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Abstract

While colloidal suspensions of non-spherical particles have been studied relatively extensively, granu-
lar suspensions of non-spherical particles are rarely studied. The rheological behaviour of elongated
granular particles is therefore not well known. This thesis deals with suspensions of rod-like particles
of aspect ratio 4 subjected to shear flow in a low-density, highly viscous Newtonian fluid. CFD-DEM
simulations for a periodic shear box have been performed for a pre-estimated range of shear rates and
volume fractions. Dependence of rheological properties like shear stresses, relative viscosity, granular
temperature, pressure and normal stress differences on the shear rate and volume fraction have been
studied. These granular rods show shear thickening behaviour. The spherocylindrical particle suspen-
sions experience less collisional stresses than spherical particles due to preferred particle alignment
in the shear direction. Herschel and Bulkley [1] model is used to fit the collisional stress data. Two
different regimes have been identified for granular suspension based on the flow index. Interestingly,
a relatively large range of shear rates and associated stress can be expressed in the form of a simple
equation based on Broughton and Squires [2] model. This stress closure will further be used in more
coarse grid models like MP-PIC which can simulate an industrial fluidized bed reactors of non-spherical
particles.
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1
Introduction

Dispersions (systems that are a mixture of two or more phases i.e. gas/liquid/solid) are present every-
where in nature (milk, blood, clouds, rivers, sandstorms, landslides) and industry (cosmetics, paints,
detergents, oil mineral industries). ”Suspension” type dispersions particularly, monodispersed solids
in a continuous fluid phase (liquid or gas), have critical importance for the chemical industry. Better
understanding of fundamental physics behind particle suspensions is necessary to control industrial
processes like gas-solid fluidization and fluid catalytic cracking.

Gas-solid fluidization is industrially recognized process for many decades because of its advantages
like mixing, uniform temperature distribution and good gas-solid contact for heat and mass transfer
[3]. These advantages make fluidized bed reactors a favourable choice for many applications ranging
from combustion & gasification to drying & powder coating [4]. After 2001, due to rising oil prices
interest in biomass gasification has increased to reduce the dependence on fossil fuels [5]. Biomass
gasification produces syn-gas ((a mixture of CO and 𝐻 ) which can be utilized in manufacturing fertilizer
or upgraded to higher hydrocarbons through Fischer- Tropsch reaction. Bubbling fluidized bed (BFB)
and Circulating fluidized bed (CFB) reactors can be used for biomass gasification [4]. These reactors
use raw material that are pre-dominantly non-spherical in nature. It has already been established that
particle size and shape affects the fluidization behaviour such as pressure drop and minimum fluidiza-
tion velocity [6–8]. Biomass, mainly wood pellets and rice husk, possess an elongated shape and show
poor agreement with spherical particle models. This require the development of a specialized models
to better understand their distinct shape effects to devise the optimum design of biomass gasifiers.

A detailed computer simulation of an industrial sized fluidization reactor can require very high com-
putational cost. During past few years, several simulations techniques such as multiphase particle in
cell method (MP-PIC) [9] have been developed to perform industrial scale simulations. Instead of cal-
culating the computationally intensive particle interactions, a stress closure can be incorporated in the
model. Particle stresses are usually calculated from the basic system parameters such as volume frac-
tion, shear rate and system pressure. Stress closures for spherical particles are available in literature
[10]. These stress closures are based on the kinetic theory of granular fluids (KTGF). KTGF is based
on the basic assumption that all particles are spherical and collisions between particles are of binary
nature. For elongated particles, even these assumptions break down especially at higher solid volume
fraction.

The purpose of this work is twofold: first, to develop an understanding of the rheological behaviour
of spherocylindrical particles and secondly, to obtain a collisional stress closure for these particles to
be used in industrial fluidized bed simulation. In this work, a numerical model is used to describe
the behaviour of particle-particle interactions. Discrete element method (DEM) and computational fluid
dynamics (CFD) are coupled to solve particle movement and gas flow through the control box. DEM has
been modified to incorporate the spherocylindrical particle. Equation given by Hölzer and Sommerfeld
[11] is used to calculate the drag force on the particles.
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2
Literature review

Fluids experience several kinds of deformation under the influence of forces. To describe their be-
haviour, Newton postulated his famous law of viscosity that related the shear stress to the strain
(𝜎 = 𝜂 �̇�). However, its applicability was limited to fluids that exhibit close to ideal behaviour. To
explain the non-Newtonian aspect of fluid behaviour several models have been proposed by Einstein
[12], Bingham [13] and Herschel and Bulkley [1]. The term ”Rheology” was coined in 1929, to establish
a separate field to explicitly study these phenomena.

Rheology of particles that are suspended in fluid undergoes two types of interactions, particle-
particle & particle-fluid. Based on these interactions granular systems can be classified into two types.

1. Granular flows: If particles are much denser than fluid, particle-fluid interactions can be ignored
and only particle-particle interactions are responsible for the momentum transfer [14]. This is
usually the case for granular flows.

2. Granular suspension: If fluid density is very close to solid density particle-fluid interactions be-
come important which is usually the case of granular suspensions.

Experiments have not been proven to be very useful to study particle suspensions [15]. Rheometer
is used to study the rheology of suspensions. It only offers the measurement of shear stresses and
total pressure in the system. This is a great barrier to improve our understanding for the rheology of
particle suspensions. On the other hand, in past 30 years, discrete element method (DEM) has been
developed and used to study granular systems in depth. DEM1 was developed by Stark and Cundall
[16]. This method offers many advantages over the experimentation like measurements of volume
fraction, complete stress tensor and residual kinetic energy of the system. After its birth, this method
has been used extensively for the number of granular suspensions behaviours like shear flow, hopper
flow and fluidized bed [15, 17–19]. DEM is a useful tool to study granular flows and if coupled with
computational fluid dynamics (CFD) this framework can be extended to study granular suspensions.

Present work is based on CFD-DEM coupled simulation of spherocylindrical particles of aspect ratio
4. It is important to take a look at past studies for granular systems to find out which theories or
system are closely related to present work. In the following section, each of the these theories are
discussed with main focus on the developed particle stresses.

2.1. Granular flows
Granular material is formed by discrete particles. These materials behave like solid if forces acting from
all sides are equal. There exists two types of deformation in granular material i.e. plastic deformation
(particle-particle bonds break down) and elastic deformation (frictional bonds break down but material
return to original state). For the particular amount of stresses, a material can deform plastically and
behave like a fluid. Granular flows exist in nature in form of sand and landslides. These flows share
1Detailed discussion in chapter 3
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4 2. Literature review

similarity with gases because momentum transfer between particles is solely due to particle-particle
collisions.

For granular flows, velocity of each particle can be decomposed in to the sum of the mean velocity of
flow and random fluctuation of velocity from the mean bulk value. In 1978, Ogawa [20] introduced the
concept of granular temperature to characterize this velocity fluctuation in granular media. The granular
kinetic theory was developed at that time to define the phenomenon of dilute and dense granular flow
based on the kinetic theory of dense gases by Chapman and Cowling [21]. Jenkins and Savage [22]
extended the kinetic gas theory but were only able to predict the collisional stresses in the granular
flow. Lun et al. [23] improved on the theory presented by Jenkins and Savage by using perturbed
Maxwellian distribution velocity function. Their theory is the most detailed and comprehensive work
to date which predicts not only collisions stresses but also kinetic stresses produced due to particle
motion. According to their theory, shear stress for smooth, hard inelastic spheres in the plane shear
flow is as follows:

𝜎 = 𝜎 = − 5
96𝐽(𝜙, 𝑒)𝜌 (𝜋𝑇)

. 𝑑 �̇� (2.1)

Granular temperature (𝑇) can be defined as follows:

𝑇 = 5𝜋
4608

𝐽(𝜙, 𝑒)
𝛼 (1 − 𝛼)𝜙 𝑔 𝑑 �̇� (2.2)

and 𝐽(𝜙, 𝑒) is of the following form:

𝐽(𝜙, 𝑒) = 1
𝛼 (2 − 𝛼)𝑔 (1 + 85𝛼𝜙𝑔 ) [1 +

8
5𝛼𝜙𝑔 (3𝛼 − 2)] + 76825𝜋𝛼𝜙 𝑔 (2.3)

𝛼 is a function of coefficient of restitution while 𝑔 is radial distribution function for spherical binary
contact which only depends on the volume fraction (𝜙) [24].

𝛼 = 1
2 (1 + 𝑒) (2.4)

𝑔 = 1
1 − 𝜙 +

3𝜙
2 (1 − 𝜙)

+ 𝜙
2 (1 − 𝜙)

(2.5)

Campbell and Gong [17] performed the 2-D numerical simulations which were in good agreement with
the predictions from Lun et al. Jenkins and Richman [25] performed the same analysis also for the
disks and improved on the theory by including dissipation induced second moment stress tensor.

Goldshtein and Shapiro [26] extended the granular kinetic theory for the rough inelastic spherical
particle. The presence of frictional forces results in energy loss due to heat and also results in conversion
between translational and rotational energy. Jenkins and Zhang [27] showed that energy loss due to
frictional forces can be described by use of the effective coefficient of restitution which is a function of
normal coefficient of restitution and frictional coefficient.

𝑒 = 𝑒 − 𝜋2𝜇 +
9
2𝜇 (2.6)

For dense granular flows, the assumption of instantaneous collisions does not hold true and long lasting
collisions becomes dominant [28]. Kinetic theory needs to be modified to incorporate this phenomenon.
Jenkins [29] implemented a length scale in the expression of the rate of collision dissipation for the
dense flows of frictionless, inelastic disks. Berzi et al. [30] considered the role of particle contact
stiffness for the frictional component of the stress tensor. Campbell [28, 31, 32] observed that in
dense granular flows stresses are generated by particle elasticity. He distinguished two dense granular
flow regime. In the elastic inertial regime, stresses increase linearly with shear rate and scale with the
elasticity while in elastic quasi-static regime although stresses scale with the elasticity but they have
no dependence on the shear rate.

Granular kinetic theory (GKT) is not the only theory in literature to describe granular flows. 𝜇 (I)
rheology [33, 34] is comparatively new field than GKT which was developed in mid 2000’s. Constitutive
equation which describes the conservation laws of granular flows can be defined by Inertial Number,
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𝐼 = �̇�𝐷/√ . Volume fraction and effective friction (𝜇 ) which is ratio of shear stress to the pres-

sure are functions of I. These functions have been determined by simulations [35–37] as wells as by
experiments[38, 39]. Pressure is an important parameter for this theory which is usually an external
influencing factor. For this study, pressure is an internal property of the system and directly depends
on the normal stresses. For this reason 𝜇 (I) rheology has not been explored further. Detailed
discussion is in section 5.4.

