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ABSTRACT 

  

The paper shows a moving least squares reconstruction technique applied to the B-spline Material Point Method (B-spline 

MPM). It has been shown previously that B-spline MPM can reduce grid-crossing errors inherent in the original Material 

Point Method. However, in the large deformation regime where the grid crossing occurs more frequently, the convergence rate 

of B-spline MPMis lower. In this paper, moving least squares reconstruction is employed to retrieve the expected convergence 

rate. The proposed improvement is examined in terms of the spatial convergence using the methods of manufactured solutions 

for large deformations. 

 

KEY WORDS: moving least squares, function reconstruction, B-spline basis function, Material Point Method. 

 

INTRODUCTION 

Since the introduction of Material Point Method (MPM) by Sulsky et al. (1994), MPM has been used to simulate 

dynamic problems that involve large deformation. However, the original MPM algorithm suffers from numerical 

inaccuracies when material points move from one cell to another. To overcome these inaccuracies, known as grid-

crossing errors, Bardenhagen and Kober (2004) proposed Generalized Interpolation Material Point Method 

(GIMP). GIMP defines the shape functions of material points with a characteristic function. The shape-function 

gradients in GIMP are continuous, which reduce the grid-crossing errors. Later, Zhang et al. (2011) enhanced the 

MPM with the modified gradient of the shape function, while Steffen et al. (2008) adopted B-spline basis 

functions for MPM and showed that B-spline MPM could decrease the cell-crossing errors. The accuracy of B-

spline MPM was further improved by advanced function reconstruction technique to project data from material 

points to the background grid (Tielen et al., 2017; Gan et al., 2017; Wobbes et al., 2018).  

The paper investigates the spatial convergence rate of B-spline MPM and uses a moving least squares (MLS) 

function reconstruction technique to improve its performance. Such technique has been applied to the original 

MPM (Sulsky and Gong, 2016) and Generalized Internpolation Material Point Method (Wallstedt and Guilkey, 

2009). The paper investigates the influence of the MLS function reconstruction on the numerical accuracy of B-

spline MPM using an example from Sadeghirad et al. (2011). The results show that the use of B-spline basis 

functions considerably reduces the error made by MPM and can lead to the second order of convergence. 

However, for finer meshes, a lack of convergence is observed. However, B-Spline formulation coupled with the 

moving least squares reconstruction technique, converges well for finer meshes and therefore improves the 

accuracy of B-spline MPM significantly.  

B-spline BASIS FUNCTIONS  

The construction of B-spline basis functions starts from a so-called knot vector, denoted by  = {1, 

2,…,n+p,n+p+1}, where 12…n+pn+p+1 are knots with n and p being the number of basis functions and 

polynomial order, respectively. If knots are distributed equidistantly, the knot vector is uniform. Otherwise, it is 

non-uniform. A knot vector is open if the first and last knots are repeated p + 1 times. Polynomial order p = 0, 1, 2, 

3 … refer to constant, linear, quadratic, and cubic B-spline shape functions, respectively. Given a knot vector, the 

B-spline basis function at the i-th knot is denoted as Ni,p. The zeroth order basis is constant (p = 0): 
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 Ni,0 = {
   0, 

i


i+1

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

For p  1, the basis functions are defined recursively by the (Cox-de Boor, 1971) recursion formula: 

 Ni,p() =
 − 

i


i+p

− 
i

Ni,p−1() +

i+p+1

− 


i+p+1

− 
i+1

Ni+1,p−1() (2) 

B-spline basis functions satisfy the partition of unity property and are non-negative over their entire support. The 

derivative of the i-th basis function, Ni,p
′ (), can be calculated as follows: 

 Ni,p
′ () =

p


i+p

− 
i

Ni,p−1() +
p


i+p+1

− 
i+1

Ni+1,p−1() 
(3) 

 
Figure 1  Quadratic B-spline for an open, uniform knot vector = {0,0,0,1/3,2/3,1,1,1} 

Figure 1 presents the quadratic B-spline basis functions (p = 2) for the open, uniform knot vector  = 

{0,0,0,1/3,2/3,1,1,1}. Multivariate B-spline basis functions in two and three dimensions are constructed as the 

tensor product of one-dimensional, that is, univariate basis functions. Let  = {1, 2,…,n+p,n+p+1}and = {1, 

