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Abstract. First, an attempt is made towards gaining a more systematic understanding of
recent progress in multiscale modelling in computational solid and fluid mechanics. Sub-
sequently, the discussion is focused on variational multiscale methods for the compressible
and incompressible Navier-Stokes equations. Examples are given of the application of this
class of methods to a turbulent channel flow. Finally, multigrid methods, which can also
be conceived as a subclass of multiscale methods, are applied to fluid-structure interaction
problems.

1 INTRODUCTION

The basic idea of multiscale methods, namely the decomposition of a problem into a
coarse scale and a fine scale, has in an intuitive manner been used in engineering for many
decades, if not for centuries. Also in computational science, large-scale problems have been
solved, and local data, for instance displacements, forces or velocities, have been used as
boundary conditions for the resolution of more detail in a part of the problem. Recent
years have witnessed the development of multiscale methods in computational science,
which strive at coupling fine scales and coarse scales in a more systematic manner. Having
made a rigorous decomposition of the problem into fine scales and coarse scales, various
approaches exist, which essentially only differ in how to couple the fine scales to the
coarse scale. The Variational Multiscale Method proposed by Hughes and co-workers1−4

is a most promising member of this family, but for instance, multigrid methods can
also be classified as multiscale methods. The same conjecture can be substantiated for
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hp-adaptive methods. In this contribution we will give a succinct taxonomy of various
multiscale methods.

Next, we will briefly review the Variational Multiscale Method and we will discuss
VMM formulations for the compressible and the incompressible Navier-Stokes equations.
The formulation for compressible flow uses a spatial discretisation corresponding to a
high-order continuous Galerkin method, which due to its hierarchical nature provides a
natural framework for ‘a priori’ scale separation. The latter property is crucial. The
method is formulated to support both continuous and discontinuous discretisations in
time. The formulation for incompressible flow uses an approach where only resolved and
subgrid scales are distinguished, the latter being approximated analytically. Results will
be presented from both formulations applied to turbulent channel flow.

Finally, multigrid methods will be applied to fluid-structure interaction problems. The
basic iterative method for fluid-structure interaction problems employs defect correction.
The latter provides a suitable smoother for a multigrid process, although in itself the
associated subiteration process converges slowly. Indeed, the smoothed error can be rep-
resented accurately on a coarse mesh, which results in an effective coarse-grid correction.
It is noted that an efficient solution strategy is made possible by virtue of the relative
compactness of the displacement-to-pressure operator in the fluid-structure interaction
problem. This relative compactness manifests the difference in length and time scales in
the fluid and the structure and, in this sense, the multigrid method exploits the inherent
multiscale character of fluid-structure-interaction problems.

2 A TAXONOMY OF MULTISCALE METHODS

Multiscale methods have seen a tremendous development during the past years. Nev-
ertheless, only a limited number of attempts appear to have been made to review and
classify the various approaches. Notable exceptions are Brandt5, who focuses on solver
technologies, and Engquist6, who have developed a heterogeneous multiscale method as
a general framework. According to Bochev et al.7 the variational multiscale method in-
troduced by Hughes and co-workers1−4 can serve as a general framework for multiscale
methods. A more specific overview on variational multiscale method for laminar and
turbulent flows from has been presented by Gravemeier et al.8. In view of the above, it
was considered to be timely to develop a taxonomy for multiscale approaches, displaying
the necessary building blocks which are used for different applications and from some-
times very different view points. Before investigating the different classification aspects
in more detail, however, we will briefly discuss some examples of multiscale methods in
computational solid and fluid mechanics.

In the Discontinuous Enrichment Method9, the finite element method is enriched
with homogeneous free-space solutions, which represent the fine scales. Using a La-
grange multiplier technique, the fine-scale solutions are then weakly coupled to the large
scales. For laminar and turbulent flows two-level and three-level variational multiscale
methods10−12 are rapidly gaining popularity, as well as a newer variant of the variational
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multiscale method, the so-called New Variational Multiscale Method13. In the first appli-
cations of variational multiscale methods, the fine scales are represented by residual-free
bubbles10−12, whereas in the latter approach13 analytical expressions are used to account
for the influence of the fine scales on the large scales. It is emphasised that variational mul-
tiscale methods can be used in conjunction with various discretisation method methods,
for instance, finite element or finite volume methods.

