
Reinforcement
Learning for
Flight Control
Hybrid Offline-Online Learning for
Robust and Adaptive Fault-Tolerance

Casper Teirlinck

Reinforcement
Learning for
Flight Control

Hybrid Offline-Online Learning for
Robust and Adaptive Fault-Tolerance

by

Casper Teirlinck
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday September 14, 2022 at 14:00.

Student number: 4680723
Project duration: October 25, 2021 – September 14, 2022
Thesis committee: Dr. ir. C.C. de Visser, TU Delft, chair

Dr. ir. E. van Kampen, TU Delft, supervisor
Dr. ir. E. Mooij, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
The world of artificial intelligence, machine learning and especially reinforcement learning can be daunt-
ing, but especially exciting with the tremendous progress made in recent years. In an effort to satiate
my own curiosity, this thesis aims to continue the chain of research and new insights in this field within
the context of safety and autonomy in aerospace. The code developed during this research has been
made public1 to serve the reproducibility of this thesis, and with the hope that it can be of further help
for future students and researchers.

This thesis marks the end of my studies in Delft, a greatly fulfilling and exciting chapter of my life
where I have learned more than my high-school self could have ever imagined only five years ago. The
passion and excitement for engineering, conveyed by the numerous exceptional professors and fellow
students in Delft, has given me the drive to push through this challenging study. First and foremost, I
would like to thank my supervisor, Dr. ir. E. van Kampen for his continued guidance and supervision
throughout the entire research. Your input and expertise have provided a backbone for the successful
completion of my thesis. None of this would have been possible without the unconditional support of
my family, especially my parents, who I would like to thank for their continued encouragement, support,
and love. Thanks to all of you.

Casper Teirlinck
Delft, August 2022

1Code available at https://github.com/CasperTeirlinck/RLFC-SACIDHP

iii

https://github.com/CasperTeirlinck/RLFC-SACIDHP

Contents

List of Figures ix

List of Tables xi

List of Symbols xiii

List of Acronyms xv

1 Introduction 1
1.1 Background . 1
1.2 Research Objective and Questions . 2
1.3 Report Outline . 3

I Scientific Article 5

2 Hybrid Soft Actor-Critic and Incremental Dual Heuristic Programming Reinforcement
Learning for Fault-Tolerant Flight Control 8
2.1 Introduction . 8
2.2 Fundamentals . 9

2.2.1 Reinforcement Learning Problem Formulation . 9
2.2.2 Soft Actor-Critic Framework . 9
2.2.3 Incremental Dual Heuristic Programming Framework 11

2.3 Flight Controller Design . 13
2.3.1 High-Fidelity Environment Model . 13
2.3.2 Network Architecture . 14
2.3.3 Attitude Controller . 15
2.3.4 Altitude Controller . 16
2.3.5 Hybrid SAC-IDHP Cascaded Controller . 16
2.3.6 Training Strategy . 17

2.4 Results and Discussion . 20
2.4.1 Nominal System . 20
2.4.2 Failed System . 21
2.4.3 Additional Results . 23

2.5 Conclusion . 26

II Preliminary Research 29

3 Literature Review 31
3.1 Reinforcement Learning Fundamentals . 31

3.1.1 The Agent–Environment Interface . 31
3.1.2 Markov Decision Processes . 32
3.1.3 Rewards and Returns . 33
3.1.4 Policy and Value Functions . 33
3.1.5 Bellman Equations . 34
3.1.6 Optimality Equations . 34
3.1.7 High-Level Concepts . 34
3.1.8 Common Discrete Solution Methods . 36

3.2 Reinforcement Learning in Continuous Space . 39
3.2.1 Function Approximation and Optimization. 39
3.2.2 Agent Structures . 40

v

vi Contents

3.3 Approximate Dynamic Programming . 42
3.3.1 Adaptive Critic Designs . 43
3.3.2 State-of-the-art ADP Applications . 45

3.4 Deep Reinforcement Learning . 46
3.4.1 Deep Q-Network . 47
3.4.2 Trust Region Policy Optimization . 48
3.4.3 Asynchronous Advantage Actor-Critic . 48
3.4.4 Deep Deterministic Policy Gradient . 49
3.4.5 State-of-the-art DRL Applications . 51

3.5 Simulation Reality-Gap in Reinforcement Learning Flight Control 54
3.5.1 CommonCauses and Solutions to Simulation Reality-Gap in Reinforcement Learn-

ing . 54
3.5.2 Modelling Requirements . 55

3.6 Conclusion Literature Study . 56
3.6.1 RL Framework Candidate . 57
3.6.2 Reality-Gap Challenges . 58

4 Preliminary Analysis 59
4.1 Environment . 59

4.1.1 State-Transition Model . 59
4.1.2 Reward and Observation Model . 60

4.2 IDHP Agent . 61
4.2.1 Incremental Model . 63
4.2.2 IDHP Actor . 63
4.2.3 IDHP Critic . 64
4.2.4 IDHP Network Architectures . 65
4.2.5 IDHP Training Strategy. 65

4.3 SAC Agent . 66
4.3.1 Entropy . 68
4.3.2 SAC Actor. 68
4.3.3 SAC Critic . 69
4.3.4 SAC Network Architectures . 69
4.3.5 SAC Training Strategy . 70

4.4 IDHP-SAC Hybrid Agent . 71
4.4.1 IDHP-SAC Network Architectures . 71
4.4.2 IDHP-SAC Training Strategy. 72

4.5 Results and Discussion . 73
4.5.1 Normal System Dynamics . 73
4.5.2 Untrimmed initialization . 75
4.5.3 Robustness and Fault-Tolerance Analysis . 77

4.6 Conclusion Preliminary Analysis. 89

III Additional Results 91

5 Decoupled Hybrid Attitude Controller 93
5.1 Decoupled Hybrid Online Training . 94
5.2 Comparison on Fault-Tolerance with Coupled Controller 96

6 Robustness to Initial Flight Condition 101
6.1 FC1 .101
6.2 FC3 .101
6.3 FC4 .101

7 Effect of Covariance Reset 105

8 Atmospheric and Control Disturbances 109
8.1 Biased Sensor Noise .109
8.2 Atmospheric Disturbance .110
8.3 Control Disturbance .112

Contents vii

9 Additional Failure Modes 115
9.1 Center-of-Gravity Shift .115
9.2 Icing Effects. .115
9.3 Partial Loss of Horizontal Tail .115

10 Verification & Validation 119
10.1 Verification .119
10.2 Validation .120

IV Closure 121

11 Conclusion 123

12 Recommendations 127

Bibliography 129

List of Figures

3.1 The fundamental agent–environment interface of RL frameworks 32
3.2 A backup diagram showing state, action, policy and reward for two time-steps, adapted

from [62] . 34
3.3 RL common solution methods for discrete state and action spaces 37
3.4 Actor-Critic framework interaction between actor, critic and environment 42
3.5 Approximate Dynamic Programming Adaptive Critic Designs 43
3.6 Schematic of the decoupled lateral and longitudinal IDHP flight controller design from [28] 45
3.7 Schematic of the cascaded IDHP flight controller design for altitude tracking control from

[37] . 46
3.8 Deep Reinforcement Learning Algorithms . 47
3.9 Schematic of the cascaded, coupled SAC flight controller design from [11] 52
3.10 Altitude tracking response of cascaded SAC controller with sudden c.g. shift at 20s. Re-

sponse of controller trained on normal system until 80s, afterwards response of controller
trained on failed system [11] . 52

3.11 Reward curves comparing TD3 and SAC on suppression of roll oscillations task [14] . . 53
3.12 Reward curves for TD3 on suppression of roll oscillations task for increasing observation

vector sizes [14] . 54
3.13 Reward curves for SAC on a suppression of roll oscillations task for increasing observa-

tion vector sizes [14] . 54
3.14 Difference of MDP in simulation and reality due to time delays of state capture and policy

inference [13] . 55

4.1 IDHP Framework, online on-policy . 62
4.2 IDHP network architectures . 65
4.3 SAC Framework, offline off-policy . 68
4.4 SAC network architectures . 70
4.5 IDHP-SAC combined policy architecture . 72
4.6 SAC offline training reward curve on the short-period model 𝛼 tracking task 73
4.7 IDHP short-period response on normal system dynamics 74
4.8 SAC and IDHP-SAC short-period response on normal system dynamics 75
4.9 IDHP actor and critic weights on normal system dynamics 75
4.10 IDHP short-period response on 100 runs with untrimmed initialization 76
4.11 SAC and IDHP-SAC short-period response on 100 runs with untrimmed initialization . . 77
4.12 IDHP short-period response on 50% reduced elevator effectiveness 78
4.13 SAC and IDHP-SAC short-period response on 50% reduced elevator effectiveness . . . 79
4.14 IDHP actor and critic weights on 50% reduced elevator effectiveness 79
4.15 IDHP incremental model RLS estimator on 50% reduced elevator effectiveness 80
4.16 IDHP short-period response on c.g. shift . 81
4.17 IDHP actor and critic weights on c.g. shift . 82
4.18 IDHP incremental model RLS estimator on c.g. shift . 82
4.19 SAC short-period response on c.g. shift . 83
4.20 IDHP-SAC short-period response on c.g. shift . 83
4.21 IDHP-SAC actor and critic weights on c.g. shift . 84
4.22 IDHP-SAC incremental model RLS estimator on c.g. shift 84
4.23 IDHP short-period response on inverted elevator . 86
4.24 IDHP actor and critic weights on inverted elevator . 86
4.25 IDHP incremental model RLS estimator on inverted elevator 87
4.26 SAC (failed) short-period response on inverted elevator 87
4.27 IDHP-SAC short-period response on inverted elevator 88

ix

x List of Figures

4.28 IDHP-SAC actor and critic weights on inverted elevator 88
4.29 IDHP-SAC incremental model RLS estimator on inverted elevator 89

5.1 SAC-IDHP Decoupled Attitude Controller Structure . 93
5.2 SAC-IDHP Decoupled response on Attitude training task. 94
5.3 SAC-IDHP Decoupled response on Attitude training task, actor/critic weights and incre-

mental model parameters longitudinal. 95
5.4 SAC-IDHP Decoupled response on Attitude training task, actor/critic weights and incre-

mental model parameters lateral. 95
5.5 SAC-IDHP Decoupled response on Attitude task with partial loss of horizontal tail at t=30s. 96
5.6 SAC-IDHP Coupled response on Attitude task with partial loss of horizontal tail at t=30s. 97
5.7 SAC-IDHP Decoupled Attitude Controller with partial loss of horizontal tail at t=30s, ac-

tor/critic weights and incremental model parameters longitudinal. 98
5.8 SAC-IDHP Decoupled Attitude Controller with partial loss of horizontal tail at t=30s, ac-

tor/critic weights and incremental model parameters lateral. 98
5.9 SAC-IDHP Coupled Attitude Controller with partial loss of horizontal tail at t=30s, actor/-

critic weights and incremental model parameters. 99

6.1 Altitude tracking response of SAC-only and SAC-IDHP controllers on FC1. 102
6.2 Altitude tracking response of SAC-only and SAC-IDHP controllers on FC3. 103
6.3 Altitude tracking response of SAC-only and SAC-IDHP controllers on FC4. 103

7.1 SAC-IDHP and SAC-only response on altitude task with 70% reduced elevator effective-
ness from t=30s. With covariance reset. 106

7.2 SAC-IDHP and SAC-only response on altitude task with 70% reduced elevator effective-
ness from t=30s. Without covariance reset. 106

7.3 SAC-IDHP and SAC-only response on altitude task with 70% reduced elevator effective-
ness from t=30s. Actor/critic weights and incremental model parameters with covariance
reset. 107

7.4 SAC-IDHP and SAC-only response on altitude task with 70% reduced elevator effective-
ness from t=30s. Actor/critic weights and incremental model parameters without covari-
ance reset. 107

8.1 Altitude tracking response on system with biased sensor noise. SAC-IDHP and SAC-
only compared. 110

8.2 SAC-IDHP and SAC-only response on altitude task with atmospheric disturbances at
t=20s and t=80s. 111

8.3 SAC-IDHP and SAC-only response on altitude task with atmospheric disturbances at
t=20s and t=80s and biased sensor noise. 111

8.4 SAC-IDHP and SAC-only response on altitude task with control disturbances as 3211
signals on elevator, aileron and rudder. 112

8.5 SAC-IDHP and SAC-only response on altitude task with control disturbances as 3211
signals on elevator, aileron and rudder and biased sensor noise. 113

9.1 Altitude tracking response on system with 0.25m cg-shift from t=30s. SAC-IDHP and
SAC-only compared. 116

9.2 Altitude tracking response on system with icing effects from t=30s. SAC-IDHP and SAC-
only compared. 116

9.3 Altitude tracking response on system with partial loss of horizontal tail from 𝑡 = 30s.
SAC-IDHP and SAC-only compared. 117

10.1 Response to 3211 input comparing the DASMAT Simulink model with the executable
used in the python simulations. 120

List of Tables

3.1 Summary of ADC’s with their critic structure and model dependence, adapted from [11],
[28] . 44

4.1 Short-period stability and control derivatives for the Cessna Ce500 in cruise [51] 60
4.2 IDHP preliminary analysis hyperparameters . 66
4.3 SAC preliminary analysis hyperparameters . 71
4.4 IDHP preliminary analysis hyperparameters . 72

6.1 Robustness to initial flight conditions of cascaded altitude controllers. 101

8.1 Cessna Citation PH-LAB sensor noise characteristics [21] 109

xi

List of Symbols

𝑇 Episode period, [s]
𝑁 Number of time steps
𝑡 Time step

𝑎𝑡 Action vector at time step 𝑡
𝑠𝑡 Observation vector at time step 𝑡
𝑥𝑡 State vector at time step 𝑡
𝑟𝑡 Reward at time step 𝑡
Δ𝑎𝑡 Action vector increment at time step 𝑡
Δ𝑥𝑡 State vector increment at time step 𝑡

𝒜 Action space
𝒮 Observation space
ℛ Reward space

𝛾 Discount factor
𝐺𝑡 Discounted return at time step 𝑡

𝐴 State matrix
𝐵 Input matrix
𝐹 Incremental state matrix estimate
𝐺 Incremental input matrix estimate
Θ Incremental parameter matrix
𝑋 Incremental measurement matrix
Λ Covariance matrix
𝜖 Innovation

𝒫{𝑥 ∣ 𝑦} Probability of 𝑥 occurring given 𝑦
𝔼[𝑥] Expectation of random variable 𝑥

𝜋(𝑎𝑡 ∣ 𝑠𝑡) Stochastic policy, probability of selecting an action 𝑎𝑡 given the observation 𝑠𝑡
𝜋(𝑠𝑡) Deterministic policy, gives an action 𝑎𝑡 given the observation 𝑠𝑡
𝜋∗ Optimal policy
𝜋𝜃 Parameterized policy with parameter vector 𝜃

𝑣𝜋(𝑠𝑡) State-value function following policy 𝜋
𝑣∗(𝑠𝑡) State-value function following the optimal policy 𝜋∗
𝑉(𝑠𝑡) State-value function estimate of 𝑣𝜋
𝑉𝑤(𝑠𝑡) Parameterized state-value function estimate with parameter vector 𝑤
𝑉′𝑤′(𝑠𝑡) Parameterized target state-value function estimate with parameter vector 𝑤′

𝑞𝜋(𝑠𝑡 , 𝑎𝑡) Action-value function following policy 𝜋
𝑞∗(𝑠𝑡 , 𝑎𝑡) Action-value function following the optimal policy 𝜋∗
𝑄(𝑠𝑡 , 𝑎𝑡) Action-value function estimate of 𝑞𝜋
𝑄𝑤(𝑠𝑡 , 𝑎𝑡) Parameterized action-value function estimate with parameter vector 𝑤
𝑄′𝑤′(𝑠𝑡 , 𝑎𝑡) Parameterized target action-value function estimate with parameter vector 𝑤′

𝜆(𝑠𝑡) State-value derivative w.r.t the state vector

xiii

xiv List of Tables

𝜆𝑤(𝑠𝑡) Parameterized state-value derivative w.r.t the state vector with parameter vector 𝑤
𝜆′𝑤′(𝑠𝑡) Parameterized target state-value derivative w.r.t the state vector with parameter vector 𝑤′

𝐿 Loss function
𝛿 Temporal-Difference error
∇𝑥 Gradient w.r.t 𝑥
𝒟 Replay buffer
ℬ Mini-batch sampled from the replay buffer

ℋ Entropy
ℋ̄ Target entropy
𝜂 Entropy/Temperature coefficient
𝜂𝑎 Learning rate actor
𝜂𝑐 Learning rate critic
𝜏 Target mixing factor
𝜅 Reward scaling factor
𝛾𝑅𝐿𝑆 Recursive Least Squares forgetting factor

ℎ Hidden layer unit
𝑜 Output layer unit

𝛼 Angle of attack, [deg or rad]
𝑞 Pitch rate, [deg/s or rad/s]

𝛿𝑒 Elevator deflection, [deg or rad]

𝑉 Airspeed, [m/s]
�̄� Mean aerodynamic chord, [m]
𝜇𝑐 Relative density for symmetric motions
𝐾𝑌 Non-dimensional radius of gyration about the Y -axis

𝐶𝑍𝛼 Z-component coefficient derivative w.r.t angle of attack
𝐶𝑍�̇� Z-component coefficient derivative w.r.t �̇� ̄𝑐

𝑉
𝐶𝑍𝑞 Z-component coefficient derivative w.r.t pitch rate
𝐶𝑍𝛿𝑒 Z-component coefficient derivative w.r.t elevator deflection
𝐶𝑚𝛼 Pitching moment coefficient derivative w.r.t. angle of attack
𝐶𝑚�̇� Pitching moment coefficient derivative w.r.t. �̇� ̄𝑐

𝑉
𝐶𝑚𝑞 Pitching moment coefficient derivative w.r.t. pitch rate
𝐶𝑚𝛿𝑒 Pitching moment coefficient derivative w.r.t. elevator deflection
Δ𝑥𝑐.𝑔. Shift in centre of gravity, [m]

𝜇 Mean vector
𝜎 Standard deviation vector
𝜎2 Variance vector

List of Acronyms
(e)VTOL (Electrical) Vertical Take-Off and Landing.

ABS Adaptive Backstepping.

ACD Adaptive Critic Design.

AD Action-Dependent.

ADDHP Action-Dependent Dual Heuristic Programming.

ADGDHP Action-Dependent Global Dual Heuristic Programming.

ADHDP Action-Dependent Heuristic Dynamic Programming.

ADNI Adaptive Nonlinear Dynamic Inversion.

ADP Approximate Dynamic Programming.

ANN Artificial Neural Network.

BS Backstepping.

CE Cross-Entropy.

CPI Conservative Policy Iteration.

DASMAT Delft University of Technology Aircraft Simulation Model and Analysis Tool.

DDPG Deep Deterministic Policy Gradient.

DHP Dual Heuristic Programming.

DL Deep Learning.

DNN Deep Neural Network.

DP Dynamic Programming.

DPG Deterministic Policy Gradient.

DQN Deep Q-Network.

DRL Deep Reinforcement Learning.

GD Gradient Descent.

GDHP Global Dual Heuristic Programming.

GPI Generalised Policy Iteration.

HDP Heuristic Dynamic Programming.

i.d.d. Independent and identically distributed (i.i.d).

iADP Incremental Approximate Dynamic Programming.

xv

xvi List of Acronyms

IBS Incremental Backstepping.

IDHP Incremental Dual Heuristic Programming.

IGDHP Incremental Global Dual Heuristic Programming.

IHDP Incremental Heuristic Dynamic Programming.

INDI Incremental Nonlinear Dynamic Inversion.

KL Kullback–Leibler.

LSTD Least Squares TD Learning.

LTI Linear Time Invariant.

MC Monte-Carlo.

MDP Markov Decision Process.

ML Machine Learning.

NDI Nonlinear Dynamic Inversion.

NN Neural Network.

PER Prioritized Experience Replay.

PID Proportional-Integral-Derivative.

PPO Proximal Policy Optimization.

ReLU Rectified Linear Unit.

RL Reinforcement Learning.

RLS Recursive Least-Squares.

SAC Soft Actor-Critic.

SGD Stochastic Gradient Descent.

SPG Stochastic Policy Gradient.

TD Temporal Difference.

TD3 Twin-Delayed Deep Deterministic Policy Gradient.

TRPO Trust Region Policy Optimization.

UAV Unmanned Air Vehicle.

VTOL Vertical Take-Off and Landing.

1
Introduction

1.1. Background
New automation techniques play a vital role in both the safety and economics of current and future
aerospace industry needs. Developments in urban air mobility initiatives focusing on (e)VTOL aircraft
have a need for novel automation techniques. Many safety and autonomy challenges have to be
overcome to make this viable [10]. In commercial air transportation, there is also significant interest in
better fault tolerance and automation techniques. Accident rates have dropped significantly over the
last two decades, however of all fatal accidents in commercial flights from 2009 to 2018, 60.4% are still
caused by in-flight loss of control [1].

Flight control systems that are currently in usemainly use classical control theory. These techniques
use linear controllers and require gain scheduling in order to cover the flight envelope of non-linear sys-
tems. This gain-scheduling process can be tedious, especially for complex coupled-dynamics systems,
and also relies on an accurate plant dynamics model [3]. These classical controllers also lack adaptive
behaviour and are not sufficient for increasingly autonomous systems that need to be able to deal with
unexpected failures. Hence, there is a need for methods that better handle non-linear systems and can
enable fault-tolerant control.

Developing methods that better deal with system non-linearity has been an active research topic
in the past decades. Several non-linear control methods have emerged, like Nonlinear Dynamic In-
version (NDI) [35] [16] and Backstepping (BS) [75]. These methods avoid the gain scheduling step of
classical controllers. NDI and BS can also be implemented to have adaptive functionality in order to
increase fault tolerance and react better to failures[46] [18]. This results in the Adaptive Nonlinear Dy-
namic Inversion (ADNI) and Adaptive Backstepping (ABS) methods being researched, for example for
spacecraft attitude control [89]. One limitation that remains however is the dependence on an accurate
plant model. This is what incremental versions try to address, Incremental Nonlinear Dynamic Inver-
sion (INDI) [21] and Incremental Backstepping (IBS) [30] have recently been developed and decrease
the model dependence by estimating an incremental plant model. These incremental methods have
already been proven successful with flight tests on CS-25 class aircraft [21].

Reinforcement Learning (RL) from the field of Machine Learning (ML) [62] is now being researched
for adaptive control applications. Traditional tabular RL methods use discrete state and action spaces,
which are infeasible for controlling most complex airborne systems. Thanks to the developments in
continuous function approximators such as Artificial Neural Networks (ANNs), continuous state and
action spaces are possible and several methods have been developed.

Adaptive and robust control can be achieved with RL by using online and offline learning techniques.
While training online can be highly adaptive, it can also be a safety concern due to a continually chang-
ing policy. Instead, RL controllers can also be trained offline, where the generalization power of the
function approximators provides robust control.

The field of Approximate Dynamic Programming (ADP) [71] [86] uses mostly shallow ANNs as
function approximators and contains the class of Adaptive Critic Designs (ACDs) [43]. These actor-
critic designs have been successfully applied in simulation to flight control of a business jet aircraft

1

2 1. Introduction

[19] and helicopter tracking control [17]. The ADP methods do however still require an accurate model
of the plant dynamics in an offline training phase, which limits the ability to deal with random failures.
Newer ACDs implement an incremental approach to system identification similar to INDI and IBS,
which makes them highly adaptive and not reliant on accurate system models. Incremental Heuristic
Dynamic Programming (IHDP) [96] and Incremental Dual Heuristic Programming (IDHP) [98] both are
incremental methods that can be applied fully online and provide adaptive fault-tolerant control by
identifying an incremental plant model in real-time. Recent works [28] [34] [36] on these Incremental
Approximate Dynamic Programming (iADP) methods have further explored their applicability to flight
control of the PH-LAB research aircraft, but still require more validation and high fidelity simulations
before real-world flight tests are feasible. The main advantage for (i)ADP methods is the high sample
efficiency, with the potential to react to severe failure cases.

Thanks to the increasing popularity of Deep Learning (DL) in recent years, the advancements made
in training Deep Neural Networks (DNNs) have found their way into RL, characterizing the field of
Deep Reinforcement Learning (DRL). A major development by DeepMind in 2015 used DRL to achieve
human-level performance on a number of classic Atari games using a deep Q-network [48]. With a
similar achievement in 2017, DeepMind’s AlphaGo [73] also demonstrated the ability of DRL algorithms
to outperform a human by defeating a world-class GO player. For the continuous control of an aircraft,
DRL methods that specifically can handle continuous spate and action spaces can be used. Trust
Region Policy Optimization (TRPO) [68] and Deep Deterministic Policy Gradient (DDPG) [42] are two
notable extensions of the classic Q-learning approach that provide continuous control. TRPO has
been improved on by the state-of-the-art algorithm Proximal Policy Optimization (PPO) which has been
successfully demonstrated in control of a fixed-wing UAV [5] and path generation for an aircraft guidance
task[88]. DDPG has also been improved with state-of-the-art algorithms such as Twin-Delayed Deep
Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) which improve the learning instability
of DDPG. UAV path planning and tracking control have been demonstrated using TD3 [70] [26] and
SAC [9] [38] [4]. SAC has recently also been researched in the context of a coupled flight controller for
the PH-LAB research aircraft [11]. The main advantage of DRL methods is the generalization power of
the DNNs and the scalability to high-dimensional spaces.

1.2. Research Objective and Questions
The research objective as seen below describes the main goal of the research. Several sub-goals have
also been identified (RO1, RO2, RO3, RO4) which contain the high-level tasks required to complete
the research objective.

The term model-independent is used here to describe a requirement for the reinforcement learning
flight controller to be developed. Since literature can vary on the definition of model-free, it is clarified
here that for this research, the term model-independent is used to describe algorithms that contain no
knowledge of the environment, as well as algorithms that learn a model of the environment as part of
the learning process.

Research Objective

Contribute to the development ofmodel-independent, adaptive and robust flight control with the
purpose of progressing towards enabling flight tests by investigating the challenges in reducing
the simulation reality-gap of current reinforcement learning implementations and developing
a reinforcement learning-based flight controller for the PH-LAB (Cessna Citation II) research
aircraft.

RO1 Identify an RL framework best suited for flight control on the CessnaCitation II through
a state-of-the-art review.

RO2 Identify the main challenges in reducing the simulation reality-gap of current imple-
mentations.

RO3 Implement the RL framework into a flight controller for the Cessna Citation II.
RO4 Evaluate the performance of the RL controller in the presence of realistic sensor

dynamics and external disturbances.

1.3. Report Outline 3

Following the research objective, a set of three main research questions is formulated (RQ1, RQ2,
RQ3). Each research question contains several sub-questions, yielding an answer to the main ques-
tion. Answering these questions will help in achieving the research objective.

Research Questions

RQ1 What RL framework is best suited for implementation on the Cessna Citation II?

RQ1.1 What is the current state-of-the-art for continuous adaptive and robust flight control?
RQ1.2 What are the main challenges in reducing the simulation reality-gap of current imple-

mentations?
RQ1.3 How can the proposed RL framework be implemented for a simple dynamic system?
RQ1.4 How does the proposed RL framework perform for a simple dynamic system?

RQ2 How can the proposed RL controller be integrated into the Cessna Citation II?

RQ2.1 At what control level should the RL controller be implemented?
RQ2.2 What are the architectural characteristics of the RL controller to ensure applicability

to the control level?
RQ2.3 What are the characteristic system dynamics, sensor dynamics and actuator dynam-

ics that need to be accounted for to ensure applicability to the real system?

RQ3 What is the overall performance and stability of the proposed RL controller on the Cessna
Citation II?

RQ3.1 How are the performance and stability metrics defined and what are their require-
ments to ensure applicability to the real system?

RQ3.2 How does it perform in standard manoeuvres?
RQ3.3 How does it perform on fault tolerance?
RQ3.4 How does it compare to baseline?
RQ3.5 What is the effect of sensor dynamics and external disturbances on performance and

stability?

1.3. Report Outline
This thesis report consists of four main parts. The scientific article in Part I presents the most impor-
tant processes and outcome of the final results. Additional results from this process are presented in
Part III and include results on additional failure modes in chapter 9, an alternative controller structure
in chapter 5 and robustness analyses in chapter 6, chapter 7 and chapter 8. The processes used for
verification and validation are discussed inchapter 10.

In Part II, the preliminary research is presented. This includes a literature review and preliminary
analysis. In chapter 3, the literature review provides the fundamentals of reinforcement learning theory
in order to support the theory in the rest of the report. Then, chapter 4 contains the preliminary analysis
where the most promising RL agents are implemented and tested on a simple dynamical system and
provide the starting point for implementation for the final thesis work. Finally, Part IV wraps up the
thesis with the conclusion and recommendations for future research.

I
Scientific Article

5

Hybrid Soft Actor-Critic and Incremental Dual Heuristic
Programming Reinforcement Learning for Fault-Tolerant Flight

Control

C. Teirlinck∗

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

Recent advancements in fault-tolerant flight control have involved model-free offline and
online Reinforcement Learning (RL) algorithms in order to provide robust and adaptive control
to autonomous systems. Inspired by recent work on Incremental Dual Heuristic Programming
(IDHP) and Soft Actor-Critic (SAC), this research proposes a hybrid SAC-IDHP framework
aiming to combine adaptive online learning from IDHP with the high complexity generalization
power of SAC in controlling a fully coupled system. The hybrid framework is implemented into
the inner loop of a cascaded altitude controller for a high-fidelity, six-degree-of-freedom model
of the Cessna Citation II PH-LAB research aircraft. Compared to SAC-only, the SAC-IDHP
hybrid demonstrates an improvement in tracking performance of 0.74%, 5.46% and 0.82%
in nMAE for nominal case, longitudinal and lateral failure cases respectively. Random online
policy initialization is eliminated due to identity initialization of the hybrid policy, resulting in
an argument for increased safety. Additionally, robustness to biased sensor noise, initial flight
condition and random critic initialization is demonstrated.

Nomenclature

x, s, a = environment state, reinforcement-learning state and environment action vectors
x𝑒, x𝑐 = environment state error and cost vectors
𝑛, 𝑘, 𝑚 = number of reinforcement-learning states, environment states and environment actions
𝑟, 𝛾 = instantaneous reward and discount factor
𝜏 = target smoothing factor
𝛿 = temporal difference error
𝑡,Δ𝑡, 𝑁, 𝑇 = current time-step, sample time [s], number of samples and simulation time [s]
𝑓 (s, a) = state transition function
_𝑇 , _𝑆 = temporal and spacial scaling coefficients
𝜋, 𝜋\ , `\ , 𝜎\ = policy, parametric policy and stochastic policy parameterized mean and standard deviation
𝑄 𝜋 , 𝑄𝑤 , 𝑉𝜋 = action-state value function, parameterized action-state value function and state value function
_𝑤 = parameterized state-derivative of the state value function
\, 𝑤, 𝑤′ = policy, critic and target critic parameter vectors
H , H̄ , [= entropy, entropy target and temperature coefficient
[𝑎, [𝑐 = actor and critic learning rates
D,B = replay buffer and mini-batch
𝐿 𝜋 , 𝐿𝑄, 𝐿_, 𝐿[= loss functions for policy, SAC-critic, IDHP-critic and temperature coefficient
𝐹, 𝐺,Θ,Λ, 𝑋 = state, input, parameter, covariance and measurement matrices of the incremental model
^, 𝝐 = incremental model forgetting factor and innovation or error vector
𝛿𝑒, 𝛿𝑎, 𝛿𝑟 = elevator, aileron and rudder deflection [deg]
𝑝, 𝑞, 𝑟 = roll rate, pitch rate and yaw rate [deg/s]
𝛼, 𝛽, \, 𝜙, 𝜓 = angle of attack, sideslip angle, pitch angle and heading angle [deg]
𝑉, ℎ = airspeed [m/s], altitude [m]

∗M.Sc. Student, Faculty of Aerospace Engineering, Department of Control & Operations, Section Control & Simulation, Delft University of
Technology.

Code available at https://github.com/CasperTeirlinck/RLFC-SACIDHP

1

I. Introduction
New automation techniques play a vital role in both the safety and economics of current and future aerospace industry

needs. Developments in urban air mobility initiatives focusing on (e)VTOL aircraft have a need for novel automation
techniques. Many safety and autonomy challenges have to be overcome to make this viable [1]. In commercial air
transportation, there is also significant interest in better fault tolerance and automation techniques. Accident rates have
dropped significantly over the last two decades, however of all fatal accidents in commercial flights from 2009 to 2018,
60.4% are still caused by in-flight loss of control [2]. Flight control systems that are currently in use mainly use classical
control theory. These techniques use linear controllers and require gain scheduling in order to cover the flight envelope
of non-linear systems. This gain-scheduling process can be tedious, especially for complex coupled-dynamics systems,
and also relies on an accurate plant dynamics model [3]. These classical controllers also lack adaptive behaviour and
are not sufficient for increasingly autonomous systems that need to be able to deal with unexpected failures. Hence,
there is a need for methods that better handle non-linear systems and can enable fault-tolerant control. Reinforcement
Learning (RL) from the field of Machine Learning (ML) [4] is now being researched for adaptive control applications.
Traditional tabular RL methods use discrete state and action spaces, which are infeasible for controlling most complex
airborne systems. Thanks to the developments in continuous function approximators such as Artificial Neural Networks
(ANNs), continuous state and action spaces are possible and several methods have been developed. Adaptive and robust
control can be achieved with RL by using online and offline learning techniques. While training online can be highly
adaptive, it can also be a safety concern due to a continually changing policy. Instead, RL controllers can also be trained
offline, where the generalization power of the function approximators provides robust control.

The field of Approximate Dynamic Programming (ADP) [5] [6] uses mostly shallow ANNs as function approximators
and contains the class of Adaptive Critic Designs (ACDs) [7]. These actor-critic designs have been successfully applied
in simulation to flight control of a business jet aircraft [8] and helicopter tracking control [9]. The ADP methods do
however still require an accurate model of the plant dynamics in an offline training phase, which limits the ability to
deal with random failures. Newer ACDs implement an incremental approach to system identification, which makes
them highly adaptive and not reliant on accurate system models. Incremental Heuristic Dynamic Programming (IHDP)
[10] and Incremental Dual Heuristic Programming (IDHP) [11] both are incremental methods that can be applied
fully online and provide adaptive fault-tolerant control by identifying an incremental plant model in real-time. Recent
works [12] [13] [14] on these Incremental Approximate Dynamic Programming (iADP) methods have further explored
their applicability to flight control of the PH-LAB research aircraft, but still require more validation and high fidelity
simulations before real-world flight tests are feasible. The main advantage for (i)ADP methods is the high sample
efficiency, with the potential to react to severe failure cases.

Thanks to the increasing popularity of Deep Learning (DL) in recent years, the advancements made in training
Deep Neural Networks (DNNs) have found their way into RL characterizing the field of Deep Reinforcement Learning
(DRL). A major development by DeepMind in 2015 used DRL to achieve human-level performance on a number of
classic Atari games using a deep Q-network [15]. With a similar achievement in 2017, DeepMind’s AlphaGo [16]
also demonstrated the ability of DRL algorithms to outperform a human by defeating a world-class GO player. For the
continuous control of an aircraft, DRL methods that specifically can handle continuous spate and action spaces can be
used. Trust Region Policy Optimization (TRPO) [17] and Deep Deterministic Policy Gradient (DDPG) [18] are two
notable extensions of the classic Q-learning approach that provide continuous control. TRPO has been improved on
by the state-of-the-art algorithm, Proximal Policy Optimization (PPO) which has been successfully demonstrated in
control of a fixed-wing UAV [19] and path generation for an aircraft guidance task[20]. DDPG has also been improved
with state-of-the-art algorithms such as Twin-Delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic
(SAC) which improve the learning instability of DDPG. UAV path planning and tracking control have been demonstrated
using TD3 [21] [22] and SAC [23] [24] [25]. SAC has recently also been researched in the context of a coupled flight
controller for the PH-LAB research aircraft [26], making the SAC controller the baseline for this research. The main
advantage of DRL methods is the generalization power of the DNNs and the scalability to high-dimensional spaces.

The contribution of this paper is to advance the development of model-independent, adaptive and robust flight
controllers. More specifically, by developing an RL-based flight controller for the Cessna Citation II. This is achieved by
presenting a hybrid framework that aims to combine the advantages of the state-of-the-art SAC and IDHP frameworks in
providing fault-tolerance to unexpected failures and providing robust flight control.

The theoretical foundations for the SAC and IDHP algorithms are presented in section II followed by the flight
controller design in section III. The results of the hybrid method compared to SAC-only are discussed in section IV
followed by the conclusion in section V.

2

II. Fundamentals
This section first formulates the flight control task as a reinforcement learning problem. Additionally, a detailed

overview of the two baseline algorithms used in finding a suitable control policy is provided.

A. Reinforcement Learning Problem Formulation
RL frameworks involve working inside the agent-environment interface, which is mathematically described by a

Markov Decision Process (MDP). This consists of a RL agent that at time 𝑡 selects an action a𝑡 ∈ R𝑚 which acts on
the environment with state s𝑡 ∈ R𝑛. The next state is determined by the state-transition function as seen in Equation 1
which is governed by the environment dynamics. The MDP has the Markov Property, meaning that the current state
and action carry all the information to predict the next state. A scalar reward 𝑟𝑡+1 ∈ R is then determined based on the
environment state and used as feedback for the agent. The goal of the agent is to maximize the reward over the time
of the episode of 𝑁 time-steps, or the discounted return 𝐺𝑡 defined in Equation 2. The discount factor 𝛾 is used to
trade-off future to immediate rewards.

Actor-critic RL frameworks consists of an actor that learns the policy, and a critic that learns a value function. The
policy can be stochastic as in Equation 3, or deterministic as in Equation 5. Both policy types are used in the hybrid
framework presented in this research. Additionally, the critic can estimate an action-value function, or Q-function 𝑄 𝜋

as seen in Equation 4. The Q-function maps a given state and action to a scalar value representing the value of being in
that state and taking the given action, while following the policy 𝜋 thereafter. This type of value function is used in the
SAC framework. A state value function as seen in Equation 6 works similarly, but only maps a given state to the value
of being in that state. The state derivative of the state value function is used in the IDHP framework.

