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A B S T R A C T

It has been shown experimentally in the literature that for clayey formations, oil with polar components and an
aqueous phase with divalent ions, a secondary waterflood with low salinity water composition improves oil re-
covery by some 5–20%. Our focus is on a less well known mechanism, i.e. low salinity enhanced solvent (e.g.
carbonated water) recovery, as low salinity enhances the aqueous solubility of carbon dioxide. Indeed, after in-
jection the latter is transferred from the aqueous to oleic phase thus decreasing the oil concentration in the oleic
phase and diluting the residual oil. To study this mechanism we formulate the conservation equations of total
hydrogen, oxygen, chloride and decane. Therefore, we solve analytically and numerically these equations in 1�D
in order to elucidate the effects of the injection of low salinity carbonated water into a reservoir containing oil
equilibrated with high salinity carbonated water. We use PHREEQC (acronym of pH-REdox-Equilibrium C-pro-
gram) to obtain the accurate equilibrium partition of neutral species that are soluble both in the oleic and the
aqueous phase by application of the Krichevsky-Ilinskaya extension of Henry's law for solubility of gases in liq-
uids. Using Gibbs phase rule it can be shown that the phase behavior only depends on the pH and the chloride
concentration. The above mentioned equilibrium relations use Pitzer's activity coefficients to extend the validity
up to 6M. We obtain the saturation, composition and the total Darcy velocity profiles. The significant new insight
obtained is that by changing only the salinity in carbonated waterflooding the oil recovery can be enhanced.
1. Introduction

Carbonated water flooding (Dong et al., 2011) increases oil produc-
tion due to favorable dissolution effects, viscosity reduction (Welker
et al., 1963) and bactericide effects, which enhance the injectivity
(Christensen et al. (1961)). In De Nevers et al., (1964) an extended
Buckley-Leverett model is proposed, with partition of CO2 between the
oleic phase and aqueous phase (see also Welge et al. (1961)). The vis-
cosities and densities of the aqueous and oleic phases depend on the
carbon dioxide concentration. The pressure is taken high enough to avoid
the presence of gas. As opposed to the Buckley-Leverett profile (Buckley
et al. (1942), Leverett et al. (1939)) the solution, from upstream to
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downstream, consists of a constant state, a shock, a saturation/concen-
tration rarefaction wave, a constant state with zero carbon dioxide con-
centration followed by a rarefaction and then a shock. The presence of
CO2 increases the oil recovery. Pope (1980), in his celebrated paper,
formulates the fractional flow theory for a carbonated water flood. He got
an approximation for the solution by replacing the saturation/concen-
tration rarefaction wave by a shock.

In Grogan et al. (1987) a model that includes molecular diffusion and
indicates its importance in dead-end-pore recovery is proposed. In all of
these studies, the effect of salt was not explicitly taken into account. Dong
et al. (Dong et al., 2011), in their experimental study, mention the
alteration to more water-wet conditions and reduction of the water-oil
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interfacial tension as additional factors for improved oil recovery.
Morrow et al., (2011) show that low salinity can indeed lead to enhanced
recovery. Scott et al. (1965) mention bypassing as a reason for disap-
pointing recovery in a carbonated flood field experiment. However, the
first year, the K&S carbonated water flood (Hickok et al. 1960) produced
in one year more oil than in the preceding 29 years of primary recovery.
Part of the production came from watered out regions. Ramesh et al.
(1973) developed a 2-D numerical model of a carbonated water flood.

A frequently mentioned effect of low salinity is improved relative
permeability behavior. General observations are that in water-wet media,
oil will occupy the larger pores and obstruct the flow of water, leading to
low relative water-permeabilities. Low relative water permeability leads
to a favorable mobility ratio and more stable displacement. However,
residual oil saturations are lower in mixed wet media. All of this means
that the advantage of increased water-wet behavior is not straightfor-
ward. The phase behavior plays an important role. We will use the
decane-carbon dioxide system for reasons of clear illustration.

It is possible to combine some experimental data Reamer and Sage
(1963), Nagarajan and Robinson (1986), but other experimental data
(Kariznovi et al., 2013) do not smoothly connect to these data; this
connection is achieved once we use the Krichevsky-Ilinskaya equation
(Pope, 1980), an extension of Henry's law to parametrize the experi-
mental data. It is possible to combine the equations for the oleic and
aqueous phase to obtain the partition coefficient of carbon dioxide be-
tween the aqueous and oleic phase. The presence of electrolytes de-
creases the solubility of carbon dioxide in the aqueous phase (salting out
effect), which is described by the Setch�enow coefficient, (Randall and
Failey, 1927a, 1927b, 1927c). We will use these expressions to quantify
the effect of low salinity on carbonated water flooding.