There are four features in multiscale methods which are crucial for the distinction
between the different approaches: (i) the properties of the underlying physical problem,
(ii) the processing with respect to the spatial scale, (iii) the processing with respect to
the temporal scale, and (iv) the properties of the solver. Below we will discuss them in
greater detail.

Properties of the underlying problem. The underlying problem can be classified by
questions like: is it a problem described by different equations on different scales or may
one equation describe all relevant scales, how many scale levels have to be considered,
how strong is the coupling between the scales, is there a periodic microscale structure,
and is the fine scale information required locally or globally?

An example of a problem where the same set of equations describe the different scales is
turbulence. Indeed, the Navier-Stokes equations are able to capture all relevant scales of
Newtonian fluid flow, including the turbulent flow regime. On the other hand, Molecular
Dynamics approaches utilise very different equations than those used by finite element
methods for continua, and multiscale methods for coupling them, e.g. the Bridging Do-
main Method14, have a different character. Indeed, when, as in the latter case, such
different descriptions are used on both scales, one may be tempted to call this a multi-
physics problem, although in a strict sense it is not.

The question of how many scale levels have to be considered is often constrained by
the available computer power. So far, most problems are treated by a two-level approach,
whereas in turbulence simulations we encounter three-level approaches as well. In contrast
to, e.g., crack propagation in solids and structures, where the fine scale information is
required only locally, global fine-scale information is necessary in turbulent flows.

Spatial scale processing. The various approaches that address the processing of the
spatial scales can be distinguished by considering the following aspects: What kind of
discretisation is applied (coarse to fine, fine to coarse, or separate domains), how are
the fine scales represented, how is the inter-element continuity on the fine-scale and on
the large-scale levels taken care of, which are the assumptions on the boundaries of the
fine-scales, how is information passed between the scales?

Concerning the discretisation, the coarse-to-fine-approach departs from a large-scale
discretisation. The fine-scale information is evaluated either locally or globally in this
case. The Discontinuous Enrichment Method is believed to belong to this class. On
the other hand, the fine-to-coarse approach departs from a fine-scale discretisation from
which the large-scale representation is derived, e.g., in multigrid approaches like Discrete-
to-Continuum Bridging15, which has been used to couple fine-scale molecular dynamics
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Figure 1: Matrix that classifies spatial processing aspects of multiscale methods

to large-scale continuum mechanics.
On the large-scale level, most methods assume continuity between the individual ele-

ments, whereas on the small-scale level, for instance, the molecular dynamics approaches
are discontinuous. If the physical problem allows for assumptions on the small-scale
level, computationally efficient procedures may be developed, such as in the two-level
and three-level variational multiscale methods. Also for the communication between the
scales – a most essential part of multiscale methods, a wide variety of possibilities exists,
ranging from variational projection as in the New Variational Multiscale Method, to La-
grange multiplier methods as utilised in the Discontinuous Enrichment Method. Figure 1
attempts to classify the various aspects that relate to spatial processing.

Temporal scale processing. With respect to the processing of the temporal scales, we
distinguish between so-called concurrent, two-way coupled procedures and sequential, or
serial procedures. In the latter case, at a given moment in time, the fine scales and the
large scales can be treated independently, which contrasts with the first case. Another
aspect is the space-time coupling: is one framework used for the spatial dimensions as
well as for the time, or are they treated differently? Most methods discretise space and
time in different ways, a notable exception being the space-time finite element method.
One can further distinguish between methods which use the same time step on all scales
and methods that use subcycling, as, e.g., is done in the Bridging Domain Method14.
The matrix of Figure 2 attempts to display the relevant aspects of the processing of the
temporal scale.

Properties of the solver. Since all numerical methods, including multiscale methods,
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Figure 2: Matrix that classifies temporal processing aspects of multiscale methods

in the end require a linear system of equations to be solved, the connection of the solver
to the multiscale method is an important issue. Normally, the solver is not engaged in
the multiscale decomposition, although there are exceptions like Discrete-to-Continuum
Bridging. In this context the question arises whether the procedure is easy to parallellise.