Note that in practice, the state s𝑡 is often a subset of the full environment state x𝑡 and/or is augmented with additional
samples as shown in section III, however the terms for RL-state and environment state are often used interchangeably.

s𝑡+1 = 𝑓 (s𝑡 , a𝑡) (1) 𝐺𝑡 =

𝑁∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (2)

a𝑡 ∼ 𝜋(· | s𝑡) (3) 𝑄 𝜋 (s𝑡 , a𝑡) = E
𝜋
[𝐺𝑡 | s𝑡 , a𝑡] (4)

a𝑡 = 𝜋(s𝑡) (5) 𝑉𝜋 (s𝑡) = E
𝜋
[𝐺𝑡 | s𝑡] (6)

B. Soft Actor-Critic Framework
Soft Actor-Critic (SAC) is a state-of-the-art offline-learning off-policy DRL algorithm [27]. The main characteristics

of SAC are the use of soft policy iteration which includes an entropy term in the policy objective function, and the
use of a stochastic policy during training. Hence, a high level of exploration is achieved and the SAC agent is trained
offline. When evaluated, the policy is sampled using only the mean of the policy distribution, making it deterministic at
evaluation. Since SAC is off-policy, experience replay is used by storing samples in the replay buffer D. Every learning
step, a mini-batch B of experience samples can be sampled from the replay buffer.

1. Actor
The actor learns the SAC policy 𝜋\ , parameterized by the parameter vector \ representing the parameters of a DNN.

The stochastic policy distribution is implemented by having two outputs of the policy, being the standard deviation
𝜎\ and mean `\ . This is then used to sample an action from a normal distribution with 𝜎\ and `\ . Note that this
sampling requires a “reparameterization trick” to ensure differentiability of the sampled action, which is necessary
for the gradient calculations. This is usually implemented using an input Gaussian noise vector 𝜖𝑡 and sampling an
action using a𝑡 = 𝑓\ (𝜖𝑡 , s𝑡) = `\ (s𝑡) + 𝜖𝑡 · 𝜎\ (s𝑡). In [28] this reparameterization is implemented manually, but the
implementation of the normal distribution used here applies this under the hood.

The loss function for the policy can be seen in Equation 7. It depends on the Q-function critics and also includes the
entropy term with the coefficient [. The log probabilities log 𝜋\ (a𝑡 | s𝑡) are also derived from the normal distribution
and used in the update rules of both the actor and the critic.

3

𝐿 𝜋 = E
s𝑡∼Ba𝑡∼𝜋

[
min
𝑖=1,2

𝑄′
𝑤′
𝑖
(s𝑡 , a𝑡) − [log 𝜋\ (a𝑡 | s𝑡)

]
(7)

In complex control tasks like 6-degree-of-freedom flight control, the action of the SAC policy tends to be highly
noisy and oscillatory. A method to smooth out the control input can be implemented by letting the policy control the
action increment Δa instead of the action directly [26]. The development of a hybrid framework in this research however
requires both the SAC and the IDHP frameworks to operate inside the same control loop. Initial tests showed the IDHP
framework has difficulty controlling an action derivative as opposed to the direct action of a complex system. Hence, a
different method is chosen to smooth out the policy that is compatible with direct action control using an additional
policy regularization term.

Using temporal and spatial regularization terms, described by Conditioning for Action Policy Smoothness (CAPS)
[29] forces the policy to keep new actions close to the previous action, and keeps actions close to actions corresponding
to similar states. The temporal regularization loss is defined in Equation 8 and computes the distance between the
previous and current actions. The spacial regularization loss is defined in Equation 9 and computes the distance between
the action and the action based on a normally sampled state s̄ ∼ 𝑁 (s, 𝜎 = 0.05). The distances are implemented as the
L2-norm. The total CAPS loss term is defined in Equation 10 and includes two additional scaling parameters _𝑇 and _𝑆
for the temporal and spacial terms respectively. Note that only the mean, or the deterministic action of the policy is used
in computing the distances and not the entire policy distribution

𝐿𝑇 = 𝐷 (𝜋(s𝑡), 𝜋(s𝑡+1)) = | |𝜋(s𝑡) − 𝜋(s𝑡+1) | |2 (8) 𝐿𝑆 = 𝐷 (𝜋(s), 𝜋(s̄)) = | |𝜋(s) − 𝜋(s̄) | |2 (9)

𝐿𝐶𝐴𝑃𝑆
𝜋 = 𝐿 𝜋 + _𝑇𝐿𝑇 + _𝑆𝐿𝑆 (10)

2. Critic
The critic learns the Q-function and in this case consists of two separate critics 𝑄𝑤𝑖

with their respective target critics
𝑄′

𝑤′
𝑖

and parameters vectors 𝑤𝑖 and 𝑤′
𝑖

for 𝑖 ∈ [1, 2]. Each Q-function is updated separately using its own loss function,
and the minimum of the two Q-values is used in the update rules to prevent overestimation. The target critics are used to
slow down the gradient updates with the purpose of increasing learning stability. This is achieved by updating the target
weights according to a soft update mechanism 𝑤′

𝑡+1 = 𝜏𝑤𝑡 + (1 − 𝜏)𝑤′
𝑡 using the smoothing factor 𝜏. The loss function

for the critic can be seen in Equation 11. As already seen in the actor update rule, the minimum of the twin target critics
is used in the update rule of actor and critic. This is done to prevent over-estimation of the value.

𝐿𝑄𝑖
= E

(s𝑡+1 ,s𝑡 ,a𝑡)∼B
a𝑡+1∼𝜋

[(
𝑄𝑤𝑖

(s𝑡 , a𝑡) −
(
𝑟𝑡+1 + 𝛾

(
min
𝑖=1,2

𝑄′
𝑤′
𝑖
(s𝑡+1, a𝑡+1) − [log 𝜋\ (a𝑡+1 | s𝑡+1)

)))2
]

(11)

3. Entropy
The SAC framework tries to maximize entropy in addition to maximizing the expected return. This ensures a high

level of exploration. The entropy of the policy distribution is defined in Equation 12.

H(𝜋\ (· | s𝑡+1)) = Ea∼𝜋 [− log 𝜋\ (a | s𝑡)] (12)

In the update rules of the actor and critic, the entropy term is weighted using the entropy coefficient or temperature
coefficient [. The SAC algorithm has been shown to be highly sensitive to the temperature coefficient, thus it was
proposed by [27] to learn [automatically. The loss function for this automatic learning process can be seen in
Equation 13. The term H̄ is a constant entropy target and is set to the negative of the action space size [28]. In the case
of an aircraft environment with three control surfaces, H̄ = −3.

𝐿[= E
s𝑡∼Ba𝑡∼𝜋

[
−[log 𝜋\ (a𝑡 | s𝑡) − [H̄

]
(13)

4

4. Overview
In Figure 1, an overview of the SAC framework can be seen showing the interactions between the actor, critic,

entropy and environment. Data flow is depicted by solid arrows, while update processes are shown using dashed arrows.
The off-policy design is made clear by having two kinds of forward passes through the policy, one where the environment
observation generates a new action to take every time-step, and one where the replay buffer is sampled to perform the
updates. Also, different notations of the replay buffer signals are used where {𝑎𝑡 } is an action batch sampled from the
replay buffer and {𝑎𝑡 } ∼ 𝜋 is a batch of newly generated actions using the observations from the replay buffer. The
policy and Q-functions are modelled using DNNs. The update rules described above update the network parameters
according to Stochastic Gradient Descent (SGD) using the gradients ∇\𝐿 𝜋 , ∇𝑤𝑖

𝐿𝑄𝑖
and ∇[𝐿[for the actor, critics and

temperature coefficient respectively.

Critic

Actor

𝑤𝑖

{s𝑡 , a𝑡 }

{s𝑡 , s𝑡+1}

{𝑟𝑡+1}

Replay Buffer D

𝑟𝑡+1s𝑡+1

Environment

𝑄𝑡𝑖 Critics 𝑄𝑤𝑖

min𝑖 𝑄′
𝑡

min𝑖 𝑄′
𝑡+1

Target Critics 𝑄′
𝑤′
𝑖

Loss 𝐿𝑄𝑖

log 𝜋𝑡

a𝑡

a𝑡

{a𝑡 , a𝑡+1} ∼ 𝜋

{a𝑡 , a𝑡+1} ∼ 𝜋

log 𝜋𝑡+1

Policy 𝜋\Loss 𝐿𝜋

Entropy Coef. [

s𝑡
{s𝑡 , s𝑡+1}

Loss 𝐿[

[𝑡

∇[𝐿[

∇\𝐿𝜋

∇𝑤𝐿𝑄𝑖

Fig. 1 SAC framework architecture, adapted from [26]

C. Incremental Dual Heuristic Programming Framework
Incremental Dual Heuristic Programming (IDHP) is a state-of-the-art online on-policy ACD algorithm [7]. IDHP is

characterized by a linearized, time-varying incremental model of the environment. This model is estimated online and
part of the learning process. The agent assumes no prior knowledge of the environment dynamics, hence this method is
still considered model-free in the context of this research. Furthermore, the policy is deterministic and the critic consists
of the derivative of the state value function as opposed to a Q-function critic in SAC. Compared to SAC, the sample
efficiency is considerably higher, assuming a sufficiently high sampling rate [30], and this method can be trained online
providing an adaptive fault-tolerant control policy.

Note that the distinction between the RL-state s and the environment state x is important to make here. Since s
is often only a subset or augmented version of x by design, the state vector used by the partial state derivatives and
incremental model has to be explicitly defined as the environment state vector x in order for the incremental model to
retain a meaningful estimation of the system dynamics.

5

1. Actor
The actor learns the deterministic IDHP policy 𝜋\ parameterized by the parameter vector \. The loss function for

the policy can be seen in Equation 14 and consists of the next Bellman value estimate with 𝛾 the discount factor. Since
the output of the critic is the state partial derivative of 𝑉 , the gradient of 𝐿 𝜋 does not need backpropagation through the
critic network and can use the output of the critic directly in the gradient. The gradient of the loss function can then be
derived as seen in Equation 15 where the critic value comes from the target critic _′

𝑤′ . The term 𝜕x𝑡+1
𝜕a𝑡 can be replaced

by the incremental model input matrix 𝐺𝑡−1 as per definition of the input matrix according to the model discussed in
section II.C.3. The term 𝜕a𝑡

𝜕\
is calculated using backpropagation on the actor.

𝐿 𝜋 = −𝑉 (s𝑡) = − [𝑟𝑡+1 + 𝛾𝑉 (s𝑡+1)] (14)

∇\𝐿 𝜋 =
𝜕𝐿 𝜋

𝜕\
= −

[
𝜕𝑟𝑡+1
𝜕x𝑡+1

+ 𝛾_′𝑤′ (s𝑡+1)
]
𝜕x𝑡+1
𝜕a𝑡

𝜕a𝑡
𝜕\

(15)

= −
[
𝜕𝑟𝑡+1
𝜕x𝑡+1

+ 𝛾_′𝑤′ (s𝑡+1)
]
𝐺𝑡−1

𝜕a𝑡
𝜕\

2. Critic
The IDHP critic estimates the partial derivative of the state value function with respect to the state _𝑤 (s𝑡) = 𝜕𝑉 (s𝑡)

𝜕x𝑡
with parameter vector 𝑤.

The loss is defined as the mean squared error of the state derivative of the TD error 𝜕𝛿𝑡
𝜕x𝑡 as seen in Equation 16. In

Equation 17, the formulation of the TD error for the critic can be seen, which corresponds to the next value function
estimate called the TD target minus the current value estimate 𝑉 (s𝑡). Taking the state partial derivative of the TD error
results in Equation 18 where the TD target is calculated using the target critic value _′

𝑤′ . The state derivative of the
reward is provided by the environment, while the term 𝜕x𝑡+1

𝜕x𝑡 can be computed by using the incremental model as seen
in Equation 19. The term 𝜕a𝑡

𝜕x𝑡 or 𝜕𝜋\ (a𝑡 |s𝑡)
𝜕x𝑡 can be obtained by backpropagation through the policy network. The loss

gradient can then be derived using these previous definitions, as seen in Equation 20. The target critics are updated
according to the same smooth update method used in SAC.

𝐿_ =
1
2

(
−𝜕𝛿𝑡

𝜕x𝑡

) (
−𝜕𝛿𝑡

𝜕x𝑡

)𝑇
(16) 𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉 (s𝑡+1) −𝑉 (s𝑡) (17)

𝜕𝛿𝑡

𝜕x𝑡
=

[
𝜕𝑟𝑡+1
𝜕x𝑡+1

+ 𝛾_′𝑤′ (s𝑡+1)
]
𝜕x𝑡+1
𝜕x𝑡

− _𝑤 (s𝑡) (18)
𝜕x𝑡+1
𝜕x𝑡

= 𝐹𝑡−1 + 𝐺𝑡−1
𝜕a𝑡
𝜕x𝑡

(19)

∇𝑤𝐿_ =
𝜕𝐿_

𝜕𝑤
=

𝜕𝐿_

𝜕_𝑤 (s𝑡)
𝜕_𝑤 (s𝑡)

𝜕𝑤
= −𝜕𝛿𝑡

𝜕x𝑡
𝜕_𝑤 (s𝑡)

𝜕𝑤
(20)

3. Incremental Model
The incremental model provides a future estimate of the environment state to be used in the update rules for the actor

and critic. This model is derived from a first-order Taylor series expansion [31] and can be seen in Equation 25. Here,
the state matrix 𝐹𝑡−1 and input matrix 𝐺𝑡−1 are time-varying and are updated every time-step using an RLS estimator.

The RLS update rule of the incremental model can be seen in Equation 22 with Θ the parameter matrix as defined in
Equation 21 and ^ ∈ [0, 1] the forgetting factor. The measurement matrix 𝑋 contains the increments of the previous state
and action as seen in Equation 24. The error or innovation 𝜖 is defined in Equation 26 and represents the prediction error
between the actual state and the predicted state. Finally, the covariance matrix Λ estimates a measure of the covariance
of the parameter estimates and is updated according to Equation 23. Both the parameter matrix and covariance matrix
are expressed recursively and thus need an initial value. In this case, the parameter matrix is initialized as zero’s and the
covariance matrix as an identity matrix of magnitude Λ0 as no prior knowledge of the parameter covariances is assumed.
The magnitude Λ0 is usually set to a large value, as the uncertainty of the parameters is high at the initial stage. The
state and input matrices of the incremental model are used in the update rules of both the actor and the critic.

6

Θ𝑡−1 =

[
𝐹𝑇
𝑡−1

𝐺𝑇
𝑡−1

]
(21) Θ𝑡 = Θ𝑡−1 +

Λ𝑡−1𝑋𝑡

^ + 𝑋𝑇
𝑡 Λ𝑡−1𝑋𝑡

𝝐 𝑡 (22) Λ𝑡 =
1
^

[
Λ𝑡−1 −

Λ𝑡−1𝑋𝑡𝑋
𝑇
𝑡 Λ𝑡−1

^ + 𝑋𝑇
𝑡 Λ𝑡−1𝑋𝑡

]
(23)

𝑋𝑡 =

[
Δx𝑡
Δa𝑡

]
(24) Δx𝑡+1 = 𝐹𝑡−1Δx𝑡 + 𝐺𝑡−1Δa𝑡 (25) 𝝐 𝑡 = Δx𝑇𝑡+1 − Δx̂𝑇𝑡+1 = Δx𝑇𝑡+1 − 𝑋𝑇

𝑡 Θ𝑡−1 (26)

4. Overview
An overview of the IDHP framework can be seen in Figure 2 which shows the interactions between the actor,

critic, incremental model and the environment. Compared to SAC, the actor and critic networks are much shallower
and narrower networks, using only a single layer of neurons. The update rules described above update the network
parameters according to SGD using the gradients ∇\𝐿 𝜋 and ∇𝑤𝐿_ for the actor and critic respectively. Additionally,
the incremental model is updated using the RLS update rule.

Actor

Critic

s𝑡+1

s𝑡+1

Environment
a𝑡

a𝑡 Policy 𝜋\Loss 𝐿𝜋

_𝑡

𝑤

Critic _𝑤

Target Critic _′
𝑤′

𝐺𝑡−1

𝐹𝑡−1
Incremental

Model

Loss 𝐿_

_′
𝑡+1

s𝑡

Δx𝑡 , Δx𝑡+1

Δa𝑡

𝜕𝑟𝑡+1
𝜕x𝑡+1

𝜕a𝑡
𝜕x𝑡

∇\𝐿𝜋

∇𝑤𝐿_

x𝑡+1

s𝑡
x𝑡

Fig. 2 IDHP framework architecture, adapted from [12][13][14]

III. Flight Controller Design
The flight controller design involves integrating the RL algorithms into a suitable altitude control loop designed to

interface with a simulation model of the PH-LAB research aircraft.

A. High-Fidelity Environment Model
The environment is modelled by a high-fidelity non-linear fully-coupled simulation model of the Cessna Citation

500 jet aircraft, built using the DASMAT tool by the Delft University of Technology [32] based on real world flight data.
This model can be considered equivalent to the Cessna 550 Citation II PH-LAB aircraft, which is the target platform for
the developed controller, despite the difference in fuselage size, engine power and wing size [33]. All simulations are
performed with the controller and environment model running at 100𝐻𝑧.

The environment state x ∈ R𝑘 and input vector a ∈ R𝑚 can be seen in Equation 27 and Equation 28 respectively. The
environment state x used throughout this paper is the observed state as seen by the RL agent, while the full aircraft state

7

available from the simulation model is denoted by x’. A clean configuration is used for all simulations. Additionally,
a yaw damper and auto-throttle are provided by the simulation model. The auto-throttle tries to maintain a constant
airspeed set by the initial flight condition. The initial control inputs are always untrimmed and zero at the start of a
simulation.

x’ = [𝑝, 𝑞, 𝑟, 𝑉, 𝛼, 𝛽, \, 𝜙, 𝜓, ℎ]𝑇 ⇒ x = [𝑝, 𝑞, 𝑟, 𝛼, \, 𝜙, 𝛽, ℎ]𝑇 (27) a = [𝛿𝑒, 𝛿𝑎, 𝛿𝑟]𝑇 (28)

B. Network Architecture
The following two sections describe in more detail the neural network architecture of the SAC and IDHP actors and

critics. The SAC network architectures are used in the offline SAC agent of the attitude and altitude controllers, while the
SAC-IDHP networks are only used in the inner attitude controller of the final controller structure during online learning.

1. SAC Network Architecture
The network topology of actor and critic can be seen in Figure 3. Hidden layer neurons are identified as ℎ and output

layers by 𝑜 with superscript for layer number and subscript for neuron number.
The network of a single Q-function critic in Figure 3a takes both the RL-state and the action as inputs per definition

of the Q-function with a single scalar output. The policy network in Figure 3b is constructed using two separate output
layers `\ and log𝜎\ for the policy mean and standard deviation respectively. The network estimates the log of the
standard deviation in order to stay in R and the exponential is taken in order to build the policy distribution.

Both the actor and critic contain two hidden layers of sizes 𝑙1 and 𝑙2. Each hidden neuron ℎ consists of a
weighted linear combination of the input vectors with an additional bias term. The signal is subsequently passed to
a LayerNormalization layer [34] and finally passed to a ReLU activation function. The output neurons have a linear
activation function. All the weights, biases and normalization parameters form the parameter vectors \ and 𝑤𝑖 for the
actor and critics respectively.

𝑠1

...
𝑠𝑛

𝑎1

...
𝑎𝑚

Input
layer

ℎ1
1

...

ℎ1
𝑙1

Hidden
layer 1

ℎ2
1

...

ℎ2
𝑙2

Hidden
layer 2

𝑜1
𝑄𝑤

Output
layer

(a) SAC critic Q-function architecture

𝑠1

...
𝑠𝑛

Input
layer

ℎ1
1

...

ℎ1
𝑙1

Hidden
layer 1

ℎ2
1

...

ℎ2
𝑙2

Hidden
layer 2

𝑜1
1

`\1

...

𝑜1
𝑚

`\𝑚

Output
layer(s)

𝑜2
1

log𝜎\1

...

𝑜2
𝑚

log𝜎\𝑚

(b) SAC policy Architecture

Fig. 3 SAC network architectures

2. Hybrid SAC-IDHP Network Architecture
The novelty of the hybrid SAC-IDHP controller developed in this research lies in large part in the network structure

of the hybrid policy, as seen in Figure 4b. Contrary to a traditional policy network used in IDHP agents, the hybrid
policy includes the pre-trained layers ℎ1′ , ℎ2′ and 𝑜1′ corresponding to ℎ1, ℎ2 and 𝑜1 of the SAC policy. For the output
layer, only the policy mean output of the SAC policy is used. The parameters of these pre-trained SAC layers are frozen
during the IDHP learning process. Furthermore, the IDHP hidden units ℎ1 and ℎ2 do contain learnable parameters
consisting of only weights and no bias. Similarly to the SAC policy, the activation function used on the additional hidden
layers are ReLU functions, but no LayerNormalization is used in the IDHP neurons. Linear activation functions are used
on the output neurons. The hybrid policy parameters vector thus only contains the weights of the hidden units ℎ1 and ℎ2.

8

By constructing the hybrid policy in this way, the goal is to maintain as much of the pre-learned information of the
robust SAC policy during online learning. In order to achieve this, the learnable IDHP policy layers are initialized using
the identity matrix as opposed to random initialization.

The critic on the other hand relates to a more traditional network structure used in Dual Heuristic Programming as
seen in Figure 4a consisting of a single hidden layer. The IDHP critic accepts the RL-state as input and estimates the
partial state derivative of the state value function 𝜕𝑉

𝜕x with 𝑘 elements. The hidden units are constructed identically to
the policy hidden units but with hyperbolic tangent activation functions, while the output neurons also have a linear
activation function. The initialization of the critic weights is random as opposed to the actor and sampled from a
truncated normal distribution with standard deviation 𝜎𝑐.

𝑠1

...
𝑠𝑛

Input
layer

ℎ1
1

...

ℎ1
𝑙

Hidden
layer

𝑜1

𝜕𝑉
𝜕𝑥1

...

𝑜𝑘

𝜕𝑉
𝜕𝑥𝑘

Output
layer

(a) IDHP critic architecture

𝑠1

...
𝑠𝑛

Input
layer

ℎ1′
1

...

ℎ1′
𝑙1

Hidden
SAC

layer 1

ℎ1
1

...

ℎ1
𝑙1

Hidden
layer 1

ℎ2′
1

...

ℎ2′
𝑙2

Hidden
SAC

layer 2

ℎ2
1

...

ℎ2
𝑙2

Hidden
layer 2

𝑜1′
1

𝑎0

...

𝑜1′
𝑚

𝑎𝑚

Output
SAC

layer `

(b) Hybrid IDHP-SAC combined policy architecture

Fig. 4 Hybrid IDHP-SAC network architectures

C. Attitude Controller
The attitude or inner control loop tracks reference signals for pitch, roll and sideslip angles as seen in Equation 29,

and outputs the environment action vector. The tracking error vector can then be defined as in Equation 30 where 𝑃 is a
binary selection matrix defined in Equation 32 mapping the aircraft state to the tracked states. In order to keep the error
signals in similar order of magnitude, the scaling vector from Equation 31 is determined by trial and error, where the
sideslip signal receives a larger scale due to its lower overall magnitude resulting from the zero-sideslip hold task.

x𝑟
𝑎𝑡𝑡

= [\𝑟 , 𝜙𝑟 , 𝛽𝑟]𝑇 (29) x𝑒
𝑎𝑡𝑡

𝑡 = x𝑟
𝑎𝑡𝑡

𝑡 − 𝑃𝑎𝑡𝑡x𝑡+1 = [\𝑟 − \, 𝜙𝑟 − 𝜙, 𝛽𝑟 − 𝛽]𝑇 (30)

x𝑐
𝑎𝑡𝑡

=
180
𝜋

[
1

30
,

1
30

,
1

7.5

]𝑇
(31) 𝑃𝑎𝑡𝑡 =

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

 (32)

1. SAC Attitude Controller
In the context of SAC, a reward function and RL-state vector are defined by Equation 33 and Equation 34 respectively.

The reward function represents the negative of the L1 norm of the scaled error vector clipped on the [−1, 1] interval.
The RL-state vector consists of the scaled error vector to ensure good steady-state response and additionally the pitch,
roll and yaw rates for improved transient response [26].

𝑟𝑆𝐴𝐶
𝑎𝑡𝑡

𝑡+1 = −1
3

clip
[
x𝑒

𝑎𝑡𝑡

𝑡 ⊙ x𝑐
𝑎𝑡𝑡

, ®-1, ®1
]

1
(33) s𝑆𝐴𝐶

𝑎𝑡𝑡

𝑡+1 =

[
𝑝, 𝑞, 𝑟,

(
x𝑒

𝑎𝑡𝑡

𝑡 ⊙ x𝑐
𝑎𝑡𝑡
)𝑇]𝑇

(34)

2. IDHP Attitude Controller
The IDHP framework utilizes a reward function defined as the squared scaled error vector, defined in Equation 35.

The RL-state for the IDHP critic is defined in Equation 36 and contains the three body rates, pitch, roll, sideslip and

9

angle of attack angles and the scaled error vector. Note that the IDHP framework requires the state derivative of the
reward function as defined in Equation 37 which can be derived directly using the definitions of the reward function and
error vector.

Note that the RL-state vector for the IDHP actor is the same as the state vector for the SAC actor due to the hybrid
policy architecture, and that the environment state vector for the incremental model excludes the altitude from the vector
defined in Equation 27.

𝑟 𝐼𝐷𝐻𝑃
𝑡+1 = −

[
x𝑒

𝑎𝑡𝑡

𝑡

]𝑇 [
𝑑𝑖𝑎𝑔 x𝑐

𝑎𝑡𝑡
] [

x𝑒
𝑎𝑡𝑡

𝑡

]
(35) s𝐼𝐷𝐻𝑃

𝑡+1 =

[
𝑝, 𝑞, 𝑟, 𝛼, \, 𝜙, 𝛽,

(
x𝑒

𝑎𝑡𝑡

𝑡 ⊙ x𝑐
𝑎𝑡𝑡
)𝑇]𝑇

(36)

𝜕𝑟 𝐼𝐷𝐻𝑃
𝑡+1
𝜕x𝑡+1

= 2
[
x𝑒

𝑎𝑡𝑡

𝑡

]𝑇 [
𝑑𝑖𝑎𝑔 x𝑐

𝑎𝑡𝑡
]
𝑃𝑎𝑡𝑡 (37)

D. Altitude Controller
The altitude or outer control loop only tracks the altitude reference signal and outputs the reference signal for the

pitch angle. The reference vector is defined in Equation 39 with the error vector in Equation 39 using the selection
matrix from Equation 41. Also, the altitude error signal requires a scaling factor, as seen in Equation 40.

x𝑟
𝑎𝑙𝑡

= [ℎ𝑟] (38) x𝑒
𝑎𝑙𝑡

𝑡 = x𝑟
𝑎𝑙𝑡

𝑡 − 𝑃𝑎𝑙𝑡x𝑡+1 = [ℎ𝑟 − ℎ,] (39)

x𝑐
𝑎𝑙𝑡

=

[
1

240

]
(40) 𝑃𝑎𝑙𝑡 =

[
0 0 0 0 0 0 0 1

]
(41)

1. SAC Altitude Controller
The outer control loop only implements the SAC algorithm with a reward function similar to the SAC attitude

controller as seen in Equation 42. The RL-state vector defined in Equation 43 is simpler than the attitude controller,
with only containing the scaled error vector. This is because only the kinematic relationship between the pitch angle and
altitude has to be learned.

𝑟𝑆𝐴𝐶
𝑎𝑙𝑡

𝑡+1 = −
clip

[
x𝑒

𝑎𝑙𝑡

𝑡 ⊙ x𝑐
𝑎𝑙𝑡

, ®-1, ®1
]

1
(42) s𝑆𝐴𝐶

𝑎𝑙𝑡

𝑡+1 =

[
x𝑒

𝑎𝑙𝑡

𝑡 ⊙ x𝑐
𝑎𝑙𝑡
]

(43)

E. Hybrid SAC-IDHP Cascaded Controller
In Figure 5 a control loop diagram can be seen of the complete cascaded SAC-IDHP hybrid altitude-attitude

controller. Only the inner attitude controller implements the hybrid architecture, as it is assumed the majority of dynamic
relations that will change during failure modes are learned in the inner loop. Hence, an adaptive element is most useful
in the inner loop and the outer loop is only trained offline with the SAC algorithm in order to limit the overall complexity.
The dotted lines in the hybrid attitude controller represent the signal flow during online operation, where the IDHP
attitude controller controls the aircraft and the SAC attitude controller only provides its pre-learned policy weights.

Hybrid Attitude Controller

𝑝, 𝑞, 𝑟 ,
𝛼, 𝛽, 𝜙, \
𝜓, 𝑉𝑇𝐴𝑆 , ℎ

Plant
a

𝛿𝑒
𝛿𝑎 , 𝛿𝑟

- 𝜙

𝛽-

\𝑟

\-
x𝑒

x
s

𝜋\

SAC Attitude
Controller

IDHP Attitude
Controller

𝑟 (x𝑒)
𝜙𝑟

𝛽𝑟

𝜕𝑟 (x𝑒)
𝜕x

s SAC Attitude
Controller

𝑟 (x𝑒)

ℎ𝑟

ℎ-

Fig. 5 SAC-IDHP Cascaded Altitude and Attitude Controller Structure

10

F. Training Strategy
The hybrid RL controller involves multiple stages of training. The SAC attitude and altitude controllers are trained

offline, while the SAC-IDHP attitude controller requires an initial online training phase. The training strategy and
hyperparameters used for all phases are discussed in this section.

1. Offline SAC Training
The SAC attitude agent is trained first using a maximum of 1000000 time steps. This corresponds to 500 20𝑠

training episodes with a double step reference signal for the pitch and roll angles. The magnitude and sign of the step
signals is uniformly sampled from [20◦, 10◦] and [40◦, 20◦] for the pitch and roll angles, respectively. After every
training episode, the agent is evaluated using the same task, but without the randomized reference signal magnitudes
and using the maximum values instead. The sideslip reference signal is always held at zero. A batch of at least 5 agents
with differing random seeds is trained, where the best performing agent is selected to train the altitude controller.

The altitude controller follows the same training strategy with alternating climb, descend and altitude hold reference
signals using 50𝑚 altitude differences. The roll and sideslip reference signals are equal to the attitude training task.

The hyperparameters used for both SAC controllers can be seen in Table 1 consisting of default values from the
original SAC papers and empirically determined values. The parameters 𝛾, 𝜏, 𝑙1, 𝑙2, [𝑎, [𝑐, |B| and [0 are taken from the
previously successful SAC implementation [26], while the maximum replay buffer size |D| has been increased compared
to that paper as better learning stability was observed with a larger buffer size. The CAPS regularization coefficients
_𝑇 and _𝑆 have been determined by trial and error, whereby a trade-off is made between increased smoothness of the
policy’s action, and decreased tracking performance with increasing coefficient values. The altitude controller requires
smaller CAPS scaling coefficients, likely due to the decreased learning complexity of the outer altitude control. Note
that the learning rates are linearly decreased to 0 over the total number of time steps.

In Figure 6 the reward curves for attitude and altitude controllers can be seen, showing the average and interquartile
ranges over 5 random seeds of converged runs. The attitude and altitude controllers plateau at around −250 and −30
respectively, with little improvements after the initial 200000 time steps.

Compared to the equivalent training curves shown in previous research on the same system [26] the interquartile
range of the current results is considerably smaller. This improved learning stability is assumed to be caused by the
utilization of direct control and CAPS regularization as opposed to an incremental control approach in the previous
research.

Fig. 6 SAC offline training curves of
attitude and altitude controllers. Mean
smoothed by a window of size 20 and
the interquartile range over 5 random
seeds are shown by the solid lines and
shaded regions respectively.

Table 1 SAC Hyperparameters, adapted from [26] [27] [28]

Param. Value Value Description
Attitude Altitude
Agent Agent

𝛾 0.99 0.99 Discount factor
𝜏 0.005 0.005 Target critic mixing factor
𝑙1, 𝑙2 [64, 64] [32, 32] Actor/Critic hidden layer sizes
[𝑎, [𝑐 4.4𝑒 − 4 3.0𝑒 − 4 Actor/Critic initial learning rate
|B| 256 256 Replay buffer mini-batch size
|D| 1000000 1000000 Replay buffer maximum size
_𝑇 , _𝑆 400, 400 10, 10 CAPS scaling coefficients
[0 1.0 1.0 Initial temperature coefficient

2. Online IDHP Training
The IDHP framework requires initial excitation of all the environment states in order to successfully identify the

incremental model. In previous IDHP-only frameworks [12] [13], an exponentially decaying sinusoidal excitation signal

11

is added to the agent’s action in order to excite the system during the initial training phase. An advantage of the hybrid
framework is the presence of the pre-existing converged SAC policy, as obtained in subsubsection III.F.1 at the start
of the online learning phase. Because of the identity initialization of the hybrid policy, the initial excitation can be
provided by the SAC policy, driven by the reference signals without the use of additional excitation signals. The hybrid
attitude controller thus requires an initial online training task using in this case sinusoidal reference signals on the pitch,
roll and sideslip angles. The reference signal for the sideslip is decaying in order to better preserve aircraft stability.
The IDHP specific hyperparameters used are seen in Table 2, while the SAC portion only involves inference and no
updates to the SAC layers are performed during online learning. The IDHP hyperparameters are taken from previous
IDHP-only configurations [12] with the exception of the layer size 𝑙 and learning rates [𝑎 and [𝑐. The hidden layer size
is empirically determined at a small value for increased learning stability, but without observing significant loss in
learning ability. The learning rates are determined using trial and error by increasing learning rates until noticeable
oscillations or instability appears in the training tasks.

The response on the training task can be seen in Figure 7 where also the SAC-only response is shown. The
progression of the actor/critic weights and the incremental model parameters can be seen in Figure 8. Note that weights
of identity initialized networks remain near the identity matrix [35], hence the actor weights seen in the parameter plots
are plotted separately around 1 and 0. The parameters’ progression demonstrates the hybrid method can converge on the
training task, with the actor-critic weights and the parameter matrices of the incremental model all converging. The 𝐹

and 𝐺 matrices take approximately 8s to converge, while the critic weights are stable after 30s. The actor weights are
converging more slowly, but have reached the converging range within the 60s training task.

The nMAE metric as later defined in section IV can already be used here to compare the initial tracking performance
with SAC-only. With an nMAE of 7.41% for the hybrid and 10.31% for SAC-only, a noticeable improvement of
2.9% in tracking performance is already demonstrated. Looking at the visual tracking response, after approximately
20s, the hybrid agent has successfully corrected for the steady-state error of the SAC policy with a smaller tracking
error near the sinusoidal peaks of the pitch and roll reference signals. The sideslip tracking performance shows little
difference, as the SAC policy is already providing a low error. Note that before 20s, the initial converge phase results in
temporary divergence from the tracking signal, hence the importance of a controlled training task before performing
flight manoeuvre tasks. Also note that the airspeed tracking is handled by the auto-throttle from the DASMAT model
and is not managed by the RL-agent.

The resulting weights and parameters are stored and used as initial condition for the hybrid attitude agent in the
following flight manoeuvre demonstrations.

12

Fig. 7 SAC-IDHP online training response of attitude controller. nMAE = 7.41% for SAC-IDHP and 10.31%
for SAC-only.

Table 2 IDHP Hyperparameters, adapted from [12] [13]

Parameter Value Description

𝛾 0.8 Discount factor
𝜏 0.01 Target critic mixing factor
𝑙 8 Critic hidden layer size
[𝑎, [𝑐 0.2, 1.0 Actor/Critic learning rate
^ 1.0 Incremental model forgetting factor
Λ0 1 · 108 Initial covariance matrix magnitude

13

Fig. 8 SAC-IDHP online training of attitude controller, actor/critic weights and incremental model parameters.

IV. Results and Discussion
The response of the Hybrid controller and the SAC-only controller are compared on the simulation model of the

Cessna Citation jet aircraft. First, the aircraft in nominal state is evaluated after which several aircraft failures are
simulated and the performance between SAC-IDHP and SAC-only is compared. All evaluation runs are performed
using an initial condition of ℎ = 2000𝑚 and 𝑉 = 90𝑚

𝑠
. Additional results concerning varying initial flight conditions,

critic initialization and sensor noise are discussed in subsubsection IV.C.1.
A performance metric used in addressing tracking performance is the normalized Mean Absolute Error (nMAE)

averaged over externally tracked states which are altitude, roll and sideslip angles for the altitude tasks, and pitch, roll
and sideslip angles for the attitude tasks. The normalization is done over the maximum reference signal range with the
exception of the sideslip angle, where the normalization range is set at [−5◦, 5◦] as its reference signal is always 0.

A. Nominal System
The proposed flight controller should be able to control the aircraft in nominal condition without failures. This

section presents the control response on the altitude task by comparing the performance of the SAC-only controller
against the hybrid SAC-IDHP controller.

In Figure 9 the response on the altitude task can be seen. The external reference signal for the altitude is set at a
steady climb and descend over 250m with a 15s hold in between. The bank angle reference is set at alternating 20◦ and
40◦ turns motivated by CS-25 specifications for nominal coordinated turns [36]. The sideslip reference is set at zero per
definition of a coordinated turn. The pitch angle reference signal shown in the response plots is generated by the SAC
outer loop controller based on the altitude error.

Comparing tracking performance, the SAC-only agent achieves a nMAE of 2.77% and the hybrid 2.03% showing
a small improvement of 0.74%. Most notably, the sideslip angle has reduced peaks, but the longitudinal states show
increased oscillatory behaviour in the hybrid response while keeping closer to the reference signal. The SAC agent
shows similar tracking performance to previously developed SAC controllers on the same system [26]. This shows that
both SAC-only and the hybrid agent have satisfactory tracking performance on the nominal altitude tracking task.

14

Fig. 9 Altitude tracking response on nominal system. SAC-IDHP and SAC-only compared. nMAE = 2.03% for
SAC-IDHP and 2.77% for SAC-only.

B. Failed System
The two most important failure cases tested in this section are the reduced effectiveness of the elevator and ailerons

to demonstrate longitudinal and lateral failures respectively. The same reference signals are used as for the nominal case
except for the maximum bank angle which is set at 20◦.

1. Reduced Elevator Effectiveness
In Figure 10 the response of 70% reduced elevator effectiveness at t=30s can be seen. The SAC agent achieves a

nMAE of 7.99% while the hybrid agent maintains an nMAE of 2.53%, an improvement of 5.46%. This shows the
hybrid policy is successful in correcting for performance degradation present in the robust response of the SAC policy.
Looking at the response, the SAC agent remains stable, but with a considerable tracking error on the altitude due to the
heavily reduced elevator effectiveness. The response of the hybrid agent remains close to the altitude reference while
also improving on a small steady state error appearing on the roll angle for SAC. Overall, the hybrid agent shows greatly
improved tracking performance, but with slightly increased oscillations mainly in the longitudinal states.

15

Fig. 10 Altitude tracking response on system with 70% reduced elevator effectiveness from t=30s. SAC-IDHP
and SAC-only compared. nMAE = 2.53% for SAC-IDHP and 7.99% for SAC-only.

