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Abstract

Recent studies have investigated the use of source code metrics to predict the
change- and defect-proneness of source code. While the indicative power of these
metrics was validated for several systems, it has not been tested on Service-Oriented
Architectures (SOA). In particular, the SOA paradigm prescribes the development of
systems through the composition of services, i.e., network-accessible components. In
one implementation of SOA which is very popular in industry, services are specified
using WSDL interface descriptions. Thus, service consumers are highly affected by
the changes performed on an evolving WSDL interface. This fact reveals the impor-
tance of assessing the change-proneness of interfaces in SOA.

This work aims at investigating the correlation between several cohesion and data
type complexity metrics and the change-proneness of a WSDL interface. We empiri-
cally investigate the correlation between the number of fine-grained interface changes
and complexity and cohesion metrics including a newly defined data type cohesion
(DTC) metric. Furthermore, we perform a manual analysis of the interfaces to gain
better insight to our conclusions. We performed these measurements on multiple ver-
sions of ten widely used, open-source WSDL interfaces.

Our results show that data type complexity expressed in number of nodes is an
appropriate metric to represent data type complexity but not sufficient to predict the
change-proneness of an interface. In addition, we investigate three other cohesion
metrics: LCOS, SFCI and SIDC presented in the literature and the newly designed
DTC metric. Our empirical study shows that among the tested metrics it is the DTC
cohesion metric that exhibits the strongest correlation with the number of fine-grained
changes performed in subsequent versions of WSDLs. Finally, based on the DTC
metric results about the cohesion in data types, we manually analyzed the examined
WSDLs and we conclude that highly referenced data types are less change-prone.
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Chapter 1

Introduction

This chapter presents the context of this study. It also presents the definition of the tackled
problem accompanied by the motivation of this work. Next we present a detailed analysis of
the research questions investigated in this project and an overview of the findings. Finally,
we provide information about the structure of this thesis.

1.1 Problem Definition

Evolution describes the process of gradual development of an entity from a simpler to a
more complex form over a period of time. The evolution term is widespread in several
domains. Species, cities, ideas, societies evolve over time in order to form more complex
structures. The evolution term carries a connotation of gradual improvement in order to
adjust to new environments. Different environmental factors affect the process of evolution
by making it more or less aggressive in terms of changes in time.

The interpretation of the term evolution in the context of software technology can be
approached by two views [2]. In the verbal view the software evolution is studied as an
activity that needs to be executed, controlled, managed and improved. This view focuses on
how a software system evolves. However, the nounal approach considers the evolution of a
software system as a phenomenon seeking its causes, measuring the impact and identifying
the characteristics of the evolved system. It is necessary to support both views which are
correct and complementary since both views try to achieve a better understanding of the
how and why aspects of software evolution [3]. In this study we affiliate the second view
of software evolution that helps the industry to address its concerns about efficient software
maintenance.

In general, the process of software maintenance and evolution involves high costs and
high implementation times for many newly developed systems [4]. Among these systems,
Service Oriented Architecture (SOA) is one of the most popular architectures for designing
web systems because it provides unique features like reuse of common logic with differ-
ent clients existing in different web environments (desktop, mobile and web applications).
Service oriented systems rely on open standards that are inter-operable across different com-
puting platforms [5].

1



1. INTRODUCTION

The process of SOA system evolution and maintenance is quite complex and challeng-
ing for two reasons [6]. First, the distributed nature of services, the parts of which can reside
in different servers and organizations makes the maintenance activities more complex. Sec-
ond, the design of service-oriented systems involves the challenge of designing high quality
stable interfaces. In addition, services evolve in order to address new requirements and fix
faults. But the service providers do not know the service subscribers a priori in order to as-
sess the impact of a change. Any changes performed on the service implementations and not
affecting the service interfaces are completely transparent to its subscribers. On the other
hand, the interfaces can be perceived as a contract between service providers and service
subscribers. If the interface introduces a breaking change in one revision, every subscriber
that uses this interface has to adapt his system.

The goal of this work is to investigate the relationship of data type complexity and
cohesion with the change-proneness of service interfaces. Interfaces with high number of
changes in future revisions are considered more change-prone. Our instinctive expectations
are that increased complexity and less cohesion leads to more change-prone interfaces. We
aim at studying the relationship between external interface characteristics (i.e. cohesion and
data type complexity) and the interface stability.

1.2 Research Context

DeMarco claims that “you cannot control what you cannot measure” [7]. Thus, metrics are
a very important medium to control system quality. Software metrics can be perceived as
the actual quantitative means to get feedback about the quality of a software system during
the implementation, maintenance or even design phase. There is extensive literature about
several software metrics which are used to evaluate the system characteristics that are related
to the evolution of a software system [8],[9]. Specific metrics for measuring the software
quality of SOA are slowly starting to appear in literature studies [10],[11],[12],[13].

Note that there are two types of web services: the web services which are based on the
HTTP and the REST (Representational State Transfer) protocol, and the SOAP services.
This study focuses on SOAP services which are based on Simple Object Access Protocol
which is a protocol specification for exchanging structured information. In SOA the service
provider creates a web service and describes its interface using Web Services Definition
Language (WSDL). Then the provider makes the WSDL of the service available to the
service registry (UDDI). The service consumers can select the best service that satisfies
their requirements selecting from those available in the UDDI.

For that reason the service consumers need to be able to choose the most stable services
and predict the cost and effort associated with adding such a dependency into their systems.
As described in the previous section, the goal of this work is to help the developers evaluate
the change-proneness of a WSDL interface. To be more specific, we examine the correlation
of several data type complexity and cohesion metrics with the number of changes performed
on a WSDL throughout its revisions. The data type complexity and the service cohesion
are the most important measurable external characteristics of the service interfaces because
they do not require implementation details in order to be measured. If we have an indication
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Research Questions

that there is correlation between any of these characteristics and the change-proneness of
a WSDL, developers can use this conclusion to decide about the change-proneness of a
WSDL interface.

In [14] the authors present three complexity metrics based on the tree-representation of
data types: the tree depth (Branching Factor), the Number of Nodes and the Tree Height,
but they do not provide any evaluation of the applicability of these metrics. In the literature
there are also several cohesion metrics: the Service Interface Data Cohesion (SIDC) [11],
the Lack of Cohesion in Service (LCOS) [10] and the Service Functional Cohesion Index
(SFCI) [10] that express the service cohesion.

Previous work by Romano and Pinzger [15] provides a tool called WSDLDiff to extract
fine-grained changes from subsequent versions of a web service interface defined in WSDL.
We use this work to extract the changes from the WSDLs and correlate them with the values
of the metrics.

1.3 Research Questions

The main question addressed in this work is:

“How can we distinguish the more change-prone web service interfaces?”

The answer to this research question are valuable to several actors involved in SOA archi-
tectures: software developers, managers and researchers. Our findings may interest service
developers and assist them in designing interfaces that are less change-prone but also man-
agers as service producers want to measure the quality of their services. In addition, the
service consumers, managers and developers, are very interested in selecting the most sta-
ble web-services for their system. This is a broad research question that can be discussed
further:

• RQ1: Which complexity metrics can be used to identify the change-prone WSDL in-
terfaces?
This research question aims to test the data type complexity metrics defined in [14]
with an empirical study and assess their relationship with the data type change-
proneness. Also we discuss the usefulness of these metrics to extract conclusions
about the change-proneness of WSDL interfaces.

• RQ2: Which cohesion metrics can be used to identify the change-prone WSDL inter-
faces?
The investigation of this research question aims to test cohesion metrics found in the
literature ([11], [10]) and evaluate their effectiveness. In the context of this research
question we also defined a cohesion metric named Data Type Cohesion (DTC) that is
based on data type cohesion and not on message cohesion like in the other examined
metrics. Another goal that is derived from the investigation of this research question,
is to analyze the change proneness of data types after characterizing them as highly
or rarely referenced.

3



1. INTRODUCTION

The research questions were investigated through an empirical study with analyzing ten
publicly available WSDL interfaces. We measured various metrics and we also extracted
the number of fine-grained changes using the WSDLDiff tool [15]. Then several hypotheses
were formulated and statistical tests were performed to validate them.

1.4 Contributions

Through this work we contribute the following:

• We found that there is correlation between the complexity metrics defined in [14] and
the change-proneness of data types. The Number of Nodes metric exhibits the highest
correlation with the number of changes compared to the other complexity metrics.
But the data type complexity is necessary in most systems, a fact that reduces the
importance of these metrics.

• We proposed a new service cohesion metric called DTC that exhibits substantial cor-
relation with the number of fine-grained changes performed on a WSDL.

• Our results show that two cohesion metrics LCOS and SFCI defined in [10] are not
suitable metrics for the examined systems because of the developers’ tendency to
define separate messages and data types for each service operation.

• Also we evaluate the SIDC defined in [11] with an empirical study. This metric does
not produce significant results for the examined data set.

• In addition, we examined the change-proneness of the data types in conjunction with
the number of times a data type is referenced. We concluded that the highly refer-
enced data types are less change-prone in future revisions.

• We further examined the highly referenced data types and we noticed that they are
used by the developers as “building blocks” to compose more complex and therefore
less reused data types.

In our data set we also observed that:

• developers are trying to maintain backwards compatibility in their interfaces by declar-
ing new elements as optional.

• in many systems there is at least one revision that involves major maintenance activity.

1.5 Structure

This report is split into seven chapters. The first Chapter starts with the introduction, which
describes the problem, the context of this work, the research questions, the goal, the con-
tributions of this work and the structure of this thesis. Chapter 2 provides background
knowledge in the research field related to this study: software evolution, SOA and metrics.
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Structure

Chapter 3 describes prior work conducted in SOA metrics and change-proneness analysis.
Chapter 4 describes the research framework, the metrics used in this work and our research
plan to examine the posed research questions. Chapter 5 discusses the project selection, the
tested hypotheses, the method followed to test them and the results of our empirical study.
Chapter 6 presents the answers to the research questions, the implications of the results and
potential threats to validity for this study. Conclusions and future work are discussed in the
final chapter.
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Chapter 2

Background Knowledge

In this chapter background information about the core notions of our study are provided.
Section 2.1 discusses the evolution of software systems. Section 2.2 provides background
knowledge about Service Oriented Architectures and their unique characteristics. Finally
Section 2.3 provides some information about the role of metrics in software development.

2.1 Software Evolution and Change-proneness

Software evolution refers to the dynamic behavior of the systems during maintenance phase.
Software evolution is becoming highly important as systems become longer lived [16].
However, anticipating change is not an easy task because there are many reasons why a
system evolve. For example a system may need to change because of changes in the under-
lying problem or in the background environment.

Lehman in 1980 firstly introduced a programs taxonomy in his effort to explain why
programs vary in their evolution properties. According to this classification three types
of programs are introduced: S, E and P type systems [17]. The well-specified systems
belong to the S-type category because their acceptance is based on the conformance with
the requirements. The problem is completely defined, and there are specific solutions known
beforehand. As Figure 2.1 shows, the problem solved by an S-system is related to the real
world which is always subject to change. Nevertheless, if the real world changes, the result
is a new problem that needs to be specified from scratch. On the other hand, the E-type
systems are those that involve high dependency and interaction with the real world. Since
the real world is dynamic these systems are exposed to evolutionary pressures which creates
the need to continually adapt them in order to remain consistent with their environment.
Figure 2.1 shows the changeability of an E-system and its dependence on its real world
context. Since the problem addressed in a E-type system can not be specified completely,
the system should be evaluated by its results under actual operating conditions. The third
category P (for problem) includes systems that cannot be fully specified and their design
is an iterative process that involves compromises from the stakeholders in order to reach a
practical solution. However, P category is not so wide-spread and other studies claim that
the P-type systems fulfill either the S or E-type categories criteria [18].

