-
consuming and subjective process. However, in
the medical field, labeled data is scarce. For this
reason, we investigate a contrastive self-supervised
approach, SimCLR, capable of learning useful rep-
resentations from unlabeled data. Specifically, we
explore a core component of this method – the data
augmentation techniques. While these augmenta-
tions are highly effective in introducing variability
in conventional image datasets, they are too ag-
gressive for medical images, often altering their
semantic meaning. In this paper, we implement
custom anatomy-aware augmentation techniques,
which aim to preserve the main region of inter-
est needed for a diagnosis. We evaluate these
anatomy-aware augmentations including Gaussian
blur, Contrast enhancement, Random resized crop,
and Random erasing, against their classical coun-
terparts by training multiple encoders based on dif-
ferent combinations of those augmentations. The
findings of our study have shown that utilizing this
anatomy-aware approach for all data augmenta-
tions a model uses does not lead to a significant
improvement in its performance. However, selec-
tive use of anatomy-awareness on geometric-based
approaches seems to show promising initial results.

1 Introduction
Osteoarthritis (OA) is a degenerative joint disease which
causes the bone and connective tissue around a joint to wear
down over time. When diagnosing osteoarthritis from pa-
tients’ X-ray images, a particularly challenging aspect is the
subjectivity of the diagnosis, since the stages of the disease
may look different between patients. For this reason, the use
of machine learning techniques could prove to be incredibly
beneficial in automating this tedious task. While supervised
methods have been shown to be effective [1], labeled medi-
cal data is not easy to acquire in large amounts. In order to
avoid this issue, we investigate how to utilize self-supervised
methods which would be able to learn from unlabeled data.

Contrastive Self-supervised learning is an approach where
feature learning is guided by what is considered ”positive
pairs” [2] - pairs of the same image that has been augmented
in different ways but is still considered to have the same se-
mantic meaning. For this reason, data augmentation is a cru-
cial component of those algorithms. Existing literature sug-
gests that applying data augmentations, which are quite ex-
treme and even introduce unrealistic variation could lead to
better performance of contrastive SSL models [3]. However,
since medical images are usually taken under standardized
protocols and follow a particular format, they have signifi-
cantly lower variability [2]. For this reason, they differ from
the diverse sets of images those models are usually trained on,
which benefit from strong data augmentations. The semantic

meaning of medical images is usually not identified by the
depicted object, but rather by concrete meaningful features,
which may easily be erased by random cropping or blurring.
One way of avoiding this problem is adapting the data aug-
mentation techniques and making them context-aware. By
taking anatomical knowledge into account, those custom aug-
mentations can preserve the important anatomical features an
thus - the semantic meaning of the images - the diagnosis.

There have been previous attempts to address the problem
of the strength of data augmentations and limit it by prior-
itizing some areas of the image. Peng et al. have inves-
tigated a more curated way of cropping images, which en-
sures cropped views provide the most relevant information in
the image[4]. Using data from radiologists’ eye movements,
Wang et al. have developed a novel augmentation method and
have shown that ”semantic-aware augmentation consistently
outperforms the conventional way of random augmentation”
[5]. Li et al. also utilize a supervised method for detecting
zones within the image, which they provide to the classifier as
”prior knowledge” [6]. While those approaches have shown
to be successful, they rely on supervised models on extract
the meaningful part of the image. It is yet to be explored if
those regions of interest which the medical professionals pay
attention to could be extracted from the images automatically,
without the need for collection of additional data or training
additional models.

This paper explores the effect of data augmentation meth-
ods which preserve the key anatomy structures in a medical
image in the context of Contrastive Self-Supervised learning
methods. With this goal in mind, we make a comparison be-
tween the performance of the same model while using classi-
cal data augmentation methods versus anatomy-aware ones,
which are more limited in the extent to which they could
be applied without erasing the important anatomical features.
Additionally, we are interested in finding out which types of
data augmentations would benefit from such an anatomically-
aware approach.