In Sohrabi et al. (2009) the mechanisms of carbonated water injection
(CWI) using micromodels are studied. They show that recovery in light
oils mainly depends on the dissolution of CO2 in the oil, whereas the
enhancement of recovery of heavy oil is due mainly to viscosity
reduction.

To study the effects of CO2 injection with low salinity waterflooding
we focus on a one dimensional incompressible flow model that describes
two-phase flow and dissolution in phases based on geochemistry (Far-
ajzadeh et al. (2012)). These processes are studied by means of a system
of conservation laws for the transported quantities. Using this model we
study the flow in a sandstone rock filled with an oleic phase that contains
both oil (an alkane, e.g. decane) and dissolved carbon dioxide as well as
an aqueous phase also equilibrated with CO2. Since we consider mass
transfer of carbon dioxide between oleic and aqueous phases and the
partial molar volume of CO2 differs between phases, the total Darcy ve-
locity varies.

We also consider ions (H2O, Hþ, OH�, CO2�
3 , HCO�

3 , Cl
�), leading to

what we call the chloride ionic carbon dioxide-oil-water (CLICDOW)
model. The most relevant aspects of the effect of ions on the recovery of
oil are studied with this model of composition waves (Bryant et al., 1986,
1987; Helfferich, 1989; Lake, 1989; Lake et al., 2014). To illustrate these
effects we inject water with the same pH but with lower salinity than the
initial salinity in the core.

In this paper, we obtain analytically the Riemann solution, which
consists basically in applying the method of characteristics (MOC). This
method seeks analytical solutions of the CLICDOWModel similarly to the
those treated in De Nevers et al., (1964); Welge et al. (1961); Buckley
et al. (1942); Leverett et al. (1939); Pope (1980); Dumore et al. (1984);
Helfferich et al. (1981); Johns et al. (1993). The Riemann solution con-
sists in a concatenation of rarefaction and shock waves implementing
certain admissibility conditions (Lax, 1957; Oleinik, 1957; Glimm, 1965;
Liu, 1974, 1975).

A Riemann solver for the proposed geochemical model serves to
quantify and explain how the geochemical processes of CO2 with low
salinity water injection in a carbonated reservoir improve the oil recov-
ery. At the same time, if we assume the salinity as constant our model
901
clarifies the discrepancy between the solutions proposed by De Nevers
et al., (1964) and by Pope (1980).

A Riemann solver is developed to obtain the solutions for a compo-
sitional model. In this solver, we automate the construction of slow and
fast solution paths. To do so, we take into account the bifurcation
structures which are not part of the classical fractional flow method used
by Pope (1980). We, also provide comparisons with numerical solutions
obtained by means of a commercial program, which is useful for the
verification of the analytical solutions.

In the CLICDOW model coefficients in the system of conservation
laws are estimated by means of PHREEQC program (PHREEQC version 3
is a computer program written in Cþþ and is designed to perform a wide
variety of aqueous geochemical calculations; see details about its
implementation in Parkhurst and Appelo (2013), Parkhurst et al.
(1999)). This procedure is extremely useful because allows to include in a
unified manner the geochemistry, the equilibrium reactions and the
charges balance. Also, the method employed is a robust recovery pro-
cedure that serves to study more complex situation as for example to
include more chemical species in the system. In this way we reduce the
mathematical complexity associated with considering the large number
of physical constraints and parameters that are included in the
Geochemistry PHREEQC program.

The motivations for writing this paper are (1) to introduce a new
methodology based on the extended Gibbs phase rule as a way to
incorporate geochemistry in oil recovery simulations, which circumvents
simultaneous solution of the transport equations and equilibrium re-
lations (2) to show the effect of high salt concentrations on oil recovery
and (3) to analyse the wave structure of the solutions (e.g. the occurrence
of a pH wave embedded in a constant pH flood). The Riemann solution
confirms that a pH peak wave found numerically with various numerical
schemes, inclusive discontinuous Galerkin, was indeed no numerical
artefact. Moreover, we make plausible that the unstable numerical so-
lutions at low pH <2.7 can be traced back to the high sensitivity of the
compositions at these pH values.

