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Abstract

In this thesis, we analyse the optimisation of an annualised hours problem. Annualised hours problems
are a widely studied subjects, in which the working hours for a given number of employees per week are
minimised. We approach this problem with a mixed integer linear program, where the objective function
of this problem is divided into two parts; the first is to find the minimisation on the maximum over and
under staffing per week, the second to find working hours for each employee as close as possible to their
contract hours. Additionally, we have a number of restrictions on the duration of a shift and the minimum
and maximum amount of shifts in a given period.
The project is done in collaboration with the company ORTEC. ORTEC provided a random data generator, to
test the model with different methods. The model is intended for application on a dataset of 100 employees
and 52 weeks. However, we test the model on different data sets of 52 weeks with 50, 100, 150, 200, 250, 1000
employees and for 100 employees with 26, 52, 78 weeks.
Besides analysing the model, we compare different algorithms. We use a Gurobi solver for an exact solution.
Further, we consider Lagrangian relaxation, a heuristic method. In this method one of the constraints is
put in the objective function. Besides this we consider a heuristic of hill climbing algorithm in combination
with different local search algorithms. For the local search we use two neighbourhoods, one based on the
employees, the other based on the weeks.
We found that a Gurobi solver solves the model in reasonable computation time with an average of 6 seconds
for a data set of 100 employees and 52 weeks. For Lagrangian relaxation, we found an even better computation
time than with the Gurobi solver. However, this difference is hardly notable for a data set of 100 employees
and 52 weeks and the effect of Lagrangian relaxation is more clear for bigger data sets. The hill climbing
algorithm had a consistent and low computation time, but the objective function value differs considerably
from the exact solution and resulted in most cases a difference of more than 10 percent.
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1
Introduction

When observing a company, there is an extensive organisation necessary for managing the workforce. There
are employees with all kind of contracts: full time, part time and subcontractors. Next to this an organisation
has to take into account that each period has a different kind of workload. There are periods with a higher
workload and others lower.
Moreover, employees are entitled to take days off. Therefore, there are weeks in which employees are absent
and cannot be scheduled.

Since the twentieth century there are all kind of rules around working hours. In the Netherlands, it started in
1911, when a law was accepted of working a maximum of ten working hours a day. Not long after this, in 1919,
this was reduced to 8 hours a day and 45 hours a week. In 1961 this was again reduced to 40 hours a week.
[1]. In the last decades of the twentieth century, the first rules around annualised hours were introduced. An
annualised hours contract contains an average amount of hours that an employee has to work in a given time
period. This results in that an employee with a 40 hours contract can work 38 hours in one week and 42 hours
in another. Annualised hours contract are a good way to cope with fluctuating demand.

This brings us to the annualised-hours problem; In a contract with annualised hours, the contract hours are
not measured in weeks, but instead in a different time period such as a number of months or a year. This gives
an organisation the flexibility to have an employee work more in a period where there is a high workload and
work less in a period with a low demand. To not have too much working hours in a week, contracts contain
a minimum and maximum amount of working hours per week and have rules on minimum and maximum
shifts in a given time period.

In this thesis, we present a model which formulates the optimisation of working hours for each employee
each week. Optimal in this case means that the working hours per week are as close as possible to the con-
tract hours, while also minimising the over and under staffing.

The project is done for the company ORTEC, a major supplier of software products and consulting in the field
of advanced planning and scheduling. They gave the task to develop an algorithm for scheduling workings
hours for each week for an annualised hours contract. ORTEC support all kind of companies with problems
by analysing data and providing optimisation models.

We have for each employee a given contract with a minimum, maximum working hours and contract hours
per week. Now, we determine the number of working hours of each employee for each week week. Further,
we have a given demand in each week and we want the working hours and demand as close as possible. Be-
sides this, we want that the difference between employees working hours and contract hours to be minimal.
Therefore, our optimisation question is:

For which working schedule is the maximum over and under staffing minimal and the maximum
difference between working hours and contract hours also minimal?

1





2
Literature review

In this thesis, we make a model for an annualised hours problem. Therefore, in this section, we discuss liter-
ature concerning annualised hours models and heuristics used to solve such a model.

There are three different types of regulating working hours. You can measure the overtime, annualised hours
or Working Time Accounts (WTAs). In a contract with overtime, a standard amount of working hours is for-
mulated and an employee gets paid extra for overtime. In a contract with annualised hours, the working
hours are measured over a longer time period, which for example can lead to a different amount of working
hours each week. In a contract with WTA, an employee has a standard working hours, where an employee
can be debited or credited to the standard working hours. Therefore, when an employee works more than
his contract hours, these hours are credited to the WTA. In Corominas et al. [10], WTAs are considered, where
the costs for capacity shortage, credited hours and overtime are minimised. In ull Hasan et al. [18], overtime
is considered, here the total costs are minimised and the overtime is seen as added costs. Annualised hours
give a constraint on the total contract hours per employee. These have to be equal to the sum of the contract
hours over the whole period. This is discussed in van der Veen et al. [19].
In this thesis we consider annualised hours contract with minimum and maximum bound per week.

In the literature different types of objective functions. Corominas and Pastor [7, 8], ull Hasan et al. [18], van der
Veen et al. [19] all considered the minimisation of the total costs, where in Corominas and Pastor [7, 8] ad-
ditionally the total over and under staffing is minimised. Note that, although the objective function is dif-
ferent, these models have similar goals. When minimising the costs, the model also minimises the overtime,
which correlates with a minimum over and under staffing. In Corominas and Pastor [7, 8], ull Hasan et al.
[18], van der Veen et al. [19], there are constraints that state that the demand has to be met. This is done by
hiring temporary workers. When the demand is not met, this is equivalent to a penalty. In our model, we
combine these aspects and do not consider the total costs, but instead minimise the over and under staffing.
Additionally, we minimise the difference between the working hours and contract hours.

In most annualised hours models, a deterministic demand is used, i.e., the demand is known for the whole
period. However, Lusa et al. [15] uses a stochastic demand. It analyses a multistage problem, which has to
make different decisions in each stage. This can be seen as a decision tree problem and gives different out-
comes for each decision. Corominas and Pastor [8, 9] considers 3 types of demand; seasonal demand without
a peak, seasonal demand with one peak and seasonal demand with two peaks.
In Corominas and Pastor [7, 8, 9], Corominas et al. [10], Lusa et al. [16], ull Hasan et al. [18], van der Veen et al.
[19], multiple types of contracts are considered. There is made a difference between full time employees and
temporary employees, whom can be hired when the demand can not be met. In van der Veen et al. [19], there
is a scenario considered with hiring and firing. In Corominas and Pastor [7, 9], Corominas et al. [10], Lusa
et al. [16], ull Hasan et al. [18], van der Veen et al. [19], there are different kind of skills, where for each em-
ployee is stated whether he is qualified for a specific skill. Different skills lead to extra constraints concerning
whether an employee is qualified for a task. They also lead to different categories of demand for each task,
which has to be taken into account.
In this thesis, we use a deterministic demand without specified peaks, with full-time and part-time contracts

3



4 2. Literature review

with annualised hours. Furthermore, we consider a given amount of subcontractors and can not higher tem-
porary employees. We do not consider different kind of skills. Therefore, there is only one type of demand
per week.

