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A B S T R A C T

The method of detecting ballast bed defects using ground penetrating radar (GPR) is an important method for 
guiding the maintenance of railway infrastructure. Currently, this technology primarily relies on time–frequency 
analysis to assess the condition of the ballast bed and manual interpretation of GPR images to identify defect 
areas and types, resulting in low automation levels. This paper proposes a bimodal deep learning classification 
model that enables intelligent classification of moisture and mud pumping defects in ballast beds. This model 
includes two channels, each processing a different data modality. One channel uses a Multilayer Perceptron 
(MLP) to extract features of A-scan data in the time domain. The other channel utilizes Short-Time Fourier 
Transform (STFT) to convert time domain signals into frequency domain signals, which are then processed by a 
ResNet18 to extract frequency domain features. By fusing the time and frequency features, the proposed Time- 
Frequency-Fusion ResNet model (TFF-ResNet) demonstrates superior performance. Experimental results show 
that TFF-ResNet outperforms the standalone MLP and ResNet18 models, with performance improvements of 
approximately 24% and 14% on the validation dataset, and 21% and 34% on the testing dataset, respectively.

Introduction

The ballast bed, as a crucial component of ballasted tracks, has the 
function of supporting the track structure, providing longitudinal and 
lateral resistance, and providing drainage [1]. However, with increased 
intensive high-speed train loading, axle load, and traffic volume, the 
condition of the ballast bed and subgrade deteriorates, leading to 
numerous defects. Fouling in the ballast bed primarily arises from fines 
due to ballast abrasion and breakage, infiltration from external sources, 
and degradation of other components [2]. The stiffness of the ballast bed 
increases, and resilience reduces when fouling jams the voids between 
ballast particles. Under the stress from the train, ballast particles and 
subgrade begin to mix at the interface, resulting in the formation of 
ballast pockets. The ballast pocket usually stores a lot of water, which 
causes the subgrade soil to become muddy[3]. Mud pumping is a defect 
characterized by water mixed with fouling being drawn up to the sub-
surface of the ballast layer. Extensive engineering practice has demon-
strated that mud pumping is one of the most common defects in railway 

ballast beds, significantly impacting train safety and necessitating timely 
maintenance [4,5,6,7]. Due to the limited developments in track in-
spection equipment and technology, the current ballast bed condition is 
mainly assessed by indirect means through the total passing gross load. 
But relying only on this metric is unreasonable and can sometimes lead 
to incorrect maintenance decisions. The GPR method for ballast bed 
inspection is characterized by its high speed and nondestructive nature, 
making it an important technological approach for railway infrastruc-
ture monitoring [8,9]. However, traditional GPR data analysis methods 
mainly rely on preset parameters to filter noise, extract signal features in 
the time–frequency domain, and then judge the condition of the ballast 
bed according to these features. [10,11,12,13,14]. This process requires 
multiple adjustments according to different geological conditions and 
ballast bed structures and is highly dependent on expert experience and 
manual intervention, leading to low efficiency and poor adaptability. As 
artificial intelligence progresses, the application of machine learning 
and deep learning is transforming traditional GPR data analysis 
methods. By automating the optimization of processing parameters and 
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learning from large datasets, these algorithms not only enhance the 
precision and efficiency of detection but also significantly reduce reli-
ance on manual operations and improve adaptability to various complex 
conditions. These algorithms can be divided into two main categories 
based on the nature of their learning targets: machine learning algo-
rithms based on the single-channel waveform (A-scan data) and deep 
learning algorithms based on the two-dimensional profile (B-scan data). 

(1) Machine learning algorithms based on the A-scan data. This 
method primarily consists of three steps: data preprocessing, 
feature extraction, and classification using algorithms. The goal 
of data preprocessing is to enhance the signal-to-noise ratio of the 
data. Typical preprocessing methods include background 
denoising, zero offset removal, and band-pass filtering [15,16]. 
The feature extraction process involves selecting representative 
features of defects based on theoretical knowledge. In the time 
domain, this includes peak, mean, variance, skewness, kurtosis, 
and fourth-order moments of the A-scan data, while in the fre-
quency domain, it includes entropy of the frequency spectrum 
and energy density spectrum [17,18]. These features should be 
invariant to time shifts and scaling, insensitive to noise and 
multiple reflections, and easily discriminable [19]. Classification 
algorithms learn from extracted features to enable intelligent 
recognition of data, with the main algorithms currently including 
the K-nearest neighbors algorithm (KNN), SVM, neural networks, 
etc. Sezgin et al. [20] applied a KNN algorithm in conjunction 
with PCA to A-scan data for identifying underground targets. 
While the KNN algorithm is effective at differentiating between 
various feature classes, its accuracy is notably reduced by the 
sensitivity to the parameter K, especially when the data set con-
tains outliers [21]. Shao et al. [22] introduced an automatic 
classification system that assesses ballast bed conditions by 
extracting magnitude spectra at salient frequencies and classi-
fying them using SVM. Du et al. [23] extracted segmented energy, 
variance, and interface as the eigenvalues from GPR data to 
establish a neural network model for the identification of mud- 
pumping in railway subgrade. Such methods require manual 
feature extraction from GPR data, and the accuracy of these al-
gorithms highly depends on the appropriateness of the feature 
extraction. Therefore, these algorithms only perform well on 
specific datasets. Deep learning offers robust capabilities for 
automatic feature extraction. Xu [24] and Ahmadvand et al. [25]
both used 1D-CNN to extract features from A-scan signals to 
establish a model for identifying defects in concrete pavements. 
Liu et al. [26] combined the 1D-CNN and RNN models to extract 
features from A-scan signals for assessing the condition of railway 
subgrade. However, they only extract A-scan data features from 
the time domain, and the scene generalization ability of the 1D- 
CNNorithm is limited.

