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The Delfi-n3Xt nano-satellite is the second Dutch university satellite currently being
developed at the Delft University of Technology (TUD) as successor of the Delfi-C* that
has been successfully launched in April 2008. Compared to Delfi-C*, the Delfi-n3Xt
platform provides significant advancements to the platform: a high-speed downlink,
three-axis attitude control and a single-point of failure free battery. In total five payloads
will be flown that generate a considerable larger amount of data compared to Delfi-C*
that implies, as well, a robust and adequate design for the data handling system that
interlinks the various embedded systems on board.

This paper examines the design and implementation of a fault tolerant data bus
architecture as part of the satellite Command and Data Handling Subsystem (CDHS).
Delfi-C* carries an I°C protocol based implementation that currently experiences
problems with data corruption and timeouts and is therefore subject of scrutiny and
analysis in this paper. In particular, the relationship between error rates, master-slave
speeds and processing overheads is evaluated in detail. After a tradeoff study between
several bus standards for Delfi-n3Xt, the choice is once again an I°C implementation, but
with significant hardware and software improvements over the previous design. In terms
of hardware, shielding and bus protection considerations are included in the very early
stages of design. With respect to software, special care is taken in dealing with the
varying clock speeds between slaves and masters, correct data handling and the
feasibility of error detection and correction codes, as the amount of data generated by the
payloads of the Delfi-n3Xt is significantly higher. The final result of this research is the
selection of the most adequate reliability techniques and their implementation. This I°C
bus targeted middleware is intended for usage in the complete Delfi nanosatellite
programme at TUD and for several other space applications in general.
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1. Introduction

The Delfi-n3Xt nano-satellite is the second Dutch university satellite currently being developed
at the Delft University of Technology (TUD) as successor of the Delfi-C* that has been successfully
launched in April 2008. Compared to Delfi-C*, the Delfi-n3Xt platform provides significant
advancements to the platform: a high-speed downlink, three-axis attitude control and a single-point
of failure free battery. In total five payloads will be flown that generate a considerable larger amount
of data compared to Delfi-C® that implies, as well, a robust and adequate design for the data
handling system that interlinks the various embedded systems on board.

2. The Delfi-C? Command & Data Handling Subsystem

2.1 Delfi-C® CDHS Overview

The Command & Data Handling Subsystem (CDHS) of the Delfi-C* was designed to process, store
and manage all data and telecommands received by the satellite. It was also in charge of collecting
all data from payloads and controlling the satellite itself based on relevant data. Therefore, the
CDHS components included the on-board computer (OBC), the data bus, and software. The OBC
used is the MSP430F169 from Texas Instruments, which comes bundled in the FM430 board of the
Cubesat Kit from Pumpkin Inc. This microcontroller runs at 1 MHz and coordinates activities with
the other subsystems which are managed with PIC microcontrollers from Microchip Technology Inc.
These PIC microcontrollers handle all interfacing with the peripherals at their specific subsystem and
communicate data back to the OBC. Moreover, they are also programmed to act autonomously in
the case of an OBC failure or timeout.

The system data bus is an implementation of the I>C by Royal Phillips from The Netherlands.
Whereas many of the data buses currently used in space contain high resiliency and error correction,
the 1°C standard does not define any type of EDAC methods, and therefore a parity scheme was
implemented on top of the base standard. Physical cabling of the bus was realized via Nomex
cabling and soldered connectors in each board. The bus speed was set to approximately 15 KHz to
compensate for slower slaves running at 31 KHz in each of the distributed EPS nodes, which had to
run at slow speed to diminish power consumption.

Finally, this design of a CDHS has to cope with unpredictable resets due mainly to the fact that
there is no battery for the Electrical Power Subsystem (EPS) and therefore systems will be
unpowered every orbital period during eclipse. The exact time of this reset is not predicted and the
failure of any of the solar panels would also add to the uncertainty of this event, making it a pivotal
requirement to be prepared at all times for power off. Due to the fact that the CDHS does not carry
significant on-board storage, it is critical to be able to sustain power during communication windows
as any data in volatile memory will be lost when the EPS shuts down.

2.2 Delfi-C* Experience and Issues with Data Bus

Although the software can handle most of the tasks required by the CDHS, it does experience
errors and lost data entries from time to time. Determining the exact cause of the problem has
proved to be a daunting task due to the large amount of activity, variables and factors that have to
be taken into account. The time at which these errors occur also appears to be random. For these
reasons, the approach taken here to shed a light on the problem is based on Bit Error Rate Analysis
from testing a similar setup with the Delfi-C* service layer code. The preliminary hypothesis is that
varying the bus speed has a noticeable impact in the amount of communication errors.

