

Delft University of Technology

A Systematic Comparison of Search Algorithms for Topic Modelling—A Study on
Duplicate Bug Report Identification

Panichella, Annibale

DOI
10.1007/978-3-030-27455-9_2
Publication date
2019
Document Version
Accepted author manuscript
Published in
Search-Based Software Engineering - 11th International Symposium, SSBSE 2019, Proceedings

Citation (APA)
Panichella, A. (2019). A Systematic Comparison of Search Algorithms for Topic Modelling—A Study on
Duplicate Bug Report Identification. In S. Nejati, & G. Gay (Eds.), Search-Based Software Engineering -
11th International Symposium, SSBSE 2019, Proceedings (pp. 11-26). (Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11664
LNCS). Springer. https://doi.org/10.1007/978-3-030-27455-9_2
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-27455-9_2
https://doi.org/10.1007/978-3-030-27455-9_2

Delft University of Technology

Systematic Comparison of Search Algorithms for Topic Modelling - A Study on Duplicate
Bug Report Identification

Panichella, Annibale

Publication date
2019

Published in
11th Symposium on Search-Based Software Engineering

Citation (APA)
Panichella, A. (2019). Systematic Comparison of Search Algorithms for Topic Modelling - A Study on
Duplicate Bug Report Identification. In 11th Symposium on Search-Based Software Engineering Spinger.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

A Systematic Comparison of Search Algorithms
for Topic Modelling — A Study on Duplicate

Bug Report Identification

Annibale Panichella

Delft University of Technology, The Netherlands
a.panichella@tudelft.nl

Abstract. Latent Dirichlet Allocation (LDA) has been used to sup-
port many software engineering tasks. Previous studies showed that de-
fault settings lead to sub-optimal topic modeling with a dramatic im-
pact on the performance of such approaches in terms of precision and
recall. For this reason, researchers used search algorithms (e.g., genetic
algorithms) to automatically configure topic models in an unsupervised
fashion. While previous work showed the ability of individual search al-
gorithms in finding near-optimal configurations, it is not clear to what
extent the choice of the meta-heuristic matters for SE tasks. In this pa-
per, we present a systematic comparison of five different meta-heuristics
to configure LDA in the context of duplicate bug reports identification.
The results show that (1) no master algorithm outperforms the others
for all software projects, (2) random search and PSO are the least effec-
tive meta-heuristics. Finally, the running time strongly depends on the
computational complexity of LDA while the internal complexity of the
search algorithms plays a negligible role.

Keywords: Topic modeling · Latent Dirichlet Allocation · Search-based
Software Engineering · Evolutionary Algorithms · Duplicate Bug Report

1 Introduction

Topic model techniques have been widely used in software engineering (SE) liter-
ature to extract textual information from software artifacts. Textual information
is often used support software engineers to semi-automated various tasks, such
as traceability link retrieval [2], identify bug report duplicates [27], automated
summary generator [34, 30], source code labeling [11], and bug localization [22].
Latent Dirichlet Allocation (LDA) is a topic model techniques, which has re-
ceived much attention in the SE literature due to its ability to extract topics
(cluster or relevant words) from software documents. LDA needs to set a num-
ber of hyper-parameters. For instance, the Gibbs sampling generative model
requires to choose the number of topics K, the number of iteration N , and two
hyper-parameters α and β affecting the topic distributions across documents
and terms. However, there are no optimal hyper-parameter values that produce
“good” LDA models for any dataset. In fact, a prior study showed that untuned

2 A. Panichella

LDA can lead to suboptimal performance and can achieve lower accuracy than
simple heuristics based on identifier analysis [11, 12].

To address the tuning challenge, researchers have proposed different strate-
gies over the years [17, 35, 16, 28, 1]. While early attempts focused on the num-
ber of topics K as the only parameter to tune, Panichella et al. [28] proposed
a search-based approach to tune the LDA hyper-parameters. More specifically,
the external performance (e.g., the accuracy) of LDA with a given configura-
tion [K,N,α, β] can be indirectly estimated looking at internal cluster quality
metrics. In their study, the author used the silhouette coefficient as the driving
metric (i.e., the fitness function) to guide genetic algorithms towards finding
(near) optimal LDA configurations automatically. Their empirical study showed
that LDA settings found with GA dramatically improve the performance of LDA,
outperform “off-the-shelf” setting used in previous studies.

Based on the results in [28], Agrawal et al. [1] further investigated search
algorithms for tuning LDA. They used Differential Evolution (DE) as alterna-
tive meta-heuristic and showed through an extensive study that it often achieves
more stable LDA configurations, leading to better topic models than GAs. Be-
sides, they provided further evidence about the usefulness of search-based topic
models over “off-the-shelf” LDA settings. Among other results, Agrawal et al.
[1] advocated the use of DE as superior meta-heuristics for tuning LDA.

In this paper, we aim to investigate further and compare the performances of
multiple meta-heuristics (not only GA and DE) to understand whether there is
one meta-heuristic (the “master” algorithm) that constantly dominates all the
others. To this aim, we consider the case of duplicate bug report identification,
which has been often addressed with topic modeling. Duplicate reports are bug
reports that describe the same issues but that are submitted by different users
to bug tracking systems. Duplicate reports lead to a considerable extra overhead
for developers who are in charge of checking and solving the reported issues [20].