The thoughts sketched above, preliminary as they are, can perhaps be considered as
a prototype scheme to compare various methods. This can help in the assessment of
different methods and to obtain a clearer view on differences and similarities between
(seemingly) different approaches. The structure may also allow for the identification of a
more general framework which is applicable to various fields of interest.

3 MULTISCALE METHODS FOR FLUID FLOW

Turbulence is characterised by a continuous range of scales which is normally too
broad to allow direct computation. In practice, however, it is often only the dynamics
of the largest scales which are of direct interest. In order to accurately compute their
behaviour, one must reproduce their interactions with smaller scales of comparable size.
These interactions are typically inviscid in nature, although their net effect is to transfer
kinetic energy to smaller scales.

Conventional techniques for large-eddy simulation of turbulent flows normally consider
a range of scales beyond those of interest, so that interactions with smaller scales are
adequately represented. To limit the distortion of small resolved scales by the absence of
interactions with unresolved scales, a dissipative model is normally added to the governing
equations. Such models remove energy from all resolved scales in order to account for the
energy transfer from the small resolved scales to the unresolved scale range.

Hughes3 pointed out that the variational multiscale method, originally developed to
provide a framework for subgrid-scale modelling and stabilisation, could be used to project
the unresolved-scale model onto the dynamics of the smaller resolved scales alone. Initial
implementations4 made use of global spectral discretisations in order to unambiguously
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separate the large and small resolved scales. Later, Jansen16 and Collis17 used finite-
element discretisations where scale separation was performed using a hierarchical basis.
Collis noted that Hughes’ original method could be interpreted as a three-level multiscale
method with different modelling assumptions for the large resolved, small resolved and
unresolved scales. An alternative form of scale separation has been pursued by Koobus
and Farhat18 who constructed larger resolved scales on unstructured meshes via element
agglomeration.

3.1 The three-level variational multiscale method

In this subsection we describe a three-level variational multiscale discretisation for the
compressible Navier-Stokes equations using space-time finite elements. Although explicit
time-integration methods are usually used for large-eddy simulation, implicit space-time
formulations are advantageous in that they allow the time step to be chosen based on
large-scale accuracy requirements rather than by stability restrictions imposed by the
small resolved scales.

The compressible Navier-Stokes equations in conservation form can be written as

U,t + Fi,i(U) − Fv
i,i(U) = S, (1)

where U = {ρ, ρu, ρe}T is the vector of conservative variables, ρ the fluid density,
u = {u, v, w}T the fluid velocity vector, e is the total energy per unit mass, Fi(U) are
the non-linear inviscid fluxes, Fv

i (U) are the viscous fluxes and S is the source vector.
Differentiation is implied with respect to variables after the comma. Introducing a trial
space Yn and a test space Wn, the variational formulation can then be stated as follows:
Find Y ∈ Yn such that ∀ W ∈ Wn

− (W,t,U(Y))
Qn

−
(
W,i,Fi(Y) − K̃ijY,j

)
Qn

+ (W, (Fi(Y) − Fv
i (Y)) ni)Pn

+ (W(tn+1),U(Y(tn+1)))Ωn+1

− (W(tn),U(Y(tn)))Ωn
= (W,S)Qn

. (2)

Here (, )Ωn
denotes the L2-inner product over region Ωn, Ωn is the spatial domain at time

tn, Qn is the portion of space-time domain between time levels tn and tn+1, and Pn is
the surface connecting the boundary of Ωn with that of Ωn+1. ni is the local space-time
surface normal vector. The viscous fluxes are expressed using diffusivity matrices K̃ij

such that Fv
i (U) = (K̃ijY,j),i. Equation (2) can be expressed compactly as:

B(W,U) = (W,S). (3)

To construct a variational multiscale method, a three-level decomposition of the trial and
test space is performed:

U = U + Ũ + Û, W = W + W̃ + Ŵ, (4)
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where the bar denotes the large resolved scales, the tilde denotes the small resolved scales
and the hat denotes the unresolved scales. To facilitate the separation of large and small
resolved scales, a hierarchical basis of Legendre polynomials is employed within each
element, see Munts19 for details. The equations for the resolved scale ranges are then