2 Methodology
2.1 Model Architecture
Multiple different frameworks for implementing contrastive
self-supervised learning exist - the most popular among
which are SimCLR [7], MoCo [8] and BYOL. All of them use
data augmentations in some way and thus, could potentially
benefit from the proposed method of making them anatomy-
aware. However, SimCLR specifically is more dependent on
the strength of those data augmentations, since they are the
core of its learning process, while the others implement addi-
tional mechanisms to aid it. SimCLR is also most prominent
among recent literature and is more simple compared to the
other alternatives, making it a good choice for our experi-
ments.

The architecture of SimCLR can be found in Figure 1 and
contains the following modules:

• A stochastic data augmentation module which takes an
image as input and produces two augmented views from
it, given a pre-determined set of data augmentations.
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• A neural network base encoder which takes each of
those views and extracts their features into representa-
tion vectors. Similarly to the original SimCLR paper,
we opt for a ResNet encoder, particularly ResNet18.

• A small neural network projection head which maps
those representations vectors to a lower dimension
space, in which the contrastive loss can be calculated.
Again, similarly to the original SimCLR paper, we use
a two-layer MLP with ReLU activation in the hidden
layer.

• A contrastive loss function - normalized temperature-
scaled cross entropy loss, which the autors of the Sim-
CLR paper have named NT-Xent. After comparing it
to other commonly used contrastive loss functions, they
have established it leads to the best performance of the
model.

Figure 1: SimCLR training procedure. Images are used as input to a
data augmentation module which produces two different augmented
views. Each view is encoded and the encoding is then projected to
the space where the contrastive loss is applied.

2.2 Data Augmentations in Contrastive
Self-Supervised Learning

While numerous data augmentations exist and any of them
could be customized or combined, not all of them are suit-
able for medical imaging. For example, the original SimCLR
paper emphasizes that ”the combination of random crop and
color distortion is crucial to achieve a good performance” [7].
However, the use of color distortion would not be beneficial
for medical images which are usually grayscale. It would
only introduce a new dimension into the data (additional color
channels), which do not carry any semantic meaning, and thus
it will not contribute to the learning process.

In this study, we only focus on data augmentations which
by their nature carry the risk of concealing important anatom-
ical regions. An example of a data augmentation technique
we are not interested in is rotation, since all of the elements
of the image remain intact. We will investigate two types of
augmentations which we will call geometric and appearance-
based. The former remove parts of the image, while the latter
preserve the image in its whole but apply filters which impact
its appearance.

2.3 Joint Space Segmentation
BoneFinder [9] is a fully automatic software tool which can
be used to outline the contours of the skeletal structures from
2D radiographs. It outputs a set of landmark points that trace
the curves of the bones as shown in Figure 2. We use this data
in order to segment the region in between the femur head and
the acetabular roof - it marks the primarily weight-bearing
area of the hip joint where the cartilage is more likely to show
signs of wear.

Figure 2: The output of the BoneFinder tool consists of the point
coordinates which trace the outline of the bones. Here they have
been plotted on the original input image.

2.4 Anatomy-aware data augmentations
X-ray imaging is a standard part of the OA diagnosing pro-
cess, since it is risk-free, cost-effective and widely available.
However, during the early stages of the disease, bone tis-
sue may be unaffected, while the cartilage, which does not
show up on X-ray images, is worn out. For this reason, the
main way to detect cartilage damage is by the reduction of the
space between the bones of the joint [10]. As the disease pro-
gresses, other formations withing the bone tissue around the
joint - such as osteophytes or cysts, may start to form. This
makes the joint space the most important area of the X-ray
image for diagnosing OA.

Using the coordinates of the points provided by
BoneFinder, which outline the segmented joint space, a
bounding box is defined around it. We will consider this area
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Figure 3: Images (a) and (c) show two views of the same image,
which use different augmentation methods (erase and crop respec-
tively) but exclude the joint space segment (marked in red). In (b)
and (d) the same methods lead to views that preserve it.

to be the anatomy-relevant space, all of the details of which
need to be preserved in order for Contrastive SSL models to
better learn the features around the joint area. For this reason,
in order to transform a data augmentation technique into an
anatomy-aware one, we ensure that the area inside the bound-
ing box remains as in the original image. For geometric data
augmentations, such as erase and crop, this would mean en-
suring that this region stays in the newly generated image as
shown in Figure 3. For appearance-based data augmentations
such as Gaussian blur and contrast enhancement, this would
entail applying those respective filters over the whole image
except inside the bounding box.