2,…, m+q, m+q+1}, where 1 2 …n+pn+p+1 and 12 …m+qm+q+1be two knot vectors with polynomial 

orders p and q and the number of basis functions in each direction being n and m, respectively. The two-

dimensional B-spline basis function and its gradient can then be written as: 

 𝐍(i,j),(p,q)(,) = Ni,p(). Nj,q() (4) 

 𝐍(i,j),(p,q)(,) = {Ni,p
′ (). Nj,q() ,  Ni,p(). Nj,q

′ ()} (5) 

MOVING LEAST SQUARES SHAPE FUNCTION 

The moving least squares approximation of an unknown function u(𝐱)is: 

 uh(𝐱) = ∑pi(𝐱)

nb

i=1

ai(𝐱) = 𝐩T(𝐱)𝐚(𝐱) (6) 

in which p(x) is the column vector of the polynomial basis functions, a(x)is the column vector containing the unknown 

coefficients, and nb is the number of basis functions. Given a set of npdata points {x}p=1
np

 and values of these 

points{u}p=1
np

, the vector a(x) can be computed by using a weighted function w(x – xp)  0 as follows: 

 J(𝐱) = ∑w(𝐱 − 𝐱p)[𝐩
T(𝐱)𝐚(𝐱) − up]

𝟐

np

p=1

 (7) 
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Take the derivative of J with respect to each component of a(x) and set it to zero to obtain: 

 ∑w(𝐱 − 𝐱p)𝐩(𝐱)[𝐩
T(𝐱)𝐚(𝐱) − up]

np

p=1

= 0 (8) 

This leads to the following expression: 

 
𝐀(𝐱)𝐚(𝐱) = 𝐁(𝐱)𝐔p 

(9) 

where the matrix A and B can be written as: 

 
𝐀(𝐱) =∑w(𝐱 − 𝐱p)𝐩(𝐱p)𝐩

T(𝐱p)

np

p=1

 
(10) 

 𝐁(𝐱) = [w(𝐱 − 𝐱1)𝐩(𝐱1)w(𝐱 − 𝐱2)𝐩(𝐱2)    …      w (𝐱 − 𝐱np) 𝐩 (𝐱np)] (11) 

 
𝐔p = [u1 u2… unp]

T

 
(12) 

Solving eq.(9) for a(x) and substituting it into eq.(6)leads to: 

 uh(𝐱) = 𝐩
T(𝐱)𝐀−1(𝐱)𝐁(𝐱)𝐔 = 𝐓(𝐱)𝐔p =∑ (𝐱)

np

p=1

up (13) 

where (x) is the vector of MLS shape function and the shape function (x) is computed as: 

 (𝐱) = ∑pi(𝐱)(𝐀
−1(𝐱)𝐁(𝐱))

𝐢𝐩

nb

i=1

= 𝐩T(𝐱)(𝐀−1𝐁)𝐩 (14) 

In this paper, p(x) is defined as follows: 

 𝐩(𝐱) = [1, x, y]T (15) 

Considering a rectangular grid with the element size lx x ly, we denote rx =
x−xp

2lx
, ry =

y−yp

2ly
. Then, the weight 

function w(x – xp) is: 

 
w(𝐱 − 𝐱p) = w(rx)w(ry) (16) 

The quadratic spline function w(r) can be written as: 

 w(r) =

{
 
 

 
 
3

4
− r2                r 

1

2
1

2
(
3

2
− r)

2 1

2
 r  

3

2

0                         r 
3

2

 (17) 

B-SPLINE MATERIAL POINT METHOD WITH FUNCTION RECONSTRUCTION 

The algorithm can be divided into 3 phases. Phase 1 consists of the projection from the material points to the 

background grid. Phase 2 solves the discrete equation on the grid. Phase 3 updates the solutions from the 

background grid to the material points and reset the grid configuration. In the phase 1, the data of material points 

including density 
p
t , momentum 𝐯p

t , stress p
t  and body forces 𝐛p

t  are reconstructed using moving least square 



2nd International Conference on the Material Point Method for Modelling Soil-Water-Structure Interaction 