Most of the studies discussed above only deals with the circular disks or spheres. Recently re-
searchers have performed experiments [40, 41] and simulations with the different particle shapes.
Simulations performed by Pena et al. [42] for polygonal disks and Cleary and Sawley [43] for different
shapes of disks shows that particle shape has strong effects on the granular temperature and vol-
ume fraction in the core of the flow, both of these values are smaller compared to spherical particles.
Moreover, particles with non-regular shape (higher aspect ratio or more angular geometry) are hard to
shear due to interlocking of the particles. One of the main attributes of non-spherical particles is that
the elongated particles have preferred alignment towards main flow stream as shown by Pena et al.
[42], Reddy et al. [44, 45] and Campbell [46]. Campbell [46] performed 3D simulations for ellipsoid
particles. He observed that friction forces have a strong influence on the stresses for elongated parti-
cles than for spheres. For smooth ellipsoid particles, smaller stresses were observed when compared
to the spheres. While large surface friction can lead to particle rotation which can block the flow so
stress values were higher. Guo et al. [47] performed 3D DEM simulations for particles with different
aspect ratio. Three different regimes (dilute, dense and intermediate) discussed by Campbell and Gong
[17] were observed also for elongated particles. Stress values are smaller compared to the spherical
particles which were attributed to the smooth surface and alignment of the elongated particles. Nagy
et al. [48] have also performed a 3D simulation with the spherocylindrical particles up-to aspect ratio
of 2.5. In their study, they have demonstrated that 𝜇 (I) rheology can be extended to non-spherical
particles.

2.2. Granular suspensions
Rheology of liquid-solid suspension not only depends on the particle-particle interactions but also on
the particle-fluid interaction. Fluid properties like density and viscosity play a significant role. Most
prominent work so far on the rheology of the granular suspension was performed by Bagnold [49]
which led to the birth of Bagnold theory. Bagnold performed experiments with spherical particles
made of wax suspended in Newtonian fluids (water and water-glycerine mixture). He observed two
limiting type of behaviour. In micro-viscous region, suspension stresses both normal and shear have
a linear relationship with the shear rate and also depend on the fluid viscosity. In the grain inertia
region stresses are proportional to the square of the shear rate with a minor effect of fluid properties.
He distinguished both of these regimes with a so-called Bagnold number which is the ratio of grain
collisional stresses to viscous fluid stresses. For 𝐵𝑎 < 40 system is in micro-viscous regime while for
𝐵𝑎 > 450 it is in grain inertia regime.

𝐵𝑎 =
𝜌 𝑑 𝜆 . �̇�

𝜂 (2.7)

𝜆 is the linear concentration based on the volume fraction (𝜙).

𝜆 = 1

[( ) − 1]
(2.8)

Many authors have used Bagnold approach to form a constitutive relationship between shear rate and
stress [50–52]. All of these studies have shown the similar behaviour. Recently Hunt et al. [53] revis-
ited the Bagnold experiment and they have shown that in the grain inertia region stress do not vary
quadritically to the shear rate but shear stresses depend on the shear rate to the 1.5 power. Results
in present work have been compared with Bagnold theory.

It is also very common to study suspension rheology in terms of apparent viscosity (𝜂 ) which is
equal to ( ̇ ). For Newtonian fluid 𝜂 = 𝜂 , while for non-Newtonian fluids it is dependent on shear
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rate. For suspensions 𝜂 is the ratio of suspension viscosity and fluid viscosity. Rutgers [54, 55] and
Thomas [56] summarized early research separately. Most of the summarized research was related to
relationship between apparent viscosity (𝜂 ) and volume fraction(𝜙). Both have distinguished three
regimes for 𝜂 (𝜙) as follows,
1. Dilute regime (𝜙 < 0.01 (Rutgers [54]), 𝜙 < 0.02 (Thomas [56]))

2. Semi-dilute regime (𝜙 < 0.25 )

3. Concentrated or dense regime (𝜙 > 0.25 )
For dilute regime, 𝜂 (𝜙) is linear and rheology is Newtonian. For semi dilute regime, 𝜂 shows higher
order dependence to 𝜙 while behaviour remains Newtonian. For concentrated regime, 𝜂 increases
rapidly and rheological behaviour becomes non-Newtonian. Einstein [57] studied the suspension in the
dilute limit and derived a 𝜂 relationship for an isolated sphere which is given as:

𝜂 = 1 + 𝐵𝜙 (2.9)

B is referred as ”Einstein coefficient” and its value is 2.5. There have been lots of efforts to determine
right value for B for dilute regime but this value changes significantly from 1.5 to 5 depending upon
the experiments [58–60].

For semi-dilute regime, most of the work has been done to find the higher order coefficients for the
following equation:

𝜂 = 1 + 𝐵𝜙 + 𝐵 𝜙 + ... (2.10)

while 𝐵 = 2.5 and 7.35 ≤ 𝐵 ≤ 14.1 derived by particle particle interactions [61–63].
Equation 2.10 predicts viscosity value even for the case where solid volume fraction approaches to

1. This is physically not possible because for spheres maximum possible packing (𝜙 ) is 0.74. For this
volume fraction value, viscosity must be infinite because there is no space for the particles to move.
Due to this, polynomial expressions for 𝜂 (𝜙) cannot fit the experimental data for the concentrated
regime and required a modification in terms of 𝜙 . Krieger and Dougherty [64] obtained the following
correlation for concentrated regime,

𝜂 = (1 − 𝜙
𝜙 ) (2.11)

B is Einstein constant. Above expression has been used extensively throughout the years to fit the
experimental data for concentrated regime [59, 60].

All of above relations shows power law dependence on the volume fraction. Richardson [65] first
proposed a very simple power law in terms of volume fraction for apparent viscosity.

𝜂 = 𝑒𝑥𝑝(𝑘𝜙) (2.12)

where 𝑘 is a constant. Broughton and Squires [2] improved on the Richardson [65] relationship by
including a system depending parameter A.

𝑙𝑛(𝜂 ) = 𝐴 + 𝑘𝜙 (2.13)

Equation 2.13 can be used for semi-dilute and concentrated regime. This equation has been modified
for the present study in terms of maximum volume fraction to fit the simulation data.

Rutgers [54, 55] reported non-Newtonian behaviour for 75% of reviewed experiments. Stickel
and Powell [66] have summarized research on non-Newtonian behaviour for concentrated regime.
They considered Brownian motion and inertia to be the governing phenomenon for Newtonian or non-
Newtonian behaviour. Peclet (Pe) and Reynolds (Re) number are used to quantify the brownian and
inertial effects respectively. Stickel and Powell [66] reported that for 𝑃𝑒 ≥ 10 viscosity becomes
independent of Peclet number. For 𝑅𝑒 ≥ 10 inertial effects plays a significant role in suspension
rheology. They have shown that system rheological behaviour depends significantly on the Peclet and
Reynolds number.
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There is a very limited research available on the non-spherical particle suspensions in the literature.
Jeffery [67] presented an analytical solution for the motion of ellipsoidal particles in the shear flow.
Jeffery determines Einstein coefficient (𝐵) by integrating the work that is done by the fluid to rotate the
particle. Jeffery work has been validated numerically [68, 69] and experimentally [70, 71]. Brenner
[72] noted the equivalence between spherical particles and particles which have the axis of rotational
symmetry in terms of aspect ratio. Doi and Edwards [73] defines three regimes for particles with axis
of rotational symmetry based on particle number (N), particle length (𝐿 ) and particle diameter(𝑑 ) in
unit volume.

1. Dilute regime (𝑁 << )

2. Semi dilute regime ( < 𝑁 < )

3. Concentrated or dense regime (𝑁 > )

For spheroid particles with aspect ratio of 10 regime boundaries in term of volume fraction are 0.005
and 0.05. Anczurow [74] confirmed the Jeffrey approach to calculate Einstein coefficient (𝐵) for dilute
regime via experiment. Stover et al. [75] performed experiments to study semi dilute regime. Most
of the time particles rotated around the major axis and very less time in the shear direction. Jeffrey
equation to calculate 𝐵 was modified with anisotropic weak rotary diffusivity, which provided very good
fit for the semi dilute regime.

For concentrated regime, studied have shown that 𝜂 (𝜙) is only linear for low concentration so
Einstein equation (equation 2.9) is not valid [60, 76, 77]. 𝜂 (𝜙) is also dependent on the aspect ratio
of the particles. Pabst et al. [60] fit their experimental data by using equation 2.11. This fit provides
higher value for the Einstein coefficient (𝐵) than Jeffrey’s. This is because Jeffrey equation of particle
does not consider collisional interactions which are very dominant for higher volume fractions.

Mueller et al. [78] studied the suspension of prolate and oblate particles. They observed shear-
thinning behaviour which is according to the Stickel and Powell [66] discussion. Herschel and Bulkley
[1] equation was used to fit the experimental data. Happel [58] defined the relationship between
the rate of work that is required to shear the specific volume of fluid and apparent viscosity. This
relationship was used by Mueller et al. [78] to find the apparent viscosity of the suspension. The final
equation is as follows:

𝜂 = 1 +
�̇�

𝜂 �̇� 𝑉 𝜙 (2.14)

Most of the work discussed in this literature review only deals with spherical particle granular sys-
tems. Even though there is some literature available for non-spherical particles, it only deals with
rheological behaviour of friction-less, elastic particle in the granular flow domain. There is no literature
available on the rheological study of non-spherical granular suspension via simulations. Present study
focuses on exploring this topic. Not only rheological properties of non-spherical particles have been in-
vestigated but theories discussed in above sections have also been used to understand this behaviour.
Finally Broughton and Squires [2] model has been used to propose a stress closure which can further
be used for industrial fluidized bed simulations.





3
Model description

CFD-DEM is used to perform the simulation in this study. Particle-particle and particle-wall interaction
are resolved by Discrete Element Method (DEM) based on LIGGGHTS® [79]. Meanwhile, the Compu-
tational Fluid Dynamics (CFD) code based on openFOAM®[80] and CFDEM®coupling [81] solves the
gas flow in an Eulerian way and couples this flow to the particles. A schematic overview of this model
structure is shown in Figure 3.1. Gas flow is solved on a grid which is larger than the particle size. A
description for both of these methods has been provided in the following section.

Figure 3.1: Schematic overview of the CFD-DEM model structure.

3.1. Discrete element method
DEM is based on molecular dynamics (MD) method which was developed by Alder and Wainwright
[82] in 1950s. DEM can further be divided into two modelling technique either as ”hard-spheres” or as
”soft-spheres” based on particle-particle interaction mechanism.

