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A B S T R A C T

The effect of small internal and dashpot damping on a trapped mode of a 1D-waveguide, that is,
a semi-infinite string on a Winkler elastic foundation, has been investigated. At the edge of the
string a mass–spring–damper system is attached. The string is assumed to have an internal
damping. Four models for the internal damping are considered: air damping, Kelvin–Voigt
damping, local Kelvin–Voigt damping, and damping related to time hysteresis. Depending on
the internal damping and the parameters in the formulated problem, it will be shown that the
amplitude of a trapped mode of the string can decrease or increase with time.

. Introduction

One dimensional models in mechanics such as strings and beams frequently occur and are, for instance, used to describe the
ynamics of suspended bridges or of overhead power transmission lines, stay cables, marine and underwater cables, and the contact
able of a catenary system [1–5]. The authors of [3] use a semi-infinite string which is resting on an elastic foundation as a model
or an underwater cable. In [4] an infinite string on a distributed visco-elastic foundation subjected to a gravitational load and two
oint moving loads is used as ‘‘a model for a one-level catenary’’. The steady-state solutions were found and analyzed. The dynamic
ehavior of a long marine cable (string) with a suspended object was considered in [5]. In [5] the dynamics of a string like system
ith a distributed tangential damping along the cable was investigated. The problem was solved by using a numerical method. Axial
ibrations of a slender bar, embedded in an elastic medium can also be described mathematically by a string equation [6]. Another
xample of a physical object which is modeled as a string with a mass–spring inclusion, is a crystalline lattice [7]. The existence
f inclusions in the above mentioned systems leads sometimes to a sharp capture of energy and to an increase in the vibration
mplitudes near obstacles [7]. This effect depends sharply on the distribution of the natural frequencies of the string system in the
omplex frequency plane. Examples of vibration localization in periodic or nearly periodic engineering structures like bladed disks
n turbomachines, large space antennas, etc. were considered in [8]. The author of [8] uses the string equation in the analysis of
ocalizations in multi-bay trusses. In [9] the influence of structural damping on propagating waves in periodic and disordered nearly
eriodic systems has been considered. In case of absence of damping a localization factor is introduced which characterizes the spatial
mplitude decay of propagating waves. It was shown that the rate of spatial decay may increase with damping for particular values
f the system parameters. Mode localization in a translating string connected to a spring–mass–damper system was considered
n [10]. The authors of [10] find that the string attached to a spring–mass–damper system leads to the localization of vibration
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Fig. 1. String with an attached mass–spring–damper system at 𝑥 = 0.

modes in the downstream or upstream region. The existence of localized (trapped) modes in an infinite or semi-infinite string on
a Winkler foundation with an inclusion was investigated in [11–15]. This inclusion can be a mass, a spring, or a simple oscillator.
When the string tension is constant, one natural frequency corresponds to a trapped mode of oscillation localized near the inclusion.
The influence of a non-linearity on the localized mode behavior in such conservative systems was investigated in [16–18]. Other
examples of trapped modes which can exist in mechanical elastic systems can be found in [19–23]. The influence of damping on
non-linear waves like solitons, breathers etc. are beyond the scope of this paper. In this paper the effect of small internal and dashpot
damping on a trapped mode in a 1D-waveguide will be investigated. The 1D-waveguide is a semi-infinite string on a Winkler elastic
foundation, which at its edge is attached to a mass–spring–damper system. The rigidity of the spring may be positive or negative.
Usually such systems which are attached to the edge of the string are used for damping of undesirable oscillations [5,24]. Four
models for the internal damping are considered in this paper: air damping, Kelvin–Voigt damping, local Kelvin–Voigt damping, and
damping related to a time hysteresis. In case the infinite system has no internal or dashpot damping it has a natural frequency and
corresponding to this frequency a trapped mode [11–14]. For undamped, semi-infinite strings, which we consider in this paper, it
will be shown that trapped modes exist and are located in the region of the edge of the string. The expression for the eigenfrequency
which corresponds to the trapped mode of the undamped string will be given. Also by using energy estimates, the stability of the
undamped system will be investigated. Due to damping in the system it is not clear whether trapped modes will still exist or not. For
an undamped finite length string, which is coupled to a linear spring–dashpot system, it has been shown for a special combination
of the system parameters that damping destroys the normal modes of vibration and traveling modes are formed [25]. In [26] the
dynamics of an ‘‘oscillator onto whose mass one end of a string of infinite length is attached’’ was considered. It was found that in
such a system the oscillator’s motion will be damped. The author of [26] uses the obtained results to illustrate such physical concepts
as ‘‘radiation damping, the impedance of a wave propagating medium, Browning motion and Langevin equation’’. On the basis of
these, and on the afore-mentioned results, we can expect that in the systems which are considered in our paper, the trapped modes
can vanish because of the presence of a spring–mass–damper or internal damping in the string. Nevertheless, in this paper with the
help of an analytical perturbation method it is proved that for particular values of the system parameters the trapped modes still
can exist. Moreover, the amplitudes of these localized modes can decrease or increase with time depending on the type of internal
damping and spring rigidity. Whether there is damping or not, this growth of the amplitudes in the region of the system, where it
is not expected, can be troublesome and should be taken into account in the process of cable design.