Large: B(W,U + Ũ + Û) = (W,S) (5)

Small: B(W̃,U + Ũ + Û) = (W̃,S) (6)

where for example, the large-scale equation can be expanded as:

B(W,U) + B′(W,U, Ũ) − R(W, Ũ) = (W,S)

−B′(W,U, Û) + R(W, Û) + C(W, Ũ, Û), (7)

where B′(W,U,U′) is the operator B(W,U) linearised about U for a linear perturbation

U′, and C(W, Ũ, Û) and R(W, Ũ) are generalised cross and Reynolds stress projections
onto the large scales.

It is assumed that interactions only occur between scales of like size, so that the
unresolved scale terms in the large-scale equation can be neglected. Furthermore, it
is assumed that the terms involving unresolved scales in the small-scale equation can be
replaced by a single model term. This results in:

B(W,U) + B′(W,U, Ũ) − R(W, Ũ) = (W,S) (8)

B′(W̃,U, Ũ) − R(W̃, Ũ) = −[B(W̃,U) − (W̃,S)] + M(W̃, Ũ) (9)

A simple constant-coefficient Smagorinsky model is used for M(W̃, Ũ). As this term is
projected only onto the small resolved scales, the magnitude of the Smagorinsky coefficient
must be increased beyond its standard value so that the amount of kinetic energy removed
from the system matches that normally removed by the unresolved scales. The scaling of
the coefficient is performed using the arguments of Lilly3,20.

By restricting the direct effects of the model to the small resolved scales, the three-
level method described above addresses the incongruency of applying a purely dissipative
model to the large scales of interest, whose dynamics are in reality dominated by inviscid
processes. In common with conventional large-eddy simulation techniques, however, the
three-level approach still requires a sacrificial range of small resolved scales, whose detailed
behaviour is not of direct interest, but whose computation requires significant effort.
Alternatively, the variational multiscale method can be used as a framework for developing
models which more accurately represent the true interactions of the unresolved scales,
with the objective of eliminating the need for a wide range of sacrificial scales. This is
the approach pursued in the next section.
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3.2 The residual-based variational multiscale method

In the three-level approaches, the subgrid scales are modelled by a subgrid viscosity
approach. Recently, Calo13 proposed a two-level approach for incompressible flow, where
only resolved and subgrid scales are distinguished. The subgrid scales are approximated
analytically based on experience with stabilised methods. In this procedure, no additional
artificial subgrid viscosity is introduced.

In conservative form the incompressible Navier-Stokes equations are given as

Lm(u, p) = u,t + ∇· (u ⊗ u) − 2ν∇· ε(u) + ∇p = f

Lc(u) = ∇· u = 0. (10)

where p is the kinematic pressure, ε(u) the rate of velocity tensor, ν the kinematic viscosity
and f a volume force. Lm(u, p) and Lc(u) represent the differential operators for the
momentum and the continuity equations, respectively.

For the variational formulation, trial and test function spaces are introduced, V and
W , respectively. A variational formulation of Eq. (10) amounts to finding: u, p ∈ V such
that

(w,Lm(u, p)) = (w, f)

(q,Lc(u)) = 0 ∀w, q ∈ W (11)

In the variational multiscale framework, the trial and the test function spaces are
decomposed as a direct sum of the function spaces, namely into resolved (...)h and subgrid
ˆ(...) scales. Both the large and the unresolved scale equations contain purely large scale,

purely fine scale, and mixed scale components:

(wh,Lm(u, p)) = (wh,Lm(uh, ph)) + (wh,Lm(û, p̂)) + (wh,∇· (uh ⊗ û + û ⊗ u
h)) = (wh, f)

(qh,Lcu) = (qh,Lcu
h) + (qh,Lcû) = 0 (12)

(ŵ,Lm(u, p)) = (ŵ,Lm(uh, ph)) + (ŵ,Lm(û, p̂)) + (ŵ,∇· (uh ⊗ û + û ⊗ u
h)) = (ŵ, f)

(q̂,Lcu) = (q̂,Lcu
h) + (q̂,Lcû) = 0. (13)

The idea behind this approach is that the subgrid scales contain all effects which are not
captured by the chosen discretisation. In large-eddy simulations of turbulent flow using
a finite element discretisation, this includes the physical turbulent subgrid scales as well
as numerical phenomena.