Moreover, we want to take the computation complexity into account. In ull Hasan et al. [18], the LINGO
solver is used. In Corominas and Pastor [7], a CPLEX solver was used. They choose a period of one year with
different number of employees (10, 25, 50, 75, 100, 150, 200, 250). The lowest computation time was mea-
sured for 10 employees with 0.27 seconds and the highest for 250 employees with 58.22 seconds. A CPLEX
solver was also used in Corominas and Pastor [8, 9], Lusa et al. [15], van der Veen et al. [19]. The computation
time varies per model. However, in most cases it was measured around or below the 10 seconds with a higher
computation time for bigger data sets. In Corominas and Pastor [8], the biggest data set that was used con-
tained 5000 employees over a period of 46 weeks, with a highest computation time of 66.81 seconds.

Besides the models mentioned above, we consider a number of different used heuristics for solving annu-
alised hours problems.
In Burke et al. [5], a nurse scheduling problem is described. There are 4 shifts a day and each shifts has to be
assigned to a number of nurses. Different heuristics are used in this article. After creating an initial solution
with heuristic ordering, a combination of variable neighbourhood search, heuristically unassigning shifts and
repairing schedules using heuristic ordering. The article describes a variable neighbourhood search with the
use of two neighbourhoods; the first is defined by assigning a shift to a different nurse, the second by swap-
ping the nurses assigned to each of a pair of shifts. The second used heuristic removes all the nurses with
the highest penalty and use heuristic ordering to reassigning the removed nurses. Subsequently, the variable
neighbourhood search is used again to determine whether a better solution can be found.
In Attia et al. [2, 3], a job scheduling problem is represented, with multiple tasks, multiple skills (with effi-
ciency per skill) and multiple employees. This model contains different constraints. These constraints guar-
antee that an employee can only be scheduled for one task for one skill a day and only if he is qualified to
perform a task. Other constraints include; workload satisfaction, regulating working time, per day, week, 12
weeks and a year and constraints indicating the sequencing relationships between tasks.
In Attia et al. [3], there is a genetic algorithm used to solve this model. Here, first an initial solution is cre-
ated with heuristic ordering. This is considered the initial population. The next generation is based on four
groups, where parents are a combination of a task, employee and working time. From this, children are cre-
ated. The first group are the parents with the lowest penalty, i.e., the elitist selection. The second group is
created by selecting two parents and creating a child with an uniform crossover. One parent is selected from
the elitist selection and one is chosen randomly. The third group is freshly generated and has no correlation
with the initial population. The last group is a randomly selected group of parents. By using this approach,
the algorithm aims to improve each generation.
In Attia et al. [2], a greedy algorithm is used. The tasks are categorised in most important/ most hard to fulfil.
In each stage the employee with the highest efficiency and most availability is chosen for a task. In the article
a comparison is made of the greedy algorithm with the genetic algorithm. When a genetic algorithm takes
155 seconds to compute the greedy algorithm only takes 1 second, for this problem.
In Dowsland [11], a nursing scheduling problem is considered, where the day and night shifts for each nurses
has to be scheduled. The objective function is a minimisation of the total penalty of the working pattern for
each nurse. The penalty encloses a mix of early and late shifts, preferred days off and the quality of a shift.
After generating an initial solution, a combination of local search and tabu search is used. The local search
exists out of different neighbourhoods. One neighbourhood exists out of different working patterns, another
out of shifts and the last out of different nurses. Moves that are made in the last two neighbourhoods are not
necessarily given a lower objective. In combination with tabu search, this causes that a search does not stop
at a local optimum. Tabu search stores a small list of the previous found solutions and checks whether there
are no cycles created while finding a better solution.
In this thesis, we use two different heuristics. One, the Lagrangian relaxation to reduce the computation time.
Secondly, a hill climbing algorithm with local search with different neighbourhoods. The different neighbour-
hood are inspired by Dowsland [11], where one neighbourhood is of the employees and another of different
weeks.



3
Background

In this chapter we discuss all the required background knowledge, which is needed for understanding the
model and heuristics discussed in Chapter 4 and Chapter 5.

3.1. Computational complexity
When considering an optimisation problem or decision problem, you can define the computational com-
plexity of this problem. The computational complexity is expressed in terms of the input and tells something
about the running time of a model. This is expressed in terms of input, because the running time can differ
by the software that is used. Therefore, we define the time complexity as follows: The running time or time
complexity of a decision problem is formulated as the function f : N→N, where f(n) is the maximum number
of steps that decision problem needs to solve any input of length n. [17]

When considering the computational complexity it is important to make a difference between deterministic
and nondeterministic algorithms. With a deterministic algorithm it is beforehand clear which path an algo-
rithm follows. A nondeterministic algorithm can behave different in different runs depending on the choices
that it makes. Because of this choices the algorithm can run in polynomial or exponential time. For example,
this can occur in an algorithm with a random number generator.

To make a further distinction between algorithm we define the following complexity classes: The class P is
the set of decision problems that is solvable in polynomial bounded running time.
The class NP is the set of all decision problems verifiable in polynomial bounded time.[20]
Solvable means that an solution is given on the problem and verifiable that for a problem a given solution can
be verified.
Here P stands for deterministic Polynomial solvable decision problems and NP for Nondeterministic Polyno-
mial decision problems. It is desirable to have a problem in class P, because then we can solve the problem
in polynomial time and have control over the problem. One of the greatest unsolved questions in complexity
theory is whether P equals NP. If this is true, then for every problem that is verifiable in polynomial time, there
is an algorithm that solves the problem in polynomial time. What we do know for sure is that every problem
that is solvable in polynomial time, is also verifiable in polynomial time.

A decision problem X is NP-complete if it satisfies two conditions:
1. X is in NP, and
2. every problem in NP is polynomial time reducible to X. [17]

A decision problem X is NP-hard if for some NP-complete problem Y there is a polynomial-time reduction
from Y to X. [20]
Note, that a NP-hard problem is not solvable in polynomial time, unless P is equal to NP. To give an overview
of the computational complexity definitions, see Figure 3.1 [12].
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6 3. Background

Figure 3.1: Euler diagram of P, NP, NP-complete and NP-hard

3.2. Mixed integer linear programming (MILP)
In this section, we introduce mixed integer linear programming. This is a model by which a decision problem
is described. Such a model can be used for production planning, scheduling, networks and more.

Integer linear programming is a model with a linear objective function and linear constraints. Here the ob-
jective function is minimised or maximised. The objective function is a function of one or more variables, of
which the values are unknown. The standard form of ILP is formulated as follows:

max cTx (3.1)

s.t. Ax ≤ b, (3.2)

x ≥ 0, (3.3)

x ∈Nn , (3.4)

In this formulation the parameters are A,b and c. Here A is an m×n-matrix, b an m-dimensional vector and
c is as an n-dimensional vector. cT x is the objective function and Ax ≤ b are the constraints for the optimisa-
tion problem, where all the constraints are linear. The variables are represented by the vector x, which is an
n-dimensional vector that we have to optimise. For integer linear programming, the variables in the vector x
have to be integers greater or equal to zero, as state in constraints (3.3) and (3.4).