2. Statement of the problem

The system under investigation is shown in Fig. 1. The equation of motion for a differential element of the string which describes
the oscillations of a semi-infinite string on a Winkler foundation is given as:

𝜌𝑢𝑥𝑥 −𝑁𝑢𝑡𝑡 − 𝑘𝑢 − 𝜖𝐷[𝑢] = 0, (1)

where 𝑢(𝑥, 𝑡) is the displacement of the string in transverse direction, 𝜌 is the mass density per unit length of the string, 𝑁 is the
tensile force in the string, 𝑘 is the string elastic foundation coefficient (assumed to be constant), 𝜖 is the string damping coefficient,
𝑡 > 0 is the time, 𝑥 ∈ (0,+∞) is the longitudinal coordinate, 𝐷[𝑢] is a linear operator, which corresponds to a small damping effect.
The operator 𝐷[𝑢] can have different forms:

(i) For local simple air damping one has

𝐷[𝑢] = 𝜇(𝑥)𝑢𝑡,
where 𝜇(𝑥) ≥ 0 is a function that defines the space localization;

2 
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(ii) for local Kelvin–Voigt damping (see [27])

𝐷[𝑢] = −(𝜇(𝑥)𝑢𝑥𝑡)𝑥, (2)

(iii) and for local time hysteresis damping

𝐷[𝑢] = 𝜇(𝑥)𝛽 ∫

𝑡

0
exp(−𝛽(𝑡 − 𝜏))𝑢𝜏𝑑𝜏.

To obtain a non-local uniform in space damping we set 𝜇(𝑥) ≡ 1. The following boundary conditions are taken into account for air
damping and for time hysteresis damping:

𝑢(𝑥, 𝑡) → 0, 𝑥 → ∞ (3)

𝑢𝑥(𝑥, 𝑡)|𝑥=0 = 𝑀𝑞𝑡𝑡 + 𝜂𝑞𝑡 + 𝐺𝑞. (4)

For the Kelvin–Voigt damping the boundary conditions are as follows:

𝑢(𝑥, 𝑡) → 0, 𝑥 → ∞, (5)

(𝑢𝑥(𝑥, 𝑡) + 𝜖𝜇(𝑥)𝑢𝑥𝑡)|𝑥=0 = 𝑀𝑞𝑡𝑡 + 𝜂𝑞𝑡 + 𝐺𝑞, (6)

where 𝑀 is the constant mass in the system, 𝜂 is the small damping coefficient (referred to as a damping coefficient coupled to the
string system), 𝐺 is the constant stiffness which can be positive or negative, and 𝑞 = 𝑞(𝑡) = 𝑢(0, 𝑡) is the displacement of the mass–
spring–damper system at 𝑥 = 0,. Notice that differential Eq. (1), and the boundary conditions can be transformed to a dimensionless
form when we rescale the variables. For the rescaling, the following relations are used:

𝑎 = 𝑘𝐿2

𝑁
, 𝛿 = 𝜖𝐿2

𝑁𝑇0
, 𝑐20 = 𝑁

𝜌
, 𝑇0 = 2𝜋

√

𝑀
𝐺

, 𝐿 = 𝑐0𝑇0, 𝑥 = 𝐿�̄�,

𝑢 = 𝐿�̄�, 𝑡 = 𝑇0𝑡, 𝑏1 =
𝑀𝐿
𝑁𝑇 2

0

, 𝑏2 =
𝐿𝜂
𝑁𝑇0

, 𝑏3 =
𝐺𝐿
𝑁

,

here �̄� is the dimensionless longitudinal coordinate, 𝑡 is the dimensionless time. Note that 𝛿 = 𝜖
𝑁𝑇0

for Kelvin–Voigt damping, and

= 𝜖𝐿2

𝑁 for a time hysteresis damping. To simplify notations, the overbar is omitted and we obtain the equation:

𝑢𝑥𝑥 − 𝑢𝑡𝑡 − 𝑎𝑢 − 𝛿𝐷[𝑢] = 0. (7)

The following boundary conditions are taken into account for air damping and for time hysteresis damping:

𝑢(𝑥, 𝑡) → 0, 𝑥 → ∞, (8)

𝑢𝑥(𝑥, 𝑡)|𝑥=0 = 𝑏1𝑞𝑡𝑡 + 𝑏2𝑞𝑡 + 𝑏3𝑞. (9)

For the Kelvin–Voigt damping the boundary conditions are as follows:

𝑢(𝑥, 𝑡) → 0, 𝑥 → ∞, (10)

(𝑢𝑥(𝑥, 𝑡) + 𝛿𝜇(𝑥)𝑢𝑥𝑡)|𝑥=0 = 𝑏1𝑞𝑡𝑡 + 𝑏2𝑞𝑡 + 𝑏3𝑞, (11)

We introduce a small dimensionless parameter 𝛿, and suppose that 𝑏2 = �̄�𝛿, where the positive coefficient �̄� defines the ratio
etween the damping coefficient of the (to the string) attached system and the internal damping of the string itself. This coefficient
ay be large, or small or of order 1. However, the condition �̄� ≪ 𝛿−1 always has to be satisfied.

. Oscillatory localized solutions

Let us outline the main ideas of our mathematical approach. For the undamped system we use some energy estimates (see the
ext subsection), and then we substitute a specific exponential solution into the string equation. The energy estimate helps makes
t possible to draw some conclusions about the system behavior. Similar estimates can be made for the cases of air and Kelvin–
oigt damping. For the case with time hysteresis damping such an estimate leads to a complicated expression which cannot be
nalyzed easily, simple, and for that reason is not presented in this paper. The direct substitution of an exponential solution into
he governing equation gives a better possibility to analyze the system behavior. This solution is defined by a complex number, for
hich the imaginary part 𝑖𝛺 is an oscillation frequency, and its real part, depending on its sign, defines an increase or decrease

ate of the solution in time. From the boundary conditions we obtain a nonlinear equation for 𝛺. For small damping coefficients
this equation can be investigated by standard perturbation methods. Further, we validate the correctness of the obtained results by
numerical methods.

3.1. Energy considerations

We consider first the case 𝛿 = 0, and we derive energy expressions for (complex-valued) solutions. To do that we multiply both
sides of (1) by 𝑢 , and then integrate with respect to 𝑥 over (0,+∞) assuming that all norms ‖𝑢‖2 = ∫ +∞

|𝑢|2𝑑𝑥, ‖𝑢 ‖

2 = ∫ +∞
|𝑢 |

2𝑑𝑥
𝑡 0 𝑥 0 𝑥

3 
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and ‖𝑢𝑡‖2 = ∫ +∞
0 |𝑢𝑡|

2𝑑𝑥 are bounded. Integrating by parts and taking into account the boundary conditions (8) and (9), one obtains
the energy conservation law for the total energy consisting of the string energy term and the oscillator energy term:

𝐸[𝑢] = 𝐸𝑠[𝑢] + 𝐸𝑜𝑠𝑐 [𝑢] = 𝑐𝑜𝑛𝑠𝑡, (12)

where

2𝐸𝑠[𝑢] = ‖𝑢𝑥‖
2 + 𝑎‖𝑢‖2 + ‖𝑢𝑡‖

2 = ∫

+∞

0
(|𝑢𝑥(𝑥, 𝑡)|

2 + 𝑎|𝑢𝑥(𝑥, 𝑡)|
2 + |𝑢𝑡(𝑥, 𝑡)|

2)𝑑𝑥,

nd

2𝐸𝑜𝑠𝑐 [𝑢] = 𝑏1|𝑢𝑡(0)|
2 + 𝑏3|𝑢(0)|

2.

If 𝑏3 ≥ 0 and 𝛿 = 0 the energy conserved, according to Eq. (12). Then, both the oscillator energy 𝐸𝑜𝑠𝑐 and the string energy 𝐸𝑠
re nonnegative, therefore, this energy estimate implies that solutions are stable: and so, the exponential instability is impossible.

If 𝑏3 < 0 the situation is more intriguing. Then, it is possible that 𝐸𝑜𝑠𝑐 < 0, and exponentially growing (or decreasing) in 𝑡
olutions can exist only if the total energy of these solutions is equal to zero. In fact, we shall see that solutions 𝑢(𝑥, 𝑡) exponentially
epend on 𝑡.