In hard sphere model, particle motion is determined by binary collisions. In the simulation, particle
collisions are solved one by one according to the order in which events takes place. Campbell and
Brennen [83] used this model for the first time to study granular media. Goldschmidt et al. [84]
have used hard sphere approach to study dense gas fluidized bed in connection with kinetic theory of
granular media. Most recently Zhou et al. [85] have incorporated the effect of gas turbulence in this

9



10 3. Model description

model. Hard sphere model is limited when it comes to dense systems or multiple contacts. It is best
suited for simple systems where particle number density is not very high. In more complex systems,
the soft-sphere model is the best option and it is also being used in this study.

3.1.1. Soft-sphere model
In complex situations, particles can interact for short and long time depending on the forces. Particle
movement can be tracked by solving Newton equation of motion. Stark and Cundall [16] developed
the soft-sphere approach for granular dynamics simulations. In this approach particles are treated as
hollow spheres which can overlap with each other and contact forces are calculated by a contact-force
scheme which depends on deformation history of the particle. This model is a time-driven model where
time step to calculate the particle collision must be chosen very carefully. This model can be used to
study a number of systems such as gas-fluidized bed [86], cohesive particulate systems [87] and gas-
particle heat transfer [88]. Recently, Zhu et al. [89] discussed the theoretical developments in this
model.

In the following, the soft-sphere approach has been discussed extensively to give the reader an
overview of how simulation via this approach proceeds.

Equation of motion
Particle motion of a single spherical particle of mass 𝑀 and coordinate 𝑟 can be described by Newton
law of motion as follows:

𝑀 d 𝑟
d𝑡 = �⃗� , + �⃗� , (3.1)

Three forces acting on the particle are:

1. Total contact force ( ⃗𝐹 , 𝑖) which is the sum of all contact forces exerted by other particles on
particle i. These forces are the sum of tangential and normal components.

�⃗� , = ∑
∈neighbour list

(�⃗� , + �⃗� , ) (3.2)

2. External forces ( ⃗𝐹 , ) which are sum of external forces like gravity(𝑀 𝑔), fluid forces on the
particle and forces due to pressure gradient.

Rotational motion of the particle is calculated by:

𝐼 d�⃗�
d𝑡 = 𝜏 (3.3)

Equation 3.1 and 3.3 are basic two equation to fully describe motion of the particles.

Contact force
There are number of models in the literature to calculate contact force between particles. One which
is mostly used and simplest one is described by Stark and Cundall [16], where normal contact force
between particle i and j is calculated by linear spring model (Figure 3.2) as follows:

�⃗� , = −𝑘 |𝛿 , |�⃗� + 𝜁 �⃗� , (3.4)

�⃗� , is the relative velocity at point of contact between sphere 𝑖 and 𝑗. 𝛿 , is the normal overlap
calculated by following formula:

𝛿 , = (𝑅 + 𝑅 ) − |𝑟 − 𝑟 | (3.5)

Coulomb friction law is used to calculate tangential contact force via a split function.

�⃗� , = {
−𝑘 |𝛿 , |𝑡 + 𝜁 �⃗� , for |�⃗� , | ≤ 𝜇|�⃗� , |
−𝜇|�⃗� , |𝑡 for |�⃗� , | > 𝜇|�⃗� , |

(3.6)

Tangential displacement (𝛿 , ) is calculated by integrating tangential velocity with respect to time for
contact duration.
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(a) Representation of spring model for sphere
contact. (b) Parameters used for soft-sphere model.

Figure 3.2: Sphere Contact Model.

Contact Parameters 𝜁 , 𝜁 depends on coefficient of restitution (𝑒 & 𝑒 ) and spring constants (𝑘
& 𝑘 ). Usually for simulations 𝑒 and 𝑒 are assumed to be equal. Although spring constants depend
on material properties like young modulus and poison ratio, their values strongly influence the contact
time so needs to be chosen really carefully, this requires a number of test simulations. In practice DEM
time step should be small enough to resolve one particle collision in 10-20 time steps. This heuristic
rule helps to determine values of spring constants and time step.

Once contact force have been calculated new particle positions and velocities are determined by
integrating equation of motion as follows:

𝑣 = 𝑣 | + 𝑎 | △𝑡
𝑟 = 𝑟 | + 𝑣 | △𝑡 (3.7)

For integration of rotational motion, generally same type of scheme is used as shown in equation 3.7.
This scheme introduces a numerical propagation error which is not system generated. This requires
more complicated integration schemes like Gear algorithm & Verlet algorithm [90]. These integration
methods reduce the numerical error propagation but increase the complexity of the simulation.

Neighbour list

Neighbour lists are used to speed up the simulation process. This concept has originated from MD
simulations [91]. In this algorithm, a cut-off distance is defined around the particle i. Particle-particle
interaction is only calculated for the particles whose centre is in the cutoff radius as shown in figure
3.3. Cutoff distance needs to be decided very carefully. Higher cutoff distance means more particle
interaction will be solved which will increase the simulation time while lower cutoff distance can result
in poor simulation results.
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Figure 3.3: Neighbour list, Dotted line represents the cut-off distance. Grey particles are part of neighbour list
for particle under observation.

In this study particle type is not a spherical but spherocylindrical, which requires a change in con-
ventional DEM scheme to incorporate different particle type. An in-house code is built to incorporate
these changes which are discussed in the following section.

3.1.2. Spherocylindrical particle contact model
Figure 3.4 shows a spherocylindrical particle. Cylinder length (𝐿 ) determine the aspect ratio which
is 𝐿 /𝐷. Particle shape is spherical for 𝐿 ≈ 0. This is the approach that has been used in this study
to also simulate spherical particles?

Figure 3.4: spherocylindrical particle with AR = 4.

Correlation discussed in section 3.1.1 are equally valid for all particles types. But calculation of
overlap distance (𝛿) is not the same as of spherical particles. For spherocylindrical particles it is strongly
dependent on the geometry of the particle thus other parameters like minimum distance between the
particles ( ⃗𝑟 ) and contact distance from centre of hemisphere (𝑠 ) comes into play. Particle length
also plays a significant role in rotational motion because spherical particle are symmetric in all direction
so 𝐼 and 𝐼 both depend just on the diameter. There are two approaches to simulate these particles:

1. Glued-sphere approach

2. True particle geometry approach

Figure 3.5: Particle Representation: Glued-sphere.
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In glued sphere approach (see figure 3.5) spherical particles are connected without overlaps and each
glued sphere particle act as one particle. While true particle geometry approach considers a true ge-
ometrical representation of the particle under observation. Guo et al. [47] has shown that results of
simulation differs depending upon the approach. Although glued-sphere approach is easy to imple-
ment, it introduces a bumpy particle surface which not only result in interlocking between particles but
also increases the particle stresses due to multiple overlaps for single particle. True particle geometry
approach have been used in this study. Changes haven been made in LIGGGHTS-PUBLIC® to simulate
the spherocylindrical particles.

The equations describing the contact model are given in Table 3.1. Points of the shortest distance
𝑠 are found using a modified version of the algorithm described by Vega and Lago [92].

Table 3.1: Expressions describing the contact model.

# Parameter Expression(s)

1 Total contact force �⃗� , =∑(�⃗� , + �⃗� , )

2 Normal contact force �⃗� , = −𝑘 |𝛿 , |�⃗� + 𝜁 �⃗� ,

3 Tangential contact force �⃗� , = {
−𝑘 |𝛿 , |𝑡 + 𝜁 �⃗� , for |�⃗� , | ≤ 𝜇|�⃗� , |
−𝜇|�⃗� , |𝑡 for |�⃗� , | > 𝜇|�⃗� , |

4 Point of contact 𝑟 , =
𝑠 + 𝑠
2

5 Normal overlap 𝛿 , = 𝑑 − |𝑠 − 𝑠 |

6 Tangential overlap 𝛿 , (𝑡) = ∫ �⃗� , 𝑑𝑡

7 Relative velocity �⃗� = �⃗� − �⃗� + �⃗� × (𝑟 , − 𝑟 ) − �⃗� × (𝑟 , − 𝑟 )

8 Effective mass 𝑀 , =
𝑀 𝑀
𝑀 +𝑀

9 Contact time [93] 𝑡 =
𝑀
𝑘 (𝜋 ln(𝑒 ) )

10 Normal damping coefficient [93] 𝜁 = −
2𝑀
𝑡 ln 𝑒

11 Tangential spring constant [93] 𝑘 = 𝑡 ( 1
𝑀 + 2(𝑟 − 𝑟 )⟨𝐼⟩ ) (𝜋 + ln(𝑒 ) )

12 Tangential damping coefficient
[93]

𝜁 = −2𝑡 ( 1
𝑀 + 2(𝑟 − 𝑟 )⟨𝐼⟩ ) ln 𝑒

13 Total torque 𝜏 =∑((𝑟 , − 𝑟 ) × (�⃗� , + �⃗� , ) + 𝜏 , )

14 Rolling friction [94] 𝜏 , = −𝜇 |𝑟 − 𝑟 , ||�⃗� , |
�⃗�
|�⃗� |

15 Moment of inertia [95] 𝐼 = 𝜋𝜌 (12𝑅 𝐿 + 8
15𝑅 )

𝐼 = 𝐼 = 𝜋𝜌 ( 112𝑅 𝐿 + 83
240𝑅 +

4
3𝑅 𝐿 + 34𝑅 + 2𝑅 𝐿 )
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Neighbour list
In this study, a multi-sphere shaped bounding volume is applied. As shown in Figure 3.7a, a compound
shape consisting of 3 spheres tightly surrounds the spherocylinder. The distance between the satellite
points and the centre of mass (COM) 𝑥 is given by Eq. 3.8, which was derived from geometry. In
addition to the sphere radius (Eq. 3.9), a skin of radius 𝑅 is used to guarantee the neighbour list
can be used for multiple time steps. When the maximum particle displacement since the last neighbour
list build surpasses 𝑅 /2, a new list is created. A similar approach is used to build the particle-wall
neighbour list, shown in Figure 3.7b. Since the closest distance between a particle and a wall is always
located at one of the tips of the particle, the spheres are only centred around the ends of the rod.

xsat

Rneigh

Rskin

(a) Multi-sphere neighbourlist building method for
particle-particle contact. and are given

by Eqs. 3.8 and 3.9

Lrod/2dp/2
Rskin/2

(b) Multi-sphere neighbourlist building method for
particle wall-contact .