(2) Deep learning algorithms based on the B-scan data. CNN and 
RNN are the most popular deep learning architectures used in the 
application of GPR B-scan data. Özkaya et al. [27] combined 
residual CNN and Bi-LSTM models for analyzing B-scan data. The 
method shows high performance in determining the scanning 
frequency of GPR B-Scan data and the type of soil. Xu et al. [28]
have enhanced recognition accuracy by integrating improvement 
strategies such as feature cascading, the adversarial spatial 
dropout network (ASDN), Soft-NMS, and data augmentation into 
the Faster R-CNN framework, tailored to the characteristics of 
subgrade defects. MA et al. [29] proposed an LS-YOLOv3 model 
for real-time detection of railway subgrade defects, utilizing a 
deep residual network to extract characteristic features. Lei et al. 
[30] introduced an adaptive target region detection algorithm 
and a combined Convolutional Neural Network-Long Short-Term 
Memory (CNN-LSTM) framework, achieving remarkable accu-
racy in classifying hyperbolic signatures. Although deep learning 

algorithms can effectively extract features from grayscale images, 
using grayscale images as training data presents the following 
problems: (1) Since GPR data is stored as 16-bit integers, ranging 
from 0 to 65,535 (2^16–––1), converting it into 8-bit grayscale 
images results in a reduced range from 0 to 255. This compression 
of the dynamic range consequently diminishes detail, particularly 
in areas with subtle features. (2) When creating grayscale images, 
the data from the entire railway line needs to be segmented into 
uniform sizes. This segmentation method may disrupt the integ-
rity of the defect areas, making the morphology of the defects 
more complex and thus increasing the difficulty of model 
training. (3) Each image may contain defects of varying numbers, 
sizes, and types, and the boundaries of these defect areas are often 
blurred. This can lead to errors such as omissions, incorrect se-
lections, and irregular bounding boxes during the annotation 
process. (4) In actual ballast bed inspections, the method 
described in this paper can quickly classify data along the entire 
line and locate defects in real-time.

The problems of the above two methods include the need to manu-
ally design features and poor model generalization, and the production 
of image datasets is laborious and does not contain actual physical in-
formation. Considering the limitations of the above methods, this paper 
proposes a deep learning algorithm based on A-scan data that enables 
intelligent classification of moisture and mud pumping defects in ballast 
beds. This study extracts features from both the time domain and fre-
quency domain simultaneously to gather physical information from A- 
scan signals. Classical time domain feature processing algorithms, such 
as LSTM and GRU, designed to capture long-term dependencies, are not 
suitable for A-scan samples with short data lengths. The MLP focuses on 
minimizing output error, allowing it to accurately learn key data char-
acteristics even with limited samples. Additionally, the MLP, with its 
simple network structure, has high computational efficiency, making it 
suitable for real-time or near-real-time GPR data processing [31]. 
Therefore, considering the GPR data characteristics and practical 
detection requirements, choosing the MLP to extract time domain fea-
tures is more reasonable. To extract frequency domain features while 
retaining time information, this study employs the commonly used STFT 
algorithm, converting A-scan data into two-dimensional spectral images 
that contain both time and frequency information [32]. By analyzing 
these spectral images, the frequency domain characteristics of A-scan 
data are effectively extracted. GPR spectral images typically exhibit 
highly structured features that differ from natural images and display 
complex patterns in both time and frequency dimensions. Resnet18 le-
verages deep residual blocks, allowing the network to efficiently learn 
deep features without losing signal strength, which is crucial for 
analyzing subtle frequency variations in GPR data. Moreover, compared 
to other classic image feature extraction algorithms such as AlexNet and 
VGG, Resnet18 has a more efficient and simplified architecture, which 
speeds up the training process and allows for better convergence. 
Therefore, this paper selects Resnet18 to extract the frequency domain 
features of the A-scan signal.

