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SUMMARY

The free streamline technique is extended to the
problen of two-dimensional jet flow from the rear of a nacelle,
Complex potentials for the jet flow and the flow in the free
stream are found and from these the equation of the wake
streamline and the velocity and pressure distributions are
calculateds, Some consideration is also given to the corres-
ponding axi-symmetric problemn,
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SYMBOLS

a half width of jet at infinity

c half width of nozzle

P pressure

q fluid speed ratio (Q/V)

Q fluid speed

V1 ,V2 skin velocity outside and inside the free streamline

respectively

a angle between duct wall and x—-axis

0 direction of fluid velocity
density

two dimensional velocity potential
axi-symmetric velocity potential
two dimensional stream function

Stoked stream function in axi-symmetric motion

e« o w o

complex potential (f + i)

n Kirchhoff'sverisble log, (—v £,

1« Introduction

The rear of a symetrical two=-dimensional duct can be
idealised by a peir of converging thin straight plates (fige 1),
This paper is concerned with the prolllem of a jet issuing from
such an idealised nacelle into a free stream together with the
corresponding axi-symmetric problem, Both the jet and stream
are considered to be inviscid and incompressible fluids,

Solutions to these problems are sought using free
streamline techniques, The dvtailed analysis is given in an
appendixy reference to the equations in the appendix are
given in the form (A.2).




~lm

2e The free=streamline method applied to the flow at the rear
of a two~dimensional duct

2.1 Steady irrotational disccntinuocus streamline motions

For two-dimensional irrotational motion in a z=~plane
(z = x + iy) the complex potential w is given by

w = ¢ + i[p oooe:looooooo(dl)

and if we consider a complex w=plane then (1) implies a trans-
formation between the z and w planes. Now, if Q dis the
fluid speed at any point z and © the direction of the fluid
velocity at that point
w'(z) = - Qe"‘l0

and in steady motion

Py 2 Py
A, 02 - 0
p M P

V2

o=

+

where V is the fluid speed at some reference point (say at
infinity) where the pressure is Pge

2el1ele Kirchhoff's method

The two-dimensionel jet issuing from a nozzle leads
to a problem in which the direction of the fluid is fixed along
certain boundaries whereas along others the pressure is
prescribed. Along the latter boundaries the speed is constant
and equal to the 'skin velocity's These boundaries are called
free streamliness To deal with this and similar problems it
is usual to employ the method originally due to K:'chhhof'f1 in
which a third complex varisble (1 is introduced and defined by

. dz
J}w = lOge (- v "a"m' 000000000000(2)

or
L1 = log(%)+ i6 saespuyssssal 3)
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291:2¢ The corresponding transformeations

If the space occupied by the fluid in the z-plane is
napped on to a complex Fé ~plane it will be seen that a
boundary for which the fluid speed Q has a constant value is
represented by a portion of the axis of imaginaries, whilst
corresponding to any straight boundery for which is constant
in the z-plane we have a line parallel to the real axis in the
{laplene, Thus, the diagroms in the w~ and .-plenes consist,
in general, of polygons., These polygonal figures are then
mapped on to a complex t-plane so that corresponding points
coincide, This mepping is usually effected by means of the
Schwarz-Christoffel transformation, the differential equation
of which is

dz _ C

B Lot ) (1-8,)°2 s (t-tn)anﬁ

oo-o...(#)

where t =%, (real) corresponds to the cormer A, of the
polygon where the direction, keeping the interior of the
polygon on the left, suddenly changes by a, and C 1is a
constante

2e1e¢3e The intrinsic equation of the free streamline

From (3)

dz 0
--Vdm = e

and, along a free streemline, !’ is constant and the skin
velocity is constant. Thus

L= 16

and also

where ds is an element of arc of the free streamline,
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Therefore
_Vdsele - ledw:eledﬁ
or 4
do
Sl =

Hence the intrinsic equation of the free streamline is

s = const = M

v

or if the stream function is chosen so that its value is zero

on the free streamline

8 = const = t_Dle

V 0'0‘......-.(5)
where w is expressed as a function of © by means of the

w=1t and Lie t trensformations,

2+.2¢ The solution of the problem of the idealised jet
flow from a duct

This solution is presented in detail in the appendix,
In the following discussion the suffices, 1 and o refer to
the stream and jet respectively.