7



2. BACKGROUND KNOWLEDGE

Figure 2.1: S and E type systems [1].

Multiple studies over the 1970s and 1980s based on direct observation and measurement
of the evolutionary behavior of a variety of E-type systems, proposed eight laws listed in
Table 2.1 [17], [19], [20]. These laws have been empirically successively evaluated during
the FEAST 1/ and 2/ studies [21], [22] which were undertaken to further explore the evo-
lution phenomenon. However, it is important to stress that the use of newer programming
paradigms like object oriented, component and service oriented paradigms as well as newer
process approaches (e.g., open source, agile and extreme programming) introduce new sit-
uations and new factors affecting the evolution of the systems. Nevertheless, these laws
reflect the fact that as the systems grow in size and complexity, it becomes more difficult to
add new functionalities unless countermeasures are taken to re-organize the overall design,
this is generally accepted and adopted not only by the science community but also from
industry.

The Continuing Change law is very important because it verifies the continuous evolu-
tion of E-type systems. There are different types of changes performed in systems. Thus,
corrective maintenance is the process that involves changes related to error correction, more-
over, adaptive maintenance is the process which is triggered by a hardware or software up-
grade and the end product should be updated in order to preserve functionality. Preventive
maintenance refers to changes that occur for preventing reasons removing faults before be-
coming failures, finally, perfective maintenance refers to perfecting changes like comments

8
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No Brief Name Law
1 (1974) Continuing Change E-type systems must be continually adapted else they become

progressively less satisfactory in use.
2 (1974) Increasing Complexity As an E-type system is evolved its complexity increases unless

work is done to maintain or reduce it.
3 (1974) Self Regulation Global E-type system evolution processes are self-regulating.
4 (1978) Conservation of

Organizational Stability
Unless feedback mechanisms are appropriately adjusted, average
effective global activity rate in an evolving E-type system tends
to remain constant over product lifetime.

5 (1978) Conservation of Familiar-
ity

In general, the incremental growth and long term growth rate of
E-type systems tend to decline.

6 (1991) Continuing Growth The functional capability of E-type systems must be continually
increased to maintain user satisfaction over the system lifetime.

7 (1996) Declining Quality Unless rigorously adapted to take into account changes in the op-
erational environment, the quality of E-type systems will appear
to be declining.

8 (1996) Feedback System
(Recognized 1971,formu-
lated 1996)

E-type evolution processes are multi-level, multi-loop, multi-
agent feedback systems.

Table 2.1: The laws of Software Evolution.

and documentation update or clarification changes [23].
In this work we measure the change-proneness of systems as the number of fine-grained

changes between two revisions. These changes can have corrective, adaptive, preventive or
perfective role. In order to study the evolution behavior of an E-type system the nature of
changes should be analyzed. We focus on system characteristics like cohesion, complexity,
coupling and response time that can be perceived as triggers for future changes.

2.2 Service Oriented Architectures

There are different ways and architectures to create software systems. At the beginning
of the new century, a new model has emerged called Service Oriented Computing (SOC)
according to which services are the fundamental elements to develop new solutions on the
web. Recently, this model has become extremely popular.

The term “service” has been presented in industry for a long time and it has been used
in many different ways. According to Papazoglou [24] the services are computational el-
ements that support distributed applications. SOC is a technology that deals with services
and addresses the need of loosely-coupled, protocol-independent and self-describing ele-
ments. Another unique characteristic of services is that they are independent of the state or
the context of other services in their environment. Services can perform any function from
a simple request to complicate business process and allow organizations to expose their in-

9
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terfaces to Internet or intra-net using XML based open standards. The basic advantage of
SOC is that it enables software to run in distributed and heterogeneous computer platforms
and can be implemented using different programming languages. Furthermore, due to char-
acteristics of simplicity and interoperability, the web services also provide the opportunity
to be orchestrated in order to create larger and more complex business processes.

SOC relies on Service Oriented Architecture (SOA) to build a service model consisting
of interacting services. Many definitions for SOA are available in literature, some claim
that it is a technical approach that provides the tools to integrate multi-discipline platforms
and promotes the reusability in business tasks [25]. Some others give a broader aspect like
in the OASIS reference model [26] which claims that SOA is a design style that “organizes
and utilizes distributed capabilities that may be under the control of different ownership
domains”. In general the idea of SOA departs from object oriented programming which
suggests that data and its business logic should be bound together [27]. In this work we
perceive SOA systems as a subset of E-type of systems that follow the laws of software
evolution defined in Table 2.1.

SOA is an architectural paradigm and therefore many implementations of it are possible.
In this work we examine the SOA architectures which are implemented using web services.
According to W3C1:
“A web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the web service in a manner prescribed by
its description using SOAP messages, typically conveyed using HTTP with an XML serial-
ization in conjunction with other web-related standards.”

A web service is implemented by a service provider according to the requirements of
service consumers. It consists of a contract, one or more interfaces and an implementation.
The web service provider is using the Web Services Description Language (WSDL2) that
describes the provided service and the invocation methods and then the service is regis-
tered in a public service registry using the Universal Description Discovery and Integration
(UDDI). Service clients can discover the desired services in the registry and obtain a URL
to a WSDL. Finally the clients can implement applications that invoke the selected web ser-
vices according to the defined WSDLs, using an XML-based object access protocol called
Simple Object Access Protocol (SOAP). The call can be performed in either asynchronous
messaging or using remote procedure call (RPC) event driven mode. The general web ser-
vices model is illustrated in Figure 2.2.

According to WSDL, a service is defined as a collection of network ports in a WSDL
document. A port is defined by associating a network address with a reusable binding and a
collection of ports define a service. Thus, a WSDL document uses the following elements
in order to describe services:

• Types: the container of data type definitions which are using some type system like
XSD.

• Message: a description of the data being communicated.
1http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
2http://www.w3.org/TR/wsdl
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Service Oriented Architectures

Figure 2.2: The web services model.

• Operation: a description of the actions provided by this service.

• Port Type: a set of operations supported by an endpoint.

• Binding: specification of the protocol and data format for a particular port type.

• Port: a single endpoint defined as a combination of a binding and a network address.

• Service: a collection of related endpoints.

It is important to note here, that WSDL does not introduce a new type definition language
but supports the XML Schemas specification (XSD3) as a rich type system for describing
messages.

Analyzing and dealing with evolution of web services in SOA is a challenging task due
to the distributed nature of services [28]. According to the SOA model the service provider
may not know a priori the service clients and for that reason the WSDL interfaces are
considered as contracts between the two parts. For this reason there is a major requirement
for interfaces stability [29]. In addition, the web services are constantly evolving in order
to address new requirements, improve performance or fix errors [15].

3http://www.w3.org/XML/Schema

11
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2. BACKGROUND KNOWLEDGE

SOA focuses on exposing business-relevant functionality to end-user applications or
other services and tries to achieve an increased level of decoupling of interfaces and imple-
mentation. A crucial factor in the development of services is the quest for the right degree
of abstraction. There are several principles that help to achieve the goals of SOA [29], [30],
[31], [32]:

• Reusability: The ultimate goal of services is their reusability by multiple clients in
order to decrease the cost and improve flexibility.

• Loose coupling: Services should have low number of inter-dependences.

• Service cohesion: Developers must thrive to create services which serve one specific
business goal with elements which are highly connected. The services with high
functional cohesion are low coupled and highly reusable.

• Composability: Several services can be orchestrated to implement more complex
business goals.

• Abstraction: The services hide their internal logic and communicate with their envi-
ronment using their interface.

• Autonomy: Services have the complete control of the business logic they implement.

• Discoverability: Services are designed in a descriptive way so that they can be dis-
covered and assessed by service consumers.

• Statelessness: Services are designed in order not to store activity specific information.

These principles are mostly prescriptive and there has been little work to be quantitatively
measured in practice. In this work we try to assess the stability of service interfaces by ex-
amining the cohesion and data type complexity of service interfaces. These characteristics
are measured using WSDL interface specific metrics.

Papazoglou [28] classifies the nature of changes performed in services based on the
effects they cause:

• Shallow changes: the effects are restricted to a single service and the clients of that
service.

• Deep changes: require that a business process that contains multiple services, be
redefined completely.

In this work, we aim at correlating the shallow changes performed single web service inter-
faces (WSDLs) with specific interface characteristics like data type complexity and service
cohesion.

12
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2.3 Metrics

Quantitative measurements are essential to software development as to all sciences. Soft-
ware metrics have an important role in the state-of-the-practice in software engineering [33].
A software metric can be defined as a measure of some property of a system or its specifi-
cations [34]. Metrics have been adopted by several companies in order to better understand,
control and assess software products and processes. Software metrics are used to obtain
objective reproducible measurements that can be useful for quality assurance, performance,
debugging, management, predicting defective code and estimating costs. There are different
types of metrics used in industry like product metrics, process metrics, and project metrics.
In this work we focus on metrics related to software product quality.

It is important to firstly identify what to measure on a system and secondly to take the
correct measurement and then collect the data and extract knowledge. Measurement tech-
nology is a separate discipline in software technology [35]. Every measurement procedure
results in a measurement scale for the property that is being measured. The different scales
can be grouped to several categories: nominal scales are employing semantic expressions
to identify objects, typological scales are used in order to categorize already identified ob-
jects, ordinal scale measurement involves the value assessment already measured entities,
interval scale is used for perceiving increments, ratio scale permits ratio calculation with
rational zero reference point and finally the absolute scale is the most unambiguous scale
which is unique like counting lines of code.

In the software technology field, there are software engineering processes that play the
role of software measurement instruments. There is a variety of tools mostly automated
to track data about the software quality like: observation, estimation, review, test, track-
ing and monitoring, audit, data collection tools, survey forms, assessment questionnaires,
experiments, logs etc. It is important to note here that classically every measurement may
introduce noise which distorts the actual information. This noise can be created from mea-
surement errors, low accuracy or precision.

Moving from measurements to metrics is like moving from observation to understand-
ing. Metrics should be designed in such a way that they reveal a chosen characteristic in a
meaningful manner. There is a further classification of the software metrics to internal and
external aligned with internal and external quality as suggested in ISO 9124 standard [36].
External metrics are computed by measuring the quality of the system in production phase;
internal metrics on the contrary are measured during development phase as a comparison of
the required functionality and implemented at a certain time.

Software metrics can be further classified according to the type of their measurement so
in that way there is direct, indirect/derived and prediction measurement. Direct measure-
ment always involves an absolute number providing no further knowledge like the number
of lines of code. From the other side, indirect/derived measurement is usually a ratio or
another number that is derived from an arithmetic operation on one or more metrics like
defect density which is the number of defects divided by the total size of software. Finally
there is another category that involves prediction for the future like effort prediction in agile
methodologies. Another interesting point is that metrics should be designed uniquely for
every system in order to be applied directly to the system environment and the needs of
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users.

