
An Empirical Study of Adaptive Kernel Density Estimation in Detecting
Distributional Overlap

Chao Chen1

Supervisor(s): Jesse Krijthe 1, Rickard Karlsson 1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Chao Chen
Final project course: CSE3000 Research Project
Thesis committee: Jesse Krijthe, Rickard Karlsson, Frans Oliehoek

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Given data from an observational study or a ran-
domized experiment, the positivity assumption
must hold in order to draw causal relations between
the treatment and outcome. However, there is short-
age of automatic tools that verify compliance with
the positivity assumption. We present tools that
uses adaptive and standard kernel density estima-
tion (KDE) methods for validating the assumption.
Our empirical analysis of the methods offers insight
into when a KDE method can and can not reliably
be applied to verify positivity in datasets.

1 Introduction
Estimating the causal effect of an intervention on an outcome
is a frequently performed task. For example, in marketing,
we might want to estimate the effect of product placement
on consumer purchasing behaviour. Likewise, in epidemiol-
ogy, the effect of a new insulin drug on diabetic patients may
need to be investigated. If, to this end, an ideal randomized
experiment is performed, the observed outcome can be fully
attributed to the treatment due to exchangeability between the
treated and untreated [7] . Exchangeability implies that if the
intervention of the treated and untreated group were swapped,
the same average causal effects would be discovered [17].
Thus, we can conclude that the association between the ob-
served treatment and observed outcome is in fact a causal re-
lationship [7]. However, for questions such as how therapy
affects depression symptoms or how inflation affects spend-
ing behaviour, it is unethical or impractical to administer ran-
domized experiments [17]. Evidently, many scientific studies
are based on observational data and much of our knowledge
is derived from observational studies [7].

A limitation of observational studies is we can not ensure
random treatment assignment [7]. For example, observational
data may show that therapy is associated with more severe
depressive symptoms but it hides the fact that patients with
a severe prognosis may be more likely to be offered therapy.
Thus, the association does not imply a causal relationship.
This does not mean that causal inference from observational
data is in vain. Observational studies can be treated as condi-
tional randomized experiments if the identifiability assump-
tions, consistency, conditional exchangeability (unconfound-
edness), and positivity, hold [4] [17]. However, the identifia-
bility assumptions are not guaranteed in observational studies
and require validation. In our research, we will focus on ver-
ifying the positivity assumption in datasets because contrary
to the other assumptions, positivity can be verified from data
[7].

The positivity assumption requires that every stratum of
the population to be assigned to every treatment group. The
assumption can be verified by measuring overlap in the co-
variate distributions of the groups [15] or by checking the
propensity score of the subjects [17]. With an estimate of the
covariate distributions, we can find or detect the absence of a
region where both the distributions have support. Causal re-
lations can then be inferred for subjects whose covariates lie

in this region. Without data from the full population, assump-
tions about the underlying distribution, when invalid, may ex-
acerbate the density estimate. Thus, in this paper, we will
estimate overlap by means of non-parametric density estima-
tion, which makes no prior assumptions about the underlying
distribution.

Our goal is to analyse the performance of adaptive KDE
methods in overlap estimation whereas majority of literature
used the standard (non-adaptive) kernel density estimation.
The main challenge of standard KDE is efficiently choosing
the bandwidth h that minimises the Mean Integrated Squared
Error (MISE) of the estimation [14]. Adaptive KDE methods
address this challenge by automatically selecting the band-
width h and varying the bandwidth of each kernel based on its
local density [13]. As adaptive KDE methods were found to
yield better density estimates when data is sparse [14], which
is common in high dimensional data, we will explore two
adaptive KDE methods, adaptive KDE (aKDE) and variable
KDE (vKDE), in overlap estimation. Thus, the main research
question is: How do adaptive kernel density estimation meth-
ods compare to the classical kernel density estimation method
in estimating overlap?. To answer this question, the subques-
tions that will be answered are:

1. (SQ1) In what scenarios (datasets) does adaptive KDE
outperform standard KDE, if at all and vice versa?

2. (SQ2) What properties of the method allows it to per-
form comparatively better?

3. (SQ3) Is there a relationship between the Mean Inte-
grated Squared Error (MISE) and IoU (Intersection over
Union) of the KDE methods?