The jet is taken as issuing from the funnel=shaped
nozzle, given by the equation

y = + (c=x tan a)

wnere a 1is the angle between the duct wall and the x-axis,

into a stream of speed V, in the positive x direction at

1

infinity downstream. The speed of the jet is V, at x = &3,

where its width is 2a (fig. 22)e The width of ihe nozzle
opening is 2ce For x <0 the jet and stream are separated
by a dividing streamline which is a continuation of the duct
wall, and across which the pressure must be continuous, It is
shown (A.5,6) that this is satisfied only if the velocities are

constant, but not necessarily equal on each side of the dividing
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streamline, The dividing streamline is thus a free streamline
as defined previously (secs 2.161)s

2.241« The complex potentials

The {i, w, and t=plane mappings for this problem are
shown in fig. 2b and using the Schwarz-~Christoffel transformation
(4) the appropriate mapping functions are found to be, for the
domain {1) occupied by the stream (4.9,10,17)

v,2 1=t iy
w1 . loge(T) s &t =cosh . ooooo.oo(6)

and for the jet domain (2} (A411,13)

V,a 7 1=, L
‘”2 - —;m— 1086{-—-2—/ ’ 'tz = cosh ooooao-o(?)

where 2a 1is the jet width at infinity downstream,

The equations (6) and (7) give the complex potentials for both
jet and stream respectively in terms of the speed ratio V/Q and
the direction of flow 6,

242424 The equation of the jet boundary

Suwstituting into (5) for the complex potential the
intrinsic equation of the free streamline, which is the jet
boundary, is found to be

. 0
S = = % loge (Sl.nz 12%' 000000000000(8)

where s is measured from the lip of the nozzle where 0 = = a,

Since along the free streamline
dz = ds e’

the equation of the free streamline can be written (Ae18) in
the form

e
. i i6 0 '
2 = lCo -% I e COt'qz't'a'de ooooooooooo'(9)
Vag
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for -2 £6.K0. (See fig. 3)
Also it is shown that the relation between the jet width at
infinity (a) and at the origin (c¢) is

a = Ti’-f 0-.00-00-30.0(10)
/2
where I = '72_c sin 2—;‘@ cot ¥ ag
o

This completes the formal solution of the problem.

242434 Applieation of the formal solution

Since the complex potentials (6) and (7) are not
functions of 2z explicitly the actual determination of the
velocity at any point in the field of flow can be difficult,

As an exsmple the flow in the stream (region 1) is calculated
near the duct wall, Equation (A.20) expresses the distance
up the duct wall from the exit lip C (O,co) as an integral
of -the velocity ratio q, (= Q,‘/V 1) in the form
2a i’qﬂ T
s = = | tanh (E logeq,l> dq, RIS & 5
L 1

This equation has been solved numerically for the cases when
the inclinations of the duct walls to the x~axis are

a = 'Z'o‘ » 55 » 55 + The results are plotted in figs. L4 and ha,
PFurther, simple calculations give the corresponding pressure
distributions, which are shown in fig. 5.

2¢3e Limitations of the method

It is immediately clear that this method can only
apply at the rear of a duct and downstream of the jet exit.
Also we can only use the method when the duct walls are straight,
In practical cases however the duct angle ¢ will be usually
small, and thus the method can be applied to solve the idealised
problem of the flow over a considerable portion of the tail of a
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body from which a jet issues,

The free-=streamline technique does require that the
fixed boundaries be thin to fulfil the condition that the slope
of the free streamline and the slope of the boundary should be
contimious at the lip, Also the method cannot solve the problem
where the cutside and inside walls of the duct are not parallel,
Here again the condition of continuity of slope at the jet exit
would be violated,