Data preparation

Principle of GPR

GPR is a geophysical survey method that uses electromagnetic ra-
diation to image the subsurface. It comprises a transmitting antenna, a 
receiving antenna, and a main control unit. The transmitting antenna 
emits electromagnetic waves with a fixed bandwidth into the ballast 
layer. When the waves encounter targets with different dielectric 
properties, the waves are reflected and scattered. Then, the receiving 
antenna receives the return waves, and the main control unit samples 
and stores the electrical signals, obtaining the A-scan data of the current 
measurement point. When using GPR for railway ballast bed inspection, 
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the antenna moves along the railway line, and the A-scan data collected 
at each point forms a two-dimensional radar image. The propagation of 
electromagnetic waves in a medium follows Maxwell’s equations, as 
shown in Eq. (1) [33]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× H = J +
∂D
∂t

∇× E = −
∂B
∂t

∇ • D = ρ

∇ • B = 0

(1) 

where H(A/m) is the magnetic field strength, E(V/m) is the electric field 
strength, D(C/m2) is the electric flux density, B(Wb/m2) is the magnetic 
flux density, J(A/m2) is the current density, and ρ(C/m3) is the charge 
density.

In the Chinese railway ballast standards, the ballast typically consists 
of non-magnetic materials such as granite and basalt. Therefore, this 
paper focuses on the influence of permittivity on electromagnetic wave 
propagation.

When electromagnetic waves encounter an interface with a signifi-
cant difference in permittivity (such as ballast and air), reflection occurs. 
In physics, the strength of reflection is defined by the reflection coeffi-
cient, which can be calculated using Eq. (2) [34]: 

rj,j+1 =

̅̅̅̅εj
√

−
̅̅̅̅̅̅̅̅εj+1

√

̅̅̅̅εj
√

+
̅̅̅̅̅̅̅̅εj+1

√ (2) 

where rj,j+1 is the reflection coefficient, εj is the relative permittivity of 
the material above the interface, εj+1 is the relative permittivity of the 
material below the interface. The greater the difference between εj and 
εj+1, the greater the absolute value of the rj,j+1, indicating more energy is 
reflected and the waveform amplitude is larger.

Additionally, electromagnetic waves attenuate as they propagate, 
and physics defines the attenuation coefficient to measure the medium’s 
effect on the attenuation of electromagnetic waves, as shown in Eq. (3)
[34]: 

α = ω

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

με
2

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
( σ

ωε

)2
√

− 1

]√
√
√
√ (3) 

where α is the attenuation constant, and ω is the angular frequency. For 
non-magnetic materials like railway ballast, μ (magnetic permeability) 
does not vary significantly. The permittivity ε and electrical conduc-
tivity σ are the main factors influencing the attenuation coefficient.

Due to the differences in ε and σ between air, ballast, water, and 
mud, there are variations in the scattering, reflection, and attenuation of 
electromagnetic waves in these media. Based on these differences, deep 

learning algorithms can be utilized to intelligently classify different 
ballast bed conditions.

Data collection

During the detection process, a total of three survey lines are ar-
ranged: one at the center of the railway and the other two on both sides 
of the rails, as depicted in Fig. 1(a). This experiment primarily involves 
collecting GPR data from the ballast bed and subgrade, with the data 
acquisition parameters detailed in Table 1. To expand the geographic 
coverage of the dataset and enhance the model’s generalization ability, 
GPR data were collected from four general-speed railways in North 
China, Central China, and Southwest China. The foundation for defect 
determination in this study is twofold: expert interpretation based on the 
GPR characteristics of ballast bed defects, and on-site excavation veri-
fication. The collected ballast samples were washed, dried, and sieved to 
measure the water content and fouling level of each railway section, as 
illustrated in Fig. 1(b). In different railway lines and sections, the dis-
tribution of moisture anomalies and mud-pumping defects varies 
considerably. Moisture anomalies primarily occur near the subballast 
layer, while mud-pumping defects are observed across the entire cross- 
section of the ballast bed. The types and quantities of A-scan data 
collected from each line are detailed in Table 2.

Data preprocessing

Due to interference from external environments, the original data 
exhibits a low signal-to-noise ratio. Processing this data is crucial for 
suppressing noise and enhancing the visibility of key features, which 
include interlayer interfaces and the amplitude, phase, and waveform of 
reflected waves from target defects. 

1. Background denoising. The sources of noise primarily come from two 
parts: electromagnetic interference noise and standing wave inter-
ference. Electromagnetic interference noise mainly originates from 
the disruptive signals emitted by train operation control equipment 

Fig. 1. Collection of GPR data and qualitative assessment of ballast bed defects.

Table 1 
Main technical parameters set for the operation of GPR 
equipment.

Parameter Values

Sampling interval 12 cm
Detection Depth 200 cm
Center Frequency 400 MHz
Sampling Frequency 7.8 GHz
Time Window 65 ns
Number of Sampling Points 512
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and communication devices. Typically, these noises appear 
randomly and differ in frequency from the main frequency of the 
GPR transmission wave, so they can be removed through band-pass 
filtering. In this study, the central frequency of the electromagnetic 
wave is set at 400 MHz. The band-pass filtering involves removing 
low-frequency interferences below 100 MHz and high-frequency 
interferences above 800 MHz. By doing so, the filter effectively re-
duces noise that significantly deviates from the central frequency, 
thereby enhancing the quality of the GPR data and the reliability of 
the detection results. Another source of noise is standing wave 
interference, which is caused by the superposition of echoes from 
different paths. Standing wave interference forms strip-like distur-
bances at equal depths on B-scan images, strongly suppressing valid 
data. In this paper, a mean image denoising algorithm is employed to 
reduce the impact of standing wave interference. First, calculate the 
sum of each column in each data block, and then determine the 
number of valid values. Subsequently, calculate the average value for 
each row, ignoring invalid or missing values, to obtain the average 
background noise for each row. Finally, subtract these averages from 
the original data to reduce the impact of background noise. Fig. 2(a) 
shows the comparison of the A-scan data before and after back-
ground denoising. By calculating the ratio of the power of the valid 
signal to the power of the noise signal, it was found that the signal-to- 
noise ratio of the data after denoising improved by approximately 
189 %, demonstrating the effectiveness of this method