The results obtained from the BER experiments showed that indeed the EPS slaves running at 31 KHz
experienced high amount of timeouts and error rate as the bus speed varied. The result of these



experiments is shown in figure 2. A marked rise is observed after the bus goes beyond 8Khz for the
slowest slave, which is expected, since I1°C guidelines dictate that a reliable implementation requires
slaves running at least 10 times faster than the bus. Additional to this, parity calculation consumes a
considerable amount of time, which of course, causes more impact on the slower running
microcontrollers.

BER on 12C - Delfi C3 Code
0,08

0,07

0,06 /

0,05 /

& /s
m 0,04
2 /
0,03 ——1Mhz Slave ||
/ —— 31Khz Slave
OYOZ \//
0,01

1 2 3 4 6 8 10 12 14 16 18 20
12C Bus Speed (khz)

Fig. 2: BER Analysis of Delfi-C* I°C Data Bus Setup

Finally, during integration of Delfi-C3, crosstalk was observed between both lines of the data bus,
introducing a source of errors. The issue was resolved by applying a ground plane over the lines.
The adhesive copper managed to suppress the inductive coupling to an acceptable margin. However,
the watchdog implementation that would take action in case of hangs was not properly
implemented.

3 The Delfi-n3Xt Data Bus

3.1 High Level Description of the Delfi-n3Xt CDHS

As in Delfi-C*>, the Command and Data Handling Subsystem of Delfi-n3Xt comprises all

components, hardware and software, required to interconnect, communicate and operate the
subsystems within the satellite. In essence, the CDHS for Delfi-n3Xt will perform the same functions
as it did for Delfi-C, but will include numerous enhancements both in software and hardware.
The experience from Delfi-C> has suggested numerous changes that should provide a higher degree
of reliability. The OBC will now be custom designed as the FM430 requires more space than
available and the new payloads and subsystems (i.e. ADCS) will require more capabilities. More
importantly, and the focus of this paper, a correct implementation of the data bus has been deemed
critical for this mission, thus, components have been chosen appropriately to guarantee proper
functionality. Microcontrollers for all payloads and subsystems will also be chosen in a manner that
complies with the data bus specifications, along with line shielding and proper cabling, all of which
are explained further below.

3.2 Data Bus Selection

The selection of a proper data bus technology for Delfi-n3Xt has to comply with the
requirements of the CDHS as described in the previous section. Traditional data buses used in space
applications, such as those considered in ESA and NASA literature are high-end buses for long-haul
communications between completely different and independent systems. Examples of these
architectures are SpaceWire, FlexRay, SAFEBus, Ethernet and MIL-STD-1533. A nanosatellite such as



Delfi-n3Xt is in essence a collection of embedded systems, which require a compact and embedded
data bus for inter-communication. Examples of serial embedded buses of this nature are SPI, 12C
and CANBus. Additional to these, wireless standards, such as Bluetooth and Zigbee, are also used in
embedded applications and are readily available in COTS components.

Wireless communications has been used previously in Delfi-C* for the Autonomous Wireless Sun
Sensor (AWSS) with mixed results. Moreover, a wireless standard will not reduce PCB size, would
probably create additional complexity and may interfere with the frequency bands of other systems
onboard, such as the STX, since most COTS components work in the 2.4Ghz band. Therefore, a
wireless standard for intercommunication would not be appropriate. The buses considered and
compared for Delfi-n3Xt are the CANBus from BOSCH GmbH and the 1°C Bus developed by Royal
Philips in the Netherlands.

The CANBus is mostly used in the automotive industry and can come in three variations: High
Speed, Fault Tolerant and Single Wire. Some of the advantages of this bus are greater protection for
EMC issues, hardware based error detection and tolerance to failures that avoid global bus hanging.
However, the two most notorious disadvantages are its relatively high power consumption and
added hardware/software complexity. Very preliminary estimates showed that power consumption
for decentralized EPS nodes alone would consume around 600mW with a PIC18F2480 and around
1000mW in total if implemented with Microchip’s MCP25025 1/O port. In terms of software, the
PIC18F2480 needs 60 registers for the CAN module, while only 6 for the 1°C port. Moreover, the
number of COTS components with 1°C support is higher than CAN and, although not as resilient, can
be complemented with software and hardware features that will be detailed in the following
sections. Power consumption is far lower and the required PCB area is lower as well. Finally, the
heritage and experience gained from Delfi-C3, along with the available tools, provide a higher degree
of confidence on the suitability of the I°C data bus for Delfi-n3Xt.