The additional advantage of the Riemann solution is that it can be
used to perform a bifurcation analysis, and to make an inventory of the
possible qualitatively different solutions. The bifurcations occur at
coincidence and inflection loci. Clearly, bifurcations are essential to build
the analytical solution, as well as to determine the location where
qualitative changes of the behavior of the solution are expected. This
determination is useful tool of mathematical modeling of oil recovery.

By means of numerical and analytical methods, we aim in this paper
at quantifying the recovery improvement when carbonated water
equilibrated at low salinity is injected in a reservoir that contains
carbonated brine in equilibrium with an oleic phase and carbon dioxide.
After introduction, Section II gives the physical model and we derive the
model equations. Section III describes the Riemann solver and the
strategy to obtain the Riemann solution. Section IV gives the model re-
sults in terms of the pH, the chloride concentration, the water saturation
and the total velocity. The calculation suggests that a low salinity
carbonated water flood improves the recovery because it admits a high
dissolved concentration of carbon dioxide. We end with some conclu-
sions. Appendix A describes the chemical species and Gibb's rule. Ap-
pendix B, C and D describe the method of characteristics, the Rankine-
Hugoniot locus and the bifurcation surfaces. Appendix E shows the Rie-
mann solution strategy in the projected space ðSw; pHÞ.

2. Physical model

We consider low salinity injection (0.01 mol=liter NaCl, with CO2

saturated at a pH ¼ 2:74) into an inert rock (1D) filled with an oleic
phase that contains both oil and dissolved carbon dioxide as well as a
brine (0.3 mol=liter) phase also at pH ¼ 2:74. Injection and initial fluids
contain carbon dioxide, the ensuing ions and sodium chloride. The initial
fluid also contains oil (decane). We assume chemical equilibrium in both
the aqueous phase and the oleic phase and equilibrium of carbon dioxide
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between phases. The ions and water are only present in the aqueous
phase, decane is only present in the oleic phase. Dissolution of oil
(decane) in the aqueous phase is disregarded. Only carbon dioxide can be
present both in the oleic phase and the aqueous phase. The injected fluid
has a high carbon dioxide content, specified by the injection pH and salt
concentration. We assume that the flow is governed by Darcy's law
(Lorentz, 1913; Muskat and Meres, 1936; Hubbert et al., 1956) extended
to two phase (Honarpour et al., 1986) and conservation laws for chemical
species (Appelo and Postma, 2004; Muskat and Meres, 1936). We
consider one dimensional incompressible flow. The temperature is cho-
sen to be 71.11oC because for this temperature there exist many data in
the literature for the decane carbon dioxide system. We take the pressure
to be well above the pressure at which a gaseous phase can exist.

The unit of viscosity is Pa.s (1 cP (1 cP ¼ 10-3 Pa s). We disregard the
salinity dependence of the viscosity, because this is outside the scope of
the mathematical emphasis in the paper.

The model simulates oil recovery when water with CO2 is injected in
an inert sandstone rock at high pressure and medium temperature. We
consider only seven species viz. CO3

2�,CO2, OH�, H2O, HCO3
�, Hþ, Cl�.

The rock is saturated with oil and water. The water contains dissolved
solutes like ions and minerals. The carbon dioxide is dissolved in the
aqueous and oleic phases; therefore there is mass transfer of carbon di-
oxide between phases: the partial molar volume of carbon dioxide differs
between phases, thus a variable total Darcy velocity ensues.

There are five conservation laws, namely for total carbon, hydrogen,
oxygen, chloride and decane. Each one consists of four terms, i.e. accu-
mulation, convection, molecular diffusion and capillary diffusion. Recall
that in the context of the Riemann solver we neglect diffusion and
capillarity effects.
2.1. Model: Chloride Ionic Carbon Dioxide-Oil-Water(CLICDOW)