 

- 38 - 

 

technique and evaluated at the Gauss quadrature points‘g’ as follows: 

 
g
t =∑ 

gp

p
t

p

 (18) 

 (𝐯)g
t =∑ 

gp

p
t 𝐯p

t

p

 (19) 

 𝐛g
t =∑ 

gp
𝐛p
t

p

 (20) 

 g
t =∑ 

gp
p
t

p

 (21) 

where 
g
t , (𝐯)g

t , 𝐛g
t , g

t  are the value of density, momentum, body forces, stress at Gauss points. |Here, gp = 

g(xp) is the moving least square shape function of Gauss point ‘g’ evaluating at position of the material point xp, 

computed from eq.(14). Then, the nodal lumped mass  mi
t , nodal momentum (m𝐯)i

t , internal forces 𝐟i
b,t  and 

external forces 𝐟i
int,t are computed using Gauss quadrature integration as follows: 

mi
t =∑N(i,j),(p,q)(𝐱𝐠)g

t

g

g (22) 

(m𝐯)i
t =∑N(i,j),(p,q)(𝐱𝐠)(𝐯)g

t

g

g (23) 

𝐟i
b,t =∑N(i,j),(p,q)(𝐱𝐠)𝐛g

t

g

g (24) 

𝐟i
int,t = −∑N(i,j),(p,q)(𝐱𝐠)g

t

g

g (25) 

where g is the weight of the Gauss point and N(i,j)(p,q)(xg) is the B-spline shape function evaluating at position of Gauss 

point xg. After that, in phase 2 the nodal total force 𝐟i
t, nodal acceleration 𝐚i

t and nodal momentum in the next time 

stepare calculated: 

 
𝐟i
t = 𝐟i

int,t + 𝐟i
b,t + 𝐟i

ext,t
 

(26) 

 
𝐚i
t =

𝐟i
t

mi
t (27) 

 

(m𝐯)i
t+1 = (m𝐯)i

t + 𝐟i
t dt (28) 

After solving the motion equation, phase 3 updates the velocities and positions of the material points: 

 𝐯p
t+1 = 𝐯p

t +∑N(i,j),(p,q)(𝐱𝐩)𝐚i
tdt

i

 (29) 

 

𝐱p
t+1 = 𝐱p

t +∑N(i,j),(p,q)(𝐱𝐩)
(m𝐯)

i
t+1

mi
t dt

i

 (30) 

The nodal velocity at the end of the time step 𝐯i
L is calculated using MLS shape function and B-spline shape 

function as follows: 

(𝐯)g
L =∑ 

gp

p
t 𝐯p

t+1

p

 (31) 

(m𝐯)i
L =∑N(i,j),(p,q)(𝐱𝐠)(𝐯)g

L

g

g (32) 
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𝐯i
L =

(m𝐯)i
L

mi
t  (33) 

 

The velocity gradients, using the gradient of the shape function, can be written as: 

 
𝐯p

t+1 =∑N(i,j),(p,q)(𝐱𝐩)𝐯i
L

i

 
(34) 

 

Subsequently, the quantities such as position 𝐱p
t+1, deformation gradient 𝐅p

t+1, volume of the material point Vp
t+1 

and density of the material points 
p
t+1are updated: 

 𝐅p
t+1 = (𝐈 + 𝐯p

t+1dt)𝐅p
t  (35) 

 Vp
t+1 = det(𝐅p

t+1) Vp
o 

(36) 

 

p
t+1 =

mp

Vp
t+1

 
(37) 

Finally, the constitutive model stress point algorithm updates the stress p
t+1 at the material points based on the 

deformation gradient 𝐅p
t+1. At that moment, the grid configuration resets and new time-step can be computed. 