2. Zero offset removal. In the process of data collection, due to the 
extensive mileage of the railway lines and the prolonged detection 
time, the instability of the detection environment (such as changes in 
temperature and humidity) led to a zero offset of GPR data. Zero 
offset refers to the phenomenon where the A-scan data do not 
oscillate around the zero value and deviate from the theoretical 
baseline level. Zero offset can cause errors in estimating the depth of 
defect localization, reducing the accuracy of detection. To correct 
this deviation, this paper calculates the average value of the A-scan 
data and then subtracts this mean from the signal. Fig. 2(b) displays 

the comparison of the A-scan data before and after zero offset 
removal

Data analysis

After preprocessing the original data, a clear radar image is obtained. 
Fig. 3 displays the GPR grayscale image and A-scan data that reflect the 
structure of the ballast bed and subgrade. The 0–20 cm interval repre-
sents the air layer. The continuous jagged spike at 20 cm is caused by 
strong reflection from the rails and sleepers. From 20 to 50 cm, a series 
of irregular multiple reflections are observed, caused by reflections from 
ballast with different particle sizes. A clear in-phase axis at 50 cm marks 
the location of the subgrade surface layer.

For a ballast bed with uniform gradation and no obvious fouling, Eq. 
(2) indicates that the reflection coefficients of its internal regions are 
relatively consistent, and there are no distinct reflective layers in the 
GPR image, as shown in Fig. 4(a). Due to the higher relative permittivity 
of water (80) compared to that of ballast (4–8), the reflection coefficient 
rj,j+1 increases on the surface of the wet ballast layer, resulting in a 
distinct reflection phenomenon. The radar image features of moisture 
are that the medium interface has low-frequency and strong reflection, 
large amplitude, contrary phase, and multiple reflections, as shown in 
Fig. 4(b). When the mud pumping occurs, a large amount of water-laden 

Table 2 
Number of A-scan data obtained on each railway line.

Line Normal Moisture Mud pumping Total

A 5900 5800 5800 17,500
B 5900 5700 0 11,600
C 5900 5800 5800 17,500
D 3852 2948 2520 9320

Fig. 2. Comparison of A-scan data before and after preprocessing.

Fig. 3. GPR grayscale image profile.
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silt rises to the surface of the ballast bed. Due to the varying water 
content in the mud, the radar image features of mud pumping are that 
the wave group of defects is disorderly and discontinuous, and the strong 
low-frequency reflection resembles a mountain tip or straw hat, as 
shown in Fig. 4(c).

Given the non-stationary nature of GPR signals, which fluctuate with 
variations in the medium and over time, the STFT (Short-Time Fourier 
Transform) is employed to analyze these dynamic changes effectively. 
The principle of STFT involves segmenting the signal into overlapping 
short sections using a sliding window function and performing a discrete 
Fourier transform on each section. This process balances time and fre-
quency resolution, allowing us to observe how the frequency compo-
nents of a signal vary with time. The expression for the STFT is defined 
as[32]: 

STFTv(τ, f) =
∫ +∞

− ∞
x(t)g(t − τ)e− j2πftdτ (4) 

In the equation, x(t) represents the time-domain signal, g(t-τ) is the 
window function used to select a specific time segment, and τ indicates 
the center position of the window. f is the frequency, and e− j2πft is the 
complex exponential form of the Fourier transform. Commonly used 

window functions include the rectangular window, triangular window, 
and Hamming window. Compared to other window functions, the 
Hamming window provides smoother boundaries, which can reduce 
spectral leakage, lower sidelobe levels, and improve signal frequency 
resolution. Therefore, this paper chooses the Hamming window function 
for the transformation. Fig. 5 shows the time–frequency differences 
among the three signals.

1.Time domains. As shown in Fig. 5(a), due to differences in water 
and fouling levels, there are significant variations among the three sig-
nals at the surface of the ballast bed (at 6 ns). The signal for mud 
pumping shows the peak at about 600 mV, the signal for moisture has a 
peak of about 400 mV, and the signal for normal ballast sections has the 
peak at approximately 250 mV, with their ratios roughly at 12:8:5.

2. Frequency domains. As shown in Fig. 5(b), because the central 
frequency of the GPR sampling is 400 MHz, the energy in the STFT 
image predominantly concentrates around this frequency. Due to the 
continuous attenuation of electromagnetic waves during propagation 
through the ballast and subgrade, the energy of the signal is primarily 
distributed between 0 and 20 ns. It can be deduced from Eq. (3) that 
electromagnetic waves attenuate more quickly in water. Therefore, the 
spectrogram for the normal shows the highest energy, whereas the 

Fig. 4. GPR profiles of railway ballast bed under different conditions.