Figure 3.7: Neighbour List: Spherocylindrical Particle [96]

𝑥 = 1
3 (−√4𝑑 + 2𝑑𝐿 + 𝐿 + 2(𝑑 + 𝐿 )) (3.8)

𝑅 = √(𝑥2 ) + (
𝑑
2 ) (3.9)

3.2. Computational fluid dynamics
3.2.1. Flow solver
CFDEM®coupling depends upon OpenFOAM®, an open source CFD toolbox, to solve the gas flow.
OpenFOAM uses the PISO and SIMPLE [97] algorithms to solve the phase continuity and momentum
transport equation for incompressible (gas density is assumed constant), Newtonian, laminar flow [98].
These equations are given in Eq. 3.10 and 3.11 respectively, also known as Model A in literature. Here,
�⃗� is the gas phase velocity, and 𝑆 , is the momentum exchange between fluid and particles, 𝜙 is the
fluid volume fraction and 𝜎 is fluid stress tensor. This model was recommended by Zhou et al. [98]
for use in CFD-DEM modelling. Further details on algorithms used in the CFD model will not be shared
here, as they are outside of the scope of this report.

𝜕𝜙 𝜌
𝜕𝑡 + ∇ ⋅ (𝜙 𝜌 �⃗�) = 0 (3.10)

𝜕𝜙 𝜌 �⃗�
𝜕𝑡 + ∇ ⋅ (𝜙 𝜌 �⃗��⃗�) = −𝜙 ∇𝑃 + ∇ ⋅ (𝜙 𝜎 ) + 𝜙 𝜌 �⃗� + 𝑆 , (3.11)
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3.2.2. Void fraction calculation
The gas flow field depends on the local void fraction in each point in the bed. To calculate this local
void fraction, the volume of a particle is assigned to not one, but multiple cells when it surpasses cell
boundaries. Instead of assigning the particle volume to the cell in which its centre of mass lies, a
distributed void fraction calculation is used. Each particle possesses 16 satellite points, placed evenly
in the particle volume as shown in Figure 3.8. Each cell containing such a satellite point is assigned a
fraction of the particle volume, creating a more continuous void fraction field and preventing sudden
jumps in local porosity.

Cell 1 Cell 2

Cell 3 Cell 4

Figure 3.8: The particle volume is distributed among the cells according to the location of the 16 satellite points.
Eight more points are located in the plane perpendicular to the shown cross-section. [96]

3.3. Gas-particle coupling
3.3.1. Dilute regime
Holzer and Sommerfeld drag
Hölzer and Sommerfeld [11] derived an equation describing the drag coefficient for a single non-
spherical particle in a gas flow (Eq. 3.12). Here �⃗� is the relative velocity between the particle and the
gas. This equation incorporates the orientation of the particle in the crosswise (𝜙 ) and lengthwise
sphericity (𝜙∥), given by Eqs. 3.14 and 3.15 respectively. These are calculated based on 𝜃, the angle
between the particle orientation vector and the gas velocity vector.

𝐶 = 8
Re

1
√𝜙∥

+ 16
Re

1
√𝜙

+ 3
√Re

1
𝜙

+ 0.4210 . ( ) . 1
𝜙 (3.12)

Re =
𝜙|�⃗� |𝑑 𝜌

𝜇 (3.13)

𝜙 = 𝐴
𝐴 ,

where: 𝐴 , = 𝜋𝑑 + 𝑑 𝐿 sin(𝜃) (3.14)

𝜙∥ =
2𝐴

𝐴 , − 2𝐴 ,∥
where: 𝐴 ,∥ = 𝜋𝑑 + 𝑑 𝐿 cos(𝜃) (3.15)

Figure 3.9 (left) shows the single-particle drag coefficient as a function of Reynolds, compared
with single-particle Direct Numerical Simulation (DNS) results; the Zastawny model [99] extended for
spherocylinders [100] and the Krishnan model [101]. It can be seen that the correlation by Holzer and
Sommerfeld is in good correspondence with DNS results.



3.4. Measurements 17

Voidage correction
The drag force acting on a single particle in a gas flow is given by Eq. 3.16. Di Felice [102] developed
a correlation describing the effect of local void fraction on the drag force (Eq. 3.17 and Eq. 3.18). Here
𝜙 is the local void fraction around the particle.

�⃗� = �⃗� |�⃗� |𝐶 1
2𝜌

𝜋
4𝑑 (3.16)

�⃗� = �⃗� 𝜙 (3.17)

𝛽 = 3.7 − 0.65 exp (−(1.5 − lnRe)2 ) (3.18)
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Figure 3.9: Left: single particle drag coefficient as a function of Reynolds number. Right: Drag coefficient with
voidage correction as a function of void fraction.

As the drag model derived by Holzer and Sommerfeld was derived for single particles, it does not
fully describe the drag force in dense regions. Gidaspow [103] recommends the use of the Ergun
equation [104] in dense regions, as it is derived for a dense, packed bed. Despite the fact that it was
derived from spherical particles, this equation also accurately describes the pressure drop over a bed
of non-spherical particles [96]. The drag force on a particle derived from the Ergun equation is given
by Eq. 3.19. The smallest of the Holzer-Sommerfeld and Ergun drag forces are used. Figure 3.9 (right)
shows the drag coefficient with voidage correction by Di Felice as a function of void fraction, alongside
the drag coefficient predicted by the Ergun equation.

�⃗� = Δ𝑃
𝐿 𝐴 𝐿

𝑉
𝑉

𝜙
1 − 𝜙 = 𝑉

�⃗� 𝜌
𝜙𝑑 (150

𝜈
𝜙𝑑

1 − 𝜙
𝜙 + 1.75|�⃗� |) (3.19)

3.4. Measurements
3.4.1. Stress tensor
Stress �⃗� at any point in the material can be completely defined by 9 components, 𝜎 . Each component
can be specified by two subscripts,

1. a specifies the orientation of the plane on which stress is acting

2. b specifies the direction in which stress is acting
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Figure 3.10: Components of Stress in three Dimensions

All of these nine components are arranged in a matrix as follows:

�⃗� = [
𝜎 𝜎 𝜎
𝜎 𝜎 𝜎
𝜎 𝜎 𝜎

] (3.20)

�⃗� can be determined by calculation of forces per unit area. For particle-particle contact, stresses are
combination of two independent contributions i.e streaming stress tensor (�⃗� ) due to particle momen-
tum flux & collisional stress tensor (�⃗� ) due to particle collisions. In simulations both of these stress
tensors are calculated as follows [105]:

�⃗� = �⃗� + �⃗� (3.21)

�⃗� = 1
𝑉 ∑(𝑀 𝑣 𝑣 ) (3.22)

�⃗� = 1
𝑉 ∑(𝐹 𝑟 ) (3.23)

𝑣 = 𝑣 − ⃗𝑣 (3.24)

𝑣 is the velocity fluctuations for particle i which is calculated from average velocity of the particles in
the domain.

3.4.2. Granular temperature
Granular temperature (𝑇) is a measurement of residual kinetic energy in the system. It can be calculated
by velocity fluctuations of the particles as follows:

𝑇 = 1
3 [𝑣 + 𝑣 + 𝑣 ] (3.25)

Detailed discussion on the granular temperature measurement is in chapter 4 (section 4.4.4).

3.4.3. Particle orientation
Particle orientation is an important parameter when it comes to spherocylindrical particles which can
be defined by a unit vector along the rod major axis. In the LIGGGHTS-PUBLIC rotation of the particle
is represented by quaternions with z-axis as the rotational axis. Quaternions are an extension of the
complex number but in 4-D to define an object rotation around an axis. They are generally represented
in the following form:

𝑄 = 𝑤 + 𝑞𝑖 + 𝑞𝑗 + 𝑞�⃗� (3.26)
Unit vector can be easily calculated from quaternion by following algorithm:

⃗𝑅𝑀 = [
1 − 2𝑞 − 2𝑞 2𝑞 𝑞 − 2𝑞 𝑤 2𝑞 𝑞 + 2𝑞 𝑤
2𝑞 𝑞 + 2𝑞 𝑤 1 − 2𝑞 − 2𝑞 2𝑞 𝑞 − 2𝑞 𝑤
2𝑞 𝑞 − 2𝑞 𝑤 2𝑞 𝑞 + 2𝑞 𝑤 1 − 2𝑞 − 2𝑞

] (3.27)

�⃗� = �⃗�𝑥�⃗� (3.28)
In the simulation unit vector of all the particles were averaged to find a unit vector for whole assembly.
This unit vector was further used to defined the angle between rod orientation and shear direction.



4
Simulation setup

Simulations in this study are performed in a control box for different volume fraction and shear rates.
Control box used in these simulations is periodic in x & y direction. Boundary condition to shear the
system is different than Lees-Edwards boundary condition [106] used in previous similar studies. In
Less-Edward boundary condition a periodic box, which is exact replica of the system under observation,
is used to shear the domain while in this study shear rate is applied in the z direction with the moving z-
wall and the fluid simultaneously (figure 4.1). Fluid velocity is maintained at constant value throughout
the simulation near the z-walls. Height of the domain is the important parameter of the control box
because system is periodic in other directions which is taken as ”8 x particle length”. Depending
upon the particle type (spherocylinder or spheres) domain height is changed accordingly. Rest of
the parameters are listed in table 4.1. Domain Independence analysis (Appendix A) was performed
before finalizing the domain boundaries. Contact parameters are taken from single particle experiments
performed by Nijssen [96].

Figure 4.1: Simulation Setup.

19
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Table 4.1: Parameters of the simulation.

Parameters Spherocylinders Spheres

Domain height 0.096 0.044 m
Domain width 0.1 0.05 m
Domain depth 0.1 0.05 m
Rod length 9 ⋅ 5.30 ⋅ m
Particle diameter 3 ⋅ 5.30 ⋅ m
Particle density 1395 1395 kg/m
Coefficient of friction 0.46 -
Coefficient of rolling friction 0.025 -
Coefficient of restitution 0.43 -
Normal spring constant 6000 N/m
fluid density 1.2 kg/m
fluid viscosity ⋅ Pa⋯s
Number of CFD cells (width) , 6 -
Number of CFD cells (depth) , 6 -
Number of CFD cells (height) , 6 -

4.1. Variable space

Prior to preforming controlled simulation for stress measurements, it needs to be determined what
is typical shear rate and volume fraction experienced in fluidized bed simulation. A full fluidized bed
is simulated for superficial velocity of 3.0 𝑚𝑠 and 7820 particles as shown in figure 4.2 to find out
the probability density function (PDF) of these parameters. PDF is calculated based on shear rate and
volume fraction values in the CFD cells of the simulation.

(a) t = 0s (b) t = 1s (c) t = 10 s

Figure 4.2: Snapshot of fluidized bed simulation at different time steps
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Figure 4.3: PDF of Shear rate components for fluidized bed simulation.

Figure 4.4: PDF of volume fraction for fluidized bed simulation.