We selected seven Java projects from the Bench4BL datasets and compared
five different meta-heuristics, namely DE, GA, Particle Swarm Optimization
(PSO), Simulated Annealing (SA) and Random Search (Ran). Our results show
that there is no “master” (dominant) algorithm in search-based topic model-
ing, although Ran and PSO are significantly less effective than the other meta-
heuristics. Besides, DE does not outperforms GA (in terms of both accuracy
and running time) when the three meta-heuristics use the same number of fit-
ness evaluations and the stability of LDA is improved using restarting strategies.

2 Background and Related work

Document Pre-processing. Applying IR methods requires to perform a se-
quence of pre-processing steps aimed to extract relevant words from software
artifacts (bug reports in our case). The first step is the term extraction, in which
non-relevant characters (e.g., special characters and numbers) are removed, and
compound identifiers are split (e.g., camel-case splitting) [14]. In the second
step, a stop-word list is used to remove terms/words that do not contribute to

A Systematic Comparison of Search Algorithms for Topic Modelling 3

the conceptual context of a given artifact, such as prepositions, articles, auxiliary
verbs, adverbs, and language keywords. Besides, the stop-word function removes
words that are shorter than a given threshold (e.g., words with less than three
characters). In the last steps, a stemming algorithm (e.g., Porter stemmer for
English) transform words into their root forms (e.g., verb conjugations). The
resulting pre-processed documents are then converted into a term-by-document
matrix (M). The rows of the matrix denote the terms in the vocabulary after
pre-processing (m terms) while the columns denote the documents/artifacts in
the corpora (n documents). A generic M(i, j) denotes the weight of the i-th
term in the j-th document [3]. The basic weight of each term corresponds to its
frequency in a given document (tf = term frequency). However, prior studies
suggested using tf -idf (terms frequency with inverse document frequency) which
gives lower weights (relevance) to words that appear in most of the documents [5].
The term-by-document matrix is then used as input for an algebraic (e.g., Vector
Space Model) or probabilistic model (PLSI) to compute the textual similarities
among the documents. Such similarities are used differently depending on the
SE task to solve. For example, similarities are used to detect duplicated reports
with the idea that similar bug reports likely discuss the same bug/issue.

In this paper, we use the following pre-processing steps suggested in the
literature [3, 5, 10]: (1) punctuation characters and numbers are removed; (2)
splitting compound identifiers with camel-case and snake-case regular expression;
(3) a stop-word list for English Language and Java code; (4) stop-word function
with a threshold of two characters; (5) words are transformed into their root
forms using the Porter stemmer; (6) tf -idf as the weighting schema.

Identifying Duplicate Bug Report. The term-by-document matrix (or
its low-dimensional approximation produced by LDA) is then used to compute
the Euclidean distance for each pair of documents (bug reports in our case)
and compute the ranked list of duplicate bug reports. More specifically, each
bug report is used as a query to retrieve the corresponding duplicated reports.
The candidate list for each query is therefore determined using the Euclidean
distance and sorting the documents in ascending order of distances. Effective IR-
methods or topic model should assign better rankings to duplicate reports over
non-duplicates. For example, Nguyen et al. [27] combined information retrieval
and topic models to detect duplicate reports in an automated fashion. Hindle
et al. [20] showed that continuously querying bug reports helps developers to
discover duplicates at the time of submitting new bug reports.

Topic modeling with LDA. Latent Dirichlet Allocation (LDA) [8] is a
generative probabilistic model for a collection of textual documents (corpora).
More specifically, it is a three-level hierarchical Bayesian model which associates
documents with multiple topics [8]. In LDA, a topic is a cluster of relevant words
in the corpora. Therefore, documents correspond to finite mixtures over a set of
K topics. The input of LDA is the term-by-document (m×n) matrix generated
using the pre-processing steps described above. LDA generates two distributions
of probabilities, one associated with the documents and the other one related the
terms in the corpora. The first distribution is the topic-by-document matrix (Θ):

4 A. Panichella

a K×n matrix, where K is the number of topics, n is the number of documents,
and the generic entry Θ(i, j) denotes the probability of the jth document to be
relevant to the ith topic. The second distribution is the word-by-topic matrix
(Φ): an m×K matrix, where m is the number of words in the corpora, K is the
number of topics, and the generic entry Φ(i, j) denotes the probability of the ith

word to belong to the jth topic.
LDA can also be viewed as a dimensional reduction techniquesif the number

of topics K is lower than the number of words m in the corpora. Indeed, the
term-by-document matrix is decomposed using LDA as follows:

M
m×n

≈ Φ
m×K

× Θ
K×n

(1)

where K is typically smaller than m. Using Θ, documents can be clustered
based on the topics they share based on the corresponding topic probabilities.
Documents associated with different topics belong to different topic clusters.
Vice versa, documents sharing the same topics belong to the same cluster.

There exist multiple mathematical methods to infer LDA for a given cor-
pora. VEM is the applies a deterministic variational EM method using expectation
maximization [25]. The fast collapsed Gibbs sampling generative model is an
iterative process that applied a Markov Chain Monte Carlo algorithm [37]. In
this paper, we focus on Gibbs-sampling as prior studies showed that it much
faster [31], and it can achieve more stable results [17] and better convergence
towards the global optimum than VEM [1] in SE documents.

There are four hyper-parameters to set when using the Gibbs sampling gen-
erative model for LDA [28, 7]:
– the number of topics K to generate from the corpora;
– α influences the distribution of the topics per document. Smaller α values

lead to fewer topics per documents.
– β influences the term distribution in each topic. Smaller β values lead to

topics with fewer words.
– the number of Gibbs iterations N ; this parameter is specific to the Gibbs

sampling generative model.