Now let us consider a simple air damping with 𝛿 > 0. For simple air damping we find (for 𝛿 ≠ 0):

𝑑𝐸[𝑢]∕𝑑𝑡 = −𝛿‖𝑢𝑡‖2. (13)

Then, the energy decreases in time according to (13). This implies stability for 𝑏3 ≥ 0 as is explained above. It is possible to get
he same type of estimate for Kelvin–Voigt damping in the form:

𝑑𝐸[𝑢]∕𝑑𝑡 = −𝛿 ∫

+∞

0
𝜇(𝑥)𝑢2𝑥𝑡𝑑𝑥. (14)

For this case we can draw the same conclusion about stability for the system as for the case with air damping. In the next
ubsections we study, construct, and consider some special solutions of our formulated problems for 𝑢(𝑥, 𝑡).

.2. Harmonic solutions

We are looking for (almost) harmonic oscillations, which might be slowly decreasing in time:

𝑢(𝑥, 𝑡) = 𝑈 (𝑥) exp(−𝑖𝛺𝑡),

here 𝑈 is still an unknown function in 𝑥, and 𝑖 =
√

−1. The function 𝑈 (𝑥) has to satisfy the following equation:

𝑈𝑥𝑥 + (𝛺2 − 𝑎)𝑈 + 𝑖𝛿𝛺�̄�[𝑈 ] = 0, (15)

where the operator �̄�[𝑈 ] is equal to 𝜇𝑈 in the case of simple air damping, �̄�[𝑈 ] = −(𝜇𝑈𝑥)𝑥 in the case of Kelvin–Voigt damping,
and �̄�[𝑈 ] = −𝑈 (𝑥)𝜇(𝑥) 𝑖𝛽𝛺

𝛽−𝑖𝛺 for time hysteresis damping.

.3. The undamped case (𝛿 = 0, 𝑏2 = 0)

Let us suppose that 𝛿 = 0, and let 𝑈0(𝑥) and 𝛺0 be solutions of (15) and the corresponding non-perturbed frequency
equation,respectively. We introduce 𝑑2 = 𝑎 − 𝛺2

0 , and choose 𝑑 such that Re 𝑑 > 0. Then 𝑈0(𝑥) = 𝐶 exp(−𝑑𝑥) is a solution of
q. (15) which is decreasing for 𝑥 → +∞ (where 𝐶 is a constant). To obtain the equation for 𝛺0, we use the boundary condition (9),
nd as a result we have

𝑏1𝛺
2
0 − 𝑏3 = 𝑑 =

√

𝑎 −𝛺2
0 . (16)

This implies

𝑏21𝛺
4
0 + (1 − 2𝑏1𝑏3)𝛺2

0 + 𝑏23 − 𝑎 = 0. (17)

From (17) it follows for physically relevant cases that 𝑎 > 𝛺2
0 > 𝑏3∕𝑏1, and

𝛺2
0 =

(2𝑏1𝑏3 − 1) +
√

1 + 4𝑎𝑏21 − 4𝑏1𝑏3

2𝑏21
. (18)

The properties of the solutions for 𝛺0 with Re 𝑑 > 0 depend on the parameters 𝑏1, 𝑏3, and 𝑎 in a complicated way. To simplify
the analysis, we choose the Winkler foundation coefficient 𝑎 as a bifurcation parameter. Let us introduce 𝑎𝑐 = 𝑏3∕𝑏1. It should be
observed that 𝑎𝑐 is the square of the (attached mass–spring) oscillator dimensionless frequency 𝜔𝑜𝑠𝑐 , that is, 𝜔2

𝑜𝑠𝑐 = 𝑏3∕𝑏1. Note that
for harmonic localized solutions relation (12) gives
𝐸[𝑈0(𝑥) exp(−𝑖𝛺0𝑡)] = 𝐸𝑠 + 𝐸𝑜𝑠𝑐 , (19)

4 
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Fig. 2. This bifurcation diagram shows how the localized solutions depend on the two parameters 𝑎 and 𝑏3, while 𝑏1 = 1 is fixed (note that we can take 𝑏1 = 1
by changing the variables 𝑥, 𝑡; so, really we have two parameters). The whole parameter plane is divided into three regions, corresponding to the absence of
solutions, stable oscillating solutions, and, in time exponentially increasing solutions.