In this simulation gas velocity is applied in z-direction so most important shear rate which governs
the particle behaviour is �̇� (shear on the x-plane in z-direction). It is evident from the figure 4.3 that
this shear rate varies from 0 to 10/s. Volume fraction in a fluidized bed varies from 0.1 to 0.5 as shown
in figure 4.4. Based on above variable space is listed in the table 4.2. Although maximum shear rate
encountered in the fluidized bed is 10/s, values up till 100/s are simulated to study the rheology of
spherocylindrical particles.
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Table 4.2: Variable space for control box simulations.

Shear rate ( ) 0.1-0.5 0.8 1 2 3 5 10 20 30 40 50 75 100

Volume fraction 0.1 0.2 0.3 0.4 0.5

4.2. Initialization

For each volume fraction, number of particles used are listed in table 4.3. Simulations are initialized
by arranging particles in z-direction as shown in figure 4.5. Afterwards each of the particle is given
random linear and angular velocities at t=0. Only DEM is used to simulate the particles motion un-till all
particles achieved zero velocity again. In this manner a system is generated with total random particle
orientation and position in the control box (figure 4.6). It is not possible to achieve a total random
system for volume fraction 0.4 & 0.5 because there is not much space available for the particles to
move.

Table 4.3: Number of Particles for different volume fractions

Volume fraction No. of Particles

Spherocylinders Spheres
0.1 1235 139
0.2 2469 279
0.3 3764 418
0.4 4939 558
0.5 6173 697

(a) spherocylindrical particles
(b) Spherical particles in hexagonal packing

Figure 4.5: Initialisation scheme for volume fraction = 0.3.
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(a) . (b) .

(c) . (d) .

(e) .

Figure 4.6: System state at Initialization.

4.3. CFD-DEM coupled simulation
After the initialization, simulation time is set to zero again to start a CFD-DEM coupled simulation.
Time parameters are listed in table 4.4. DEM time step is based on the guidelines discussed in section
3.1.1. Usually 10 DEM time steps are enough to resolve particle-particle interactions. CFD time scale
is different than DEM time scale because for 10 DEM time steps fluid velocities does not change a lot
in one CFD cell. That is why CFD time step is ten times larger than DEM time step. This means that
during one CFD time step, DEM will be called 10 times.

Table 4.4: Time parameters for the CFD-DEM coupled simulations

Parameter Value
Start time 0 s
End time 120-400 s

DEM time step 1.10 s
CFD time step 1.10 s
Writing interval 0.01 s

Fluid & wall velocities are calculated based on the desired simulated shear rate as follows:

± 𝑢 = �̇�ℎ
2 (4.1)

Measurements for the stresses and other important quantities are performed two particle length away
from the z-walls to ensure that there is no effect of wall interactions on the particle-particle stresses
(figure 4.7). Writing interval for all the measurements is set to 1000 DEM time step (0.01 sec) to reduce
the amount of raw data and also to make sure that two consecutive measurements are independent
of each other.
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Figure 4.7: Snapshot of CFD-DEM coupled simulation setup. Red box indicates measurement domain.

4.4. Measurements
In the following sections, only spherocylindrical simulations have been discussed but same post-
processing is applied to the spherical particle simulations.

4.4.1. Volume fraction
Particle number density in the measuring domain changes during the simulations. This phenomenon is
used to estimate quasi-steady state of the system, a state in which volume fraction inside measuring
domain remains constant. An algorithm is developed to find quasi-steady time. For each simulation,
this time is highly dependent on the simulation parameters (volume fraction & shear rate, see figure
4.8).
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Figure 4.8: Change in particle number density for different input parameters. Red line represents the start of
quasi-steady state.
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Viscosity of the fluid phase for these simulation is 1 ⋅ 10 (𝑃𝑎.𝑠) as opposed to viscosity of air
(1 ⋅ 10 𝑃𝑎.𝑠) used in real fluidized bed simulations. Quasi steady state time of the simulation is
the main factor behind this decision. Figure 4.9 shows the volume fraction change in the measuring
domain for 𝜙 = 0.1 and �̇� = 2/𝑠. For 𝜂 of 1 ⋅ 10 𝑃𝑎.𝑠 system reaches at quasi steady state after 500
sec. Simulation for this system was completed in two weeks. Although viscosity of fluid phase does
have effect on particle stresses (appendix B), 𝜂 = 1 ⋅ 10 (𝑃𝑎.𝑠) is chosen to simulate the system to
complete the simulations in less time and further analysis is based on this high viscous system.
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Figure 4.9: Change in particle number density for different fluid viscosities. Red line represents the start of
quasi-steady state.

4.4.2. Shear rate
Just like volume fraction, the shear rate for the measuring domain is different than the shear rate
applied at the z-walls. Particle velocities at the limit of measuring domain in the z-direction are used to
find the actual shear rate1 (see figure 4.10a). �̇� is also highly dependent on the volume fraction
of the system as shown in figure 4.10b. For higher volume fractions �̇� is much lower than �̇�
because at higher volume fractions there are more particles present which causes the resistance to the
flow.
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Figure 4.10: Change in shear rate at measuring box for different volume fractions.

1In this report, ̇ represents actual shear rate for the measuring domain
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4.4.3. Stress tensor
Streaming Stress tensor: Streaming stress tensor is calculated via correlation (equation 4.2) used also
by Campbell and Gong [17].

�⃗� = 𝜌 𝜙 [
< 𝑣 > < 𝑣 ⋅ 𝑣 > < 𝑣 ⋅ 𝑣 >
< 𝑣 ⋅ 𝑣 > < 𝑣 > < 𝑣 ⋅ 𝑣 >
< 𝑣 ⋅ 𝑣 > < 𝑣 ⋅ 𝑣 > < 𝑣 >

] (4.2)

<> represent the particle averaging. Equation 4.2 and 3.22 are inherently the same equation, differ-
ences arises in estimation of the fluctuations. While equation 3.24 can be used to find the velocity
fluctuations during the simulation, opposite velocities at 𝑧 and −𝑧 walls makes 𝑣 approximately zero
for present system. Different approach is utilized to find the velocity fluctuations for equation 4.2 as
mentioned in equation 4.3:

< 𝑎 𝑏 >=< 𝑎𝑏 > − < 𝑎 >< 𝑏 > (4.3)

Simulation domain is split into vertical bins. Fluctuation of velocities are calculated in each bins with
equation 4.3 for every 0.01 sec. These fluctuations are averaged for measuring domain to find out the
streaming stress tensor.

Collisional stress tensor: Colliosional stress tensor is measured during the simulation for every 0.01
sec via equation 3.23. Savitzky–Golay filter [107] is used to visualize the trend for collisional stress
tensor over time. This filter fits a nth order polynomial to consecutive subsets of data via least-square
method to smooth the data set (figure 4.11a).

(a) Smoothing of the data via Savitzky-Golay filter for
. (b) Behaviour of stress tensor components over time.

Figure 4.11: Collisional stress tensor for . , ̇ . / .

4.4.4. Granular temperature
Granular temperature is calculated via equation 3.25. Velocity fluctuation are computed by the equation
4.3 just like for the streaming stress tensor. Test simulations are performed to find out the right
number of bins so that results are independent of number of bins in the domain. It is found that for
spherocylindrical system, granular temperature become independent of number of bins after 32 bins
(figure 4.12). For spherical particle simulations this number is 16. Same number of bins are used to
calculate the streaming stress tensor.
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Figure 4.12: Bin independence analysis for granular temperature of sphero-cylindrical particles at . ,
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4.4.5. Particle orientation
Quantitative representation: Unit vector obtained from equation 3.28 is used to find the angle (𝜃)
between particle and shear direction �⃗�.

𝜗 = arccos �⃗� ⋅ �⃗�
∣ �⃗� ∣∣ �⃗� ∣

(4.4)

Figure 4.13: Angle between particle major axis and shear direction.

Qualitative representation: Super quadratic glyphs can be used to visualize the orientation of
diffusion tensor from human brain scans [108]. This technique is used to visualize particle orientation
in 3-D. With shape of super quadratic glyph it can be easily shown if particles are oriented uni-axially,
bi-axially or randomly (figure 4.14). A MATLAB® graphic user interface(GUI) is developed to follow the
particle orientation with time. Super quadratic framework is completely explained in Kindlmann [108].
MATLAB implementation of this framework is attached as appendix D.
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Figure 4.14: Super quadratic glyph representation [108] of orientation tensor. From left to right alignment
changes from uni-axial to bi-axial. From bottom to top system is moving towards isotropy.

Figure 4.15 shows the particle orientation of initial state of the simulation. One can easily observe
that for lower volume fractions system is totally isotropic at t=0, while for higher volume fractions
particles are uni-axially aligned.

Figure 4.15: Super quadratic glyphs for spherocylindrical particles initial setup as shown in figure 4.5.

4.5. Time averaging
For all measured quantities time averaging is performed for each simulation after quasi-steady state
has been achieved. Quasi-steady state is estimated via volume fraction as mentioned in section 4.4.1.
At-least 100 sec are considered after the quasi-steady state time is achieved to find out the time
averaged measurement. In chapter 5 results are presented in terms of time averaged quantities for
each simulation. Appendix C shows the procedure of time averaging.



5
Results and discussion

In the following sections, rheology of spherocylindrical particles has been discussed in terms of the
stress tensor, granular temperature, particle orientation, pressure and stress differences. Simulation
results of spherical particles1 are used as the base case for stress tensor discussion only. Then, particle
collisional stresses have been examined thoroughly to form a constitutive equation in terms of shear
rate, volume fraction and system properties.

5.1. Stress tensor
Streaming component, collisional component and total stress of shear stresses are plotted as a function
of shear rate in figure 5.1, 5.2 & 5.4 respectively.
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Figure 5.1: Streaming component of shear stresses.

As shown in figure 5.1 streaming stress tensor increases with shear rate and it follows the same
trend for both aspect ratios. For spherocylindrical particles, streaming shear stresses are slightly lower
than spherical particles. This is due to the fact that due to particle collisions elongated particles rotate.
Contact vector (𝑠 ) does not pass through the centre of the particle most of the time and results in
1Spherical particle simulation of . are not included in the discussion due to presence of yield stress also reported by
Campbell [28] and Mueller et al. [78] for high volume fractions.