2.4 Summary

This chapter presented some general knowledge for our study. According to Lehman soft-
ware systems can be classified into S- and E- type based on their evolution activity. The
S-type systems are well specified with known solutions at the development time. E-type
systems involve high dependency and interaction with the real world. Also, Lehman for-
mulated the law of continuous evolution for the E-type of systems. Systems developed
using SOA can be classified as E-type systems because they usually provide solutions for
real world problems and they involve high interaction between several actors. For every
actor involved in SOA, it is important to investigate the stability of SOA interfaces. Service
providers want better quality interfaces and subsequently less maintenance effort. On the
other hand, service consumers desire stable interfaces. Software metrics is an important
medium in the process of investigating the change-proneness of software. There are differ-
ent types of metrics depending on the type of measurement and the development phase in
which can be computed. In the next chapter we present related with our study work in SOA
metrics and system evolution.
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Chapter 3

Related Work

This chapter summarizes related work on SOA metrics and the system’s change-proneness.
It presents a number of tools and approaches about metrics specialized for SOA and evo-
lution analysis in software systems. Each of the studies presented in this section is accom-
panied by a short description of the approach and the validation technique. Section 3.1
presents work on SOA metrics. Section 3.2 discusses work on change-proneness analysis
in general and for SOA.

3.1 SOA Metrics

There is a variety of metrics in literature some of which apply in all types of systems like
Source Lines Of Code (SLOC) metric and some others which are specialized for specific
types of systems like SOA. The design of SOA is guided by a set of principles that help in
achieving the goals of SOA. These principles have been well-documented in the literature
[29], [30], [31], [32] and include notions of cohesion, coupling, reusability, composability,
granularity, statelessness, autonomy, abstraction and so on. In the below sections metrics
for service complexity, coupling, cohesion, granularity and reusability of SOA will be pre-
sented.

3.1.1 Service Complexity

Measuring the complexity of software is an important branch in software technology field.
Based on complexity metrics developers can assess the developed modules and predict the
maintenance effort. There are some traditional complexity metrics such as Lines Of Code
(LOC), external coupling, and decision points such as McCabe’s Cyclomatic Complexity
[37]. All of these metrics require to know the system implementation something impossible
in SOA from service consumer’s perspective.

Thi et al [14] proposed a set of metrics to evaluate the complexity of WSDLs. These
metrics are based on the complexity involved in data types. They represent the data types
as trees and they measure tree characteristics like tree height, branching factor and number
of nodes. In this work there is only theoretical validation of the metrics with no empirical
study in real life systems. In terms of practical perspective, they conducted a case study
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and the results obtained from their metrics are compared to the results of other proposed
metrics.

3.1.2 Service Cohesion

In all types of systems, cohesion measures the degree to which the elements of the system
belong together [38]. This definition is quite generic and can be applied to different types
and levels of encapsulation like module, class, component or service with the necessary
adaptations. High cohesion provides designs which can be better tested, have better sta-
bility and eventually are better maintainable [36]. Three metrics measuring this attribute
are discussed in this section: Service Interface Data Cohesion (SIDC), Lack of Cohesion of
Service Operations (LCOS) and Service Functional Cohesion Index (SFCI).

Service Interface Data Cohesion (SIDC)

Perepletchikov et al. [11] analyzed the impact of service cohesion in the analyzability
attribute of service oriented systems. In this work the cohesion notion, as known from
procedural and object oriented paradigms, is extended to encapsulate the characteristics of
SOA. He proposed eight semantic categories of service cohesion:

• Coincidental: a service contains operations which do not have any semantically mean-
ingful relationships.

• Logical: the service operations provide common functionality such as, for example,
data update or retrieval.

• Temporal: the service operations provide common functionality performed within a
predefined time period.

• Communicational: the service operations share the same data abstractions.

• External: all the service operations are used by external service consumers.

• Implementation: the operations of a service are implemented using the same imple-
mentation elements.

• Sequential: the operations of a service are sequentially connected via input and output
values.

• Conceptual: the operations of a service serve a common business functionality.

A metric is developed to capture the different cohesion types named Total Interface Co-
hesion of a Service (TICS) and it is a combination of three other metrics: Service Interface
Data Cohesion, Service Interface Usage Cohesion and Service Interface Implementation
Cohesion defined in the same work. This metric presents an overall service cohesion based
on how related are the operations exposed in a service interface. The evaluation of the the-
ory is done in a small scale controlled experiment with user participants who are trying to
complete several tasks related with the analyzability of the system. A weak point is the
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small scale of this experiment, the subjectivity involved from the participants whose knowl-
edge depth is not defined as well as the tasks construction for which there is no in-depth
explanation on how appropriate are.

Lack of Cohesion of Service Operations (LCOS)

Two different variants of the Lack of cohesion in methods LCOM metric [34] are defined
by Sindhgatta et al. [10]: LCOS1 according to which pairs of operations that do not contain
similar messages are non-cohesive and LCOS2 that if an operation uses all the messages
then it is cohesive. The LCOS1 has low discrimination power because of it is not normalized
and tends to classify most of the services highly cohesive. On the other hand, LCOS2 is
increasing sharply with the increase in the number of operations and therefore most services
are not cohesive because increasing the number of operations it becomes impossible a single
operation to use all messages.

Service Functional Cohesion Index (SFCI)

The shortcomings of the LCOS metric drove Sindhgatta et al. to create the SFCI metric.
This metric is a value between 0 (non-cohesive) and 1 (perfectly cohesive) and indicates
a highly cohesive service if all the operations use one common message. The idea behind
this is that cohesive services should operate based on a small set of messages relevant to
the service. In order to compute this metric authors proposed to extract utility messages
(operations inputs/outputs and their data types) from the code to avoid further noise in the
metric calculation.

3.1.3 Service Coupling

The second characteristic of SOA is the service coupling which measures how strong the
dependencies are and the associations between services and their messages. The service
coupling is investigated under the SOA context by Perepletchikov et al. [12]. In this study
the coupling concept as known from OOP, is redefined in order to be applied to SOA. The
authors define nine coupling metrics related to the implementation elements of a service
assuming different weights for relationships between elements. The element level metrics
are designed in such way to cover the three different types of coupling connections between
services:

• Intra-service: dependencies coming from elements belong to the same service.

• Indirect extra-service: dependencies between elements of a service and an interface
of another external service.

• Direct extra-service: dependencies coming from implementation elements of two
different services.

Finally an aggregation of these metrics is used to define coupling at the service level.
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The authors in a later work [39] conducted a controlled experiment to assess the the-
oretically validated metrics’ impact to maintainability. The weakness of this work is that
the artifacts used by metrics are analysis of classes, sequences and collaboration diagrams
which are not always available.

On the other hand, Sindgatta et al. [10] defined except from coupling coming from the
direct dependence of a service on another service, the indirect reference on its messages.
Accordingly, they propose the Service Message Coupling Index metric in order to quantify
the message coupling. In this theory, messages are coupled when operation input messages
are processed and then are returned as outputs according to the interface as well as additional
messages needed in other service operations invocations.

3.1.4 Service Reusability

The success of SOA architecture is highly dependent on the reusability of the services which
should be designed to enable its usage by multiple consumers. Service composition is highly
related with reusability and it is a process of composing a system using several services in
order to provide specific functionalities. Sindhgatta et al. [10] proposed the Service Reuse
Index (SRI) metric for measuring the number of consumers of a service and the Operation
Reuse Index (ORI) for measuring the consumers of a specific operation. Finally, the Service
Composability Index (SCOMP) metric is defined based on the number of compositions to
which a service participates distinguishing between predecessor and successor services of
the given service.

Choi et al. [13] also described metrics to evaluate both atomic and composite services
reusability. Firstly, they define reusability as the degree that a service can be reused without
much effort and then they identify five main attributes related to services reusability:

• Business commonality: it measures the degree that a functionality (or non-functionality)
of a service is commonly used by the consumer.

• Modularity: it measures the extent that a service provides functionality without rely-
ing on other services.

• Adaptability: it evaluates the capability of the service to adapt to different consumers.

• Standard Conformance: it describes the degree that a service confronts with widely
accepted industry standards.

• Discoverability: it assesses how easily the service can be found by the service con-
sumers matching their requirements.

For each of these attributes a metric is designed to measure their existence and the resulting
formulas has been combined to a unified reusability quality model. However, the discussed
metrics require more information than what is provided in the service designs and can be
computed only if you know implementation details.
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3.1.5 Service Granularity

Another characteristic of SOA is the service granularity which refers to the amount of func-
tionalities encapsulated in a service. Service granularity is closely related to reuse and
composability and in that sense a coarse grained service should ideally provide some dis-
tinct functions with large number of consumers. As it is described in [29] there are two
kinds of granularity: capability and data granularity. Capability granularity is based on the
service functionality and data granularity refers to data used to provide this functionality.

Two metrics are defined by Sindhgatta et al. [10] following this classification: the Ser-
vice Capability Granularity (SCG) and Service Data Granularity (SDG). SCG is described
based on the number of operations of the service and SDG is calculated based on the number
of messages exchanged by these processes. For these metrics higher values mean coarser
granularity. In the same work the authors are reasoning that small fine-grained operations
will be the result of high granularity. This forces the service consumer in order to exe-
cute a complicated business process to call multiple operations which is also increasing the
number of exchanged messages. For this reason the Process Service Granularity, Process
Operation Granularity and Depth of Process Decomposition metrics are defined for every
business process.

Xiao [40] presents a granularity metric which is based on the mutual information content
of service operations and their usage occurrences. This metric groups operations that are
used together into a single service. In order to show the applicability of this metric, they
perform a small scale case study with no empirical evaluation.

3.2 Change-Proneness Analysis

Over the last decades, researchers developed many tools to analyze the changes performed
in software systems in their attempt to investigate the causes of system’s evolution [41],
[42], [43]. Xing et al. [42] present a tool called UMLDiff to detect structural changes
among UML5 design diagrams for Object Oriented Systems. This algorithm produces as
output a tree of structural changes that reports the differences between the two designs in
terms of additions, removals, edits, moves and renamings performed in classes, packages,
fields methods and dependencies. Tsantalis et al. [43] present a tool called WebDiff which
is a web-based and generic differencing service, designed to support the comparison of
various types of software artifacts (e.g. source code, uml diagrams in several versions).

Fluri et al. [44] proposed a tree differencing algorithm for fine-grained source code
change extraction. The input of this algorithm is abstract syntax trees which are compared.
The result is the number of changes and a minimum edit script that can transform one tree
to the other. This tool uses the bigram string similarity to match the several source code
statements like method invocations and the subtree similarity of Chawathe et al. [45] to
match source code structures like loops and if statements. Romano et al. [41] empirically
investigate the correlation between several metrics and the number of fine-grained source
code changes in Java interfaces. The number of changes is extracted from the various source
code revisions of each examined file using the ChangeDistiller provided by Fluri et al.
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As it is mentioned in the previous chapters, in SOA systems understanding and coping
with changes is even more important because of the nature of the services [28]. In Chapter
2, services are classified as E-type of systems because they are very dependent on their
surrounding environment that involves high communication between actors. On the other
hand, service clients desire stable interfaces in order to avoid extra maintenance effort.

Fokaefs et al. [6] analyzed the evolution of web services using a tree-alignment al-
gorithm called VTracker. This algorithm is based on the Zhang-Shashas tree-edit distance
[46] algorithm, which calculates the minimum edit distance between two trees taking into
account different costs for every edit operation (insert, delete, change). In an earlier study
[47], this algorithm had also been applied in web-service specifications. VTracker rep-
resents WSDLs with an intermediate XML representation to reduce the verbosity of the
WSDL language. To be more specific, this algorithm replaces the data type references with
the data types themselves. The output of their analysis is the percentage of added, changed
and removed elements between subsequent versions of WSDL interfaces. They also per-
formed an empirical study in open source WSDL interfaces to show that VTracker is a
helpful tool in evolution analysis of WSDLs.