3.3 I°C Serial Bus Overview

The I1°C bus is a multi master serial bus based on two open drain wires, one for data (SDA) and
one for clock (SCL), both pulled up via resistors. The basic architecture is shown in Figure 3.
+Vop

5 Rp Rp
SDA (Serial Data Line)

SCL (Serial Clock Ling)

DEVICE 1 DEVICE 2 MBCE3
. 2 . .
Fig. 3: 1°C Bus Basic Architecture

Data on the SDA line is only valid when SCL is low and its frequency is controlled by the master.
It is common to use a speeds of 10 Kbit/s (low-speed mode) or 100 Kbit/s (standard mode), but
recent revisions allow for speeds of 400 Kbit/s, 1 Mbit/s and 3.4 Mbit/s. Each device is identified by
its unique 7-bit address (16 addresses are reserved) although recent revisions allow for extensions of
10-bit addresses that need to follow a slightly different protocol sequence. This basic
communication sequence will always be initiated and finished by the master via START and STOP
conditions and will also indicate which party will be transmitting data via an R/W bit. The START
condition happens when the SDA line is pulled low while the SCL line is high and the STOP condition
occurs when the SCL line is pulled high right before the SDA. The timing diagram for an I°C
transmission is illustrated in Fig. 4.
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Fig 4: I°C Data Transmission

The arbitration procedure is eased by the fact that both SDA and SCL are pulled up, and will
therefore stay low when pulled down by a device. Every time a master pulls down a line it must
check that the line actually goes to low. If this is not the case, that master has to back off because
there must be another device using the bus at the moment. This mechanism also avoids data
corruption because before the difference was detected and the device steps down, all previous bits
were equal.

3.4 Data Bus Hardware Implementation

Although the I°C protocol provides mechanisms for transfer, synchronization and
acknowledgment as described in the previous section, it may be complemented with additional
hardware mechanisms that ensure reliability for space flight. Moreover, the architecture has to
consider a single-point-failure-free design as this is one of the main design goals of the project.

The actual implementation of the system data bus has many architecture possibilities, ranging
from having a single bus through all subsystems to separate buses for different purposes. Overall, a
single bus provides a simple implementation, while bus separation can provide more reliability and
failure resistance. With all tradeoffs considered, the Delfi-n3Xt will be designed with a single bus,
similar to the C* implementation but complemented with several enhancements. With all payloads
and subsystems taken into account, the bus is expected to have 19 nodes, including the OBC as the
bus master. In the C?, the communication hiccups are heavily influenced by slow PIC
microcontrollers attached to the local EPS switch on each node. In this next version of the satellite,
the implementation will substitute these PIC microcontrollers with 1/O ports (PCF8574) controlled
directly via I°C commands, which consume around 13 times less power (60uW -600uW to 8mW for
the PIC) and can handle speeds of 100Kbit/s, unlike the PIC’s which handled 15Kbit/s. An illustration
of the architecture of a bus node is shown in figure 5.
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Fig. 5: Bus Node Architecture of Delfi-n3Xt

Another innovation in the design is the inclusion of bus protector circuits for 12 nodes on the
bus, mostly the microcontrollers in each subsystem. This bus protector is conceptually a timer (Fig.



6) that monitors both the SDA and SCL lines. When any of these lines is turned low for a long period
of time, the protector will disconnect the node from the central bus, avoiding a global hanging of the
system. The timer is based on a simple RC circuit which can be tweaked to conformity by choosing
the appropriate values of capacitance and resistance. The I°C I/O ports are not interfaced with this
protection under the assumption that it is an industry-proven chip that will cause no hangs.
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Fig. 6: I°C Bus Protector Circuit, concept and implementation

Physical implementation of the bus is currently under discussion; however some considerations
can be made on the type of wiring and connectors that would be ideal for the design. Due to the
high flexibility, reliability and low volume, the preferred wiring would be Flex PCB’s, but this is
considerably more expensive than Nomex or Teflon wiring and has to be manufactured by a
company. Some cost savings can be achieved by combining the EPS and data buses in the same
wiring. A 10 pin wire allows for enough redundancy (4 12C lines, 6 for EPS) and with a proper pin
assignment crosstalk can be reduced. Preliminary calculations show that capacitance for this setup
would be approximately 315pF, which is acceptable under the I°C specifications and a resistance of
around 0.44 ohms which also seems reasonable for correct operation of EPS. Since the experience

with Harwin connectors in Delfi-C* was good, this would also appear to be a good design choice for
Delfi-n3Xt.

3.5 Data Bus Service Layer Software Implementation

The software on board the satellite may or may not use an operating system to provide basic
functions to the user. However when the final version of the software is implemented, the service
layer software should remain the same and be used homogeneously throughout all the nodes in the
system. Great simplification is achieved by using MSP430 microcontrollers throughout all bus
subsystems; otherwise, a completely new service layer would have to be written for each different
processor, which complicates testing and integration.