Our contribution is three-fold. First, we provide an empiri-
cal analysis of standard and adaptive KDE methods in overlap
estimation in 1D and 2D settings. Second, we identify scenar-
ios where each of the methods fail and use that information
to propose a set recommendations that guide the selection of
KDE methods in overlap estimation. Finally, we demonstrate
how the performance of a KDE method in density estimation
and overlap estimation are related.

In the remainder of this paper, we will provide a formal
problem description of overlap and non-parametric density
estimation (Section 2), discuss related work in applying den-
sity estimation for overlap estimation (Section 3) and will
outline the methodologies used (Section 4). Section 5 will
present and explain the experimental results that answer the
research questions. Section 6 will address the reproducibility
of the results and Section 7 will summarise the work.

2 Background
2.1 Positivity through Overlap
Positivity requires the conditional probability for every sub-
ject to be part of any treatment group to be strictly between
zero and one [18]. This requirement is intuitive: if all subjects
received the same treatment (e.g. psychotherapy), it would be
infeasible to measure the causal effect of the treatment on the
outcome (e.g. depressive symptoms). In a dichotomous ex-
periment, where the covariates of the subjects i = 1, 2, . . .m
are denoted by Xi ∈ X ⊆ Rd and treatment denoted by



T = {0, 1}, the positivity assumption can be phrased as fol-
lows:

∀Xi ∈ X , t ∈ T : 0 < P (T = t | X = Xi) < 1. (1)

The quantity P (T = t | X = Xi) is also referred to as
the propensity score and can be estimated directly through
propensity score analysis [10].

An equivalent way to verify the positivity assumption is
to find overlap (common support) in the covariate distribu-
tions of different treatment groups. In the dichotomous set-
ting, positivity is satisfied when there is overlap between
P (X | T = 0) and P (X | T = 1). The overlap region
is a set B ∈ X of covariate values shared by both treatment
groups. For a threshold ϵ ∈ (0, 1), the overlap region can be
defined as:

Bϵ = {Xi ∈ X ;∀t ∈ T | P (X = Xi | T = t) > ϵ} (2)

Causal relationships can only be determined for subjects in
the overlapping region since it is the region where the posi-
tivity assumption holds.

2.2 Density Estimation
Density estimation refers to building an estimate of a prob-
ability density function given samples from the underlying
distribution [13]. Parametric density estimation assumes that
the samples are drawn from a known type of distribution (e.g.
Gaussian) and constructs the estimate of the density function
by estimating the parameters. Nonparametric density estima-
tion does not assume the parametric family of the samples
[13]. Our scope is limited to nonparametric density estima-
tion.

Nonparametric density estimation techniques are used be-
cause in many real-world settings, the underlying type of dis-
tribution that the samples are drawn from is unknown and
possibly complex. We focused on kernel density estimation
methods which typically take the form [14]:

f̂(t) =
1

nhd

n∑
i=1

K

(
t−Xi

h

)
, (3)

In (3), f̂(t) is the estimated probability density function eval-
uated at test point t. K : Rd → R is kernel function that
is centered at 0 and integrates to 1. X1, . . .Xn are random
samples from an unknown distribution p. t are the test points
of the estimation. h is the bandwidth or the smoothing pa-
rameter, which approaches 0 as n increases. In (3), h is fixed
but there are many adaptive schemes which vary h in order to
decrease the error in estimation of f .

Adaptive KDE methods are a class of methods which vary
the bandwidth h based on the location of the test point or the
sample point [14]. If h is determined based on the test point,
the KDE method produces a balloon estimator, which take
the form:

f̂(t) =
1

nh(t)d

n∑
i=1

K

(
t−Xi

h(t)

)
. (4)

In (4), the bandwidth h(t)d is a function of the test point t.
If the bandwidth h depends on the sample points in the KDE

method, the resulting estimator is termed a sample smoothing
estimator. The bandwidth is a function h(Xi)

d of the sample
point as shown:

f̂(t) =
1

n

n∑
i=1

1

h(Xi)d
K

(
t−Xi

h(Xi)

)
(5)

The estimate f̂(t) by balloon estimators are not always densi-
ties [14] since f̂(t) may not integrate to one. Sample smooth-
ing estimators always produce densities as long as K is a
density. Moreover, in 1-d data, balloon estimators showed
no significant improvement from fixed kernel methods and
its efficiency was close to 0.0 [14]. Therefore, we have cho-
sen to focus on sample smoothing estimators as they tend to
have smaller mean integrated squared error (MISE) when the
sample size is small [14], which is common in domains where
overlap estimation is useful.

