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ON THE TREATMENT OF THE REFERENCE IMAGE FOR INSAR PARAMETER
ESTIMATION FOR POINT SCATTERERS

Wietske S. Brouwer, and Ramon F. Hanssen

Delft University of Technology, Department of Geoscience and Remote Sensing
Delft, 2628 CN, The Netherlands

ABSTRACT

InSAR enables the estimation of spatio-temporal displace-
ments, relative to a reference point and a reference epoch,
here defined as the mother image. When dealing with time
series, there are several options to treat the mother image in
computing and plotting the temporal phase differences, pro-
ducing distinctly different results, in terms of the estimated
displacement parameters and their precision. Here we review
the three approaches mostly encountered in literature, discuss
the implications of the different approaches, and recommend
the ‘embracing mother’ approach for standard InSAR analy-
ses and visualizations.

Index Terms— InSAR, Point Scatterers, stochastic
model, parameter estimation

1. INTRODUCTION

With InSAR (SAR Interferometry) relative displacement es-
timates can be obtained [1]. The primary observations ob-
tained by the radar are used to compute a Single Look Com-
plex (SLC) image, of which we use the phase, ψ, of reflect-
ing objects on the Earth’s surface. Since InSAR is a relative
geodetic technique, and displacements can only be estimated
based on phase differences, temporal Single Differences (SD)
need to be computed. After the detection of coherent point
scatterers, the temporal single difference phase ϕmdj for point
scatterer j is the SLC phase of the daughter image relative
to the phase of the mother image, i.e., ϕmdj = ψdj − ψmj .1

Yet, since a temporal difference cannot be interpreted, we also
consider the spatial difference between this point j and a ref-
erence point i. This yield a spatio-temporal double difference
(DD) phase φmdij , which represents the phase for point scat-
terer j at epoch d, relative to reference point i at mother epoch
m.

Here, we evaluate how the SD phase for one single point
should be defined and computed. Our evaluation covers the

1Conventional literature frequently employs the terminology of ’master
and slaves.’ Here we refer to ’mother and daughters,’ where the mother image
is defined as the reference image.

functional model as well as the quality description of SD, in-
cluding error propagation. We discuss three approaches that
primarily differ in whether the mother image is treated as a de-
terministic quantity or a stochastic variable. The relevance be-
comes apparent in subsequent stages, particularly when pro-
viding a parametric description of the displacement of indi-
vidual points, e.g., in the form of an average displacement
velocity. In the following sections, we discuss the three ap-
proaches for calculating the SD phases, and show how they
result in a distinct quality for the computed SD phase, and
thus in another quality for the estimated displacement param-
eters.

2. FROM A SLC PHASE TOWARDS A SINGLE
TEMPORAL DIFFERENCE

The vector of SLC phase observations for point scatterer i is
defined as

ψ
i
= [ψm

i
, ψd1

i
, ψd2

i
, . . . , ψdD

i
]T . (1)

For notation convenience the mother image is defined as the
first image, but it could equally be any other epoch. The
stochastic model of the observations is defined as

Qψi
=


σ2
ψm

i
0 . . . 0

0 σ2

ψ
d1
i

...
...

. . .
0 . . . σ2

ψ
dD
i

 , (2)

where there is no correlation between the different SLC ob-
servations as discussed in [2].

While current InSAR time series may contain hundreds
of epochs, to emphasize the effect of different approaches of
computing the SD phase values, we simplified and simulated
5 daughter and 1 mother SLC values, as shown in Fig. 1.
Obviously, in reality there is no trend in the SLC observa-
tions, i.e., the phase distribution is a uniform distribution be-
tween −π and π based on the scattering mechanism only. Yet,
to highlight the consequences of the different approaches it
makes more sense to show the SLC observations with a trend.
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Fig. 1. Left: simulated SLC phase observations for point
i with a particular trend shown by the dashed line. Right:
variance-covariance matrix of the SLC phase observations. It
can be seen that all observation have the same quality and that
there is no correlation between the observations.

The graph of the SLC phase observations in Fig. 1 is de-
fined as a ‘position’ graph, i.e., the phases are measured at
a particular epoch, and the vertical axis shows the ‘position’
(in this case the observed phase) at a particular epoch. The
horizontal axis therefore expresses time as a date.

2.1. Approach 1: Disregarding the temporal phase differ-
ence of the mother with itself (‘eliminating mother’)

Perhaps the most conventional approach for computing the
SD values is by using the difference equation, resulting in

ϕmd1
i

ϕmd2
i

ϕmd3
i
...

ϕmdD
i


︸ ︷︷ ︸

ϕ
i

=


−1 1 0 · · · 0
−1 0 1 · · · 0

...
...

...
. . .

...
−1 0 0 · · · 1


︸ ︷︷ ︸

A


ψm
i

ψd1
i

ψd2
i
...