The idea of the residual-based variational multiscale large-eddy simulations is to use
the set of subgrid scale equations in order to approximate the subgrid scale velocity û and
the pressure p̂, i.e. the set of subgrid scale equations is actually not discretised and solved
for. Analytical approximations are derived instead, based on experience with stabilised
methods. By inserting these approximations for the subgrid scale fields in the set of large
resolved scale equations, a solution for the desired quantities uh and ph is found.
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The momentum part of the exact subgrid scale equations, Eq. (13), can be rewritten
as

(ŵ, û,t + ∇· ((uh ⊗ û) + (û ⊗ uh) + (û ⊗ û)) − 2ν∇· ε(û) + ∇p̂ + rh
m) = 0, (14)

where rh
m denotes the large scale residual

rh
m = uh

,t + ∇· (uh ⊗ uh) − 2ν∇· ε(uh) + ∇ph − f . (15)

Calo13 has shown different possibilities for analytical approximations for Eq. (14). The
simplest is to neglect the nonlinear terms ∇ · (uh ⊗ û) and ∇ · (û ⊗ û). Moreover, it is
assumed, that the subgrid scale pressure ∇p̂ is independent of the subgrid scale momentum
equation, i.e. it is exclusively determined by the subgrid scale continuity equation. It is
recalled that these assumptions only concern the subgrid scale equation. This limits the
influence of these assumptions on the large resolved scale in which we are interested.

Eq. (14) may be rewritten using the assumptions mentioned above

(ŵ,L
u

hû + rh
m) = 0. (16)

where the differential operator L
u

hx = x,t +∇· (x⊗ uh)− 2ν∇· ε(x) is introduced. Using
a fine scale Green’s function ĝ(x,y) for the adjoint operator L∗

u
h , Eq. (16) can be solved

for û.

û(y) = −(ĝ(x,y), rh
m(x))Ωx

(17)

As a result, the subgrid scale velocity is approximated by the negative inner product
of the subgrid scale Green’s function and the large scale residual. Unfortunately, there
exists no analytical expression for the subgrid scale Green’s function for the general case.
Some recent findings have been presented by Hughes and Sangalli21.

A well established approach1,2 is to introduce local, i.e. element Green’s functions
ĝe(x,y) as an approximation. In this case, homogeneous Dirichlet boundary conditions
are assumed at element boundaries which means that the mutual influence of the subgrid
velocities is confined to individual elements.

The element mean value of the element Green’s function is what the stabilisation
parameter τm, commonly used to stabilise the Navier-Stokes equations, approximates.
Thus, the integral operator

∫
Ωx

ĝe(x,y) is approximated by the algebraic operator τm,
turning Eq. (17) into

û = −τmrh
m (18)

The analytical approximation for the subgrid-scale velocity can now be inserted in the
large scale equations. Following the principles of stabilised methods the subgrid scale
pressure is approximated by

p̂ = −τcr
h
c = −τc∇· u

h (19)
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Eq. (12) contains purely large scale parts. After integration by parts, they can be
identified as the common Galerkin terms:

(wh,Lm(uh, ph)) + . . . = (wh, f)

(wh,u,t) − (∇wh,uh ⊗ uh)) + 2ν(ε(wh), ε(uh)) − (∇· wh, p) + . . . = (wh, f) (20)

(qh,Lc(u
h)) + . . . = 0

(qh,∇· uh) + . . . = 0. (21)

Integration by parts yields for the subgrid scale terms of Eq. (12):

. . . + (wh,Lm(û, p̂)) + (wh,∇· (uh ⊗ û + û ⊗ uh)) = . . .

. . . + (wh, û,t) − 2ν(∇· ε(wh), û) − (∇wh,uh ⊗ û + û ⊗ uh + û ⊗ û) − (∇· wh, p̂) = . . .(22)

. . . + (qh,Lcû) = . . .