Stability of the generated topics. LDA is a probabilistic model and, as
such, it can produce slightly different models (topics and mixtures) when ex-
ecuted multiple times for the same corpora. Furthermore, different document
orderings may lead to different topic distributions [1] (ordering effect). Previ-
ous studies (e.g., [21, 1]) suggested different strategies to increase LDA stability,
including using random seeds and applying multiple Gibb restarts.

The Gibbs sampling generative method is a stochastic method that performs
random samples of the corpora. As any random sampler, the Gibbs method
generates random sampling using a random number generator and a starting
seed. An easy way to achieve the same topics and mixtures consists in using the
same initial seed when running LDA with the same hyper-parameters and for
the same corpora. Another well-known strategy to improve the stability of LDA
is restarting the Gibbs sampling to avoid converging toward local optima. For

A Systematic Comparison of Search Algorithms for Topic Modelling 5

example, Hughes et al. [21] proposed a sparsity-promoting restart and observed
dramatic gains due to the restarting. Binkley et al. [6] ran run the Gibbs sampler
multiple times suggesting that it reduces the probability of getting stuck in local
optima. Recently, Mantyla et al. [24] performed multiple LDA runs and combined
the results of different runs through clustering.

In this paper, we use both fixed seeds for the sampling and the restarting
strategy. More details are provided in Section 3.1.

Automated tuning for LDA. A general problem when using LDA is decid-
ing the hyper-parameters values to adopt when applying it to a specific dataset.
Researchers from different communities agree that there is no universal setting
that works well for any dataset (e.g., [6, 28, 21]). Different heuristics have been
proposed by researchers to find (near) optimal hyper-parameters for a given task
[17, 35, 16, 28, 1]. Most of the early approaches focused on the number of topics
K to set while using fixed values for α, β and N [17, 16, 35].

Panichella et al. [28] used an internal metric for cluster quality analysis to
estimate the fitness of LDA configurations based on the idea that LDA can
also be seen as a clustering algorithm. More specifically, they used the silhouette
coefficient as the fitness function to guide genetic algorithms, which were used to
find LDA hyper-parameters that increased the coefficient values. The silhouette
coefficient is defined as [28]:

s(C) =
1

n

n∑
i=1

s(di) with s(di) =
b(di)− a(di)

max (a(di), b(di))
(2)

In the equation above, s(di) denotes the silhouette coefficient for the docu-
ment di in the corpora; a(di) measures the maximum distance of the document
di to the other documents in the same cluster (cluster cohesion); b(di) mea-
sures the minimum distance between of the document di to another document
in a different cluster (cluster separation); s(C) measure the overall silhouette
coefficient as the arithmetic mean of the coefficients s(di) for all documents in
the corpora. s(C) takes values in [−1,+1]; larger values indicate better clusters
because (on average) the separation is larger than the cohesion of the clusters.
While the silhouette coefficient is an internal cluster quality metric, Panichella
et al. [28] showed that hyper-parameters that increased the silhouette coefficient
also lead to better external performances, such as the accuracy in traceability
recovery. Besides, the LDA configurations found with GAs achieve performance
that is pretty close to the global optimum. The silhouette coefficient and GA
were also used in a later study [29] to configure the whole IR process (including
the pre-processing) automatically.

Recently, Agrawal et al. [1] further investigated the challenges of configuring
LDA with search algorithms. They showed than Differential Evolution (DE)
can generate optimal hyper-parameter values which lead to more stable LDA
models (topic and mixtures). Besides, Agrawal et al. also used a different fitness
function. An empirical comparison between GA and DE showed that the latter
needs fewer generations and produces more stable LDA models than the former.
However, in [1] GA and LDA were configured with different termination criteria:

6 A. Panichella

a few dozens of fitness evaluations for DE and thousands of fitness evaluations for
GA. Besides, Agrawal et al. [1] did not use standard strategies (e.g., restarting
strategies) to produce stable results for both GA and DE. Based on the results
in [1], Mantyla et al. [24] used DE in combination with multiple LDA runs to
achieve even more stable topics.

While prior studies argued about the superiority of DE over other meta-
heuristics for topic modeling, more research is needed to assess how different
meta-heuristics perform when using the same number of fitness evaluations (e.g.,
the same termination criteria) and using random restarting to achieve stable re-
sults. This paper sheds lights on this open question and compares the perfor-
mance of five different meta-heuristics (not only DE and GA) when configuring
LDA for duplicate bug report identification. For the sake of our analysis, we use
the silhouette coefficient as the fitness function for all meta-heuristics.

3 Empirical Study

The following research questions steer our study:
– RQ1: Do different meta-heuristics find equally good LDA configurations?

Different meta-heuristics may produce different LDA configurations. Our
first research question aims to investigate whether configurations produced
by alternative meta-heuristics achieves or not the same accuracy.

– RQ2: Does the running time differ across the experimented meta-heuristics?
Priori study [1] advocated the usage of Differential Evolution (DE) over
other meta-heuristics because it requires less running time. With our second
research question, we aim to compare the running time of different meta-
heuristics when configured with the same number of fitness evaluations.

Benchmark. The benchmark of our study consists of seven datasets from
the Bench4BL dataset [22] and publicly available in GitHub1. The benchmark has
been used by Lee at al. to perform a comprehensive reproduction study of state-
of-the-art IR-based bug localization techniques. For our study, we selected seven
Java project from Bench4BL: four projects from the apache commons library2,
two projects from Spring3, and one project from JBoss4. The characteristics
of the selected projects are reported in Table 1. We chose these seven projects
because they have been widely used in the SBSE literature (e.g., [9]) and are
well-managed together with issue tracking systems.