2. Reduced Aileron Effectiveness
In Figure 11 the response to 90% reduced aileron effectiveness from t=30s can be seen. Comparing tracking error

between SAC and SAC-IDHP, the respective nMAE of 3.28% and 2.46% only show a 0.82% improvement for the hybrid
agent. This is in line with the nominal case as can also be seen from visual inspection. The robust response of the
SAC policy successfully corrects for the reduced elevator effectiveness by increasing the maximum aileron deflection
from approximately 4◦ to 26◦ and keeping the tracking error small. Nonetheless, the hybrid agent still provides small
improvements in rise time of the bank angle, and keeping slightly closer to the zero sideslip reference. Note that for the
hybrid agent, increased oscillations are noticeably prevalent in the longitudinal states.

16

Fig. 11 Altitude tracking response on system with 90% reduced aileron effectiveness from t=30s. SAC-IDHP
and SAC-only compared. nMAE = 2.46% for SAC-IDHP and 3.28% for SAC-only.

C. Additional Results
Additional experiments are performed in order to judge the robustness and reliability of the hybrid SAC-IDHP

controller compared to a SAC-only controller. Robustness to varying initial flight condition, biased sensor noise and
random critic initialization are explored.

1. Robustness to Initial Flight Condition
The SAC offline and the hybrid online training tasks are all performed on an initial condition of ℎ0 = 2000𝑚 and

𝑉0 = 90𝑚
𝑠

. This section explores variability in tracking performance with changing initial conditions different from the
training conditions, all performed on the altitude tracking task with 20◦ maximum bank angle.

In Table 3 the nMAE for 4 different flight conditions can be seen with FC2 being the nominal condition. The flight
conditions are in order of increasing dynamic pressure. It can be seen that tracking error and error variability across the
flight conditions is lower for the hybrid method. For FC1 with the lowest dynamic pressure, the SAC agent has the
largest error with decreasing error with increasing dynamic pressure, except that FC4 has a slightly higher error than
FC2. This pattern is not present for the hybrid method, which has a considerably lower variance and stays within 0.27%
nMAE. Note that the scope of this analysis excludes variability over multiple SAC reference policies and IDHP training
seeds, the latter being discussed independently in section IV.C.3.

17

Table 3 Robustness to initial flight conditions of cascaded altitude controllers.

Flight Condition Initial Altitude [m] Initial Airspeed [m/s] nMAE nMAE
SAC-only SAC-IDHP

FC1 5000 90 4.71% 1.96%
FC2 (nominal) 2000 90 2.76% 2.02%
FC3 5000 140 2.05% 1.75%
FC4 2000 140 2.27% 2.01%

2. Biased Sensor Noise
Sensor noise is an essential element in assessing a closer to real-world environment. Biased sensor noise is applied

to the observed state using measurement values derived from the PH-LAB aircraft [32] as seen in Table 4. It was noticed
during initial testing that the incremental model identification of the IDHP framework produces inconsistent results
when high frequency oscillation are present in the states. Hence, a low-pass filter with 𝜔0 = 40𝑑𝑒𝑔 is applied to the
observation for the IDHP update rule, with an equivalent filter applied to the SAC-only update rules for a fair comparison.
The exact nominal altitude task from subsection IV.A is used, with a resulting nMAE of 2.69% for SAC-only and 2.00%
for the hybrid agent. This corresponds to a respective 0.08% and 0.03% reduction in nMAE compared to the case
without noise, attributed to the bias having a positive effect on the error, but also indicating both controllers maintain
performance in the presence of sensor noise. Note however that the hybrid agent suffers from increased oscillations
compared to SAC-only and the case without sensor noise, but shows to have no negative effect on tracking performance.
Again, the scope of this analysis excludes variability over IDHP training seeds and SAC reference policies.

Table 4 Cessna Citation PH-LAB sensor noise characteristics [32]

State Bias 𝝁 Variance 𝝈2

𝑝, 𝑞, 𝑟 [𝑟𝑎𝑑/𝑠] 3.0 · 10−5 4.0 · 10−7

\, 𝜙 [𝑟𝑎𝑑] 4.0 · 10−3 1.0 · 10−9

𝛽 [𝑟𝑎𝑑] 1.8 · 10−3 7.5 · 10−8

ℎ [𝑚] 8.0 · 10−3 4.5 · 10−3

3. Sensitivity to Random Critic Initialization
Compared to IDHP-only frameworks, the hybrid framework has a lesser degree online random initialization because

of the identity initialization of the IDHP actor layers. The online critic however is still initialized by sampling from a
truncated normal distribution with zero mean and a standard deviation 𝜎𝑐 as seen in Equation 44. The effect of this
random initialization and the effect of varying standard deviations is evaluated in this section.

All training runs are performed using same hyperparameters from Table 2. A total of 150 runs are performed, 50 for
each of three different standard deviations.

An additional metric is used in order to arrive at a total success rate per batch. Relating to the CAPS temporal loss
function used in the SAC offline training from Equation 8, a temporal loss metric is calculated per training run according
to Equation 45. The success threshold for the temporal loss metric is set at 𝐿𝑇 ≤ 0.01.

𝑤 ∼ N𝑡𝑟𝑢𝑛𝑐 (` = 0, 𝜎 = 𝜎𝑐) (44) 𝐿𝑇 = 𝐷 (𝜋(s𝑡), 𝜋(s𝑡+1)) =
𝑁∑︁
𝑡=1

| |a𝑡−1 − a𝑡) | |2 (45)

Looking at the results in Table 5, the success rates for three critic standard deviations can be seen with 𝜎𝑐 = 0.05
the nominal case. The convergence rate tracks the number of runs that become unstable in the parameters, while the
total success rate combines the convergence and temporal metrics. A lower standard deviation results in a more stable
training experience, indicated by the 100% success rate of a lower standard deviation compared to the nominal case. A
higher standard deviation then results in a lower success rate.

18

To show the effect of random critic initialization on the response, the interquartile range of the states over 50 runs
of the nominal case is presented in Figure 12. Only the successful runs are presented meaning 72% or 36 runs. This
shows the level of variation the random seed causes during the training task. This shows a satisfactory and safe training
response with the states remaining close to the reference signal, even during the initial convergence period before t=20s,
but keeping in mind the success rate.

Due to the hybrid policy design and identity initialization of online learning policy layers, it is proposed that a failed
online training run can safely be reset due to the presence of the pre-trained SAC policy layers. This is in contrast with
IDHP-only methods which start with zero knowledge at the start of the training phase.

Table 5 Success rates on SAC-IDHP attitude training task with varying random critic initialization. Analysed
over 50 runs per configuration.

Network Initialization Convergence Rate Temporal Loss Rate Total Success Rate

𝜎𝑐 = 0.01 100.0% 100.0% 100.0%
𝜎𝑐 = 0.05 (nominal) 92.00% 78.26% 72.00%
𝜎𝑐 = 0.10 68.00% 70.59% 48.00%

Fig. 12 SAC-IDHP response on attitude training task with 𝜎𝑐 = 0.05 over 36 successful runs.

19

V. Conclusion
It is demonstrated that a hybrid SAC-IDHP offline-online learning controller can be successfully implemented and

provide coupled-dynamics fault-tolerant flight control in a complete RL-based cascaded altitude controller. It is shown
that compared to SAC-only, the online learning of the hybrid policy architecture provides more adaptive control with
lower tracking error across all tested nominal and failure cases. An improvement in nMAE of 0.74%, 5.46% and 0.82%
is demonstrated for nominal case, longitudinal and lateral failure cases respectively. Compared to IDHP-only, random
initialization of the actor is removed by the hybrid policy. It is proposed that this provides the ability to revert to a robust
response only and reset online IDHP learning safely in flight due to the presence of robust pre-trained policy layers.
Additionally, the hybrid architecture provides increased confidence in including IDHP into a fully coupled-dynamics
6-degree-of-freedom control loop.

The SAC-IDHP agent however exhibits increased oscillations mainly in the longitudinal states, most noticeable
when adding biased sensor noise, but still providing lower tracking error compared to SAC-only. Challenges with offline
SAC learning remain, including inconsistent training performance due to the many stochastic factors, but is improved by
the use of CAPS regularization. Further research is recommended into comparison with IDHP-only and the safety of
SAC and IDHP in covering the entire flight envelope before executing flight tests on the PH-LAB aircraft.

References
[1] Cokorilo, O., “Urban Air Mobility: Safety Challenges,” Transportation Research Procedia, Vol. 45, 2020, pp. 21–29.

https://doi.org/10.1016/j.trpro.2020.02.058.

[2] “Loss of Control In-Flight Accident Analysis Report 2019 Edition,” International Air Transport Association, 2019, p. 44.

[3] Balas, G. J., “Flight Control Law Design: An Industry Perspective,” European Journal of Control, Vol. 9, No. 2, 2003, pp.
207–226. https://doi.org/10.3166/ejc.9.207-226.

[4] Richard S. Sutton, and Andrew G. Barto, Reinforcement Learning, Second Edition : An Introduction, Adaptive Computation
and Machine Learning, Vol. Second edition, Bradford Books, Cambridge, Massachusetts, 2018.

[5] Si, J., Barto, A. G., Powell, W. B., and Wunsch, D., Handbook of Learning and Approximate Dynamic Programming,
Wiley-IEEE Press, 2004. https://doi.org/10.1109/9780470544785.

[6] Wang, F., Zhang, H., and Liu, D., “Adaptive Dynamic Programming: An Introduction,” IEEE Computational Intelligence
Magazine, 2009. https://doi.org/10.1109/MCI.2009.932261.

[7] Liu, D., Xue, S., Zhao, B., Luo, B., and Wei, Q., “Adaptive Dynamic Programming for Control: A Survey and Recent
Advances,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 51, No. 1, 2021, pp. 142–160. https:
//doi.org/10.1109/TSMC.2020.3042876.

[8] Ferrari, S., and Stengel, R. F., “Online Adaptive Critic Flight Control,” Journal of Guidance, Control, and Dynamics, Vol. 27,
No. 5, 2004, pp. 777–786. https://doi.org/10.2514/1.12597.

[9] Enns, R., and Si, J., “Helicopter Trimming and Tracking Control Using Direct Neural Dynamic Programming,” IEEE
Transactions on Neural Networks, Vol. 14, No. 4, 2003, pp. 929–939. https://doi.org/10.1109/TNN.2003.813839.

[10] Zhou, Y., Van Kampen, E.-J., and Chu, Q., “Incremental Model Based Heuristic Dynamic Programming for Nonlinear Adaptive
Flight Control,” IMAV 2016, Delft University of Technology, 2016.

[11] Zhou, Y., van Kampen, E.-J., and Chu, Q. P., “Incremental Model Based Online Dual Heuristic Programming for Nonlinear
Adaptive Control,” Control Engineering Practice, Vol. 73, 2018, pp. 13–25. https://doi.org/10.1016/j.conengprac.2017.12.011.

[12] Heyer, S., Kroezen, D., and Van Kampen, E.-J., “Online Adaptive Incremental Reinforcement Learning Flight Control for a
CS-25 Class Aircraft,” AIAA Scitech 2020 Forum, AIAA SciTech Forum, American Institute of Aeronautics and Astronautics,
2020. https://doi.org/10.2514/6.2020-1844.

[13] Kroezen, D., “Online Reinforcement Learning for Flight Control: An Adaptive Critic Design without Prior Model Knowledge,”
Master’s thesis, Delft Unifersity of Technology, 2019.

[14] Lee, J., “Longitudinal Flight Control by Reinforcement Learning: Online Adaptive Critic Design Approach to Altitude Control,”
Master Thesis, Delft University of Technology, Delft, 2019.

20

[15] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D., “Human-Level Control through Deep Reinforcement Learning,” Nature, Vol. 518, No. 7540, 2015, pp. 529–533.
https://doi.org/10.1038/nature14236.

[16] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A.,
Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., and Hassabis, D., “Mastering the Game of Go
without Human Knowledge,” Nature, Vol. 550, No. 7676, 2017, pp. 354–359. https://doi.org/10.1038/nature24270.

[17] Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P., “Trust Region Policy Optimization,” arXiv:1502.05477 [cs],
2015.

[18] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D., “Continuous Control with
Deep Reinforcement Learning,” arXiv:1509.02971 [cs, stat], 2019.

[19] Bøhn, E., Coates, E. M., Moe, S., and Johansen, T. A., “Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs
Using Proximal Policy Optimization,” 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 2019, pp.
523–533. https://doi.org/10.1109/ICUAS.2019.8798254.

[20] Wang, Z., Li, H., Wu, Z., and Wu, H., “A Pretrained Proximal Policy Optimization Algorithm with Reward Shaping for Aircraft
Guidance to a Moving Destination in Three-Dimensional Continuous Space,” International Journal of Advanced Robotic
Systems, Vol. 18, No. 1, 2021, p. 1729881421989546. https://doi.org/10.1177/1729881421989546.

[21] Shehab, M., Zaghloul, A., and El-Badawy, A., “Low-Level Control of a Quadrotor Using Twin Delayed Deep Deterministic
Policy Gradient (TD3),” 2021 18th International Conference on Electrical Engineering, Computing Science and Automatic
Control (CCE), 2021, pp. 1–6. https://doi.org/10.1109/CCE53527.2021.9633086.

[22] He, L., Aouf, N., Whidborne, J. F., and Song, B., “Deep Reinforcement Learning Based Local Planner for UAV Obstacle
Avoidance Using Demonstration Data,” arXiv:2008.02521 [cs], 2020.

[23] Cheng, Y., and Song, Y., “Autonomous Decision-Making Generation of UAV Based on Soft Actor-Critic Algorithm,” 2020 39th
Chinese Control Conference (CCC), 2020, pp. 7350–7355. https://doi.org/10.23919/CCC50068.2020.9188886.

[24] Lee, M. H., and Moon, J., “Deep Reinforcement Learning-based UAV Navigation and Control: A Soft Actor-Critic with
Hindsight Experience Replay Approach,” arXiv:2106.01016 [cs, eess], 2021.

[25] Barros, G. M., and Colombini, E. L., “Using Soft Actor-Critic for Low-Level UAV Control,” arXiv:2010.02293 [cs], 2020.

[26] Dally, K., and Van Kampen, E.-J., “Soft Actor-Critic Deep Reinforcement Learning for Fault Tolerant Flight Control,”
AIAA SCITECH 2022 Forum, AIAA SciTech Forum, American Institute of Aeronautics and Astronautics, 2021. https:
//doi.org/10.2514/6.2022-2078.

[27] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor,” arXiv:1801.01290 [cs, stat], 2018.

[28] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and Levine, S.,
“Soft Actor-Critic Algorithms and Applications,” arXiv:1812.05905 [cs, stat], 2019.

[29] Mysore, S., Mabsout, B., Mancuso, R., and Saenko, K., “Regularizing Action Policies for Smooth Control with Reinforcement
Learning,” , May 2021. https://doi.org/10.48550/arXiv.2012.06644.

[30] Sun, B., and van Kampen, E.-J., “Incremental Model-Based Global Dual Heuristic Programming with Explicit Analytical
Calculations Applied to Flight Control,” Engineering Applications of Artificial Intelligence, Vol. 89, 2020, p. 103425.
https://doi.org/10.1016/j.engappai.2019.103425.

[31] Zhou, Y., van Kampen, E.-J., and Chu, Q., “Nonlinear Adaptive Flight Control Using Incremental Approximate Dynamic
Programming and Output Feedback,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 493–496.
https://doi.org/10.2514/1.G001762.

[32] Grondman, F., Looye, G., Kuchar, R. O., Chu, Q. P., and Van Kampen, E.-J., “Design and Flight Testing of Incremental Nonlinear
Dynamic Inversion-based Control Laws for a Passenger Aircraft,” 2018 AIAA Guidance, Navigation, and Control Conference,
American Institute of Aeronautics and Astronautics, Kissimmee, Florida, 2018. https://doi.org/10.2514/6.2018-0385.

[33] van den Hoek, M. A., de Visser, C. C., and Pool, D. M., “Identification of a Cessna Citation II Model Based on Flight Test
Data,” 4th CEAS Specialist Conference on Guidance, Navigation and Control, 2017.

21

[34] Ba, J. L., Kiros, J. R., and Hinton, G. E., “Layer Normalization,” , Jul. 2016. https://doi.org/10.48550/arXiv.1607.06450.

[35] Kubota, S., Hayashi, H., Hayase, T., and Uchida, S., “Layer-Wise Interpretation of Deep Neural Networks Using Identity
Initialization,” arXiv:2102.13333 [cs], 2021.

[36] EASA, “CS-25 Amendment 27 - Review of Aeroplane Performance Requirements for Air Operations and Regular Update of
CS-25,” https://www.easa.europa.eu/document-library/certification-specifications/cs-25-amendment-27, Jun. 2021.

22

II
Preliminary Research

This Part has previously been graded for AE4020

29

3
Literature Review

This chapter goes over the fundamental topics from literature which form the basis for understanding
this research. Additionally, state-of-the-art applications are discussed. In section 3.1, the fundamentals
of Reinforcement Learning (RL) are given including the theory necessary to understand and evaluate
different RL frameworks and their applicability to the PH-LAB flight control task. Next, section 3.2
goes over methods to use RL in continuous state and action spaces like the PH-LAB flight control
problem. This section discusses extensions of the fundamental methods in order to cope with the
so called curse of dimensionality [62] that comes with using RL in continuous spaces. Two classes of
continuous space RL algorithms are discussed in more detail in the next two sections. First, section 3.3
goes over Approximate Dynamic Programming and section 3.4 details Deep Reinforcement Learning.
Both are considered state-of-the-art approaches in continuous RL control. The methods are discussed
in detail and state-of-the-art applications on these methods are documented to help answer research
question RQ1.1. Finally, section 3.5 is dedicated to specific challenges with closing the reality-gap and
answers research question RQ1.2.

3.1. Reinforcement Learning Fundamentals
First of all, an overview of the fundamentals of RL is given. This section serves as an introduction to
RL and presents the relevant terminology, key concepts and theoretical background of the RL problem
and goes over commonly used methods to solve it in discrete spaces.

3.1.1. The Agent–Environment Interface
The essence of RL is learning from interaction, inspired by biological brains that can learn by trial and
error. There are usually two main entities and their interaction that represent an RL framework, of
which a general depiction can be seen in Figure 3.1. The agent (also called controller) is the learner
and decision-maker and interacts with the second entity called the environment (also called plant).
The interface through which the continual interaction between agent and environment happens can
be defined by actions (also called control signal), states or observations and rewards. The action
𝑎 is a decision made by the agent on the basis of the observation 𝑠 of the environment. Note the
distinction between the environment state and observation which are often used interchangeably in
the literature. The state vector is defined as the complete state of the environment used to define its
dynamics. While the observation vector can equal the state, it often contains only a subset of the state
or is augmented with task-dependent elements like error vectors. In this chapter, state and observation
are used interchangeably. In chapter 4 however, the distinction is important to make when discussing
lower-level implementation details. Every iteration, the agent is then given feedback by the environment
in the form of a reward 𝑟 as a consequence of the action taken. This feedback plays a large role in
the learning process of an RL framework as it traditionally aims to maximize the reward over time to
achieve a certain goal.

31

32 3. Literature Review

Agent
Action 𝑎𝑡

𝑟𝑡+1

𝑠𝑡+1

Environment

State 𝑠𝑡

Reward 𝑟𝑡

Figure 3.1: The fundamental agent–environment interface of RL frameworks

3.1.2. Markov Decision Processes
The finite Markov Decision Process (MDP) is the mathematically idealised framework that describes a
stochastic sequential decision-making process and thus represents the idealised form of a reinforce-
ment learning problem. In finite MDPs, the actions, states and rewards are part of finite sets, 𝒜(𝑠), 𝒮
and ℛ respectively and the agent interacts with the environment in a sequence of discrete time steps
𝑡 = 0, 1, 2, … . At time step 𝑡, the agent receives the environment’s state 𝑠𝑡 which leads to the agent
selecting an action 𝑎𝑡. The next time step, the agent receives feedback from the environment in the
form of a real-valued reward 𝑟𝑡+1 ∈ ℝ and observes the new state 𝑠𝑡+1. The resulting sequence or tra-
jectory of state, action and reward then looks as follows: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, … . The probability of a certain
state and reward happening as the result of the previous state and action taken can be expressed by
Equation 3.1 where the function 𝑝 essentially defines the dynamics of the MDP. [62]

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) ≐ 𝒫{𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}
∀𝑠, 𝑠′ ∈ 𝒮
∀𝑎 ∈ 𝒜(𝑠)
∀𝑟 ∈ ℛ

(3.1)

TheMDP has theMarkov Property, meaning that the current state and action carry all the information
to predict the next state. Formally this property is defined by Equation 3.2 and allows for the probability
distribution functions to be written only as a function of the previous states instead of all preceding
states up to that point. Note that for an RL solution to an MDP to be feasible, enough relevant state
variables need to be available to the agent. [62]

𝒫{𝑠𝑡+1, 𝑟𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡} = 𝒫{𝑠𝑡+1, 𝑟𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡 , … , 𝑠0, 𝑎0} (3.2)

In addition to the dynamics function 𝑝which fully describes the environment, any other relevant prob-
ability can be defined. The state-transition function is defined by Equation 3.3 and the expected reward
function is expressed by either the two-argument function as in Equation 3.4 or the three-argument
function as in Equation 3.5. [62]

𝑝(𝑠′ ∣ 𝑠, 𝑎) ≐ 𝒫{𝑠𝑡+1 = 𝑠′ ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = ∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) (3.3)

𝑟(𝑠, 𝑎) ≐ 𝔼[𝑟𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = ∑
𝑟∈ℛ

𝑟 ∑
𝑠′∈𝒮

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) (3.4)

𝑟(𝑠, 𝑎, 𝑠′) ≐ 𝔼[𝑟𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′] = ∑
𝑟∈ℛ

𝑟𝑝(𝑠
′, 𝑟 ∣ 𝑠, 𝑎)

𝑝(𝑠′ ∣ 𝑠, 𝑎) (3.5)

3.1. Reinforcement Learning Fundamentals 33

3.1.3. Rewards and Returns
The purpose of the agent is to maximize the reward over time. This does not mean maximizing the
immediate reward on every time step, but the cumulative reward over the entire duration of the process.
This cumulative reward can be defined formally by the return 𝐺𝑡 as seen in Equation 3.6 which includes
the entire sequence of rewards received after time step 𝑡. The return contains the discount rate 𝛾 ∈ [0, 1]
which determines the present value of future rewards and takes future rewards more into account if
𝛾 → 1. When 𝛾 = 0, the agent is called ”myopic” as it is only concerned with immediate reward. As
opposed to periodic tasks, continuous tasks are infinite in time hence 𝑇 → ∞. This also means 𝛾 < 1
is required to get a finite value for the discounted return. [62]

𝐺𝑡 ≐ 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ =
𝑇

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (3.6)

In order to understand coming derivations like the Bellman equation, it is important to see that the
discounted return can easily be written in recursive form relating the current return to the future return
as seen in Equation 3.7. [62]

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝐺𝑡+1 (3.7)

3.1.4. Policy and Value Functions
The strategy that is deployed by the agent is called the policy and is formally defined by Equation 3.8.
The policy is the law that decides what action to take in every state and can be seen as a mapping from
state to the probability of selecting an action [62].

Note that the policy 𝜋(𝑎 ∣ 𝑠) as described by Equation 3.8 represents a stochastic policy as the
action is sampled from a probability distribution. When reducing the variance of this distribution to the
limit, the distribution becomes a Dirac delta function and the policy becomes a deterministic policy 𝜋(𝑠).
A deterministic policy has only one unique action per state and is a direct mapping from state to action.
This distinction is important when discussing policy-based optimization methods in section 3.2. [13]

𝜋(𝑎 ∣ 𝑠) ≐ 𝒫{𝑎𝑡 = 𝑎 ∣ 𝑠𝑡 = 𝑠} (3.8)

Most RL algorithms involve estimating value functions. The state-value function 𝑣𝜋 estimates how
good it is to be in a given state or the value of being in a certain state 𝑠. This is expressed in terms
of the expected future return as this is the metric that the agent aims to maximize. Hence the state-
value function is defined as the expectation of the return under a certain policy 𝜋 as can be seen in
Equation 3.9.

The action-value function 𝑞𝜋 defined by Equation 3.10 is similar to the state-value function but
it assumes a state-action pair as starting position. This means the action-value function gives the
value of taking the action 𝑎 starting from an initial state 𝑠 following the policy 𝜋. Note that as seen in
Equation 3.11, the state-value function can be written as the sum of all action-value functions for every
action taken from the state 𝑠. [62]

𝑣𝜋(𝑠) ≐ 𝔼𝜋[𝐺𝑡 ∣ 𝑠𝑡 = 𝑠] (3.9)

𝑞𝜋(𝑠, 𝑎) ≐ 𝔼𝜋[𝐺𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3.10)

𝑣𝜋(𝑠) =∑
𝑎
𝜋(𝑎 ∣ 𝑠)𝑞𝜋(𝑠, 𝑎) (3.11)

34 3. Literature Review

The role and positions of the dynamics equation, policy, reward and value functions are visualised
in the backup diagram in Figure 3.2. This represents the probabilities and steps taken by the actor (𝜋)
and environment (𝑝) starting from the current state 𝑠 in order to end up at the next state 𝑠′.

𝑝
 𝑠′

𝑎

𝑠

𝑟

↦ 𝑣𝜋(𝑠)

↦ 𝑞𝜋(𝑠, 𝑎)

↦ 𝑣𝜋(𝑠′)

𝜋
𝑡 ∶

𝑡 + 1 ∶

Figure 3.2: A backup diagram showing state, action, policy and reward for two time-steps, adapted from [62]

3.1.5. Bellman Equations
The value functions can be written in a recursive form which is useful for understanding update al-
gorithms. The recursive formulation or Bellman equation for the state-value fiction can be seen in
Equation 3.12 with a number of derivation steps. The recursive formulation is achieved by utilising the
recursive formulation of 𝐺𝑡, the law of iterated expectation [13] and the linear properties of the expecta-
tion operator. Finally, the expectation operator can be expanded as the sum over all values of 𝑎, 𝑠′ and
𝑟 times the probability of the triple (𝑎, 𝑠′, 𝑟) occurring, which gives the last line of the Bellman equation
for 𝑣𝜋. [62]

𝑣𝜋(𝑠) ≐ 𝔼𝜋[𝐺𝑡 ∣ 𝑠𝑡 = 𝑠]
= 𝔼𝜋[𝑟𝑡+1 + 𝛾𝐺𝑡+1 ∣ 𝑠𝑡 = 𝑠] Equation 3.7
= 𝔼𝜋[𝑟𝑡+1 + 𝛾𝔼𝜋[𝐺𝑡+1 ∣ 𝑠𝑡+1 = 𝑠′] ∣ 𝑠𝑡 = 𝑠] law of iterated expectation
= 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑣𝜋(𝑠𝑡+1) ∣ 𝑠𝑡 = 𝑠] Equation 3.9

=∑
𝑎
𝜋(𝑎 ∣ 𝑠)∑

𝑠′ ,𝑟
𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠′)]

(3.12)

3.1.6. Optimality Equations
To solve an RL problem involves finding the right policy so the rewards are maximised over time. This
problem can be formally defined for finite MDPs using the definitions of the value functions. A policy 𝜋
can be said to be better than another policy 𝜋′ if 𝑣𝜋(𝑠) ≥ 𝑣𝜋′(𝑠) ∀𝑠 ∈ 𝒮. There will always be at least
one policy that satisfies this and is called the optimal policy(s) 𝜋∗. The optimal policies share the same
optimal state-value function and optimal action-value function which can be seen in Equation 3.13 and
Equation 3.14 respectively. Both optimal value functions give the expected return when following the
optimal policy. The last two lines for each equation represent the Bellman optimality equations for the
value functions. [62]

𝑣∗(𝑠) ≐max
𝜋
𝑣𝜋(𝑠) =max

𝑎
𝑞∗(𝑠, 𝑎)

=max
𝑎
𝔼[𝑟𝑡+1 + 𝛾𝑣∗(𝑠𝑡+1) ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

=max
𝑎
∑
𝑠′ ,𝑟
𝑝(𝑠′, 𝑟, ∣ 𝑠, 𝑎)[𝑟 + 𝛾𝑣∗(𝑠′)]

(3.13)

𝑞∗(𝑠, 𝑎) ≐max
𝜋
𝑞𝜋(𝑠, 𝑎)

= 𝔼[𝑟𝑡+1 + 𝛾max
𝑎𝑡+1

𝑞∗(𝑠𝑡+1, 𝑎𝑡+1) ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

=∑
𝑠′ ,𝑟
𝑝(𝑠′, 𝑟, ∣ 𝑠, 𝑎)[𝑟 + 𝛾max

𝑎′
𝑞∗(𝑠′, 𝑎′)]

(3.14)

3.1.7. High-Level Concepts
The following high-level concepts can be useful in categorising different RL frameworks and identifying
their advantages and disadvantages.

3.1. Reinforcement Learning Fundamentals 35

Model-Dependence
Amodel of the environment is not always given, sufficiently accurate or identifiable for the RL framework
to use. When a representative model of the environment is required beforehand, the RL algorithm is
called model-based. An example of this is dynamic programming approaches, discussed in more detail
in subsection 3.1.8. When no model is given to the RL agent, it is called model-free. Model-free RL
methods can generally be separated into two categories.

The computed probabilities used in model-based methods can be replaced by sample-based proba-
bility approximations. These methods use the interaction with the real environment to learn the desired
probability distributions and do not need them in explicit form [62].

Other approaches perform incremental model identification as part of the RL task. A class of par-
ticular interest for this research is Incremental Approximate Dynamic Programming (iADP) discussed
more in section 3.3.

Note that the definition of model-free can vary across literature with respect to methods of imple-
menting online model identification. These methods formally do include a model of the environment but
do not require it to be known beforehand. As part of the research objective, the aim of this research is
to advance developments in model-independent RL algorithms. During this research, the term model-
independence is used to also include the online system identification methods and consider them to
be model-free.

On-Policy vs. Off-Policy (Exploitation vs. Exploration)
In RL, there is always a trade-off between exploitation and exploration. Methods that use exploitation
select the greedy action, which is the action with the highest value at a given time step. In contrast,
a non-greedy action does not necessarily maximise the value function at a given time, but taking that
action enables exploration of the state-action space.

Exploitation will always result in the highest reward at a given time step, however, exploration is
also necessary to increase the chance of receiving a higher cumulative return in the long run. Finding
a balance between exploitation and exploration is an important part of RL design. A simple way to do
this is to use the greedy action most of the time and randomly select actions that are non-greedy with
a small probability. This approach is also called near-greedy or 𝜀-greedy, with 𝜀 the probability that the
non-greedy action is selected.

On-policy and off-policy methods are closely related to the concepts of exploitation and exploration.
In general, on-policy means that the behavioural policy is the same as the target policy, while with off-
policy methods they are separate. The behavioural policy is the policy that selects the action, while the
target policy is the policy that is being evaluated and improved by the agent. Off-policy methods can
thus be more powerful in general as they use more exploration, but they often have greater variance
and are slower to converge than on-policy methods. [62]

Online vs. Offline Learning (Adaptive vs. Robust Control)
With online learning, the learning happens during the interaction with the actual environment, so while
performing the tasks. In the case of flight control, this means the RL framework is learning during flight
and adapting to changes in the environment, which is also called adaptive control. Fault tolerance could
be achieved through means of online learning and adaptive control. This technique of obtaining fault
tolerance is mainly relevant for algorithms that have high sample efficiency so that the convergence
time online is practical and safe.

Offline learning represents a fully offline learning process with no updates to the parameters being
performed during the task itself. In the context of flight control, this can also achieve fault tolerance,
in this case, through generalization, and is called robust control. This technique is most relevant to
methods that might have a higher sample complexity like the Deep Reinforcement Learning (DRL)
methods discussed in section 3.4 which have the generalization power to take advantage of the offline
learning process.

The advantage of offline learning is that there are no real-time or safety constraints. Online learning
in contrast is not allowed to explore safety-critical states but is expected to more easily adapt to faults
during flight than a generalised robust control approach. Another option is a hybrid approach where
there is an initial offline training phase and also online learning during flight, potentially combining the
advantages of both approaches.

36 3. Literature Review

Sample Efficiency
Sample efficiency or data efficiency in RL relates to how efficiently an algorithm can make use of train-
ing samples. The term sample-complexity means the opposite, a high sample complexity means low
sample efficiency. A sample-efficient RL algorithm makes better use of the training samples and can
improve the policy faster. Generally, the performance of a sample-efficient method is higher than that
of a sample-inefficient method when taking the same amount of training time. The problem of sample
efficiency is of great importance when looking to build real-world applications of RL algorithms. The
cost of the interaction between the agent and the environment plays a major role in this. In simulation,
it can be the time and computational complexity available based on available computational resources
that bottleneck the real-world applicability of a sample-inefficient algorithm. The same holds for real-
world interactions where constraints on time, equipment degradation and safety of exploration require
sample-efficient RL controllers. Sample efficiency is in general higher for model-based methods as
opposed to model-free methods. In this case, the (learned) model provides additional information to
the agent, resulting in faster learning of the optimal policy. [13]

Learning Stability
Reinforcement learning can suffer from an unstable training process, meaning a large variety in learn-
ing performance over time. Unstable learning is mostly caused by variance and bias of the value
function or policy estimation and their gradients. These effects are often visible as large variances in
the learning curves. Other stochastic effects like the variance of the bias itself, the randomness of the
exploration process, randomness of the environment or numerical randomness all contribute to a less
stable learning process.

DRL can particularly suffer from unstable learning due to the unpredictable properties of deep neural
networks. Having Independent and identically distributed (i.i.d) (i.d.d.) data is a requirement for the
effective training of neural networks. In supervised learning, this requirement poses less of a problem
due to prepared data sets. Reinforcement learning, however, learns from samples that are generally
highly correlated as they are generated by consecutive interactions with the environment. This reduces
the effectiveness of learning with neural networks.

There are notable drawbacks to having less stable learning behaviour. Firstly, there are cases
where the learning performance can even trend downwards after a long training time [20]. Secondly,
the randomness of performance makes it difficult to accurately compare different algorithms, hence
it is important to use multiple random seeds and averaged results. Multiple features of DRL state-
of-the-art reinforcement algorithms like target networks, delayed update, replay buffer and smoothing
regularization help with learning stability and are further discussed in section 3.4. [13]

Function Approximation
Function Approximation refers to the way the value function or policy is represented. In discrete state
and action spaces, a tabular representation of the value function is used. However, when moving to
continuous state and action spaces, function approximation techniques have to be used to generalize
the value functions and policies to the full state and action domains. Using function approximation
is a way to deal with the ”curse of dimensionality” associated with tabular methods, which have their
computational requirements grow exponentially with the number of state variables. A further discussion
of function approximation is given in subsection 3.2.1.

Value-Based vs. Policy-Based
The distinction between value-based and policy-based depends on the role of the agent in estimating
either value functions or policies directly. The common discrete solution methods discussed in the next
section are all value-based, as they use the value function to discover an optimal policy. The distinction
mainly comes into play in continuous-space problems where function approximation can also be used
to parameterise the policy as well as the value function. Value-based and policy-based actor structures
are called critic and actor respectively and are discussed in subsection 3.2.2.

3.1.8. Common Discrete Solution Methods
RL frameworks can be categorised according to their update rule method. Three commonly used
classes of RL algorithms are discussed here, Dynamic Programming (DP), Monte-Carlo (MC) and
Temporal Difference (TD) learning. Many more update rules exist these three can be considered as

3.1. Reinforcement Learning Fundamentals 37

fundamental frameworks for discrete state and action spaces. Even though these methods are not
feasible for the continuous-space flight control problem of the PH-LAB, they do contain the theoretical
foundation of continuous-space methods discussed in section 3.2. In Figure 3.3, an overview of these
methods can be seen, separated by model-free and model-based with rounded boxes representing
these categories, sharp boxes algorithm classes and specific algorithms in text. These methods and
their algorithms are discussed in more detail below. Note that the model-independence required for
this research can also derive from the model-based category in this fundamental taxonomy as further
discussed in section 3.3 as the incremental system identification implemented in ADPmethods requires
no prior known system model.

Dynamic
Programming

Model-Based

Monte Carlo
(episodic)

Model-Free

Policy Iteration
Value Iteration

Model-Dependence

First-visit
Every-visit

Temporal Difference
Learning

(continuous)

Sarsa (on-policy)
Q-Learning (off-policy)

Figure 3.3: RL common solution methods for discrete state and action spaces

Dynamic Programming
Dynamic Programming (DP) is a fundamental framework used to solve MDPs iteratively. It assumes
a finite MDP as the environment process and assumes perfect knowledge of the environment such as
the reward and state transition functions. DP algorithms are thus model-based and are limited in real-
world utility, but are nonetheless theoretically significant, also to continuous state and action spaces.
DP algorithms work by using the Bellman optimality equations to create update rules and consist of
mainly two types:

• Policy Iteration uses a policy evaluation and policy improvement step, where the general inter-
action between these steps is called Generalised Policy Iteration (GPI). The general principle
of GPI is that both an approximate policy and approximate value function are maintained. The
value function is repeatedly evaluated to correspond more closely with the current policy, and the
policy is repeatedly improved using the current value function. Using the Bellman equation for
𝑣𝜋, an update rule can be stated as in Equation 3.15, where full knowledge of the environment is
needed. This is the (iterative) policy evaluation or prediction step and is executed for every state
𝑠 ∈ 𝒮.
The policy improvement step can be expressed by Equation 3.16. This selects the greedy policy
with respect to the value function of the previous policy and will result in the action that looks
best in the short term according to 𝑣𝜋. The initial 𝑣0 and 𝜋(𝑠) are set arbitrarily and the resulting
sequence of monotonically improving policies and value function can be seen in Equation 3.17
with 𝐸 evaluation and 𝐼 improvement. [62]

𝑣𝑘+1(𝑠) =∑
𝑎
𝜋(𝑎 ∣ 𝑠)∑

𝑠′ ,𝑟
𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)[𝑟 + 𝛾𝑣𝑘(𝑠′)] ∀𝑠 ∈ 𝒮 (3.15)

38 3. Literature Review

𝜋′(𝑠) = argmax
𝑎

𝑞𝜋(𝑠, 𝑎) = argmax
𝑎

∑
𝑠′ ,𝑟
𝑝(𝑠′, 𝑟, ∣ 𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠′)] (3.16)

𝜋0
E−→ 𝑣0

I−→ 𝜋1
E−→ 𝑣1

I−→ 𝜋2
E−→ … I−→ 𝜋∗

E−→ 𝑣∗ (3.17)

• Value Iteration can decrease the number of iterations per time step by truncating the policy evalu-
ation step from policy iteration. This is achieved by stopping the policy evaluation after one update
of each state. Equation 3.18 combines the policy improvement and (truncated) policy evaluation
steps in one simple update step. [62]

𝑣𝑘+1(𝑠) =max
𝑎
∑
𝑠′ ,𝑟
𝑝(𝑠′, 𝑟, ∣ 𝑠, 𝑎)[𝑟 + 𝛾𝑣𝑘(𝑠′)] ∀𝑠 ∈ 𝒮 (3.18)

Monte Carlo
Monte-Carlo (MC)methods are different fromDP in the way that they do not require any prior knowledge
of the environment and require only experience from actual interaction with the environment. MC as
opposed to DP also does not bootstrap, meaning using a previous estimate in the current estimate.
MC prediction methods consist of first-visit and every-visit MC. First-visit MC uses only the average of
the returns of first occurrences (visit) of a state 𝑠 in an episode, while every-visit MC also uses repeated
visits to a state 𝑠 in estimating the value function. MC prediction methods can be used to both estimate
state-value or action-value functions using sampled probabilities instead of computed probabilities from
model knowledge. When an environment model is known like in DP, estimating the state-value function
is sufficient in determining an optimal policy and executing the policy improvement step.