We derive the model equations from the conservation laws for total
hydrogen, total oxygen, total chloride and total organic carbon. The
conservation laws hold for the four lumped components (called master
species) that do not convert into each other. As a result of the charge
balance equation, which can be derived from the conservation laws we
can choose four of these equations, viz. the total hydrogen (H(1)), the
twice oxygen minus hydrogen equation (to eliminate the H2O), the
chloride ion equation and the total organic carbon (C(-4)) equation. The
composition obtained with PHREEQC preserves the charge balance. The
total molality of hydrogen can be expressed in terms of the other mo-
lalities ma;j as follows ma;Hð1Þ½mol=kgwater� ¼ ma;HCO3 þma;H þma;OHþ
2ma;H2O. The total molality of oxygen is given by ma;Oð�2Þ½mol=kgwater� ¼
2ma;CO2 þ 3ma;CO3 þ 3ma;HCO3 þma;OH þma;H2O. Taking the differ-
encema;O�H ¼ ma;Hð1Þ � 2ma;Oð�2Þ, we obtain ma;O�H ¼ ma;H �ma;OH�
4ma;CO2 � 6ma;CO3 � 5ma;HCO3 , an equation from which the H2O been
eliminated. We do not give the total carbon equation as it is already
incorporated due to the conservation of charge. The total molar con-
centration in the aqueous phase is given by ma;tot ¼ ma;CO2 þma;CO3 þ
ma;HCO3 þma;H þma;OH þma;H2O þma;Cl� and we find the aqueous phase
mole fractions xa;i as xa;Hð1Þ ¼ ma;Hð1Þ=ma;tot , xa;O�H ¼ ma;O�H=ma;tot , etc.

Using thermodynamical reasoning, it is possible to verify that the
number of degrees of freedom is two (see Appendix A), which we choose
as chloride concentration ½Cl�� (Cl) and the hydrogen ion concentration
½Hþ� (pH ¼ �logð½Hþ�Þ) in the aqueous phase and therefore also all mole
fractions will be functions of these two concentrations. It is easier to
choose chloride as variable since there is a single chloride compound,
whereas sodium forms several compounds.

The molar concentrations of components j for the aqueous phase ρa;j
are the product of the molar phase density ρw times the mole fractions of
component j and ρo;j the molar concentration in the oleic phase. The
master species equations include the total hydrogen, the total oxygen, the
total chloride and the decane equation. The total hydrogen equation
reads
902
∂t ϕSwρa;Hð1Þ þ ∂x ufwρa;Hð1Þ ¼ 0; (1)

� � � �
The chloride equation reads

∂t
�
ϕSwρa;Clð�1Þ

�
þ ∂x

�
ufwρa;Clð�1Þ

�
¼ 0; (2)

where ρa;Clð�1Þ is the molar concentration of the chloride ion in the
aqueous phase (Appelo and Postma (2004)).

The hydrogen minus twice oxygen equation reads

∂tðϕSwρa;O�HÞ þ 4∂t
�
ϕSoρo;CO2

�þ ∂x
�
ufwρa;O�H

�þ 4∂x
�
ufoρo;CO2

� ¼ 0: (3)

The equation above represent a conservation of species that can be
interconverted, like inorganic carbon in HCO3, CO2, CO3ð�2Þ ; decane
belongs to organic carbon, and is a special species. Therefore we
distinguish the species hydrogen H, oxygen O, organic and inorganic
C, chloride Cl and sodium Na. It is also possible to take linear com-
binations of species equations, such as twice oxygen minus hydrogen,
which has the advantage of eliminating (dominating water) from the
equation. Because the number of sodium ions equals the chloride ions,
we can discard the sodium equation. Moreover, we can omit one
species balance because we need to satisfy the charge balance. We
choose for the species balance equations four conservation laws, viz.
the hydrogen, twice the oxygen minus hydrogen, organic carbon and
chloride, which can be solved for the pH, Cl, the total velocity u and
the water saturation Sw.

For the total organic carbon we have

∂t
�
ϕSoρo;Cð�4Þ

�
þ ∂x

�
ufoρo;Cð�4Þ

�
¼ 0: (4)

Initial conditions for all quantities X are given by

X ¼ Xinit þ ð1� 0:5ð1þ tanhððx� 0:1Þ=0:05ÞÞÞðXbound � XinitÞ; (5)

where pHinit ¼ 2:74, Clinit ¼ 0:3½mol=liter�, Clbound ¼ 0:01½mol=liter�,
Sinit ¼ Swc ¼ 0:15, Sbound ¼ 1� Sor ¼ 1:0, and uinj ¼ 10�5½m=s�.