Fig. 3. This plot shows the real part of the oscillation frequency 𝛺0 as a function of the Winkler foundation coefficient 𝑎. The imaginary part of 𝛺0 is equal
to zero. The parameter values are 𝑏1 = 2, and 𝑏3 = 2.

where

𝐸𝑠 = (2Re)−1
(

|𝑑|2 + |𝛺0|
2 + 𝑎

)

,

𝐸𝑜𝑠𝑐 = 𝑏1|𝛺0|
2 + 𝑏3.

From (18), and some numerical simulations (see also Fig. 2) we obtain the following:
(I) For 𝑏3 > 0 and 𝑎 > 𝑎𝑐 : there exist monotone decreasing localized in 𝑥 solutions 𝑈0(𝑥) with ℑ𝛺0 = 0;
(II) For 𝑏3 > 0 and 0 < 𝑎 < 𝑎𝑐 localized in 𝑥 solutions 𝑈0(𝑥) are absent;
(III) For 𝑏3 < 0 there is a bifurcation value �̃�𝑐 = 𝑏23. For 𝑎 > �̃�𝑐 , we have solutions 𝑈0(𝑥) exp(−𝑖𝛺0𝑡) with ℜ𝛺0 = 0, which

exponentially decrease in 𝑡 for Im𝛺0 < 0 and exponentially increase in 𝑡 for Im𝛺0 > 0. For 0 < 𝑎 < �̃�𝑐 , one has solutions

𝑈0(𝑥) exp(−𝑖𝛺0𝑡) with ℜ𝛺0 ≠ 0, which oscillate in 𝑡.

5 
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Fig. 4. This plot shows the real part of the oscillation frequency 𝛺0 as a function of the Winkler foundation coefficient 𝑎. The parameter values are 𝑏1 = 2, and
𝑏3 = −1.

Fig. 5. This plot shows the imaginary part of the oscillation frequency 𝛺0 as a function of the Winkler foundation coefficient 𝑎. The parameter values are 𝑏1 = 2,
nd 𝑏3 = −1.

These properties are illustrated in the bifurcation diagram Fig. 2 and in Figs. 3–5. The results (I, II) can be obtained as follows.
ote that for 𝑏3 > 0 relation (12) implies that 𝛺0 is a real number: Im𝛺0 = 0. Therefore, 𝛺0 ∈ (0, 𝑎) and 𝛺2

0 can be found as an
ntersection of two curves (see comment in Fig. 6).

Consider the case (III). Note that the existence of the second bifurcation value �̃�𝑐 = 𝑏23 follows from (18). In fact, at 𝑎 = �̃�𝑐 the
root 𝛺2

0 defined by Eq. (18) changes sign. For example, if 2𝑏1𝑏3 < 1 the quantity 𝛺2
0 is a negative real number for 0 < 𝑎 < �̃�𝑐 , thus

𝑖𝛺0 is real, see also Fig. 6. Furthermore, according to (12) in the case 𝑏3 < 0 exponentially decreasing or exponentially increasing
solutions should have constant in time total energy 𝐸𝑡𝑜𝑡. It is clear that 𝐸𝑡𝑜𝑡 for exponentially decreasing solutions is equal to 0
(because all terms that define this energy go to zero as 𝑡 → +∞). Similarly for exponentially increasing solutions all these terms are
proportional to exp(𝑐𝑡) for some constant 𝑐 > 0, thus, the energy is conserved only under the condition that 𝐸𝑡𝑜𝑡 = 0 when the sum
of all these terms are equal to zero. So, we obtain that all decreasing or increasing solutions have zero energy. It can be checked by
(19) that for such solutions 𝐸𝑠 = −𝐸𝑜𝑠𝑐 , and thus these solutions really have zero energy. So, for 𝑏3 < 0 we encounter an instability.
In the next section we consider how damping influences this instability.
6 
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Fig. 6. The frequency 𝛺0 (for real or purely imaginary values) can be obtained from 𝛺2
0 = 𝑦 and 𝑓 (𝑦) = 𝑔(𝑦), where 𝑔(𝑦) =

√

𝑎 − 𝑦 and 𝑓 (𝑦) = 𝑏1𝑦− 𝑏3. This plot
shows the intersections of the curves 𝑓 (𝑦) and 𝑔(𝑦) for 𝑎 = 2, 𝑏1 = 2 and for different values of 𝑏3. For 𝑏3 < 0 the corresponding value of 𝑦 is negative.