3 Related Work
Overlap estimation has been extensively studied in multiple
domains, such as epidemiology [17] [18], psychology [11],
economics [1] [9], and ecology [16] [5], where measuring
causal effects is relevant [12] [10]. As of writing, the over-
lap index (OVI) and Bhattacharyya coefficient (BC) are the
most common metrics for distributional overlap when a den-
sity estimate is available. For two density functions fp and
fq , the OVI and BC between them are defined as (6) and (7),
respectively.

OVI(fp, fq) =
∫
Rd

min{fp, fq} dx. (6)

BC(fp, fq) =
∫
Rd

√
fpfq dx (7)

A standard approach to estimating overlap uses the stan-
dard KDE method to construct an estimation of the covariate
distributions of two groups and subsequently use these esti-
mates to compute the OVI [11] [3]. Anderson et al. have
shown that, under assumptions about the kernel and underly-
ing distribution, the error in the estimation of the OVI using
the standard KDE method will approach a Gaussian distribu-
tion centered at zero [1] as the sample size increases. They
assume that (i) the kernel must have compact support, (ii) the
densities approximated must have finite expectation and vari-
ance, (iii) undersmoothed bandwidths (h ∈ (n−1/2, n−1/4)),
and (iv) samples must be independent and identically dis-
tributed (i.i.d.). In our research, assumptions (i), (ii), and (iv)
are satisfied but (iii) is violated by the variable and adaptive
methods. Winner et al. [16] have used the auto-correlated
KDE (AKDE) method to derive a confidence interval for BC,
an alternative metric to the OVI. Their method accounts for
different sources of bias by propagating the bias in the AKDE
estimate to the estimate of the BC. However, density estima-
tion does not always have a role in computing the amount
of overlap. Fu et al. [6] have used a distribution-free ap-
proach to derive an upper bound to the OVI. Circumventing
the challenge of setting kernel parameters, Johno et al. [8]
have resided to a decision tree based strategy to recover an



estimate for the OVI. Moreover, Oberst et al. [10] reduced
estimating the overlap to a classification problem and pro-
duced an algorithm which outputs interpretable descriptions
of regions of local overlap.

However, a limitation of the OVI and BC is that it acts more
as a similarity metric rather than a measure of where the dis-
tributions overlap. OVI and BC fail to fully capture the no-
tion of overlap: OVI = 1 and BC = 1 may not hold even if the
covariate distributions of interest are fully overlapping (see
Figure 10b). Alternatively, the KDE methods should be eval-
uated based on the Intersection over Union (IoU) (8) value
with the true overlap region. The overlap region is defined as
(2) and Bϵ is the true overlap region and B̂ϵ is the estimated
overlap region.

IoU(Bϵ, B̂ϵ) =
|Bϵ ∩ B̂ϵ|
|Bϵ ∪ B̂ϵ|

(8)

Thus, our work will focus on the Intersection over Union
(IoU) value of the true and estimated overlap as it quanti-
fies the ability of the KDE methods to identify the region of
overlap.

4 Method
In this section, we will describe the KDE methods imple-
mented to be used for overlap estimation (Section 4.1). The
metrics we will use to measure the performance of a KDE
method in overlap estimation (Section 4.2). Finally, we will
outline the datasets used in the experiments (Section 4.3).

4.1 Kernel Density Estimation
Standard KDE The standard KDE serves as a baseline to
the adaptive methods. In producing an estimate, the kernel
width h is identical for all kernels. h is selected accord-
ing to the scheme to minimise the approximate mean inte-
grated squared error (AMISE) proposed by Silverman [13].
scikit’s 1 implementation of standard KDE with bandwidth
selection according to Silverman’s rule of thumb [13] is used
in the experiments.

h = 0.9min

(
σ̂,

IQR
1.34

)
n− 1

5 (9)

The density estimate f̂(t) is computed according to (3) with
kernel width set according to (9). σ̂ is the empirical standard
deviation of the sample points. IQR is the interquartile range
of the sample points. The bandwidth h will grow according
to the variance in the sample points.
vKDE vKDE differs from the standard KDE by allowing
the width of the kernels to vary from one point to another [13]
based on its distance from other sample points. When a point
Xi is very far away from other sample points, it may have
been sampled from a region of low density or be an outlier,
and the kernel placed on the sample point should be flatter.
The vKDE method uses the sample point’s distance from its
neighbours as an indicator of its local density.