For example a ILP problem can be formulated as follows:

max 5x −2y (3.5)

s.t. x +2y ≤ 6, (3.6)

3x +2y ≤ 8, (3.7)

x, y ≥ 0, (3.8)

x ∈N (3.9)

This problem is visualised in Figure 3.2 and we later show how such a problem can be solved. A feasible solu-
tion is a solution for the optimisation problem for which all the constraints are met. In our example this are
(3.6)-(3.9) and in Figure 3.2 the feasible region to the integer linear program is shown by the black points.

Mixed integer linear programming is a ILP problem, wherein variables can be integer as well as non-integer.

3.2.1. Cutting-plane method
The Cutting-plane method is an exact method to solve an MILP. It first makes use of LP relaxation to make the
mixed integer linear program a linear program (LP), i.e., it removes the integer constraint. When there exists
a feasible solution to a linear program, there is an extreme point where an optimal solution can be found. In
Figure 3.2 the extreme points are the corner points, i.e., the intersections of the lines/ axis. The idea behind
the cutting plane method is to add cuts to the linear program until an integer solution is obtained. A cut is a
linear constraint which removes a part of the feasible region without cutting of the feasible integer solution.
[4]
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Figure 3.2: Feasible region of an ILP problem

3.2.2. Branch and bound
Branch and bound is another exact method for solving an MILP. The main idea behind branch and bound
is to divide the feasible region in subdivisions, i.e., branching and when necessary again partitioning this
subdivisions. The subdivisions are tested on bounds. For a maximisation problem we start with an upper
bound of the solution to the LP problem. Here for, in the same way as the cutting-plane method, we first
use LP relaxation to make a linear program (LP). When an integer solution is found, this integer solution
becomes the lower bound. With each partition the method checks if the solution is in between the bounds
and if a better bound is found. A subdivisions can not be further partitioned when or an integer solution is
found or it is infeasible. [4]
Example: Consider the ILP problem mentioned in (3.5)-(3.9). In this example the optimal solution for the LP
problem is x = 2 1

2 and y = 0, with objective function value 5 · 2 1
2 − 2 · 0 = 12 1

2 . Therefore, the upper bound
for the optimum of the integer linear program is 12 (Because the variables are integer, the solution has to be
integer as well). The next step is to partition the solution of x in x ≤ 2 and x ≥ 3. For x ≤ 2 the optimum
becomes x = 2, y = 0 and objective function value is 10, this is the best found feasible solution for the ILP
and therefore becomes the lower bound. For x ≥ 3 the model is infeasible. We now can not further partition
the problem, because on one side an integer solution is found and the other side is infeasible. Therefore, the
optimum for the ILP is 10.

3.2.3. Linearisation of quadratic problem
When formulating a problem, a quadratic constraint can be needed. Only this makes the problem not linear
any more. Therefore, we introduce a linearisation technique with McCormick envelopes.
McCormick envelopes is a method that gives convex over and under estimators. This is done by introducing a
substitute variable for the variable that is squared. With the addition of new constraints, we give a lower and
upper bound for the quadratic variable. Using standard McCormick envelopes the additions to a model can
be formulated as follows:

x, y −variables

xL , xU , yL , yU − lower and upper bound of x and y

w − substitute variable representing x · y

w ≥ xL y +x yL −xL yL

w ≥ xU y +x yU −xU yU

w ≤ xU y +x yL −xU yL

w ≤ x yU +xL y −xL yU

xL ≥ x ≥ xU , yL ≥ y ≥ yU , wL ≥ w ≥ wU
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This can be made more precise with piecewise relaxation. Here, you make smaller enevelopes causing a closer
estimate of the variable. A standard McCormick enevlope is depicted in Figure 3.3. The blue and the red lines
are a representation of the constraints formulated before. [6]

Figure 3.3: Standard McCormick envelope

3.3. Heuristic algorithm
There are different ways to solve an optimisation problem. An exact algorithm gives an optimal solution, but
when coping with a NP-hard problem they have as disadvantage that there is no control over the computa-
tion time.
Therefore, we also consider heuristic algorithms. Heuristic algorithms are algorithms that use a smart way
of searching for an optimal solution. There are many types of heuristic algorithms, we only discuss the algo-
rithms we later use in this thesis. Some heuristics have the property that they can find a good solution in a
given time or iterations. This gives us control over the computation time, but maybe not an optimal solution.

3.3.1. Lagrangian relaxation
Lagrangian relaxation is a heuristic method to solve complex problems. It removes difficult constraints from
the original problem, to more efficiently find an optimal solution. It still takes these constraints into account
in the formulation of the objective function, but these are added costs instead of constraints. It uses a non-
negative multiplier as penalty if the removed constraint is violated. For this new problem an optimal solution
is found. If a feasible solution exists, a large enough multiplier ensures that the found optimum also for
feasible in the original model.

3.3.2. Local search
Local search is a method that starts with an candidate solution after which it moves to neighbour solution.
It keeps moving from candidate solution to candidate solution, until a given bound is reached or a given
number of iterations or time has passed. The neighbourhood for each problem can be differently described.
In most cases a neighbourhood of a candidate solution is solution where a small change is made in the current
solution. Local search methods are a good example of approximate algorithms; The method gives a solution
at any given time or given number of iteration. This solution however does not have to be an optimal solution.
The disadvantage of a local search method can be that the method visits the same solution multiple times and
can because of this get stuck at a local optimum. [13]

3.3.3. Hill climbing
Hill climbing is a local search method. It starts with an initial solution after which it performs local search and
checks if the new objective function value is better or not then the current objective function value. When a
better feasible solution is found the current objective function value and current solution are updated. From
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this point, the method again tries to find a better feasible solution. This is repeated until a given number of
iterations are time has passed. [13]





4
Model formulation

4.1. Mixed integer linear programming model
We want to find for each employee the number of working hours for each week. Our goal here is to minimise
the maximum over and under staffing, while also minimising the maximum difference between the working
hours and contract hours for each employee each week. We consider a couple of restrictions for this problem
concerning the number of shifts an employee, the length of a shift and restrictions concerning the contract
of an employee. Therefore, we first state the following sets, parameters and variables:

Sets:

I Employees

T Time period in weeks

Parameters:

|T | Total number of weeks in setT

dt Demand in week t ∈ T (in hours)

ci Contract hours per week for employee i ∈ I

lci ,uci Minimum and maximum working hours per week for employee i ∈ I

l s0,us0 Minimum and maximum hours per shift

l sk ,usk Minimum and maximum shifts for an employee in k ∈Nweeks

ai t ∈ {0,1} 0 if employee i ∈ I is absent in week t ∈ T, , 1 otherwise

fi ∈ {0,1} 1 if employee i ∈ I has a full-time contract, 0 otherwise

Variables:

Yi t Number of hours that employee i ∈ I works in week t ∈ T

Vi t ∈N The number of shifts for employee i ∈ I in week t ∈ T

We formulate our model based on the model formulated in van der Veen et al. [19]. This model can be found
in Appendix A. The signifanct difference between the model described in [19] and in this thesis is that in [19]
different skills are considered and the objective function exists out of the total costs. Besides this, we not only
consider working hours, but also working shifts.