For each project, the Bench4BL contains (i) issues (from their issue tracking
systems) that are explicitly labeled as bug by the original developers, and (ii) the
corresponding patches/fixes [22]. Each bug report/issue contains (i) the summary
(or title), (ii) the description, and (iii) the reporter. Besides, Bench4BL also
provides the list of duplicated bug reports for each system in the dataset. The

1 https://github.com/exatoa/Bench4BL
2 http://www.apache.org/
3 https://spring.io/
4 http://www.jboss.org/

A Systematic Comparison of Search Algorithms for Topic Modelling 7

Table 1. Characteristics of the projects in our study

System #Files #Bug Reports #Duplicates
Apache commmons collections 525 92 16 (17%)
Apache commons io 227 91 7 (8%)
Apache commons lang 305 217 23 (11%)
Apache commons math 1,617 245 8 (3%)
Spring Datacmns 604 158 15 (9%)
Spring SPR 6,512 130 73 (56%)
JBoss WFly 8,990 984 27 (3%)

percentage of duplicated bug reports ranges between 3% for apache commons
math and 56% for Spring SPR.

Meta-heuristic Selection. We selected the following meta-heuristics:

(1) Genetic Algorithms (GAs) have been used in a prior study to config-
ure LDA [28] and the whole IR process [29]. GA is population-based meta-
heuristic that evolves a pool of randomly-generated solutions (LDA configura-
tions) through sub-sequent generations. In each generation, solutions are selected
based on their fitness values (silhouette coefficient) using the binary tourna-
ment selection. Fittest solutions (parents) are combined using binary-simulated
crossover and gaussian mutation to form new solutions (offspring). Then, the
population for the new generation is formed by selecting the best solutions among
parents and offspring (elitism).

(2) Differential Evolution (DE) is an evolutionary algorithm used by Agrawal
et al. [1]. DE is also a population-based meta-heuristic with µ randomly gener-
ated solutions. The key difference in DE is that new solutions are generated in
each generation by using differential operators rather than genetic operators. A
new solution (LDA configuration) is generated by (1) randomly selecting three
solutions a, b, and c from the population; (2) a new solution is generated with
the formula: yi = ai + f × (bi− ci), where f is the differential weight ∈ [0; 2]; ai,
bi and ci denote the i-th elements of the three selected solutions (i.e., the i-th
LDA hyper-parameters). The differential operator is applied with a probability
pc ∈ [0; 1] (crossover probability).

(3) Particle Swarm Optimization (PSO) is a population-based meta-heuristic
proposed by Eberhart and Kennedy [13]. Similarly to DE and GA, PSO itera-
tively updates the pool of initial particles (solutions) with initial positions (x),
inertia (w), and velocity (v). However, unlike GA and DE that uses crossover
(and mutation with GA), PSO updates the solutions toward the best solution
in the pool by updating their positions and velocity.

(4) Simulated Annealing (SA) is a meta-heuristic that involves only one so-
lution at a time [36]. One randomly-generated solution x (LDA configuration) is
updated through random mutation (neighborhood). If the mutated solution x′

improves the fitness function (i.e., fit(x′) < fit(x)) then SA selects x′ as new
current solution. If the fitness function decreases with x′, the current solution
x is still replaced with a probability exp−∆D/T , where ∆D is the difference be-
tween the cost function for x′ and x while T is the temperature. The probability
of accepting worst solutions decreases exponentially with ∆D: the higher the
difference between the two solutions, the lower the probability of accepting the

8 A. Panichella

worst one. Usually, the parameter T decreases in each iteration to strengthen
the exploitation ability of SA.

(5) Random Search (Ran) is the simplest search algorithm to implement. It
tries K random samples and selects as the final solution (LDA configuration) the
one with the best fitness value across all generated trials. Despite its simplicity,
random search can outperform more sophisticated meta-heuristics for specific
problems [4] and it is often used as a baseline in SSBSE.

Parameter settings. For the search, we opt for the standard parameter
setting and search operators suggested in the literature [28, 1]. In particular, for
GA we use the following parameter values: population size of 10 LDA configu-
rations; crossover probability pc=0.9; mutation probability pm=0.25 (i.e., 1/n,
where n is the number of hyper-parameters for LDA). For DE, we use the follow-
ing setting: population size µ=10; differential weight factor f = 0.7; crossover
probability pc=0.9. SA was configured as follows: neighbors are generated using
the Gaussian mutation; the number of steps per temperature ns=10; the number
of temperatures nt=5. For PSO, we apply the following setting: population size
µ=10; inertia weight wi=0.9; search weights c1=c2=1. The only parameter to
set for random search is the number of random solutions to generate.

Termination criteria. To allow a fair comparison, we set all algorithms
with the same stopping criterion: the search terminates when the maximum
number of fitness evaluations (FEs) is reached. Previous studies in search-based
topic modeling suggested different values for FEs: Panichella et al. [28] used GA
with 100 individuals and 100 generations, corresponding to 10K FEs; Agrawal
et al. [1] used DE with 10 individuals and 3 generations, corresponding to 30
FEs. Agrawal et al. [1] argued that fewer FEs are sufficient to achieve good and
stable LDA configurations. In addition, too many FEs dramatically impact the
overall running time since each LDA execution (individual) is very expensive for
large corpora. Based on the motivation by Agrawal et al. [1], we use FEs=50
since it provides a good compromise between performances (TOPk metrics) and
running time in our preliminary experiments. However, we use the same FEs for
all meta-heuristics while prior studies [1] used fewer FEs only for DE.