Romano et al. [15] proposed the WSDLDiff tool to extract fine-grained changes from
subsequent revisions of WSDLs. They use the Eclipse Modeling Framework (EMF) to
compute changes between WSDL models. The main differences with the Fokaefs’ work
are that they take into account the syntax of WSDL and XSD and they do not replace
references with the actual types avoiding multiple times detection of the same changes. In
addition, they report the types of elements affected by the changes (e.g. operation, message,
type) and the type of change in greater detail (e.g. element move, attribute value update,
type addition).

Wang et al. [48] analyze the evolution of dependencies among services using an im-
pact analysis model. In this work, they construct the intra-service relation matrix for each
service and the extra-service matrix each pair of services. In that way they calculate the
impact effect caused by a change in a specific service. The defined matrices support ser-
vice changes like additions, deletions and modifications. In addition, Aversano et al. [49]
present an approach, based on Formal Concept Analysis, to understand how the relation-
ships between two sets of services evolve. They used the concept lattice notion to classify
the services based on their relationships. As the service evolves, the service relationships
are also changing and thus position of the service in the lattice changes. In that way, changes
in the service and its relationships are identified.

There are several approaches to classify the changes performed in service interfaces.
Feng et al. [50] and Treiber et al. [51] propose to classify the changes performed in web
services based on their impact to the different stakeholders (e.g. developers, providers,
brokers, end users, service integrators) who interact in services ecosystems.

3.3 Summary

In this chapter we presented prior work performed in metrics specialized for SOA and
change-proneness analysis. SOA metrics can be classified based on the principle they serve.
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Summary

Thus, we present metrics to measure the complexity of a web service interface, the cohesion
of its elements, the coupling between services, the reusability and granularity of a service.
Most of the presented metrics lack of a proper empirical evaluation in real life systems. The
metrics for service complexity and cohesion will be discussed in further detail in the next
chapter since they are empirically evaluated in our study.

In the literature, there is a variety of tools to analyze the changes performed in several
revisions of software components. The WSDLDiff tool will be discussed further in the next
chapter because it is a part of our system to extract fine-grained changes from subsequent
revisions of WSDLs.

21





Chapter 4

Research Framework

The goal of this work is to investigate the relationship between several software metrics
and the change-proneness of WSDL interfaces. This chapter describes and explains the
steps of our research approach. Section 4.1 provides a schematic overview of our research
framework. Then, every step is described in detail: Section 4.2 refers to the tested metrics,
Section 4.3 gives details about the process of changes extraction and Section 4.4 describes
the tools used to perform the correlation analysis.

4.1 Overview

Figure 4.1 shows an overview of the approach used in studying the change-proneness of
service interfaces. Our plan consists of three major steps. The inputs for our study are
subsequent versions of WSDLs originating from the same web services. The first step is
to measure the data type complexity and cohesion metrics described in Section 4.2 in each
WSDL revision. Next, we measure the number of fine-grained changes between subsequent
revisions of WSDLs. Then, we use the WSDLDiff tool in order to analyze the changes be-
tween two revisions as it is described in Section 4.3. Furthermore, we refine information
coming from these two steps according to the type of the tested hypotheses and then we
combine the results into one unified comma separated file (csv). This file contains informa-
tion that differs depending on the examined hypotheses. It has variables for each revision
like several metrics values, the number of changes in each revision with the next one or
the number of all future changes performed in a WSDL. This csv file is used as input for
the correlation analysis. The correlation analysis is performed in order to test the correla-
tion between variables according to several hypotheses described in the next chapter. The
correlation tests reports the estimate of the correlation (rho) and the significance of the
test (p-value). From these results we can conclude about the acceptance of the examined
hypotheses.

The first two steps are implemented as plugins of the Eclipse development platform
using the Eclipse Modeling Framework1 (EMF). EMF is a modeling framework that helps
developers to build tools and other applications using a structured data model and code

1http://www.eclipse.org/modeling/emf/
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generation facilities. This framework provides tools to produce a set of Java classes from
a model specification as well as a set of adapter classes which enable model viewing and
editing. Following the EMF the developers describe the models using some Eclipse meta-
models called Ecore. The WSDLDiff tool which is used to extract the fine-grained changes,
is implemented as Eclipse plugin based on EMF and the metrics computation is added as
extension to this plugin.

The correlation analysis is performed using the R software environment [52]. R is a
high-level language and R sudio is an environment for data analysis and graphics. The R
language is very popular among statisticians and data miners for developing statistical soft-
ware and data analysis. It supports a wide variety of statistical and graphical techniques
like linear and nonlinear modeling, classical statistical tests, classifications and clustering.
In this work we used the Spearman’s rank correlation test for statistical dependence imple-
mented natively in R environment.

Figure 4.1: Overview of our research plan about the change-proneness of web service inter-
faces.

4.2 Metrics Computation

The computation of the metrics consists of a three step process. First, several versions
of WSDLs coming from selected projects are imported to eclipse platform. The met-
rics are computed in every revision of a WSDL. Thus, every WSDL is parsed using the
org.eclipse.wst.wsdl and org.eclipse.xsd frameworks. The output of this stage is an EMF
model that represents the original WSDL file. In the next stage, we extract information
from the EMF model about the data types, messages and the operations defined in a ser-
vice interface. We compute two types of metrics described in the below sections: data type
complexity and service cohesion metrics.
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4.2.1 Data Type Complexity Metrics Computation

As mentioned in Chapter 2 the WSDL file provides information about data types used in a
web service. These data types can be XSD types or complex types. For each type element
we build a tree structure that represents the data type. Every tree node contains information
about the name and type of the node. If a child node represents an XSD type, then it
is a leaf node. On the contrary, if a child node represents a complex type then it is a
root node of the sub-tree of that type. This process is performed recursively for all types
defined in the WSDL. In Listing 4.1 below you can see some data types declared in FedEx
ShipService (they have been truncated for demonstration purposes) and Figure 4.2 shows
the corresponding data type tree. In case of recursion, ie a complex type A has a reference
to another complex type B which has a reference to type A, we stop the recursion and we
do not count the extra nodes.

Listing 4.1: Example of types definition in FedEx ShipService
<xs:complexType name=”ProcessShipmentReply”>

<xs:sequence>
<xs:element name=”HighestSeverity” type=”ns:NotificationSeverityType”/>
<xs:element name=”Notifications” type=”ns:Notification” maxOccurs=”

unbounded”/>
<xs:element name=”TransactionDetail” type=”ns:TransactionDetail” minOccurs

=”0”/>
<xs:element name=”Version” type=”ns:VersionId”/>

</xs:sequence>
</xs:complexType>
<xs:simpleType name=”NotificationSeverityType”>

<xs:restriction base=”xs:string”>
<xs:enumeration value=”ERROR”/>
<xs:enumeration value=”FAILURE”/>
<xs:enumeration value=”NOTE”/>
<xs:enumeration value=”SUCCESS”/>
<xs:enumeration value=”WARNING”/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name=”Notification”>

<xs:sequence>
<xs:element name=”Severity” type=”ns:NotificationSeverityType”/>
<xs:element name=”Source” type=”xs:string”/>
<xs:element name=”Code” type=”xs:string” minOccurs=”0”/>
<xs:element name=”Message” type=”xs:string” minOccurs=”0”/>
<xs:element name=”LocalizedMessage” type=”xs:string” minOccurs=”0”/>
<xs:element name=”MessageParameters” type=”ns:NotificationParameter”

minOccurs=”0” maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>
<xs:complexType name=”NotificationParameter”>

<xs:sequence>
<xs:element name=”Id” type=”xs:string” minOccurs=”0”/>
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<xs:element name=”Value” type=”xs:string” minOccurs=”0”/>
</xs:sequence>

</xs:complexType>
<xs:complexType name=”TransactionDetail”>

<xs:sequence>
<xs:element name=”CustomerTransactionId” type=”xs:string” minOccurs=”0”/

>
<xs:element name=”Localization” type=”ns:Localization” minOccurs=”0”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=”Localization”>

<xs:sequence>
<xs:element name=”LanguageCode” type=”xs:string”/>
<xs:element name=”LocaleCode” type=”xs:string” minOccurs=”0”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=”VersionId”>

<xs:sequence>
<xs:element name=”ServiceId” type=”xs:string” minOccurs=”1” fixed=”ship”/

>
<xs:element name=”Major” type=”xs:int” fixed=”5” minOccurs=”1”/>
<xs:element name=”Intermediate” type=”xs:int” fixed=”0” minOccurs=”1”/>
<xs:element name=”Minor” type=”xs:int” fixed=”0” minOccurs=”1”/>

</xs:sequence>
</xs:complexType>

Thi et al [14] propose a suite of metrics which assesses the complexity of a web service
using its WSDL interface. The most important metric defined in this work is the Complexity
Based Types (CBT). It is based on the complexity of the data types and has the following
formula:

CBT =
∑

n
i=1 ci

n
(4.1)

where ci denotes the complexity of the data type i. The complexity can be computed using
three different ways: the maximum branching factor of the data type tree, the tree height
and the number of nodes. In the example presented in Figure 4.2 the maximum branching
factor is 6, the tree height is 4 and the number of nodes is 23. CBT metric captures the
complexity of a service according to the data types. If the value of this metric is small then
the level of complexity of the types defined in the service is low. Thus, the service usability
increases.

4.2.2 Service Cohesion Metrics Computation

SOA has several characteristics like service cohesion, coupling and reusability, which can
be measured and may be related to the service change-proneness. In this work we focus
on service cohesion as it can be measured in interfaces without knowing the underlining
service implementation.

Sindhgatta et al inspired by Chidamber and Kemerer metrics [34] propose the Lack of
Cohesion of Service Operations (LCOS) metric which is defined as following: for a service
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Figure 4.2: Data type tree extracted from the WSDL definitions.

s with a set of operations O(s), let M(s) be the set of messages and the corresponding data
types,

LCOS(s) =



(
1

|M(s)|
·∑m∈M(s) µ(m)

)
−|O(s)|

1−|O(s)|
, |O(s)|> 1

0 , |O(s)| ≤ 1

(4.2)

It is obvious that LCOS ∈ [0,1]. If every operation uses all the messages then LCOS = 0. If
each operation uses a distinct message, then the numerator becomes equal to 1−|O(s)| and
so LCOS = 1.

In practice, the discriminating power of LCOS is low, and most services tend to be
classified as low cohesive. For this reason, the authors propose the Service Functional
Cohesion Index (SFCI) metric. This metric defines the functional cohesion of the operations
based on the message that is most widely used across all the operations. It is defined as
follows:

SFCI(s) =


max

m∈M(s)
µ(m)

|O(s)|
, |O(s)|> 0

0 , |O(s)|= 0

(4.3)
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where µ(m) denotes the number of operations using a message m. The value of SFCI metric
is always between zero that represents a non-cohesive service and one which means a highly
cohesive service.

Perepletchikov et al [11] proposed eight semantic categories of service cohesion as
presented in the previous chapter. The communicational cohesion can directly be quantified
from WSDL interfaces. Perepletchikov et al propose the Service Interface Data Cohesion
(SIDC) which quantifies the communicational cohesion and reflects the coincidental and
conceptual cohesion.

SIDC is defined as follows:

SIDC(s) =
(Common(Param(O(s)))+Common(Return(O(s))))

Total(O(s))∗2
(4.4)

where O(s) denotes set that contains the operations of a service and (Common(Param(O(s)))
is a function that computes the number of service operation pairs that have at least one input
parameter in common. Also, (Common(Return(O(s))) is a function that computes the num-
ber of service operation pairs that have the same return type and Total(O(s)) is a function
that returns the number of all possible combinations.