For MC control tasks, however, estimating the action-value function is more useful since, without
an environment model, the action-value is needed in order to compute an optimal policy as can also
be seen from Equation 3.16. MC control also utilises the GPI principle for the interaction between
the prediction and improvement steps, the main difference with DP then lies in the policy prediction or
evaluation step.

The value function update process using MC happens on an episode-to-episode basis, the general
form of this incremental update rule can be written as in Equation 3.19. Here the 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is for a
state-value or action-value function, and 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 is a parameter that can be used to control the speed
of the update. The term [𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒] is often referred to as the error. In Equation 3.20 a
simple MC prediction update rule for the action-value function is shown were 𝑄(𝑠, 𝑎) is the estimate for
𝑞𝜋(𝑠, 𝑎), the 𝑇𝑎𝑟𝑔𝑒𝑡 is the actual return 𝐺𝑡 known only after an episode, and the 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 is represented
by 𝛼. [62]

𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 [𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒] (3.19)

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝐺𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡)] (3.20)

Referring back to the Bellman equation for the state-value function in Equation 3.12, MC methods
utilize the first row as the target, with the expectation estimated after the termination of an episode
using samples.

A major limitation for MC methods is that they can only learn after an episode is finished, meaning
it is only available for episodic tasks and not continuous tasks like the flight control task considered for
this research. [62]

3.2. Reinforcement Learning in Continuous Space 39

Temporal Difference Learning
Temporal Difference (TD) learning combines ideas from both DP and MC. Like MC, TD does not require
full knowledge of the environment and uses a sampling-based learning approach, while it also employs
the bootstrapping feature from DP. The difference between DP and TD methods again lies in the policy
evaluation phase, while the control problem or policy improvement step is largely the same following
the GPI principle. With TD estimation, the value function can be updated after every time step which
is possible due to the 𝑇𝑎𝑟𝑔𝑒𝑡 consisting of the observed reward and value function estimate 𝑉(𝑠𝑡+1)
instead of the complete return as in MC, this also makes TD a bootstrapping method.

When using TD for control tasks, the action-value function is used for the estimation step to allow
model-free policy improvement. The pattern of GPI is also utilised like for DP and MC in order to
converge to an optimal value function and policy. The update rule for the on-policy TD control algorithm
called Sarsa [65] can be seen in Equation 3.21. For off-policy TD control, Q-learning can be used using
the update rule as in Equation 3.22 [62]

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (3.21)

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾max
𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (3.22)

Referring back to the Bellman equation for the state-value function in Equation 3.12, TD methods
utilize the fourth row as the target, with the expectation estimated by sampling. In contrast, DPmethods
solve this same equation through the model of the environment being known instead of sampling the
environment. [62]

3.2. Reinforcement Learning in Continuous Space
The previously discussed solution methods all assume finite MDP with finite and discrete state and
action spaces. This however does not reflect the flight control tasks that are the subject of this research,
which have continuous state and action spaces. This section goes over methods used to implement
RL in continuous spaces starting with the concept of function approximation and optimization.

3.2.1. Function Approximation and Optimization
Policy prediction or evaluation methods estimate the value function, the value for a given state (or
state-action pair). Up till now, the prediction step update rule caused the value for a given state/action
to update incrementally towards the update target. This adjusts the value prediction for only that state
and does not estimate an actual function that generalises to other states. For continuous state and
action spaces, however, it is not feasible to maintain the value function in this tabular fashion. This
would either increase discretization errors too much for complex tasks such as flight control or increase
computational and memory requirements beyond practical use. Instead of directly maintaining this
discrete mapping from state to value, these mappings can be used as input for function approximation
methods from the field of Machine Learning (ML) which can estimate the underlying value function
and generalise it to other states. This treats every update step as a training step for the function
approximator. [62]

Functional Form
The structure of the function approximation can differ on mainly two levels, parameterization and lin-
earity. On the level of parameterization, there is a trade-off between flexibility and computational ef-
ficiency. Non-parametric methods like kernel-based methods [56] make weaker assumptions about
the form of the function and are generally more flexible. Non-parametric methods are however often
memory-based and require significantly more data and computation than parametric methods [82]. In
the continuous control problem of the PH-LAB, parametric methods are the more feasible option for
any sort of online learning. They do compromise on generalization power by assuming a given class
of functions but are much more computationally efficient for larger state spaces. Parametric methods
have a set of parameters that control the shape of a predefined function class. The value function esti-
mates 𝑣𝜋(𝑠) ≈ 𝑉𝑤(𝑠) or 𝑞𝜋(𝑠, 𝑎) ≈ 𝑄𝑤(𝑠, 𝑎) are parameterized by the weight vector 𝑤 and the policy 𝜋𝜃

40 3. Literature Review

by the parameter vector 𝜃. Tuning these parameters towards an optimal approximation is referred to
as the optimization method which can be either value-based optimization or policy-based optimization
depending on the agent structure, discussed more in subsection 3.2.2.

Linear function approximation methods are linear in the parameters, meaning the approximated
function is a linear combination of the parameters and the feature vector. Linear methods can have a
convergence guarantee for approximating value functions [79], however, this is highly dependent on the
specific feature representation [13]. Examples of feature representations for linear methods are poly-
nomials, Fourier series, coarse coding, tile coding and radial basis functions. The need for informative,
hand-picked features that require sufficient domain knowledge is a major drawback of linear function
approximation methods [90]. Linear methods are generally better understood and have a stronger
guarantee of convergence. Convergence to a local optimum can be given in certain cases [45], but
in general, there are fewer theoretical guarantees for non-linear methods. The stronger generalisation
power of non-linear methods is however an advantage for the non-linear control problems considered
in this research. Empirical results also demonstrate the usability of combining reinforcement-learning
algorithms with non-linear function approximators like Artificial Neural Networks (ANNs) [90].

Like biological neural networks, ANNs are made up of multiple interconnected neurons. Generally,
ANNs consist of at least three layers of neurons where an input layer is connected to an output layer
through one or more hidden layers. When more than one hidden layer is present it is usually referred
to as a Deep Neural Network (DNN). The output of a neuron is calculated as the weighted sum of its
input plus a bias and passed through an activation function. The neuron connections each carry the
weight value. The activation function is usually non-linear and controls the shape and amplitude of the
neuron output. These weights and biases form the parameter vector for an ANN function approximator
and have to be optimised using function optimization methods discussed in the next paragraph.

Function Optimization
Optimization in this case refers to how the parameters of a function approximator like an ANN are
trained. Linear function approximators can use a closed-form computation of the parameters, for ex-
ample for TD with linear function approximation, Least Squares TD Learning (LSTD) can be used[8]
[7]. For non-linear function forms, however, other methods are required. A distinction can be made
between gradient-free and gradient-based function optimization methods. Gradient-free methods can
be used when the function to be optimized is not differentiable. Examples of gradient-free optimization
methods are evolutionary methods and Cross-Entropy (CE). Evolutionary methods are usually very
fast for simpler cases, but will not be considered for this high-dimensional flight control case due to the
high variance [90]. Similarly, CE methods are fast but have limited applicability to the reinforcement
learning problem at hand as it often converges to sub-optimal policies [13]. For the remainder of this
research, only gradient-based optimization methods will be considered.

Gradient-based methods are also called Gradient Descent (GD) or ascend, depending on whether
a loss function or value function is used as the objective. Gradient-based methods require the differ-
entiability of the function that is to be optimized, which is no problem for structures like the non-linear
ANNs. GD updates the parameters by taking small steps towards a maximum or minimum using the
gradient. The term back-propagation [64] is also mentioned in the rest of this research and is a term
used to describe a method to compute this partial derivative of the loss function with respect to the
parameters of the function model. GD usually works by computing the loss of all samples after an
iteration. A variation of GD called Stochastic Gradient Descent (SGD) [6] is more practical for the con-
tinuous control problem. SGD is a commonly used method that performs GD on a randomly sampled
mini-batch of samples instead of on a sample-by-sample basis like with normal GD. This makes the
computation of the loss function more efficient and allows it to be applied online.

3.2.2. Agent Structures
With function approximation in the picture, there are three main agent structures that are commonly
used depending on what exactly is being approximated. Value functions and policies can both be
learned by the agent. For example, the discrete solution methods discussed in subsection 3.1.8 all
learn the value function which is then used to estimate the optimal policy, usually using the action-value
function for a control problem. These structures that learn the value function are called the critic, while
structures that learn a parameterised policy function directly are called the actor. Agents can consist
of a critic, an actor or both, creating three main agent structures discussed in more detail below.

3.2. Reinforcement Learning in Continuous Space 41

Critic-Only
Critic-Only or Value-Based agents estimate the value function which is then used to derive an optimal
policy. Like the discrete-space solution methods without prior model knowledge, the action-value func-
tion estimate𝑄(𝑠, 𝑎) is maintained by the actor and used to select a greedy action by directly maximising
the Q-function. In continuous spaces with function approximation, usually, gradient-based methods as
discussed in subsection 3.2.1 are used with ANNs to optimise the value function estimates. A major
limitation of purely value-based methods appears when working in continuous action spaces like the
continuous control of the PH-LAB aircraft. Finding the greedy action based on a value-function estimate
would require a search through the entire action space, which is practical for discrete action spaces,
but impractical for infinite action spaces.

Actor-Only
Actor-Only or Policy-Based agents directly estimate the policy without estimating a value function. An
advantage over value-basedmethods is that, with function approximation and parameterizing the policy
𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡), the optimal action can be found in continuous action space. Since a generalised formulation
of the policy function is available in policy-basedmethods, function optimizationmethods can be used to
effectively find an optimal action in infinite action space. Most practical to the flight control task at hand
are gradient-based optimization methods as discussed in subsection 3.2.1, which with policy-based
agents are generally referred to as policy gradient methods. The policy gradient theorem originally
proposed by [77] describes how the parameters of the parameterized policy are updated and can be
seen in Equation 3.23. Here the value function 𝑉𝜋 is used as the objective function. This represents
Stochastic Policy Gradient (SPG) applied to a stochastic policy. Note that 𝑇 can extend to infinity
when the discount factor of the discounted return 𝐺𝑡 is smaller than one 𝛾 < 1. The policy gradient
theorem has been proven to also hold for deterministic policies where a deterministic policy is a limit
case of a stochastic policy with the variance parameter going to zero lim

𝜎→0
[72]. This approach is called

Deterministic Policy Gradient (DPG) and is further discussed as an actor-critic implementation in the
deep reinforcement learning method Deep Deterministic Policy Gradient (DDPG) in subsection 3.4.4.

𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇𝜃𝑉𝜋(𝑠𝑡) with ∇𝜃𝑉𝜋(𝑠𝑡) = 𝔼𝜋𝜃[
𝑇

∑
𝑡=0
∇𝜃 log𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)𝐺𝑡] (3.23)

Since the term ∇𝜃𝑉𝜋(𝑠𝑡) requires the discounted return 𝐺𝑡, all future rewards of a task need to
be known before an update can be performed. The vanilla policy gradient method is thus an MC
method and is only suitable for episodic tasks. The MC stochastic policy gradient forms the basis of the
REINFORCE algorithm [91]. Despite the simplicity of the REINFORCE algorithm, it has been shown
to suffer a large variance of the discounted return 𝐺𝑡, increasing exponentially when the task length
increases [13]. Baseline REINFORCE [92] [40] has been developed that aims to reduce the variance
of the vanilla policy gradient method. A version of baseline REINFORCE with the value function as a
baseline is an actor-critic framework discussed in the next section.

Actor-Critic
Actor-critic algorithms[33] [77], as the name suggests, combine both value-based and policy-based
approximation. Instead of MC estimating the discounted return in the policy gradient method, a TD
approximation critic can be used to estimate the value function. This reduces the variance present with
the MC return estimation and enables continuous or non-episodic tasks due to the TD update. In the
actor-critic framework, the critic receives the state and reward. It then uses TD to estimate the value
function and outputs the TD error. The TD error is used for training the critic itself and is also sent to
the actor. The actor uses the TD error from the critic to update its policy parameters. The actor still
selects the action like in actor-only methods by accepting the state and outputting the action to the
environment. Also see Figure 3.4 for the interaction between the actor, critic and environment.

42 3. Literature Review

 Agent

Environment

State

Reward

TD error

Critic

Action

Actor

Figure 3.4: Actor-Critic framework interaction between actor, critic and environment

Due to the ability to deal with continuous action spaces because of the actor, and continuous-time
tasks because of the TD critic, the actor-critic approaches will be considered a suitable candidate for
the RL controller for the PH-LAB. Two main groups of actor-critic RL algorithms will be considered for
further discussion. The Adaptive Critic Designs (ACDs) from the branch of Approximate Dynamic Pro-
gramming (ADP) are an extension of Dynamic Programming into the continuous domain. These RL
frameworks contain current state-of-the-art research on online adaptive flight control and are discussed
in section 3.3. The second category is Deep Reinforcement Learning (DRL), combining the recent ad-
vances inMachine Learning with the function approximation of model-free RLmethods. Thesemethods
are also the subject of state-of-the-art research into robust flight control and are further discussed in
section 3.4.

3.3. Approximate Dynamic Programming
Approximate Dynamic Programming (ADP) [86] [60] is a class of RL algorithms and an extension of
the model-dependent Dynamic Programming approach. ADP, as the name suggests, uses function
approximation to tackle problems in continuous state and action spaces and thus deal with the curse of
dimensionality that limits DP. The scope of this research limits the ADP methods considered to actor-
critic designs using ANNs as function approximators.

To further categorise these actor-critic ADP methods, the distinction is made in the design of the
critic. The actor always has the same structure and maps state to action. The design of the critic can
vary and results in a number of different strategies as seen Figure 3.5 which shows a breakdown of the
ADP methods discussed in the following sections. These on-policy ADP algorithms are called Adaptive
Critic Designs (ACDs) and are discussed in more detail in the following section. Note that this is not
an exhaustive breakdown of ADP and ACDs are only a part of ADP which are considered here for the
flight control problem.

3.3. Approximate Dynamic Programming 43

ADP

iADP

Heuristic Dual HeuristicGlobal Dual Heuristic

ACD
(on-policy)

HDP
ADHDP
IHDP

DHP
ADDHP
IDHP

GDHP
ADGDHP
IGDHP

Figure 3.5: Approximate Dynamic Programming Adaptive Critic Designs

3.3.1. Adaptive Critic Designs
Adaptive Critic Designs (ACDs) [43] generally come in one of three categories: Heuristic, Dual Heuris-
tic and Global Dual Heuristic. The basic frameworks under these categories are Heuristic Heuristic
Dynamic Programming (HDP), Dual Heuristic Programming (DHP) and Global Dual Heuristic Program-
ming (GDHP) respectively. Each ACD framework discussed has an Action-Dependent (AD) and incre-
mental variant where the incremental versions of the frameworks are commonly referred to under the
term Incremental Approximate Dynamic Programming (iADP).

iADP aims to reduce the model dependence of the general DP approach in ADP through the use of
incremental model identification. The identification process of the environment model is implemented
in the RL framework. This also makes the RL controller adaptive as opposed to the non-incremental
methods which require full apriori knowledge of the plant dynamics. In the incremental methods, the
environment model is approximated by a linearized, time-varying incremental model which still allows
the computational complexity to stay manageable. To accurately identify the system dynamics on-
line, a sufficiently high sampling rate is assumed for discretization accuracy [76]. This incremental
model is identified at each time step by using the conditions of the system of the previous time step,
hence the term incremental[99] [74]. Note that the incremental versions are only applied to the non-
action-dependent frameworks. This is because the model-dependence reduction of iADP outweighs
the partially reduced model dependence of AD structures [11]. Below, the three main categories of
ACDs are discussed in more detail. A summary of the critic structure and model dependence can be
seen in Table 3.1.

Heuristic Dynamic Programming
With HDP [71] the simplest form of the ACDs, the critic estimates the state-value function. This means
the critic can be trained by receiving the state 𝑠𝑡 and then outputs an estimate of the state-value function
𝑉(𝑠𝑡). As this is a state-value method, the actor requires the derivative of the state-value function w.r.t.
the action 𝛿𝑉(𝑠𝑡)

𝛿𝑎𝑡
= 𝛿𝑉(𝑠𝑡)

𝛿𝑠𝑡
𝛿𝑠𝑡
𝛿𝑎𝑡

which requires backpropagation and also the state-transition model to be
known. Hence HDP is model-based.

The model dependence can be addressed by letting the critic estimate the action-value function
instead. This is what the action-dependent ADHDP framework does. With ADHDP the critic receives
both the state 𝑠𝑡 and action 𝑎𝑡 and can be trained to estimate the action-value function 𝑄(𝑠𝑡 , 𝑎𝑡). The
derivative of the value function 𝛿𝑄(𝑠𝑡 ,𝑎𝑡)

𝛿𝑎𝑡
can then be computed with just backpropagation through the

critic. It has been shown that ADHDP has an almost halved convergence success ratio compared to
HDP but does handle measurement noise better than a baseline HDP controller [84]. Note that from
all the ACDs considered here, ADHDP is the only model-free, non-incremental method. The critic of
ADHDP is essentially equivalent to Q-learning [43].

The incremental variant IHDP avoids the need for an offline learning phase because of the linearized
local model identification at the beginning, which has been shown to be fast and accurate [96]. IHDP

44 3. Literature Review

has been successfully applied for angle-of-attack, pitch rate and roll rate control [12] [97].

Dual Heuristic Programming
The critic in DHP outputs the gradient of the state-value function 𝛿𝑉(𝑠𝑡)

𝛿𝑠𝑡
instead of the value function

itself like with HDP. This simplifies the actor training since 𝛿𝑉(𝑠𝑡)
𝛿𝑠𝑡

can now directly be used in calculating
the partial derivative of the value-function w.r.t the action, instead of using backpropagation like with
the actor of HDP. A state-transition model is still required for the actor, while the critic now also requires
the environment model to calculate the derivatives. Compared to HDP, DHP can be smoother and
more accurate due to the elimination of backpropagation to find the derivative and instead of training
the critic to directly estimate the derivative [85] [61].

The critic of the action dependent variant ADDHP outputs the partial derivatives of the action-value
function, which are both 𝛿𝑄(𝑠𝑡 ,𝑎𝑡)

𝛿𝑠𝑡
and 𝛿𝑄(𝑠𝑡 ,𝑎𝑡)

𝛿𝑎𝑡
. This removes the model-dependence of the actor which

now has access to 𝛿𝑄(𝑠𝑡 ,𝑎𝑡)
𝛿𝑎𝑡

directly from the critic. The critic itself however does still require the state-
transition model.

IDHP is again an extension of the non-AD DHP framework where the a priori model knowledge
is eliminated by including incremental plant identification in the learning process. IDHP was applied
on a longitudinal angle of attack and pitch rate controller on a tracking task [98] where it showed to
outperform DHP in fully online learning, efficiency, accuracy and robustness. Using non-linear NN’s it
was able to identify the incremental state-transition model fully online and showed it was fast enough
to control unstable systems before the state converged.

Global Dual Heuristic Programming
GDHP combines both HDP and DHP and its critic outputs both the value function estimate 𝑉(𝑠𝑡) and
the derivative 𝛿𝑉(𝑠𝑡)

𝛿𝑠𝑡
. A critic similar to the HDP critic estimates the value function and passes that

on to a second critic network or dual network. This DHP-type dual network also receives the states
of all hidden neurons of the critic and outputs the value function derivative 𝛿𝑉(𝑠𝑡)

𝛿𝑠𝑡
. Like with HDP and

DHP, the actor is model-dependent, while the DHP-type dual network also makes the critic require a
state transition model. GDHP is expected to outperform DHP which in turn outperforms HDP on the
accuracy of the estimation. However, it is significantly more complex to implement and requires more
computational complexity due to the inclusion of second derivative terms, which in most practical cases
results in DHP frameworks being preferred over GDHP [43] [61].

ADGDHP [61] estimates the action-value function and its partial derivatives which are then used by
the actor to select an action. IGDHP [76] adds incremental model identification to the GDHP framework
and was tested on simple longitudinal control tasks. Like with the comparison between GDHP and DHP,
the performance increase of IGDHP usually does not justify the increased complexity over IDHP.

Table 3.1: Summary of ADC’s with their critic structure and model dependence, adapted from [11], [28]

Agent Structure Critic Model-Dependence
Input Output Critic Actor

HDP 𝑠𝑡 𝑉(𝑠𝑡) ×
ADHDP 𝑠𝑡 , 𝑎𝑡 𝑄(𝑠𝑡 , 𝑎𝑡)
IHDP 𝑠𝑡 𝑉(𝑠𝑡)

DHP 𝑠𝑡
𝛿𝑉(𝑠𝑡)
𝛿𝑠𝑡

× ×
ADDHP 𝑠𝑡 , 𝑎𝑡

𝛿𝑄(𝑠𝑡 ,𝑎𝑡)
𝛿𝑠𝑡

, 𝛿𝑄(𝑠𝑡 ,𝑎𝑡)𝛿𝑎𝑡
×

IDHP 𝑠𝑡
𝛿𝑉(𝑠𝑡)
𝛿𝑠𝑡

GDHP 𝑠𝑡 𝑉(𝑠𝑡),
𝛿𝑉(𝑠𝑡)
𝛿𝑠𝑡

× ×
ADGDHP 𝑠𝑡 , 𝑎𝑡 𝑄(𝑠𝑡 , 𝑎𝑡),

𝛿𝑄(𝑠𝑡 ,𝑎𝑡)
𝛿𝑠𝑡

, 𝛿𝑄(𝑠𝑡 ,𝑎𝑡)𝛿𝑎𝑡
×

IGDHP 𝑠𝑡 𝑉(𝑠𝑡),
𝛿𝑉(𝑠𝑡)
𝛿𝑠𝑡

3.3. Approximate Dynamic Programming 45

Based on the characteristic features of the ACDs discussed above, IDHP appears to be the pre-
ferred framework for this research’s flight control problem of the PH-LAB. DHP is a clear improvement
over the simpler HDP method due to the specialised training for the derivatives of the value functions.
The recently developed incremental version of IDHP adds the adaptive control abilities in order to react
to system changes making it more fault-tolerant and enabling full online learning [98]. A number of
other related studies [97] [12] have also come to the conclusion that IDHP is currently a state-of-the-
art RL framework for continuous adaptive flight control and implemented it as such. Hence, the next
sections will mainly consider IDHP as a viable ADP method for the flight control problem.

3.3.2. State-of-the-art ADP Applications
This section goes over some state-of-the-art ADP flight control applications in more detail, specifically
model-free iADP methods. These particular applications are of the most interest for the continuation of
this research and further elaborate on the benefits and drawbacks of the ADP algorithms and recom-
mendations for further improvement in flight control applications.

IDHP | Reinforcement Learning for Flight Control: Learning to Fly the PH-LAB
In [28], an ADC IDHP framework is derived and used for adaptive flight control of the PH-LAB aircraft.
The framework utilises ANNs as function approximators and includes an additional network structure to
improve learning stability. The resulting RL controller was tested in simulation using the Delft University
of Technology Aircraft Simulation Model and Analysis Tool (DASMAT) high-fidelity simulation model of
the Cessna 500 Citation I, developed by the Delft University of Technology. Other work on the same
aircraft model already focused on longitudinal control with a manual outer loop [32].

The DASMAT model includes the engine dynamics, while actuator dynamics are modelled using a
simplified first-order model with deflection saturation. Similarly, the sensor models are disregarded as
clean sensor measurements are assumed.

The IDHP learning framework proposed in this paper is derived from [98]. It consists of the three
main parametric structures characteristic of iADP frameworks: the actor, critic and the incremental
plant model. Additionally, a target critic network is implemented in order to improve learning stability,
as introduced by Q-learning discussed in subsection 3.4.1. The dual heuristic approach taken here
means the critic is tasked with estimating the partial derivative of the state-value function with respect
to the state as discussed in subsection 3.3.1. The incremental plant model is defined as a linear
approximation of the plant by a first-order Taylor series expansion around a certain operating point.
This operating point is can be set to the previous state and action resulting in the incremental form. The
identification of the incremental model estimates the state and input matrices using an online recursive
least squares (RLS) approach based on [25].

The flight controller is implemented to provide angular rate control of pitch and roll, as seen in Fig-
ure 3.6. The flight controller decouples the lateral and longitudinal control of the aircraft with individual
IDHP controllers for each. The outer control loop consists of conventional PID controllers which are
used for setting the reference signals of altitude and roll angle. A more recent paper [37] attempts
to implement cascaded IDHP control loops to eliminate the PID loops and provide complete adaptive
control. This implementation has shown to be too sensitive to measurement noise.

Figure 3.6: Schematic of the decoupled lateral and longitudinal IDHP flight controller design from [28]

The results from simulation testing showed that the IDHP controller was able to learn a near-optimal

46 3. Literature Review

control policy with no prior system knowledge and with no offline training phase. The additional tar-
get critic managed to eliminate failure in online runs and fault tolerance was demonstrated on simple
actuator failure and reduction of actuator effectiveness scenarios. A similar control framework was
developed in [34] which a shared critic for the longitudinal and lateral controllers were used. This in-
troduced the ability to take into account some coupling effects. For this application, however, a higher
failure rate is observed of up to 27% and similarly to [28], a disadvantage of the continual online learn-
ing is identified. Since the continuous flight control task has an unknown varying duration in practice,
the authors recognised an issue where increasing network parameters cause increasingly unstable
or aggressive behaviour over time. Hence, the addition of parameter regularization [54], or an action
penalty term to the reward function [19] is recommended.

Other recommendations from the authors include further research into the RL controller design
before flight tests. Further performance analysis on the effect of measurement noise and delay is
recommended due to the assumptions of clean measurements taken by the authors. The use of the
high-fidelity sensor models available in the DASMAT model of the PH-LAB is thus also recommended.
Additionally, in order to reach more areas of the flight envelope and better handle coupled effects, it is
recommended that the decoupled architecture of the flight controller should be compared with a single
coupled lateral and longitudinal controller design.

IDHP | Online reinforcement learning for fixed-wing aircraft longitudinal control
In [37], a cascaded IDHP controller is implemented in order to replace the outer PID control loops
used in previous implementations. The performance is then compared with a baseline IDHP controller
without the cascaded design. In Figure 3.7, the schematic of the cascaded altitude tracking controller
architecture can be seen. As opposed to [28], an adaptive, error-based learning rate is implemented
to combat the sensitivity to this hyperparameter. This has been shown to increase the learning stability
[55] [98].

Figure 3.7: Schematic of the cascaded IDHP flight controller design for altitude tracking control from [37]

The baseline and cascaded controller were compared in three different experiments on an altitude
tracking task. Firstly, a perfect scenario without measurement noise or disturbances showed good
tracking performance for both controllers. The baseline controller had a significantly lower success
ratio and the cascaded controller correctly exploited the extra knowledge of the outer loop, while having
a longer convergence time than the baseline controller. On scenarios with measurement noise and
disturbances, the cascaded controller showed an increased susceptibility to measurement noise and
unique failure modes due to incorrect reference pitch angle generation by the outer loop. The overall
conclusion was that the baseline IDHP controller was favoured over the cascaded IDHP controller and
more in-depth analysis on the effects of measurement noise and disturbances is recommended.

3.4. Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) combines RL with function approximation methods from Deep
Learning (DL), hence DRL is also seen as a sub-field of Machine Learning (ML). This means the value
function and policies are parameterized by variables in Deep Neural Networks (DNNs), which then also
enables the use of gradient-based optimization methods. One of the advantages that DL brings to RL
is the scalability of DNN for high-dimensional spaces. DNNs also feature a high level of generalization
power. A major development by DeepMind in 2015 used DRL to achieve human-level performance on

3.4. Deep Reinforcement Learning 47

a number of classic Atari games using a deep Q-network [48], which helped bring DRL more into the
forefront of RL research. With a similar achievement in 2017, DeepMind’s AlphaGo [73] also demon-
strated the ability of DRL algorithms to outperform a human by defeating a world-class GO player.

DQN off-policy DDPG off-policy

Critic
(value-based) Actor-CriticDRL

TRPO on-policy
PPOTD3

SAC

Actor
(policy-based)

A3C on-policy
A2C

Figure 3.8: Deep Reinforcement Learning Algorithms

3.4.1. Deep Q-Network
Q-Learning is a tabular or linear function approximation method that has shown to be stable and conver-
gent, however, when working with non-linear function approximators, Q-leaning becomes unstable or
divergent [80]. With advancing research in the training of deep neural networks, a variant of Q-leaning
was developed called a Deep Q-Network (DQN) [47]. DQN combines Q-learning with deep learning
and introduces two features that are important to understand for related DRL methods as well. Just like
Q-learning, DQNs are value-based and do not handle continuous action spaces like the PH-LAB control
problem, however, the key ideas from DQN are still relevant to discuss. The two features introduced
by DQNs are replay buffer and target network which are discussed in more detail below.

Replay Buffer
The replay buffer refers to the biologically inspired mechanism called experience replay [13]. The
current state, action, reward and next state at time step 𝑡, (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1), can be referred to as
the experience of the agent at that time step 𝑡. The DQN then stores the experience of the agent
into the replay buffer for every time step, until the memory limit is reached after which old experience
samples are discarded. The Q-function is then trained using a sampled mini-batch from this replay
buffer instead of a sample from only the current time step. Normally in Q-learning, experience samples
are obtained consecutively and are thus highly correlated. Using the replay buffer addresses this issue
and thus decreases the variance of the Q-function updates and smooths out the learning process
reducing oscillations [13]. Another advantage is that experience samples can be reused, increasing
the sample efficiency. Because experience replay uses stored transitions, actions are selected partly
on previous policies, making DQN an off-policy method like Q-learning [47].

An improved version of experience replay called Prioritized Experience Replay (PER) [66] intro-
duces a better sampling strategy. This technique prioritizes experiences based on the TD error. A
higher TD error can be seen as a sample that contains more information for the learning process to
work with. PER abandons the purely random sampling method of normal experience replay and in-
stead uses importance sampling using a probability based on the TD error to ultimately select more
information-rich samples.

Target Network
The stability of the neural networks can be further improved by using a separate target network. The
target of the update rule refers to the estimate of the optimal value function, defined by the Bellman
optimality equation Equation 3.14 in the case of TD control. Note that the Q-function TD update rule
is dependent on the Q-function itself. A separate target network can be used instead to generate the
Q-learning targets which are synchronised periodically (every 𝑥 time step) with the Q-network. This
synchronisation between the Q-network and the target network can happen with a hard update (direct
parameter copy), or a soft update (exponentially decaying average) [13]. This essentially delays the
Q-learning target and smooths out the update process, reducing oscillations and divergence.

48 3. Literature Review

3.4.2. Trust Region Policy Optimization
TRPO [68] is an on-policy policy gradient method. It is usually implemented in an actor-critic struc-
ture to allow for continuous-time tasks, but TRPO specifically refers to the policy optimization method
used. Previously discussed policy-gradient methods all use an estimation of the value function for the
objective function. TRPO on the other hand is characterised by making use of the advantage function
instead. The advantage function is defined in Equation 3.24 which represents the difference, or ad-
vantage, in value between taking a certain action 𝑎𝑡 and taking the action from the policy, starting from
state 𝑠𝑡. The objective function 𝐽(𝜃) used for the policy gradient update can be seen in Equation 3.25.
Instead of just using the advantage function, the Conservative Policy Iteration (CPI) scheme first pro-
posed by [29] is used as an alternative policy updating method, which uses the probability ratio between
the old policy 𝜋𝜃 and the improved policy 𝜋𝜃′ . By maximizing the ”surrogate” objective function 𝐽(𝜃),
an optimal policy can be estimated and monotonic improvements can be guaranteed.

The TRPO algorithm is aims to better handle the step size of the policy gradient. A problem with
the vanilla policy gradient methods is that no guidance is given on the size of the step size. To improve
learning stability the update step of the CPI can be theoretically bounded by using the Kullback–Leibler
(KL) divergence as seen in Equation 3.26. This is a statistical measurement between two distributions,
in this case, the policies, and when bounded by scalar 𝛿 keep the new and old policies close together
ultimately resulting in better learning stability.

𝐴(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑉(𝑠𝑡) (3.24)

max
𝜃
𝐽(𝜃) with 𝐽(𝜃) = 𝔼 [𝜋𝜃′(𝑎𝑡 ∣ 𝑠𝑡)𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)

𝐴(𝑠𝑡 , 𝑎𝑡)] (3.25)

𝔼 [𝐷𝐾𝐿(𝜋𝜃||𝜋𝜃′)] ≤ 𝛿 (3.26)

Proximal Policy Optimization (PPO)
TRPO suffers from high complexity in solving the constrained optimization problem. The policy gradient
method PPO [69] tries to simplify the computational complexity of TRPO and provide better sample
efficiency. Similarly to TRPO, PPO tries to keep the policy update bound for better learning stability.
The surrogate objective function from TRPO is simplified by removing the KL-Divergence constraint.
Instead, the step size is guided by clipping the probability ratio 𝜋𝜃′ (𝑎𝑡∣𝑠𝑡)

𝜋𝜃(𝑎𝑡∣𝑠𝑡)
and taking the minimum with

the unclipped objective as seen in Equation 3.27 with 𝜖 a hyperparameter.

𝐽𝐶𝐿𝐼𝑃(𝜃) = 𝔼 [𝑚𝑖𝑛 (𝜋𝜃′(𝑎𝑡 ∣ 𝑠𝑡)𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)
𝐴(𝑠𝑡 , 𝑎𝑡)) , 𝑐𝑙𝑖𝑝 (

𝜋𝜃′(𝑎𝑡 ∣ 𝑠𝑡)
𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)

, 1 − 𝜖, 1 + 𝜖)𝐴(𝑠𝑡 , 𝑎𝑡)] (3.27)

PPO has been successfully demonstrated on attitude control of a fixed-wing UAV where it had better
convergence than traditional PID controller with comparable performance [5]. In [88], a pre-trained PPO
agent was implemented in an RL framework to enable the generation of a reference trajectory for an
aircraft guidance task. For another quadcopter flight control task, PPO has been shown to outperform
PID controllers and DDPG while using a PID outer loop [31].

3.4.3. Asynchronous Advantage Actor-Critic
A3C [49] was recently proposed by Google’s DeepMind as a state-of-the-art algorithm within an asyn-
chronous RL framework. It is an actor-critic approach that focuses on parallel training. Previous RL
frameworks have all consisted of a single actor-critic structure with their respective parameters and
possible target networks. A3C on the other hand introduces multiple nodes each containing an actor
and critic structure. A master node contains the global agent with the actor and critic responsible for the
final policy. Multiple worker nodes are actor-critic agents that interact individually in parallel with a copy
of the environment. The worker nodes send their experience to the master nodes which then use the
TD error from the workers to drive the update steps for the global actor and critic. This method is also

3.4. Deep Reinforcement Learning 49

called asynchronous gradient descent. Also as the name suggests, A3C uses the advantage function
for objectives like TD3 and PPO. In general, the worker nodes are only responsible for interaction with
the environment and the master nodes are only responsible for updating the actor and critic. After the
master agent has performed an update step, the worker agents synchronise with the master node. In
the Atari games environments like DQN, the parallel approach of A3C has been shown to improve the
scores while also halving the training time.

Improvements have been made to A3C by [93] which empirically showed that removing the asyn-
chronous part of A3C actually resulted in a more efficient algorithm. This method called A2C introduces
a coordinator that waits for every worker node and collects their experience. The global actor and critic
are then updated only when all worker nodes are done. [13]

3.4.4. Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient (DDPG) [42] is a combination of Deterministic Policy Gradient
(DPG) and DQN’s learning method. Compared to DQN, DDPG is designed to handle large or con-
tinuous action spaces due to the actor-critic design from DPG.

DPG [72] was proposed in an actor-critic framework and results in a more efficient gradient calcu-
lation compared to Stochastic Policy Gradient. SPG has to integrate over the entire state-action space
in order to ensure exploration, this integration can be problematic when requiring high computational
efficiency. DPG is able to be more efficient than SPG by eliminating this integral over the action space.
This will result in a deterministic policy meaning the policy maps a state to a single action instead of a
distribution. To ensure exploration with DPG it is implemented off-policy and actions are selected ac-
cording to a stochastic behaviour policy. This stochastic behaviour policy essentially adds noise to the
deterministic policy which helps with exploration. DPG will also result in a deterministic policy meaning
the policy directly maps a state to a single action. The performance increase of DPG compared to SPG
is significant by several orders of magnitude by exploiting the efficiency of deterministic policies. Since
DPG is implemented with linear function approximators, an extension of the DPG method is necessary
to make use of the advantages of non-linear function approximators.

DDPG [42] extends DPG by using DNNs as function approximators. The learning methods for the
networks is then taken from DQN, making DPDG combine the efficiency of deterministic policies with
the generalisation power of DNN. The improvement over DQN is the ability to deal with continuous
action spaces.

The critic in DDPG maintains an action-value Q-function. This is the same as with DQN where the
TD method is used to update the value function. The replay buffer and target network of the DQN critic
are also present where the target network is adapted to the actor-critic structure of DDPG. The differ-
ence with the DQN target network is that there now is a target network for both the critic and the actor.
This increases the chance of convergence and is usually implemented with a soft update. The actor
uses the policy gradient theorem using the critic’s TD estimate, using the DPG method and resulting
in a deterministic policy 𝜋(𝑠). Like with DPG, exploration is ensured by making the algorithm off-policy
and adding a stochastic behavioural policy. DDPG can however be hard to use in practice due to high
sensitivity to hyperparameters [15] [27].

DDPG was implemented using a novel learning strategy for the control of Distributed Stream Data
Processing Systems with the objective of minimising processing time. [41]. Both offline and online
learning was applied where first an offline learning phase on a dataset of samples was performed. The
agents were then further trained online whereas the offline pre-trained agent ensured exploration and
faster online convergence. These results showed that it is possible to run DRL algorithms online, with
an initial offline training phase recommended. For increasing state and action spaces, however, the
convergence time would increase too much and cause safety-critical concerns for a high-dimensional
flight control task.