Fig. 5. Comparison of the differences between three kinds of A-scan data in both the time and frequency domains.
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moisture shows the lowest energy.

Methodology

Development of TFF-ResNet model

The MLP (Multilayer Perceptron) is a classical type of multilayer 
feedforward neural network widely used in machine learning and deep 
learning fields, particularly suitable for performing classification tasks. 
The MLP typically includes an input layer, one or more hidden layers, 
and an output layer. For a three-class classification task, the output layer 
consists of three neurons. Each neuron outputs a value that, after being 
processed through a softmax function, represents the probability of a 
respective class, as shown in Fig. 6.

During model training, data is first entered into the input layer, then 
propagated forward through multiple hidden layers until it finally rea-
ches the output layer. The output at each layer is derived by applying a 
weighted sum to the output from the preceding layer, adding a bias 
term, and subsequently processing this sum through an activation 
function, which can be represented as: 

x(l) = σ
(

W(l)x(l− 1) + b(l)
)

(5) 

where x(l-1) is the weighted output of the layer l-1, W(l) and b(l) are the 
weights and biases of the layer l respectively, σ is the activation function 
(such as Sigmoid or ReLU), and x(l) is the output of the layer l.

In this study, the cross-entropy loss (CE loss) function was employed 
to compute the discrepancy between predicted probabilities and actual 
class labels. The formulation of the loss function is given by the 
following expression: 

L = −
∑C

i=1
yilog(ŷi) (6) 

Where C is the total number of classes, C = 3. yi is the one-hot encoded 
true labels, where if the sample belongs to the class i, then yi = 1, 
otherwise yi = 0. ŷi is the predicted probability that the sample belongs 
to the class i, provided by the output of the softmax function.

ResNet18 significantly enhances the training efficiency and perfor-
mance of deep networks through its innovative residual connections, 
excelling in image classification tasks. It begins with a 7x7 convolutional 
layer that processes the input image, followed by a batch normalization 
layer and a ReLU activation, and then a max pooling layer to reduce its 
spatial dimensions. Subsequently, the core of the network consists of 
residual blocks, which form the primary structure of the network. Each 
block contains two 3x3 convolutional layers. In each residual block, the 
input is not only processed through the convolutional layers, but also 
added directly to the output of the block via a shortcut connection. This 

design helps the network learn the residual function and assists in 
reducing the problem of vanishing gradients. The end of the network 
features a global average pooling layer, which compresses the output of 
the last residual block into a 1x1 plane. This is followed by a fully 
connected layer, with the number of nodes in the output layer equal to 
the number of classes in the classification task. The network structure of 
ResNet18 is shown in Fig. 7.

By combining the MLP and ResNet18 models, features are extracted 
from the A-scan data in both time and frequency domains. This bimodal 
structure, referred to as the TFF-ResNet (Time-Frequency-Fusion ResNet 
model) and illustrated in Fig. 8, integrates a sequence input layer for 
receiving A-scan data and an image input layer for spectrograms. The 
outputs from the MLP and ResNet18 layers are then merged into a longer 
vector by a feature concatenation layer. A fully connected layer then 
processes this merged vector to facilitate further analysis and 
classification.

GPR data are collected on multiple railway lines, and A-scan data for 
three types of ballast conditions—normal, moisture, and mud pum-
ping—are extracted from the preprocessed data. The intelligent classi-
fication of ballast conditions is achieved using MLP, ResNet18, and the 
TFF-ResNet model developed in this paper, with the specific steps as 
follows: 

1. Data preparation. Preprocess the original GPR data, which includes 
background denoising and zero offset removal, to enhance data 
quality. Extract A-scan data from the preprocessed data corre-
sponding to normal, moisture, and mud pumping sections to create 
the dataset. The dataset contains a total of 55,920 A-scan signals, 
each consisting of 512 values. Divide the dataset from lines A, B, and 
C into training and validation datasets at a 7:3 ratio, with the data 
from line D serving as the testing dataset

2. Model training. The most suitable hyperparameter combinations 
for the MLP (number of hidden layers, number of neurons per layer, 
and learning rate) are determined using the random search algorithm 
[36]. During the time–frequency transformation of the A-scan data, 
the parameters of the STFT are continuously adjusted to modify the 
size and resolution of the spectrum, thereby enhancing the classifi-
cation performance of the subsequent ResNet18. The best parameter 
combinations of these two models are then used to construct the TFF- 
ResNet model

3. Model application. The generalization ability of the model is veri-
fied using new data collected from another line, and the results of 
TFF-ResNet are compared with other machine learning-based models 
to validate the superiority of the method presented in this paper.

This experiment uses the deep learning framework PyTorch 1.10.0 +
cu102 and Python 3.9.16 for programming. It was run on a desktop 
computer equipped with an Intel (R) Core (TM) i7-9700 CPU @ 3.00 

Fig. 6. Structure of MLP.
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GHz, 24.0 GB of RAM, and an NVIDIA GeForce GTX 1660 SUPER 
graphics card. The method flowchart is shown in Fig. 9.