We designed a new metric called Data Type Cohesion (DTC) to measure the cohesion
of a service taking into account how cohesive the data types are. We define three levels of
cohesion in a WSDL file: message, operation and service cohesion. The cohesion between
two messages represented by data types m and n, is calculated as follows:

Cdt(m,n) =
common(elementsm,elementsn)

common(elementsm,elementsn)+di f f erent(elementsm,elementsn)
(4.5)

where common(elementsm,elementsn) is a function that returns the number of common
nodes in the elements of the two message trees. The nodes are compared based on the
element name and element type. The di f f erent(elementsm,elementsn) is a function that
returns the number of different nodes. The cohesion between two operations o and w is
calculated as follows:

CO(o,w) =
∑m,n∈MP(s)Cdt(m,n)

MP(s)
(4.6)

where MP(s) denotes the set of all possible pairs of data types of the message parts including
parameters and return types. Finally the service cohesion is defined as:

DTC(s) =
∑o,w∈OP(s)CO(o,w)

OP(s)
(4.7)

where OP(s) denotes the set of all possible pairs of operations of the service s.
DTC value is bound in [0,1] with 0 means complete lack of cohesion and 1 that the

interface is fully cohesive. The interface is fully cohesive when all operations use the same
data types-the intuition here is that a cohesive service typically operates on a small set of
key objects relevant to that service, so these objects should appear in most of its operations.
A service is not cohesive if every operation uses a different data type which has no common
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elements with the others. We define that DTC is 0 when the WSDL contain less than two
operations. According to our view ,the source of change-proneness comes from the data
types and this metric captures the cohesion of the data types by investigating how they
share elements with each other.

4.3 Changes Extraction

For the changes extraction we used the WSDLDiff tool proposed by Romano and Pinzger
[15]. To be more specific, the WSDLDiff tool is used to extract fine-grained changes from
subsequent versions of a web service interface defined in WSDL. It is based on Eclipse
Modeling Framework which provides an EMF Compare plug-in for model comparison and
an Ecore meta-model for WSDL interfaces. Thus, the EMF Compare is used to compare
instances of WSDL models representing WSDL interfaces.

Figure 4.3 shows the process of extracting fine-grained changes between two versions
of WSDLs as it is implemented in WSDLDiff. It contains four stages:

• Stage A: The two versions of a WSDL interface are parsed using the org.eclipse.wst.wsdl
and org.eclipse.xsd APIs. The output are two EMF models corresponding to the ini-
tial interfaces.

• Stage B: In this stage the EMF models are transformed to the corresponding XSD to
improve the accuracy of the results.

• Stage C: In the third stage, the Matching Engine of the EMF compare framework is
used to identify the matching nodes of the two models.

• Stage D: The Match Model produced in Stage C is fed into the Differencing Engine
provided by EMF compare in order to identify the differences among the two WSDL
models. The result of this step is a tree of structural differences in the nodes of the
two models. The differences are reported as additions, removals, moves and modifi-
cations.

In this work we use the changes reported by WSDLDiff in the leaf nodes in order not to
have duplicate entries. The metrics computation process has been built as an extension of
the WSDLDiff tool.

4.4 Correlation analysis

Dependence in the statistics context refers to any kind of statistical relationship between two
random variables. In addition, correlation refers to any class of statistical relationships that
involves dependence. Correlation analysis is a powerful means for identifying dependence
between two phenomenally random data sets. It is broadly used in several domains like
biology, medicine and empirical software.

There are several correlation coefficients to measure the degree of correlation. The
commonest of these is the Pearson correlation coefficient, which is applicable only to find
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Figure 4.3: The process implemented in WSDLDiff to extract fine-grained changes between
two versions of a WSDL interface.

a linear relationship between two variables. There are some other coefficients which have
been designed to be more sensitive to nonlinear relationships like Spearman’s rank correla-
tion coefficient.

Spearman’s rank correlation coefficient or Spearman’s rho is named after Charles Spear-
man and it is often denoted with Greek letter ρ (rho). It is a non-parametric measure of sta-
tistical dependence and it assesses how well a relationship can be described using a mono-
tonic function. Figure 4.4 shows examples of monotonic and non-monotonic relationships.
In order to describe a relationship as monotonic it should have one of the following: (a)
as the value of one variable increases, so does the value of the other or (b) as the value of
one variable increases, the other variable value decreases. The Spearman’s rho is a value
in [−1,1] depending on how perfect the monotone function is. It is appropriate for both
continuous and discrete variables.

The test except Spearman’s rho it also reports the statical significance of the results.
The statistical significance denoted as p-value is related with the confidence the researchers
should have on their findings. The p-value as defined by Ronald Fisher is the probability
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that the observed data would occur by chance in a given single “null hypothesis”. In our
case the null hypothesis is that there is no relationship between two measured phenomena.

Figure 4.4: Examples of monotonic and non-monotonic relationships.

In this work we use the Spearmans rank correlation. This type of correlation was chosen
because in contrast to Pearson correlation, it does not require any assumptions about the data
distribution, variances and relationship types [53].

The level of test significance (p-value) that was used in this study is the p-value to be
less than 0.01. If the p-value of a correlation test is larger than 0.01, we assume that there
is no significance in the test and we ignore its results.

The Spearman’s rank correlation coefficient (rho) indicates the kind of the correlation
between the two examined variables . Tests with rho-values which are greater than 0.3 or
less than −0.3, are considered to have some correlation using the thresholds defined by
Hopkins [54]. Table 4.1 presents the interpretation of rho-values for our study.

Positive Correlation Value Negative Correlation Value Type
0 0 No correlation

< 0.3 >−0.3 Weak correlation
[0.3,0.5) (−0.5,−0.3] Substantial correlation
≥ 0.5 ≤−0.5 Strong correlation

1 −1 Perfect correlation

Table 4.1: Interpretation of the rho-values for the Spearman tests.

4.5 Summary

In this chapter we presented our research framework to study the change-proneness of
WSDL interfaces. It contains three major steps: metrics computation, changes extraction
in subsequent revisions and correlation analysis. We represent the data types defined in
a WSDL as a tree and we test three data type complexity metrics: number of nodes, tree
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height and maximum branching factor. In addition we compute four cohesion metrics, three
of which can be found in the literature (LCOS, SFCI [10] and SIDC [11]) and one that we
designed to capture the cohesion inside the data types called DTC. In the next step we use
the WSDLDiff tool to compute the number of fine-grained changes between subsequent
WSDL revisions. The metrics and changes computation are implemented as an Eclipse
plugin using the EMF framework. The metrics values and the changes info are combined
and exported in a csv file which next is imported to R studio for the correlation analysis.
Then we perform correlation analysis using Spearman’s correlation coefficient in order to
test several hypotheses described in the next chapter.
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Chapter 5

Analysis and Results

In this chapter we present the correlation analysis performed in order to answer the follow-
ing research questions defined in Chapter 1:

RQ1: Which complexity metrics can be used to identify the change-prone WSDL inter-
faces?

RQ2: Which cohesion metrics can be used to identify the change-prone WSDL interfaces?

Section 5.1 introduces the data set of our empirical study. Section 5.2 addresses RQ1 pre-
senting the hypotheses, the method and the results obtained by testing the various complex-
ity metrics. Similarly, Section 5.3 presents the results for RQ2. Section 5.4 contains some
additional tests we performed in order to further investigate the data type cohesion. Finally,
in Section 5.5 we motivate our results by manually inspecting the changes performed on the
examined WSDL interfaces.

5.1 Data Set

The context of our research consists of multiple revisions of ten publicly available WSDLs.
Five WSDLs are provided by Amazon1, four by FedEx2 and one by eBay3. A general
description of the core-activities provided by these services is given below:

• Amazon Elastic Compute Cloud (Amazon EC2): is a web service that provides scal-
able computer power in the Amazon Cloud. It allows its users to obtain, configure
and control several computing resources. In this study 22 versions are analyzed.

• Amazon Flexible Payments Service (AmazonFPS): is a web service that allows busi-
nesses to charge customers under Amazon’s Payments Platform. The customers can

1http://aws.amazon.com/
2http://www.fedex.com/us/developer/
3https://go.developer.ebay.com/
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use the same login credentials, shipping address and payment information they al-
ready have as Amazon’s clients. It supports selling goods, services, raising donations
and executing recurring payments. In this study 3 different versions are analyzed.

• Amazon Simple Queue Service (AmazonQueueService): is a scalable queue service
provided by Amazon. It can be used to transmit any volume of data at any level of
throughput and pay on demand. This study includes 4 versions.

• Amazon Product Advertizing Service (AWSECommerceService): is a service that pro-
vides programmatic access to Amazon product selection and discovery in order to
allow other developers to advertise Amazon products to monetize their websites. In
this study 5 versions of this service are analyzed.

• Amazon Mechanical Turk (AWSMechanicalTurkRequester): is a service that gives
access to scalable, on-demand workforce. The clients can get results faster by having
multiple Workers complete Human Intelligence Tasks (HITs) in parallel. In this study
6 versions of this service are analyzed.

• eBay: provides several operations to enterprise businesses in order to gain access to
the global marketplace. It gives the option to its clients to create eBay businesses in
order to sell their items. It also offers order management and access to read-only data
such as searching for items, popular products and profiles. 5 out of the 8 versions of
the eBay API are analyzed.

• FedEx Package Movement Information Service (PackageMovement): is a service to
check shipping service availability, validate postal codes and service commitments. 4
out of the 5 versions are analyzed in this study.

• FedEx Rate Service (RateService): is a service that can be used by FedEx’s clients to
request pre-ship rating information and to determine estimated billing quotes. It can
also be used for multiple-package shipments. 11 out of the 13 versions are analyzed
in this study.

• FedEx Ship Service (ShipService): can be used to create, validate and submit several
shipment requests to FedEx. Clients can also delete and cancel shipment and returns
requests. In this study 8 out of the 12 versions are analyzed.

• FedEx Track Service (TrackService): is a service used to obtain timely and accurate
tracking information of the shipments, request proof of delivery and manage client
delivery notifications. In this study 5 out of the 6 versions are analyzed.