f̂(t) =
1

n

n∑
i=1

1

hdi,k
K

(
t−Xi

hdi,k

)
(10)

1https://scikit-learn.org/stable/

where di,k is the distance from sample point Xi to the k-th
nearest sample point. h is the kernel width and di,k is the
scaling parameter of the kernel. If di,k is large, it is far away
from most samples and di,k is small when it is close to most
samples. For a sample point Xi in 1-d, the Gaussian kernel
can be described as N (Xi, hdi,k

2). For a sample point Xi

in n-d, the Gaussian kernel can be described as N (Xi,Σi,k)

where Σi,k is an identity matrix scaled by hdi,k
2. k has been

selected according to literature as k =
√
n, exactly as k is

selected in k-nearest neighbour algorithms [13].

aKDE aKDE accounts for the local density of a sample
point in the density estimation through a two stage procedure.
A pilot estimate (initial estimate) is computed to estimate the
local density of the sample points. The pilot estimate is then
used to determine bandwidth factors by which the kernels are
scaled in the adaptive estimate. Obtaining the pilot estimate
can be done through any density estimation method as the
method’s sensitivity to the pilot estimate can be controlled
[2].

1. Find a pilot estimate f̃(t) that is positive for all sample
points f̃(Xi) > 0.

2. Define a bandwidth factor λi = {f̃(Xi)/g}−α, where
log g = n−1

∑
log f̃(Xi). α is the sensitivity parameter

with 0 ≤ α ≤ 1.

3. Compute the adaptive kernel estimate f̂(t) according to
(11).

f̂(t) =
1

n

n∑
i=1

1

hdλd
i

K

(
t−Xi

hλi

)
(11)

α determines how strongly the pilot estimate will affect
the final estimate. A large sensitivity parameter will cause the
estimation to be sensitive to the variations in the pilot estimate
and leads to a greater difference in the kernel width within
the sample. Setting α = 1

d will ensure that the number of
observations within a scaled kernel is approximately the same
throughout the density. Thus, in the experiments, we have set
α = 1

d . The individual kernels are defined analogously to
the kernels for vKDE, where it would be a Gaussian kernel
N (Xi, hλi

2) in 1D and N (Xi,Σi) with Σi = hλi
2I .

4.2 Metrics
Intersection-over-Union The IoU is computed as shown
in (8). For synthetic datasets, the true overlap region Bϵ is
computed using the scipy2 library. For distributions where
the probability density function exists, scipy can be used to
compute the true values of the density over a domain, which
is subsequently used to derive the true overlap region. The es-
timated overlap region B̂ϵ is computed using the density esti-
mations produced by the KDE methods. As ϵ is kept constant
at 0.05 for all experiments, the subscript ϵ will be omitted
from now on. Moreover, IoU = 1 when |Bϵ| = 0 and |B̂ϵ| = 0
hold.

2https://scipy.org/



False Positive Rate False positive rate (FPR) is the propor-
tion of negative samples (points in non-overlap region) that
is classified as a positive sample (points in overlap region)
(12). In initial experiments, we found that the kernel band-
width of the adaptive methods were relatively large compared
to the standard method. This resulted in the adaptive methods
to overestimate overlap region. A high FPR is malignant in
overlap estimation as it can lead to falsely inferring causal ef-
fects. We aim to identify properties of such scenarios by mea-
suring the FPR for the distributions described in Section 4.3.

FPR =
FP

FP + TN
(12)

Mean Integrated Squared Error Majority of research on
KDE have focused on optimizing the bandwidth to minimise
the MISE (13) of the estimation. Work on how effective the
KDE methods are in finding the overlap is limited. Moreover,
without the true density at hand, it is infeasible to quantify the
performance, such as with the IoU, of the overlap estimation
method. Knowing the relationship between the MISE and
the IoU will allow us to leverage knowledge of the MISE.
For example, if the MISE of a KDE method is known certain
settings, we can use the MISE as a proxy for the methods
performance in estimating overlap.

MISE = E
[∫

Rd

(
f̂(t)− f(t) dt

)2
]

(13)

4.3 Datasets
We compared the performance of the KDE methods in over-
lap estimation in both synthetic and natural settings. For syn-
thetic settings, 5 two-class datasets, each representing differ-
ent scenarios, with 200 to 400 data points in each class were
generated. Visualisations of the datasets can be found in sub-
section A.1. For the natural settings, the Iris dataset consist-
ing of measurements from 3 types of Iris flowers will be used.
Since the true overlap is not known in the Iris dataset, the per-
formance of the methods will be assessed qualitatively.