Implementation. For LDA, we use its implementation available in the pack-
age topicmodels in R [18]. We chose this implementation over other implemen-
tations (e.g., Mallet5 in Java) because it provides an interface to the original
LDA implementation in C code by Blei et al. [8]. Furthermore, Binkley et al. [6]
showed that the R implementation is less sensitive to local optima compared to
Mallet. The R implementation was also used in a prior study concerning LDA
configurations for SE tasks [28] and support strategies (e.g., random restarts)
to achieve stable LDA models. For the meta-heuristics, we also used their im-
plementation available in R: (1) real-coded genetic algorithms from the package
GA [33]; (2) differential evolution from the package DEoptim [26]; (3) random
search from the package randomsearch [32]; (4) Simulated-Annealing [38], and
Particle Swarm Optimization from the package NMOF [23].

5 http://mallet.cs.umass.edu

A Systematic Comparison of Search Algorithms for Topic Modelling 9

The R scripts and datasets used in our experiment are publicly available at
the following link: https://apanichella.github.io/tools/ssbse-lda/.

3.1 Experimental methodology

For each project, we run each meta-heuristic 30 times. In each run, we collected
the running time needed to reach the stop condition (see the parameter setting)
and the performance metric TOPk. At the end of each run, we use the LDA con-
figuration produced by the meta-heuristic under analysis, and we generated the
corresponding LDA model, and the topic-by-document matrix (Θ) in particular.

To answer RQ1, we use the TOPk metric, which measures the performance
of an IR-method by checking whether a duplicate bug report to a given query
is retrieved within the top k candidate reports in the ranked list. For example,
TOP5 is equal to one if the first duplicate report for a given query q is retrieved
within the first top k = 5 positions in the ranked list. The overall TOPk metric
for a given project is the average of the TOPk scores achieved for all target
reports in the project. More formally, let |Q| be the number of queries (reports)
in a given dataset, the TOPk metric is defined as [20]:

TOPk(Q) =
1

|Q|
∑
q∈Q

ink(i) (3)

where ink(i) is equal to one if the first duplicated report for the query q is
retrieved within the first k positions in the corresponding ranked list. The higher
the TOPk, the better the performance of LDA with a given configuration. In
this paper, we consider four values of k, i.e., TOP5, TOP10, TOP15, and TOP20.

To answer RQ2, we compare the running time required by the different meta-
heuristics to terminate the search process in each independent run. For our
analysis, we compare the arithmetic mean for the running time across the 30
independent runs and the corresponding standard deviation.

To assess the statistical significance, we use the Friedman test to compare
the performance (TOPk and running time) of the assessed meta-heuristics over
six projects and five different metrics (four TOPk and the running time). Each
meta-heuristic produced 4 (TOPk metrics) × 6 (projects) × 30 (runs) = 720
data points. For statistical analysis, we consider the average (arithmetic mean)
of the TOPk metrics across the 30 runs, resulting in 24 average scores per meta-
heuristic. The five distributions (one for each meta-heuristic) are then compared
using the Friedman test [15], which is used to assess whether the performance
achieved by alternative meta-heuristics significantly differ from one another.
Then, to better understand which meta-heuristics performs better, we use the
Wilcoxon rank sum test to compare pairs of meta-heuristics. To draw our con-
clusions, we use the significance level 0.05 for both the Friedman and Wilcoxon
tests. Given the large number of pair comparisons with the Wilcoxon tests, we
report the number of times (i.e., pair of software projects and TOPk metrics) a
meta-heuristic A performs significantly better than another meta-heuristic B.

Strategies to achieve stable topic modeling. In this paper, we address
the stability problem using two standard strategies: seeding and random restart.

10 A. Panichella

When evaluating each LDA configuration (individual), we store both the sil-
houette coefficient (fitness function) and the random seed used to generate the
LDA model. Therefore, when the search terminates, LDA is re-run using the
best solution (configuration) found across the generation/iterations and using
the corresponding random seed previously stored. This allows obtaining the
same results (silhouette score, topics, and mixtures) even when LDA is re-run
multiple times with the same hyper-parameters. Besides, we also used random
restarting to improve the stability of the results and reducing the likelihood of
reach a local optimum when using the Gibb-sampling method. In particular, the
Gibb sampling procedure is restarted n = 5 times (independent runs), and the
generated topics and mixtures are obtained by averaging the results achieved
across the independent results.

4 Empirical Results

Table 2 shows the average (mean) and the standard deviation performance scores
(TOP5, TOP10, TOP15, and TOP20) achieved by the different algorithms in
the comparison over 30 independent runs. First, we can notice that there is no
“master” (dominant) meta-heuristic that outperforms the others for all software
projects. DE, GA, and SA produce the best (largest) TOPk scores for different
projects and with different k values. DE achieves the highest TOP5 only for two
out of seven projects and in only one project for TOP10. However, in all three
cases, DE and GA achieve the same performance score. For all the other projects
and metrics, it does not outperform nor compete with other meta-heuristics.
Therefore, our results indicate that DE is not superior to other meta-heuristics
as argued in prior studies.

GA achieves the best scores in 17 cases (six projects with different TOPk
metrics). For the projects io, math, and wfly, GA outperforms all other meta-
heuristics according to all TOPk scores. The differences with the second highest
scores range between 2% (math with TOP5) and 21% (wfly with TOP5). It is
worth noting that these three projects present the lowest percentages of dupli-
cated bug reports (<=8%) compared to the other projects (see Table 1). These
results suggest that GA is likely more effective on projects with very few dupli-
cate bug reports. For the projects datacmns, lang, and spr, GA achieves the best
TOPk scores only for k = 5 (for both projects) and k = 10 (for spr). For larger
k values, SA produces the best TOPk scores among the five meta-heuristics.