Model 1.1
In the first model, we define the maximum over and under staffing as a quadratic function, in which the
more the total working hours differ from the demand, the greater the penalty. We do the same for the differ-
ence between the working hours and contract hours. This formulated in objective function (4.1), which has
two parts. First, we minimise the difference between the total working hours and contract hours per week,
(Yi t − ci ·ai t ). Note that we only measure the difference if an employee works and therefore multiply ci with
ai t . Here is ai t for employee i in week t 1 if he is available and 0 if he is absent. Secondly, the over/under

11



12 4. Model formulation

staffing is formulated by (
∑

Yi t −dt ). Parameters λ1 and λ2 determine the importance of each component.

We further have constraints (4.2)-(4.6). Constraints (4.2) state that an employee works between the minimum
and maximum contract hours (l ci ,uci ) and an employee does not work if he is absent (ai t ). Constraints (4.3),
state the minimum and maximum hours in a shift (l s0,us0). Constraints (4.4) give a restriction on the min-
imum and maximum number of shifts, for a given number of weeks. This could be one week or a longer
period. To state these constraints, we first translate the number of hours per week given by Yi t to the number
of shifts, Vi t , for employee i in week t .

The last constraints (4.5) ensure that the number of hours worked in the total time period,
∑

t∈T Yi t , cor-
respond to the annualised contract hours (the sum of the contract hours over the whole period), |T | · ci . The
total of number of weeks over the whole period is indicated with |T |. Further, we state if an employee is
absent, that he gets payed for his contract hours. Constraints (4.6) state that an employee must have a non-
negative integer number of working hours Yi t and number of shifts Vi t .

min λ1 ·
∑
i∈I

∑
t∈T

(Yi t − ci ·ai t )2 +λ2 ·
∑
t∈T

(
∑
i∈I

Yi t −dt )2 (4.1)

s.t. lci ·ai t ≤ Yi t ≤ uci ·ai t , ∀i ∈ I ,∀t ∈ T (4.2)

Vi t · l s0 ≤ Yi t ≤Vi t ·us0, ∀i ∈ I ,∀t ∈ T (4.3)

l sk ·ai t ≤
j+k−1∑

t= j
Vi t ≤ usk ·ai t , ∀i ∈ I ,∀t , j ∈ T,∀k ∈N (4.4)∑

t∈T
Yi t + (1−ai t ) · ci = |T | · ci , ∀i ∈ I (4.5)

Yi t ,Vi t ∈N ∀i ∈ I ,∀t ∈ T (4.6)

To linearise the quadratic objective function, we could use McCormick envelopes as described in Chapter 3.

Model 2.1
The disadvantage of McCormick envelopes is that for a good estimation they give gives a considerably amount
of extra constraints and complexity. Therefore, we consider another way to formulate the objective function.
In the second model, we avoid a quadratic formulation by using the maximum function and formulate the
objective function as follows:

min λ1 ·
∑
i∈I

max
t∈T

(|Yi t − ci ·ai t |)+λ2 ·max
t∈T

(|∑
i∈I

Yi t −dt |) (4.7)

Where λ1 and λ2 are parameters which indicates the importance of each component.

However, in a linearised model we can not have absolute values or maximum functions. To linearise the
absolute values we take the maximum of Yi t − ci ·ai t and ci ·ai t −Yi t . We do the same with

∑
i∈I Yi t −dt .

To linearise the maximum functions we introduce substitute values mi and n with the following constraints:

mi ≥ Yi t − ci ·ai t ∀t ∈ T (4.8)

mi ≥ ci ·ai t −Yi t ∀t ∈ T (4.9)

n ≥ ∑
i∈I

Yi t −dt ∀t ∈ T (4.10)

n ≥ dt −
∑
i∈I

Yi t ∀t ∈ T (4.11)

Substituting mi and n gives us the objective function:

min λ1 ·
∑
i∈I

mi +λ2 ·n (4.12)

Model 2.2
The objective function in Model 2.1 only consider the maximum difference between the contract hours and
the working hours, maximum difference between the total contract hours and demand. Moreover, we want
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that the difference is minimised for each week. This is of less importance and has a lower weight (λ3,λ4). The
objective function can now be formulated as following:

min λ1 ·
∑
i∈I

mi +λ2 ·n +λ3 ·
∑
i∈I

∑
t∈T

(|Yi t − ci ·ai t |)+λ4 ·
∑
t∈T

(|∑
i∈I

Yi t −dt |) (4.13)

We again linearise the objective function by introducing substitute variables pi t and qt to replace the absolute
values with the following constraints:

pi t ≥ Yi t − ci ·ai t ∀i ∈ I ,∀t ∈ T (4.14)

pi t ≥ ci ·ai t −Yi t ∀i ∈ I ,∀t ∈ T (4.15)

qt ≥
∑
i∈I

Yi t −dt ∀t ∈ T (4.16)

qt ≥ dt −
∑
i∈I

Yi t ∀t ∈ T (4.17)

Substituting pi t and qt results in the following objective function:

min λ1 ·
∑
i∈I

mi +λ2 ·n +λ3 ·
∑
i∈I

∑
t∈T

pi t +λ4 ·
∑
t∈T

qt (4.18)

Model 3.1
We made the assumption that each contract is either full time or part time, but to expand the model we also
take subcontractors into account. For a subcontractor the minimum and maximum working hours per week
are equal to the contract hours per week. Therefore, we say that a subcontractor either works his contract
hours in a given week or does not work at all. This means that the constraint for annualised hours does not
apply to a subcontractor. For this, we introduce parameter fi which is 1 if an employee has a full time or part
time contract and 0 when an employee is a subcontractor. We also introduce a binary variable coi t which is
1 if employee i works in week t and is 0 if employee i does not work in week t . For a full time contract this is
equal to ai t and for a subcontractor this depends if he works in a given week. This results in the final MILP
model:

min λ1 ·
∑
i∈I

mi +λ2 ·n +λ3 ·
∑
i∈I

∑
t∈T

pi t +λ4 ·
∑
t∈T

qt (4.19)

s.t. ai t · fi ≤ coi t ≤ ai t ∀i ∈ I ,∀t ∈ T (4.20)

lci · coi t ≤ Yi t ≤ uci · coi t , ∀i ∈ I ,∀t ∈ T (4.21)

Vi t · l s0 ≤ Yi t ≤Vi t ·us0, ∀i ∈ I ,∀t ∈ T (4.22)

l sk · coi t ≤
j+k−1∑

t= j
Vi t ≤ usk · coi t , ∀i ∈ I ,∀t , j ∈ T,∀k ∈N (4.23)

fi ·
( ∑

t∈T
Yi t + (1−ai t ) · ci

)= fi ·
(|T | · ci

)
, ∀i ∈ I (4.24)

mi ≥ Yi t − ci · coi t · fi ∀t ∈ T (4.25)

mi ≥ ci · coi t · fi −Yi t ∀t ∈ T (4.26)

n ≥ ∑
i∈I

Yi t −dt ∀t ∈ T (4.27)

n ≥ dt −
∑
i∈I

Yi t ∀t ∈ T (4.28)

pi t ≥ Yi t − ci · coi t · fi ∀i ∈ I ,∀t ∈ T (4.29)

pi t ≥ ci · coi t · fi −Yi t ∀i ∈ I ,∀t ∈ T (4.30)

qt ≥
∑
i∈I

Yi t −dt ∀t ∈ T (4.31)

qt ≥ dt −
∑
i∈I

Yi t ∀t ∈ T (4.32)

Yi t ,Vi t ,mi ,n, pi t , qt ∈N ∀i ∈ I ,∀t ∈ T (4.33)

coi t ∈ {1,0} ∀i ∈ I ,∀t ∈ T (4.34)
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Constraints (4.20) are added to the model, which causes that coi t depends on ai t . For this, we can replace
ai t with coi t . Constraints (4.24) are multiplied with fi , causing that annualised hours only apply for full time
and part time employees.