3 Experimental Setup
3.1 Dataset and Data Pre-processing
The dataset which will used for this study is taken from the
Cohort Hip and Cohort Knee (CHECK) study [11]. It in-
cludes X-ray images of 1002 participants from multiple visits
over a 10-year period. The data was split in 70% training
set / 15% validation set and 15% test set based on the par-
ticipants IDs. It is important to mention that the number of
visits per participant varies due to some of them dropping out
early from the study, and thus this ratio for the data split does
not exactly represent the ratio between the number of images
in each subset. However, this separation based on partici-
pant ID is done intentionally in order to ensure independence
between the testing and training datasets. It is crucial that im-
ages from the same patient do not appear in both, since they
may carry certain anatomical features specific to this person
and the model may try to learn to differentiate between people
rather than detect signs of their disease.

The images have been pre-processed by cropping out the
15 cm by 15 cm region around the hip joint, centered on
the center of the femoral head. All images of left hips were
flipped in order to reduce variability in the data set that is not
relevant to the classification task. All cropped images were
resized to 224 by 224 pixels in order to fit the resnet18 input
shape. The coordinates of the keypoints found by BoneFinder
have also been converted to coordinates in the new cropped
images and a bounding box was calculated around those,
which outline the hip joint space - specifically points 18 to 22
(for the acetabular roof) and 69 to 74 (for the femoral head),
as numbered by the BoneFinder Algorithm. Those selected
points can be seen in Figure 4, overlaid on top of the final
pre-processed image. After pre-processing, the dataset we
will be using consists of 6859 images.

Figure 4: Pre-processed image, centered around the center of the
femoral head (in blue). Includes the points (in red) used to segment
the bounding box around the joint space.

The original dataset contains a Kellgren-Lawrence (KL)
grade [12], which indicates the severity of osteoarthritis based
solely on the X-ray images. The 5 grades defined as fol-
lows: None (0), Doubtful (1), Minimal (2), Moderate (3),
Severe (4). For the purposes of our experiment, those labels
have been transformed into two classes - Negative, containing
grades 0 and 1, and Positive - containing grades 3 and above.
This is done in order to simplify the classification task in or-
der to observe whether the encoders would learn any features
relevant to diagnosing OA at all, rather than diagnose the ex-
act stage of the disease - a task which orthopedic surgeons
and radiologists often seems to struggle to reach agreement
on [13].

3.2 Model Training
In order to compare classic data augmentations to the pro-
posed anatomy-aware ones, four encoders will be pre-trained
using different combinations of augmentations among those
two classes. We define the following training protocol which
ensures the results are a direct reflection of the changes in the
data augmentations.

• All 4 models have the exact same architecture as de-
scribed in Section 2.

• Batch size of 64 is used for loading the data.
• All 4 models have been trained for 100 epochs.
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• The Adam optimizer was used with learning rate of 1e-4.

Figure 5: Data augmentations used for each model. C stands for
the Classic data augmentation version, AA stands for the Anatomy-
aware alternative. The models have been named based on the subset
of augmentations that are anatomy-aware.

The only difference between the models being trained is in
the data augmentation techniques they utilize in the first step
of pre-training the encoder. The combinations used can be
found in Figure 5. The augmentation techniques are chained
in the order in which they appear in the table, meaning that the
output from the contrast enhancement is fed into the Gaus-
sian blur and so on. To implement the classical augmenta-
tions, torchvision.transforms.v2 has been used and the spe-
cific methods and parameters are as follows:

• ColorJitter (contrast=0.3)
• GaussianBlur (kernel size=25, sigma=(0.1, 2.0))
• RandomResizedCrop (size=224, scale=(0.30, 0.90))
• RandomErasing (p=1.0, scale=(0.05, 0.15))
The custom anatomy-aware transforms have been imple-

mented in such a way that they also abide by those parame-
ters. The appearance-based contrast enhancement and Gaus-
sian blur directly utilize the torchvision methods and sim-
ply replace the area inside the joint space bounding box with
the original image data. Meanwhile, for crop and erase, the
source code from the torchvision functions has been adapted
to take into account the bounding box and not exclude the
region inside it.