NUMERICAL EXAMPLE: 2D ALIGNED VIBRATION 

To evaluate the spatial convergence rate of the proposed algorithm, we consider a 2D aligned vibration 

problemfrom Sadeghirad et al. (2011) that is constructed using the method of manufactured solutions. The 

displacement field is assumed as: 

 𝐮(X, Y, t) = [
A sin (2

 X

L
) sin (

c t

L
)

A sin (2
 Y

L
) sin (

c t

L
+ )

] (38) 

where A is the maximum amplitude of displacement, L is size of the unit square (L=1m), X and Y are the position 

of material points in the reference configuration, c is the wave speed (c =
√E


). The velocity vector is computed by 

differentiating the displacement by time as follows: 

𝐯(X, Y, t) =
d𝐮

dt
= [

Ac sin (2
 X

L
) cos (

c t

L
)

Ac sin (2
 Y

L
) cos (

c t

L
+ )

] (39) 

Then the1st Piola-Kichhoff stress P, with respect to the reference configuration and the Cauchy stress, with 

respect to the deformed configuration for the Neo-Hookean material can be written as: 

𝐏 = ln(J)𝐅−1 + 𝐅−1(𝐅𝐅T − 𝐈) (40) 

 =
𝐏𝐅T

J
=
ln(J)

J
𝐈 +



J
(𝐅𝐅T − 𝐈) (41) 

where J is the determinant of the deformation gradient F, while and  are the shear modulus and Lame constant, 

respectively. To manufacture the solution, the body forces are used as the source term to construct the given 

displacement field as follows: 

𝐛 = [

ux

L2
(4



o
− c2 − 4

[ln(Fxx.Fyy)−1]−

oFxx
2 )

uy

L2
(4



o
− c2 − 4

[ln(Fxx.Fyy)−1]−

oFyy
2 )

] (42) 



2nd International Conference on the Material Point Method for Modelling Soil-Water-Structure Interaction 

 

- 40 - 

 

In this paper, the numerical parameters include Young modulus E = 10e7Pa, Poisson’s ratio =0.3, initial density 

o= 1000 kg/m3. The duration of the simulation is T=0.2s with the time step dt = 1e-5satisfying the Courant–

Friedrichs–Lewy condition. The square domain has a size of 1 x 1m. The spatial convergence rate is tested with 

the number of the grid cell of 8, 16, 32, 64 in both x and y direction, which corresponds to the grid cell size of 

0.125m, 0.0625m, 0.03125m and 0.015625m respectively. In each cell,9 material points are distributed equally in 

a single cell. Each cell contains 4 Gauss quadrature points for Gauss integration. To generate the large 

deformation, the displacement amplitude A is 0.1m. The root-mean-square errors (RMS) for numerical 

simulations are: 

RMS = √
∑ ‖𝐟numerical(𝐱p) − 𝐟exact(𝐱p)‖

2Np
p=1

Np
 (43) 

Here, the errors of the displacement, velocity and stress of material points are calculated at the end of the 

numerical simulation. Figure 2, Figure 3 and Figure 4 show the spatial convergence rate for the quantities of 

interest respectively for MPM, B-spline MPM, and B-spline MPM combined with moving least square 

reconstruction technique. The results illustrate that MPM does not converge well with the increasingly refined 

grid, most probably due to the cell-crossing errors. While the errors made by B-spline MPM are considerably 

lower than those generated by the original MPM, the method also shows a lack of convergence for finer meshes. 

The moving least square technique significantly improves the accuracy of the B-spline MPM in the large 

deformation regime. 

 
Figure 2  Spatial convergence rate of displacement (A = 0.1m) 

 
Figure 3  Spatial convergence rate of velocity (A = 0.1m) 

 
Figure 4  Spatial convergence rate of stress (A = 0.1m) 

CONCLUSIONS 

In this paper, a moving least squares function reconstruction technique is combined with B-spline MPM. The functions 

of the density, the momentum, the body forces, and the stress at material points are reconstructed using MLS. 
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Then, the obtained functions are evaluated at 4 Gauss points per cell to integrate the function using B-spline basis 

functions. The proposed algorithm can improve the accuracy of B-spline MPM at finer meshes. However, the 

proposed formulation uses the lumped mass matrix and a low-order time integration. Those can still lead to a 

lower order of accuracy. Additionally, the function reconstruction is sensitive to the number of material points per 

cell and the reconstruction may become inaccurate when there are not enough material points to reconstruct the 

high-order functions in the background grid. These shortcomings of the proposed formulation and the sensitivity 

of number of material points per cell require further research, so the method can achieve the optimal convergence 

rate in large deformation problems. 
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