The fractional flows for water and oil are saturation-dependent
functions defined as follows. We denote Se ¼ ðSw � SwcÞ=ð1� SwcÞ, for
Sw � Swc and Se ¼ 0 for Sw < Swc;krwðSwÞ ¼ sð2=λþ3Þ

e and kroðSoÞ ¼
ð1� SeÞ2ð1� Sð2=λþ1Þ

e Þ, ðSo ¼ 1� SwÞ. The water viscosity is taken as
μw ¼ 0:001 and the oil viscosity as μo ¼ 0:002 when they are constant;
then we have the fractional flow functions for the aqueous and oleic
phases

fwðSwÞ ¼ krwðSwÞ=μw
ðkrwðSwÞ=μw þ kroðSoÞ=μoÞ

; and foðSwÞ ¼ 1� fwðSwÞ: (6)

where the water and oil permeabilities krwðSwÞ and kroðSoÞ are expressed
in terms of their saturations; μw and μo are the viscosities of the aqueous
and oleic phases. We disregard capillarity and diffusive effects. The
fractional flow is shown in Fig. 1.
2.2. Relative permeability

Low water-wet end-point relative permeabilities are conducive to
favorable mobility ratios. In this case the main production is largely
characterized by pure oil-production after which only a small
amount of oil is produced. The residual oil saturation is high and
therefore the ultimate recovery from water-wet cores is relatively
low. This is in contrast with intermediate wet-relative permeabil-
ities, where after water-breakthrough a long tail of mixed oil/water
production occurs. So recovery before water-breakthrough is less
effective than the recovery from water wet-cores. After water
breakthrough however, the ultimate recovery from mixed wet-cores
is higher than from water-wet cores (see Hirasaki et al. (1996),
Anderson et al. (1987)).
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3. Riemann problem

The system of hyperbolic equations (1)–(4) for ρa;Hð1Þ,
ρa;O�H ¼ ρa;Hð1Þ � 2ρa;Oð2Þ, ρo;CO2

, ρa;Clð�1Þ and decane ρa;Cð�4Þ disregarding
the diffusion term is rewritten as:

∂GðWÞ
∂t þ ∂ubFðWÞ

∂x ¼ 0; (7)

with W ¼ ðSw; pH;ClÞ. We have the accumulation G ¼ ðG1;G2;G3;G4Þ
and flux F ¼ ubF with bF ¼ ðbF1; bF2; bF3; bF4Þ functions are

bF ¼
�
fwρa;Hð1Þ; fwρa;Clð�1Þ; fwρa;O�H þ 4foρo;CO2

; foρo;Cð�4Þ
�
; (8)

G ¼ φ
�
Swρa;Hð1Þ; Swρa;Clð�1Þ; Swρa;O�H þ 4Soρo;CO2

; Soρo;Cð�4Þ
�
: (9)

We are interested in the Riemann-Goursat problem associated to ð7Þ,
that is the solution of these equations with piecewise constant initial data�
L ¼ ðSwL; pHL;ClL; uLÞ if x < 0;
R ¼ ðSwR; pHR;ClR; Þ if x > 0:

(10)

We do not impose conditions on the variable uR because it is obtained
from the other variables together with the solution in the system.

We assume that the fluid is incompressible, but there is mass transfer
between phases of the carbon dioxide and the partial molar volume
differs between phases, thus a variable total Darcy velocity is not con-
stant through the porous medium.

In this work the coefficient functions ρa;Hð1Þ, ρa;O�H , ρo;CO2
, ρa;Clð�1Þ and

ρa;Cð�4Þ are obtained through PHREEQC program. These coefficients
depend on the variables ðpH;ClÞ only (see Appendix A). The partition of
carbon dioxide between the aqueous and oleic phases is not covered in
PHREEQC and needs to be separately implemented, which is included in
Appendix A.
3.1. Solution

The solution of a Riemann problem is a sequence of constant states
and self-similar elementary waves that are either rarefaction or shock
waves. These waves suffer modification at a state on the bifurcation loci
shown in Fig. D.9 and D.10 in Appendix D. Together with the bifurcations
loci, we need compatibility and entropy conditions to select the unique
(physical) solution.

To construct the Riemann solution, we obtain first the wave sequence
in ðSw; pH;ClÞ, using combinations of rarefactions R s, R Δ, R Cl (see
Fig. 1. Fractional flow fw given by Eq. ð6Þ.
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Appendix B) as well as shock waves S s, S Δ and S Cl (see Appendix C)
taking into account the coincidence surfaces together with the inflections
loci ISw , IΔ and ICl. From these waves, we construct the profiles ðswðξÞ; ξÞ
and ðpHðξÞ; ξÞ with ξ ¼ x=t for a fixed t (see for example Figs. 4–6).