Result

For the MLP, an optimal combination of hyperparameters was 
determined using a random search algorithm. After 15 rounds of 
searching, the architecture was finalized with three hidden layers, each 
containing 820, 1060, and 960 neurons, respectively. In this paper, the 

A-scan data consists of 512 points. When performing the STFT, choosing 
factors of 512 as the window length avoids the need for data padding, 
thereby ensuring the accuracy of the analysis. Setting the overlap be-
tween windows to half the length of the time window provides a good 
balance between time and frequency resolution, reduces boundary ef-
fects, and makes the data analysis more stable and intuitive. Therefore, 
this study sets the range of window lengths to 16, 32, 64, 128, and 256, 
with corresponding overlaps between windows at 8, 16, 32, 64, and 128. 
The algorithm sequentially selects values to perform the STFT and inputs 

Fig. 7. Structure of ResNet18 model [35].

Fig. 8. Structure of TFF-ResNet model.

Fig. 9. Methodology flowchart.
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the spectrograms into the ResNet18 model for training. By comparing 
the results from five groups, the optimal window length and overlap 
length are determined to be 64 and 32, respectively. The resultant 
spectrogram is a single-channel image of size 33x15, which is then 
replicated into a 3-channel image before being fed into the ResNet18 
network. Based on the above model parameters, the structure of TFF- 
ResNet is constructed. The training parameters and other structural 
details of each model are outlined in Table 3.

In Fig. 10, it can be observed that the CE losses of the three models 
gradually approach the minimum value and converge after approxi-
mately 200, 100, and 200 epochs, respectively. Therefore, 500 epochs 
are sufficient to train the models and obtain reliable results. Further-
more, each model performs well on the validation dataset, closely 
matching the performance on the training dataset, indicating that the 
models can avoid the problem of overfitting.

Fig. 11 shows the classification performance of the three models 
using ROC curves. Overall, the three ROC curves of the TFF-ResNet are 
closest to the top left corner and therefore perform best. Fig. 11(a) re-
veals that the ResNet18 model outperforms the MLP on the validation 
dataset. Conversely, Fig. 11(b) indicates that the MLP slightly surpasses 
the ResNet18 model on the testing dataset.

In order to quantitatively evaluate the classification performance of 
the three models, confusion matrixes are used for representation, as 
shown in Fig. 12. The numbers 0, 1, and 2 are used to represent normal, 
moisture, and mud pumping, respectively. From these confusion 
matrices, we can derive the accuracy (A), macro-average precision (P), 
macro-average recall (R), and macro-average F1 score (F). Accuracy is 
defined as the ratio of the number of correctly predicted samples to the 
total number of samples, as shown in Eq. (7); macro-average precision 
calculates the precision for each category individually and then averages 
these values, as shown in Eq. (8); macro-average recall calculates the 
recall for each category individually and then averages these values, as 
shown in Eq. (9); macro-average F1 score calculates the F1 score for each 
category individually and then averages these values, as shown in Eq. 
(10). 

A =
TP + TN

TP + TN + FP + FN
(7) 

P =
1
N

∑N

i=1

TPi

TPi + FPi
(8) 

R =
1
N

∑N

i=1

TPi

TPi + FNi
(9) 

F =
1
N

∑N

i=1
2 ×

Pi × Ri

Pi + Ri
(10) 

Where TP, TN, FP and FN represent the true positives, true negatives, 
false positives, and false negatives for the entire dataset, respectively. 
TPi, TNi, FPi and FNi represent the true positives, true negatives, false 
positives, and false negatives for the i-th class of samples (i = 1, 2, 3). Pi 
and Ri are the precision and recall for the i-th class of samples. The 
specific values are listed in Table 4.

The TFF-ResNet model demonstrated significant performance 

improvements over the MLP and ResNet18 models in both the validation 
and testing datasets. In the validation dataset, the TFF-ResNet model 
achieved the highest metrics with an accuracy of 0.878, macro-average 
precision of 0.875, macro-average recall of 0.875, and macro-average F1 
score of 0.875. It showed an average improvement of approximately 24 
% over the MLP and 14 % over the ResNet18 model. In the testing 
dataset, compared to the MLP, the TFF-ResNet model’s performance 
improved by about 21 %, and relative to the ResNet18 model, it 
exhibited a 33 % improvement in accuracy, 27 % in precision, 41 % in 
recall and 34 % in F1 score. Furthermore, all models performed better on 
the validation dataset than on the testing dataset, posing a challenge to 
the models’ generalization capabilities.

In order to observe the classification performance of the three models 
on each type of ballast bed defect in more detail, the F1 score is used as 
the evaluation index, and the comparison effect is shown in Fig. 13.