. . . − (∇qh, û) = . . . (23)

The only term which is subsequently neglected in the large scale equations is the time
derivative of the subgrid scale velocity, which amounts to assuming quasi-static subgrid
scales. Inserting the approximations for the subgrid scale, Eqs (18) and (19), gives for
the subgrid scale terms of Eqs (22) and (23)

2ν(∇· ε(wh), τmr
h
m) + (∇w

h,uh⊗ τmr
h
m + τmr

h
m ⊗ u

h − τmr
h
m ⊗ τmr

h
m) + (∇· wh, τc∇· u

h)

2ν(∇·ε(wh), τmr
h
m)+(τmr

h
m∇w

h,uh)+(uh∇w
h, τmr

h
m)−(τ2

mr
h
m∇w

h, rh
m)+(∇·wh, τc∇· u

h) (24)

(∇qh, τmr
h
m) (25)

At this point the first, third and last term in the second line of (24) as well as the
continuity term in (25) can be identified as the stabilisation terms for the Navier-Stokes
equations22. They correspond to the case where the negative adjoint Navier-Stokes dif-
ferential operator is taken for stabilisation purposes, also known as unusual stabilised
finite element method (USFEM), or adjoint operator Galerkin least squares stabilisation
(AGLS). Additionally, two nonlinear terms arise which may be interpreted as the missing
cross stress and Reynolds stress term. As indicated above, there are several possibilities
to approximate the subgrid scale velocity and pressure in Eqs (22) and (23). The simplest
has been discussed here and will be used in the numerical examples of the next section.

3.3 Application to a channel flow

In this section, numerical results for the simulation of a turbulent channel flow at
Reτ = 180 are presented, using the approaches described above. The geometrical setup
is the same in all cases.
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3.3.1 Results for a three-level multiscale method

Results for the three-level VMM were computed with the space-time discretisation for
the compressible Navier-Stokes equations. The flow conditions were scaled such that the
maximum Mach number was less than 0.3. For the spatial discretisation, a continuous
hierarchical basis with linear and quadratic element modes was used on a 16×16×16 mesh.
The element geometries were stretched in the wall-normal direction using a hyperbolic
tangent function. A discontinuous discretisation was used for the time direction, with
linear interpolation and weak enforcement of the initial conditions. The resulting method
is third-order accurate in both space and time.

Figure 3 compares the mean streamwise velocity profile from a direct numerical simu-
lation (DNS)23, computed using a single-scale method (SM), a single-scale method with
van Driest damping (SMvD), and a variational multiscale method (VMM). For SM and
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SMvD, the unresolved-scale model is applied to all resolved scales, where for the latter
case the model coefficient is decreased in magnitude to zero as the wall is approached. In
the VMM, a constant-coefficient model is applied only to the resolved scales associated
with the quadratic modes. In all cases no additional stabilisation operators were used, in
order to limit dissipative mechanisms outside of the viscous and model terms. The SM
results for the mean profile differ substantially from those of the DNS. The SMvD results
are considerably improved, while the VMM results are virtually indistinguishable from
the DNS results.

Figures 4 – 6 compare the RMS velocity profiles for the spatial components of the
velocity fluctuations. The VMM results show marked improvement over their SM and
SMvD counterparts, in spite of the fact they require slightly less time to compute. Clearly,
the wall-normal and spanwise RMS components are attenuated significantly when the
dissipative model is applied to the unresolved large scales. This effect is reduced somewhat
when the model term is effectively eliminated close to the wall using van Driest damping.
In more general cases, a similar effect must be obtained via dynamic modelling in order to
achieve acceptable results. The VMM produces good results with a constant-coefficient
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model, however, and has in fact been found to be relatively insensitive to the value of the
coefficient. This result emphasises the benefit of scale-selective application of the model
for unresolved scales.

3.3.2 Residual-based multiscale method

In the residual-based approach a generalised-α time integration is used. The turbulent
flow originates from a disturbed laminar flow where the driving force is a constant pressure
gradient. In all three spatial directions the channel is discretised by 33 nodes. Hyperbolic
tangent mesh stretching is applied in the wall normal direction24.