29
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torque moments. This rotation requires an energy conversion from translational to rotational part.
Some of the energy is lost in this conversion and results in lower stress values. Streaming stress is
basically a representation of the kinetic energy of the system. With increasing volume fraction there
exist more particles. This should result in higher streaming stresses but that is only true for lower
shear rates as shown in figure 5.1. For higher shear rate streaming stresses for all volume fractions
are almost the same. This can be explained by considering collision time between particles. For �̇� > 1,
at lower volume fraction collision time starts to decrease but particle still has space to move around.
For higher volume fractions there exist very little space for particles to move. Thus velocity fluctuations
for higher volume fractions are lower. As streaming stress is a multiple of particles mass and velocity
fluctuations (equation 3.22). Value remains fairly in the same range for all volume fractions at high
shear rates.
For collisional shear stresses, as shown in figure 5.2, stresses increases gradually for spherocylindrical
particles with shear rate and also with volume fraction. For spheres there is sudden increase in stress
values at �̇� = 1. Bagnold theory [49] can be used to explain this phenomenon.
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Figure 5.2: Collisional component of shear stresses.

Collisional stresses are plotted against Bagnold number for spherical particles in figure 5.3. It is
very obvious that this sudden increase in particle stresses are due to the change in system regime. For
�̇� > 1 particle collision are occurring more frequently which results in higher collisional stresses. The
volume fraction of 0.1 shows a strong dependence on the shear rate.

For spherocylindrical particles stress values do not show this sudden jump but increase gradually.
Collisional stresses for spherocylindrical particles are also lower than spherical particles. This can be
attributed to two different phenomena,

1. Surface area for spherocylindrical particle(2.29 ⋅ 10 𝑚 ) is much higher than spherical particle
(8.82 ⋅ 10 ) which contribute to more frictional losses in the system for lower volume fractions.

2. For higher volume fractions, elongated particles have a preferred orientation in the shear direction
as reported by Reddy et al. [45] and Guo et al. [47]. Once the system reaches quasi-steady state
particles are mostly aligned in the shear direction and stay out of the way of each other. This
effect reduces the particle interactions.

Total shear stresses are shown in the figure 5.4 which are the sum of streaming and collisional com-
ponent. Prediction from granular kinetic theory [23] are also included for the volume fraction of 0.4.
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By comparing streaming and collisional component trends with total stress, it is clear that collisional
effects are much more dominant than kinetic contributions such as 𝜎 ≈ 𝜎 .
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Figure 5.3: Collisional stresses vs Bagnold number.

Streaming stresses have a very low impact on the total stress because of the presence of fluid
phase in the system which acts as momentum sink. Due to this fluid phase, particle velocities are
much lower than the case of pure granular flows. This is also the reason that kinetic theory predictions
are only included for the volume fraction of 0.4 because at higher volume fraction system resembles
the granular flows as discussed in section 2.1. Kinetic theory prediction is in-line with the simulation
results for spherical particles at higher shear rates.
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Figure 5.4: Total shear stress as a function of shear rate.

Three distant regimes discussed by Guo et al. [47] for elongated particles do not exist in present
system. This is due to the difference in simulated systems. Guo et al. [47] used shear rate of 100/s for
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their simulations which is significantly higher and they performed simulations for pure granular flows.
That is why no comparison has been presented with their results.
Regimes for present study can be identified on the basis of the Doi and Edwards [73] classification.
Regime boundaries for spherocylindrical particles are 0.05 and 0.19 in terms of volume fraction. Based
on this 0.1 and 0.2 volume fractions in the present study comes under semi-dilute regime while higher
volume fractions are in concentrated regime. Doi and Edwards [73] classification is solely based on the
Brownian motion of the particles. Also shear rate effect are not taken into the consideration. Total shear
stress trends as shown in figure 5.4 for the volume fraction of 0.1 & 0.2 shows a collision dominant
system which leads to the conclusion that present system lies in the concentrated regime for all volume
fractions.

One can argue that if system lies in collisional regime then the kinetic theory can be used to predict
the total stresses. As discussed before the presence of fluid phase requires a two way coupled kinetic
theory which should be able to predict momentum exchange between both phases. Although these
models are available in the literature for spherical particles [109] usually they are used to solve the
particle interactions and no analytical solution is available to compare the results.

Stress tensor symmetry can be calculated by symmetry index as follows:

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝐼𝑛𝑑𝑒𝑥 = 2∣ 𝜎 − 𝜎 ∣
(𝜎 + 𝜎 ) (5.1)

Figure 5.5 shows this index for spherocylindrical particles as a function of shear rate for different
volume fractions. spherocylindrical particles shows asymmetrical behaviour (Symmetry index > 5%)
for 𝜙 = 0.1 & 0.2. Asymmetric behaviour of these particles is due to mean particle angular velocity in
the z-direction at lower volume fractions. Particle alignment with shear flow resist the particle motion
in z-direction which explains the symmetric behaviour for higher volume fractions. Appendix E shows
collisional stress tensor behaviour for �̇� = 0.5/𝑠.
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Figure 5.5: Symmetry index as a function of shear rate.
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5.2. Granular temperature

Granular temperature is a measurement of residual kinetic energy in the system which governs the
motion of the particles. Granular temperature is calculated from velocity fluctuations of the particles in
normal direction (equation 3.25).
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Figure 5.6: Granular temperature as a function of shear rate.

Figure 5.6 shows variation of granular temperature with the shear rate and volume fraction. Granular
temperature increases with increasing shear rate which should be the case. It is interesting to notice
that for higher shear rate granular temperature is lower for 𝜙 = 0.4 & 0.5 than 0.2 and 0.3. Granular
temperature is highest for 𝜙 = 0.1 at very high shear rates. As discussed in section 5.1 for streaming
tensor, at higher volume fractions particle interactions are occurring more frequently. Combined with
high shear rate, these interactions result in more energy losses compared to the lower shear rates.
These energy losses can be the reason of lower granular temperature for higher volume fractions.

5.3. Particle orientation

5.3.1. Quantitative representation

Figure 5.7 shows the quasi steady state particles orientation 𝜗 with the shear direction as a function of
shear rates for all volume fractions. Shear rate has very little impact on the particle alignment. Once
this quasi-steady state is achieved particles have already aligned themselves in the preferred direction.
Afterwards particles starts to slide over each other especially for volume fractions higher than 0.3.
Volume fraction of the particles plays an important role in this preferred direction. At lower volume
fractions, there is more space available for the particles to rotate so particles have random orientation
around 45 . At high volume fractions presence of more particle in the system results in interlocking
during transient state. Particle does not have enough space to rotate. That is why as volume fraction
is increasing 𝜗 is decreasing. This phenomena has also been reported by Guo et al. [47],Campbell [46]
and Reddy et al. [44]
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Figure 5.7: Quantitative representation of particle orientation as a function of shear rate.

5.3.2. Qualitative representation

(a) . (b) . (c) .

(d) . (e) .

Figure 5.8: Snapshot of simulation box for ̇ / at last time step. Blue rods are in the measurement domain.

Figure 5.8 shows snapshot of simulation stat at last time step. It provides a very good visualization
of particle alignment but for very large amount of simulations it is not possible to compare snapshots
altogether. Super quadratic glyphs as explained in section 4.4.5 are used to visualise and compare
particle orientations in 3-D. Figure 5.9 shows these glyphs at different time steps. For 𝜙 = 0.1 & 0.2
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particles shows fairly isotropic behaviour. Particles are equally aligned in all directions. Above 𝜙 = 0.3
particles move towards bi-axial alignment. For higher volume fraction particles have aligned themselves
in the shear direction which can be visualised in terms of cylindrical glyph from figure 5.9. For almost
all volume fractions particle achieve a constant alignment in the first 50 seconds.

Figure 5.9: Glyph representation of particle orientation for ̇ / . column represent the snapshot from
figure 5.8.

5.4. Pressure
Pressure in the system is trace of the total stress tensor as shown in the equation 5.2. Pressure on the
walls acting as a result of developed stresses can be seen in figure 5.10.

𝑃 = −13 [𝜎 + 𝜎 + 𝜎 ] (5.2)

Figure 5.10: Pressure due to normal stress tensor components.

In this study, there is no external pressure applied on the system. So, pressure is an internal
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property which solely depends on the particle-particle interactions and particle movement. Pressure
as a function of shear rate is shown in figure 5.11. Pressure trends show expected behaviour. It is
increasing with the shear rate and volume fractions.
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Figure 5.11: Pressure as a function of shear rate for different volume fractions.

𝜇(𝐼) rheology as explained in section 2.2 directly relates pressure with shear stress in terms of
𝜇 which is ratio of shear stress and pressure in the system. 𝜇 can further be used to form a
constitutive relation between shear stress and shear rate. Figure 5.12 shows the 𝜇 as a function
of inertial number (I). Inertial number is the ratio of two times macroscopic deformation (𝜏 ̇ ) and
microscopic rearrangements (𝜏 ). 𝜏 ̇ is the time for one layer of particle to move for one particle
diameter (𝑑 ). 𝜏 is the time for this layer to come back to its original position. In this case inertial
number does not vary much for 𝜙 < 0.5. This clearly shows that both of these time scales are of same
order. MiDi [33] proposed a classification based on Inertial number. For inertial number greater than
0.1 system is totally in collisional regime. Inertial number for present system always remain well above
0.1. This confirms the conclusion made in section 5.1 that kinetic forces are not playing an active role
for spherocylindrical rheology under present conditions.

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2
AR = 4,   0.1

AR = 4,   0.2

AR = 4,   0.3

AR = 4,   0.4

AR = 4,   0.5

Figure 5.12: ( ∣ ∣ ) as a function of Inertial number ( ̇ /√ ).



5.5. Normal stress difference 37

5.5. Normal stress difference
Normal stress difference is the property of the system which can be used to predict non-Newtonian
behaviour. For present system normal stress difference are normalized with total pressure of the system
to get a better overview.

𝑁 = 𝜎 − 𝜎
∣ 𝑃 ∣ (5.3)

𝑁 =
𝜎 − 𝜎
∣ 𝑃 ∣ (5.4)

10
-2

10
-1

10
0

10
1

10
2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
AR = 4,   0.1

AR = 4,   0.2

AR = 4,   0.3

AR = 4,   0.4

AR = 4,   0.5

(a) Normalized first normal stress difference
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Figure 5.13: Normal stress differences as function of shear rate.

Figure 5.13 shows these differences as function of shear rate. For spherocylindrical particles stress
differences are non-zero which was also reported by Somfai et al. [110]. This indicates the non-
Newtonian behaviour. Normal stress differences need to be examined really carefully to understand the
different regimes and their microscopic origin. Further investigation & discussion on these differences
is out of the scope of this study.

5.6. Non-Newtonian behaviour
Figure 5.2 shows collisional stresses on a log-log scale. In figure 5.15 stresses are plotted on a normal
scale. For all volume fractions, stress curves show shear thickening behaviour. This behaviour of the
spherocylindrical particles is well in line with Stickel and Powell [66] dimensional analysis as shown in
figure 5.14.
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Figure 5.15: Collisional stresses as a function of shear rate on normal scale.