DDPG has also been used for flight control of a 6-DOF UAS model in a tracking task [81]. The
resulting policy was able to track roll, pitch and yaw angles, but with notable steady-state errors on
single attitude control. On multiple coupled attitude control, however, the agent did not reach desired
performance and improvements onDDPG like SAC have producedmore promising results on a coupled
flight control task [11].

50 3. Literature Review

Twin-Delayed Deep Deterministic Policy Gradient (TD3)
TD3 [20] improves on DDPG using three additional techniques. A problem that both DDPG and DQN
have is an overestimation of the value function. This is due to the max operation on the Q-function
function approximation and its sensitivity to noise in the value function estimation. This can result in
slow convergence or even divergence of the parameters [78]. Double Q-Learning [24] tries to reduce
the overestimation by having two Q-function networks and using the minimum of the two in computing
the Bellman equation. TD3 implements this double (twin) Q-learning into DDPG. This might introduce
underestimation bias as opposed to however this is preferred [20] over overestimation.

A second technique that TD3 uses is delayed policy updates. This updates the actor’s policy and
target network less frequently than the critic’s Q-function. Since policy updates on high-error states
cause divergent behaviour, updating the policy network at a lower frequency than the value network
minimizes the error before performing a policy update and improves stability and convergence [13].
The third technique called target policy smoothing regularization tries to combat the over-fitting of the
deterministic policy [20]. This is done by adding noise to the target action which smooths out the Q-
function.

TD3 has successfully been applied to low-level control of a quadrotor in a point tracking task [70],
and also for UAV path planning and obstacle avoidance [26]. A novel variant named Meta-TD3 was
developed for a UAV target tracking task in [39], showing improved performance over TD3 and DDPG.

Soft Actor-Critic (SAC)
SAC [22] employs the same off-policy implementation of DDPG but uses a stochastic policy instead.
SAC makes use of the maximum entropy reinforcement learning framework, in which the actor not only
aims to maximize the expected return but also the entropy. The soft policy iteration principle is used
by SAC which is a policy iteration method that includes an entropy term in the objective function. The
expected return in the objective function is scaled against the entropy using the temperature hyperpa-
rameter. Soft policy iteration uses the same two steps of policy iteration: soft policy evaluation and
soft policy improvement while trying to converge to an optimal policy. This means the actor chooses
optimal actions while acting as randomly as possible ensuring exploration and avoiding convergence
onto sub-optimal solutions. SAC then adds function approximation to soft policy iteration to increase
the applicability to continuous-space problems. The SAC framework uses a double Q-network (and
double target networks) just like TD3 to mitigate the overestimation bias. Unlike DDPG and TD3, no
target policy is needed as the stochastic policy has a smoothing effect by itself.

The TD error 𝛿𝑖 for the critic can be seen in Equation 3.29. The double Q-function critics have
weights 𝑤1 and 𝑤2, with 𝑤′1 and 𝑤′2 being the weights for the target critics 𝑄′. Note that the TD er-
ror contains 𝑉(𝑠𝑡+1). This is the so-called soft value function which consists of the minimum target
Q-function, weighted against the entropy with the temperature coefficient 𝜂. The expression for the en-
tropy follows from the definition of entropy for a given probability distribution P as seen in Equation 3.28.
The final objective function to be minimised to train the critic parameters is defined as the soft Bellman
residual in Equation 3.30. Here the expectation operator is taken over the current batch ℬ, sampled
from the replay buffer 𝒟.

ℋ(𝑃) = 𝔼
𝑥∼𝑃

[− log𝑃(𝑥)] → ℋ(𝜋𝜃(⋅ ∣ 𝑠𝑡+1)) = 𝔼
𝑎∼𝜋

[− log𝜋𝜃(𝑎 ∣ 𝑠𝑡)] (3.28)

𝛿𝑖 = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑄𝑤𝑖(𝑠𝑡 , 𝑎𝑡) with 𝑉(𝑠𝑡+1) = 𝔼
𝑎∼𝜋

[min
𝑖=1,2

𝑄′𝑤′𝑖 (𝑠𝑡+1, 𝑎) − 𝜂 log𝜋𝜃(𝑎 ∣ 𝑠𝑡+1)] (3.29)

𝐽𝑄(𝑤𝑖) =
1
2 𝔼
(𝑠𝑡 ,𝑠𝑡+1 ,𝑎𝑡)∼ℬ

[(−𝛿𝑖)2] (3.30)

For the policy improvement step, it was chosen by the authors to update the policy toward the
exponential of the soft Q-value using the KL-divergence as the objective function to be minimised as
seen in Equation 3.31. In this objective function, 𝑍𝑤 represents a normalizing function which can be
ignored in the surrogate objective function that will actually be used to update the policy. This surrogate
objective function as seen in Equation 3.32 is derived to have the same gradient with respect to 𝜃. A

3.4. Deep Reinforcement Learning 51

final modification to the policy objective function is made by applying a re-parameterization trick on the
action: 𝑎𝑡 = 𝑓𝜃(𝜉, 𝑠𝑡) with 𝜉 random noise sampled from distribution 𝒩. This is done to ensure that
sampling from the policy is differentiable and the gradient of the objective function can be calculated.
This results in the final objective function for the policy in Equation 3.33.

𝐽𝜋(𝜃) = 𝔼
𝑠𝑡∼𝒟

𝐷𝐾𝐿 (𝜋𝜃(⋅ ∣ 𝑠𝑡) ||
exp (1𝜂𝑄𝑤(𝑠𝑡 , ⋅))

𝑍𝑤(𝑠𝑡)
) (3.31)

𝐽𝜋(𝜃) = 𝔼
𝑠𝑡∼𝒟

[𝔼
𝑎𝑡∼𝜋

[𝜂 log𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡) −min
𝑖=1,2

𝑄′𝑤′𝑖 (𝑠𝑡 , 𝑎𝑡)]] (3.32)

𝐽𝜋(𝜃) = 𝔼
𝑠𝑡∼𝒟

[𝔼
𝜉∼𝒩

[𝜂 log𝜋𝜃(𝑓𝜃(𝜉, 𝑠𝑡) ∣ 𝑠𝑡) −min
𝑖=1,2

𝑄′𝑤′𝑖 (𝑠𝑡 , 𝑓𝜃(𝜉, 𝑠𝑡))]] (3.33)

Earlier implementations of SAC have modelled the soft value function as a separate learnable net-
work. This was done to improve learning stability. Later iterations however introduced a number of
improvements like the re-parameterization trick for the policy and a separate learning process for the
temperature coefficient [23]. The learning of the temperature coefficient greatly improves the usability
of SAC as manually optimizing this hyperparameter is non-trivial. The extra learning network for the
soft value function was subsequently omitted for the sake of simplicity as it empirically showed to have
little effect on learning stability.

SAC was already successfully applied to UAV navigation and control problems. UAV path planning
in [9] used a SAC agent Another UAV path planning application in [38] introduced the SACHER algo-
rithm (soft actor-critic with hindsight experience replay). This method implements a modified reward
function that also depends on a goal, helpful for increasing learning speed and success rate in path
planning problems. Furthermore, low-level control of a quadrotor was achieved using a SAC agent in
a go-to-target task [4].

3.4.5. State-of-the-art DRL Applications
This section goes over some state-of-the-art DRL flight control applications in more detail. These
particular applications are of the most interest for the continuation of this research and further elaborate
on the benefits and drawbacks of the DRL algorithms and recommendations for further improvement
in flight control applications.

SAC | Soft Actor-Critic Deep Reinforcement Learning for Fault-Tolerant Flight Control
The author of [11] implemented a coupled, cascaded SAC controller for control of the Cessna Citation
500 aircraft. The SAC algorithm was directly adapted from the author’s implementation [23]. The
observation vector available to the agent was chosen to enable the 6-DOF tracking tasks and contains
the weighted tracking error vector, the three-body rates and the current control input since the agent
only controls the control increments. The reason for the latter was that it was found that control inputs
appeared noisy when they corresponded directly to the agent, so the agent was implemented to provide
the control increments instead as can also be seen from the controller diagram in Figure 3.9.

52 3. Literature Review

Figure 3.9: Schematic of the cascaded, coupled SAC flight controller design from [11]

Evaluation of several coordinated manoeuvres and tracking tasks demonstrated the ability of the
SAC controller to provide robust online control. Fault tolerance was also demonstrated on a number of
failure cases such as jammed rudder at −15∘, reduced aileron effectiveness by 70%, sudden c.g. shift
and simulated icing effects. The response of the c.g. shift failure case can be seen in Figure 3.10 where
the SAC agent was also trained on the failed system to evaluate possible improvements compared to
a fully robust response. In general it was concluded that training on the normal system should be suffi-
cient to provide robust fault-tolerance. The resulting high robustness of control is attributed to the high
exploration power of the stochastic policy and the high generalisation power of the DNNs. Although the
online performance of the cascaded SAC controller was shown to be performant and stable, the offline
training process could be unreliable due to the increased stochastic effects of the soft policy iteration
and the stochastic policy.

Figure 3.10: Altitude tracking response of cascaded SAC controller with sudden c.g. shift at 20s. Response of controller trained
on normal system until 80s, afterwards response of controller trained on failed system [11]

Recommendations from this paper include further analysis of realistic effects such as transport and
sensor delays, continuous atmospheric disturbances and reference signal disturbances. Furthermore,
the authors recommend looking into increasing training reliability by further hyperparameter tuning or

3.4. Deep Reinforcement Learning 53

considering deterministic on-policy alternatives such as TD3 and PPO. An interesting recommendation
by [11] on increasing the adaptiveness of control is to investigate a hybrid framework. It was proposed
that incorporating iADP into the SAC framework would enable online learning using a state-of-the-art
iADP algorithm like IDHP. This hybrid offline-online learning approach could make the cascaded SAC
controller online adaptive, increasing the applicability to autonomous systems. Cascaded pure IDHP
controllers on the other hand have shown to have high sensitivity to measurement noise and reduced
adaptivity compared to an IDHP with a PID outer loop [37].

SAC, TD3 | Self-learned suppression of roll oscillations based on model-free reinforcement
learning
In [14], a SAC and TD3 agent were implemented to learn policies for controlling the high angle of attack
roll oscillations on a flying-wing model. The training was performed offline in simulation using a widely
used wing-rock mathematical model. The paper also compares the performance with a real-world wind-
tunnel test on a flying wing model subjected to spanwise blowing. As can be seen from the training
reward curves in Figure 3.11, both TD3 and SAC algorithms eventually converged into a near-perfect
policy. The difference in exploration strategy and training stability can also be seen here where TD3
has a stabler training curve. The stochastic policy and entropy terms of SAC cause more variance in
the reward curve.

Figure 3.11: Reward curves comparing TD3 and SAC on suppression of roll oscillations task [14]

The wind tunnel experiments performed on the flying-wing model showed that time delay introduced
non-Markovian effects into the environment with degraded performance on both agents. Attempting
to improve this, the authors trained both agents on the experimental setup with different observation
vectors. The memory size of the observation vector was increased from only the current time-step
observation like in simulation, to three time-steps and six time-steps. The reward curves of the experi-
mental training can be seen in Figure 3.12 for TD3 and Figure 3.13 for SAC with 𝑚 = 1, 𝑚 = 3, 𝑚 = 6
for the three different observation vector sizes. These results showed that increasing the observation
memory size improves the reward on both algorithms, both reaching a similarly high reward with three
and six time steps per observation. Again, the increased stochastic effects of SAC are demonstrated
by the reward curves. Note however that more unstable training performance of SAC does not translate
when deployed on the system as the best agent from training is always used.

54 3. Literature Review

Figure 3.12: Reward curves for TD3 on suppression of roll os-
cillations task for increasing observation vector sizes [14]

Figure 3.13: Reward curves for SAC on a suppression of roll
oscillations task for increasing observation vector sizes [14]

3.5. Simulation Reality-Gap in Reinforcement Learning Flight Con-
trol

In order to progress towards enabling flight tests for RL controllers on the PH-LAB research aircraft,
the main challenges in reducing the simulation reality-gap need to be identified. Reality-gap is not
a concept exclusive to reinforcement learning but to any control technique. It generally points to the
challenges associated with transferring simulated experience to the real world as there will always be a
discrepancy between the simulated world and the real world. Applying reinforcement learning methods
to the real world remains a major challenge. Especially in flight control applications, the requirements
for safety are high. A simple solution to the problem of reality-gap and domain transfer might be to fully
train the agent on the real system. This is however not feasible as this gets exceedingly expensive
and unsafe due to high sample complexity and unsafe exploration, especially for complex systems
like aircraft. In practice, learning from the simulation is thus necessary before deploying in production.
The exploration process of reinforcement learning methods and learning instability and unpredictability
already pose a challenge for safety-critical design. Being aware and addressing the reality-gap in the
performance and stability assessments is thus of great importance when developing control applica-
tions for real-world tasks.

The current state-of-the-art implementations for CS-25 class aircraft RL controllers [32] [28] [11]
all recommend further research into the effects of less simplified sensors, actuators and plant dynam-
ics on the performance and stability of the RL controller. In developing and testing the proposed RL
controller of this research, the reality-gap challenges that previously were already identified should be
investigated and evaluated in order to judge the readiness of the RL controller for flight tests, compare
the RL framework candidate to other state-of-the-art implementations and identify possible causes of
any performance degradation.

This section contains the answer to research question RQ1.2 and further decides on the steps that
have to be taken in the implementation phase in order to attempt to develop a practically improved RL
controller compared to existing implementations.

3.5.1. Common Causes and Solutions to Simulation Reality-Gap in Reinforce-
ment Learning

Reality-gap in reinforcement learning is caused by a variety of factors. One of the factors causing a
discrepancy between the simulation and the real world is differences in the system dynamics. The
model of the environment used in simulation often contains assumptions and errors compared to the
real-world system. A bias to the simulation model can develop a bias called the Simulation Optimization
Bias [52] in which the optimizer exploits these modelling errors of the simulator. A bias to the simulation
model can potentially result in damaging behaviour when deployed on the real system. Note that

3.5. Simulation Reality-Gap in Reinforcement Learning Flight Control 55

the offline learning DRL methods considered in this research focus on robustness of control and are
expected to learn from a model that is not exactly the real system, but a bias to the simulation model
is thus always present. In these cases it is also important to be aware of over-fitting the agent to the
simulation model, decreasing the robustness when translated to the real work system.

A second major factor that causes the reality-gap is the time delays present in a real-world MDP, as
illustrated by Figure 3.14. The MDP that is assumed in a traditional RL problem assumes the capturing
of the state and the policy inference are instant processes. In reality, time delays are present for
the state observation in the form of sensor time delays. This essentially results in the agent making
decisions based on lagged observations with a policy of the form 𝜋(𝑎𝑡 ∣ 𝑠𝑡−𝛿) with 𝛿 the observation
time delay. Also, the feed-forward process of the NNs can take more time when deployed on real
hardware causing a delay in the policy inference. As discussed in subsection 3.5.2, time delay has
already been identified as a significant cause of performance degradation and is important to include
in the simulation model.

Figure 3.14: Difference of MDP in simulation and reality due to time delays of state capture and policy inference [13]

A number of techniques can be used to close the reality-gap. The techniques that are discussed
here fall into three main categories of domain adaptation, domain randomization and online system
identification.

Domain adaptation refers to adapting the policies online when transferring a pre-trained agent to
a new, real-world target domain. Meta-learning [2] [53] [67] is an example of a method described by
”learning to learn” that achieves online learning by learning and tuning hyperparameters of the RL
framework online. Meta-learning has been applied to a number of DRL algorithms like Meta-TD3 [39]
and Meta-SAC [87] where the latter improves on learning stability of SAC by replacing the temperature
coefficient optimizer usually implemented in SAC by a meta-learning process.

Domain adaptation techniques can be seen as separate from fully online learning techniques such
as iADP. In iADP frameworks, the process of online system identification provides a safeguard against
the model bias of pre-trained agents but comes with its own challenges due to the continual learning
process [28] [34]. These techniques as discussed in section 3.3 can then adapt their policies online by
using the incremental model to predict the state transition.

Domain randomization is an alternative technique to domain adaptation in which no online learning
is performed, also called a zero-shot transfer [13]. Domain randomization makes sure the discrepan-
cies between the simulation and target domain are modelled during the offline training phase. This
is performed by implementing randomization and variance onto characteristics of the source domain.
The agent can for instance be trained on a set of different simulation models, combating the over-fitting
to one specific environment model and resulting in a policy that has more generalization power and
robustness. This case can also be called dynamics randomization [58].

3.5.2. Modelling Requirements
The DASMAT tool by the Delft University of Technology for the Cessna 500 Citation I [21] can be used
in the development of an RL flight controller candidate in the context of this research. This high fidelity,
nonlinear, 6-degrees-of-freedommodel can be considered equivalent to the Cessna 550 Citation II PH-
LAB aircraft, despite the difference in fuselage size, engine power and wing size [83]. The DASMAT

56 3. Literature Review

model includes flight dynamics as well as engine dynamics in high-fidelity versions of the actuator and
sensor models.

The following state-of-the-art research has been discussed in more detail in subsection 3.3.2 and
subsection 3.4.5 and all implement RL flight control focusing on the CS-25 class of aircraft.

In the field of iADP, a number of these recent studies have performed analyses on the reality-gap.
The IDHP decoupled 6-degree-of-freedom flight controller developed in [28] assumed completely clean
measurements and used a relatively low-fidelity actuator model, modelled as a first-order lag system
with saturation limits but no transport delays. Also, no external disturbances such as atmospheric turbu-
lence were tested. The IDHP partially coupled 6-degree-of-freedom flight controller from [34] similarly
assumed completely clean measurements and no external disturbances. In [32], an IDHP inner loop
was developed and analysis was done using a high fidelity sensor model which included sensor bias,
noise, delays, resolution and sampling rate. The actuator model also modelled transport delays and no
atmospheric disturbances were implemented. In the implementation in [37], the IDHP cascaded lon-
gitudinal controller only models the sensor noise, while the effect of external disturbances is analysed
using a longitudinal Dryden gust model. In the field of DRL, the coupled cascaded 6-degree-of-freedom
SAC controller from [11] takes into account sensor noise and bias, but no sensor delay. A simple low-
pass filter actuator model with saturation limits is used with no transport delays. Additionally, the effects
of a simple, non-continuous vertical gust model are reported.

As per the research objective, the proposed RL flight controller design should be tested using as
many of the available high-fidelity dynamic models as possible. The main three elements of the envi-
ronment model, sensor models, actuator models and external disturbances, should be implemented to
the following degree.

Sensor Model
A high fidelity sensor model for the PH-LAB Cessna Citation II is available in the DASMAT analysis tool,
based on flight test data [21]. This sensor model takes into account many of the practical phenomena
that are neglected by most of the previous work mentioned and suspected to have a measurable im-
pact on performance and learning stability. As per the recommendation of the authors of the previous
works, these effects should be further investigated before attempting real-world flight tests. The phe-
nomena include sensor noise, bias, delay, resolution and sampling rate. As mentioned before, these
phenomena have previously been investigated in [32] on an inner loop IDHP longitudinal controller.
This work concluded that the discretization process and sensor bias did not have any significant ef-
fect on the controller performance or on the incremental model identification. Sensor noise and time
delays however were found to cause controller performance degradation due to incorrect estimation
of the incremental model parameters. The negative effects of sensor noise were largely mitigated by
appropriately filtering the sensor signals using a first-order low-pass filter. Sensor delays however are
recommended to be studied further.

Actuator Model
As mentioned before, a high-fidelity actuator model for the PH-LAB Cessna Citation II is available in
the DASMAT analysis tool [59]. This model provides a better estimation for the elevator and ailerons,
including the saturation limits and transport delays. In [32], the transport delays were modelled using a
simple first-order model and concluded that it did cause any significant performance degradation. As
this was implemented only on an inner loop IDHP longitudinal controller, it is still desired to not neglect
any of these effects to extend this analysis to a 6-degree-of-freedom environment.

3.6. Conclusion Literature Study
Before commencing a preliminary analysis and fully answering RQ1, conclusions have to be made
on the type of RL framework to further investigate. The state-of-the-art in online and offline learning
RL frameworks have been identified by the preceding literature survey to be in the field of iADP and
DRL. In subsection 3.6.1, the advantages and disadvantages of algorithms in these two families are
compared. A decision is made on which framework will be considered for the rest of this thesis and that
could contribute the most to the further development of adaptive and robust control inside the scope of
this thesis. Conclusions based on the reality-gap challenges can be found in subsection 3.6.2

3.6. Conclusion Literature Study 57

Continuing the preliminary research, the next steps include a preliminary analysis by implementing
RL framework candidates and assessing their performance on simple systems according to the points
discussed in subsection 3.6.1, answering RQ3 and RQ4 respectively.

3.6.1. RL Framework Candidate
Following the literature study, the two main families considered for the RL framework candidate are
iADP and DRL, detailed in section 3.3 and section 3.4 respectively which provide an answer to RQ1.1.
These two families of RL algorithms contain state-of-the-art implementations that enable model-free
learning, both online in the case of iADP and offline in the case of DRL. First, both families will be
considered as they both have significant advantages and disadvantages. Then the most promising
implementations can be compared and a choice can be made on how to continue in the preliminary
implementation phase. The state-of-the-art implementations that are appropriate for the continuous
flight control task at hand have been identified to be IDHP in the category of iADP, and SAC and TD3
in the field of DRL.

IDHP is the more recent development in ADP and provides fully model-free online learning with
better performance and less complex implementation than other model-free options like ADHDP, IHDP
and IGDHP. As discussed in subsection 3.3.2, IDHP has recently been studied in applications for flight
control and on the Cessna Citation type aircraft, most notably the decoupled 6-degree-of-freedom flight
controllers from [28] and [34]. In DRL, fewer examples exist of specific, modern aerospace applica-
tions. Mainly the cascaded SAC controller of [11] stands out as a complete 6-degree-of-freedom fault
tolerant flight control application, with promising results. The choice to also consider TD3 comes from
the promise of a more stable and consistent learning experience.

TD3 as a state-of-the-art DRL algorithm shows promising characteristics for flight control applica-
tions. Theoretically, the less aggressive exploration and deterministic policy form the basis for a stable,
consistent and possible even safe online training process. The more favourable training stability com-
pared to SAC has also been demonstrated in a study on roll oscillations [14]. The lower exploration
of TD3, as part of the exploration-exploitation trade-off, has the drawback of resulting in a less robust
controller. This means most likely a lower fault tolerance, a larger reality-gap and increased bias to
the training model. Despite the attractive training behaviour and efficiency, TD3 has, after a thorough
search of the relevant literature, not yet been found to have demonstrated a full, autonomous, fault-
tolerant flight controller like SAC has in [11]. The presence of the latter study using SAC makes it a
more attractive candidate following the authors promising results and recommendations.

SAC has due to its off-policy stochastic policy and soft policy iteration a high level of exploration.
Together with the high generalization power of Deep Neural Networks (DNNs), SAC has been shown
to provide robust, fault-tolerant control [11] in a cascaded inner and outer loop flight controller. A large
area of improvement for SAC the training stability. Due to the stochastic nature of the learning process,
training runs can be inconsistent and hard to compare. Note that this drawback pertains mainly to the
development phase of a controller, while deployed in production, the best policy from training is used,
usually made deterministic by using the mean of the distribution. The low sample efficiency however
requires that realistically the training has to be conducted offline. Online learning with SAC also poses
a safety concern due to the stochastic policy and unsafe exploration coupled with the longer converge
time. For that, incremental methods like IDHP are much better suited. Even though the high robust-
ness has been demonstrated by [11] to provide fault tolerance, severe failure cases cause instability.

IDHP has the advantage of not needing any offline training phase. It also has a higher sample effi-
ciency than any DRL method and converges fast, hence its applicability to online learning. While SAC
or other DRL methods attempt to achieve fault tolerance through their generalization power, and robust
control, the fault tolerance of iADP methods like IDHP is assumed to always be higher due to the online
adaptive approach. The online system identification and lack of an offline training phase also reduce
the problems that are present with deploying pre-trained policies, like over-fitting and the policy possible
exploiting errors in the training model. The continual online learning approach has however problems
of its own, main pertaining to a monotonic increase in the magnitude of network parameters and es-
timator windup, as acknowledged by [28]. Also as discussed in subsection 3.3.2, a cascaded IDHP
controller design has, unlike the cascaded SAC design, demonstrated high sensitivity and degraded

58 3. Literature Review

performance due to real-world effects like sensor noise. Using some form of a manually tuned outer
loop like PID has until now been used to complement an IDHP inner loop where results were promising.

SAC and IDHP so far seem to be most promising in the context of this research. The state-of-the-art
implementations of both can benefit from further iteration and in-depth comparison, including gathering
more data on the effects of noise, delays and disturbances. Additionally, as recommended by [11],
the benefits of SAC could potentially be combined with the online learning of an IDHP actor-critic. A
framework that utilizes both the generalization power of DNNs and the adaptive power of incremental
system identification could result in a robust and highly fault tolerance design. Attempts by [11] to
implement online learning using the SAC learning process have had a stability success rate of only
6%. The successful implementation of the cascaded SAC controller on a complex system indicates
that a hybrid form is an option worth investigating when cascaded IDHP-only controllers have had less
satisfactory results [37]. Hence, an offline-learning SAC and online-learning IDHP training strategy can
be developed as part of the preliminary implementation in order to explore the possibility of a hybrid
form further.

The discussion on a hybrid training strategy by [11] describes the IDHP agent as an add-on agent
to the pre-trained SAC agent during flight. As soon as a severe fault or change in the environment
dynamics is detected, the IDHP agent is expected to use its high sample efficiency to regain control by
building the incremental model with updated dynamics. The question of how a mechanism to detect
the failure and switch the agent would be implemented is still to be answered.

Policy fine-tuning as discussed in [94] is another technique that combines offline with online learning.
Instead of a binary approach between the online and offline agent, policy fine-tuning uses the online
agent continually, with access to a reference policy that is close to the optimal policy. In this case, the
robust policy from the SAC agent can be a reference policy for the online IDHP agent. Whether this
is possible for the SAC-IDHP combo or applicable to high-dimensional coupled systems remains to be
seen.

In conclusion, both the SAC and IDHP RL frameworks are a candidate for preliminary analysis and
are subject to further improvement and comparison. Additionally, an attempt at a hybrid offline-IDHP
online-IDHP form is expected to provide insight into the possibility of combining the advantages of both.

3.6.2. Reality-Gap Challenges
In section 3.5 the main challenges concerning the simulation reality-gap are identified, answering
RQ1.2. Based on this and using the insights of previous papers [28] [34] [32] [37] [11] it is concluded
that using of the high fidelity sensor and actuator models available for the PH-LAB [21] have to be
used to progress towards enabling flight tests of RL controllers as per the research objective. Special
attention has to be given to sensor time delays [32] as discussed in subsection 3.5.1. Additionally, a
continuous atmospheric disturbance model can be used to further assess robustness to different flight
scenarios. Also testing a wider range of flight configurations of the PH-LAB simulation model can be
beneficial to increase the flight envelope of the controller. In implementing the RL framework candidate,
a number of domain adaptation techniques can be used to further close the reality gap. It should for
instance be considered to investigate the effect of replacing the temperature coefficient optimizer with
meta-learning in SAC [87] which can also increase learning stability.

4
Preliminary Analysis

Following from the conclusions of chapter 3, a preliminary analysis is performed in this chapter which
aims to answer RQ1.3 and RQ1.4, fully answering RQ1 together with the answers to RQ1.1 and RQ1.2
given in chapter 3. Twomain RL framework candidates have been identified from the fields of Incremen-
tal Approximate Dynamic Programming and Deep Reinforcement Learning: Incremental Dual Heuristic
Programming (IDHP) and Soft Actor-Critic (SAC) respectively. The initial implementation of both these
frameworks is documented here, plus the implementation of a combined IDHP-SAC framework. The
analysis that follows using each of the three frameworks is performed on a simple dynamic system
modeling the short-period mode of the Cessna Citation aircraft. This analysis aims to compare the
performance of the different frameworks and should confirm that the RL agents can successfully con-
trol a simple system and exhibit the adaptive and/or robust qualities needed for fault-tolerance. Note
that analysis on the reality-gap challenges including measurement noise, time delays and high fidelity
dynamics modeling is reserved for the main phase of this thesis research.

In section 4.1, the short-period environment model is discussed, which is used for the subsequent
simulations. Next, the implementation details of the RL frameworks are given in section 4.2 for the
IDHP agent, section 4.3 for the SAC agent and section 4.4 discusses the implementation of a combined
approach. The results of several simulation runs on the short-period environment model are given in
section 4.5 including a discussion on how the different agents compare. Finally, the conclusions are
given in section 4.6.

4.1. Environment
The environment in the setting of RL control needs to define the dynamics of the controlled system, usu-
ally called the plant in engineering terms. Since the development of the RL controller is fully performed
in simulation, a mathematical model of the environment needs to be defined. This section presents the
environment model that is used during the preliminary analysis. The control task that the RL agents
need to optimize is defined as part of the reward function design, which in this case is considered part
of the environment model.

4.1.1. State-Transition Model
The state-transition model defines the dynamics of the system. For the preliminary analysis, a Linear
Time-Invariant (LTI) short-period model is selected which models the short-period mode of an aircraft
and can be parameterized to approximate the dynamics of the PH-LAB Cessna Citation aircraft. This
simplified model provides a relevant system to perform the initial analysis on while keeping the com-
plexity low due to the smaller state and action spaces compared to a full aircraft model.

The mathematical short-period model is derived from [51] and represented as a state-space system.
The dynamics equation for the state-space system can be seen in Equation 4.1 with the discrete form
being executed every time-step Δ𝑡 of the simulation. The state vector x and action vector a are defined

59

60 4. Preliminary Analysis

as in Equation 4.2 where the state only contains the angle of attack 𝛼 and the pitch rate 𝑞. The action
or input vector contains the elevator deflection 𝛿𝑒.

The state matrix 𝐴 and input matrix 𝐵 are defined as in Equation 4.3 where the values contain a
number of aerodynamic coefficients. The parameters of 𝐴 and 𝐵 are available for the Cessna Ce500
aircraft, which can be considered similar to the PH-LAB aircraft for this simplified model. In Table 4.1
the aerodynamic coefficients of the Ce500 in cruise conditions can be seen. This parameterized form of
the state-space equation can later be used to test the robustness of the offline-trained SAC controller by
altering the aerodynamic coefficients. Note that the RL agents have no prior knowledge of these system
matrices, including the incremental model of the IDHP framework which forms its own approximation
of these matrices as part of the learning framework.

ẋ = 𝐴x+ 𝐵a → x𝑡+1 = x𝑡 + (𝐴x𝑡 + 𝐵a𝑡) Δ𝑡 (4.1)

x = [𝛼𝑞] a = [𝛿𝑒] (4.2)

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑉
̄𝑐

𝐶𝑍𝛼
2𝜇𝑐−𝐶𝑍�̇�

2𝜇𝑐+𝐶𝑍𝑞
2𝜇𝑐−𝐶𝑍�̇�

𝑉2
̄𝑐2
𝐶𝑚𝛼+𝐶𝑍𝛼

𝐶𝑚�̇�
2𝜇𝑐−𝐶𝑍�̇�

2𝜇𝑐𝐾2𝑌
𝑉
̄𝑐

𝐶𝑚𝑞+𝐶𝑚�̇�
2𝜇𝑐+𝐶𝑍𝑞
2𝜇𝑐−𝐶𝑍�̇�

2𝜇𝑐𝐾2𝑌

⎤
⎥
⎥
⎥
⎥
⎦

𝐵 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑉
̄𝑐
𝐶𝑍𝛿𝑒

2𝜇𝑐−𝐶𝑍�̇�

𝑉2
̄𝑐2
𝐶𝑚𝛿𝑒+𝐶𝑍𝛿𝑒

𝐶𝑚�̇�
2𝜇𝑐−𝐶𝑍�̇�

2𝜇𝑐𝐾2𝑌

⎤
⎥
⎥
⎥
⎥
⎦

(4.3)

Table 4.1: Short-period stability and control derivatives for the Cessna Ce500 in cruise [51]

𝑉 = 59.9 𝑚/𝑠 𝐶𝑍𝛼 = −5.16 𝐶𝑚𝛼 = −0.43
�̄� = 2.022 𝑚 𝐶𝑍�̇� = −1.43 𝐶𝑚�̇� = −3.7
𝜇𝑐 = 102.7 𝐶𝑍𝑞 = −3.86 𝐶𝑚𝑞 = −7.04
𝐾2𝑌 = 0.98 𝐶𝑍𝛿𝑒 = −0.6238 𝐶𝑚𝛿𝑒 = −1.553

4.1.2. Reward and Observation Model
The reward function defines the type of task that the agent aims to optimize. In this case, the task is
defined as a reference tracking task, more specifically, an angle of attack reference tracking task. An
alternative choice can be to define a pitch rate tracking task instead of tracking the angle of attack. The
latter has increased learning difficulty because the elevator input 𝛿𝑒 has a more direct relation to the
pitch rate than to the angle of attack. It is thus expected that the tracking performance would be better
on a q-tracking task. It is however preferred to demonstrate that the proposed RL controller can handle
a more indirect dynamic relation, hence the choice for an angle of attack tracking task.

The reference tracking signal is chosen to be a simple combined sinusoidal as seen in Equation 4.4.
The lowest frequency signal corresponds to a sine wave with a period of 20s, while a second sine
wave is added to the first with a period of 10s. The amplitude of both signals is set to 5∘, resulting in a
maximum amplitude of 10∘ for the combined reference signal.

𝛼𝑟𝑒𝑓 =
5𝜋
180 sin(

2𝜋
20 𝑡) +

5𝜋
180 sin(

2𝜋
10 𝑡) (4.4)

The reward function is then defined as the negative squared tracking error as can be seen in Equa-
tion 4.5. The scaling constant 𝜅 can be considered a hyperparameter in order to tune the aggressive-
ness of the control policy. In DRL frameworks like SAC this reward value is used by the agent, in
DHP however the update rules require the state derivative of the reward 𝜕𝑟𝑡+1

𝜕𝑥𝑡+1
. Since the state vector

4.2. IDHP Agent 61

and reward function are already defined, the state derivative of the reward can be calculated as in
Equation 4.6.

𝑟𝑡+1 = −(𝛼𝑟𝑒𝑓,𝑡 − 𝛼𝑡)2 ⋅ 𝜅 (4.5)

𝜕𝑟𝑡+1
𝜕𝑥𝑡+1

= [𝜕𝑟𝑡+1𝜕𝛼
𝜕𝑟𝑡+1
𝜕𝑞] = [−2(𝛼𝑟𝑒𝑓,𝑡 − 𝛼𝑡) 0] ⋅ 𝜅 (4.6)

The observation vector 𝑠𝑡+1 of the short period model can be seen in Equation 4.7. This observation
vector acts as the input for the actor and critic networks and on control tasks, it is usually defined
using a combination of the states and reference tracking errors. In this case, the observation vector
only contains the tracking error as it is expected to contain sufficient information in the context of the
simplified short-period model [36] [34].

𝑠𝑡+1 = [(𝛼𝑟𝑒𝑓,𝑡 − 𝛼𝑡)] (4.7)

4.2. IDHP Agent
This section discussed the implementation of the IDHP framework. The IDHP agent is implemented in
TensorFlow 2 using a number of previous implementations as reference [36] [34] [28].

In Figure 4.1, a detailed high-level overview of the flow of the IDHP framework can be seen. The
solid lines represent the data flow between the elements on every time step, while the dashed arrows
represent an update operation. The corresponding pseudo-code of the implemented IDHP algorithm
can be seen in Algorithm 1. Note the environment in this case does not output the reward value,
but the reward gradient with respect to the state. This is to accommodate the update rules of the
actor and critic where a critic outputs the gradient of the value function as per the definition of DHP.
Also note the distinction between the environment state 𝑥𝑡 and the observation 𝑠𝑡. The state 𝑥 is the
vector that defines the state used in the state-transition model. The incremental model requires the
state (increment) as input as it aims to approximate the state-space matrices. The policy and critic
networks on the other hand accept the observation vector as input which can equal the state vector,
but often contains additional elements such as the reference tracking errors. For the experiments
conducted here, the observation vector is not equal to the state and consists of the reference tracking
error as discussed in section 4.1. The following sections go over the three main elements of the IDHP
framework, the actor, critic and incremental model, and discuss how they are implemented. Additional
details on the neural network architectures of the actor and critic are given as well. Finally, the training
strategy used in the preliminary analysis simulation runs is discussed. For the results and comparison
of the simulations, see section 4.5.

62 4. Preliminary Analysis

Algorithm 1 IDHP framework, adapted from [28], [36]
Initialize:

Hyperparameters as defined in Table 4.2
Actor and critic parameters 𝜃, 𝑤 and 𝑤′ ← 𝑤
Incremental model parameters Θ, 𝐹 ← Θ, 𝐺 ← Θ, Λ, 𝑋
Environment state and observation 𝑥, 𝑠

for each time step t do
Sample and execute action 𝑎𝑡 ← 𝜋𝜃(𝑠𝑡)
Observe next observation, state and reward derivative 𝑠𝑡+1, 𝑥𝑡+1,

𝜕𝑟𝑡+1
𝜕𝑥𝑡+1

if 𝑅𝑀𝑆𝐸 > 𝑅𝑀𝑆𝐸𝑡ℎ𝑟𝑒𝑠ℎ then
Update learning rates 𝜂𝑎 ← 𝜂𝑎,ℎ𝑖𝑔ℎ, 𝜂𝑐 ← 𝜂𝑐,ℎ𝑖𝑔ℎ

else
Update learning rates 𝜂𝑎 ← 𝜂𝑎,𝑙𝑜𝑤, 𝜂𝑐 ← 𝜂𝑐,𝑙𝑜𝑤

end if

Compute actor loss gradient w.r.t 𝜃 as in Equation 4.15: ∇𝜃𝐿𝜋(
𝜕𝑎𝑡
𝜕𝜃 ,

𝜕𝑟𝑡+1
𝜕𝑥𝑡+1

, 𝜆′𝑡+1, 𝐺𝑡−1)
Compute critic loss gradient w.r.t 𝑤 as in Equation 4.21: ∇𝑤𝐿𝜆(

𝜕𝑎𝑡
𝜕𝑥𝑡
, 𝜕𝑟𝑡+1𝜕𝑥𝑡+1

, 𝜆𝑡 , 𝜆′𝑡+1, 𝐹𝑡−1, 𝐺𝑡−1)
Update actor weights 𝜃 ← 𝜃 − 𝜂𝑎∇𝜃𝐿𝜋
Update critic weights 𝑤 ← 𝑤 − 𝜂𝑐∇𝑤𝐿𝜆
Update target critic weights 𝑤′ ← 𝜏𝑤 + (1 − 𝜏)𝑤′

Update incremental model according to Equation 4.9 and 𝐹𝑡−1 ← Θ, 𝐺𝑡−1 ← Θ
if 𝜖 > 𝜖𝑡ℎ𝑟𝑒𝑠ℎ then

Covariance reset Λ ← Λ0
end if

end for

In the preliminary analysis tracking task, 𝑅𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐸𝑡ℎ𝑟𝑒𝑠ℎ are equivalent to 𝛼𝑅𝑀𝑆𝐸 and 𝛼𝑡ℎ𝑟𝑒𝑠ℎ respectively.