5
Heuristic method

In Appendix B we give an attempt of proving the model given in Chapter 4.1 is NP-hard. This proof is still
incomplete, but an interesting beginning. Because of NP-hardness heuristics can be preferred, because these
can give more control over the computation time. Therefore, we consider in this chapter two types of heuris-
tic algorithms. The first Lagrangian relaxation, which gives a lower computation time, but does not provide
control over the computation time. Second we consider a hill climbing algorithm. This algorithm uses local
search and updates in each iteration the best found solution.
Our goal is to find for each employee, the number of working hours per each week such that the maximum
difference between the working hours and the contract hours and the maximum difference between the total
working hours and demand per week are minimised.

5.1. Lagrangian relaxation
The reason for using Lagrangian relaxation is that difficult constraints become a penalty in the objective
function. This causes that a feasible solution can be easier to find and when α is chosen high enough, the
found optimal for Lagrangian relaxation is also feasible in the initial model.
Therefore, we remove constraints (4.24) and put a penalty in the objective function. We choose constraints
(4.24), because this are the only constraints with a equality and therefore the hardest to full fill. The objective
function is formulated as follows:

min λ1 ·
∑
i∈I

mi +λ2 ·n +λ3 ·
∑
i∈I

∑
t∈T

pi t +λ4 ·
∑
t∈T

qt +α · ( fi · |
( ∑

t∈T
(Yi t + (|T |−ai t ) · ci )

)−|T | · ci | (5.1)

We linearise this in the same way as we did for the linearisation of (4.13) and introduce substitute variable
l agi which we substitute in the objective function for |(∑t∈T (Yi t +(|T |−ai t ) ·ci )

)−|T | ·ci | and the constraints
given by:

l agi ≥
( ∑

t∈T
Yi t + (|T |−ai t ) · ci

)−|T | · ci ∀i ∈ I (5.2)

l agi ≥ |T | · ci −
( ∑

t∈T
Yi t + (|T |−ai t ) · ci

) ∀i ∈ I (5.3)

We choose α significantly bigger then λ1,λ2,λ3,λ4. In this way if a feasible solution exists for the Lagrangian
relaxation, it is also feasible in the initial model.

5.2. Hill climbing method
First we generate an initial solution. Therefore, we determine if an employee i works in week t , given by coi t .
We do this by considering the availability of an employee and the demand. If employee i is absent in week t ,
coi t = 0. Further, we say subcontractors only work in week t when there is under staffing. We determine this
by calculating

∑
i∈I Yi t −dt for each week.

15
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Now we generate for each employee the working hours yi t by multiplying the contract hours ci by coi t .

On this initial solution we use a hill climbing algorithm with two local search operations: Moveempl oyee and
Moveweek . Because the objective function exists out of two parts we consider two neighbourhoods, which
are determined by Ncontr act and Ndemand .

Ncontr act - provides employee icontr act and week tcontr act for which |Yi t − ci | has the highest value

Ndemand - provides week tmax , tmi n for which
∑

i∈I Yi t −dt has the highest and lowest value

Moveempl oyee - For employee i it swaps a given amount of hours from week t1 and t2. Illustrated in Fig-
ure 5.1.

Figure 5.1: Move hours between employees

Moveweek - This operation moves hours from employee i1 to i2 for week a given week t1. However this cre-
ates a violation in the constraints (4.24) (which concern annualised hours). To not violate this constraints we
make an additional swap for each employee with a given week t2. For example when two hours are subtracted
from the working hours of employee i1 in week t1, then the additional the operation adds two hours to the
working hours of employee i1 in week t2. The same is done for employee i2. This is illustrated in Figure 5.2.

Figure 5.2: Move hours between weeks

For each iteration we perform two kind of moves between weeks and one move between employees. After
each operation we check if the operation improves the current found objective function value. If this is the
case we update the current solution and from here we again try to find a better solution.

The first moveempl oyee is based on improving Ncontr act . We say i = icontr act and t1 = tcontr act . To deter-
mine t2 we see if Yi t − ci is positive or negative. When positive we define t2 = tmi n and move hours from t1

to t2. When negative we define t2 = tmax and move hours from t2 to t1. Where tmax and tmi n are given by
Ndemand

Further, moveempl oyee chooses a random i and t1 and then finds the t2 where for the objective function
after the swap is the lowest. This swap is to prevent that the algorithm stays in the same neighbourhood.

The moveweek operation is based on improving Ncontr act . We say i1 = icontr act and t1 = tcontr act . We choose
i2 and t2 at random. When Yi t − ci is positive we move hours from (i1, t1) to (i2, t1) and when negative vice
versa.

We repeat this steps until an given number of iterations or amount of time has passed.



6
Results MILP model

In this section, we discuss the performance of Model 3.1 described in Section 4.1.

6.1. Data and parameters
We test the model with generated data with a random instance generator provided by ORTEC. In this genera-
tor the number of employees, weeks and skills can be chosen. After this, a dataset is created with the following
data:

• Contract working hours for each employee per week (ci )
• Minimum and maximum working hours for each employee per week (lci ,uci )
• Demand in hours per week (dt )
• Weeks that each employee is absent (ai t )
• If an employee is qualified for a given task

In the model described in this thesis, we have only one skill and have that all the employees are qualified for
this skill.
In the generated data, there are three type of contracts: Full time contracts, part time contracts and subcon-
tractors. Full time contracts and part time contracts, are provided with minimum, maximum and standard
contract hours. Subcontractors have a contract where the minimum, maximum and contract hours are the
equal to each other. In this data generator the contract hours for subcontractors are eight hours a week. For
subcontractors, we state that they or work all their contract hours or do not work in a week.

Further, we specify the remaining parameters in our model. The duration of a shift of an employee is be-
tween 4 and 9 hours (l s0,us0), with a maximum of 6 shifts a week (us1), a maximum of 11 shifts in two weeks
(us2), a maximum of 20 shifts in four weeks (us4). The minimum number of shifts for a given period is set to
0 (l s1, l s2, l s4). We set fi to 0 if the minimum, maximum and contract hours are the same and to 1 otherwise.

We choose λ1, . . . ,λ4 in decuple of each other, with the more important a component in the objective is, the
greater. We set λ1 = 10, λ2 = 100, λ3 = 1 λ4 = 1.

We aim to find a model for a spanning horizon of 52 weeks and 100 employees. However, we also test the
model for data sets of 50, 150, 200, 250 and 1000 employees over 52 weeks. Addtionaly we test the data for 100
employees, where we change the weeks to 26 and 78 weeks.