Figure 10a shows a 1D Gaussian dataset where the two
classes are partially overlapping at ϵ = 0.05. The boundaries
of one class is fully contained in the other class in the dataset
shown in Figure 10b. In Figure 10c, a Gamma distributed
class and a Gaussian distributed class are shown. Multivariate
Gaussians are shown in Figure 10d. Bimodal distributions
in 2D will be investigated through the dataset in Figure 10e,
where each class is a Gaussian mixture model consisting of
two components that are weighted equally.

5 Results
We perform an empirical analysis on aKDE, vKDE, and stan-
dard KDE using their IoU, TPR, FPR, and MISE in 1D and
2D settings. First, to answer SQ1, we measure the perfor-
mance of all KDE methods on the synthetic datasets and com-
pare the results in Section 5.1. Second, to answer SQ2, we
delve into specific scenarios where at least one KDE method
fails in Section 5.2. Then, to understand the relationship be-
tween the MISE and IoU, we look at how they vary together
over all the datasets as variance in the datasets increase in

Section 5.3 to answer SQ3. Finally, we conclude the results
with recommendations on the application of the methods.

For every set of parameters for a dataset, an experiment is
repeated 20 times. The results are averaged the runs and the
uncertainty is represented using the standard deviation of the
runs.

5.1 Comparison of Methods
1D Datasets For the dataset shown in Figure 10a, σ of both
classes were varied to check the methods’ performance in
case of partial overlap. In the scenario that the classes share
the same center µ = 0 (Figure 10b), σ was increased for only
one of the classes while the other distribution was fixed at
N (0, 0.25). The case of no overlap is investigated using the
dataset shown in Figure 10c. µ of the Gaussian distributed
class is decreased to move it closer to the Gamma distributed
class, resulting in overlap when µ ≤ 3.5.

For all KDE methods, IoU is lower when σ is high as
shown in Figure 1a and Figure 11a. When σ increases, given
a fixed sample size, density estimation becomes less accu-
rate locally because there are less samples per region. Con-
sequently, the estimation becomes less smooth and has more
peaks, which can cause a region to be incorrectly classified as
in or outside of the overlap region. Despite local variations
of the density estimate, MISE does not increase (Figure 1c,
Figure 11c) because it is global measure and the magnitude
of the local errors are small.

vKDE fails when σ is large because the kernel sizes grow
disproportionately (Figure 1d, Figure 11d), resulting in a den-
sity estimate that is too flat. Consequently, the height density
estimate may be below the threshold ϵ which leads to low
FPR and TPR.

In overlap estimation for dataset in Figure 10b, IoU of
aKDE is comparatively low because it underestimates the
density for N (0, 0.25) (the class whose parameters are fixed
in experiments shown in Figure 11). As shown on Figure 11d,
the average kernel bandwidth h is near 1 when σ = 0.5 of
the true density. Thus, the density estimate of N (0, 0.25)
by aKDE has higher density at the tails of the distribution,
which increases the estimated size of the overlap when σ is
increased for N (0, σ2). Likewise, IoU of vKDE plummets
when its kernel bandwidth h grows larger than the bandwidth
of aKDE.

In Figure 2a, the IoU of all methods drop significantly
when overlap is identified. However, all KDE methods iden-
tify the overlap too early and thus their IoU drops signifi-
cantly at µ = 3. The IoU remains low due to the errors in the
density estimation of Γ(1, 2). Γ(1, 2) is defined for x > 0,
but the KDE methods will produce estimates with tails ex-
tending to values x < 0. Thus, in this scenario, errors in the
density estimate causes errors in the overlap estimation. In
addition, it is a scenario where vKDE outperforms aKDE as
vKDE does not have the tendency to produce long tails in the
density estimate.