3.4. Perturbation theory for weak damping

For small 𝛿 > 0 we apply the standard perturbation method, that is, the Rayleigh–Schrödinger perturbation theory, which is well
known in quantum mechanics [28,29], but, was earlier developed by Lord Rayleigh for acoustics [30]. Note that this approach can
be considered as a variant of the Lyapunov–Schmidt reduction method (see [31]), and we follow [31] (adapted to our problem).
We consider here the case Im𝛺0 = 0. We are looking for solutions in the form

𝑢(𝑥, 𝑡) = exp(−𝑖𝛺𝑡)𝑤(𝑥), 𝛺 = 𝛺0 + 𝛿�̃�, (20)

where 𝑤(𝑥) is a new unknown function, and �̃� is a small perturbation of the frequency. It is natural to look for 𝑤 in the form [31]

𝑤(𝑥) = 𝑐𝑈0(𝑥) + 𝛿�̃� (𝑥), (21)

where �̃� is a small perturbation and 𝑐 is a unknown constant. As it was shown above, 𝑈0 = 𝐶0 exp(−𝑑𝑥), and we choose 𝐶0 such
that ‖𝑈0‖

2 = ∫ ∞
0 𝑈2

0 (𝑥)𝑑𝑥 = 1. To obtain the minimum in 𝐿2-norm of the perturbation we adjust it to 𝑐 :

𝑃 (𝑐) = 𝛿2 ∫

+∞

0
�̃� (𝑥)2𝑑𝑥 = ∫

+∞

0
(𝑤(𝑥) − −𝑐𝑈0(𝑥))2𝑑𝑥. (22)

Differentiating the function 𝑃 (𝑐) with respect to 𝑐 we get

𝑐 = ∫

∞

0
𝑤𝑈0𝑑𝑥

(

∫

∞

0
𝑈2
0 (𝑥)𝑑𝑥

)−1
, (23)

and

∫

∞

0
𝑈0(𝑥)�̃� (𝑥)𝑑𝑥 = 0. (24)

The last relations have a simple geometric interpretation. To obtain the minimum in norm, in the one-dimensional subspace of
𝐿2(0,∞) containing those functions 𝑐𝑈0(𝑥) with different 𝑐, we choose the orthogonal projection of 𝑤 on this subspace. By using
these relations in the next subsections, we will study different damping mechanisms.

3.4.1. Air damping
Taking into account terms of order 𝛿, we obtain for the simplest air damping the following boundary value problem for �̃� and

�̃� :

�̃�𝑥𝑥 − 𝑎�̃� − 𝜃0�̃� + 𝑖𝛺0𝜇𝑈0 = 𝜃𝑈0, (25)

(

�̃�𝑥 − (𝑏1𝜃0 + 𝑏3)�̃� (𝑥)
)

|𝑥=0 =
(

𝑏1𝜃𝑈0(𝑥) + �̄�(−𝑖𝛺0)𝑈0(𝑥)
)

|𝑥=0, (26)

�̃� (𝑥) → 0 𝑥 → +∞, (27)
7 
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where 𝜃0 = −𝛺2
0 and 𝜃0 + 𝛿𝜃 = −𝛺2. Note that �̃� = −𝜃∕2𝛺0, and so �̃� is involved in these equations via 𝜃. We multiply both sides

of (25) with 𝑈0, and further we integrate with respect to 𝑥 from 𝑥 = 0 to 𝑥 = ∞. To simplify formulas, it is convenient to introduce
= −�̃�. Then, by taking into account (24), by observing that ‖𝑈0‖ = 1, and by using (26) and (27), we obtain

𝜃 = 𝑖𝛺0(1 + 2𝑏1𝑑)−1
(

2�̄�𝑑 + ∫

∞

0
𝜇(𝑥)𝑈2

0 𝑑𝑥
)

. (28)

Finally we find that

𝑢 = exp(−𝑖𝛺0𝑡 + 𝛿𝛾𝑡)(𝑈0(𝑥) + 𝛿�̃� (𝑥)) (29)

with

𝛾 = −(2(1 + 2𝑏1𝑑))−1(2�̄�𝑑 + ∫

∞

0
𝜇(𝑥)𝑈2

0 𝑑𝑥). (30)

This shows the existence of solutions which slowly decrease in time. If the damping is uniform in space, that is, 𝜇(𝑥) = 𝜇 = 𝑐𝑜𝑛𝑠𝑡,
we have

𝛾 = −(2(1 + 2𝑏1𝑑))−1(2�̄�𝑑 + 𝜇). (31)

3.4.2. Local Kelvin–Voigt damping
For the problem with local Kelvin–Voigt damping one has

�̃�𝑥𝑥 − 𝑎�̃� − 𝜃0�̃� − 𝑖𝛺0(𝜇𝑈0𝑥)𝑥 = 𝜃𝑈0, (32)