6.2. Results
The model is implemented in Spyder (Python 3.6) with the program Annaconda. For solving the MILP, we
use Gurobi 8.0. Gurobi is an advanced MIP-solver which uses different algorithms and heuristics. It has 17
different types of cutting plane methods and 14 different heuristics. We compare the minimum, average (t ),
maximum and median (t̃ ) computation time of each data set, which is shown in Table 6.1 and Tabel 6.2. For
each data set we toke 100 samples generated with the random data generator mentioned in Section 6.1.

17
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Employees tmi n t tmax t̃
50 1.68 2.68 11.76 2.48

100 3.60 6.14 15.07 5.68
150 5.50 10.02 17.58 10.09
200 8.27 16.16 47.96 15.08
250 11.52 21.96 50.43 21.20

1000 92.15 253.97 1700.82 173.54

Table 6.1: Computation times (in seconds) for Gurobi for 52 weeks

Weeks tmi n t tmax t̃
26 1.81 2.81 4.49 2.74
52 3.60 6.13 15.07 5.68
78 5.50 11.33 42.53 10.40

Table 6.2: Computation times (in seconds) for Gurobi for 100 employees

In Table 6.1, Table 6.2 and Figure 6.1, is shown that for bigger data sets, and thus more variables, we find a
longer computation time. Here we plotted the data of 1000 employees and 52 weeks apart, because of the
much longer computation time. What is remarkable that for larger data sets the minimum and maximum are
further apart from the average computation time. In Figure 6.1, is shown that there are a few data sets with a
much longer computation time then the average. This causes that the median of the computation time is in
most cases lower then the average computation time, shown in Table 6.1 and Table 6.2.

Figure 6.1: Computation time (in seconds) with for different data

In Figure 6.2, we compare data sets of the same size. Starting with 100 employees and 52 weeks, we halved /
doubled either the weeks or the employees. It is clearly shown that the computation time for both are prac-
tically the same. Therefore, we can conclude that only the size of the data has influence on the computation
time and it does not matter if this is because of more weeks or more employees.
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Figure 6.2: Computation time (in seconds) with for same data size

Last, we plot the computation time for different components of the data to find if there is a correlation. For
this we take the data set of 100 employees and 52 weeks and 1000 employees and 52 weeks. We choose these
two because of there size difference and expect that they give similar correlations. In Figure 6.3 and Figure
6.4, a scatter plot of both are shown. In each scatter plot, the linear trend is shown. We see a positive linear
trend for the correlation with the objective function value / total working hours / total demand and a negative
linear trend for the absolute difference between the total working hours and total demand.
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Figure 6.3: Computation time (in s) with dataset of 100 employees and 52 weeks
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Figure 6.4: Computation time (in s) with dataset of 1000 employees and 52 weeks





7
Comparison with heuristic algorithm

In this chapter we discuss the performance of the Lagrangian relaxation and hill climbing method.

7.1. Lagrangian relaxation
With Lagrangian relaxation, we put the constraint for annualised hours in the objective function. We set
α= 1000, which is ten times larger than the value of λ1, . . . ,λ4 in the MILP model. In this way, we create a big
enough penalty for which a feasible solution for the initial problem is generated. Note that this only happens
when a feasible solution to the initial problem exists. We again compare the computation time of different
data and give the minimum, average (t ), maximum and median (t̃ ) computation time of each data set. This
is shown in Table 7.1.

Employees* tmi n t tmax t̃
50 1.87 2.93 8.25 2.72

100 3.96 6.06 12.91 5.63
150 5.30 9.03 29.64 8.21
200 8.46 14.25 39.92 11.68
250 10.88 19.74 50.43 18.06

1000 71.22 220.61 1711.33 153.48

Weeks** tmi n t tmax t̃
26 2.28 3.18 7.68 2.92
52 3.96 6.06 12.91 5.63
78 6.71 10.48 57.39 8.78

Table 7.1: Computation times (in seconds) for Lagrangian relaxation
* with 52 weeks
** with 100 empployees

Comparing Table 6.1 and Table 6.2 with Table 7.1, we find lower computation time for the model with lan-
grange relaxation. In Figure 7.2 this difference is clearly shown. The largest difference between the average
computation time is for a data set with 1000 employees and 52 weeks. Although the average computation
time is lower for the model with Lagrangian relaxation, this does not guarantee a lower computation time.
For example the maximum computation time for 150 employees and 52 weeks is longer for the Lagrangian
relaxation as can be seen in Figure 7.2.

7.2. Hill climbing method
We use 50 iterations in the hill climbing method described in Section 5.2. This is because in the first 50
iterations the biggest improvements in the objective function value are made. After 50 iterations, often a
higher objective function value is found and thus often no improvement. Comparing Table 6.1 and Table 6.2
with Table 7.2, we find that the Hill climbing method has significantly lower computation time. Figure 7.2
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shows that the hill climbing model can best be used for large data sets. In small data sets it not always gives a
better computation time.

Employees* tmi n t tmax t̃
50 2.72 3.42 4.60 3.42

100 5.26 6.37 8.24 6.44
150 8.26 10.08 14.26 10.05
200 10.53 13.09 15.53 13.30
250 13.48 16.41 21.92 16.49

1000 61.11 76.25 99.86 75.19

Weeks** tmi n t tmax t̃
26 2.87 3.51 5.61 3.45
52 3.96 6.06 12.91 5.63
78 7.58 9.75 14.45 9.74

Table 7.2: Computation time (in seconds) of hill climbing method
* with 52 weeks
** with 100 empployees

In Table 7.3 we evaluate the quality of the found objective function value by the Hill climbing method. We do
this by calculating for each data set γ, where γ is given by:

γ= γ•−γ∗

γ∗

with γ• the found objective function value by the hill climbing method and γ∗ the objective function value
from the exact method. In Table 7.3, we show the minimum γ, average (γ) and maximum γ. Here, we see that
γ is higher for larger data sets. Further, we see that γ is always above 0.1, i.e., the objective function value with
hill climbing is more than 10 percent higher than the optimal objective function value. In Figure 7.1, gamma
is shown for the different data.

Employees* γmi n γ γmax

50 0.026 0.128 0.260
100 0.058 0.152 0.261
150 0.080 0.166 0.283
200 0.097 0.176 0.257
250 0.106 0.192 0.270

1000 0.133 0.209 0.291

Weeks** γmi n γ γmax

26 0.066 0.163 0.310
52 0.058 0.152 0.261
78 0.056 0.146 0.263

Table 7.3: Difference exact method and Hill climbing method
* with 52 weeks
** with 100 empployees
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Figure 7.1: Comparison γ for different data

7.3. Gurobi with intial solution
When solving the model with an exact algorithm, it could take some time before the algorithm finds a fea-
sible solution. Therefore, we test if the computation time improves if we start the exact Gurobi algorithm
with a feasible solution. This feasible solution is generated with the hill climbing method with 50 iterations.
However, as shown in Table 7.4 and Figure 7.3 the computation time does not improves. This can be because
Gurboi it self uses better heuristics for finding a good first feasible solution.