It would be interesting to consider the problem of
the duct with a finite trailing edge angle, as mentioned ebove,
more fully, It may be possible to represent the mixing region
between the jet and stream by the space bounded by two free
streamlines, one leaving the trailing edge parallel to the outer
wall and the other parallel to the inner wall of the ducte This
space is in some weys analgous to a deadwater region, and it
should be possible to find values of the stream function consise
tent with this hypothesis,

3¢ Free streamlines in axi-symmetric flow

The existence of constant pressure free surfaces in
steady axi~-symmetric flow with prescribed fixed boundaries has
been proved by Garabedian, Lewy and Schifferz. Theorems
proving the uniqueness of these flows have been given by Gilbar33 ’
who has shown in particular that there can be only one axi-
symmetrioc flow from an orifice with prescribed fluxe

3ele The stream function

The steady axi-symmetric irrotational motion of an
incompressible fluid can be described by a Stokes* stream functian
) in a meridian plane, If the x-axis is the axis of symetry
and r represents the radial displacement from this axis, q

satisfies the partial differential equation
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3 {1 g__P_\ 3 71 3tk
5 gl e o= (e e =
X \r ox / o {2 )

which, in terms of the complex variables z = x + ir and

z* = x = ir taken as independent variables, beccmes

2P o i {ai?:;

3z9z* 2(z=2"%) 4" -

J A\
2 : $ 0 00‘000000000(12)
0z

We require the stream function for the flow which has
a given surface of revolution as its constant pressure free
surfacees This surface will intersect the meridian plane
considered in a curve C (which we call the free streamline)
upon vhich the stream function must satisfy the conditions

i) The stream function has a constant value which can
be taken zero without loss of generality
i.es on C,

"I= 0 | sontiabunensl 13

ii)  the pressure is constant along C

1a§:

i.e. r = 1 ocooo.oo..o.('lll-)

Thus we have a Cauchy initial value problem for the differential
equation (12) with initial data given on C by (13) and (14).
‘I has been given by Dar'bouxh', in terms of the

Riemann function R(z,z",t,t") as

The solution for

0z Do
il
’f (Z,Z‘) =%‘{ \ R(Z, .ttt) _£ ‘dt‘ .000000000(15)
. o Mg
where the integration is carried out along C for t° =T and

n, 1is the normal to C at the point +t.

%
R(z,2"3t,t%) = v (z-t*)(t-z') (z=t) (z"=t*)
(z-t*)(z%-%)
& 1e3e500e(2m=3
where F(w) = S [— $ina )'" w*  is the hypergeometric

" 2m -
Sy 2 (mi)
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series F(=%, =%, 1, W) satisfying the equation
w(1=w)F" (w) + F'(w) - -EEQ = 0
Garalbedisn5 shows that, if the equation of the curve C 1is

z = g(z)
then (15) reduces to

F(2,5) =reldr | /(z-g(&)G-t)g'(t) 7 Lz.-.t.l&s&.tll)dt

=, (z-g(t)) (3=t)

° esesneirasealiB}
which is valid for any 2z, on C. The equation (16) gives the
stream function at any point in the flow in terms of the equation
of the free streamline,

3e2¢ The free streamline

We now have to apply this stream function to the
problem of jet flow, Garsbedian considers a special problem
where the axis of symmetry is a tangent to the curve C at some
peint, so that the value of the stream function is zero on the
axis of symmetry, which is a streamline, as well as on the free
streamline C, This assumption is obviously not valid in the
case of idealised jet flow, since there is flow in the jet at
infinity downstream, and therefore, the two streamlines cannot
intersect or touch, In fact on the axis of symmetry the value
of the stream function is V2a2/2 where V

> is the Jjet speed at
infinity, where the jet radius is a.