3.3 Evaluation
Linear Probing
To evaluate the quality of the learned representations by the
different encoders, we will use Linear Probing, which is a
technique used often in the field of Self-supervised learning
[2][7] and has been shown to best predict the ranking of SSL
methods, compared to other protocols [14]. This makes it
a suitable choice for our experiment, since we are more in-
terested in comparing the relative performance of the differ-
ent classifiers, rather than maximizing their accuracy. Linear
probing involves freezing the pretrained encoder which we
want to be evaluate and training a simple linear classifier on
top of it. This process can be seen in Figure 6. The intuitive
idea behind it is that if the learned representation is good for
the given classification task, then the dataset classes would be
are linearly separable. The linear classifier which will be used
in this study is a single-layer perceptron. A sigmoid function
is applied on its output to obtain the final binary prediction - 0
or 1 representing respectively the labels ’False’ (has not OA)
and ’True’ (has OA) .

Figure 6: Overview of the Linear probing procedure. A linear clas-
sifier is trained on the encodings from a frozen pre-trained encoder.

Evaluation metrics
The main evaluation metric we will use to evaluate the perfor-
mance of the classifiers is the AUC ROC score (Area Under
the Curve of the Receiver Operating Characteristic), which
is suited for evaluation of binary classification models and is
also a usual choice in medical diagnostic studies [15]. Given
the fact that the classes in the dataset are quite unbalanced, it
is a suitable choice in our case, since it gives an indication of
the model’s quality across all possible classification threshold
values.

While ROC curves and their corresponding AUC ROC
scores present us with a nice visual overview of the perfor-
mance of the models, they are not suitable for direct quanti-
tative comparison. For this reason, we perform the DeLong’s
test [16] based on the true labels and the raw probabilistic
outputs of the models (the logits before applying the sigmoid
function). The test calculates a p-value, wich determines if
the difference between two AUC ROC scores is statistically
significant (p < 0.5) or a result of random chance (p ≥ 0.5).

4 Results
As we can see from Figure 7, the loss curve for the Base
model converges to similar values on both the training and
validation datasets, which indicates that the model is gen-
eralizing well and not overfitting. However, as we can see
from the other three graphs, the validation loss is not as sta-
ble for the models which use anatomy-aware data augmen-
tations, which indicates problems with generalization. Since
this does not occur in the Base model, we can conclude this
is not due to unsuitable learning rate or noise in the validation
set.

Figure 8 contains the ROC curves for the ’True’ class (has
OA) of all four models on the training, validation and test-
ing datasets. AUC ROC values of around 0.7 are generally
considered to be on the border between inadequate discrimi-
nation and acceptable performance, which indicates that none
of the classifiers perform too well, including the one learning
from representations extracted from the Base model. This
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Figure 7: Training and validation loss curves for all 4 models - top
to bottom, left to right: Base, Fully Anatomical, Appearance and
Geometrical.

suggests that the reason for the poor performance is not due
to the differences in the data augmentations of the encoders.
It is worth noting, however, that despite the small differences,
the classifier learning from representations from the Fully
Anatomical Model is the one which has the lowest scores
across all 3 datasets.

Figure 8: ROC curves on the train, validate and test datasets for
all 4 models - top to bottom, left to right: Base, Fully Anatomical,
Appearance and Geometrical. AUC ROC scores are included.