Each node must initialize the service layer engine via the n_initl2C function that receives two
parameters: the node address and a mode (slave or master). This function will set up the 1/O pins of
the MSP430 and stop any ongoing activity in the I°C port. It will afterwards activate the following
interrupts:

— TXRDYIE: port ready for transmission. When in slave mode, this interrupt is activated when

a master is requesting data or when in master mode and the I°C module is ready to transmit
data into the bus. The flag is cleared when the transmit buffer is full.

— RXRDYIE: receive ready interrupt flag. Activated when the I°’C module has received new

data and is cleared when this data is read.

— ARDYIE: port access ready. When in master mode, this interrupt is activated either after all

data has been sent or a specified number of bytes has been received and read from the



buffer. When in slave mode, the interrupt flag is set when a STOP condition is detected and,
if receiving, all data is read from the buffer.

— OAIE: own address detection. This interrupt is available only when in slave mode and is
activated when the address of this node is detected in the bus.

— NACKIE: no acknowledgement. The flag to this interrupt is set whenever an
acknowledgement is expected but not received. This interrupt is available only in master
mode and mostly used for error detection purposes.

The master MSP430 has to configure the I°C clock via the combination of three registers: 12CPSC,
[2CSCLH and I2CSCLL, all of which are combined as divider of the corresponding input clock for the
I12C module (I12CIN). The relationship between the bus speed and the register values is illustrated in
figure 7.
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Fig. 7: MSP430 Registers for I°C Bus Speed

To request data from a particular subsystem, the OBC will first send a command to the node so
that it can prepare the requested data or execute the desired function. Soon after, a read operation
will be made to the same node in order to read the corresponding data. The amount of time to wait
for each command and data return will be defined by upper layer software. To write or send data to
a subsystem, the OBC will call the n_I2Csend function that requires parameters for the slave address,
a pointer to the outgoing data buffer, an expected data length and a timeout value. This timeout
value must not be confused with the time to wait between the request of data from a payload to the
actual return of data, but instead for the time (in milliseconds) to correctly perform the low level I*C
transaction. Failure to finish the transaction within the allotted time will result on an error return
value. To read data from a particular subsystem, the OBC will call the n_I2Crecv function, which
receives the exact same parameters as n_I2Csend. The possible return values that may be obtained
from these functions are:

— 12C_OK: transaction performed ok and within time

— 12C_ERR_XMIT: transmission/reception error, usually when a STOP signal is detected but not

all expected data was received.

— 12C_ERR_TIMEOUT: timeout during transaction.

To prepare data for a read from the OBC, slaves call the n_I2C_slave_packet function which
receives a pointer to the outgoing data buffer and its length in bytes. The function will copy the data
to another more encapsulated buffer which will be written to the bus when requested by the master.
To perform accurate timing of I°C transactions, timer A of the MSP430 is utilized as a general timer.
The timer is set up in continuous mode and will cause an interrupt every time it reaches the value
set up in the TACCRO register. With a base clock at 1 MHz, and a value of TACCRO= #it#, there will be
a timer interrupt every ### seconds. The timer interrupt will add 1 to a global counter. Whenever a
certain software component wishes to keep a timer, it will ask for the value of this global counter
and by measuring the value of the global counter at any time, will be able to keep an accurate track
of the elapsed time. A global array is implemented by which several of these sub counters can be
stored and therefore used by many software modules at the same time.

The Interrupt Service Request for UARTO handles all interrupts related with the 1°C module and
monitors each and every flag that has been preconfigured in the n_initl2C function as described
previously. Before validating the source of the interrupt, it will restart the individual timer counter



of the service layer, since a call to the ISR indicates activity in the module and therefore there is no
hang (and thus, no timeout). During reception and transmission, the master’s ISR will just read from
or write to the supplied buffers in the n_I2Csend or n_I2Crecv functions. For the slave, however,
once the state moves from 12C_STATUS_RX and falls into the ARDYIFG interrupt flag, it means all
data has been received and the program will jump to a callback function, which is part of the upper
software layer and written for that particular subsystem.

4. Conclusions

Careful analysis of the results from the Delfi-C3 design and mission prompted several redesign
options for the second nanosatellite of the Delfi Programme in TU Delft. The Delfi-n3Xt will borrow
several ideas from the previous design, most importantly the I12C protocol and the data bus global
architecture. There will, however, be important changes to improve the reliability of the system,
such as better cabling for the bus and electrical power lines, bus protectors and local controllers that
can handle the 100 Kbit/s communication speed. The service layer software will handle timing and
interrupts assigned to the 12C hardware modules in each controller and will be used through out the
rest of the systems.
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