Now on the x-axis for which z =2

F((g-t)('z'-g(t)) - B(1) = &

(z-g(t))(z=t)

and hence (16) becomes
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[ . .
ImB\ r }(x‘g(t))(x‘t)g'(t)‘ at ...0(17)

S 2
(o}

where =z by is the point (20, ia) and the direction of the free
streamline at the trailing edge of the duct (x = 0) must be the
same as the direction of the duct wall, i,e,

tan ¢ = 2 [M ssessssesssel18)

ax 25 i

To find the equation of the free streamline we have to solve
(17) with the condition that the free streamline is a continua=-
tion of the duct trailing edge (18), and also show that the free
streamline so found satisfies both the jet flow and the flow in
the free strean,

Garabedian suggests that a known form for C can be
carried over from the two-dimensional case, This is not
Justified in his paper and would appear to be in error since
the velocity potential § and the stream function 11/ in axi=-
symmetric motion do not both satisfy the same equation.s For
this same reason Kirchhoff's method (2.1+1) cannot be applied
to the axi-symmetric problem since a complex potential w,
defined by §+ i‘_,I_' and which satisfies the equations of motion,
does not exist, Also the Kirchhoff velocity parameter L
cammot be defined,

From .these considerations it is seen that a solution
of the axi-symmetric jet flow problem at the rear of a nacelle
cannot follow the lines of the corresponding two-dimensional
problem, The only known complete solution is that for the
axi=symmetric equivalent of a Borda mouth=-piece found by
Southwell and Va:i.sey6 using relaxation methods, Having solved
(17) for the equation of the dividing streamline the stream
function (16) is then known, and from it the velocity field in

either jet or stream can be calculated,
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APPENDIX

The 'Free Streamline'! method applied to the flow at the rear of
a_two-dimensional duct

1e Consider a Jet of incompressiple fluid moving irro=
tationally in two dimensions through a funnel-shaped duct IC
given by the equation

y=c=xtanae for x €0 and c positive (1)

and y x tan a - ¢ for x.:;O c.no-oocoooo(z)

and issuing into a surrounding stream of velocity V1 in the
positive x-direction at x = +@ve The issuing jet asymptotes
. Yo a stream of speed V2 and half width a at x = +ve Due
to the symmetry of the configuration, only the flow in the upper
half of the z=plane (z = x + iy) will be considered (see fig. 2a).
The jet and stream are separated by a dividing, or wake, streamline
CBe

The total heads H1, and H2 of stream and jet respect-
ively are constant, and thus, if Q1 and Q2 are fluid velocities

in their respective domains
e 4 Al
(p1+§pQ1) - (p2+§pQ2) = H1 - Hé = constant ..oo.'..(B)

Now the pressure p is continuous across the free streamline,
i.es p, = Pye Thus from (3), along CB

Qf - Qg > const. 00.0-....000(4)

Assuming constant vorticity along CB

Q1 - Q2 = const, oaooonoo-o-o(5)

and hence from (A4)

Q1 + Q2 = conste ..uounuo(G)

Therefore, from (5) and (6), Q, and Q, are constants along CB
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and equal to V1 and V2 respectively by consideration of

their values at x = +7C

2o The mappings

The upper half z~plane is mapped on the whole of the
t-plane so that the stream occupies the upper half, and the
jet the lower half, of the t-plane, The corresponding figures
in the w-plane (w = @ + 4§) and the Ql-plane ({2= log % + 16)
are mapped upon the t-plane., @ and SP are respectively the
velocity potential and the stream function, <! can be written

id

sesssecsscee(7)

az\ . -
ﬂ:loge (—va'm—) ’ g‘__z»-:‘Qe

where V is the free streamline skin velocity, i.e. VJI in the

stream and v, in the jet.s These mappings are shown in fig. 2be
At x = +o00¢
w'(z)

or w(z) = - V(z-ia)

-V

so that [ = V(a-y) atoc, taking {/ =0 along the dividing
streamline which asymptotes to y = as« Along AOB, y = 0, so

this is the streamline ‘-,(’J = V,a.