2D Datasets For dataset in Figure 10d, the covariance ma-
trix shared both classes is a scaled identity matrix σI and
the metrics are measured as σ increases. Overlap estimation
for bimodal distributions is investigated by varying the co-
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Figure 1: Overlap estimation for N (0, σ2) and N (3, σ2) using 200 samples per class. The significant drop in IoU of vKDE Figure 1a can be
attributed to its kernels growing too large in Figure 1d.
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Figure 2: Estimation of overlap between Γ(1, 2) and N (µ, 1) using
200 samples per class. The IoU of all methods are initially high as
|B| = 0. As µ decreases, the two distributions overlap and errors in
estimating Γ(1, 2) begins to affect the IoU. The µ at which the true
distributions begin to overlap is indicated by the red bar.

variance matrix of each component of the Gaussian mixture
(Figure 10e). Each component has the covariance matrix σI .

In 2D settings, vKDE fails. First, the vKDE’s IoU shown
in Figure 3a decreases rapidly as σ increases and its IoU re-
mains low in Figure 4a. In Figure 4a, the sudden increase in
IoU at σ = 2 is due to vKDE correctly detecting the absence
of overlap. Second, as shown in Figure 3b, vKDE tends to
have high FPR (up to 0.125) while FPR of standard KDE is
bounded at 0.05 and FPR of aKDE is bounded at 0.1. Fur-
thermore, vKDE’s low FPR for the Gaussian mixture (Fig-
ure 5a) comes at the expense of TPR close to 0 (Figure 5b).
The TPR and FPR of vKDE is shown together in Figure 4b
where most data points are clustered in a region of low TPR
and high FPR. vKDE’s performance in 2D can be explained
by its kernel bandwidth h: h is consistently larger than the
variance σ (Figure 3d, Figure 4d). This results in overesti-
mation of the boundary of the density when variance is low
(high FPR) and underestimation of the density near the cen-
ter when variance is low (low TPR). Finally, all three methods
produce false positives when σ = 0.25 due to overestimating
the boundaries of the density.

5.2 Properties of the Methods
In this section, we demonstrate the properties of each method
by highlighting the extreme settings of where one method
fails and the others do not. In addition, we address a set-

ting, the Iris dataset, where all of the methods fail and note
the sensitivity of the IoU to the threshold value ϵ.

vKDE fails In Figure 1a, the IoU for vKDE decreases
rapidly compared to that of aKDE and standard KDE. To un-
derstand this phenomenon, we investigated the behaviour of
the methods when estimating overlap between N (0, 25) and
N (3, 25) using 200 samples per class.

The low IoU can not be attributed to a high MISE. The
red density can be denoted by f1 and the blue density can be
denoted by f2. The MISE of vKDE is 0.66, of aKDE is 0.53
and of standard is 0.36. The difference in their MISE does not
scale to the difference in their IoU. Moreover, standard KDE,
with the lowest MISE, does not have the highest IoU. When σ
is very high, the density in all regions is relatively low. Thus,
oscillations in the density estimation correspond to very small
errors that do not greatly increase the MISE, which explains
why standard KDE does not have a high IoU despite a lower
MISE. However, the oscillation does significantly affect the
overlap estimation. A local decrease in the density estimate
f̂1 or f̂2 below can cause a region to be considered not part
of the overlap region as observed in Figure 6c. Conversely, a
slight local increase in the density estimate can also cause a
region to be incorrectly classified as in the overlap region.

vKDE has a low IoU as it significantly underestimates the
densities, causing f̂1 and f̂2 to fall mostly below the threshold
ϵ = 0.05. This is due to the scaling of the kernels by the sam-
ple point’s distance to its neighbours dj,k as shown in (10).
When σ is very high, the distance between sample points are
large on average, resulting in large kernel bandwidths h Fig-
ure 1d. The density estimates are thus too flat. The perfor-
mance of vKDE can be improved by normalizing the distance
between neighbours. Furthermore, note that the performance
is sensitive to the threshold level ϵ, since the methods would
be less sensitive to oscillations in the density estimate at a
lower ϵ.

aKDE fails aKDE tendency to produce smooth estimates
can fall short. For dataset Figure 10c, the IoU of aKDE drops
significantly when µ approaches 4. The IoU drops because at
µ = 4, the distributions do not yet overlap but due to the over-
estimation of aKDE, overlap is found nevertheless. The FPR
is further exacerbated when µ of the Gaussian distribution de-
creases to the center of the Gamma distribution as shown in



0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
σ

0.0

0.2

0.4

0.6

0.8

Io
U

Variable KDE
Adaptive KDE
Standard KDE

(a) IoU

0.000 0.025 0.050 0.075 0.100 0.125
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
PR