Total shear stresses of the particles are almost equal to collisional contribution as discussed in
section 5.1. This suggests that suspension also shows shear thickening behaviour. Shear thickening
behaviour can only be explained by considering particle sizes. Particle size used in this study are
much higher than in past studies by Mueller et al. [78] and Guo et al. [47]. Mueller et al. [78] have
demonstrated shear thinning behaviour via experiments for particle sizes of 100-200𝜇𝑚. They have
attributed this behaviour to the localized viscous heating of the fluid. Micromechanics of the system
may be the reason behind shear thickening behaviour observed in the present study but very large
particle sizes can result in a so-called jamming effect. This effect is caused by collisions between the
particles. More collisions will occur with increasing shear rate and comparatively larger particle size
require more fluid energy to move the particles which will result in higher viscosity.

5.7. Formulation of stress closure
Hershel-Bulkley model [1] can be used to fit the simulation data for each volume fraction.

𝜎 = 𝐶�̇� (5.5)

C is the consistency which is 𝜂 for newtonian fluid while 𝑚 is the flow index which defines the non-
newtonion behaviour. It is observed that equation 5.5 provides a very poor fit if all data points are
treated equally. Based on trial and error a shear rate boundary is identified at �̇� = 1. This boundary can
be used to classify two regimes. Consistency constant(𝐶) and flow index (𝑚) values are shown in figure
5.16 as a function of volume fraction. 𝐶 values only change between 10-20 % for both regimes. For
�̇� > 1, flow index remains above 1.5 which shows higher dependence on the shear rate. This regime
can be classified at total collisional regime analogous to grain inertia regime from Bagnold theory. For
�̇� < 1, shear rate dependence decreases with the volume fraction. This regime can be called a semi
collisional regime.
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Figure 5.16: Consistency coefficient & flow index as a function of volume fraction.

Consistency coefficient is closely related to apparent viscosity of the suspension. By comparison a
new constant, relative consistency 𝐶 = can be defined. Krieger and Dougherty [64] two parameter

model (equation 2.11) is fitted to the relative consistency for both regimes. Fitted parameters are listed
in table 5.1. Maximum volume fraction (𝜙 ) value of 0.55 estimated from these fit is very close to the
0.54 reported by Lu et al. [111] for random packing of spherocylindrical particles.

Table 5.1: Best fit parameters for Krieger and Dougherty [64] relationship (equation 2.11) to the data presented
in figure 5.16 (Minimum & maximum values are reported in brackets)

�̇� < 1 �̇� > 1
𝜙 0.5511 (0.4419,0.6603)
B 3.131 (3.055,3.208) 2.808 (2.715,2.901)
𝑅 0.9929 0.9893

it can be seen from figure 5.16 flow index(m) trends are completely different for both regimes. This
makes it really hard to fit the same model equation. A simple equation is proposed to predict the flow
index (m) for both regimes:

𝑚 = {
1.6 − for �̇� < 1
2.5 − for �̇� > 1

(5.6)
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Figure 5.17: Collisional stress prediction from Krieger and Dougherty model. represent prediction for
respective volume fractions.

Figure 5.17 shows the prediction from proposed Krieger and Dougherty model. This model only
predicts the collisional stresses for higher volume fractions. This is due to the fact that for higher
volume fractions 𝐶 values are very high and non-least square fitting does not work better with this
much variation in the data (Appendix F).

It is obvious from the figure 5.16 that viscosity increases exponentially with the volume fraction.
Equation 2.13 can be used to capture this trend. Although 𝐶 values are different for both regimes,
Values of 𝐴 and 𝑘 do not vary significantly as shown in table 5.2. Instead of using two different set of 𝐴
and 𝑘 values for both regimes it is proposed to use average values to form a one constitutive equation
of 𝐶 .

Table 5.2: Best fit parameters for Broughton and Squires [2] relationship (equation 2.13) to the data presented
in figure 5.16 (Minimum & maximum values are reported in brackets)

�̇� < 1 �̇� > 1
A -5.646 (-6.193, -5.1) -5 (-7.241, -2.76)
k 10.88 (9.966, 11.78) 9.463 (5.74, 13.19)
𝑅 0.9979 0.9562

𝑙𝑛(𝐶 ) = −5.323 + 10.1715 𝜙𝜙 (5.7)

Equation 5.7 is a modified form of equation 2.13 to incorporate maximum volume fraction of the system.
Figure 5.18 shows the prediction from modified Broughton and Squires [2] model. Equations 5.7, 5.6
and 5.5 are used to calculate consistency, flow index and collisional stresses respectively.
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Figure 5.18: Collisional stress prediction from Broughton model. represent prediction for respective volume
fractions.

Parameters 𝐴 and 𝑘 obtained from this data fitting are very close to 𝐵 and 𝐵 from equation 2.10.
This is really interesting because this shows some relationship between spherical and non-spherical
particle rheology.

Stress closure proposed in this study is a unique stress closure because it is only applicable to sphe-
rocylindrical particles of aspect ratio 4. Still, it is expected that it will be valid for all kind of suspensions
whether it is low viscous system or high viscous. Granular temperature and particle alignment are not
incorporated in this stress closure. May be equation 5.7 parameters 𝐴 and 𝑘 does have dependency
on the granular temperature and particle alignment which needs to be determined separately.





6
Conclusions

In this study, rheological behaviour of spherocylindrical particles has been investigated via CFD-DEM
coupled simulations. Plane shear flow without gravity has been considered for the simulations. Parti-
cles are subjected to different shear rates ranging from 0.1 to 100/s for different volume fractions.

A comparison has been made for spherical and spherocylindrical particles in terms of the stress
tensor. It is shown that spherocylindrical particles experience less total shear stresses than spherical
particles. This is due to the preferred particle alignment in the shear direction, especially at high vol-
ume fractions. At lower volume fractions surface area of the particles plays an important role. Higher
surface area of spherocylindrical particles results in more collisions. This causes the particles to lose
more energy than spherical particles which is the reason behind lower shear stresses at lower volume
fractions.

For gas viscosity of 1 ⋅ 10 (𝑃𝑎.𝑠) streaming shear stresses are very low and collisional stresses
govern the behaviour of the spherocylindrical particle suspension because the fluid present in the
system acts as a momentum sink. Particles lose their kinetic energy rapidly in this suspension which
reduces the streaming stresses. Only collisional or concentrated regime exists for this highly viscous
suspension. Following separate observations have also been made for the spherocylindrical particle
suspension.

• It is observed that Stress tensor is symmetric for 𝜙 > 0.2. At lower volume fractions asymmetric
behaviour is attributed to the particle angular velocity in the z-direction. For higher volume
fractions this angular moment is restricted due to the preferred alignment of the particles which
results in symmetric stress tensor.

• Shear rate has little effect on the particle alignment. For lower volume fractions (𝜙 < 0.3) particles
mostly remain at 45 with the shear direction. This angle decreases to 25 for 𝜙 = 0.5. Preferred
alignment at higher volume fractions is caused by systems tendency to lower its free energy. This
alignment reduces the chances of collisions between particles and system reaches a state where
it has the lowest energy dissipation rate.

• The granular temperature for higher volume fractions is lower than lower volume fraction at high
shear rates. This is due to the fact that collision time between particles decreases rapidly for
higher volume fractions. These particle collisions result in very low-velocity fluctuations.

Spherocylindrical particles of aspect ratio four show shear thickening behaviour. Viscosity of the par-
ticles depends highly on the volume fraction. Shear thickening behaviour can be caused by jamming
of the particles due to very high equivalent diameter. More collisions will start to occur with increasing
shear rate. These collisions will resist the particle movement in the suspension which will require more
energy by the fluid to move these particles in the shear direction. Power law curve is fitted to capture
this shear thickening behaviour. It is observed that one curve cannot define the behaviour of the par-
ticles. So, a shear rate boundary of 1/s is defined to classify the system in semi-collisional and total
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collisional regime. For the total collisional regime, the system shows higher dependence on the shear
rate ( �̇� ). For semi collisional regime this dependence is of the O(1.5). Broughton and Squires [2]
model has been used to find out consistency coefficient. Combined with very simple flow index model,
stress closure proposed in this study provides a very good fit for the simulation data.



7
Recommendations

For viscosity of 1 ⋅ 10 , there is a high chance that streaming contribution will come into play which is
not the case for this study. It is advised to perform the same simulations for lower viscous suspensions.
These simulations will also help to find out if stress closure proposed in this study is equally valid for
all kind of suspensions of aspect ratio four.

It would be interesting to find out the stress tensor dependence on the aspect ratio of the particles.
Such simulation could reveal exactly at what aspect ratio spherocylindrical particle behaviour starts to
deviate from the spherical particles. Moreover, the result of these simulations can be extended to find
out a generic stress closure in terms of particle aspect ratio.

In this study, the effect of granular temperature and particle orientation has not been explored.
Granular temperature can be used to control the simulation behaviour by varying damping constant
(𝜁). Similarly, overall particle orientation can be controlled by applying Maier-Saupe potential [112].
Both of these parameters are expected to have strong influence on the system rheology. These con-
trolled simulations will help to improve the stress closure in terms of particle alignment and granular
temperature.
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Nomenclature

Greek Symbols

Symbol Description Units

𝛽 Di Felice exponent -

𝜈 Kinematic viscosity m2/s

𝜔 Angular velocity deg/s

𝜏 Torque Nm

𝜗 Angle between particle
and shear direction

deg

𝜁 Damping coefficient Kg/s

�̇� Shear rate 1/s

𝜇 Friction Coefficient -

𝜙 Volume fraction -

𝜌 density Kg/m3

𝜎 Stress Pa

𝑡 time s

𝜂 Coefficient of viscosity Pa s

Roman Symbols

Symbol Description Units

Δ𝑃 Pressure difference Pa

𝐴 Area 𝑚

𝑎 Acceleration m/s2

𝐶 Drag coefficient -

𝑑 Diameter m

𝐹 Force N

𝑔 Radial distribution func-
tion

-

𝐼 Inertial Number -

𝐼 Moment of inertia kg/m2

𝑘 Spring coefficient N/m

𝑛 Direction vector -

𝑃 Pressure Pa
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48 Nomenclature

𝑄 Quaternion -

𝑅 Radius m

𝑅𝑀 Rotational matrix -

𝑆 Momentum exchange

𝑈 Rod unit vector -

𝑢 Gas velocity m/s

�̇� Work J

𝑒 Coefficient of restitution -

𝐿 Length m

𝑀 Mass kg

𝑁 Number of particles -

𝑉 Volume m3

Subscripts & Superscripts

⊥ Perpendicular

∥ Parallel

𝑐𝑏 Control Box

𝑐𝑒𝑙𝑙 CFD cell

𝑐𝑡 Contact

𝑒𝑓𝑓 Effective

𝑒𝑥𝑡 External

𝑔 Gas

𝑖𝑛𝑡 Interaction

𝑝 Particle

𝑟 Relative

𝑟𝑜𝑙𝑙 Rolling friction

𝑠 Streaming

𝑎 Apparent

𝑐 Collisional

𝑚 maximum

𝑜 Newtonian fluid

𝑓 Fluid

𝑣 Viscous
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A
Domain independence analysis

Height of the domain is selected based on the particle size. The system is periodic in x and y direction.
A domain independence analysis is performed for spherocylindrical particles for different shear rate
and volume fractions. Domain sizes used in this analysis are [0.2, 0.2, 0.096] and [0.1 0.1 0.096]. A
comparison of results of one of the simulations are shown in figure A.1 in terms of shear stresses.
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Figure A.1: Collisional shear stress for . , ̇ / .