Results for three different finite element basis functions and an AGLS-stabilised ap-
proach are compared with DNS results25 in Figures 7 – 10. In these figures VMM8 denotes
the residual-based VMM approach using linear basis functions (8-noded hexahedra), while
the acronyms VMM20 and VMM27 relate to the results obtained with 20-noded element
and with 27-noded elements, respectively. For the AGLS-stabilised approach (AGLS20),
a conservative formulation using the 20-noded serendipity element is utilised. This implies
that only the underlined terms are used in Eq. (24). This case provides us with a kind of
reference solution.

Concerning the computational cost, there is little difference between the residual-based
VMM approach and the AGLS approach, since the evaluation of the additional element
matrices for the VMM approach is cheap. In contrast, there are significant differences
between the cost for linear and quadratic elements. For linear elements, no expensive
second derivatives have to be calculated and moreover, the solution of the resulting linear
system of equations is cheaper than that of the quadratic elements.

In Figure 7, the normalised mean streamwise velocity u+
1 is displayed as a function of

the wall coordinate y+. A marked improvement is observed for the quadratic elements
AGLS20, VMM20, VMM27 in comparison with the linear elements VMM8. A comparison
of the results obtained using VMM8 and AGLS20 shows that elevating the interpolation
order has a more significant impact on the accuracy of the results than the inclusion of the
VMM model. Focusing on the quadratic elements, this plot shows that the residual-based
variational multiscale method yields results that are significantly better results than those
obtained with the classical stabilisation approach. These observations carry over to all
three spatial directions, see Figures 8 – 10.

4 MULTIGRID METHODS FOR FLUID-STRUCTURE INTERACTION

4.1 From multiscale to multigrid

To elucidate the relation between multiscale and multigrid methods, we consider the
canonical variational problem: find u ∈ U such that

a(u, v) = b(v) ∀v ∈ U , (26)
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where U is a certain function space, a : U × U → R is a bounded bilinear form and b :
U 7→ R is a bounded linear functional. For convenience, we have assumed the trial and
test spaces in (26) to be identical. Upon introduction of the partition U = Uh ⊕ Û into
complementary coarse and fine-scale subspaces, (26) can be recast into the multiscale
form1,2: find (uh, û) ∈ Uh × Û such that, simultaneously,

a(uh, vh) + a(û, vh) = b(vh) ∀vh ∈ Uh, (27a)

a(uh, v̂) + a(û, v̂) = b(v̂) ∀v̂ ∈ Û . (27b)

It is noted that if the (fine-scale) component û ∈ Û is given, the complementary (coarse-
scale) component uh ∈ Uh can be extracted from (27a).

Multigrid methods essentially consist of two operations, viz. a smoothing operation and
the coarse-grid correction. Denoting by Π : U → Uh the orthogonal projection from U
onto Uh, the fine-scale component û can be identified as the projection of the actual
solution u of (26) onto Û , i.e., û = u−Πu. The objective of the smoothing operation is to
provide an approximation ũ ∈ U such that its projection onto the orthogonal complement,
ũ − Πũ, is close to the projection of the actual solution, û. Upon replacing û in (27a) by
the approximation ũ − Πũ, we obtain the coarse-scale problem: find ũh ∈ Uh such that

a(ũh, vh) = a(Πũ, vh) + b(vh) − a(ũ, vh) ∀vh ∈ Uh . (28)

The approximate coarse-scale solution ũh is in turn used to correct the approximation ũ ∈
U according to ũ + ũh − Πũ.

To assess the convergence behaviour of the multigrid method, we note that the addition
of a suitable partition of zero to the coarse-scale equation (28) yields that the error ũ−u in
the post-smoothing approximation ũ induces a coarse-scale error ũh − uh ∈ Uh according
to

a(ũh − uh, vh) = −a
(
(I − Π)(ũ − u), vh

)
∀vh ∈ Uh , (29)

which implies that ‖ũh − uh‖U ≤ const ‖(I − Π)(ũ − u)‖U . This leads to the following
upper bound for the error in the approximation ũ + ũh − Πũ:

∥∥(ũ + ũ − Πũ) − u
∥∥
U

=
∥∥(I − Π)(ũ − u) + (ũh − uh)

∥∥
U

≤
∥∥(I − Π)(ũ − u)‖U + ‖ũh − uh

∥∥
U

≤ const ‖(I − Π)(ũ − u)‖U (30)

Hence, we obtain the fundamental corollary that if the post-smoothing error ũ − u can
be accurately represented in the coarse-scale space and, accordingly, ‖(I − Π)(ũ − u)‖U
is sufficiently small, then the multigrid method based on the splitting U = Uh ⊕ Û will
exhibit excellent convergence.