Variable KDE
Adaptive KDE
Standard KDE

(b) ROC

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
σ

5

10

15

20

25

30

M
IS

E

Variable KDE
Adaptive KDE
Standard KDE

(c) MISE

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
σ

0.5

1.0

1.5

2.0

2.5

h

Variable KDE
Adaptive KDE
Standard KDE

(d) Kernel

Figure 3: Performance of KDE methods in estimating overlap between N ([0, 1], σI) and N ([0, 2], σI) using 200 samples per class.
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Figure 4: Performance of KDE methods in estimating overlap between for Gaussians mixtures with 400 samples per class.
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Figure 5: TPR and FPR of KDE methods on Gaussian mixture
model shown in Figure 10e

Figure 2b (µ = 1). This is investigated in Figure 7 using
Γ(1, 2) and N (1, 1) with 500 samples from each distribution.

As shown in Figure 7, the FPR of aKDE is very high as its
estimate of the Gamma distribution is very flat and overesti-
mating the density in regions where the Γ(1, 2) already drops.
In addition, the estimate of Γ(1, 2) by aKDE resembles an es-
timate of a Gaussian distribution, giving rise to a fat tail in the
estimation that further increases FPR.

All methods fail In the case of estimating overlap for the
Iris dataset, the performance of the methods can only be ex-
amined qualitatively. Inspired by Oberst et al. in [10], we
estimated the overlap between Versicolor and Setosa in their
sepal lengths and sepal widths was measured Figure 8a. The
overlap region identified appears coherent with the data and
is comparable to the region found in [10]. However, standard

KDE, along with aKDE and vKDE, fail to estimate overlap
between Virginica and Setosa given their sepal lengths and
widths, producing many false positives. The classes shown in
Figure 8b are linearly separable and thus |B0.1| = 0. The es-
timated overlap is region falls between the boundaries of the
two classes for all three methods as shown in Figure 8b and
Figure 13. The kernels of the methods are too large given the
variance in the dataset, resulting in overestimating the bound-
aries of the distribution and the overlap. Nevertheless, it is a
possibility that though not shown in Figure 8b, the joint dis-
tribution between sepal length and sepal width of Virginica
and Setosa do overlap but the dataset available is too small.

5.3 Relationship between MISE and IoU
The MISE of a density estimate is not a reliable proxy for
the IoU. The IoU depends on the threshold ϵ, the distribu-
tion of interest, and the local errors of the density estimate
in the region overlap, while MISE is a global metric of er-
ror. As shown in Figure 1, Figure 11, Figure 3, and Figure 4,
stabilization of the MISE does not guarantee stagnation of
the IoU. Nevertheless, we made the following observations
for the synthetic datasets: (i) when variance is high, both the
MISE and IoU tends to be low, (i) and in 2D, when variance
is low, MISE tends to be high and IoU is low. (i) can be
observed on Figure 14, Figure 15, Figure 9, and Figure 16
where the darker points, representing high variance, are clus-
tered in regions of low MISE and low IoU. The results align
with conclusions drawn in Section 5.1: when variance is high,
the underlying density is flat and the errors in the estimation
do not contribute significantly to the MISE. Rather, the low
IoU can be attributed to the methods’ tendency to overesti-
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Figure 6: Overlap estimation by all three KDE methods with n = 200 samples. The estimated overlap region between N (0, 25) and
N (3, 25) is shown in yellow. Though the MISE of all three methods do not differ significantly, their IoU’s do. The IoU for vKDE is low due
to underestimation of the densities: a significant portion of its density estimate falls below the threshold ϵ = 0.05.
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Figure 7: Estimation of overlap between Γ(1, 2) and N (1, 1) using n = 500 samples. Overlap region is shown in yellow. aKDE has high a
FPR as it produces an estimation of the Gamma distribution that is too flat. The flat estimation can be attributed to its large kernel bandwidth
h and generally smooth estimates.

mate the boundaries of the density. (ii) can be observed on
Figure 9 and Figure 16 where there is a cluster of datapoints
in the region of high MISE and low IoU.

5.4 Summary of Results
We conclude the results with a summary of the properties and
recommendations for the methods:

• Standard KDE is recommended in general when false
positives are considered problematic. Incorrectly iden-
tifying regions of overlap may lead to incorrectly draw-
ing causal relations. Standard KDE has shown compar-
atively low FPR and high IoU in many settings explored
in this paper.