For domain size of 0.2 m average collisional stress value is 0.1589 while for domain size of 0.1 m this
value is 0.1547. Number of particles required to simulate larger domain for 𝜙 = 0.3 are 14816. Which
is 4 times the particles required for the smaller domain. Time to complete the simulation increase
tremendously with larger domain considering more interactions are happening per unit time. It is
evident from figure A.1 smaller domain produces almost similar result as larger domain thus smaller
domain size is chosen to perform all the simulations.
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B
Effect of fluid viscosity on shear

stresses
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Figure B.1: Collisional shear stresses as a function of time for different fluid viscosities for . & ̇ /

Number of simulations were performed for different volume fractions and shear rates to find out the
effect of viscosity on the collisional shear stresses. Purpose of these simulations was to identify the
fluid viscosity for which simulation time is not really long. Few other conclusions can also be made
from these simulations results.
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60 B. Effect of fluid viscosity on shear stresses
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Figure B.2: Collisional shear stresses as a function of time for different fluid viscosities for . & ̇ . / .

Figure B.1 shows the collisional shear stresses for 𝜙 = 0.1. Volume fraction plot of these simulations
are shown in figure 4.9. For such a low volume fraction shear stresses differ a lot. One of the reason
that both curves are not in the same plot. Also system reaches at quasi steady state after very long
time in terms of shear stresses. For 𝜙 = 0.4 difference between stresses is not that high as shown
in figure B.2. This is exactly the same behaviour as observed by Bagnold [49]. For lower volume
fraction system may be in micro-viscous regime where fluid properties have very high influence on the
particle stresses. Higher volume fraction results in more particle interactions and system may be in the
grain-inertia regime where particle stresses are not governed by fluid properties.



C
Time averaging

Quasi steady state time is calculated for each simulation from the domain volume fraction plot as
explained in section 4.4.1. Following figures show time variation of all the measured quantities for
𝜙 = 0.3 & �̇� = 1/𝑠.
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Figure C.1: Volume fraction variation in the measuring domain as a function of time.
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62 C. Time averaging
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Figure C.2: Collisional Stress tensor as a function of time.
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Figure C.3: Streaming Stress tensor as a function of time.
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Figure C.4: Granular temperature as a function of time.
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Figure C.5: Particle alignemnt with the shear flow as a function of time.

It is evident from figure C.1 that system reaches quasi steady state around 45 sec in terms of
volume fraction. Rest of the measurements have already reached their constant values at this time.
Averaging is performed for this data set from 45 sec to 200 sec to get an averaged value for all the
measurements.





D
MATLAB code for superquadratic

glyph

1 function normal_glyph(time_plot,ave_unitvec)
2 % time_plot is the time array for which glyph needs to be plotted
3 % average_unitvec is 3x3xlength(time_plot) 3D array obtained from the ↩

simulation
4
5 for file=time_plot
6 ave_unitvec= average_unitvec(:,:,file) ;
7 % ave_unitvec is the unitvec obtained from simulation data
8 % average_unitvec=[0.33 0 0 ; 0 0.33 0 ;0 0 0.34]
9 % Eigen Value and Eigen Vectors
10 [eigvec , eigvel]=eig(ave_unitvec) ;
11 eigVel=diag(eigvel) ;
12 % Sorting the eigen values from maximum to minimum
13 [lambda ,index]= sort(eigVel,’descend’) ;
14 eigenVector = [eigvec(:,index(1)) eigvec(:,index(2)) eigvec(:,↩

index(3))] ;
15 lambdaM=diag(lambda) ;
16
17 % Based on the equation 1 from the paper to change fig 6 to fig 7
18 Normalization=eigenVector*lambdaM ;
19
20 % Setting for the qudric Glyph
21 n=50;
22 [a,b] = meshgrid(1:n+1,1:n+1);
23 % phi = 0 to pi
24 phi_max=pi;
25 phi_min=0;
26 d_phi=(phi_max-phi_min)/n;
27 phi = (phi_min + (a-1) * d_phi);
28 % theta = 0 to 2*pi
29 theta_max=2*pi;
30 theta_min=0;
31 d_theta=(theta_max-theta_min)/n;
32 theta = (theta_min + (b-1) * d_theta);
33
34 % Cl ,Cp , Cs are the constants to determine quadric shape
35
36 cL=(lambda(1)-lambda(2))/(lambda(1)+lambda(2)+lambda(3)) ;
37 cP=2*(lambda(2)-lambda(3))/(lambda(1)+lambda(2)+lambda(3)) ;
38 cS=3*(lambda(3))/(lambda(1)+lambda(2)+lambda(3));
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66 D. MATLAB code for superquadratic glyph

39 deltaF=diag([cL cP cS]);
40
41
42 % Effect the sharpness of the edges , gamma = 0 gives ellipsoid
43
44 gamma=6 ;
45
46 % Loop to determine the glyph points
47
48 for k=1:length(theta)
49 for l=1:length(theta)
50 if cL>=cP
51 alpha=(1-cP)^gamma ;
52 beta=(1-cL)^gamma ;
53 x= (((abs(cos(theta(k,l))).^alpha).*sign(cos(↩

theta(k,l))) .* ((abs(sin(phi(k,l))).^beta).*↩
sign(sin(phi(k,l))))));

54 y=(((abs(sin(theta(k,l))).^alpha).*sign(sin(theta↩
(k,l))) .* ((abs(sin(phi(k,l))).^beta).*sign(↩
sin(phi(k,l))))));

55 z=(((abs(cos(phi(k,l))).^beta).*sign(cos(phi(k,l)↩
))) );

56 else
57 beta=(1-cP)^gamma ;
58 alpha=(1-cL)^gamma ;
59
60 z=((abs(cos(theta(k,l))).^alpha).*sign(cos(theta(↩

k,l))) .* ((abs(sin(phi(k,l))).^beta).*sign(↩
sin(phi(k,l)))));

61 y=-((((abs(sin(theta(k,l))).^alpha).*sign(sin(↩
theta(k,l))) .* ((abs(sin(phi(k,l))).^beta).*↩
sign(sin(phi(k,l)))))));

62 x=(((abs(cos(phi(k,l))).^beta).*sign(cos(phi(k,l)↩
)))) ;

63
64 end
65 X(k,l) = ( Normalization(1,:)*[x;y;z]) ;
66 Y(k,l)= ( Normalization(2,:)*[x;y;z]) ;
67 Z(k,l) = ( Normalization(3,:)*[x;y;z]) ;
68 end
69 end
70
71 % Figure setting
72
73 f_1=figure(8) ;
74 f_1.Name = ’Rod Glyph’;
75 f_1.Units= ’inches’;
76 f_1.Position=[0 0 23 16];
77 f_1.PaperPositionMode=’auto’;
78 f_1.Color=’w’;
79
80 s=surf(X,Y,Z);
81 s.XData = X; % replace surface x values
82 s.YData = Y; % replace surface y values
83 s.ZData = Z; % replace surface z values
84 set(gca,’GridLineStyle’,’none’)
85 set(gca,’XTick’,[]);
86 set(gca,’YTick’,[]);
87 set(gca,’ZTick’,[]);
88 set(gca,’XColor’,’w’,’YColor’,’w’,’ZColor’,’w’);
89 axis equal



67

90
91 xlim([-1 1]);
92 ylim([-1 1]);
93 zlim([-1 1]);
94 xl=xlim();
95 yl=ylim();
96 zl=zlim();
97 title([’time = ’, num2str(file/100),’s’],’interpreter’,’latex’,’↩

FontSize’,25,’FontName’,’Tahoma’) ;
98 shading interp
99 colormap([0 0 0])
100 lighting flat
101 light(’Position’,[0 1 0],’Style’,’infinite’,’Color’,’w’);
102 light(’Position’,[0 -1 0],’Style’,’infinite’,’Color’,’w’);
103 light(’Position’,[-1 0 0],’Style’,’infinite’,’Color’,’w’);
104 light(’Position’,[0 0 -1],’Style’,’infinite’,’Color’,’w’);
105 light(’Position’,[0 0 1],’Style’,’infinite’,’Color’,’w’);
106 light(’Position’,[1 0 0],’Style’,’infinite’,’Color’,’w’);
107 view(24,22)
108 pause(0.5)
109
110
111 end
112 end





E
Collisional stress tensor symmetry

In relation to the figure 5.5 all components of collisional stress tensor are shown in the following figures
for �̇� = 0.5/𝑠. For 𝜙 = 0.1 & 0.2 stress tensor is asymmetric.

Figure E.1: Collisional stress tensor for . .
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70 E. Collisional stress tensor symmetry

Figure E.2: Collisional stress tensor for . .

0 50 100 150 200

Time(s)

-8

-6

-4

-2

0

2

4

6
10

-4

xx yx zx xy yy zy xz yz zz

Figure E.3: Collisional stress tensor for . .
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Figure E.4: Collisional stress tensor for . .
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Figure E.5: Collisional stress tensor for . .





F
Data Fitting

In order to determine the consistency𝐶 and flow index(𝑚) raw simulation data is fitted to equation 5.5.
Figure F.1 shows Nonlinear least Square fitting.
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74 F. Data Fitting

F.1. Nonlinear least square fitting
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Figure F.1: Non Least square fitting for collisional stresses, represent raw simulation data,— represent fitted
curve for ̇ ,— represent fitted curve for ̇ .
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Figure F.2: Relative consistency as a function of volume fractions



F.2. Krieger and Dougherty model 75
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Figure F.3: Flow index as a function of volume fractions

F.2. Krieger and Dougherty model
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Figure F.4: Relative Consistency as a function of volume fraction, represent relative consistency values,—
represent fitted curve, represent prediction bounds

F.3. Broughton-Geoffrey model
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Figure F.5: Relative Consistency as a function of volume fraction, represent relative consistency values,—
represent fitted curve, represent prediction bounds
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