(

�̃�𝑥 − (𝑏1𝜃0 + 𝑏3)�̃� (𝑥)
)

|𝑥=0 =
(

𝑏1𝜃𝑈0(𝑥) + �̄�(−𝑖𝛺0)𝑈0(𝑥) − 𝑖𝜇(0)𝛺0𝑈0

)

|𝑥=0. (33)

As before we multiply both sides of (32) with 𝑈0 and integrate with respect to 𝑥 from 𝑥 = 0 to 𝑥 = ∞. By using (27) and (33) we
obtain:

𝜃 = −((1 + 2𝑏1𝑑))−1𝑖𝛺0

(

∫

∞

0
(𝜇(𝑥)𝑈0

2
𝑥𝑑𝑥 + 2�̄�𝑑

)

(34)

and

𝛾 = −(2(1 + 2𝑏1𝑑))−1
(

2𝑑�̄� + ∫

∞

0
𝜇(𝑥)𝑈0

2
𝑥𝑑𝑥

)

. (35)

For uniform in space Kelvin–Voigt damping we obtain similarly

𝛾 = −(2(1 + 2𝑏1𝑑))−1
(

𝜇𝑑2 + 2𝑑�̄�
)

. (36)

3.4.3. Hysteresis damping
Let us consider the case of localized in space time hysteresis damping. The operator 𝐷[𝑢] acts on non-perturbed solutions

𝑈0(𝑥) exp ( − 𝑖𝛺0𝑡 in the following way:

𝐷[𝑈0(𝑥)𝑒−𝑖𝛺0𝑡] = 𝐼(𝑥, 𝑡) = 𝛽𝜇(𝑥)∫

𝑡

0
exp(−𝛽(𝑡 − 𝜏))(𝑈0(𝑥) exp(−𝑖𝛺0𝜏))𝜏𝑑𝜏.

We note that for large 𝑡 and Im𝛺0 = 0 one has

𝐼(𝑥, 𝑡) ≈
−𝑖𝛺0𝛽𝜇(𝑥)𝑈 (𝑥)

𝛽 − 𝑖𝛺0
exp(−𝑖𝛺0𝑡)

up to terms which are exponentially small in 𝑡. We see that for large 𝑡 the hysteresis damping works as a simple air damping
multiplied with a complex coefficient 𝛽

𝛽−𝑖𝛺0
. Therefore, one has (for large 𝑡)

𝛾 ≈ −
𝛽

2(1 + 2𝑏1𝑑)(𝛽 − 𝑖𝛺0)

(

∫

∞

0
𝜇(𝑥)𝑈2

0 𝑑𝑥 + 2𝑑�̄�
)

. (37)

We observe that hysteresis not only leads to a small amplitude decrease but also produces a small perturbation in the oscillation
frequency. In Fig. 7 and in Fig. 8 the order 𝜖 corrections (that is, 𝛺) in 𝛺 = 𝛺0 + 𝛿𝛺 are presented for the cases with Kelvin–Voigt
damping and with time hysteresis damping, respectively. In Fig. 7 and in Fig. 8 it is easy to observe that instabilities do not occur.

4. Numerical results, validation and discussion

To verify the obtained analytical results, the problem is also studied numerically for comparison. As numerical method the
‘‘sponge layer’’ method [32,33] can be applied to model the boundary condition (10) at infinity. The name ‘‘sponge layer’’ is adopted
to indicate that wave absorption in the present study is achieved by introducing damping terms in the governing equations. The
method consists of adding an additional dissipative term 𝜈(𝑥)𝑢𝑡 in a small absorption zone adjacent to the boundary. The wave
noticeably loses energy when passing through the absorption zone which reduces the reflection of the wave from the boundary
of the computational domain. The size of the absorption zone and the function 𝜈(𝑥) were chosen for the least reflection of waves
8 
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Fig. 7. This plot shows the results for the case with Kelvin–Voigt damping. The parameters are 𝑎 = 0.3, �̄� in the interval [0, 3], and 𝑏3 = 0.01.