Actor

Critic

𝑠𝑡+1

𝑠𝑡+1
Environment

𝑎𝑡

𝑎𝑡 Policy 𝜋𝜃Loss 𝐿𝜋

𝜆𝑡

𝑤

Critic 𝜆𝑤

Target Critic 𝜆′𝑤′

𝐺𝑡−1
𝐹𝑡−1 Incremental

Model

Loss 𝐿𝜆

 𝜆′𝑡+1

𝑠𝑡

Δ𝑥𝑡 , Δ𝑥𝑡+1
Δ𝑎𝑡

 𝜕𝑟𝑡+1𝜕𝑥𝑡+1

𝜕𝑎𝑡
𝜕𝑥𝑡

∇𝜃𝐿𝜋

∇𝑤𝐿𝜆

𝑥𝑡+1

𝑠𝑡
𝑥𝑡

Figure 4.1: IDHP Framework, online on-policy

4.2. IDHP Agent 63

4.2.1. Incremental Model
The incremental model provides a future estimate of the environment state to be used in the update
rules for the actor and critic. This model is derived from a first-order Taylor series expansion [97] and
can be seen in Equation 4.8. Here the state matrix 𝐹𝑡−1 and input matrix 𝐺𝑡−1 are time-varying and are
updated every time-step using a RLS estimator.

Δ𝑥𝑡+1 = 𝐹𝑡−1Δ𝑥𝑡 + 𝐺𝑡−1Δ𝑎𝑡 (4.8)

The RLS update rule of the incremental model can be seen in Equation 4.9 with Θ the parameter
matrix as defined in Equation 4.10 and 𝛾𝑅𝐿𝑆 ∈ [0, 1] the forgetting factor. The measurement matrix
𝑋 contains the increments of the previous state and action as seen in Equation 4.11. The error or
innovation 𝜖 is defined in Equation 4.12 and represents the prediction error between the actual state
and the predicted state. Finally, the covariance matrix Λ estimates a measure of the covariance of
the parameter estimates and is updated according to Equation 4.13. Both the parameter matrix and
covariance matrix are expressed recursively and thus need an initial value. In this case, the parameter
matrix is initialized as zero’s and the covariance matrix as an identity matrix of magnitude Λ0 as no
prior knowledge of the parameter covariances is assumed. The magnitude Λ0 = 1𝑒8 is set to a large
value as the uncertainty of the parameters is high at the initial stage. The state and input matrices of
the incremental model are used in the update rules of both the actor and the critic.

Θ𝑡 = Θ𝑡−1 +
Λ𝑡−1𝑋𝑡

𝛾𝑅𝐿𝑆 + 𝑋𝑇𝑡 Λ𝑡−1𝑋𝑡
𝜖𝑡 (4.9)

Θ𝑡−1 = [
𝐹𝑇𝑡−1
𝐺𝑇𝑡−1

] (4.10)

𝑋𝑡 = [
Δ𝑥𝑡
Δ𝑎𝑡] (4.11)

𝜖𝑡 = Δ𝑥𝑇𝑡+1 − Δ�̂�𝑇𝑡+1 = Δ𝑥𝑇𝑡+1 − 𝑋𝑇𝑡 Θ𝑡−1 (4.12)

Λ𝑡 =
1
𝛾𝑅𝐿𝑆

[Λ𝑡−1 −
Λ𝑡−1𝑋𝑡𝑋𝑇𝑡 Λ𝑡−1
𝛾𝑅𝐿𝑆 + 𝑋𝑇𝑡 Λ𝑡−1𝑋𝑡

] (4.13)

4.2.2. IDHP Actor
The actor in the IDHP framework consists of the parameterized policy 𝜋𝜃 with parameters 𝜃 and a loss
function 𝐿𝜋 which calculates the gradients used to update the policy network. The policy receives the
current observation from the environment 𝑠𝑡 as input and outputs an action 𝑎𝑡. This action is used to
act on the environment, as well as to update both the policy itself and the incremental model. The loss
function for the policy can be seen in Equation 4.14 and consists of the next Bellman value estimate
with 𝛾 the discount factor. In the IDHP framework, the value function is not available, instead the state
derivative of the value function 𝜕𝑉(𝑠𝑡)

𝜕𝑥𝑡
= 𝜆𝑤(𝑠𝑡) is the output of the critic. This means the gradient of 𝐿𝜋

does not need backpropagation through the critic network and can use the output of the critic directly in
the gradient. The gradient of the loss function can then be derived as seen in Equation 4.15 where the
critic value comes from the target critic 𝜆′𝑤′ . The term

𝜕𝑥𝑡+1
𝜕𝑎𝑡

can be replaced by the incremental model

input matrix 𝐺𝑡−1 as per definition of the input matrix. The term
𝜕𝑎𝑡
𝜕𝜃 is calculated using backpropagation

on the actor. The policy can then be updated using the gradient by performing gradient descent as
seen in Equation 4.16 with 𝜂𝑎 the learning rate of the actor.

64 4. Preliminary Analysis

𝐿𝜋 = −𝑉(𝑠𝑡) = − [𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1)] (4.14)

∇𝜃𝐿𝜋 =
𝜕𝐿𝜋
𝜕𝜃 = − [𝜕𝑟𝑡+1𝜕𝑥𝑡+1

+ 𝛾𝜆′𝑤′(𝑠𝑡+1)]
𝜕𝑥𝑡+1
𝜕𝑎𝑡

𝜕𝑎𝑡
𝜕𝜃 (4.15)

= −[𝜕𝑟𝑡+1𝜕𝑥𝑡+1
+ 𝛾𝜆′𝑤′(𝑠𝑡+1)] 𝐺𝑡−1

𝜕𝑎𝑡
𝜕𝜃

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑎∇𝜃𝐿𝜋 (4.16)

4.2.3. IDHP Critic
The IDHP critic approximates the state derivative of the state-value function and is defined as 𝜆𝑤(𝑠𝑡) =
𝜕𝑉(𝑠𝑡)
𝜕𝑥𝑡

with𝑤 the parameters of the critic network. The critic loss function 𝐿𝜆 provides the gradients used
to update the critic parameters. The loss is defined as the mean squared error of the state derivative
of the TD error 𝜕𝛿𝑡𝜕𝑥𝑡

as seen in Equation 4.17. In Equation 4.18, the formulation of the TD error for the
critic can be seen which corresponds to the next value function estimate called the TD target minus the
current value estimate 𝑉(𝑠𝑡). Taking the state partial derivative of the TD error results in Equation 4.19
where the TD target is calculated using the target critic value 𝜆′𝑤′ . The state derivative of the reward
is provided by the environment, while the term 𝜕𝑥𝑡+1

𝜕𝑥𝑡
can be computed by using the incremental model

as seen in Equation 4.20. The term 𝜕𝑎𝑡
𝜕𝑥𝑡

or 𝜕𝜋𝜃(𝑎𝑡∣𝑠𝑡)𝜕𝑥𝑡
can be obtained by backpropagation trough the

policy network.

𝐿𝜆 =
1
2 (−

𝜕𝛿𝑡
𝜕𝑥𝑡

)(−𝜕𝛿𝑡𝜕𝑥𝑡
)
𝑇

(4.17)

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) (4.18)

𝜕𝛿𝑡
𝜕𝑥𝑡

= [𝜕𝑟𝑡+1𝜕𝑥𝑡+1
+ 𝛾𝜆′𝑤′(𝑠𝑡+1)]

𝜕𝑥𝑡+1
𝜕𝑥𝑡

− 𝜆𝑤(𝑠𝑡) (4.19)

𝜕𝑥𝑡+1
𝜕𝑥𝑡

= 𝐹𝑡−1 + 𝐺𝑡−1
𝜕𝑎𝑡
𝜕𝑥𝑡

(4.20)

Similar to the actor-network, the critic network is updated using gradient descent which needs the
gradient of the loss function with respect to the critic parameters as seen in Equation 4.21. The update
step in Equation 4.22 is then performed using 𝜂𝑐 as the critic learning rate.

∇𝑤𝐿𝜆 =
𝜕𝐿𝜆
𝜕𝑤 = 𝜕𝐿𝜆

𝜕𝜆𝑤(𝑠𝑡)
𝜕𝜆𝑤(𝑠𝑡)
𝜕𝑤 = −𝜕𝛿𝑡𝜕𝑥𝑡

𝜕𝜆𝑤(𝑠𝑡)
𝜕𝑤 (4.21)

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑐∇𝑤𝐿𝜆 (4.22)

𝑤′𝑡+1 = 𝜏𝑤𝑡 + (1 − 𝜏)𝑤′𝑡 (4.23)

4.2. IDHP Agent 65

Generally, methods that suffer from the deadly triad [62] implement a target critic to slow down the
learning process and consequently improve the learning stability. The IDHP framework is an on-policy
method and technically does not appertain to the deadly triad. Previous research on the PH-LAB [28]
has however concluded that any form of learning stability improvement is crucial to the safety-critical
application of flight control and the addition of a target critic is proposed. Hence the choice to implement
a target critic is made. The target critic is not updated using gradient descent, instead, a soft update
rule in Equation 4.23 is applied which gradually copies the parameters from the critic to the target critic
as introduced in [42], given a hyperparameter 𝜏 which sets the smoothness of the update.

4.2.4. IDHP Network Architectures
The policy and critic network are both defined as a feed-forward artificial neural network consisting
only of fully-connected layers with an activation function and no bias terms. In Figure 4.2a a schematic
of the critic network architecture can be seen and Figure 4.2b shows the policy network architecture.
Since IDHP is not a DRL method and online learning needs fast inference and gradient calculation, the
critic and policy networks are rather shallow using one hidden layer of limited size compared to Deep
Learning ANNs. Both the critic and policy have the observation vector 𝑠 with dimension 𝑛 as input and
a hidden layer with size 𝑙. The hidden layer uses tanh activation functions. The choice of activation
function is taken from reference literature [36] [34] [28] and is preferred over other popular options like
sigmoid and rectified linear unit (ReLU) functions as these mainly provide improvements when working
with deep neural networks and larger batch sizes.

The difference between the policy and critic networks lies in the shape and activation function of
the output layer. The critic outputs the state derivative of the state-value function with an output size
𝑘 number of states. The output layer in the critic also uses a linear activation function. The actor on
the other hand outputs 𝑚 actions and uses a tanh activation function in order to keep the action output
bounded. Since the action needs to translate to physical space, the tanh activation squashed the policy
output to [−1, 1] and a scaling function can then be applied to scale the action to the physical limits of
the input of the environment. In the case of the short-period model the action is the elevator deflection
which is limited to [−20∘, 20∘] where the policy output is scaled accordingly before sending the action
to the environment. Note that internally in the agent, the policy output used for update steps is the
unscaled tanh bounded action. To initialize the network parameters a truncated normal distribution
is chosen which are sampled to define the initial parameters. This means the network parameters 𝑤
and 𝜃 are initialized using a standard deviation of 0.05 and kept inside two standard deviations, so
∈ [−0.1, 0.1]. The standard deviation is a common value obtained from literature and should be small
enough to have a minimal random effect. The target critic is initialized as a copy of the critic.

The optimizers used to apply the gradient descend update rules are the same for the policy and
critic networks. Improved optimizer algorithms exist like RMSprop and Adam [63], however, these
provide benefits that mostly apply to deep DNNs and the simpler standard gradient descend optimizer
is implemented here.

𝑠1

⋮
𝑠𝑛

Input
layer

ℎ1

⋮

ℎ𝑙

Hidden
layer

𝑜1
𝜕𝑉
𝜕𝑥1

⋮
𝑜𝑘

𝜕𝑉
𝜕𝑥𝑘

Output
layer

(a) Critic

𝑠1

⋮
𝑠𝑛

Input
layer

ℎ1

⋮

ℎ𝑙

Hidden
layer

𝑜1
𝑎0

⋮
𝑜𝑚

𝑎𝑚

Output
layer

(b) Policy

Figure 4.2: IDHP network architectures

4.2.5. IDHP Training Strategy
The IDHP framework is designed to learn online without prior knowledge of the system dynamics. This
means the training strategy is relatively straightforward. For this preliminary analysis, the short period

66 4. Preliminary Analysis

model is used to simulate an angle-of-attack tracking task where the tracking error should beminimised.
Each run is thus starting from random initialization which produces the results that are discussed in sec-
tion 4.5.

The continual learning approach of IDHP can cause a number of adverse effects. The two effects
of particular interest for this research are weight divergence and estimator covariance windup.

Weight divergence due to continued learning of the actor and critic networks is usually improved
by scheduling the learning rate to decrease over time. In an online learning process, however, this
makes the controller less adaptive over time. Error-based adaptive learning rates as implemented in
[55] [98] [36] solve this by relating the learning rate to the tracking error which makes the adaptiveness
of the agent not dependent on the time passed. Here, the high-low adaptive learning rate as is [36] is
implemented where a threshold is set on the tracking error Root Mean Squared Error (RMSE). In this
case, the RMSE is calculated on the angle-of-attack tracking error 𝛼𝑟𝑒𝑓−𝛼 over the last 50 time-steps.
When the RMSE is above the empirically determined threshold 𝛼𝑡ℎ𝑟𝑒𝑠ℎ, the learning rate is set to 𝜂ℎ𝑖𝑔ℎ
and decreases back to 𝜂𝑙𝑜𝑤 when the RMSE falls to below the threshold. To ensure proper learning
during the initial phase, it is decided to keep the learning rate at the high setting for the initial 𝑡𝑤𝑎𝑟𝑚𝑢𝑝
time-steps. The high-low method is also used for the hybrid framework as discussed in section 4.4. A
gradual adaptive learning rate can be explored in the future phase of this research.

Next, the estimator covariance windup pertains to the incremental model RLS estimator. During pe-
riods of low excitation, the covariance matrix of the incremental model increases exponentially which
causes sudden changes in the parameters once the system is excited again as demonstrated by [28].
Setting the forgetting factor to 𝛾𝑅𝐿𝑆 = 1.0 ensures consistency of the estimator. This has the disadvan-
tage of decreasing the adaptiveness of the agent over time. To circumvent this, the covariance matrix
can be reset to Λ0 once a change in system dynamics is detected. Similarly to [28], this is implemented
here using a threshold on the innovation term 𝜖𝑡ℎ𝑟𝑒𝑠ℎ as defined in Equation 4.12.

In Table 4.2, the hyperparameters used in generating the preliminary analysis results are presented.
These values were obtained empirically with trial and error and from commonly used values in literature.
A hyperparameter search should be conducted in a later phase of the research to obtain a more optimal
configuration, but for this analysis, it is deemed sufficient to apply manual tuning.

Table 4.2: IDHP preliminary analysis hyperparameters

Parameter Value Unit Description

𝛾 0.6 [-] Discount factor
𝛾𝑅𝐿𝑆 1.0 [-] Incremental model forgetting factor
𝜏 0.01 [-] Target critic mixing factor
𝑙 10 [-] Actor and critic hidden layer size
𝑡𝑤𝑎𝑟𝑚𝑢𝑝 100 [-] Nr. of time-steps to hold initial high learning rate
𝜅 28 [-] Reward scale
𝜂𝑎,ℎ𝑖𝑔ℎ 0.08 [-] Actor high learning rate
𝜂𝑎,𝑙𝑜𝑤 0.005 [-] Actor low learning rate
𝜂𝑐,ℎ𝑖𝑔ℎ 0.005 [-] Critic high learning rate
𝜂𝑐,𝑙𝑜𝑤 0.0005 [-] Critic low learning rate
𝛼𝑡ℎ𝑟𝑒𝑠ℎ 1.0 [deg] Threshold for the high-low adaptive learning rate
𝜖𝑡ℎ𝑟𝑒𝑠ℎ [0.0005, 0.001] [deg], [deg/s] Threshold for incremental model covariance reset

4.3. SAC Agent
This section discussed the implementation of the SAC framework. Similarly to the IDHP implementation
TensorFlow 2 was used using a number of references [22] [23] [11], Softlearning 1 and Stable Baselines
2.

In Figure 4.3, a detailed high-level overview of the flow of the IDHP framework can be seen. The
corresponding pseudo-code of the implemented SAC framework can be found in 2. Compared with the
1https://github.com/rail-berkeley/softlearning
2https://github.com/hill-a/stable-baselines

https://github.com/rail-berkeley/softlearning
https://github.com/hill-a/stable-baselines

4.3. SAC Agent 67

IDHP framework from Figure 4.1, the main design differences can clearly be seen. The off-policy design
of the SAC vs the on-policy design of IDHP is made clear by having essentially two kinds of forward
passes through the policy, one where the environment observation generates a new action to take
every time-step, and one where the replay buffer is sampled to perform the updates. This difference is
also made in the notation of the replay buffer signals where {𝑎𝑡} is an action batch sampled from the
replay buffer and {𝑎𝑡} ∼ 𝜋 is a batch of newly generated actions using the observations from the replay
buffer. Furthermore, the twin Q-function critics and the entropy coefficient elements are other major
differences with IDHP. The following sections go over the three main elements of the SAC framework,
the actor, critic and the entropy element. Also, the neural network architectures of the actor and critic
are discussed in more detail. Finally, the training strategy used to produce the simulation results is
discussed.

Algorithm 2 SAC framework, adapted from [23], [11]
Initialize:

Hyperparameters as defined in Table 4.3
Actor and critic parameters 𝜃, 𝑤1, 𝑤2 and 𝑤′1 ← 𝑤1, 𝑤′2 ← 𝑤2
Environment state and observation 𝑥, 𝑠

for each time step t do
Sample and execute action 𝑎𝑡 ∼ 𝜋𝜃(⋅ ∣ 𝑠𝑡)
Observe next observation and reward 𝑠𝑡+1, 𝑟𝑡+1
Store transition samples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in replay buffer 𝒟
Sample mini-batch ℬ = 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 from 𝒟
Update learning rates 𝜂𝑎 and 𝜂𝑐 from linear decay

Compute actor loss 𝐿𝜋 as in Equation 4.26: 𝐿𝜋(min𝑖 𝑄′𝑡 , log𝜋𝑡 , 𝜂𝑡)
Compute twin critic losses 𝐿𝑄𝑖 as in Equation 4.27: 𝐿𝑄𝑖(𝑄𝑡𝑖 ,min𝑖 𝑄′𝑡+1, log𝜋𝑡+1, 𝜂𝑡 , 𝑟𝑡+1)
Compute temperature loss as in Equation 4.25: 𝐿𝜂(𝜂𝑡 , log𝜋𝑡)
Update actor weights 𝜃 ← 𝜃 − 𝜂𝑎∇𝜃𝐿𝜋
Update twin critic weights 𝑤𝑖 ← 𝑤𝑖 − 𝜂𝑐∇𝑤𝑖𝐿𝑄𝑖
Update temperature coefficient 𝜂 ← 𝜂 − 𝜂𝑎∇𝜂𝐿𝜂
Update twin target critic weights 𝑤′𝑖 ← 𝜏𝑤𝑖 + (1 − 𝜏)𝑤′𝑖

end for

68 4. Preliminary Analysis

Critic

Actor

𝑤𝑖

{𝑠𝑡 , 𝑎𝑡}

{𝑠𝑡 , 𝑠𝑡+1}

{𝑟𝑡+1}

Replay Buffer 𝒟

𝑟𝑡+1𝑠𝑡+1

Environment

𝑄𝑡𝑖 Critics 𝑄𝑤𝑖

min𝑖 𝑄′𝑡
min𝑖 𝑄′𝑡+1

Target Critics 𝑄′𝑤′𝑖

Loss 𝐿𝑄𝑖

log𝜋𝑡

𝑎𝑡

𝑎𝑡

{𝑎𝑡 , 𝑎𝑡+1} ∼ 𝜋

{𝑎𝑡 , 𝑎𝑡+1} ∼ 𝜋

log𝜋𝑡+1
Policy 𝜋𝜃Loss 𝐿𝜋

Entropy Coef. 𝜂

𝑠𝑡
{𝑠𝑡 , 𝑠𝑡+1}

Loss 𝐿𝜂
𝜂𝑡

∇𝜂𝐿𝜂

∇𝜃𝐿𝜋

∇𝑤𝐿𝑄𝑖

Figure 4.3: SAC Framework, offline off-policy

4.3.1. Entropy
In the SAC framework, entropy is used in the context of soft policy iteration and modifies the classic
RL objective by trying to maximize the entropy in addition to the discounted return. The entropy of a
distribution is defined as in Equation 4.24 with the distribution being the policy. This is possible as SAC
uses a stochastic policy which is defined as a probability distribution.

ℋ(𝜋𝜃(⋅ ∣ 𝑠𝑡+1)) = 𝔼
𝑎∼𝜋

[− log𝜋𝜃(𝑎 ∣ 𝑠𝑡)] (4.24)

In the update rules of the actor and critic, the entropy term is weighted using the entropy coefficient
or temperature coefficient 𝜂. The SAC algorithm has been shown to be highly sensitive to the tem-
perature coefficient, thus it was proposed by [22] to learn 𝜂 automatically. The loss function for this
automatic learning process can be seen in Equation 4.25. The term ℋ̄ is a constant entropy target and
is set to the negative of action space size [23], in the case of the short period model ℋ̄ = −1. Using
the loss function gradient ∇𝜂𝐿𝜂, the entropy coefficient is updated using SGD.

Note that the estimation operator in all the update rules of SAC is implemented by taking the average
over the batch size. The update rules are computed on a mini-batch from the replay buffer randomly
sampled on every iteration.

𝐿𝜂 = 𝔼𝑠𝑡∼𝒟𝑎𝑡∼𝜋
[−𝜂 log𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡) − 𝜂ℋ̄] (4.25)

4.3.2. SAC Actor
The SAC policy 𝜋𝜃 is a stochastic policy parameterized with 𝜃 the parameter vector. This policy dis-
tribution is implemented by having the output of the policy be the standard deviation 𝜎𝜃 and mean 𝜇𝜃
of the distribution, more details about this in subsection 4.3.4. This is then used to sample an ac-
tion from a normal distribution with 𝜎𝜃 and 𝜇𝜃. Note that this sampling requires a ”reparameterization
trick” to ensure differentiability of the sampled action which is necessary for the gradient calculations.

4.3. SAC Agent 69

This is usually implemented using an input Gaussian noise vector 𝜖𝑡 and sampling an action using
𝑎𝑡 = 𝑓𝜃(𝜖𝑡 , 𝑠𝑡) = 𝜇𝜃(𝑠𝑡)+ 𝜖𝑡 ⋅ 𝜎𝜃(𝑠𝑡). In [23] this reparameterization is implemented manually, however,
the implementation here defines the normal distribution using the TensorFlow probability library which
ensures differentiability under the hood and calculates the log probabilities log𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡) used in the
update rules of the actor and the critic.

The loss function for the policy can be seen in Equation 4.26. The minimum of the twin target
Q-critics is used to improve the overestimation problem present with a single critic. Note that the
observations 𝑠𝑡 are sampled from the replay buffer, while the actions are newly generated from the
current policy using the observations from the replay buffer. SGD is then used to update the policy
weights using the gradient of the loss function.

𝐿𝜋 = 𝔼𝑠𝑡∼𝒟𝑎𝑡∼𝜋
[min
𝑖=1,2

𝑄′𝑤′𝑖 (𝑠𝑡 , 𝑎𝑡) − 𝜂 log𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)] (4.26)

4.3.3. SAC Critic
The SAC critic consists of twin Q-functions 𝑄𝑤 and twin target Q-functions 𝑄′𝑤′ which unlike the value
functions in IDHP take both the observation 𝑠𝑡 and action 𝑎𝑡 as input. Each Q-function is updated
separately using its own loss function and the minimum of the two Q-values is used in the update rules
to prevent overestimation. The loss function for the Q-function critics is seen in Equation 4.27 for the
𝑖-th Q-function and is defined as the mean squared error of the TD-error 𝛿. The TD-error is defined
as the TD-target minus the current Q-value estimation as seen in Equation 4.28. The TD-target in this
case contains the entropy term originating from the soft value function term 𝑉(𝑠𝑡+1) which is defined
as in Equation 4.29. Again, the observation is sampled directly from the replay buffer while the actions
are newly computed using the current policy. SGD is then used to update the critic weights for each of
the twin critics separately using the gradient of their respective loss functions. The target Q-functions
are updated using the same soft update rule used in IDHP seen in Equation 4.23.

𝐿𝑄𝑖 =
1
2𝔼 [(−𝛿𝑡,𝑖)

2] (4.27)

𝛿𝑡,𝑖 = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑄𝑤𝑖(𝑠𝑡 , 𝑎𝑡). (4.28)

𝑉(𝑠𝑡+1) = 𝔼𝑠𝑡+1∼𝒟𝑎𝑡+1∼𝜋
[min
𝑖=1,2

𝑄′𝑤′𝑖 (𝑠𝑡+1, 𝑎𝑡+1) − 𝜂 log𝜋𝜃(𝑎𝑡+1 ∣ 𝑠𝑡+1)] (4.29)

4.3.4. SAC Network Architectures
Since SAC is a DRL method, the network architectures are both wider and deeper than the IDHP net-
works. The critic network and policy network architectures can be seen in Figure 4.4a and Figure 4.4b
respectively. The hidden layers are constructed the same for the policy and the critic networks. Two
hidden layers are present with sizes 𝑙1 and 𝑙2. Each hidden layer has a ReLU activation function as
suggested by the original implementation [22].

The critic Q-function takes both the observation vector 𝑠 and the action vector 𝑎 as a concatenated
input. The output of the critic consists of a single scalar Q-value where the output layer has a linear
activation function.

The policy has only the observation vector as input. The output of the policy consists of two output
layers, one for the policy mean 𝜇𝜃 and one for the log of the policy standard deviation 𝜎𝜃. Each of
the two output layers connects to the second hidden layer and contains no activation function. The
log of the standard deviation is used in order to estimate the parameter on ℝ and the exponential of
the network output is taken to be used in the policy distribution. The action however still needs to be
bounded using a tanh function in order to properly scale to the physical domain of the action. The tanh

70 4. Preliminary Analysis

squashing is performed on the action after the normal distribution has been sampled using the network
outputs and is then scaled similarly to the IDHP implementation.

The hidden layers ℎ1 and ℎ2 also contain a normalization layer as per the original implementation
[22]. This is to improve learning on input vectors with differing scales and non-zero means. Note that
the normalization layer comes before the relu activation function of the hidden layers.

For the optimizer, an SGD update rule is used for the actor, critic and also the temperature coefficient
updates. In the field of DL, a number of improved optimization algorithms are used that provide better
results in larger networks and batch sizes compared to shallow IDHP networks. The Adam optimizer is
implemented here as it can provide better learning stability than standard SGD [63] in the case of the
SAC framework.

𝑠1

⋮
𝑠𝑛

𝑎1

⋮
𝑎𝑚

Input
layer

ℎ11

⋮

ℎ1𝑙1

Hidden
layer 1

ℎ21

⋮

ℎ2𝑙2

Hidden
layer 2

𝑜1
𝑄𝑤

Output
layer

(a) Critic Q-function

𝑠1

⋮
𝑠𝑛

Input
layer

ℎ11

⋮

ℎ1𝑙1

Hidden
layer 1

ℎ21

⋮

ℎ2𝑙2

Hidden
layer 2

𝑜11
𝜇𝜃1

⋮
𝑜1𝑚

𝜇𝜃𝑚

Output
layer(s)

𝑜21
log𝜎𝜃1

⋮
𝑜2𝑚

log𝜎𝜃𝑚

(b) Policy

Figure 4.4: SAC network architectures

4.3.5. SAC Training Strategy
The SAC framework is designed to be trained offline. Technically, online learning is possible given suf-
ficient computational power, however amount of stochastic effects and high exploration raise significant
safety concerns in flight control applications and are reasons to omit online learning from this analysis.
The offline learning strategy consists of training the agent on multiple episodes of the angle-of-attack
tracking task with a maximum number of time steps provided. Note that the episode length is finite
in the training environment, but when deploying the offline trained policy online, the episode length is
infinite because of the continual control application considered in this research.

After every training episode, the total return which is the sum of all rewards of that episode is used
as a training metric. For more complicated tasks, the task that is used for training and the task that is
used to evaluate the episode return metric can be different with for instance a different reference signal
or episode length. In this case, however, a simplified training strategy is used where the training task
is used to collect the return metric which saves time.

In Table 4.3, the hyperparameters used during training can be seen. Like the IDHP agent, the hy-
perparameters were manually tuned using trial and error and from commonly used values in literature.
Further development on more environments and tasks requires a hyperparameter search to achieve a
more optimal configuration.

The learning rates of the actor and critic are not constant but decay as a function of the maximum
number of time steps. Reducing the learning rate is a common practice when training DNNs and has
been empirically observed to improve learning stability [95]. For this implementation, the learning rate
of both the actor and critic is linearly reduced from the initial learning rate to zero. This means the
maximum number of time steps determine the slope of the learning rate decay.

4.4. IDHP-SAC Hybrid Agent 71

Table 4.3: SAC preliminary analysis hyperparameters

Parameter Value Unit Description

𝛾 0.99 [-] Discount factor
𝜏 0.005 [-] Target critic mixing factor
𝑙1, 𝑙2 [64, 64] [-] Actor and critic hidden layer sizes
𝜅 1 [-] Reward scale
𝜂𝑎 9.4𝑒 − 4 [-] Actor initial learning rate
𝜂𝑐 9.4𝑒 − 4 [-] Critic initial learning rate
max time steps 500000 [-] Maximum number of training time-steps
|ℬ| 256 [-] Replay buffer batch size
|𝒟| 50000 [-] Replay buffer maximum size
𝜂0 1.0 [-] Initial temperature coefficient

4.4. IDHP-SAC Hybrid Agent
As part of the search for a suiting RL framework candidate, the possibility of combining the IDHP and
SAC framework is explored. For the flight control application relevant for this research, two possible
methods of combining the advantages of IDHP and SAC are identified where one solution aims to share
information from the critic and the other aims to share the policy.

A method of sharing information from the critic between SAC and IDHP would mean that the offline
trained Q-function from SAC is used to augment the update rules of the IDHP actor and/or critic. Since
this requires rethinking the update rules used in the IDHP framework, this approach is considered
outside the scope of this research and only the other option of combining the policies is attempted for
implementation.

A combined policy approach is more in line with the workflow used in transfer learning and fine-
tuning from the field of machine learning [57] [100]. Recall that the offline-trained SAC framework
has been shown to train a policy that achieves desirable qualities through robustness thanks to the
high generalization power of DRL and the high exploration driven by the off-policy design and the
entropy terms. Looking at fault tolerance, the robustness of the SAC policy can be insufficient to adapt
to the changing system dynamics depending on the severity of the failure case. This is where the
online learning and adaptive control approach of the IDHP framework are projected to increase the
fault tolerance of the SAC policy. From the side of a pure IDHP framework, the addition of the pre-
trained robust SAC policy might reduce or eliminate problems with continual learning. In this preliminary
analysis phase, the goal is to investigate the feasibility of implementing the combined policy and testing
it on the short-period model with the same angle-of-attack tracking task.

4.4.1. IDHP-SAC Network Architectures
In Figure 4.5, a schematic of the combined policy architecture can be seen. The input, output and
hidden layer ℎ are the same as for the pure IDHP policy. The difference lies in the addition of the three
layers from the pre-trained SAC policy ℎ1, ℎ2 and 𝑜1 that are added before the two IDHP layers. The last
SAC layer 𝑜1 is the mean output layer of the SAC policy, while the standard deviation of the SAC policy
is not utilized as the combined policy is still deterministic. Note that the three SAC layers have their
weights frozen during the online learning phase. This is in line with the approach of transfer learning
which points to the process of transferring knowledge from what is learned in one domain to another
domain. Re-training the pre-trained networks is usually referred to as fine-tuning where either a subset
of the pre-trained weights are re-trained, or additional layers are added that are trained in the new
domain. Since it is preferred to maintain the information of the robust SAC policy, all the SAC weights
are kept frozen and only the two shallow IDHP layers are trained online. Regarding the initialization of
the two IDHP layers, an identity initializer is used as discussed in subsection 4.4.2. Policy fine-tuning
has been previously investigated in an RL framework where it is described as the online RL that has
access to a reference policy [94].

Regarding the rest of the hybrid IDHP-SAC framework, the online-learning update rules of the IDHP
framework as described in section 4.2 are used where only the policy architecture as described above
is changed. The critic used in the online learning process is the same as the pure IDHP critic.

72 4. Preliminary Analysis

𝑠1

⋮
𝑠𝑛

Input
layer

ℎ11

⋮

ℎ1𝑙1

Hidden
SAC
layer 1

ℎ21

⋮

ℎ2𝑙2

Hidden
SAC
layer 2

𝑜11

⋮

𝑜1𝑚

Output
SAC
layer 𝜇

ℎ1

⋮

ℎ𝑙

Hidden
layer

𝑜1
𝑎0

⋮
𝑜𝑚

𝑎𝑚

Output
layer

Figure 4.5: IDHP-SAC combined policy architecture

4.4.2. IDHP-SAC Training Strategy
The process of completely training the hybrid policy consists of first training the SAC framework as
described in subsection 4.3.5, and then taking the SAC policy and constructing the combined policy
architecture as described above. The IDHP framework then trains the combined policy, which can be
seen as policy fine-tuning.

The high-low adaptive learning rate of the IDHP framework as discussed in subsection 4.2.5 is
especially applicable to the current hybrid approach. It is desired to eliminate as many of the continual
learning issues from IDHP, which could be achieved by setting the low learning rate of the high-low
strategy to 0.0. This would mean that the IDHP layers in the combined policy only update when the
adaptive learning rate threshold is reached. The goal of this is to utilize the robust SAC policy as much
as possible and only adapt the policy when necessary.

Regarding the behaviour of the adaptive learning rate, the 𝑡𝑤𝑎𝑟𝑚𝑢𝑝 as discussed in subsection 4.2.5
has the opposite function, in this case, holding the learning rate at 0.0 for the first 𝑡𝑤𝑎𝑟𝑚𝑢𝑝 time-steps.
This is to make the IDHP agent ignore the transient from the SAC policy. To enable this learning rate
strategy, an additional change to the network initialization of the policy needs to be made. Random
initialization would not allow the hold at 0.0 learning rate as the SAC policy is altered by the two randomly
initialized IDHP layers ℎ and 𝑜. Instead, an identity initialize is used which allows the SAC policy to
pass through the IDHP layers during the initial phase. This does however mean that

For the offline SAC training, the same hyperparameters as in Table 4.3 are used. The hyperpa-
rameters used for the IDHP portion of the hybrid framework can be seen in Table 4.4. These values
were obtained empirically and manually tuned with trial and error and from commonly used values in
literature.

Table 4.4: IDHP preliminary analysis hyperparameters

Parameter Value Unit Description

𝛾 0.6 [-] Discount factor
𝛾𝑅𝐿𝑆 1.0 [-] Incremental model forgetting factor
𝜏 0.01 [-] Target critic mixing factor
𝑙 10 [-] Actor and critic hidden layer size
𝑡𝑤𝑎𝑟𝑚𝑢𝑝 500 [-] Nr. of time-steps to hold initial high learning rate
𝜅 1000 [-] Reward scale
𝜂𝑎,ℎ𝑖𝑔ℎ 0.5 [-] Actor high learning rate
𝜂𝑎,𝑙𝑜𝑤 0.0 [-] Actor low learning rate
𝜂𝑐,ℎ𝑖𝑔ℎ 0.05 [-] Critic high learning rate
𝜂𝑐,𝑙𝑜𝑤 0.0 [-] Critic low learning rate
𝛼𝑡ℎ𝑟𝑒𝑠ℎ 0.5 [deg] Threshold for the high-low adaptive learning rate
𝜖𝑡ℎ𝑟𝑒𝑠ℎ [0.0005, 0.001] [deg], [deg/s] Threshold for incremental model covariance reset

4.5. Results and Discussion 73

4.5. Results and Discussion
This section goes over the simulation results from the IDHP, SAC and hybrid implementations of the
RL controller on the short-period model. The three frameworks are compared against each other and
their individual results are discussed. These results mainly aim to demonstrate the advantages and
disadvantages of iADP (IDHP) vs. DRL (SAC) and also demonstrate the feasibility of combining the
advantages of both.

First of all, the offline training reward curve of the SAC agent can be seen in Figure 4.6. For the
sake of simplicity and because of the simplified model and task, the return per episode is collected
from the training task itself which is set to run for 60s at 100𝐻𝑧 using the combined sinusoidal tracking
signal. A maximum of 500000 time steps have been set, with evaluation after every episode. Training
took around 35 minutes on CPU with 4 cores at 2.8GHz. The same 60s task at 100𝐻𝑧 is used for all
subsequent simulations in this chapter unless specified otherwise.

As can be seen from the reward curve, the SAC agent converges with a reward of ∼ −0.005. As
expected, the initial phase until around time-step 100000 is relatively unstable, but still quickly increases
from the initial phase. After 100000 the training process is stable and only marginally increases until
a return of ∼ −0.005, with the exception of a large dropout at time-step 2200000. The stochastic
effects on the learning process are expected to be more present in environments with larger state and
action spaces. The agent with the best reward of −0.003429 is saved and used in the evaluation of
the pure-SAC system response. The same SAC agent is used in the IDHP-SAC hybrid framework for
constructing the combined policy.

Figure 4.6: SAC offline training reward curve on the short-period model 𝛼 tracking task

4.5.1. Normal System Dynamics
The response on the short period model as described in section 4.1 without any alterations is discussed
here.

IDHP Controller
In Figure 4.7, the response of the IDHP controller can be seen with the elevator input signal. The bottom
row of the figure displays the RMSE of the tracking error 𝛼𝑅𝑀𝑆𝐸 and the threshold which determines
the learning rate of actor and critic. The vertical line in the RMSE plot indicates the 𝑡𝑤𝑎𝑟𝑚𝑢𝑝 phase in
which the learning rate is kept at the high setting regardless of the tracking error. The general response
shows that the IDHP controller is able to successfully track the reference signal with a small steady-
state error around the sinusoidal peaks. Some oscillations are detected at the initial stage indicating a
somewhat aggressive policy. During manual hyperparameter tuning, the learning rate and reward scale
have shown to affect the aggressiveness of the policy and further tuning might improve the response.