These services are chosen because they are widely used, they evolve continuously and
different versions are publicly available for our analysis. In addition, some of them are pre-
viously used in other empirical studies appearing in the literature ([6], [15]). Details about
the characteristics of the WSDLs in terms of number of operations, number of message
parts and number of complex types as they are measured in each revision are provided in
Tables 5.1 and 5.2. The data in these tables show that the web services evolve differently.
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WSDL Version Complex Types Operations Parts
Amazon EC2 1 60 14 28
Amazon EC2 2 75 17 34
Amazon EC2 3 81 19 38
Amazon EC2 4 81 19 38
Amazon EC2 5 87 20 40
Amazon EC2 6 85 20 40
Amazon EC2 7 111 26 52
Amazon EC2 8 137 34 68
Amazon EC2 9 151 37 74
Amazon EC2 10 157 38 76
Amazon EC2 11 171 41 82
Amazon EC2 12 179 43 86
Amazon EC2 13 259 65 130
Amazon EC2 14 272 68 136
Amazon EC2 15 296 74 148
Amazon EC2 16 326 81 162
Amazon EC2 17 350 87 174
Amazon EC2 18 366 91 182
Amazon EC2 19 390 95 190
Amazon EC2 20 464 118 236
Amazon EC2 21 465 118 236
Amazon EC2 22 467 118 236
AmazonFPS 1 19 29 58
AmazonFPS 2 15 25 50
AmazonFPS 3 18 27 54

AmazonQueueService 1 26 8 16
AmazonQueueService 2 32 11 22
AmazonQueueService 3 51 15 30
AmazonQueueService 4 51 15 30

AWSECommerceService 1 35 23 46
AWSECommerceService 2 35 23 46
AWSECommerceService 3 35 23 46
AWSECommerceService 4 35 23 46
AWSECommerceService 5 35 23 46

AWSMechanicalTurkRequester 1 86 40 80
AWSMechanicalTurkRequester 2 87 40 80
AWSMechanicalTurkRequester 3 89 41 82
AWSMechanicalTurkRequester 4 85 39 78
AWSMechanicalTurkRequester 5 94 41 82
AWSMechanicalTurkRequester 6 102 44 88

Table 5.1: The number of operations, message parts and complex types reported in each
revision of the first five examined web services.
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WSDL Version Complex Types Operations Parts
eBay 9 897 156 313
eBay 11 897 156 313
eBay 13 897 156 313
eBay 15 899 156 313
eBay 17 902 156 313

PackageMovement 2 15 2 4
PackageMovement 3 15 2 4
PackageMovement 4 15 2 4
PackageMovement 5 15 2 4

RateService 1 43 1 2
RateService 2 47 1 2
RateService 3 53 2 4
RateService 4 68 1 2
RateService 5 69 1 2
RateService 6 96 1 2
RateService 7 109 1 2
RateService 8 121 1 2
RateService 9 123 1 2
RateService 10 125 1 2
RateService 13 140 1 2
ShipService 2 74 1 2
ShipService 5 109 9 16
ShipService 6 109 9 16
ShipService 7 119 7 12
ShipService 8 131 7 12
ShipService 9 144 7 12
ShipService 10 146 7 12
ShipService 12 166 7 12
TrackService 2 29 3 6
TrackService 3 29 3 6
TrackService 4 31 4 8
TrackService 5 33 4 8
TrackService 6 33 4 8

Table 5.2: The number of operations, message parts and complex types reported in each
revision of the last five examined web services.
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For example, the number of operations declared in the Amazon EC2 service is always
increasing except for 4 pairs of versions (between 3 and 4, 5 and 6, 20 and 21,22). In con-
trast, the AWSECommerceService or PackageMovement services remain stable and do not
have any additions/removals in operations or messages. These two services have changes
that include only simple element additions/removals in existing data types and attribute ed-
its. On the contrary, the ShipService follows a different evolution pattern. The number of
operations increases in version 5 and then is reduced again in version 7. We can notice
that the number of complex types is increasing in the vast majority of the revisions of the
services. One possible explanation for this can be the addition of new functionality in the
services. Finally, as it will be shown in the next sections, one important observation is
that in most of the cases the number of message parts is equal to the number of operations
doubled. This indicates that there is one request and one response message part for every
operation.

5.2 Data Type Complexity

5.2.1 Hypotheses

The first goal of our research (RQ1) is to investigate the relationship between the data type
complexity and the change-proneness of a WSDL interface. As mentioned in Chapter 4, in
order to measure the data type complexity three metrics based on the tree representation of
a data type were used: the maximum Branching Factor, the Tree Height and the Number of
Nodes. The correlation between the values of these metrics and the number of changes a
WSDL interface undergoes, is analyzed in this study. In order to answer RQ1 and examine
the correlation of the complexity metrics with the number of changes we test the following
hypotheses:

H1: The number of changes performed on a data type is correlated with the Branching
Factor metric.

H2: The number of changes performed on a data type is correlated with the Tree Height
metric.

H3: The number of changes performed on a data type is correlated with the Number of
Nodes metric.

5.2.2 Method

In order to verify hypotheses H1, H2 and H3 we analyzed the correlation between each of
the aforementioned complexity metrics and the number of future changes performed on the
complex data type. To be more specific, assuming that there are k (v1,v2, ...,vk) versions
of a WSDL, the number of future changes of a complex data type is defined as the sum of
the changes performed on the data type between the revision it first appears in (i) and all
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subsequent revisions:

totalChanges(dt) =
k

∑
j=i

changes(dt j,dt j+1) (5.1)

where we denote the data type in version j with dt j. The number of changes is the dependent
variable of the test. The independent variable is the value of each complexity metric as it is
calculated for each data type in the first revision it appears in the WSDL.

5.2.3 Results

Table 5.3 shows the correlation results (rho-values) for each WSDL in the examined data
set. In this test, we correlate the values of the metrics as measured for each complex type
in the first revision it appears with all the future changes performed on the same data type.
Table 5.3 shows that the Number of Nodes metric has the strongest correlation because there
are six WSDLs with significant results which also have strong correlation. This implies that
the bigger the data type tree, the more change-prone it is in future revisions.

WSDL Branching Factor Tree Height Number of Nodes
AWSECommerceService 0.677062 0.7966628 0.7680973

AWSMechanicalTurkRequester N/S N/S N/S
eBay 0.4726281 0.44496 0.473432

Amazon EC2 0.34724 0.3418404 0.4093327
PackageMovement 0.7428794 N/S 0.771911

RateService 0.5682955 0.5971906 0.6181661
ShipService 0.4855903 0.4747396 0.521194

AmazonQueueService -0.3704376 N/S -0.4143885
TrackService 0.5586796 0.5835859 0.6161851
AmazonFPS 0.6136275 0.7207667 0.7552271

Strong Correlation 5/9 4/7 6/9

Table 5.3: Spearman rank correlation (rho-value) between each complexity metric and the
total number of future changes. The non significant results (p-value ≤ 0.01) are marked
with N/S and the bold font indicates the results with strong correlation (rho≥ 0.5).

There is only one result reported in the AmazonQueueService WSDL that conflicts with
this conclusion. In this case the bigger the tree, the less change prone it is. This is caused
by the developers’ tendency to introduce new functionality adding new operations and mes-
sages with new root types instead of editing or changing the already existing ones.

The examined complexity metrics exhibit high correlation with the change-proneness
in the AWSECommerceService and PackageMovement WSDLs. As shown in Tables 5.1 and
5.2, both services have relatively stable WSDLs mainly with additions to existing data types
and attribute values changes (complexity metrics values are not affected by XML attribute
changes). Also the AmazonFPS WSDL exhibits high correlation results. We observed that
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in the AmazonFPS WSDL the number of operations and data types are always increasing
between subsequent revisions.

The Branching Factor and Tree Height metrics are less correlated with the number of
changes compared to Number of Nodes. Tree Height has the lowest correlation with 4
results having strong correlation out of 7 significant tests. Branching Factor metric has
slightly lower correlation than Number of Nodes with 5 strong correlated results out of 9
significant tests.

Based on these observations we conclude that hypotheses H1 and H3 are valid since
both the Branching Factor and the Number of Nodes metrics exhibit at least substantial
correlation (rho ≥ 0.3) in the majority of the WSDLs. On the other hand, we can partially
accept H2 because Tree Height shows substantial correlation for all significant results.

The examined complexity metrics successfully capture the complexity and size of a
data type. However, the results verify something very obvious: the bigger and more com-
plex the data type, the more change-prone it is. Nonetheless, our world includes great
complexity and the data types are small-scale representations of real-world concepts. So,
most systems require complex data types [55]. For this reason, we subsequently try to use
cohesion metrics to analyze the relations between the various data types as a potential cause
of change-proneness.

5.3 Service Cohesion

5.3.1 Hypotheses

In general, the software developers aim for systems with high cohesion. The second re-
search question (RQ2) aims at examining the relationship between the cohesion of the ex-
amined WSDL interfaces and their change-proneness. To answer RQ2, we selected the
cohesion metrics mentioned in Chapter 4: lack of service cohesion (LCOS), service func-
tional cohesion index (SFCI), service interface data cohesion (SIDC) and our newly defined
data type cohesion metric (DTC). The correlation between the values of these metrics for
each WSDL and its change-proneness is analyzed in this section. In order to answer RQ2
and examine the correlation of the examined cohesion metrics with the change-proneness
of a WSDL we evaluate the following hypotheses:

H1: The LCOS, SFCI and SIDC metrics are correlated with the number of changes per-
formed on WSDLs.

H2: The DTC metric is correlated with the number of changes performed on WSDLs.

H3: As the cohesion of a WSDL increases, it becomes less change-prone.

5.3.2 Method

In order to verify the cohesion hypotheses, statistical tests for each cohesion metric are
performed. Assuming that there are k versions (v1,v2, ...,vk) of a WSDL, we measure each
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cohesion metric in every WSDL revision i and then we compute the total number of changes
performed on the WSDL in all future revisions:

totalChanges(si) =
k

∑
j=i

changes(s j,s j+1) (5.2)

where the service in version i is denoted as si. The results are then appended in one file and
the number of changes is normalized with the number of the revisions over which they are
computed (k− i).

We tried several other normalization factors like the number of lines of code and the
number of elements. However, we decided to use the number of revisions because the
changes are summarized over all future revisions. The number of changes is the dependent
variable of the tests while the independent variable is the cohesion metric value measured
in each revision of every WSDL.

5.3.3 Results

The significance (p-value) and correlation (rho) results of the cohesion tests are illustrated
in Table 5.4. This table indicates that the LCOS and the newly defined DTC metrics have
significant results (p-value ≤ 0.01) with substantial correlation (rho ≥ 0.3). On the other
hand, SFCI and SIDC do not to provide any significant results (p-value > 0.01) on the
examined data set.

The LCOS metric expresses the lack of cohesion and the results show a inverse correla-
tion. This means that greater service cohesion leads to greater number of changes in subse-
quent WSDL revisions. On the contrary, the DTC metric which describes the existence of
service cohesion has also inverse correlation with the number of changes indicating that a
more cohesive service is less change-prone in future revisions.

Metric Name p-value rho
CohesionLCOS 0.005840496 -0.373733
CohesionSFCI 0.3271726 0.1372233
CohesionSIDC 0.04541098 -0.2760514
CohesionDTC 0.0077991 -0.3616314

Table 5.4: p-value and rho reported for each cohesion metric from the correlation tests
performed to test the cohesion hypotheses (significant results with substantial correlation
are marked with bold font).

Nevertheless, we noticed that the LCOS metric has value equal to one in the vast ma-
jority of the examined WSDLs. This is happening due to the formula used to compute this
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metric:

LCOS(s) =



(
1

|M(s)|
·∑m∈M(s) µ(m)

)
−|O(s)|

1−|O(s)|
, |O(s)|> 1

0 , |O(s)| ≤ 1

(5.3)

where |M(s)| represents the total number of message parts and their constituent data types
in the service s and |O(s)| is the total number of operations. In addition, the number of
operations using a message m is defined as µ(m) where m ∈ M(s). An operation uses a
message when its data type is referenced by a message part belonging to that operation. This
detail in connection with the fact that in the vast majority of the WSDLs every operation
defines new data types for its input and output messages (message part types are not re-used)
makes the numerator of the Equation 5.3 equal to the denominator which is 1−|O(s)|. This
implies that the value of the LCOS metric in the majority of the revisions of all examined
WSDLs is equal to one.