ψdD
i


︸ ︷︷ ︸

ψ
i

, (3)

whereD is the number of daughter acquisitions, as in [3, 4, 5].
Using error propagation the stochastic model for the SD phase
values is computed with

Qϕi
= AQψi

AT , (4)

which will be a full (i.e., non-diagonal) matrix. In Fig. 2d we
show the consequence of this approach, plotting the SD to-
gether with an error bar which represents the 95% confidence
interval obtained from the diagonal of Qϕi

.
The most obvious consequence of this approach is that

only D SD phase values are derived from D + 1 SLC phase
values. In other words, the mother epoch is eliminated in the
differencing operation. Consequently, plotting the obtained
SD phases against absolute (calendar) dates on the horizon-
tal axis, similar to Fig. 1, is no longer feasible, which is why
we crossed out the dates. Each phase difference has to cor-
respond to a specific time difference rather than a time. Con-
sequently, plotting a phase difference at an epoch (or date)
without explicitly stating the ’zero’ point is not meaningful.

Consequently, for this approach, the results should always be
plotted against a time difference. In contrast to the position
graph of Fig. 1, this type of graph is referred to as a ‘dis-
placement graph.’

The modeled (simulated) trend, to be used as ground truth
for comparison, is shown by the black dashed line. Subse-
quently, we estimate a trend and offset trough the obtained
single differences, shown by the black solid line. It can be
seen that the estimated trend is very similar to the simulated
trend. However, comparing the 95% error bars of the SD
phases with the error bars of the SLC phases we observe that
the error bar of the SD phases is larger, i.e., their quality is
lower. This can also be observed comparing the VCM of the
SD phases, see Fig. 2a, with the VCM of the SLC phases, see
Fig. 1. This is a direct result of the definition of the differenc-
ing approach, where the SLC phase vector ψ

i
, is a stochastic

quantity where each single observation has a particular preci-
sion. The precision of the derived SD phase is then calculated
as σ2

ϕmd
i

= σ2
ψm

i
+ σ2

ψd
i
, e.g., the variance of ϕmdi is the sum

of the SLC phase variances of the mother and the daughter
acquisition. Since the VCM shown in Fig. 2a becomes a full
matrix, i.e., there is correlation between all SD phases, this
implies that the complete VCM is required when estimating
displacement parameters. Only using the diagonal elements
of the VCM to describe the quality of the SD phases results
in a too conservative quality estimation for the displacement
parameters. In other words, the error bars in Fig. 2d are not
sufficient to visualize the quality of the result. The gray zones
in Figs. 2d–f are positioned around the adjusted observations,
and indicate the 95% confidence region of these adjusted ob-
servations.

Finally, acknowledging that Fig. 2a is a displacement
graph rather than a position graph implies that the interpre-
tation of a point in the graph at time dt = t − tm is ’the
displacement estimated between t and tm,’ where tm is the
absolute date of the mother acquisition. Note that due to
the differencing operation the obtained result becomes irre-
versible.

2.2. Approach 2: A deterministic temporal phase differ-
ence for the mother (‘fixing mother’)

One possibility to use a position plot with absolute dates,
rather than a displacement plot, is to include the SD phase
value of the mother with itself in the SD phase vector, i.e.,
ϕmmi = ψmm

i
− ψmm

i
= 0 resulting in:

ϕ
i
= [ϕmmi , ϕmd1

i
, ϕmd2
i

, ϕmd3
i

, . . . , ϕmdD
i

], (5)

where ϕmmi = 0 by definition. Note that ϕmmi is determin-
istic, and in Fig. 2e it does not have an error bar. Thus, in
the stochastic model, we introduce a row and column of ze-
ros, as depicted in the VCM in Fig. 2b. Utilizing this VCM
and the additional mother-mother temporal difference, we can
also estimate a model through the SD phases, represented
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Fig. 2. In (a), (b), and (c) we show the variance-covariance matrices (VCM) of the single difference phase observations resulting
from the three different approaches to compute the SD phase values. In (d), (e), and (f) the obtained single difference phase
values are shown. In (d) we obtain five SD phase values, i.e., the temporal phase difference at the mother epoch is missing.
Therefore the SD phases should be plotted with the delta time at the horizontal axis. In (e) the temporal phase difference at the
mother epoch is added as a deterministic value, resulting in the fact that the estimated displacement model passes trough this
value, resulting in an erroneous estimated model (the solid black line’s slope differs from the simulated velocity shown by the
dashed line). In (f) six SD phase values are obtained all being stochastic and resulting in the correct estimated velocity.

by the solid black line in Fig. 2e. As ϕmmi is determinis-
tic, the estimated model is constrained to pass through that
value. Upon comparing the estimated model with the true
simulated model (the dashed line) and the model estimated
with the first approach (the dash-dotted line), it is evident that
the estimated average velocity is very different from the simu-
lated value. In fact, the trend is significantly biased by adding
the deterministic SD of the mother with itself. While this bias
may effectively decrease when the time series includes more
epochs, this example proves that the ‘fixing mother’ approach
is not correct. The gray zone in Fig. 2e is positioned around
the adjusted observations, and indicates the 95% confidence
region of these adjusted observations. This also suggests that
the quality of the adjusted observations in the first part of the
time series is considered to be better than the later part. Ob-
viously, this is incorrect.