As can be seen from the RMSE plot, the learning rate is kept at the high setting after the warm-up
period for another 100 time steps. After that, the response is stabilized under the RMSE threshold which
means the agent is learning on the low learning rate setting for the majority of the simulation run. The
same can also be seen from Figure 4.9 which displays the weights of the two layers from actor and critic.

74 4. Preliminary Analysis

It can be seen that the weights quickly diverge from the initialized [−0.1, 0.1] values and stabilize once
the learning rate is lowered. A possible disadvantage of the high-low adaptive learning rate strategy is
also observed here at around 3𝑠. At this point, the RMSE touches the threshold again which results
in an oscillation in the elevator input. Adjusting the threshold or learning rate gap can improve this,
however, this provides a compelling case for a continual adaptive learning rate implementation.

SAC and Hybrid Controller
In Figure 4.8, the response of the hybrid IDHP-SAC controller can be seen. Looking at the tracking
error threshold, the SAC policy keeps the error below the threshold for the entirety of the simulation.
Recall that the hybrid training strategy holds the IDHP learning rates at zero during 𝑡𝑤𝑎𝑟𝑚𝑢𝑝, and when
the RMSE is under the threshold. This means that the hybrid controller response equals the SAC
controller response for normal system dynamics and they are discussed together here. Similarly to
the IDHP response, the initial transient has oscillations, in this case, higher frequency oscillations than
the IDHP controller, reaching about half the control limits. The rest of the response shows the SAC
controller successfully tracks the reference signal with a near-zero steady-state error. This indicates
the SAC policy is aggressive but still stable in this case. The strong oscillations could be improved by
a hyperparameter search, or possibly evaluating the SAC at different a point on the reward curve as
the aggressiveness might indicate over-fitting. Because of the offline training strategy, remodelling the
evaluation task and/or the reward function might also lead to a more optimal result.

Figure 4.7: IDHP short-period response on normal system dynamics

4.5. Results and Discussion 75

Figure 4.8: SAC and IDHP-SAC short-period response on normal system dynamics

Figure 4.9: IDHP actor and critic weights on normal system dynamics

4.5.2. Untrimmed initialization
The previous simulations (and offline SAC training) have started from a trimmed state, in this case
meaning the state vector of the short-period model was initialized at [0 0]𝑇. To test the robustness
and to show a generally more realistic scenario, a batch of 100 runs is performed with a random state
initialization. The angle of attack 𝛼 is initialized between [−5, 5] deg, and the pitch rate 𝑞 is initialized
on the interval [−3, 3] 𝑑𝑒𝑔𝑠 , randomly sampled on every repeated run. In order to analyze the results,

76 4. Preliminary Analysis

the min-max bounds of the response are drawn, along with the mean response in between. Since for
every controller the response stabilizes after one period of the reference signal, only the first 30s of the
response is shown in order to better zoom in on the transient.

IDHP Controller
In Figure 4.10, the untrimmed response of the IDHP controller can be seen. From the state plot, it
shows that the mean of the transient follows the reference signal, and the maximum transient length
remains under 5s. The oscillatory behaviour in the input signal is also observed and shows that in the
first 𝑠s, the control limits are reached indicating an aggressive response to the untrimmed states. The
shape of the RMSE error is similar to the trimmed simulation run, with around 4s of high learning rate.
In general, this shows the IDHP controller is able to control the system in an untrimmed state.

SAC and Hybrid Controller
Similarly to the previous trimmed simulation, the untrimmed response of the SAC and hybrid controllers
are equal. Looking at the RMSE error in Figure 4.11, the threshold is not reached after the 𝑡𝑤𝑎𝑟𝑚𝑢𝑝
period. Due to the untrimmed initialization, a larger transient is present, but after 4s, the SAC policy
accurately tracks the reference signal and the IDHP learning is not engaged. Oscillations in the input
signal are again visible with higher amplitude due to an aggressive response to the untrimmed initial-
ization. This also shows that the SAC policy successfully tracks the reference signal for the untrimmed
case.

Figure 4.10: IDHP short-period response on 100 runs with untrimmed initialization

4.5. Results and Discussion 77

Figure 4.11: SAC and IDHP-SAC short-period response on 100 runs with untrimmed initialization

4.5.3. Robustness and Fault-Tolerance Analysis
A major point of interest in comparing these three frameworks is the fault-tolerance. Three cases are
tested here which aim to demonstrate and evaluate the different levels of fault-tolerance. By altering
the control and stability derivatives from Table 4.1 the dynamics of the short-period model are changed
to simulate the failure cases. First, a mild failure is tested where the elevator effectiveness is reduced.
Then, the effects of a sudden centre of gravity (c.g.) shift are evaluated. Lastly, a more extreme case
is discussed where the effect of the elevator is reversed. All the alterations to the system are made at
half the simulation time at 𝑡 = 30𝑠.

Decreased Elevator Effectiveness
The elevator effectiveness is reduced by 50% by multiplying the 𝐶𝑚𝛿𝑒 and 𝐶𝑍𝛿𝑒 control derivatives by
0.5. Looking at the response for the IDHP controller in Figure 4.12, a successful tracking task is ob-
served. The point made in subsection 4.5.1 regarding the tracking error threshold also appears in
these results as oscillations are present when the tracking error only marginally reaches the threshold
and the increase in learning rate is assumed to be too high for an optimal correction. nonetheless, the
reduced elevator effectiveness at 𝑡 = 30𝑠 is barely detected in the state plot and shows only a minor
oscillation in the elevator input. For this case, it is also interesting to observe the parameters of the RLS
incremental model estimator as seen in Figure 4.15. This clearly shows the input matrix 𝐺 reducing its
pitch rate derivative by about 50% which corresponds with a halved elevator input effectiveness. Also,
the covariance reset can be seen as the innovation term 𝜖 reaches the thresholds at the point of the
change in system dynamics. This triggers the variances of the RLS parameters to be reset to the initial
values. This step is necessary to ensure the adaptiveness over time when the forgetting factor is set
to one [28]. The weights of the IDHP model as seen in Figure 4.14 also show the sudden increases at
the points of reaching the tracking error threshold. In general, the IDHP performance is as expected
as the incremental model is able to quickly reflect the change in system dynamics.

Similarly to the normal system dynamics simulation, the response of the SAC and hybrid controllers
are again equal as seen in Figure 4.13. The SAC policy handles the change in elevator effectiveness

78 4. Preliminary Analysis

without reaching the error threshold. In the state response, the change in dynamics at 30𝑠 goes un-
noticed, while the elevator input plot shows very small oscillations at 30𝑠, 34𝑠, 38𝑠, 46𝑠, 55𝑠 and 58𝑠.
This demonstrates the potential of the SAC policy to be robust to changes in the system dynamics.

Figure 4.12: IDHP short-period response on 50% reduced elevator effectiveness

4.5. Results and Discussion 79

Figure 4.13: SAC and IDHP-SAC short-period response on 50% reduced elevator effectiveness

Figure 4.14: IDHP actor and critic weights on 50% reduced elevator effectiveness

80 4. Preliminary Analysis

Figure 4.15: IDHP incremental model RLS estimator on 50% reduced elevator effectiveness

Sudden Center of Gravity Shift
To also test alterations in the stability derivatives, a shift in the c.g can be simulated which affects
the 𝐶𝑚𝛼 , 𝐶𝑚𝑞 , 𝐶𝑚�̇� and 𝐶𝑍𝑞 stability coefficients with their relation to the center of gravity given by
Equation 4.30 [51]. In the following simulations, a c.g. shift of Δ𝑥𝑐.𝑔. = 1 meaning 1𝑚 backwards is
used.

𝐶𝑚𝛼2 = 𝐶𝑚𝛼1 − 𝐶𝑍𝛼
Δ𝑥𝑐.𝑔.
�̄�

𝐶𝑍𝑞2 = 𝐶𝑍𝑞1 − 𝐶𝑍𝛼
Δ𝑥𝑐.𝑔.
�̄�

𝐶𝑚𝑞2 = 𝐶𝑚𝑞1 − (𝐶𝑍𝑞1 + 𝐶𝑚𝛼1)
Δ𝑥𝑐.𝑔.
�̄� + 𝐶𝑍𝛼 (

Δ𝑥𝑐.𝑔.
�̄�)

2

𝐶𝑚�̇�2 = 𝐶𝑚�̇�1 − 𝐶𝑍𝛼
Δ𝑥𝑐.𝑔.
�̄�

(4.30)

In Figure 4.16, the response of the IDHP controller can be seen with the weights plotted in Fig-
ure 4.17. A successful tracking response can be seen, also after the expected pitch-up motion caused
by the backwards c.g shift at 30𝑠. The progression of the weights also corresponds with the sud-
den learning rate increases due to the RMSE threshold. Notice that the learning rate threshold is not
reached at the exact point of change, but only after, at around 37s. This can be explained by the larger
tracking error at the maximum and minimum sinusoidal peaks from the normal response, which pushes

4.5. Results and Discussion 81

the error above the threshold after the change in dynamics. A marginally higher steady-state error is
observed after the transient response of the c.g. shift. Looking at the incremental model metrics in
Figure 4.18, The threshold on the innovation is triggered at the point of the c.g. shift. Only the 𝜕𝑞

𝜕𝛼
element of the 𝐹 matrix seems to adjust to accommodate the dynamics change.

For this simulation, the SAC and hybrid controllers have separate responses as the SAC controller
has increased difficulty with this change in the dynamics as seen in Figure 4.19, but still produces a
low tracking error. The state plot shows only a marginal steady-state error at the sinusoidal peaks with
no observable transient in the state. The elevator input however shows string oscillations after the c.g.
shift. This again indicates the policy might be too aggressive.

The response of the hybrid controller can be seen in Figure 4.20. From the state plot, the period
before the c.g. shift is identical as the online learning is not engaged below the tracking error thresh-
old. Looking at the elevator input, the SAC policy keeps the tracking error under the threshold until
42s. At that point, the tracking error at the sinusoidal peak reaches the threshold and the IDHP layers
successfully adjust the policy which quickly results in a near-zero tracking error again. Strong oscil-
lations are detected in the elevator input at the point of the IDHP adjustment. Compared to the pure
SAC response, the steady-state error after 42s is slightly reduced, and the oscillations of the pure SAC
elevator input are suppressed. The adjustment made by the IDHP layers is in this case desirable, but
not necessary.

The weights of the IDHP portion of the hybrid controller as seen in Figure 4.21 show the identity
initialization of the policy layers and the strong jump in the weights of the critic. Also, the incremental
model metrics can be seen in Figure 4.22 with a similar response to the pure IDHP simulation.

Figure 4.16: IDHP short-period response on c.g. shift

82 4. Preliminary Analysis

Figure 4.17: IDHP actor and critic weights on c.g. shift

Figure 4.18: IDHP incremental model RLS estimator on c.g. shift

4.5. Results and Discussion 83

Figure 4.19: SAC short-period response on c.g. shift

Figure 4.20: IDHP-SAC short-period response on c.g. shift

84 4. Preliminary Analysis

Figure 4.21: IDHP-SAC actor and critic weights on c.g. shift

Figure 4.22: IDHP-SAC incremental model RLS estimator on c.g. shift

4.5. Results and Discussion 85

Inverted Elevator
A final more extreme failure mode is simulated by inverting the elevator input by multiplying the 𝐶𝑚𝛿𝑒
and 𝐶𝑍𝛿𝑒 control derivatives with −1. For this case, the SAC controller is expected to fail, while the
IDHP controller is expected to handle the extreme change by quickly adapting its incremental model.
For this test, it is of special interest to see if the hybrid controller can utilize the online IDHP updates to
overcome the extreme dynamics change better than the pure SAC controller.

First of all, the response of the IDHP controller can be seen in Figure 4.23. Successful handling of
the inverted elevator can be seen as the RMSE threshold clearly getting reached right after the time of
failure. In Figure 4.25, The input matrix is seen to adapt the pitch rate derivative correctly by changing
the sign which is the expected change in the input matrix of the short-period model for an inverted ele-
vator effect. The policy network weights as seen in Figure 4.24 also change sign. In the 𝐹 matrix terms,
a small peak is observed at the failure time, which is assumed to be a numerical issue. Again, some
oscillations are present when reacting to the dynamics change. Also, the steady-state error seems to
have decreased after the failure due to the period of higher learning rate.

For the pure SAC controller, the expected result can be seen in Figure 4.26. This dynamics change
is too extreme for the SAC policy which fails to keep tracking the reference signal. The hybrid controller
on the other hand successfully corrects for the inverted elevator as seen in Figure 4.27. Compared to
the pure IDHP response, the hybrid controller reaches a smaller tracking error at the failure point.
Oscillations in the input signal are however higher in frequency and magnitude than the pure IDHP
controller. During manual hyperparameter tuning, it was observed that the rewards scaling factor can
be increased substantially to reduce the tracking error on this failure mode, when on the pure IDHP
controller this causes an unstable response. The increased aggressiveness set by the high reward
scale does however seem to come at the cost of stronger oscillation in the input signal. Looking at the
weight divergence in Figure 4.28, a similar pattern to the c.g. shift simulation can be seen where the
shifts in mainly the critic weights are large and sudden, likely caused by the high reward scale. As seen
from Figure 4.29, the incremental model behaves the same as in the pure IDHP simulation where the
inverted elevator input is quickly updated in the 𝐺 matrix.

86 4. Preliminary Analysis

Figure 4.23: IDHP short-period response on inverted elevator

Figure 4.24: IDHP actor and critic weights on inverted elevator

4.5. Results and Discussion 87

Figure 4.25: IDHP incremental model RLS estimator on inverted elevator

Figure 4.26: SAC (failed) short-period response on inverted elevator

88 4. Preliminary Analysis

Figure 4.27: IDHP-SAC short-period response on inverted elevator

Figure 4.28: IDHP-SAC actor and critic weights on inverted elevator

4.6. Conclusion Preliminary Analysis 89

Figure 4.29: IDHP-SAC incremental model RLS estimator on inverted elevator

4.6. Conclusion Preliminary Analysis
During the preliminary implementation of the IDHP, SAC and hybrid frameworks as discussed in sec-
tion 4.2, section 4.3 and section 4.4 respectively, RQ1.3 has been answered. From the results of the
short-period simulations, an answer to RQ1.4 can be formulated. Note that the performance of the
three RL framework candidates was tested on the angle-of-attack tracking task which has a less direct
dynamic relationship to the elevator input than for example a pitch rate tracking task. This demonstrated
the ability of the RL controllers to handle more challenging dynamics. This is likely also the cause for
the oscillations present in all the simulation results. Adding more information in the observation vector
for example the pitch rate and angle of attack states and adding a reference signal for the pitch rate is
expected to improve this.

The advantages and disadvantages of IDHP and SAC have been demonstrated and are in line
with expectations. Fault tolerance of the IDHP controller is high with fast convergence during online
learning. On the other hand, the SAC agent can provide robustness against some level of failure while
having no issues with continual learning. The SAC controller still fails to adapt to more extreme failure
cases which the IDHP controller still manages to control. From this preliminary analysis, it seems fea-
sible to implement a combined policy that effectively combines the advantages of IDHP and SAC. This
was implemented here by using the offline-trained SAC policy as a reference for a policy fine-tuning
process executed online by the IDHP framework. Performance on the previously tested simulations
indicates the combined controller performs either as good as or better than either IDHP or SAC sep-
arately in terms of reducing tracking error. Additionally, the effect of the IDHP online learning can be
scaled using the adaptive learning strategy where a zero low learning rate was deployed in the simula-

90 4. Preliminary Analysis

tions. Implementing a continuously adaptive learning rate instead of the high-low strategy is a potential
improvement as a large gap between the high and low learning rate, as is the case with a zero low
learning rate, showed oscillatory behaviour. Generally, high sensitivity to hyperparameters was expe-
rienced during manual tuning. An automated hyperparameter search is to be implemented for the final
controller design. With this, RQ1.4 is answered. Additionally, oscillatory behaviour can be managed
by implementing a rate limit on the input signal or using the policy output as control increments instead
of directly controlling the elevator with the policy output as implemented in [11]. An implementation of
a similar rate limit is planned for the final thesis phase.

For the continuation of this research, the three RL framework candidates of IDHP, SAC and the
hybrid form remain. In developing a complete flight controller for the PH-LAB aircraft, an inner and outer
loop controller has to be developed. In [11] a coupled SAC inner and outer loop have proven successful,
providing the most promising starting point regarding controller design. Hence the possibilities exist to
augment either the inner, outer or both loops of a SAC flight controller with the combined policy and
increase the adaptability to failure.

III
Additional Results

91

5
Decoupled Hybrid Attitude Controller

The hybrid controller architecture presented in Part I consists of a single actor, critic and incremental
model for the longitudinal and lateral states proving knowledge of any coupling effects to the IDHP
algorithm. Previous IDHP implementations have either only focused on longitudinal control [36], utilized
a split actor structure [34] or utilized a fully separate IDHP model for longitudinal and lateral states by
splitting up the observations and having two actors, critics and incremental models [28]. Part of the
implementation phase that resulted in the proposed coupled hybrid controller involved developing a
decoupled version of the hybrid controller which is presented in this section.

In Figure 5.1, the inner attitude control loop can be seen with the longitudinal and lateral states split
according to Equation 5.1, excluding the altitude state as it is only used by the outer altitude controller
of the cascaded design. The RL-state and tracking reference vectors are also split up accordingly. Due
to the coupled design of the pre-trained SAC policy, the hybrid policy is constructed like the coupled
hybrid policy, but only the longitudinal or lateral outputs are used in their respective controllers. This is
a limitation of the decoupled design when using the pre-trained SAC policy layers. Furthermore, each
controller has its own critic and incremental model and the outputs are concatenated before being sent
to the environment. By splitting the states this way, the learning load on the critic and incremental model
are reduced, but computational complexity is increased by performing twice the amount of updates per
time-step for longitudinal and lateral separately.

x𝑙𝑜𝑛 = [𝑞, 𝛼, 𝜃] x𝑙𝑎𝑡 = [𝑝, 𝑟, 𝜙, 𝛽] (5.1)

IDHP Attitude Controller

Hybrid Attitude Controller

𝑝, 𝑞, 𝑟,
𝛼, 𝛽,𝜙, 𝜃
𝜓, 𝑉𝑇𝐴𝑆 , ℎ

Plant
a

𝛿𝑒
𝛿𝑎 , 𝛿𝑟- 𝜙

𝛽-

𝜃𝑟
𝜃-

x𝑒

x
s 𝜋𝜃

SAC Attitude
Controller

𝑟(x𝑒)
𝜙𝑟

𝛽𝑟

 a𝑙𝑜𝑛 Longitudinal
Controller

 a𝑙𝑎𝑡 Lateral
Controller

𝜕𝑟(x𝑒)
𝜕x

𝜕𝑟(x𝑒)
𝜕x

s𝑙𝑎𝑡
𝑟𝑙𝑎𝑡
x𝑙𝑎𝑡

s𝑙𝑜𝑛
𝑟𝑙𝑜𝑛
x𝑙𝑜𝑛

Figure 5.1: SAC-IDHP Decoupled Attitude Controller Structure

93

94 5. Decoupled Hybrid Attitude Controller

5.1. Decoupled Hybrid Online Training
The online training task for the decoupled hybrid controller is performed using the same reference
signals and hyperparameters used for the nominal case in Part I. In Figure 5.2 the response to the
online training task shows a successful converging hybrid policy on both the longitudinal and lateral
states. Compared to the online training task presented in Part I, the initial convergence phase appears
less aggressive and has no increased deviations from the reference signal during the initial time-steps.
like the coupled design, the training task demonstrated the ability of the hybrid controller to correct for
any existing state-state errors form the SAC policy with reduced errors at the peaks of the sinusoidals
after approximately 15s on the pitch reference and 25s on the bank reference. The sideslip angle
shows little improvement as the SAC policy alone achieves a low error. Comparing the performance,
the SAC-only has an nMAE of 10.31% and the decoupled hybrid an nMAE of 9.03% which is 1.62%
higher than the coupled version. This increased error compared to the coupled version is assumed to
be because of the decoupling resulting in less aggressive gradient steps due to differing and/or smaller
state spaces on the critic input vector and reward function inputs. Hence, a similar tracking performance
is assumed to be achievable by performing an additional hyperparameter search for longitudinal and
lateral controllers separately.

Figure 5.2: SAC-IDHP Decoupled response on Attitude training task.

The actor/critic weights and incremental model parameter evolution during the training task can
be seen in Figure 5.3 for the longitudinal agent and in Figure 5.4 for the lateral agent. These plots
confirm the earlier observations that both agents converged successfully, and that the learning is less
aggressive than with the coupled version using the same hyperparameters indicated by the steadily
increasing actor weights. The 𝐹 and 𝐺 matrices of the incremental model converge in under 5s for the
longitudinal and under 1s for the lateral models which is an improvement from the coupled model. This

5.1. Decoupled Hybrid Online Training 95

demonstrates the expected lower learning complexity of the decoupled models compared to a single
model estimating coupled dynamics.

Figure 5.3: SAC-IDHP Decoupled response on Attitude training task, actor/critic weights and incremental model parameters
longitudinal.

Figure 5.4: SAC-IDHP Decoupled response on Attitude training task, actor/critic weights and incremental model parameters
lateral.

96 5. Decoupled Hybrid Attitude Controller

5.2. Comparison on Fault-Tolerance with Coupled Controller
To assess the effect of the decoupling on the adaptive response to failure cases, the partial loss of
horizontal tail failure mode is chosen to focus on the longitudinal failure mode. The reference signals
are set at a constant 8∘ for the pitch angle in order to simulate a steady climb, and an alternating bank
angle of 20∘ with zero sideslip for coordinated turns. The same learning rates from Part I are used.

The response of the decoupled agent can be seen in Figure 5.5 and the response of the coupled
controller in Figure 5.6. Both hybrid controllers provide a large correction to the elevator action, resulting
in a lower tracking error compared to the SAC-only agent with an nMAE of 21.25% for the SAC-only
controller and 5.21% and 6.91% for the decoupled and coupled hybrid controllers respectively. This
shows the decoupled controller has a 1.7% lower tracking error compared to the coupled controller.
This can be attributed to the reduced learning complexity of the decoupled controller, resulting in faster
corrections. Also, the lateral states of the coupled controller are more affected by the adaptive response
with a slightly larger sideslip error, contributing to the overall larger error.

Figure 5.5: SAC-IDHP Decoupled response on Attitude task with partial loss of horizontal tail at t=30s.

5.2. Comparison on Fault-Tolerance with Coupled Controller 97

Figure 5.6: SAC-IDHP Coupled response on Attitude task with partial loss of horizontal tail at t=30s.

The actor/critic weights and incremental model parameters for the decoupled controller can be seen
in Figure 5.7 and Figure 5.8 for longitudinal and lateral controllers respectively. The lateral parameters
are expected to not change significantly, which is reflected by the results. The lateral parameters do
appear to be affected by continuous learning, noted by small changes in policy parameters and model
parameters around the times of excitation of the roll axis. The longitudinal parameters however adjust
from the 30s mark when the system dynamics changes are detected by the jump in the innovation
term. A small change in input matrix is seen accompanied by changing actor/critic weights. Note that
because of the 1.0 forgetting term of the incremental model, the adaptiveness can be limited over lime
without an additional fault detection system, as discussed in chapter 7. The parameter evolution of the
coupled controller can be seen in Figure 5.9 and shows the changing actor/critic weights at the 30s
point as expected with the same jump in the innovation term.

Overall, the decoupled controller has the advantage of lower learning complexity, but with consid-
erably higher computational and implementation complexity. Also in the case of more severe coupled
failure modes, it is expected that a coupled model can better model the system dynamics.

98 5. Decoupled Hybrid Attitude Controller

Figure 5.7: SAC-IDHP Decoupled Attitude Controller with partial loss of horizontal tail at t=30s, actor/critic weights and incre-
mental model parameters longitudinal.

Figure 5.8: SAC-IDHP Decoupled Attitude Controller with partial loss of horizontal tail at t=30s, actor/critic weights and incre-
mental model parameters lateral.

5.2. Comparison on Fault-Tolerance with Coupled Controller 99

Figure 5.9: SAC-IDHP Coupled Attitude Controller with partial loss of horizontal tail at t=30s, actor/critic weights and incremental
model parameters.

6
Robustness to Initial Flight Condition

As presented in Table 6.1 from Part I, the SAC and Hybrid cascaded controllers have been tested on
three additional initial flight conditions differing from the initial flight condition used to train the SAC
agents. This section discusses the response on each initial flight condition in more detail. The altitude
task with a maximum of 20∘ bank angle is used. The flight conditions are ordered in order of increasing
dynamic pressure.

Table 6.1: Robustness to initial flight conditions of cascaded altitude controllers.

Flight Condition Initial Altitude [m] Initial Airspeed [m/s] nMAE nMAE
SAC-only SAC-IDHP

FC1 5000 90 4.71% 1.96%
FC2 (nominal) 2000 90 2.76% 2.02%
FC3 5000 140 2.05% 1.75%
FC4 2000 140 2.27% 2.01%

6.1. FC1
This flight condition has the lowest dynamic pressure which shows in the nMAE of the SAC controller
which is 1.95% above the nominal flight condition. Looking at the response plot in Figure 6.1, the SAC
controller has trouble maintaining the pitch up angle with increasing altitude when approaching closer
to the stall flight regime. The larger error originates from the divergence from the pitch angle reference
between 40s and 70s. The hybrid controller on the other hand is more consistent with the response
of the nominal flight condition remaining within margin of error with the nMAE, but producing more
noticeable oscillations compared to its nominal case.

6.2. FC3
This flight condition has a higher dynamic pressure compared to the nominal training condition and is
expected to produce a lower tracking error compared to FC1 or even FC2. Both the SAC-only and the
hybrid controllers achieve a nMAE 0.71% and 0.27% lower than the nominal condition respectively.
The larger difference lies with the SAC-only controller, which exhibits considerably improved the pitch
tracking compared to the lower dynamic pressure cases. The hybrid controller still outperforms SAC-
only by a small 0.3% margin, while also showing increased oscillations.

6.3. FC4
The final tested flight condition has the highest dynamic pressure and is expected to perform equal
or better than all the previous flight conditions. Looking at the results from Figure 6.3, the response
is visually similar to FC3, but curiously with a slightly higher nMAE for both SAC-only and SAC-IDHP.

101

102 6. Robustness to Initial Flight Condition

For the hybrid controller, this can be attributed to the more aggressive and oscillatory reaction having
diminishing returns, with the SAC-only difference lying within margin of error.

Figure 6.1: Altitude tracking response of SAC-only and SAC-IDHP controllers on FC1.

6.3. FC4 103

Figure 6.2: Altitude tracking response of SAC-only and SAC-IDHP controllers on FC3.

Figure 6.3: Altitude tracking response of SAC-only and SAC-IDHP controllers on FC4.

7
Effect of Covariance Reset

The forgetting factor of the incremental model has been set to 𝜅 = 1.0 in the results presented in Part I.
This was done to prevent estimator covariance windup [28]. This appears during periods of no or poor
excitation and involves an exponential increase of the covariance matrix when the system is exited
again. A disadvantage of using a forgetting factor of 1.0 is the reduced adaptiveness over time. In the
fault-tolerance results presented in Part I, the hybrid controller was successful in adapting to changes
in system dynamics despite the forgetting factor. Nevertheless, a covariance reset can be used at the
time of the system change in order to reinstate the uncertainty of the model parameters.

An implementation of the covariance reset is tested in this section by applying a threshold on the
innovation factor 𝜖 [28]. This acts as a simplified failure detection system. For this experiment, the 70%
reduced elevator effectiveness failure case is used. The innovation threshold is set for the pitch rate at
𝑞𝑡ℎ𝑟𝑒𝑠ℎ = 0.001𝑟𝑎𝑑.

First, the baseline response corresponding with the results from Part I and without the covariance
reset is shown again in Figure 7.2. This results in an nMAE of 7.99% for the SAC-only controller and
an nMAE of 2.53% for the hybrid controller.

The response with the covariance reset can be seen in Figure 7.1 with an nMAE of 2.90%. The
tracking error is a 0.37% increase from the case without covariance reset, showing that the covariance
reset does not have a positive effect in this case, while also remaining within margin of error between the
two cases. Despite the negligible difference in tracking performance, the effect of the covariance reset
can clearly be seen in the weights and parameters plots in Figure 7.3. The threshold 𝑞𝑡ℎ𝑟𝑒𝑠ℎ = 0.001𝑟𝑎𝑑
is indicated by the dashed line on the innovation term and visualizes the point where the pitch rate error
overshoots the threshold and activating the covariance reset. The covariance is seen to increase back
to its initial value of 1 ⋅ 108 and reduces back over time while the estimator becomes more confident
of the parameters. At the point of covariance reset, the parameter matrices are excited with the input
matrix correcting more heavily to the reduced elevator effectiveness than without covariance reset as
seen in Figure 7.4. Despite the larger correction of the input matrix derivative, this is not reflected
into stronger tracking performance. Additionally, the transient period in the 𝐹 and 𝐺 matrices after the
covariance reset is likely responsible for the higher tracking error. It is expected that the covariance
reset will provide a performance increase when longer flight scenarios are tested, where the covariance
windup has had more time to manifest.

105

106 7. Effect of Covariance Reset

Figure 7.1: SAC-IDHP and SAC-only response on altitude task with 70% reduced elevator effectiveness from t=30s. With
covariance reset.

Figure 7.2: SAC-IDHP and SAC-only response on altitude task with 70% reduced elevator effectiveness from t=30s. Without
covariance reset.

107

Figure 7.3: SAC-IDHP and SAC-only response on altitude task with 70% reduced elevator effectiveness from t=30s. Actor/critic
weights and incremental model parameters with covariance reset.

Figure 7.4: SAC-IDHP and SAC-only response on altitude task with 70% reduced elevator effectiveness from t=30s. Actor/critic
weights and incremental model parameters without covariance reset.

8
Atmospheric and Control Disturbances

This chapter elaborates on the effect of atmospheric and control disturbances and expands the discus-
sion on the effect of biased sensor noise on the tracking performance presented in Part I.

8.1. Biased Sensor Noise
The additional results in Part I present the effect of biased sensor noise and concludes a stable re-
sponse for both SAC-only and SAC-IDHP with satisfactory tracking performance, but increased oscil-
lations for the hybrid controller. This section elaborates on the response seen in case of the nominal
altitude tracking task. The values used for the noise can be seen in Table 8.1.

Note that it was noticed during initial testing that the incremental model identification of the IDHP
framework produces inconsistent results when high frequency oscillation are present in the states.
Hence, a low-pass filter with 𝜔0 = 40𝑑𝑒𝑔 is applied to the observation for the IDHP update rule, with
an equivalent filter applied to the SAC-only update rules for a fair comparison.

In Figure 8.1 the effect of the biased sensor noise can be seen. The increased oscillations of the
hybrid response is noticeable in both longitudinal and lateral states which is in contrast with a case
without noise where the hybrid controller mostly showed oscillations in the longitudinal states. To recall
the findings from Part I, the nMAE of 2.69% for SAC-only and 2.00% for the hybrid agent are determined
when biased sensor noise is present. This corresponds to a respective 0.08% and 0.03% reduction in
nMAE compared to the case without noise, attributed to the bias having a positive effect on the error,
but also indicating both controllers maintain performance in the presence of sensor noise.

Table 8.1: Cessna Citation PH-LAB sensor noise characteristics [21]

State Bias 𝜇 Variance 𝜎2

𝑝, 𝑞, 𝑟 [𝑟𝑎𝑑/𝑠] 3.0 ⋅ 10−5 4.0 ⋅ 10−7
𝜃, 𝜙 [𝑟𝑎𝑑] 4.0 ⋅ 10−3 1.0 ⋅ 10−9
𝛽 [𝑟𝑎𝑑] 1.8 ⋅ 10−3 7.5 ⋅ 10−8
ℎ [𝑚] 8.0 ⋅ 10−3 4.5 ⋅ 10−3

109

110 8. Atmospheric and Control Disturbances

Figure 8.1: Altitude tracking response on system with biased sensor noise. SAC-IDHP and SAC-only compared.

8.2. Atmospheric Disturbance
The atmospheric disturbance is implemented similarly to [11] as discrete vertical gusts of 15ft/s accord-
ing to MIL-F-8785C [50] and implemented as a 2.5𝑑𝑒𝑔 to −2.5𝑑𝑒𝑔 disturbance over 3s on the angle of
attack. This is applied at 𝑡 = 20𝑠 and 𝑡 = 80𝑠 on the altitude tracking task.

The response can be seen in Figure 8.2 with an nMAE of 2.76% for the SAC-only controller and
2.04% for the hybrid controller. Both controllers are not noticeably affected by the disturbances on the
angle of attack and the improvement margin of the hybrid controller is maintained. To increase the
number of realistic effects, the same experiment is performed with the addition of the biased sensor
noise defined in section 8.1. The response can be seen in Figure 8.3 with an nMAE of 2.61% for SAC-
only and 1.87% for the hybrid controller. Like discussed in the previous section, the lower tracking errors
compared to the experiment without noise can be attributed to the bias having a positive effect on the
error. This shows both controllers maintain their tracking performance and their relative comparison in
the presence of noise and atmospheric disturbances compared to the ideal case.

8.2. Atmospheric Disturbance 111

Figure 8.2: SAC-IDHP and SAC-only response on altitude task with atmospheric disturbances at t=20s and t=80s.

Figure 8.3: SAC-IDHP and SAC-only response on altitude task with atmospheric disturbances at t=20s and t=80s and biased
sensor noise.

112 8. Atmospheric and Control Disturbances

8.3. Control Disturbance
A control disturbance allows for a more direct analysis of the ability for disturbance rejection. This
section presents an experiment using a 3211 disturbance signal added to the elevator, aileron and
rudder channels. The reference signals are set at an initial altitude hold, zero roll angle hold and zero
sideslip angle to provide a clear visual of the effect of the control disturbance.

Looking at the response in Figure 8.4, both controllers remain stable in the presence of control
disturbance. Again, more oscillations are present in the response of the hybrid controller, both in the
longitudinal and lateral states, especially the roll rate. The disturbance rejection on the sideslip is most
similar between the hybrid and SAC-only, while the hybrid controller does improve on tracking error on
the altitude hold signal and little improvement on the roll angle. The addition of biased sensor noise to
this experiment case can be seen in Figure 8.5, This case shows a weaker response from the hybrid
controller with severe oscillations on all states. The tracking performance is still improved on the altitude
hold signal, but overall, the SAC-only controller shows a more robust response to control disturbances
and biased sensor noise combined.

Figure 8.4: SAC-IDHP and SAC-only response on altitude task with control disturbances as 3211 signals on elevator, aileron
and rudder.

8.3. Control Disturbance 113

Figure 8.5: SAC-IDHP and SAC-only response on altitude task with control disturbances as 3211 signals on elevator, aileron
and rudder and biased sensor noise.

9
Additional Failure Modes

As an addition to the two failure cases presented in Part I, this section goes over three additional
longitudinal failure cases further demonstrating and validating the fault-tolerance of the both the SAC-
only and hybrid altitude controllers.

9.1. Center-of-Gravity Shift
This failure mode is simulated by a sudden c.g. shift of 0.25m backwards implemented into the Citation
simulation model. The response can be seen in Figure 9.1 with the c.g. shift set at t=30s. Both the
SAC-only and SAC-IDHP controllers handle the c.g. shift equally well with no obvious visual deviation
from the reference signals. Looking at the elevator deflection, the SAC policy is able to compensate by
increasing the deflection by approximately 2.5∘. With an nMAE of 2.54% for SAC-only and 1.99% for
SAC-IDHP, the hybrid controller still provides marginally closer tracking, most noticeable on the sideslip
angle, but with increased oscillations on the longitudinal states.

9.2. Icing Effects
A common effect experienced by aircraft is ice accumulation on the wings. This effect can be simulated
by reducing the maximum lift coefficient 𝐶𝐿𝑚𝑎𝑥 by 30% and increasing the drag coefficient 𝐶𝐷 by 0.06
for mid-range Reynolds numbers [44] [11].

The response in Figure 9.2 shows the reaction of the outer SAC controller by increasing the pitch
reference due to the reduced lift and increased drag. The SAC-only controller however struggles to
adapt to the increased pitch reference, while the hybrid controller has a smaller pitch tracking error.
This is reflected by a nMAE of 4.67% for SAC-only and 1.92% for SAC-IDHP.

9.3. Partial Loss of Horizontal Tail
Another variation on a longitudinal failure mode is a simulated partial loss of the horizontal tail. This
affects elevator effectiveness, but also pitch damping. This failure mode is implemented by a 70%
reduction of the 𝐶𝐿𝛿𝑒 , 𝐶𝐷𝛿𝑒 , 𝐶𝑚𝛿𝑒 and 𝐶𝑚𝑞 coefficients [11] at t=30s. The response in Figure 9.3 shows
again the reaction of the outer controller increasing the pitch reference, but the inner SAC policy reaches
a large error to this reference. The hybrid controller is more successful in tracking the pitch reference.
Compared to the icing effect, a larger steady state error appears on the roll angle of the SAC policy
which is corrected by the hybrid policy. The nMAE of 7.65% for SAC-only and 2.41% for SAC-IDHP
reflect the improvement in the altitude tracking.

115

116 9. Additional Failure Modes

Figure 9.1: Altitude tracking response on system with 0.25m cg-shift from t=30s. SAC-IDHP and SAC-only compared.

Figure 9.2: Altitude tracking response on system with icing effects from t=30s. SAC-IDHP and SAC-only compared.

9.3. Partial Loss of Horizontal Tail 117

Figure 9.3: Altitude tracking response on system with partial loss of horizontal tail from 𝑡 = 30s. SAC-IDHP and SAC-only
compared.

10
Verification & Validation

The verification and validation process is crucial in providing confidence in the implementation of the
proposed reinforcement learning controller. Verification and validation is performed for the high fidelity
simulation model of the Cessna Citation, and for the RL-controllers developed during this research.

10.1. Verification
The simulation model of the Cessna Citation 500 used for all simulations is build by the Delft Univer-
sity of Technology using the Delft University of Technology Aircraft Simulation Model and Analysis Tool
(DASMAT) [21]. This model is delivered in Simulink and compiled to a python executable for use on this
research. The compilation to python is verified by performing a 3211 input analysis using the Simulink
run-time and the python run-time and comparing the response. In Figure 10.1 the response and input
signals on the elevator and ailerons can be seen. As seen from the states, the responses are visually
identical, which is supported by a RMSE of 0.31% normalized over the maximum range per state and
averaged over all states.