For the same reasons, the SFCI metric ends up being dependent only on the number of
operations. As we observe for the LCOS metric, this happens because of the formula of the
SFCI metric:

SFCI(s) =


max

m∈M(s)
µ(m)

|O(s)|
, |O(s)|> 0

0 , |O(s)|= 0

(5.4)

This conclusion is verified performing a correlation test between the SFCI metric and the
number of operations. The results show a p-value equal to 2.847248e−43 and rho equal to
−0.9899302 which are results with high significance expressing very high correlation.

The main reason why both LCOS and SFCI do not show substantial correlation is that
they are based only on the service messages and not on the rest WSDL. Changes may be
performed in several places in a WSDL file and large amount of the elements are describing
the data types which are ignored by these metrics. Based on the previous analysis we reject
H1 and we conclude that H2 is valid. Likewise, we accept the H3 hypothesis. We reach this
conclusion based on the results of the DTC metric which represents the WSDL cohesion
better and shows that the increasing cohesion leads to less-change prone WSDL interfaces.

The DTC metric formula encloses interesting information about how the data types
are referenced by other data types defined in the WSDLs. For that reason and in order
to examine further the H3 hypothesis, the correlation between the data type usage and the
future changes will be investigated in the next section.

5.4 Data Type Reference

5.4.1 Hypotheses

The DTC cohesion metric results revealed a third goal for our research: to further examine
the relationship between the way the complex data types are referenced by other data types,
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and their change-proneness. To be more specific, we want to test whether the frequency
that a complex type is referenced in a WSDL is correlated with the number of changes per-
formed on this data type. In order to explore this relationship, the following hypothesis is
formulated:

H1: The complex data types that are more frequently referenced by the other types in the
same WSDL are less change-prone.

5.4.2 Method

In order to examine the relationship between the frequency the data types are referenced and
their change-proneness, we perform one correlation test for each WSDL of the examined
data set. The independent variable of these correlation tests is the total number of references
existing in each WSDL revision for each complex type. The dependent variable is defined as
the total number of future changes performed in a complex data type in all future revisions of
a WSDL. To be more specific, we compute the number of changes performed on a data type
in every revision i as the total number of changes performed over all subsequent revisions
as long as the number of references remains unchanged:

totalChanges(dti) =
s

∑
j=i

changes(dt j,dt j+1) (5.5)

where we denote the data type in version i as dti and the version in which the number of
references changes (increased or decreased) is denoted as s.

5.4.3 Results

The results of the correlation tests performed to evaluate H1 are presented in Table 5.5.
We observe that four WSDLs have significant results (p-value < 0.01), three of which have
strong correlation values (rho ≥ 0.5) (AWSMechanicalTurkRequester, PackageMovement
and TrackService) and one of which substantial correlation (rho ≥ 0.3)(RateService).On
the other hand, the other web services do not produce any significant results. This is most
probably due to the lack of sufficient number of revisions for specific WSDLs and the low
number of changes in existing complex data types.

We observe that all the significant results exhibit an inverse correlation. Thus, we can
conclude that the more frequently a data type is referenced by other types, the less change-
prone it is in future revisions. This is an important finding that will be discussed in the next
section. Based on the above analysis we accept hypothesis H1.

The next step is to extend our research with manual analysis of the several WSDLs
in order to reveal the developer’s intentions behind specific changes performed on various
complex data types.
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WSDL p-value rho
AWSECommerceService 0.08928 0.2915316

AWSMechanicalTurkRequester 2.534e-08 -0.5027539
eBay 0.63842 -0.01568748

Amazon EC2 0.2485 -0.04875922
PackageMovement 0.005086 -0.5123475

RateService 1.552e-10 -0.4187084
ShipService 0.0004375 0.1930675

AmazonQueueService 0.3013 -0.1301984
TrackService 2.403e-05 -0.5594746
AmazonFPS 0.6123 -0.1042486

Table 5.5: p-value and rho results for each WSDL as reported from the data type reference
correlation tests (significant results with substantial correlation are marked with bold font).

5.5 Manual Analysis

To further investigate the relationship between the rarely referenced data types and their
change-proneness, we manually analyzed the changes performed in the examined WSDLs.
With this analysis we aim at illustrating the types of changes performed in the more change-
prone data types in order to motivate the previous correlation results.

For every WSDL in our data set, we analyze the types of changes performed on the
rarely and highly referenced data types. We assume that the rarely referenced data types
are those referenced only once in a WSDL and the highly referenced data types are those
types which have more than one reference. Table 5.6 shows the number of changes per-
formed on the highly and rarely referenced data types defined in the WSDLs. We select
the AWSMechanicalTurkRequester, the PackageMovement, the RateService and the Track-
Service WSLDs because they report significant results in the previous data type reference
correlation tests presented in Section 5.4. The changes are categorized into seven types
according to [15]: element additions, element deletions, minOccurs update, maxOccurs
update, fixed value update, reference update and enumeration update.

Table 5.6 shows clearly that the total number of changes performed on the highly refer-
enced data types is significantly smaller than that performed in the rarely referenced types.
Based on this table we conclude that the type of change that is performed most frequently on
the highly referenced data types is the element addition or deletion (TrackService: 5 out of
17 changes, RateService: 404 out of 1090 changes, PackageMovement: 3 out of 6 changes
and MechanicalTurkRequester: 61 out of 80 changes). The same conclusion holds for the
rarely referenced data types. At this point we must note that there are many highly refer-
enced data types that do not have any change in any revision. This observation means that
developers tend not to change the highly referenced data types because that would cause a
number of chain changes (ripple effect) in many other elements in the WSDLs.

In order to discover why the rarely referenced data types are more change-prone, we
manually analyzed some data types from various WSDLs in our data set. The analyzed
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5. ANALYSIS AND RESULTS

WSDL Type
Element
Addi-
tions

Element
Dele-
tions

Min
Occurs
Update

Max
Occurs
Update

Fixed
Value

Update

Refe-
rence

Update

Enum-
eration
Update

Track Service
HR 1 4 0 0 4 0 8
RR 37 30 5 2 28 11 35

Rate Service
HR 297 107 129 28 12 103 426
RR 861 375 223 55 26 386 903

Package Movement
HR 0 3 0 0 3 0 0
RR 2 7 2 0 12 0 7

M Turk Requester
HR 50 11 3 0 0 0 16
RR 262 77 0 0 0 0 14

Table 5.6: Number of changes performed on highly referenced (HR) and rarely referenced
(RR) data types categorized into seven types.

data types were selected based on the frequency they were referenced. From this manual
analysis we conclude that the highly referenced data types are the ”building blocks” of
the rarely referenced data types. The rarely referenced data types are more complex and
consequently less frequently re-used. To be more specific, the rarely referenced data types
are composed by other data types, some of which are the highly referenced data types. Very
rarely, the highly used data types are used directly as the data type of an operation message.

For example, the ClientDetail is a complex data type defined in the ShipService WSDL.
ClientDetail is referenced several times as it is shown in Table 5.7. The manual analysis
shows that it contains descriptive data about the client submitting the transaction. Table 5.7
also illustrates the low complexity of this data type. The evolution of this type involves
only an element addition in version 5. In addition, there are several other data types like the
DeleteShipmentRequest, the sub-elements of which include a reference to the ClientDetail
data type. Therefore, a change to ClientDetail automatically affects all the complex types
that reference it.

Table 5.8 presents information about the number of changes performed in subsequent re-
visions and the complexity of the DeleteShipmentRequest complex data type which contains
a reference to ClientDetail and other highly referenced data types. A total of 27 changes was
observed. One can notice that this data type is significantly bigger than the ClientDetail,
with maximum Branching Factor equal to 7 and 21-26 tree nodes. The larger Branching
Factor value verifies that the DeleteShipmentRequest data type is composed mainly by other
complex data types.

Another observation which resulted from the manual analysis is that the value of the
minOccurs attribute is equal to one for the vast majority of the newly added elements.
This means that developers try to maintain backwards compatibility of their interfaces by
making the new elements optional. This practice results in not breaking the clients’ systems
whenever a new element is inserted. Especially, there are cases where a new element is
inserted with minOccurs equal to 0, only to be changed to mandatory in the next revision.
In addition, we noticed that in 5 out of the 10 examined WSDLs there is at least one revision
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Summary

Version # Times Referenced Tree Height Branching Factor Number Of Nodes
2 1 3 3 6
5 9 3 4 7
6 9 3 4 7
7 7 3 4 7
8 7 3 4 7
9 7 3 4 7
10 7 3 4 7

Table 5.7: Information details of the highly referenced ClientDetail data type of the ShipSer-
vice WSDL.

Version # Of Changes Tree Height Branching Factor Number Of Nodes
2 2 4 7 21
5 7 4 7 22
6 2 4 7 25
7 7 4 7 25
8 3 4 7 26
9 6 4 7 26
10 0 4 7 26

Table 5.8: Information details of the DeleteShipmentRequest data type of the ShipService
WSDL.

in which more than 30% of elements are new. This indicates that there are some versions
where major maintenance with many element and operation additions occurs. In general we
conclude that the developers introduce new functionality while trying to keep backwards
compatibility to the existing WSDL interfaces.

5.6 Summary

In this chapter we presented our data set and the conducted experiments. Our goal is
to investigate how the data type complexity and cohesion is correlated with the change-
proneness of ten publicly available WSDL-interfaces. We used the Spearman rank correla-
tion coefficient to perform a thorough investigation of several formulated hypotheses.

The first experiment investigates the relationship between three complexity metrics
(Branching Factor, Tree Height and Number of Nodes) and the number of changes per-
formed on the data types in all subsequent revisions. All complexity metrics exhibit some
correlation with the change-proneness. Especially, the Number of Nodes metric presents
the best correlation compared to the other two metrics. Nevertheless, we conclude that
the complexity results verify something we all expect: the bigger the data type, the more
change-prone it is.
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5. ANALYSIS AND RESULTS

The second experiment aims to analyze the correlation between four complexity metrics
(LCOS, SFCI, SIDC and our newly defined DTC) and the change-proneness of a WSDL
interface. The results show that the LCOS metric is not very indicative of service cohesion
despite the fact that it has substantial correlation. This is due to the fact that developers tend
to create separate messages and data types for each operation. The SIDC and SFCI metrics
do not produce any significant results. The newly defined DTC metric reports substantial
correlation with the number of future changes performed on the examined WSDLs. In
general, the experiments show that the more cohesive services are less change-prone.

The third experiment intends to investigate the relationship between the times a data
type is referenced by other types and its change-proneness. The results show that the more
frequently a data type is referenced, the less change-prone it is. Then, a manual investigation
is performed to support the previous results. The manual analysis reveals that the highly
referenced complex types are the ”building blocks” of the rarely referenced data types,
among a variety of other conclusions about the service provider’s common practices.

In the next chapter we will discuss the results and the threats to validity applicable to
our research design.
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Chapter 6

Discussion

In the previous chapter we presented the results of this empirical study. Based on these
results, the formulated hypotheses were accepted or rejected. In this chapter we answer
to the research questions defined in Chapter 1 and we discuss the implications of the re-
sults from three different perspectives: the service providers, the service consumers and the
researchers. We also address the several threats to validity that apply to this work.

6.1 Implications of the results

At this point we have to address our initial research questions:

RQ1: Which complexity metrics can be used to identify the change-prone WSDL inter-
faces?
RQ2: Which cohesion metrics can be used to identify the change-prone WSDL interfaces?

Our first findings concerning RQ1 confirm that the data type complexity metrics defined
by Thi et. al. [14] are correlated with the overall change-proneness of a data type defined in
a WSDL interface. Furthermore, after testing several hypotheses we conclude that among
the Tree Height, the Branching Factor and the Number of Nodes metrics, the last one has the
highest correlation to the data type change-proneness. Besides, all the complexity metric
results show that the bigger the data type tree, the more change-prone it is.