Mapping the semi-infinite strip BCD in the £lL=-plane
corresponding to the stream, upon the upper half t-plane we have,
from the Schwarz-Christoffel theorem, using suffix 1 for region 1,

i.ee the stream,

d‘Q1._ C

Ay (42a1)2
or ,_‘11
t1 = cosh \\T * D) 0000000000.0(8)

where C and D are constantss The points B, C and D are
taken to correspond to t = + 1, =1,(>? respectively,
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Since t =1 at B where {1=0, D
and t ==1 atC where {i==ia C

nou
Ale ©

Equation (8) then becomes
w{i 1

% = cosh

1

sosinpnssinall)

Similarly, mapping the lower half w~plane ( { € 0) upon
the upper half t-plane we have

M oA
dt,l 1-t1
where A is a constant, or
(1-t1)
w1 ==A 1086 5 000000000000(10)

if we make the point C (%t = - 1) correspond to the origin in
the w=plane,

Now consider the mapping of the jet (region 2), The
transformation between the (. and t~planes yields, as in

equation (9)
\ s
000.00..0...(11)

\F
is log = 4
W

t2 = cosh

-
'

.'—--2
Mapping the infinite strip BCAO of the w-plane on to the lower
half t-plane we have

where, in this case, the real part of {

X2 _ B
dt 7 1=t
or
1=t
w2 = =B 10g2 (’2{{) .00000000-00(12)

On passing through B (t = 1) arg (4=t) chenges by =,
or 1,02 changes by Br on passing through t = 1,

Hence
Br = = V2a




............(13)

Thus the canplex potentials for each region is known
(equations (10) and (13)) in terms of % and 6, except for A
constant A which is determined in the next section.

3e The equation of the dividing streamline

The intrinsic equation for a free streamline is, in

general,

8 = const--zﬁ)-Z

v

or, if the free streamline is =0

8 = const-Q-(%l .oooot-o-.oo(‘l}-l-)

Thus, from (11) and (13), along CB where L. = i6

1 aVz 1 = cos %;2
const = == o — 1Qge (P

V2 T

2]
]

or 8

a . 2 7o
..-q;]_oge (sn_n -2—a-> ..-ooon--ooo(15)

if we take s = 0 at C where 0 = = g,

Also, from (9), (10) and (14), the intrinsic equation again

measured from C is

A . :
S = V1 loge (Slnz ‘.’-27%) ‘00000000.0.(16)
and since (15) and (16) must represent the same curve
V1a
A== T 000000001100(17)

The equation of the dividing streamline can be
obtained from the relation )

as = dme>’




=1 B

from which, using (15)
70 70

2 sin &= cos =
a 2a g8 - x . -16
= =3 = = ‘% ®
m o~ ——
2a
= = 2 oot 0 eie ae
a 2a

Thusy since 2z = ic when x =0, 6 =« ¢, the equation of the
dividing streamline becomes

1)
z = ic -% ele cot % ds .0000000'000(18)
U/ -C

for -a < 650.

In particuler equation (18) gives a relation between
the jet width at the duct exit and at infinity, The imaginery
part of (18) is
0
’ 7
| sin 0 cot 5> do

a

<

]

o)

1
Q|

J -

and, at infinity, y=a and 0 =0

e
g N ~ = a5
thus &®:Q = sin 0 cot e dae
4 =g
or 8s TE-I" 000...-00..0(19)

”
where I=-f';- Ssingﬁ‘qcot¢d¢

. 76
putting #=-3- .
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4e The flow in the stream near the solid boundary

As an example, consider the flow on the free-stream
side of the solid boundary, Here the complex potential is

aV1 1-t1 7t-i-'—.]
- —— P 1S . -—
W, === 1oge( )3 t1_cosh 5
Also
??.1. = = Q e"ie
dz ~ 1
= - Q1ela on CD
Thus dm1=-Q1dzela_-Q1ds
1
or ds = = — dw
Q1 1
- a5
aVv [ ‘;1 = - 2 ad ?
- —FQ;d‘lOge 2 j

v
Now, in the stream, the real part of [, i.e. loge 'Q'l is
1

negative, thus

1
2a |
s =E— } tanh (% 1ogeq) dq .ooooooooon-(zo)
1 .
b
for 1L£qgx where g = V,T

It will be seen that s = O when Q‘l = V1 i.ee at C, and that
s tends to infinity with Q1. A graph of Q1 against s for
various values of a is given in fige 4 In the limiting case
a = 0, equation (20) shows that there is no variation of Q as

s variese
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