In the validation dataset, the TFF-ResNet model consistently ach-
ieved higher F1 scores across all ballast bed conditions compared to the 
other two models. Notably, in recognizing the normal state, the TFF- 
ResNet model reached an F1 score of 0.9, which is significantly better 
than the F1 scores of the MLP at 0.76 and the ResNet18 model at 0.83. In 
the testing dataset, all models experienced a performance decline, likely 
due to variations in climate conditions, soil types, construction mate-
rials, and building standards across different regions, resulting in dis-
crepancies between the samples in the validation and testing datasets. 
Despite these variations, the TFF-ResNet model still maintained the 
highest F1 score in the testing dataset.

Validation and comparison

To further validate the wide applicability of the proposed model, this 
paper selected a general-speed railway in Southern China as the exper-
imental interval, with data acquisition parameters consistent with those 
in Table 1. To prevent the model from mistakenly classifying other 
ballast bed conditions into these three categories, a decision threshold of 
0.6 was set. That is, if the maximum prediction probability of the model 
for a sample is less than 0.6, the model will judge this sample as the 
fourth type and output label 3. This fourth type of label corresponds to 
bridges, turnouts, tunnels and other structures on the railway line, or 
other ballast bed defects, such as ballast bed subsidence, frost heaving 
and so on. Fig. 14 (a) shows the collection of GPR grayscale images of 
three ballast bed defects and bridges, while Fig. 14 (b) shows the cor-
responding classification result. The result indicates that the model can 
effectively differentiate between the four ballast bed conditions. The 
overall classification accuracy is 0.75, which is lower than that of the 
testing dataset, possibly due to the setting of the decision threshold and 
the introduction of the fourth type of sample. The data used in the above 
verification includes a total of 400 samples, and the output result of the 
model takes only 0.8 s, which ensures the real-time performance of the 
model detection.

In order to verify the superiority of the TFF-ResNet model, it was 
compared with other machine learning-based classification models. The 
SVM algorithm excels at handling data within high-dimensional spaces 
and can effectively manage complex nonlinear feature relationships 
using different kernel functions, making it widely used in classifying A- 
scan signals from GPR. LSTM, with its unique gating mechanism and 
capabilities for long-term dependency handling, is extensively used for 
processing and predicting time-series data. A-scan data inherently con-
stitutes time-series data, as it records the propagation time and signal 
strength of radar waves at various depths. Consequently, this chapter 
chose SVM and LSTM for performance comparison with the TFF-ResNet, 
with the results presented in Table 5.

The table shows that the classification performance of the three 
models on the testing dataset is lower than on the validation dataset, 
consistent with the conclusions in Section 3.2. On the validation dataset, 
all SVM metric values range between 0.65 and 0.69, approximately 23.2 
% lower than those of the TFF-ResNet model. The LSTM model shows 

Table 3 
Partial structural and training parameters of the three models.

Parameters MLP ResNet18 TFF-ResNet

Learning rate 0.001 0.0001 0.0001
Batch size 32 16 16
Epochs 500
Loss function CE loss
Activation function ReLu
Optimiser Adam
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the lowest performance, all metric values range between 0.60 and 0.65, 
approximately 28.5 % lower than those of the TFF-ResNet model. On the 
testing dataset, all SVM metric values range between 0.62 and 0.67, 
while LSTM has a very poor classification effect.

Conclusions

Due to the acceleration of globalization and the continuous growth of 
international trade, the strategic position and importance of rail trans-
port have significantly increased. As rail transport volume continues to 
grow, issues with ballast bed defects affecting railway safety have 
become increasingly prominent, with moisture and mud pumping in the 
ballast bed being especially common. Vehicle-mounted GPR is a 
frequently used method for detecting these ballast bed defects. To avoid 
the low automation associated with traditional manual interpretation of 
radar images to determine the type and location of defects, many ma-
chine learning methods have been developed for the intelligent classi-
fication and recognition of GPR data. However, these methods often 
involve cumbersome initial work or suffer from poor generalization. 
This paper introduces a bimodal deep learning classification algorithm 
with two channels: one uses a MLP to extract features from time-domain 
signals, and the other applies STFT and a ResNet18 to extract features 
from frequency-domain signals. Results indicate that the bimodal 
model, TFF-ResNet, outperforms standalone MLP and ResNet18 models 
in classification performance on both validation and testing datasets.

After multiple rounds of experiments, this paper mainly draws the 
following conclusions: 

1. The standalone MLP exhibits lower classification performance on the 
validation dataset compared to the ResNet18; however, it 

demonstrates superior generalization on the testing dataset over the 
ResNet18

2. By extracting features from both the time domain and frequency 
domain, the TFF-ResNet model achieved approximately 24 % and 14 
% improvements in classification performance on the validation 
dataset compared to the MLP and ResNet18 models, respectively

3. The TFF-ResNet model demonstrates superior generalization capa-
bilities on other railway lines, achieving a 21 % and 34 % 
improvement in classification performance on the testing dataset 
relative to the MLP and ResNet18 models, respectively

This model is primarily developed for detecting moisture and mud 
pumping defects in railway ballast beds. Currently, it has not been 
developed further to address other types of defects, such as subsidence 
and frost heaving, due to insufficient data available for training the 
model on these issues. In our future research, we aim to expand the 
model’s detection capabilities by incorporating more diverse defect 
data. Additionally, future efforts will focus on exploring the combina-
tion of this method with other detection technologies, such as thermal 
imaging and electrical resistivity tomography, to create a multimodal 
integrated defect detection system that improves the comprehensiveness 
and accuracy of inspections. The model has the potential to be inte-
grated into intelligent railway infrastructure maintenance systems, 
providing real-time ballast bed condition monitoring and defect alerts, 
therefore, enhancing the efficiency and safety of railway maintenance.
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[27] Özkaya U, Öztürk Ş, Melgani F, et al. Residual CNN+ Bi-LSTM model to analyze 
GPR B scan images. Autom Constr 2021;123:103525. https://doi.org/10.1016/j. 
autcon.2020.103525.