In order to investigate whether the poor performance is a
consequence of the imbalance in the dataset between the two
classes (True and False - for has / has not OA), the recall
score was calculated on the True class. This metric was cho-
sen since when it comes to medical diagnosis, we are mostly
interested in maximizing the share of patients suffering from
a disease which are correctly diagnosed. Indeed, the score for
the Base model classifier was very poor - 0.08. After several

Accuracy AUC - ROC
Base Model 76% 0.68
Appearance Model 76% 0.69
Geometrical Model 78% 0.71
Fully Anatomical Model 75% 0.68

Table 1: Accuracy and AUC - ROC scores for all four classifiers.

P-value from performing
DeLong’s test

Appearance Model 0.3637
Geometrical Model 0.0392
Fully Anatomical Model 0.8340

Table 2: P-value from performing DeLong’s test on all 3 classfiers,
trained on the models which utilize anatomy-aware data augmen-
tations, when compared against the classifier trained on the Base
Model.

attempts to train it using different thresholds or adding dif-
ferent weights to positive and negative examples in the loss
function, the recall score increased to 0.22 and 0.50 respec-
tively. While most of those encoders did not present signifi-
cant changes in their ROC curves, it one case (using a thresh-
old of 0.2 instead of 0.5) the accuracy score increased - from
the original 76% to 78%.

The results from performing DeLong’s test on the AUC
ROC scores of all three models, utilizing anatomy-aware aug-
mentations, are included in Table 2. They were all compared
against the Base model’s encoder in order to observe whether
the difference in AUC ROC scores is statistically meaning-
ful. Only in the case of the Geometric model the p-value
is less than 0.05 which means that there is a significant dif-
ference between the ROC curves of two models being com-
pared. Since the only difference between the training proce-
dure of those classifiers is the data augmentations of the en-
coders, whose output they use as input, we can conclude that
the anatomy-aware approach on the geometric augmentations
has contributed to a better performance of the Geometrical
model. In the case of the Appearance and Fully Anatomical
model, the p-values are much greater than 0.05 and thus, the
no significant statistical difference is observed in their AUC
ROC scores compared to the base model.

5 Discussion
As can be observed by Table 1, the two models, which used
the classic data augmentation techniques and our custom
anatomy-aware ones respectively, present little to no differ-
ence in their performance. In this sense, this study found
no benefit from incorporating anatomy-awareness in all data
augmentations used in a Contrastive Self-Supervised model.
However, including anatomy-awareness partially and selec-
tively - specifically when it comes to geometric data augmen-
tations, seems to show promising initial results. This is in
line with the initial hypothesis of this research - that anatomy-
awareness would be more valuable for those data augmenta-
tions which exclude regions of the images, rather then merely
alter their appearance. It is worth noting, however, that a lim-
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itation of this study is that performing multiple runs of the
experiment was not possible, due to the time constraints of
the project. Despite the findings from DeLong’s test, drawing
conclusions from the performance of a single model would be
unreasonable, given the unpredictable nature of deep learning
models.

It is evident from Figure 7 that introducing any anatomy-
aware augmentations leads to more unstable learning, given
the learning curves on the validation set. This could be at-
tributed to the fact that the custom anatomy-aware augmen-
tations could be described as limited and less ”strong” com-
pared to their classical counterparts. Variability in between
different views is the core driver of the learning process in
Contrastive SSL, so it is possible that the augmented images
become too similar, in comparison to those produced by the
Base model, and the encoder learns to produce very generic
feature vectors. What is more, the hyperparameters used for
the data augmentations could also be described as leading to
”safer” views. For example, the torchvision default scale pa-
rameter for RandomResizedCrop is (0.08, 1.0), which indi-
cates the lower and upper bounds for the cropped area re-
spectively. The same values are used in the SimCLR study.
The value of 0.08 was considered not suitable for the purpose
of this study, since it lead to almost fully gray views. For this
reason, the bounds were changed, but determining the perfect
parameters is not an easy task and would require a more sys-
tematic approach, which would be outside of the scope of this
study.