In general, SA achieves the best TOPk scores in 12 cases (four projects
with different TOPk metrics). Independently from the TOPk metric, SA is the
best meta-heuristic for collections, which is the smallest projects (<100 bug
reports) in our benchmark. The differences with the second best meta-heuristic
vary between 4% and 5%. For other three projects, namely datacmns, lang, and
spr, SA achieves the best results only for larger values of k.

Random search never produces the best TOPk scores. However, it does pro-
duce better average TOPk scores than DE and GA for collections and lang.
Finally, PSO produces the lowest TOPk scores than all other meta-heuristics

A Systematic Comparison of Search Algorithms for Topic Modelling 11

Table 2. Mean and standard deviation of the performance scores achieved by the
evaluated meta-heuristics

System Metric DE GA Ran SA PSO
Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.

Collections TOP5 0.87 0.09 0.90 0.08 0.90 0.07 0.95 0.05 0.80 0.07
TOP10 0.88 0.10 0.90 0.07 0.91 0.08 0.95 0.05 0.84 0.07
TOP15 0.89 0.10 0.90 0.07 0.91 0.08 0.96 0.04 0.84 0.07
TOP20 0.90 0.08 0.90 0.07 0.91 0.08 0.96 0.04 0.85 0.07

Datacmns TOP5 0.44 0.10 0.47 0.10 0.41 0.12 0.37 0.05 0.28 0.09
TOP10 0.52 0.12 0.54 0.11 0.51 0.12 0.52 0.07 0.39 0.13
TOP15 0.54 0.13 0.57 0.11 0.53 0.15 0.61 0.13 0.42 0.14
TOP20 0.56 0.13 0.58 0.11 0.55 0.14 0.63 0.15 0.46 0.13

IO TOP5 0.51 0.12 0.54 0.11 0.45 0.16 0.41 0.17 0.22 0.05
TOP10 0.55 0.12 0.61 0.12 0.50 0.18 0.54 0.27 0.36 0.07
TOP15 0.56 0.11 0.64 0.10 0.54 0.15 0.55 0.28 0.44 0.07
TOP20 0.61 0.12 0.68 0.10 0.61 0.15 0.56 0.26 0.52 0.05

Lang TOP5 0.58 0.11 0.58 0.05 0.57 0.05 0.50 0.05 0.38 0.13
TOP10 0.62 0.12 0.62 0.06 0.64 0.05 0.68 0.07 0.45 0.09
TOP15 0.65 0.11 0.64 0.06 0.67 0.05 0.69 0.05 0.48 0.09
TOP20 0.67 0.12 0.65 0.06 0.69 0.04 0.71 0.05 0.49 0.10

Math TOP5 0.45 0.09 0.47 0.12 0.45 0.14 0.43 0.04 0.38 0.19
TOP10 0.51 0.11 0.57 0.12 0.50 0.16 0.48 0.10 0.41 0.19
TOP15 0.51 0.10 0.58 0.12 0.50 0.16 0.50 0.10 0.42 0.19
TOP20 0.51 0.10 0.58 0.12 0.51 0.15 0.50 0.11 0.44 0.18

Spr TOP5 0.62 0.04 0.62 0.06 0.58 0.06 0.53 0.08 0.53 0.12
TOP10 0.65 0.04 0.65 0.05 0.61 0.06 0.65 0.03 0.57 0.11
TOP15 0.67 0.05 0.67 0.05 0.63 0.07 0.72 0.09 0.61 0.10
TOP20 0.69 0.04 0.69 0.04 0.66 0.06 0.76 0.10 0.63 0.09

WFly TOP5 0.31 0.08 0.53 0.10 0.30 0.09 0.44 0.10 0.13 0.03
TOP10 0.33 0.08 0.53 0.09 0.31 0.10 0.48 0.09 0.15 0.03
TOP15 0.33 0.09 0.53 0.09 0.32 0.10 0.50 0.10 0.16 0.02
TOP20 0.33 0.09 0.53 0.09 0.32 0.10 0.51 0.09 0.16 0.02

and for all projects in our study. Therefore, it is not a suitable meta-heuristic
for topic models, at least in the context of duplicate bug report identifications.

The differences among the different meta-heuristics are statistically signif-
icant according to the Friedman test, whose resulting p-value is 3.79× 10−10.
To better understands which meta-heuristics performs statistically better (or
worse) than others, Tables 4-7 report the number of projects in which each meta-
heuristic (rows in the tables) significantly outperforms another meta-heuristic
(columns in the tables) according to the Wilcoxon test. Instead, Table 8 reports
the ranking produces by the Friedman tests. According to the statistical results,
GA is ranked first, followed by SA and DE, respectively. Instead, Random search
and PSO are the bottom two meta-heuristics. While GA was ranked first, we
can notice that it does not significantly outperform all other meta-heuristics for
all projects. However, it significantly outperforms Random Search and PSO in
most of the projects. It outperforms SA in most of the projects only for POS5

while for k > 5, the two meta-heuristics are comparable. DE (that is ranked
third) never outperforms GA according to the Wilcoxon test. Vice versa, GA
significantly outperforms DE in three out of seven projects for POSk>5.

12 A. Panichella

Table 3. Number of projects in which one meta-heuristic (row) statistically outper-
forms another one meta-heuristic (column) according to the Wilcoxon test.