[28] Xu XJ, Lei Y, Yang F. Railway subgrade defect automatic recognition method based 
on improved faster R-CNN. Sci Program 2018;2018:4832972. https://doi.org/ 
10.1155/2018/4832972.

[29] Ma ZX, Yang F, Qiao X. Intelligent detection method of railway subgrade defect. 
Comput Eng Appl 2021;57(9):272–8. https://doi.org/10.3778/j.issn.1002- 
8331.2002-0076.

[30] Lei WT, Luo JB, Hou FF, et al. Underground cylindrical objects detection and 
diameter identification in GPR B-scans via the CNN-LSTM framework. Electronics 
2020;9(11):1804. https://doi.org/10.3390/electronics9111804.

[31] Zhang J, Zhang C, Lu Y, et al. In-situ recognition of moisture damage in bridge deck 
asphalt pavement with time-frequency features of GPR signal[J]. Constr Build 
Mater 2020;244:118295.

[32] Al-Qadi IL, Xie W, Roberts R, et al. Data analysis techniques for GPR used for 
assessing railroad ballast in high radio-frequency environment[J]. J Transp Eng 
2010;136(4):392–9.

[33] Wang H, Ouyang S, Liao KF, et al. GPR B-SCAN image hyperbola detection method 
based on deep learning. Acta Electron Sin 2021;49(5):953–63. https://doi.org/ 
10.12263/DZXB.20200635.

[34] Wang H, Ouyang S, Liu QH, et al. Structure feature detection method for ground 
penetrating radar two-dimensional profile image based on deep learning. 
J Electron Inf Technol 2022;44(4):1284–94. https://doi.org/10.11999/ 
JEIT211032.

[35] Chotikunnan P, Puttasakul T, Chotikunnan R, et al. Evaluation of single and dual 
image object detection through image segmentation using ResNet18 in robotic 
vision applications. J Robotics Control 2023;4(3):263–77. https://doi.org/ 
10.18196/jrc.v4i3.17932.

[36] Han L, Liao Y, Wang H, et al. Long-term prediction for railway track geometry 
based on an optimised DNN method. Constr Build Mater 2023;401:132687. 
https://doi.org/10.1016/j.conbuildmat.2023.132687.

J. Bu et al.                                                                                                                                                                                                                                       Transportation Geotechnics 50 (2025) 101464 

12 

https://doi.org/10.1016/j.eswa.2018.08.021
https://doi.org/10.1016/j.eswa.2018.08.021
https://doi.org/10.1109/TGRS.2011.2128328
https://doi.org/10.3969/j.issn.1001-8360.2010.03.025
https://doi.org/10.3969/j.issn.1001-8360.2010.03.025
https://doi.org/10.3390/rs13122375
https://doi.org/10.3390/rs13122375
https://doi.org/10.3390/s23125383
https://doi.org/10.3390/s23125383
https://doi.org/10.1016/j.autcon.2020.103525
https://doi.org/10.1016/j.autcon.2020.103525
https://doi.org/10.1155/2018/4832972
https://doi.org/10.1155/2018/4832972
https://doi.org/10.3778/j.issn.1002-8331.2002-0076
https://doi.org/10.3778/j.issn.1002-8331.2002-0076
https://doi.org/10.3390/electronics9111804
http://refhub.elsevier.com/S2214-3912(24)00285-X/h0155
http://refhub.elsevier.com/S2214-3912(24)00285-X/h0155
http://refhub.elsevier.com/S2214-3912(24)00285-X/h0155
http://refhub.elsevier.com/S2214-3912(24)00285-X/h0160
http://refhub.elsevier.com/S2214-3912(24)00285-X/h0160
http://refhub.elsevier.com/S2214-3912(24)00285-X/h0160
https://doi.org/10.12263/DZXB.20200635
https://doi.org/10.12263/DZXB.20200635
https://doi.org/10.11999/JEIT211032
https://doi.org/10.11999/JEIT211032
https://doi.org/10.18196/jrc.v4i3.17932
https://doi.org/10.18196/jrc.v4i3.17932
https://doi.org/10.1016/j.conbuildmat.2023.132687

	Intelligent classification of ballast bed defects using a bimodal deep learning model
	Introduction
	Data preparation
	Principle of GPR
	Data collection
	Data preprocessing
	Data analysis

	Methodology
	Development of TFF-ResNet model
	Result
	Validation and comparison

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References