Employees* tmi n t tmax t̃
50 2.40 4.08 10.56 3.88

100 5.99 9.72 22.27 9.17
150 9.30 16.47 25.73 15.76
200 14.66 26.48 50.12 24.96
250 19.16 36.94 65.37 35.52

1000 199.68 394.85 1432.68 302.21

Weeks** tmi n t tmax t̃
26 2.83 3.86 7.84 3.70
52 5.99 9.72 22.27 9.17
78 12.07 19.40 48.90 17.72

Table 7.4: Computation time (sec) of Gurobi with initial solution
* with 52 weeks
** with 100 empployees
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Figure 7.2: Comparison computation time (in s) for different data
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Figure 7.3: Comparison computation time (in s) for different data





8
Conclusion, discussion and

recommendation

In this thesis, our goal was to find a model, which gives a working schedule for 100 employees and 52 weeks,
for which the maximum over and under staffing is minimal and the maximum difference between working
hours and contract hours minimal as well. We have formulated this in an mixed integer linear program and
have given the beginning of a proof that states the model is NP-hard. Although, the proof is incomplete, we
still consider this an important part of the thesis. In further research we would recommend to improve the
proof of NP-hardness.

We have found that a Gurobi solver solves the model in a reasonable computation time with an average of
6 seconds for 100 employees and 52 weeks. In Figure 7.2, it was clearly shown that there is a longer computa-
tion time for larger data sets.
For Lagrangian relaxation, we have found a better computation time than for Gurobi. However, the difference
for 100 employees and 52 weeks is hardly notable and the effect of Lagrangian relaxation is more distinguish-
able for bigger data sets. We have found similar correlations between the size of the data and the computation
time; for larger data sets, there was a longer computation time.
The hill climbing algorithm gave a consequent and low computation time. The objective function value, how-
ever, differs considerably and in most cases it gave a difference of more than 10 percent.
Last we combined the found solutions of the hill climbing method and set this as start solution in the Gurobi
algorithm. This, however, gave no improvements and even lead to a longer computation time.

Altogether, we can conclude that the Lagrangian relaxation can best be used, as this gives the best results;
an exact solution and had a reasonable computation time. The only disadvantage of this algorithm is, that
there is no control over the computation time. In further research the heuristics could be studied to a greater
extend, so that these will, firstly, give a better approximation of the optimal solution and, secondly, a better
control over the computation time.
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A
Model from E. van der Veen et al.

In this appendix, we describe the MILP model used in van der Veen et al. [19].

Sets:

I Set of employees, indexed by i

J Set of skills, indexed by j

Ji ⊂ J Set of skills of employee i

T Set of time slots, indexed by t

S Set of subsets of T , indexed by s

Ts ⊂ T Subsets s of time slots for which working hours constraints have to be enforced

Parameters:

d j t Demand for skill j in time slot t (in hours)

c f i x
i Fixed cost of employee i

cvar
i Variable cost of employee i

li t ,ui t Minimum and maximum working hours of employee i in time slot t

l s
i ,us

i Minimum and maximum total working hours of employee i in time slots of Ts

li ,ui Minimum and maximum total working hours of employee i during the entire planning horizon T

Variables:

Xi j t Number of hours employee i works on skill j during time slot t

Yi 1 if employee i is selected in the workforce, 0 if not

T C Total cost of all employees

T C f i x Sum of fixed cost of all employees

T C var Sum of variable cost of all employees

In (A.1) the objective function is formulated as the total costs.
In constraints (A.2) we make sure that the demand is met in every time slot for every skill, i.e., under staffing is
not aloud. Constraints (A.3) ensure that in every time slot, the working hours of every employee are between
the lower and the upper bound and multiplying with Yi enforces that when an employee is not selected for the
workforce he does not work. For every s ∈ S, there is a similar lower and upper bounds on the total working
time, stated in constraints (A.4). Constraints (A.4) give the opportunity to model for example constraints on
the minimum and maximum working time in 4 or 13 week periods. In constraints (A.5) is stated that for every
employee the working hours are between the lower and upper bound of the planning horizon. The fixed and
variable cost are defined by constraint (A.6) and (A.7).
As last is given in constraints (A.8) and (A.9) that the working hours of an employee are non negative integers
and in (A.9) that Yi takes only binary values.
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min TC = TC f i x +TC var (A.1)

s.t.
∑
i∈I

Xi j t ≥ d j t ∀ j ∈ j ,∀t ∈ T (A.2)

li t Yi ≤
∑
j∈Ji

Xi j t ≤ ui t Yi ∀i ∈ I ,∀t ∈ T (A.3)

l s
i Yi ≤

∑
t∈Ts

∑
j∈Ji

Xi j t ≤ us
i Yi ∀i ∈ I ,∀s ∈ S (A.4)

li Yi ≤
∑
t∈T

∑
j∈Ji

Xi j t ≤ ui Yi ∀i ∈ I (A.5)

TC f i x = ∑
i∈I

c f i x
i Yi (A.6)

TC var = ∑
i∈I

cvar
i

(( ∑
t∈T

∑
j∈Ji

Xi j t
)− li Yi

)
(A.7)

Xi j t ≥ 0 ∀i ∈ I ,∀ j ∈ J ,∀t ∈ T (A.8)

Yi ∈ {1,0} ∀i ∈ i (A.9)

Xi j t ∈N ∀i ∈ I ,∀ j ∈ J ,∀t ∈ T (A.10)



B
Proof model in this thesis is NP-hard

We prove that the model described in Section 4.1 is NP-hard by reducing the 3-partition problem to this
problem. We cite from Joosten [14]:"The 3-partition problem is a problem where one has to partition 3q num-
bers(allowing duplicates) into q groups of 3, such that each group has the same sum.". These numbers are all
positive integers.
It is a well-known fact that the 3-partition problem is NP hard. We consider our model with only three em-
ployee, which gives us 3t working hours to divided in groups of three. We set the parameters λ1 =λ3 =λ4 = 0,
λ2 = 1, fi = 1, ai t = 1, l s0 = 0 and us0 = usk =∞. We choose k = 0, which results in that (4.23) can be left out.
Because λ1 = λ3 = λ4 = 0 constraints (4.25)-(4.26),(4.29)-(4.32) can be omitted. Moreover, we choose dt = 0
which makes constraints (4.27) and (4.28) the same. The model now can be formulated as follows:

min n (B.1)

s.t. 1 ≤ coi t ≤ 1 ∀i ∈ I ,∀t ∈ T (B.2)

lci · cot ≤ Yi t ≤ uci · coi t , ∀i ∈ I ,∀t ∈ T (B.3)

0 ≤ Yi t ≤∞, ∀i ∈ I ,∀t ∈ T (B.4)∑
t∈T

Yi t = |T | · ci ∀i ∈ I (B.5)

n ≥ ∑
i∈I

Yi t ∀t ∈ T (B.6)

Vi t ,Yi t ,coi t ∈N ∀i ∈ I ,∀t ∈ T (B.7)

Constraint (B.2) state that coi t = 1. We substitute this in the model. Further, constraints (B.4) and (B.6) state
that Yt can take any value between 0 and ∞ causing that these constraints can be omitted. This results in the
following model:

min n (B.8)

s.t. lci ≤ Yi t ≤ uci , ∀i ∈ I ,∀t ∈ T (B.9)∑
t∈T

Yi t = |T | · ci ∀i ∈ I (B.10)

n ≥ ∑
i∈I

Yi t ∀t ∈ T (B.11)

Yi t ∈N ∀i ∈ I ,∀t ∈ T (B.12)

We consider each week as a group of three numbers, Yi t . Constraint (B.11) and the objective function state
that the minimisation of this sum. This minimisation causes that the sum for each week is as low as possible
and thus equal. The only problem in this prove is that the working hours Yi t are variable and not a given set
of numbers.
Additionally, consider a set of 3t positive integers, which can be divided in t groups three with a equal sum.
The sum of such a group is equal to n and thus described by constraint (B.11). Further, ci is chosen in such a
way that constraints (B.10) hold ∀i ∈ I and thus describes the model from Section 4.1.