Regarding RQ2, our cohesion results show that LCOS [10] and SFCI [10] can not ex-
press the cohesion of a WSDL interface. In addition, the SIDC metric [11] does not seem to
be correlated to the overall change-proneness of the interfaces. On the contrary, the newly
defined DTC metric exhibits substantial correlation to the total number of future WSDL
changes. Furthermore, we came to the conclusion that the more cohesive interfaces are less
change-prone.

This conclusion agrees with findings from testing the correlation between the frequency
a data type is referenced by other types and the number of future changes. Regarding that,
we conclude that the highly referenced data types are less change-prone. Moreover, the
manual analysis of the WSDLs revealed that the highly referenced data types are simple
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types which remain relatively stable and are used as “building blocks” for the rarely ref-
erenced data types. In general, the rarely referenced data types are more complex with a
relatively high number of sub-elements compared to the highly referenced data types.

Some other useful observations obtained from the manual analysis of WSDLs. Devel-
opers introduce new functionality in some versions while they are trying to keep backwards
compatibility for their interfaces. There are cases where elements are introduced as op-
tional in one version and the in future versions changes performed to make them required
in messages.

The results of our study have several implications for researchers and software engi-
neers. In SOA there are two types of software engineers involved in the development: the
developer who maintains the provided web service (service provider) and developer who
incorporates the offered service into his system (service consumer). Except developers,
managers are also interested in mediums that help the evaluation of interfaces’ stability. In
addition, researchers may interested in the results from the perspective of extending this
empirical analysis using our findings. Hence, the implications should be discussed under
these three different perspectives.

From the perspective of a service provider developer, the complexity results imply that
the developers should model their types aiming to reduce the unnecessary complexity. The
simpler data types are less change-prone and can easily be reused. Like classes in object
oriented programming, the data types should be autonomous and represent real-world on-
tologies according to their properties. The increased re-usability of the data types leads to
increased cohesion that reduces the number of future changes as we discussed. Thus, de-
velopers must always target low data type complexity and high cohesion while they design
WSDL interfaces. That way they can reduce the risk of interface-breaking changes to their
clients. The managers who are the owners of a web service can assess the stability and
therefore the quality of the offered WSDL interface using the Number of Nodes metric in
conjunction with the DTC cohesion metric. The practice of keeping backwards compatibil-
ity is very profitable for the service consumers because it requires less maintenance effort
from their side.

Managers and software developers as service consumers need to be able to choose the
more stable web services. Another important aspect for them is to predict the cost and
effort that is needed to add a dependency from an unknown web service to their systems.
From their perspective, metrics like DTC, which are correlated with the change-proneness
of interfaces, can be a powerful tool in the web service assessment process. Also, complex-
ity metrics can be used by service consumers in order to assess the data type complexity.
However, complexity metrics alone are not indicative of change-proneness. They have to
be combined with an assessment of service cohesion.

From researchers’ perspective, these are interesting results for several reasons. First,
we verify the correlation between the complexity metrics defined in [14] and the data type
change-proneness using an empirical study. Second, we present a new cohesion metric that
exhibits substantial correlation with the number of changes. Still, we believe that our metric
should be further tested in different commercial environments. Finally, researchers may also
be interested in extending our research by verifying the results with a qualitative analysis.
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Threats to validity

6.2 Threats to validity

To support the validity of the conclusions we have to evaluate the validity of our research
design and determine if threats are true or implausible. In this section we discuss the several
types of threats to validity using the Campbell-Cook-Shadish-Stanley validity framework
[56][57]. This framework is a result of studying how research designs can reach incorrect
conclusions and it identifies four types of validity threats in which a research design may be
more or less vulnerable to:

• Statistical conclusion validity: Is the statistical analysis performed correctly in order
to identify the correlation between two variables in this study?

• Internal validity: Is the relation between the dependent and the independent variables
causal or are there any confounding variables?

• External validity: Can the conclusions of the study be generalized to other systems?

• Construct validity: Are the dependent and independent variables well chosen to re-
flect the theoretical concepts?

Concerning the statistical conclusion validity threat, we used the Spearman’s correlation
coefficient which is appropriate for both continuous and discrete variables and does not
make any assumptions about the underling frequency distribution of the data, variances
and the type of the relationship [53]. Additionally, we used a strict level of significance
while analyzing the correlation results (p-value≤ 0.01). Finally, to mitigate the risk of our
correlation results having low statistical power, we used several different interpretations in
the rho-values. That way we differentiate between weak, substantial and strong correlation.

The threats to internal validity are related to the existence of an external variable (con-
found variable) that directly affects the independent variables. An example of this can be
the correlation between the number of operations and the SFCI cohesion metric, which
was discovered and investigated. Furthermore, both the independent and dependent vari-
ables of our analysis were extracted using deterministic algorithms. Thus, the results can
be re-produced using the same data set. Furthermore, the risk of a fault in the implemented
system should always considered as a threat in research. In order to reduce this risk we
implemented a suite of 14 unit tests in order to exhaustively test the measurement of the
several metrics.

The threat to external validity is the most serious for this work since every result ob-
tained through empirical studies is threatened by the bias of their datasets [58]. There is
a variety of threats mostly related with the selected data set which belong to this category.
The first threat is that only open-source WSDL interfaces were tested. In order to mitigate
this threat used a diverse data set including different systems of different size coming from
different domains. The fact that we used systems developed by big companies which are
probably relatively stable, can be also considered as a threat. We believe that this fact re-
duces the noise in the number of changes because of rapid system changes. In newly formed
companies many successive changes happen due to system requirements alterations coming
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from business case adjustments. In the future, it would be interesting to validate the results
of this study using commercial web services from companies of different sizes.

The threats to construct validity challenge the relationship between the theoretical con-
cepts and their representation in our study. In this work, a threat of this type can be way
the changes are measured. This is why we selected to test both the number of fine grained
changes between two subsequent revisions as well as the overall number of changes over
all revisions. In all the cases we received the same results. Another threat that can be asso-
ciated with this category, is the measurement of cohesion and complexity with the help of
metrics. In order to mitigate this threat we tested a variety of cohesion and complexity met-
rics applicable to web services appearing in the literature. Furthermore, we designed and
tested a new cohesion metric used to represent better the cohesion of a WSDL interface.

6.3 Summary

In this chapter we discussed the contribution of this work and the threats to validity which
threaten our research design. We discuss the implication of the results presented in the
previous chapter from three different perspectives: service providers, service consumers
and researchers. Our conclusions are useful to service providers helping them produce
more stable interfaces with high re-usability. From service consumers’ perspective, our
results are helpful in their selection of the most appropriate service for their systems. On
the other hand, researchers can interested in extending this work with a more extensive
empirical study that includes commercial interfaces or with a qualitative analysis.

Also we identified several threats to validity categorized them to four categories: in-
ternal, external, statistical conclusion and construct validity threats. Some of them are the
following: statistical test choice, the correlation and significance levels interpretation, con-
found variables existence, faults in system’s implementation, bias of the examined data set
and the various concepts representation. In addition, for each threat we present the measures
we took in order to mitigate the risks.
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Chapter 7

Conclusions and Future Work

This chapter gives an overview of the contributions of this work. In Section 7.1 we reflect
on the results and we draw some conclusions. Section 7.2 discusses some ideas for future
work.

7.1 Conclusions

In the previous chapter we presented the answers to the posed research questions. According
to our study, metrics can be used as indicators of stability of service interfaces. Complex-
ity and cohesion are two factors that can be measured directly in interfaces without any
knowledge of the underlining implementation. To goal was to examine a potential corre-
lation between the interface change-proneness and some complexity and cohesion metrics
appeared in the literature.

From the complexity results we conclude that bigger data types lead to more change-
prone interfaces in the long-term. From the manual analysis of the data set, we concluded
that the complexity of an interface lies in the complexity of its data types. Finally, an
important finding is that the data type complexity can be efficiently expressed as the number
of nodes in the tree representation of the data type.

Regarding service cohesion, we conclude that metrics based on the messages and their
types do not have discriminating power in our data set. This happens because we noticed
that a new data type was declared for every input or output message. Our observation
that many data types are reused by reference inside the same service lead us to design a
new cohesion metric which takes into account the commonality of elements between two
data types. This metric shows substantial correlation with the future change-proneness. To
be more specific, the results have shown that cohesive interfaces are less change-prone.
This means that the more the data types are reused instead of being copied, the less XML
elements are needed to change in a potential refactoring.

We went a step further in our tests examining the correlation between the frequency a
data type is referenced by other types and the change-proneness of the WSDL. The results
have shown that highly referenced data types are less change-prone in long term. By man-
ually analyzing these data types we conclude that the highly referenced types are simple,
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small types with low complexity that are used as “building blocks” for the more complex
and therefore less reused data types. So the developers’ intention should be to split the core
data types of the designed services to small autonomous components that can be reused by
other data types.

Another valuable result coming from this study is that developers are trying to keep
backwards compatibility when they introduce new functionality. This is an observation for
the systems we studied. Sometimes, in the same newly-introduced elements developers
perform necessary breaking changes in future versions. In that way they give time to their
clients to adapt their systems. This is a very valuable practice for the service consumers
because they have more time to perform the necessary changes.

We argue that the change-proneness of the service interfaces is dependent on the ini-
tial service design. As shown in our study, there are several factors affecting the change-
proneness of an interface like the complexity and the design of its constituent data types.
According to our research, developers should design their types creating as much as possi-
ble, small autonomous data types which can be reused or extent with non-required elements.
In that way they will succeed not coping the same types in several places avoiding multiple
points of change when new functionality is added.

7.2 Future work

The system we proposed to study the WSDL change-proneness has a lot of potential. The
correlation of metrics values with the number of future changes is a good step forward in
the assessment of the interfaces changeability. Still, there is room for improvement.

We have selected several open source WSDL interfaces from different communities and
businesses but we need to perform the same study on proprietary systems of different sizes.
Besides, examining more projects would result in a larger and diverse data set which would
reduce some of the threats discussed in the previous chapter. Also we need to make sure
that we study interfaces coming directly from the underlying implementation and not some
wrapper service interfaces.

Other improvements in this research include investigation of other metrics which can
be computed in WSDL interfaces extending the tests we performed. There are coupling
metrics which can be computed if we have knowledge about the dependencies between
services. Also, there are reusability metrics mentioned Chapter 3 which can be computed
with the help of information about the service usage. Furthermore, the co-evolution of some
services is an interesting field to be studied. It is very important to examine the role of other
SOA characteristics (coupling, granularity, reusability) in the interface change-proneness
assessment.

Based on our results, we think that it would be interesting to examine further the evolu-
tion of less referenced data types. These types present the higher evolution activity in most
WSDLs. Also, it could be interesting to extend our research examining the co-evolution
of some data types trying to identify occasions where one single change needs multiple
updates in order to be implemented. Another improvement could be the classification of
changes to breaking and non-breaking changes for the service consumers. In that way, we
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Future work

could examine the correlation between metrics and client breaking changes. The existence
of anti-patterns is also another factor that can cause high evolution activity and worths to be
investigated.

Finally, a qualitative analysis can be used to show the strength of the newly designed
cohesion metric in the software development community. Such a study can support the find-
ings of the empirical study but also reveal new hypotheses for interface characteristics which
may affect their change-proneness. My team has already started performing a qualitative
analysis using questionnaires, the results of which will be published in a later work.
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