Table 4. TOP5

Vs. DE GA Ran SA PSO
DE - 0 3 3 7
GA 1 - 4 5 7
Ran 0 0 - 2 7
SA 2 1 2 - 7
PSO 0 0 0 0 -

Table 5. TOP10

Vs. DE GA Ran SA PSO
DE - 0 2 1 7
GA 3 - 4 1 7
Ran 1 0 - 0 6
SA 3 1 3 - 7
PSO 0 0 0 0 -

Table 6. TOP15

Vs. DE GA Ran SA PSO
DE - 0 1 1 7
GA 3 - 4 1 7
Ran 0 1 - 0 6
SA 3 2 4 - 7
PSO 0 0 0 0 -

Table 7. TOP20

Vs. DE GA Ran SA PSO
DE - 0 1 1 7
GA 3 - 4 2 7
Ran 0 1 - 0 6
SA 3 1 5 - 7
PSO 0 0 0 0 -

Table 8. Ranking produced by the Friedman Tests

Meta-heuristic Ranking
GA 2.085714
SA 2.457143
DE 2.571429
Random 3.457143
PSO 4.428571

Table 9. Mean and standard deviation of the running time required by the evaluated
meta-heuristics to perform 50 fitness evaluations

System DE GA Ran SA PSO
Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.

Collections 14 2.34 11 2.05 7 5.15 6 0.60 14 1.25
Datacmns 91 14.53 72 14.19 46 32.66 72 36.82 85 15.36
Io 15 2.69 11 1.91 9 6.07 9 1.90 15 0.98
Math 118 16.40 96 24.97 66 47.61 138 85.66 129 20.24
Lang 92 8.83 72 11.98 48 34.14 82 58.55 80 14.81
Spr 64 12.02 58 8.00 37 26.35 85 66.07 71 10.28
WFly 6554 62.36 5196 130.78 3653 262.42 5124 501.38 6433 94.56

There is no “master” (dominant) meta-heuristic when configuring topic
models for duplicate bug report identification. GA and SA perform better than
other meta-heuristics but not consistently across projects. Random search
and PSO are the least effective meta-heuristics.

Table 9 reports the mean (and the standard deviation) running time required
by the evaluated meta-heuristics to reach the same stopping criterion (50 FEs)
across 30 independent runs. As expected, random search is the fastest among all
meta-heuristics since it does not involve any solution selection and update (e.g.,
mutation). For what regards the other meta-heuristics, we can notice that their
running does not differ substantially. On average, the difference between each
pair of meta-heuristics is lower than 10%, and this small difference is mostly due
to the computational complexity of the different individual operators. For exam-
ple, GA is faster than SA in three projects but slower in three other projects. DE
and PSO are instead slightly slower than DE and SA, although the differences
are small and in some cases almost negligible (e.g., few additional seconds for the
project collections). These results contradict what reported by Agrawal et al. [1],
who used fewer fitness evaluations with DE and many more with GA. In this
study, we use the same number of fitness evaluations for all meta-heuristics to
allow a fair comparison. When using the same stopping criterion, DE is slightly

A Systematic Comparison of Search Algorithms for Topic Modelling 13

slower than GA. This confirms previous results in evolutionary computation
(e.g., [19]) that showed how the extra overhead in DE is due to the computa-
tion complexity of differential operators. Indeed, a single generation of DE is on
average four times more expensive than one single generation with GA [19].

The running time strongly depends on the number of fitness evaluation per-
formed during the search (time to infer LDA). Instead, the internal complex-
ity of the meta-heuristics is small or negligible.

Threats to validity. Construct validity. All meta-heuristics are implemented
in R and were executed with the same stopping criterion. Furthermore, we use
seeding and random restarts for all meta-heuristics to alleviate the instability of
the LDA results. Internal validity. We drew our conclusions by executing 30 in-
dependent runs to address the random natures of the evaluated meta-heuristics.
Besides, we use the Wilcoxon and the Friedman tests to assess the statistical
significance of the results. We use TOPk as the performance metric because it is
a standard performance metric in duplicate bug report identification. External
validity. In our study, we consider seven open source projects from the Bench4BL
dataset [22]. Assessing the different meta-heuristics and selecting more projects
is part of our future plan.

5 Conclusion and Future Work

In this paper, we empirically compare different meta-heuristics when applied to
tune LDA parameters in an automated fashion. We focus on topic-model based
identification of bug report duplicates, which is a typical SE task and addressed
in prior studies with topic model and IR methods (e.g., [27, 20]). Experimental
results on seven Java projects and their corresponding bug reports show that
multiple meta-heuristics are comparable across different projects, although ran-
dom search and PSO are least effective than other meta-heuristics. Therefore,
no meta-heuristic outperforms all the others as advocated in prior studies. How-
ever, our conclusions hold for the problem of identifying duplicate bug reports.
Therefore, different results may be observed in different SE tasks. Our future
work will focus on extending our study by (i) comparing more meta-heuristics,
(ii) considering more projects and (iii) evaluating other SE tasks.