• aKDE is recommended when the variance of the distri-
bution is high. In such cases, overlap estimation can
be sensitive to oscillations in the density estimate and
aKDE has the advantage of producing smooth estimates
at small sample sizes.

• vKDE is generally not recommended for overlap estima-
tion for datasets with dimensionality above 1. Without

tuning k, which is used to determine the scaling parame-
ter dj,k of a kernel, the density estimate by vKDE can be
erroneous, and k can not be tuned in practice. Moreover,
using a rule of thumb for k does not yield promising re-
sults. However, there is the possibility that an additional
scaling parameter can alleviate the method’s sensitivity
to k.

6 Responsible Research
6.1 Ethical considerations
Observational studies are prevalent in the field of epidemiol-
ogy, medicine, economics, and ecology. Overlap estimation
is employed on data from observational studies and random-
ized experiments to determine whether the positivity assump-
tions holds. Our tool can be used by researchers to verify the
positivity assumption before drawing causal inferences be-
tween treatment and observed outcome. Therefore, it is criti-
cal to not overpromise the performance of overlap estimation
methods and identify scenarios where they fail so that causal
conclusions can not be drawn incorrectly. Furthermore, clear



(a) Viriginica and Versicolor (b) Setosa and Versicolor

Figure 8: Overlap estimation for Iris data with standard KDE. Over-
lap region at ϵ = 0.1 is indicated in yellow. Standard KDE fails
to identify overlap between Setosa and Versicolor using sepal width
and sepal length, but succeeds in overlap estimation between Vir-
ginica and Versicolor.

documentation of the code and a usable interface further re-
duces the possibility for erroneous use of the tool. We also
provide plotting tools that facilitate interpretation of results
from data.

6.2 Reproducibility

Code and datasets required to reproduce the results are pub-
licly available along with the paper. The Iris dataset is also
publicly available on the UCI machine learning repository 3.
All experiments have been repeated 20 times to minimise the
impact of randomness on our results. Furthermore, the re-
sults from experiments were manually verified by visually in-
specting the overlapping region found and comparing density
estimations to the true density. Finally, though seeds were
not used in the pseudo-random generators for the synthetic
datasets, we have verified that the patterns observed and con-
clusions drawn are not affected.

7 Conclusions and Future Work
Overlap estimation of covariate distributions can be applied
to detect violations of the positivity assumption. We estimate
the region of overlap by means of adaptive and standard KDE
methods. The aKDE, vKDE, and standard KDE have been
compared on their IoU, FPR, and TPR for synthetic datasets
and on qualitative assessments for real-world datasets. Our
empirical analysis of the KDE methods in overlap estima-
tion unveils their underlying properties. The extreme settings
where they fail guide us on when a method should be selected
for identifying overlap.

Future work can investigate how the performance of the
methods will change as the threshold ϵ is varied. Moreover,
we recommend analysis of the KDE methods for real-world
datasets of higher dimensions and multi-modal distributions
as they better typify the challenges that may occur in overlap
estimation.

3https://archive.ics.uci.edu/
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Figure 10: True distributions of synthetic datasets in 1D and 2D

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
σ

0.0

0.2

0.4

0.6

0.8

Io
U

Variable KDE
Adaptive KDE
Standard KDE

(a) IoU

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
PR

Variable KDE
Adaptive KDE
Standard KDE

(b) ROC

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
σ

100

101

M
IS

E

Variable KDE
Adaptive KDE
Standard KDE

(c) MISE

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
σ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

h

Variable KDE
Adaptive KDE
Standard KDE

(d) Kernel Size h

Figure 11: Overlap estimation for N (0, 0.25) and N (0, σ). The IoU is relatively stable until σ grows too large. The IoU of adaptive starts
out low and remains relatively low because its average kernel size is too large for N (0, 0.25). The average kernel had width of 1 while
variance of one of the distributions was only 0.5.



(a) Adaptive KDE (b) Variable KDE

Figure 12: Success case: overlap estimation for the Iris data be-
tween Iris Virginica and Iris Versicolor on their sepal width and sepal
length.

(a) Adaptive KDE (b) Variable KDE

Figure 13: Fail case: overlap estimation for the Iris data. The overlap
region between Iris Setosa and Iris Versicolor for the features sepal
length and sepal width.
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Figure 14: 1D Gaussian overlap
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Figure 15: MISE and IoU relation for shared centers Gaussians
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Figure 16: 2D Mixture Gaussian overlap
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