The smoother fulfills an essential part in the multigrid process. Further to the condi-
tions on its smoothing properties, the smoother should be feasible and computationally
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René de Borst et al.

0 10 20 30 40
−10

−8

−6

−4

−2

0

2

4

i

1
0
lo

g
‖
ũ
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Figure 11: Error ‖ũi−u‖U versus the iteration counter for the sequence of approximations {ũi} generated
by the two-grid method for a supersonic setting (left) and for a subsonic setting (right), and for (h, τ) =
2−l(2−2, 2−1), l = 1 (+), l = 2 (�), l = 3 (△) and l = 4 (◦).

inexpensive. In the context of multiscale methods, we note that the right member of (28)
represents the effect of the fine scales on the coarse-scale component uh, provided that
‖(I − Π)(ũ − u)‖U is small. Hence, the smoother in conjunction with the right member
of (28) can be conceived as a subgrid-scale model.

4.2 A partitioned smoother for fluid-structure interaction

To apply the above multigrid framework to fluid-structure-interaction problems, we as-
sume that u denotes the displacement of a fluid-structure interface. Moreover, we assume
that the underlying operator in (26) admits a splitting of the form a(u, v) = (v, Su+Pu)
where the operators S and P indicate a structural and a fluidic part, respectively, so
that (26) represents the equilibrium of tractions at the interface26. In particular, P repre-
sents the so-called displacement-to-pressure operator, which associates to each interface-
displacement field the pressure that is exerted by the fluid on the structure.

The basic iterative method for solving fluid-structure-interaction problems is subitera-
tion. Based on the aforementioned splitting of the operator, the subiteration method is
defined by the following defect-correction process: given an initial estimate of the interface
displacement u0 ∈ U ,

(v, Sui+1) = b(v) − (v, Pui) ∀v ∈ U (i = 0, 1, . . .) . (31)

It is to be noted that (31) constitutes a partitioned method, as the fluid (P ) and structure
(S) are treated separately.
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In specific cases it can be shown that P is relatively compact with respect to S, but
this property is believed to be generic for fluid-structure-interaction problems. Loosely
speaking, this relative-compactness property implies that the fluid-pressure fields PU form
only a small subspace of the admissible structure-load fields SU . This is connected to the
multiscale character of fluid-structure-interaction problems: in general, S is much more
sensitive to fine-scale components than P . Conversely, this means that S−1P effectively
eliminates fine-scale components. By adding a partition of zero to (31), we obtain the
error-amplification relation (ui+1−u) = −(S−1P ) (ui−u) and, hence, the defect-correction
process (31) yields an excellent smoother. In fact, it can be shown that on sufficiently
fine meshes, one iteration of (31) supported by a coarse grid-correction (28) renders the
error arbitrarily small.

To illustrate the effectiveness of the multigrid process, Figure 11 plots the error re-
duction obtained by one iteration of (31) followed by a coarse-grid correction from a
twice-coarser mesh for the panel problem, for a sequence of increasingly fine meshes26.
The left and right plots correspond to a subsonic and a supersonic setting, respectively.
The results clearly illustrate that indeed the convergence of the method improves as the
mesh is refined.

5 CONCLUDING REMARKS

A succinct overview has been given of multiscale methods in computational fluid me-
chanics and for fluid-structure interaction problems. Some recently developed variational
multiscale methods have been briefly elaborated for compressible and for incompressible
flows. Results have been shown for application to a channel flow. Finally, multigrid meth-
ods have been cast in the format of a multiscale method and their versatility for solving
fluid-structure interaction problems has been shown.
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