35



36 B. Proof model in this thesis is NP-hard

If these comparisons where complete, this would have proven that the model described in Section 4.1 is NP-
hard. However, we still miss that a set of Yi t is given beforehand and constraints (B.10) can not be included
completely.



C
Python code

In this appendix, the python code is given, which is used for solving the initial MILP problem. This is done in
python with Gurobi.

from gurobipy import *
import time

#data inlezen
Data = "data1"
Input = open(’1000E52W’+Data + ’.txt’, ’r’)

DataAll = []
for line in Input:

DataAll.append(line)
Input.close()
print(Input)

DataC = []
dt = []
for line in DataAll:

line = line.replace(’;’,’ ’)
line = line.split()
if len(line) > 0:

if str(line[0]) == ’true’:
DataC.append(line)

if len(line) == 1:
try:

dt.append(int(line[0]))
except:

0

li = []
ci = []
ui = []
for line in DataC:

line[1] = line[1].replace(’,’,’ ’)
line[1] = line[1].split()
li.append(int(line[1][0]))
ci.append(int(line[1][1]))
ui.append(int(line[1][2]))
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ni = int(len(ci))
nt = int(len(dt))
A1 = []
for line2 in DataC:

if len(line2) < 3:
A1.append([])

else:
line = line2[2]
line = line.replace(’\n’,’’)
line = line.replace(’,’,’ ’)

line = line.split()
Aux = []
for letter in line:

Aux.append(int(letter))

A1.append(Aux)

ait = tuplelist()
for i in range(ni):

ai = []
for j in range(nt):

if j+1 in A1[i]:
ai.append(0)

else:
ai.append(1)

ait.append(ai)

fi = []
for i in range(ni):

if ci[i] == li[i] and ci[i] == ui[i]:
fi.append(0)

else:
fi.append(1)

start_time = time.time()
#parameters
l1 = 10
l2 = 100
l3 = 0.1
l4 = 0.2

#shift parameters
ls0 = 4
us0 = 9
ls1= 0
us1= 6
ls2= 0
us2 = 11
ls4 = 0
us4 = 20

#milp model
try:

m = Model("MILP")
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#variables ni employees, ntweeks
vit = m.addVars(ni , nt , vtype = GRB.INTEGER, name ="shifts")
coit = m.addVars(ni,nt,vtype=GRB.BINARY, name = "coit")
yit = m.addVars(ni , nt , vtype = GRB.INTEGER, name ="workinghours")
pit = m.addVars(ni , nt , vtype = GRB.INTEGER, name ="pit")
mi = m.addVars(ni , vtype = GRB.INTEGER, name = "mi")
qt = m.addVars(nt , vtype = GRB.INTEGER, name ="qt")
n = m.addVar(lb = 0,ub = GRB.INFINITY, vtype = GRB.INTEGER, name = "n")

#Set Objective
m.setObjective( l1 * quicksum(mi[i] for i in range(ni)) + l2 * n + l3 * quicksum(pit[i,t] for i in range(ni) for t in range(nt)) + l4 * quicksum(qt[t] for t in range(nt)), GRB.MINIMIZE)

m.Params.MIPGap = 10**-5
#Add Constraint :lci * fi < coit < ait
for i in range(ni):

for t in range(nt):
m.addConstr((fi[i]*ait[i][t] <= coit[i,t]), "coit0")
m.addConstr((ait[i][t] >= coit[i,t]), "coit1")

#Add Constraint :lci * ait < yit < uci *ait
for i in range(ni):

for t in range(nt):
m.addConstr((li[i]*coit[i,t] <= yit[i,t]), "c0")
m.addConstr((ui[i]*coit[i,t] >= yit[i,t]), "c1")

m.update()

for i in range(ni):
for t in range(nt):

m.addConstr((ls0*vit[i,t] <= yit[i,t]), "shifts uren lb")
m.addConstr((us0*vit[i,t] >= yit[i,t]), "shifts uren ub")

m.update()

for i in range(ni):
for t in range(nt):

m.addConstr(ls1 *coit[i,t] <= vit[i,t], "shifts per week lb")
m.addConstr(us1 >= vit[i,t], "shifts per week ub")

m.update()

for i in range(ni):
for t in range(nt-1):

m.addConstr((us2 >= quicksum(vit[i,j] for j in [t,t+1])), "shifts 2 weken ub")
m.addConstr((ls2 <= quicksum(vit[i,j] for j in [t,t+1])), "shifts 2 weken ub")

m.update()

for i in range(ni):
for t in range(nt-3):

m.addConstr((us4 >= quicksum(vit[i,j] for j in [t,t+1,t+2,t+3])), "shifts 4 weken ub")
m.addConstr((ls4 <= quicksum(vit[i,j] for j in [t,t+1,t+2,t+3])), "shifts 4 weken ub")

m.update()

for i in range(ni):
m.addConstr(fi[i]*quicksum(yit[i,t] - ait[i][t]*ci[i] + ci[i] for t in range(nt)) == fi[i]*ci[i]*nt, "contract")

m.update()

for i in range(ni):
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for t in range(nt):
m.addConstr(mi[i] >= (yit[i,t] - ci[i]*coit[i,t]), "m1")
m.addConstr(mi[i] >= (ci[i]*coit[i,t] - yit[i,t]), "m2")

m.optimize ()

for t in range(nt):
m.addConstr(n >= yit.sum(’*’,t) - dt[t], "n1")
m.addConstr(n >= dt[t]- yit.sum(’*’,t), "n2")

m.optimize ()

for i in range(ni):
for t in range(nt):

m.addConstr(pit[i,t] >= (yit[i,t] - ci[i]*coit[i,t]), "p1")
m.addConstr(pit[i,t] >= (ci[i]*coit[i,t] - yit[i,t]), "p2")

m.optimize ()

for t in range(nt):
m.addConstr(qt[t] >= yit.sum(’*’,t) - dt[t], "q1")
m.addConstr(qt[t] >= dt[t]- yit.sum(’*’,t), "q2")

m.optimize ()

for v in m.getVars():
print(’%s %g’ % (v.varName, v.x))

print(’Obj: %g’ % m.objVal )
except GurobiError as e:

print(’Error code’ + str(e. errno ) + ": " + str(e))
except AttributeError :

print(’Encountered an attribute error’)
Objec = str(m.objVal)
Time = str(time.time() - start_time)
print("%s" % (time.time() - start_time))

open("MILP250E52W.txt", "a").write(’\n’)
open("MILP250E52W.txt", "a").write(Data + ’ ,’+ Objec + ’ ,’ + Time)
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