The SAC controller was developed using [11] and [23] as reference. In order to verify a correct
implementation of the SAC algorithm, a positive learning curve is observed in Part I for the altitude and
attitude agents. This indicates the RL objective is being solved. The tracking performance is able to
be compared to [11] due to the use of the same environment model, same nMAE tracking error metric
and similar altitude tasks. It is verified that the nMAE is within margin of error on nominal tasks. with
an nMAE of for SAC 2.77% on the nominal altitude task with 40∘ turns which compares within margin
of error to an nMAE of 2.64% obtained in the reference implementation. On longitudinal failure cases
and the lowest dynamic pressure initial flight condition FC1, the tracking performance is slightly worse
with noticeable larger tracking errors on the altitude. Note that in this comparison, the SAC controller
developed in this research uses direct control with the addition of temporal and spacial regularization,
as opposed to a rate control approach. A comprehensive hyperparameter search and training strategy
revision is expected to bring the robust tracking performance of the SAC controller on the same level.

The IDHP algorithm used in the online learning of the hybrid policy is developed with [28] and [34] as
reference. The correct implementation of the IDHP algorithm is verified during the preliminary analysis
in section 4.5 by obtaining similar tracking performance to the reference material on a short-period
model of the PH-LAB aircraft. The eventual hybrid policy employed in the attitude controller is verified
by observing gradual changes of the actor/critic weights accompanied by a decreasing tracking error
compared to the baseline policy, as demonstrated in Part I.

119

120 10. Verification & Validation

Figure 10.1: Response to 3211 input comparing the DASMAT Simulink model with the executable used in the python simulations.

10.2. Validation
The DASMAT simulation model has been validated by [83] where flight data is compared to the simula-
tion model. A relative RMSE of 8.38% and 12.65% for longitudinal force and moment coefficients and
7.34% and 8.58% for the lateral force and moment coefficients validate the representational power of
this model. This assumes to remain inside the normal pre-stall envelope in which all the simulations in
this research are conducted.

The tracking performance of the SAC and SAC-IDHP controllers can be compared to the expected
standards by requiring sufficiently low nMAE while covering multiple scenarios, which are presented in
Part I and Part III. Referring to Table 6.1, the nMAE for several initial flight conditions remains under
5% with only the least favourable FC1 producing an nMAE above 3%. Additionally, tests performed in-
cluding more realistic phenomenon such as biased sensor noise and atmospheric disturbances show a
stable response for any case presented in Part III and tracking error remains small with both controllers
for all non-failure flight conditions. The hybrid agent also remains below 3% nMAE for all tested failure
cases.

Despite a number of realistic effects being implemented, some limitations remain and part of the
flight envelope remains unexplored in this research. Assumptions made include a clean aircraft con-
figuration at all times, no actuator transport delay, no sensor delay, simplified actuator models using
saturated first-order low-pass filters, fully observable environment, simplified atmospheric disturbance
using direct angle of attack steps and a constant simulation frequency of 100Hz.

A comprehensive exploration of the flight envelope is still recommended, including higher fidelity
sensor and actuator models. Also, the sensitivity of the IDHP updates on the hybrid policy to produce
oscillations is to be further investigated to not compromise the validity of the hybrid RL-framework.

IV
Closure

121

11
Conclusion

Fault-tolerant control plays a vital role in automation, especially in the aerospace industry. Both the
safety and economics of autonomous control can benefit from developing novel adaptive and robust
controllers. This research proposes a RL-based framework for controlling CS-25 class aircraft in the
context of the Cessna Citation II PH-LAB research aircraft.

The preliminary research presented in Part II aims to answer the first research question.

Research Question

RQ1 What RL framework is best suited for implementation on the Cessna Citation II?

RQ1.1 What is the current state-of-the-art for continuous adaptive and robust flight control?
RQ1.2 What are the main challenges in reducing the simulation reality-gap of current imple-

mentations?
RQ1.3 How can the proposed RL framework be implemented for a simple dynamic system?
RQ1.4 How does the proposed RL framework perform for a simple dynamic system?

In the literature study in chapter 3, the general categories of Incremental Approximate Dynamic
Programming (iADP) and Deep Reinforcement Learning (DRL) are further investigated, with a focus
on the actor-critic methods. These methods enable continuous control in space and time with the help
of function approximation methods, more specifically Artificial Neural Networks (ANNs). Both iADP and
DRL methods are also model-independent, meaning they require no prior knowledge or an accurate
model of the environment, which is a requirement of the research objective. The main differentiating
factor between iADP and DRL methods is the training strategy. iADPmethods are best suited for online
learning and are thus highly adaptive with a high sample efficiency. DRL methods on the other hand re-
alistically have to learn offline because of lower sample efficiency, but have higher generalization power
thanks to the use of Deep Neural Networks (DNNs) and can achieve a level of fault tolerance through
robustness. From iADP, the framework of Incremental Dual Heuristic Programming (IDHP) has been
selected as the best candidate. Utilizing an incremental model Recursive Least-Squares (RLS) esti-
mator, it can achieve fast convergence and fills the spot of adaptive control. From DRL, the framework
of Soft Actor-Critic (SAC) is selected as a state-of-the-art method thanks to its strong exploration and
generalization, filling the spot of robust control. Furthermore, it is proposed to evaluate the possibility
of a hybrid framework that aims to combine the advantages of both. Hence, RQ1.1 is answered. The
literature study also answers RQ1.2 and identifies the challenges in the simulation reality-gap noting
the importance of sensor noise, delays and external disturbances.

To further evaluate the two frameworks, in the preliminary analysis in chapter 4 both IDHP and SAC
are implemented and evaluated on a simplified short-period system corresponding with the PH-LAB
aircraft. Additionally, a hybrid form is implemented by combining the offline trained SAC policy in the

123

124 11. Conclusion

online-learning IDHP framework. This implementation answers RQ1.3. The IDHP and SAC controllers
were successfully able to track an angle of attack reference signal on the short-period model with low
tracking error. The hybrid SAC-IDHP framework demonstrates its feasibility and ability to correct online
for more severe failure cases where the SAC-only agent fails on an inverted elevator failure. These
results then formulate an answer to RQ1.4, completing the answer to RQ1.

The second research question is answered during the further development of the hybrid SAC-IDHP
controller presented as part of Part I and Part III.

Research Questions

RQ2 How can the proposed RL controller be integrated into the Cessna Citation II?

RQ2.1 At what control level should the RL controller be implemented?
RQ2.2 What are the architectural characteristics of the RL controller to ensure applicability

to the control level?
RQ2.3 What are the characteristic system dynamics, sensor dynamics and actuator dynam-

ics that need to be accounted for to ensure applicability to the real system?

In order to demonstrate a full RL-based flight controller, the high level 6-degree-of-freedom altitude-
bank-sideslip tracking loop is chosen, which enables demonstration of coordinated turn manoeuvres
and presents the possibility to interface with existing navigation algorithms. Additionally, an altitude
control loop provides comparison with relevant tracking performance from literature. This answers
RQ2.1.

The control loop proposed in Part I consists of a cascaded design, separating the altitude and
attitude control motivated by their different dynamics. In order to limit the implementation complexity,
the SAC-IDHP hybrid policy is applied to the inner attitude controller only as the attitude dynamics
are disproportionately affected by the tested failure modes. Using principles from transfer learning, the
architecture of the SAC-IDHP hybrid policy is designed as alternating pre-trained SAC layers and online
learning identity initialized IDHP layers with the SAC layers frozen during online learning. This controller
design answers RQ2.2. A decoupled attitude agent is also explored in chapter 5 which demonstrates
a lower learning complexity for the incremental system identification, but with limited effect on tracking
performance and requires higher computational and implementation complexity.

The flight scenarios tested in this research use the high fidelity Delft University of Technology Air-
craft Simulation Model and Analysis Tool (DASMAT) aircraft model, providing validated flight dynamics
that are applicable to the real system. A number of simplifications are made when testing sensor and
actuator dynamics with the use of biased sensor noise and saturated low pass filters respectively.
Measurement and transport delays are outside the scope of this research and recommended to be
investigated further. Additionally, external disturbances are implemented using simplified atmospheric
angle of attack step disturbances and control disturbances. The choices made here together with the
findings from section 3.5 answers RQ2.3. This concludes the answers to RQ2.

The last research question concerns the performance and stability of the proposed RL controller,
which is evaluated as part of Part I and Part III.

Research Questions

RQ3 What is the overall performance and stability of the proposed RL controller on the Cessna
Citation II?

RQ3.1 How are the performance and stability metrics defined and what are their require-
ments to ensure applicability to the real system?

RQ3.2 How does it perform in standard manoeuvres?
RQ3.3 How does it perform on fault tolerance?
RQ3.4 How does it compare to baseline?

125

RQ3.5 What is the effect of sensor dynamics and external disturbances on performance and
stability?

The performance metric used to quantitatively compare tracking performance is the normalized
Mean Absolute Error (nMAE) described in Part I. This represents the overall normalized tracking error
averaged over all the externally tracked states. A threshold of 5% can be used to ensure satisfactory
performance compared to existing controllers. Additionally, a stability metric is used in the form of
a temporal loss which tracks the severity of oscillations with an acceptable threshold of 0.01. This
answers RQ3.1.

The hybrid controller is tested on a successive climb and descend tracking task with 40∘ coordinated
turns involving full 6-degree-of-freedom control and coupling effects. Tracking performance is stable
with an nMAE of 2.03% on the nominal system. The initial flight condition is varied from the nominal
training case, where the tracking performance remains stable with a variance of only 0.02 in nMAE.
Tracking performance is maintained when adding biased sensor noise and atmospheric disturbances.
Robustness to online random initialization is demonstrated with a success rate of 100% using the
stability threshold, given an initial critic weight standard deviation of 0.01. With this, RQ3.2 is answered.

A total of five different failure modes are tested including 70% reduced elevator effectiveness, 90%
reduced aileron effectiveness, 2.5m center-of-gravity shift, icing effects and 2.41% on partial loss of
horizontal tail. The SAC-IDHP controller provides strong tracking performance over all the failure cases,
with a maximum nMAE of 2.53% on the case of reduced elevator effectiveness. This answers RQ3.3.

Compared to the SAC-only baseline, an improvement in tracking performance is demonstrated
across all the tested flight scenarios. The nominal altitude tracking task provides a marginal 0.74%
improvement over SAC-only due to the competence of the SAC policy alone. A minimum nMAE im-
provement of 0.55% is observed in the case of a c.g. shift, while a maximum improvement of 5.46%
is seen with reduced elevator effectiveness, demonstrating the ability of the hybrid policy in improving
tracking performance. Increased oscillations are however noticeable on all failure cases compared to
the SAC-only baseline. Most notable, adding a control disturbance with the addition of biased sensor
noise increases the sensitivity of the hybrid controller to oscillations.

Compared to IDHP-only baseline, the presence of the pre-trained policy layers provides increased
confidence in including the IDHP update rules into a fully coupled-dynamics 6-degree-of-freedom con-
trol loop. This makes use of the fast converging IDHP update rules into a deeper neural network with
increased generalization power. Additionally, the random policy initialization from IDHP is eliminated
by the hybrid policy architecture and the use of identity initialization, resulting in an argument for in-
creased safety. With this, RQ3.4 and RQ3.5 are answered, completing RQ3.

Finally, the research objective is reviewed.

Research Objective

Contribute to the development ofmodel-independent, adaptive and robust flight control with the
purpose of progressing towards enabling flight tests by investigating the challenges in reducing
the simulation reality-gap of current reinforcement learning implementations and developing
a reinforcement learning-based flight controller for the PH-LAB (Cessna Citation II) research
aircraft.

This research proposes a new hybrid offline-online model-independent RL framework providing
both offline robust and online adaptive flight control.This controller shows to be fault-tolerant inside a
complete RL-based 6-degree-of-freedom cascaded controller structure. The challenges in closing the
reality-gap are investigated, and the proposed RL controller demonstrates robustness to biased sensor
noise, external disturbances and varying initial flight conditions. This indicates a promising approach
to RL flight control by using DRL and iADP with principles from transfer learning to have safe offline
learning with more adaptive flexibility during online operation. The results of this research ultimately
provide insight into the possibilities of increasing safety and autonomy in the aerospace industry.

12
Recommendations

The following recommendations are made based on the insights learned from this research.

• The robust tracking performance on longitudinal failure modes of the SAC agent developed dur-
ing this research is slightly outperformed by previous attempts [11]. It is recommended to inves-
tigate the effect of different reference policies on the performance of the hybrid policy. Either
different SAC training strategies or alternative state-of-the-art DRL frameworks such as TD3 and
PPO could provide reference policies with more offline training stability. The latter can be less
robust due to lower exploration compared to SAC. Since the hybrid policy provides adaptive fault-
tolerance, the lower exploration of reference policies from TD3 and PPO could be offset by the
online learning process.

• The CAPS regularization is used to suppress heavy oscillations in the offline learning of the SAC
policy when using direct control of the action. A direct control approach was taken as opposed
to the incremental control approach [11] as during initial testing, the IDHP framework appeared
brittle when controlling a complex system using rate control. It is expected that with additional
hyperparameter search or regularization on the IDHP update rules, a stable hybrid policy can be
developed using incremental control.

• The hyperparameters used for both the offline SAC training and online SAC-IDHP learning are
obtained as defaults from literature or by trial and error. A comprehensive hyperparameter search
is expected to improve training stability in SAC and IDHP. The increased oscillations in the re-
sponse of the hybrid policy is expected to be improved by further hyperparameter tuning.

• In the preliminary analysis, an adaptive learning rate is proposed for the hybrid policy. Due to
problems with continual learning [28], adaptive learning rates have been used in IDHP frame-
works to lower the learning rate when tracking errors are low [36]. Unique to the hybrid policy, an
adaptive learning rate can take advantage of the identity initialization by having a zero learning
rate when the robust SAC policy provides satisfactory tracking and thus maximally limiting prob-
lems with continual learning. Testing the adaptive learning rate on the cascaded controller could
help with oscillations experienced on the hybrid policy.

• The realistic effects of sensor delays, actuator transport delays and a detailed Dryden gust model
have been considered outside the scope and time constrains of this research. To improve confi-
dence in the RL controller for use on the real system, these effects are recommended to be tested
inside a larger flight envelope.

• Analysis on the effect of covariance reset with the use of a 1.0 forgetting factor on the incremen-
tal model can be expanded upon. It is expected that longer simulation times expose degradation
in adaptiveness and a covariance reset could be necessary for effective online learning. More
sophisticated fault detection mechanismmight be necessary compared to innovation term thresh-
olds when deploying to a real system.

127

Bibliography
[1] Loss of Control In-Flight Accident Analysis Report 2019 Edition. International Air Transport As-

sociation, page 44, 2019.

[2] Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta Reinforcement Learning for
Sim-to-real Domain Adaptation. arXiv:1909.12906 [cs], September 2019.

[3] Gary J. Balas. Flight Control Law Design: An Industry Perspective. European Journal of Control,
9(2):207–226, January 2003. ISSN 0947-3580. doi: 10.3166/ejc.9.207-226.

[4] Gabriel Moraes Barros and Esther Luna Colombini. Using Soft Actor-Critic for Low-Level UAV
Control. arXiv:2010.02293 [cs], October 2020.

[5] Eivind Bøhn, Erlend M. Coates, Signe Moe, and Tor Arne Johansen. Deep Reinforcement
Learning Attitude Control of Fixed-Wing UAVs Using Proximal Policy Optimization. 2019 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS), pages 523–533, June 2019.
doi: 10.1109/ICUAS.2019.8798254.

[6] Léon Bottou and Olivier Bousquet. The Tradeoffs of Large Scale Learning. In Optimization for
Machine Learning, volume 20, January 2007.

[7] Justin A. Boyan. Technical Update: Least-Squares Temporal Difference Learning. Ma-
chine Learning, 49(2):233–246, November 2002. ISSN 1573-0565. doi: 10.1023/A:
1017936530646.

[8] Steven J. Bradtke and Andrew G. Barto. Linear Least-Squares algorithms for temporal dif-
ference learning. Machine Learning, 22(1):33–57, March 1996. ISSN 1573-0565. doi:
10.1007/BF00114723.

[9] Yan Cheng and Yong Song. Autonomous Decision-Making Generation of UAV based on Soft
Actor-Critic Algorithm. In 2020 39th Chinese Control Conference (CCC), pages 7350–7355, July
2020. doi: 10.23919/CCC50068.2020.9188886.

[10] Olja Cokorilo. Urban Air Mobility: Safety Challenges. Transportation Research Procedia, 45:
21–29, January 2020. ISSN 2352-1465. doi: 10.1016/j.trpro.2020.02.058.

[11] Killian Dally and Erik-Jan Van Kampen. Soft Actor-Critic Deep Reinforcement Learning for Fault
Tolerant Flight Control. In AIAA SCITECH 2022 Forum, AIAA SciTech Forum. American Institute
of Aeronautics and Astronautics, December 2021. doi: 10.2514/6.2022-2078.

[12] Pedro Miguel Dias, Ye Zhou, and Erik-Jan Van Kampen. Intelligent Nonlinear Adaptive Flight
Control using Incremental Approximate Dynamic Programming. In AIAA Scitech 2019 Forum,
AIAA SciTech Forum. American Institute of Aeronautics and Astronautics, January 2019. doi:
10.2514/6.2019-2339.

[13] Hao Dong, Zihan Ding, and Shanghang Zhang, editors. Deep Reinforcement Learning:
Fundamentals, Research and Applications. Springer Singapore, Singapore, 2020. ISBN
9789811540943 9789811540950. doi: 10.1007/978-981-15-4095-0.

[14] Yizhang Dong, Zhiwei Shi, Kun Chen, and Zhangyi Yao. Self-learned suppression of roll oscil-
lations based on model-free reinforcement learning. Aerospace Science and Technology, 116:
106850, September 2021. ISSN 12709638. doi: 10.1016/j.ast.2021.106850.

[15] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking Deep
Reinforcement Learning for Continuous Control. arXiv:1604.06778 [cs], May 2016.

129

130 Bibliography

[16] Dale Enns, Dan Bugajski, Russ Hendrick, and Gunter Stein. Dynamic inversion: An evolving
methodology for flight control design. International Journal of Control, 59(1):71–91, January
1994. ISSN 0020-7179. doi: 10.1080/00207179408923070.

[17] R. Enns and Jennie Si. Helicopter trimming and tracking control using direct neural dynamic
programming. IEEE Transactions on Neural Networks, 14(4):929–939, July 2003. ISSN 1941-
0093. doi: 10.1109/TNN.2003.813839.

[18] Jay Farrell, Manu Sharma, and Marios Polycarpou. Backstepping-Based Flight Control with
Adaptive Function Approximation. Journal of Guidance, Control, and Dynamics, 28(6):1089–
1102, November 2005. doi: 10.2514/1.13030.

[19] Silvia Ferrari and Robert F. Stengel. Online Adaptive Critic Flight Control. Journal of Guidance,
Control, and Dynamics, 27(5):777–786, September 2004. doi: 10.2514/1.12597.

[20] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. arXiv:1802.09477 [cs, stat], October 2018.

[21] Fabian Grondman, Gertjan Looye, Richard O. Kuchar, Q Ping Chu, and Erik-Jan Van Kampen.
Design and Flight Testing of Incremental Nonlinear Dynamic Inversion-based Control Laws for a
Passenger Aircraft. In 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee,
Florida, January 2018. American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-
526-5. doi: 10.2514/6.2018-0385.

[22] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv:1801.01290 [cs,
stat], August 2018.

[23] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algo-
rithms and Applications. arXiv:1812.05905 [cs, stat], January 2019.

[24] Hado Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems,
volume 23. Curran Associates, Inc., 2010.

[25] Simon S. Haykin. Adaptive Filter Theory. Prentice Hall, 2002. ISBN 978-0-13-090126-2.

[26] Lei He, Nabil Aouf, James F. Whidborne, and Bifeng Song. Deep Reinforcement Learning based
Local Planner for UAV Obstacle Avoidance using Demonstration Data. arXiv:2008.02521 [cs],
August 2020.

[27] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep Reinforcement Learning that Matters. arXiv:1709.06560 [cs, stat], January 2019.

[28] Stefan Heyer, Dave Kroezen, and Erik-Jan Van Kampen. Online Adaptive Incremental Rein-
forcement Learning Flight Control for a CS-25 Class Aircraft. In AIAA Scitech 2020 Forum,
AIAA SciTech Forum. American Institute of Aeronautics and Astronautics, January 2020. doi:
10.2514/6.2020-1844.

[29] Sham Kakade and John Langford. Approximately Optimal Approximate Reinforcement Learning.
In In Proc. 19th International Conference on Machine Learning, pages 267–274, 2002.

[30] Twan Keijzer, Gertjan Looye, Q Ping Chu, and Erik-Jan Van Kampen. Design and Flight Testing
of Incremental Backstepping based Control Laws with Angular Accelerometer Feedback. In AIAA
Scitech 2019 Forum, San Diego, California, January 2019. American Institute of Aeronautics and
Astronautics. ISBN 978-1-62410-578-4. doi: 10.2514/6.2019-0129.

[31] William Koch, Renato Mancuso, Richard West, and Azer Bestavros. Reinforcement Learning for
UAV Attitude Control. arXiv:1804.04154 [cs], April 2018.

Bibliography 131

[32] Ramesh Konatala, Erik-Jan Van Kampen, and Gertjan Looye. Reinforcement Learning based
Online Adaptive Flight Control for the Cessna Citation II(PH-LAB) Aircraft. In AIAA Scitech 2021
Forum, VIRTUAL EVENT, January 2021. American Institute of Aeronautics and Astronautics.
ISBN 978-1-62410-609-5. doi: 10.2514/6.2021-0883.

[33] Vijay Konda and John Tsitsiklis. Actor-Critic Algorithms. Society for Industrial and Applied Math-
ematics, 42, April 2001.

[34] Dave Kroezen. Online Reinforcement Learning for Flight Control: An Adaptive Critic Design
without prior model knowledge. Master’s thesis, Delft Unifersity of Technology, 2019.

[35] Stephen H. Lane and Robert F. Stengel. Flight control design using non-linear inverse dynam-
ics. Automatica, 24(4):471–483, July 1988. ISSN 0005-1098. doi: 10.1016/0005-1098(88)
90092-1.

[36] Jun Lee. Longitudinal Flight Control by Reinforcement Learning: Online Adaptive Critic Design
Approach to Altitude Control. Master Thesis, Delft University of Technology, Delft, 2019.

[37] Jun H. Lee and Erik-Jan Van Kampen. Online reinforcement learning for fixed-wing aircraft longi-
tudinal control. In AIAA Scitech 2021 Forum, VIRTUAL EVENT, January 2021. American Institute
of Aeronautics and Astronautics. ISBN 978-1-62410-609-5. doi: 10.2514/6.2021-0392.

[38] Myoung Hoon Lee and Jun Moon. Deep Reinforcement Learning-based UAV Navigation and
Control: A Soft Actor-Critic with Hindsight Experience Replay Approach. arXiv:2106.01016 [cs,
eess], June 2021.

[39] Bo Li, Zhigang Gan, Daqing Chen, and Dyachenko Sergey Aleksandrovich. UAV Maneuvering
Target Tracking in Uncertain Environments Based on Deep Reinforcement Learning and Meta-
Learning. Remote Sensing, 12(22):3789, January 2020. doi: 10.3390/rs12223789.

[40] Jiajin Li and Baoxiang Wang. Policy Optimization with Second-Order Advantage Information.
arXiv:1805.03586 [cs, stat], May 2019.

[41] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. Model-Free Control for Distributed Stream
Data Processing using Deep Reinforcement Learning. Proceedings of the VLDB Endowment,
11(6):705–718, February 2018. ISSN 2150-8097. doi: 10.14778/3184470.3184474.

[42] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv:1509.02971 [cs, stat], July 2019.

[43] Derong Liu, Shan Xue, Bo Zhao, Biao Luo, and Qinglai Wei. Adaptive Dynamic Programming
for Control: A Survey and Recent Advances. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 51(1):142–160, January 2021. ISSN 2168-2232. doi: 10.1109/TSMC.2020.
3042876.

[44] Frank T Lynch and Abdollah Khodadoust. Effects of ice accretions on aircraft aerodynamics.
Progress in Aerospace Sciences, 37(8):669–767, November 2001. ISSN 0376-0421. doi: 10.
1016/S0376-0421(01)00018-5.

[45] Hamid Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, and Richard
Sutton. Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approxima-
tion. January 2009.

[46] Christopher Miller. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Perfor-
mance Predictions. In AIAA Guidance, Navigation, and Control Conference, Portland, Oregon,
August 2011. American Institute of Aeronautics and Astronautics. ISBN 978-1-60086-952-5. doi:
10.2514/6.2011-6467.

[47] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, DaanWier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602
[cs], December 2013.

132 Bibliography

[48] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529–533, February 2015. ISSN 1476-4687. doi:
10.1038/nature14236.

[49] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning. arXiv:1602.01783 [cs], June 2016.

[50] D.J. Moorhouse and R.J. Woodcock. Background Information and User Guide for MIL-F-8785C,
Military SpecificationFlying Qualities of Piloted Airplanes. Technical report, Air Force Wright
Aeronautical Labs Wright-Patterson AFB OH, 1982.

[51] J. A. Mulder, W. H. J. J. van Staveren, J. C. van der Vaart, E. de Weerdt, C. C. de Visser, A. C.
in ’t Veld, and E. Mooij. Flight Dynamics: Lecture Notes AE3202. Lecture Notes, Delft University
of Technology, 2013.

[52] Fabio Muratore, Michael Gienger, and Jan Peters. Assessing Transferability from Simulation
to Reality for Reinforcement Learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(4):1172–1183, April 2021. ISSN 0162-8828, 2160-9292, 1939-3539. doi: 10.
1109/TPAMI.2019.2952353.

[53] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to Adapt in Dynamic, Real-World Environments Through Meta-
Reinforcement Learning. arXiv:1803.11347 [cs, stat], February 2019.

[54] A. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. ICML 2004, 2004.
doi: 10.1145/1015330.1015435.

[55] Zhen Ni, Haibo He, and Jinyu Wen. Adaptive Learning in Tracking Control Based on the Dual
Critic Network Design. IEEE Transactions on Neural Networks and Learning Systems, 24(6):
913–928, June 2013. ISSN 2162-2388. doi: 10.1109/TNNLS.2013.2247627.

[56] Dirk Ormoneit and Śaunak Sen. Kernel-Based Reinforcement Learning. Machine Learning, 49
(2):161–178, November 2002. ISSN 1573-0565. doi: 10.1023/A:1017928328829.

[57] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, October 2010. ISSN 1558-2191. doi:
10.1109/TKDE.2009.191.

[58] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-Real Trans-
fer of Robotic Control with Dynamics Randomization. 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 3803–3810, May 2018. doi: 10.1109/ICRA.2018.
8460528.

[59] Tijmen Pollack, Gertjan Looye, and Frans Van der Linden. Design and flight testing of flight control
laws integrating incremental nonlinear dynamic inversion and servo current control. In AIAA
Scitech 2019 Forum, AIAA SciTech Forum. American Institute of Aeronautics and Astronautics,
January 2019. doi: 10.2514/6.2019-0130.

[60] Warrren B. Powell. Approximate dynamic programming : Solving the curses of dimensionality.
John Wiley & Sons, Inc., 2011. doi: 10.1002/9781118029176.

[61] D.V. Prokhorov and D.C. Wunsch. Adaptive critic designs. IEEE Transactions on Neural Net-
works, 8(5):997–1007, September 1997. ISSN 1941-0093. doi: 10.1109/72.623201.

[62] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, Second Edition : An Introduc-
tion, volume Second edition of Adaptive Computation and Machine Learning. Bradford Books,
Cambridge, Massachusetts, 2018. ISBN 978-0-262-03924-6.

Bibliography 133

[63] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv:1609.04747
[cs], June 2017.

[64] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, October 1986. ISSN 1476-4687. doi:
10.1038/323533a0.

[65] G. Rummery and Mahesan Niranjan. On-Line Q-Learning Using Connectionist Systems. Tech-
nical Report CUED/F-INFENG/TR 166, November 1994.

[66] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay.
arXiv:1511.05952 [cs], February 2016.

[67] Jurgen Schmidhuber. Evolutionary Principles in Self-Referential Learning. On Learning Now to
Learn: The Meta-Meta-Meta...-Hook. Diploma Thesis, Technische Universitat Munchen, Ger-
many, May 1987.

[68] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
Region Policy Optimization. arXiv:1502.05477 [cs], 2015.

[69] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs], August 2017.

[70] Mazen Shehab, Ahmed Zaghloul, and Ayman El-Badawy. Low-Level Control of a Quadrotor
using Twin Delayed Deep Deterministic Policy Gradient (TD3). In 2021 18th International Con-
ference on Electrical Engineering, Computing Science and Automatic Control (CCE), pages 1–6,
November 2021. doi: 10.1109/CCE53527.2021.9633086.

[71] Jennie Si, Andrew G. Barto, Warren Buckler Powell, and Don Wunsch. Handbook of Learning
and Approximate Dynamic Programming. Wiley-IEEE Press, 2004. ISBN 978-0-470-54478-5.
doi: 10.1109/9780470544785.

[72] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic Policy Gradient Algorithms. In Proceedings of the 31st International Conference
on Machine Learning, pages 387–395. PMLR, January 2014.

[73] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550(7676):354–359, October 2017. ISSN
1476-4687. doi: 10.1038/nature24270.

[74] P. Simplício, M. D. Pavel, E. van Kampen, and Q. P. Chu. An acceleration measurements-based
approach for helicopter nonlinear flight control using Incremental Nonlinear Dynamic Inversion.
Control Engineering Practice, 21(8):1065–1077, August 2013. ISSN 0967-0661. doi: 10.1016/
j.conengprac.2013.03.009.

[75] Lars Sonneveldt, E. van Oort, Q. Chu, C. de Visser, J. Mulder, and J. Breeman. Lyapunov-
based Fault Tolerant Flight Control Designs for a Modern Fighter Aircraft Model. In AIAA
Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control and Co-
located Conferences. American Institute of Aeronautics and Astronautics, August 2009. doi:
10.2514/6.2009-6172.

[76] Bo Sun and Erik-Jan van Kampen. Incremental model-based global dual heuristic programming
with explicit analytical calculations applied to flight control. Engineering Applications of Artifi-
cial Intelligence, 89:103425, March 2020. ISSN 0952-1976. doi: 10.1016/j.engappai.2019.
103425.

[77] R. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. Policy Gradient Methods for
Reinforcement Learning with Function Approximation. In NIPS, 1999.

134 Bibliography

[78] S. Thrun and Anton Schwartz. Issues in Using Function Approximation for Reinforcement Learn-
ing. undefined, 1999.

[79] J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5):674–690, May 1997. ISSN 1558-2523.
doi: 10.1109/9.580874.

[80] J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5):674–690, May 1997. ISSN 1558-2523.
doi: 10.1109/9.580874.

[81] Antonios Tsourdos, Ir. Adhi Dharma Permana, Dewi H. Budiarti, Hyo-Sang Shin, and Chang-Hun
Lee. Developing Flight Control Policy Using Deep Deterministic Policy Gradient. In 2019 IEEE
International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES),
pages 1–7, October 2019. doi: 10.1109/ICARES.2019.8914343.

[82] Daniel Urieli and Peter Stone. Model-Selection for Non-parametric Function Approximation in
Continuous Control Problems: A Case Study in a Smart Energy System. volume 8188, pages
65–80, September 2013. doi: 10.1007/978-3-642-40988-2_5.

[83] M. A. van den Hoek, C. C. de Visser, and D. M. Pool. Identification of a Cessna Citation II
Model Based on Flight Test Data. 4th CEAS Specialist Conference on Guidance, Navigation and
Control, 2017.

[84] Erik-Jan van Kampen, Q.p. Chu, and J.a. Mulder. Continuous Adaptive Critic Flight Control Aided
with Approximated Plant Dynamics. In AIAA Guidance, Navigation, and Control Conference and
Exhibit, Guidance, Navigation, and Control and Co-located Conferences. American Institute of
Aeronautics and Astronautics, August 2006. doi: 10.2514/6.2006-6429.

[85] G.K. Venayagamoorthy, R.G. Harley, and D.C. Wunsch. Comparison of heuristic dynamic pro-
gramming and dual heuristic programming adaptive critics for neurocontrol of a turbogenera-
tor. IEEE Transactions on Neural Networks, 13(3):764–773, May 2002. ISSN 1941-0093. doi:
10.1109/TNN.2002.1000146.

[86] F. Wang, Huaguang Zhang, and Derong Liu. Adaptive Dynamic Programming: An Introduction.
IEEE Computational Intelligence Magazine, 2009. doi: 10.1109/MCI.2009.932261.

[87] Yufei Wang and Tianwei Ni. Meta-SAC: Auto-tune the Entropy Temperature of Soft Actor-Critic
via Metagradient. arXiv:2007.01932 [cs, stat], July 2020.

[88] Zhuang Wang, Hui Li, Zhaoxin Wu, and Haolin Wu. A pretrained proximal policy optimiza-
tion algorithm with reward shaping for aircraft guidance to a moving destination in three-
dimensional continuous space. International Journal of Advanced Robotic Systems, 18(1):
1729881421989546, January 2021. ISSN 1729-8806. doi: 10.1177/1729881421989546.

[89] Elwin Weerdt, Erik-Jan Kampen, Daan Gemert, Q. P. Chu, and J. A. Mulder. Adaptive Nonlinear
Dynamic Inversion for Spacecraft Attitude Control with Fuel Sloshing. In AIAA Guidance, Navi-
gation and Control Conference and Exhibit. American Institute of Aeronautics and Astronautics,
2008. doi: 10.2514/6.2008-7162.

[90] Marco Wiering and Martijn van Otterlo, editors. Reinforcement Learning: State-of-the-Art. Num-
ber 12 in Adaptation, Learning, and Optimization. Springer, Berlin Heidelberg, softcover reprint
edition, 2012. ISBN 978-3-642-44685-6.

[91] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256, May 1992. ISSN 1573-0565. doi: 10.1007/
BF00992696.

[92] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M. Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance Reduction for Policy Gradient with Action-Dependent
Factorized Baselines. arXiv:1803.07246 [cs, stat], March 2018.

Bibliography 135

[93] Yuhuai Wu, Elman Mansimov, Shun Liao, Alec Radford, and John Schulman. OpenAI Baselines:
ACKTR & A2C. https://openai.com/blog/baselines-acktr-a2c/, August 2017.

[94] Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy Finetuning: Bridging
Sample-Efficient Offline and Online Reinforcement Learning. arXiv:2106.04895 [cs, stat], June
2021.

[95] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. How Does Learning Rate
Decay Help Modern Neural Networks? arXiv:1908.01878 [cs, stat], September 2019.

[96] Ye Zhou, Erik-Jan Van Kampen, and Q. Chu. Incremental Model Based Heuristic Dynamic Pro-
gramming for Nonlinear Adaptive Flight Control. In IMAV 2016. Delft University of Technology,
October 2016.

[97] Ye Zhou, Erik-Jan van Kampen, and QiPing Chu. Nonlinear Adaptive Flight Control Using Incre-
mental Approximate Dynamic Programming and Output Feedback. Journal of Guidance, Control,
and Dynamics, 40(2):493–496, February 2017. doi: 10.2514/1.G001762.

[98] Ye Zhou, Erik-Jan van Kampen, and Qi Ping Chu. Incremental model based online dual heuristic
programming for nonlinear adaptive control. Control Engineering Practice, 73:13–25, April 2018.
ISSN 0967-0661. doi: 10.1016/j.conengprac.2017.12.011.

[99] Ye Zhou, Erik-Jan van Kampen, and QiPing Chu. Incremental Approximate Dynamic Program-
ming for Nonlinear Adaptive Tracking Control with Partial Observability. Journal of Guidance,
Control, and Dynamics, 41(12):2554–2567, 2018. doi: 10.2514/1.G003472.

[100] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1):
43–76, January 2021. ISSN 1558-2256. doi: 10.1109/JPROC.2020.3004555.

	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Background
	Research Objective and Questions
	Report Outline

	I Scientific Article
	Hybrid Soft Actor-Critic and Incremental Dual Heuristic Programming Reinforcement Learning for Fault-Tolerant Flight Control
	Introduction
	Fundamentals
	Reinforcement Learning Problem Formulation
	Soft Actor-Critic Framework
	Incremental Dual Heuristic Programming Framework

	Flight Controller Design
	High-Fidelity Environment Model
	Network Architecture
	Attitude Controller
	Altitude Controller
	Hybrid SAC-IDHP Cascaded Controller
	Training Strategy

	Results and Discussion
	Nominal System
	Failed System
	Additional Results

	Conclusion

	II Preliminary Research
	Literature Review
	Reinforcement Learning Fundamentals
	The Agent–Environment Interface
	Markov Decision Processes
	Rewards and Returns
	Policy and Value Functions
	Bellman Equations
	Optimality Equations
	High-Level Concepts
	Common Discrete Solution Methods

	Reinforcement Learning in Continuous Space
	Function Approximation and Optimization
	Agent Structures

	Approximate Dynamic Programming
	Adaptive Critic Designs
	State-of-the-art ADP Applications

	Deep Reinforcement Learning
	Deep Q-Network
	Trust Region Policy Optimization
	Asynchronous Advantage Actor-Critic
	Deep Deterministic Policy Gradient
	State-of-the-art DRL Applications

	Simulation Reality-Gap in Reinforcement Learning Flight Control
	Common Causes and Solutions to Simulation Reality-Gap in Reinforcement Learning
	Modelling Requirements

	Conclusion Literature Study
	RL Framework Candidate
	Reality-Gap Challenges

	Preliminary Analysis
	Environment
	State-Transition Model
	Reward and Observation Model

	IDHP Agent
	Incremental Model
	IDHP Actor
	IDHP Critic
	IDHP Network Architectures
	IDHP Training Strategy

	SAC Agent
	Entropy
	SAC Actor
	SAC Critic
	SAC Network Architectures
	SAC Training Strategy

	IDHP-SAC Hybrid Agent
	IDHP-SAC Network Architectures
	IDHP-SAC Training Strategy

	Results and Discussion
	Normal System Dynamics
	Untrimmed initialization
	Robustness and Fault-Tolerance Analysis

	Conclusion Preliminary Analysis

	III Additional Results
	Decoupled Hybrid Attitude Controller
	Decoupled Hybrid Online Training
	Comparison on Fault-Tolerance with Coupled Controller

	Robustness to Initial Flight Condition
	FC1
	FC3
	FC4

	Effect of Covariance Reset
	Atmospheric and Control Disturbances
	Biased Sensor Noise
	Atmospheric Disturbance
	Control Disturbance

	Additional Failure Modes
	Center-of-Gravity Shift
	Icing Effects
	Partial Loss of Horizontal Tail

	Verification & Validation
	Verification
	Validation

	IV Closure
	Conclusion
	Recommendations
	Bibliography