References

1. Agrawal, A., Fu, W., Menzies, T.: What is wrong with topic modeling? and how
to fix it using search-based software engineering. Information and Software Tech-
nology 98, 74–88 (2018)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Information retrieval models
for recovering traceability links between code and documentation. In: The 16th
IEEE International Conference on Software Maintenance. pp. 40–51 (2000)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
(1999)

14 A. Panichella

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13(2), 281–305 (2012)

5. Binkley, D., Lawrie, D.: Information retrieval applications in software maintenance
and evolution. Encyclopedia of Software Engineering (2009)

6. Binkley, D., Heinz, D., Lawrie, D., Overfelt, J.: Source code analysis with lda.
Journal of Software: Evolution and Process 28(10), 893–920 (2016)

7. Bird, C., Menzies, T., Zimmermann, T.: The art and science of analyzing software
data. Elsevier (2015)

8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. The Journal of
Machine Learning Research 3, 993–1022 (2003)

9. Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., Arcuri, A.: An empirical
evaluation of evolutionary algorithms for unit test suite generation. Information
and Software Technology 104, 207–235 (2018)

10. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the
role of the nouns in IR-based traceability recovery. In: The 17th IEEE International
Conference on Program Comprehension (2009)

11. De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Using IR
methods for labeling source code artifacts: Is it worthwhile? In: The 20th IEEE
International Conference on Program Comprehension (ICPC). pp. 193–202 (2012)

12. De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Labeling
source code with information retrieval methods: an empirical study. Empirical
Software Engineering 19(5), 1383–1420 (Oct 2014)

13. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: The
6th Intern. Symposium on Micro Machine and Human Science. pp. 39–43 (1995)

14. Enslen, E., Hill, E., Pollock, L.L., Vijay-Shanker, K.: Mining source code to auto-
matically split identifiers for software analysis. In: The 6th International Working
Conference on Mining Software Repositories. pp. 71–80 (2009)

15. Garćıa, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study
on the CEC’2005 special session on real parameter optimization. Journal of Heuris-
tics 15(6), 617–644 (Dec 2009)

16. Grant, S., Cordy, J.R.: Estimating the optimal number of latent concepts in source
code analysis. In: The 10th International Working Conference on Source Code
Analysis and Manipulation. pp. 65–74 (2010)

17. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. of the National
Academy of Sciences 101(Suppl. 1), 5228–5235 (2004)

18. Grün, B., Hornik, K.: topicmodels: An R package for fitting topic models. Journal
of Statistical Software 40(13), 1–30 (2011)

19. Hegerty, B., Hung, C.C., Kasprak, K.: A comparative study on differential evolu-
tion and genetic algorithms for some combinatorial problems. In: The 8th Mexican
international conference on artificial intelligence. pp. 9–13 (2009)

20. Hindle, A., Onuczko, C.: Preventing duplicate bug reports by continuously querying
bug reports. Empirical Software Engineering 24(2), 902–936 (2019)

21. Hughes, M., Kim, D.I., Sudderth, E.: Reliable and scalable variational inference
for the hierarchical dirichlet process. In: Artificial Intelligence and Statistics. pp.
370–378 (2015)

22. Lee, J., Kim, D., Bissyandé, T.F., Jung, W., Le Traon, Y.: Bench4bl: reproducibil-
ity study on the performance of ir-based bug localization. In: The 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. pp. 61–72.
ACM (2018)

A Systematic Comparison of Search Algorithms for Topic Modelling 15

23. Manfred Gilli, D.M., Schumann, E.: Numerical Methods and Optimization in Fi-
nance (NMOF) (2011)

24. Mantyla, M.V., Claes, M., Farooq, U.: Measuring lda topic stability from clusters of
replicated runs. In: The 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. p. 49. ACM (2018)

25. Minka, T., Lafferty, J.: Expectation-propagation for the generative aspect model.
In: The 18th conference on Uncertainty in artificial intelligence. pp. 352–359. Mor-
gan Kaufmann Publishers Inc. (2002)

26. Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: An r package for
global optimization by differential evolution. Journal of Statistical Software 40(6),
1–26 (2011)

27. Nguyen, A.T., Nguyen, T.T., Nguyen, T.N., Lo, D., Sun, C.: Duplicate bug report
detection with a combination of information retrieval and topic modeling. In: The
27th IEEE/ACM International Conference on Automated Software Engineering.
pp. 70–79 (2012)

28. Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.:
How to effectively use topic models for software engineering tasks? An approach
based on genetic algorithms. In: The International Conference on Software Engi-
neering. pp. 522–531. IEEE Press (2013)

29. Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.:
Parameterizing and assembling ir-based solutions for se tasks using genetic algo-
rithms. In: 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER). vol. 1, pp. 314–325. IEEE (2016)

30. Panichella, S., Panichella, A., Beller, M., Zaidman, A., Gall, H.C.: The impact
of test case summaries on bug fixing performance: An empirical investigation. In:
2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
pp. 547–558 (May 2016)

31. Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., Welling, M.: Fast
collapsed gibbs sampling for latent dirichlet allocation. In: The 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 569–577.
ACM (2008)

32. Richter, J.: randomsearch: Random Search for Expensive Functions (2019)
33. Scrucca, L.: GA: A package for genetic algorithms in R. Journal of Statistical

Software, Articles 53(4), 1–37 (2013)
34. Sridhara, G., Hill, E., Muppaneni, D., Pollock, L.L., Vijay-Shanker, K.: Towards

automatically generating summary comments for java methods. In: The 25th
IEEE/ACM International Conference on Automated Software Engineering. pp.
43–52. ACM Press (2010)

35. Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical Dirichlet processes. Journal
of the American Statistical Association 101(476), 1566–1581 (2006)

36. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated annealing:
Theory and applications, pp. 7–15. Springer (1987)

37. Wei, X., Croft, W.B.: Lda-based document models for ad-hoc retrieval. In: The 29th
Annual International Conference on Research and Development in Information
Retrieval. pp. 178–185. ACM (2006)

38. Yang Xiang, Gubian, S., Suomela, B., Hoeng, J.: Generalized simulated annealing
for efficient global optimization: the GenSA package for R. The R Journal Volume
5/1, June 2013 (2013)