Moreover, both for approach one and two the error bars
of the SD phases are greater than those of the SLC phases.
A simple simulation shows that this is not to be expected.
In Fig. 3 we simulate 300 complex phasors, depicted by the
blue dots in (a), and computed the corresponding SLC phases,
represented by the blue dots in (b), and the histogram of these
SLC phases in (c). The estimated σψi = 0.1. Using epoch
50 as the mother acquisition, we compute the SD phasors
through complex multiplication, shown by the green dots in
(a). The corresponding single phase time series and histogram

were computed once again (in green). This shows that while
the clutter of the SD phasors became larger, the dispersion of
the SD phase values remains equivalent to that of the SLC
phases, since the amplitude became larger as well due to the
complex multiplication.

Fig. 3. (a) We simulate 300 SLC phase observations repre-
sented by the blue dots. After defining an arbitrary mother
acquisition, shown by the orange dot, we compute the SD
phasors (green dots). It can be seen that the phase of the
mother SD phase value with itself equals zero. In (b) and
(c) we show the corresponding phase values and histograms,
which shows that the dispersion of the SLC phase values is
equal to that of the SD values.
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2.3. Approach 3: Subtracting mother realization from
variates (‘embracing mother’)

The preferred approach to compute the SD phase values is
by differencing the stochastic variates of all epochs with the
deterministic realization of the mother epoch, i.e.,

ϕmm
i

ϕmd1
i

ϕmd2
i
...

ϕmdD
i


︸ ︷︷ ︸

ϕ
i

=


ψm
i

ψd1
i

ψd2
i
...

ψdD
i


︸ ︷︷ ︸

ψ
i

− ψmi . (6)

This way, with D + 1 SLC phases, we retain D + 1 single
difference phase values since the SD phase for the mother
variate, ψ

i
, relative to its realization ψi is also computed.

Fig. 2f is the graphical representation related to this third
approach. In this case, it is a position graph. In compari-
son with the graphs in Figs. 2d and e, it is clear that adding
the mother image appreciates and visualizes all epochs in-
cluding the reference one. However, even though the single-
difference phase value of the mother epoch is equal to zero, it
is now stochastic, similar to all other epochs. The estimated
average velocity (the solid line) is parallel to the simulated
(true) average velocity, while it is not forced to pass precisely
trough the temporal phase at the mother epoch as in the sec-
ond approach. The gray zones in Fig. 2f is a correct rep-
resentation of the quality of the adjusted observations, and
indicates the 95% confidence region of these adjusted obser-
vations.

Most importantly, the distribution of the single-difference
phase differences, represented by ϕ

i
, is equivalent to that of

the original SLC phases ψ
i
, resulting in:

Qϕi = Qψi . (7)

This equivalence is trivial, as subtracting a deterministic
value from a vector of stochastic quantities should not al-
ter the distribution of the resultant derived quantity. This is
further supported through the simulations in Fig. 3. More-
over, the equivalence of Eq. (7) implies that the VCM of the
single-difference vector remains a diagonal matrix, which is
advantageous from a computational and visualization per-
spective.

3. IMPACT AND CONCLUSION

We have discussed three approaches to calculate the single
differences, forming the basis of InSAR time series analysis.

The first approach, ‘eliminating mother’, results in (i) a
visualization that lacks the presence of one of the SAR acqui-
sition epochs, (ii) a displacement graph instead of a position
graph (which implies that the information of a point in the

graph cannot be interpreted unless relative to a zero-time and
a zero-displacement, and cannot contain absolute dates on the
horizontal axis), and (iii) it results in a full VCM and its con-
sequent numerical challenges. (iv) The graphical visualiza-
tion of quality using error bars does not take the covariances
into account, and consequently the error bars give a too con-
servative (pessimistic) assessment of the quality. However,
the approach is mathematically valid and leads to correctly
interpretable estimated parameters.

Even though it is seemingly straightforward, the second
approach, ‘fixing mother’, can be labeled as erroneous and
mathematically dubious. This is due to the fact that it results
in a single-difference vector that is partly deterministic and
partly stochastic. Consequently, its VCM is not full rank and
therefore not invertible. This yields errors in the estimated
parameters. Moreover, it does not treat all observations in an
identical way.

The third approach, ‘embracing mother’ is regarded the
preferred one, since (i) the time series visualization covers all
SAR acquisitions, (ii) it can be visualized using a position
graph, with calendar dates on the horizontal axis, and each
point in the graph is uniquely interpretable. (iii) The approach
results in a diagonal VCM for the single-differences, which is
numerically advantageous, and allows for the visualization of
the diagonal elements as error bars in the time series graph.
Moreover, the third approach implies that the quality of the
SD must be the same as the quality of the SLC values.

We conclude that the optimal way to compute temporal
phase differences for a single point should be the third ap-
proach.
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