The unstable learning of the encoders also directly corre-
lates to the batch size being used to load the data into the
model. The bigger it is, the better the model would be able to
generalize, rather than overfitting on each new incoming en-
try. In our experiments, we used batch size of 64, mostly due
to the fact that computational times increase drastically as the
batch size does. However, in the experiments in the original
SimCLR paper, batch size 4096 is used - which is more than
half of the data we have available for this study. The authors
also show that the larger the batch size, the better the perfor-
mance of the model, since this provides more negative pairs
for the model to learn from and thus, produce more varied
representations.

6 Responsible Research

6.1 Data
In relation to this study, no data has been collected by our
team. The data used for training and testing the models is
taken from the Cohort Hip and Cohort Knee (CHECK) study,
which is a large semi-public dataset intended to aid research
in Osteoarthritis and commonly used in the field. The data
is anonymized and has been collected with the patients’ con-
sent, following procedures approved by medical ethics com-
mittees. It has been obtained after a request for access, spec-
ifying the intended use. Since the datasets contain sensitive
medical data, the experiments have been executed on the uni-
versity’s supercomputer DelftBlue [17] in order to ensure the
data is used only for the purposes of this research and stays
contained in the university’s storage system.

6.2 Reproducibility
In order to ensure reproducibility of the research experiments,
the architecture of the selected model has been described in
detail and all hyperparameters used for the training phase
have been stated. However, sincethe data augmentation meth-
ods introduce an element of randomness, the accuracy of the
models might vary over different runs of the same training
setup.

As previously mentioned, CHECK is a semi-public dataset.
Thus, availability of the data may become an obstacle in re-
producing this study, since the team at UMC Utrecht who
collected the data needs to be contacted in order to obtain it.
Furthermore, the dataset only contains X-ray images of el-
derly patients (45 to 65 years old) who are known to be at
risk of developing Osteoarthritis or have previously exhibited
symptoms. This may introduce a bias in the model, which
would result in it not performing well on data of healthy or
young people. This risk, however, would not lead to detri-
mental outcomes if the model is used as intended – as a tool
to assist medical professionals in the diagnosis process. This
would mean that the X-ray images which the model assesses
would be of patients which a medical practitioner has already
decide may have Osteoarthritis. This aligns with the profiles
of the people represented in the datasets.

7 Conclusions and Future Work
In this study, we proposed custom data augmentation tech-
niques, which aim to solve the problem , which classical
augmentations present on medical data - that they may alter
the image too strongly and thus, change its semantic mean-
ing. We compared multiple encoders, whose training pro-
cedure was based on different combinations of custom and
classic augmentations. Our findings suggest that utilizing this
anatomy-aware approach for a larger number of chained im-
age transformations may hinder the learning process and lead
to less discriminative representations. However, when used
in moderation, this approach could be beneficial. Particularly,
geometric transformations, such as crop and erase, could ben-
efit more from it.

Given the very minimal differences between the accuracies
and AUC ROC scores of the compared models, multiple ad-
ditional runs of the experiment on different data splits would
be beneficial to draw more general conclusions. In order to
more closely replicate the success of the original SimCLR
model, the experimental setup could benefit from using its
original hyperparameters. This would require the scale of
both the models and the training procedure to be increased.
Resnet50 could be used instead of resnet18 and the batch size
could be drastically increased. For this, more data would be
needed and the Osteoarthritis Initiative (OAI) dataset could
be utilized, since it is a popular choice in the field. What is
more, it has been observed that the current bottleneck of the
training procedure is generating the two views of the images,
rather than training the model. In the interest of saving time
and computational resources, the custom data augmentations
could be implemented more efficiently.

While approximating our region of interest - the joint
space, by using a bounding box around it seems to work
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well enough for geometric augmentations, it could be hurting
the performance of the model when used on appearance aug-
mentations. With the current implementation, artifacts appear
around the edges of the box - harsh lines, defined by differ-
ence in contrast or blur. It is possible that

An interesting area for future research is utilizing those
anatomy-aware augmentations in a different context. While
they are a crucial part of contrastive self-supervised learn-
ing, their main application in machine learning is to augment
small datasets. This would be particularly useful in the area
of medical imaging, where data is sparse.
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