Fig. 8. This plot shows the results for the case with time hysteresis damping. The parameters are: 𝑎1 = 0.3, 𝑏1 = 0.1, 𝑏3 = 0.01.

rom the domain boundary. The optimal size of the ‘‘sponge layer’’ can be determined based on the analytical results for a trapped
scillation frequency. The ‘‘sponge layer’’ should contain 15 waves. The size of the ‘‘sponge layer’’ is 50 units of length which is
quivalent to 15 maximum wavelengths for the considered parameters. The calculation domain is 200 units of length. The equation
ith the introduced ‘‘sponge layer’’ is taken in the form:

𝑢𝑥𝑥 − 𝑢𝑡𝑡 − 𝜈(𝑥)𝑢𝑡 − 𝑎𝑢 − 𝛿𝐷[𝑢] = 0, (38)

here 𝜈(𝑥) = (0.02𝑥−3)𝐻(𝑥−150), 𝑥 = 0 to 200 units of length, and the equation is approximated by a three-point implicit difference
cheme. Eq. (38) is solved by using the matrix sweep method [34]. The uniform grid is chosen with a step size of 0.05 units for
ength, and a time step of 0.0001 units for time. The calculations for a string without damping are presented in Fig. 9, and show
hat a trapped mode can exist and it is localized at the edge of the system.

In Fig. 9a the mode shape is represented, and in Fig. 9b we can see the corresponding time history at 𝑥 = 0. Also, from what
e can observe in Fig. 9a and in Fig. 9b the analytical and numerical results are very close to each other for times 𝑡 of order 𝜖−1.
he curve presented in Fig. 10 shows the instability case when the amplitude of the string vibration is growing in time at the edge
= 0. The numerical results for the case when the string has air damping is presented in Fig. 11. As in the case without damping the
ifferences between the analytical and numerical results are small. The curves for the Kelvin–Voigt and for the hysteresis damping
re similar to the curves for air damping, and are for that reason not presented. The curve presented in Fig. 11a shows that near the
dge of the string a localized mode still exists. The difference in behavior between the trapped mode of the string without damping
nd the localized mode with damping, is that in the last case the mode is slowly decaying in time as we can observe in Fig. 11b.

. Conclusions

In this paper a semi-infinite string on a Winkler elastic foundation has been considered. The edge of the string is attached to a
ass–spring–damper system. An analytical perturbation method is proposed in this paper which allows us to analyze the dynamics

f the considered system. We can conclude that in this paper for an undamped system the localized solution was found, as well
9 
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Fig. 9. This plot shows:(a) the shape, and (b) the time behavior at 𝑥 = 0 of a localized mode for the case without damping. The solid line corresponds to the
numerical results and the dotted line to the analytical results. The parameters are: 𝑏3 = −2, 𝑎 = 6, 𝑏1 = 1.

Fig. 10. This plot shows the increasing amplitude of a localized mode in time for the case without damping. The parameters are: 𝑏3 = −2, 𝑎 = 0.3, 𝑏1 = 0.1.

Fig. 11. This plot shows: (a) the shape, and (b) the time behavior of a localized mode for the case with damping. The solid line corresponds to the numerical
esults and the dotted line to the analytical results. The parameters are: 𝑏3 = −2, 𝑎 = 6, 𝑏1 = 1, 𝛿 = 0.1, 𝑏2 = 0.01.
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as the frequency, which corresponds to this trapped mode. With the help of an energy estimate the stability of the undamped
system was investigated. A bifurcation diagram, which shows how the localized solution depends on the system parameters, has
been given. For different kinds of damping mechanisms in the string (such as air damping, (local) Kelvin–Voigt damping, or a
(local) time hysteresis damping) it has been shown that localized modes of vibrations can exist for particular values of the system
parameters. The amplitudes of these localized modes of vibration can increase in time or can decrease in time depending on the
negative or positive stiffness coefficient in the attached mass–spring–damping system, respectively. In case of absence of damping in
the problem, and for a positive stiffness coefficient in the attached system at the edge of the string, it has been shown that depending
on the coefficient of the Winkler foundation that localized in space solutions are absent, or that oscillating in time and localized in
space solutions are present. The increase of amplitudes of localized modes can be interpreted as system instabilities. The nature of
these instabilities are close to the types of instabilities considered in [35–37] for some physical systems. Compared to the studies
in [35–37] we restrict our analysis to (in-)stabilities which can occur when localized modes exist. So, from a practical point of view,
we can get undesirable growth of string amplitudes even in the presence of damping. This shows the importance of finding the
parameters for which this occurs. Such instabilities can also be seen as the beginning of a fracture process in a crystalline lattice
when the lattice is modeled as a string with inclusions as has been done in [7]. Also knowledge of the trapped mode location can
be used to suppress the cable(string) oscillations by installing a damper at its edge, or to create an acoustic emitter at one particular
frequency. Note that in this paper we only focus on trapped mode-solutions. Other types of solutions, like traveling waves, which
may exist in the system, were not considered yet.
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