Since all waves must travel together there exists the natural restric-
tion that if points in space state ðSw; pH;ClÞ traverse from left to right in
ðx; tÞ space, then the characteristic velocity increases (at least non-
decreases) along the Riemann solution, which is called the geometrical
compatibility condition. This condition is used to select the physical
sequence of waves for the Riemann solution. We denote by λkðAÞ, with
k ¼ s;Δ;Cl the characteristic velocity at state A and σðA;BÞ as the shock
speed from state A to B.

For constructing the Riemann solution in a region where
λΔ < λs < λCl, the geometrical compatibility condition requires that, we
start with a composition rarefaction wave R Δ, followed by either the
constant state or a shock wave (see below), which can be either of the
saturation or composition type and must have a velocity higher or equal
than the previous wave. On the other hand, if λCl > λH > λs, we start with
a saturation wave R s or Ss. Fulfilling the restriction due to the inflection
curves and the admissibility conditions, we can initiate building the so-
lution of the Riemann problem starting from the injection conditions of
the reservoir (left state) until arriving at the initial conditions of the
reservoir (right state).

An in-house Riemann solver was developed to represent wave curves
which satisfy the compatibility and admissibility criteria. In this solver,
we automate the construction of slow and fast solution paths taking into
account the bifurcation structures. Taking these features into account is
not easily done by the classical fractional flow method used by Pope
(1980).
3.2. Strategy in the Riemann solver

In order to solve the Riemann-Goursat problem, we assume the
compatibility condition for the model that the third component of the
chemical composition waveR Δ is zero, i.e. r3ΔðSw; pH;ClÞ � 0 in equation
(B.28). We can check that under the above condition the chemical
composition wave RΔ is invariant on the planes of constant Chloride
concentration, Cl ¼ const in the projected space ðSw; pH;ClÞ. Also, we
assume that the chloride wave curve SCl is transversal to the planes of
constant chloride, Cl ¼ const. These conditions are well fulfilled for the
set of parameters obtained with PHREEQC program and they enable us to
build the analytical solution. This fact is verified by numerical analysis of
PHREEQC data.

The general procedure to solve the Riemann problem consists of the
following steps: First we take waves along constant chloride planes, i.e.
admissible rarefaction waves RΔ, Rs, RCl, shock curves SΔ, Ss, SCl or
constant states. Secondly we use the auxiliary chloride waves RCl (which
are contact waves i.e. characteristic speed is constant along the wave.), to
go to other constant chloride planes corresponding to the right state.

For example, let us to construct the Riemann solution assuming that
the left state L ¼ ðSwL; pHL;ClLÞ belongs to a region where the condition
λs < λΔ < λCl holds. Assuming the left and right belonging to distinct
chloride planes i.e. ClL 6¼ ClR, the solution of the Riemann problem can be
obtained with the following steps: First, from L to the state A where
λsðAÞ ¼ λΔðAÞ, we take a saturation wave RsðLÞ (See Fig. 2).

From this state, we take an admissible rarefaction RΔðAÞ connected to
the physical boundary. Secondly, we continued this rarefaction waves
RΔðAÞ by using an auxiliary transitional rarefaction chloride waves RCl

and forming in this way an auxiliary surface (See Fig. 2). Here we use the
fact that the waves RCl are contact, therefore the characteristic speed
along this curve remains constant..

Subsequently, we take backward waves out of the right state
R ¼ ðSwR; pHR;ClRÞ, i.e. admissible rarefaction or shock waves on which
the characteristic velocity decreases. Now we look for the intersection
state C of the auxiliary surface with the backward curves SsðCÞ from C to



Fig. 2. Rarefaction saturation wave RsðLÞ connects the state L to the state A in which the characteristic speed coincides λsðAÞ ¼ λΔðAÞ. From A, we take a rarefaction
wave RΔðAÞ. The auxiliary surface consists of a foliation with shocks SClðSÞ, where S are initial states on RΔðAÞ in the plane of constant chloride Cl ¼ ClL.
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R (see Fig. 3). We check the geometrical compatibility condition at the
point of intersection C, i.e. if the characteristic speed is smaller than or
equal to the characteristic speed of the backward wave at the point of
intersection C.

Fig. 3 shows the wave sequence satisfying the admissibility and
geometric conditions for solving the Riemann problem for state left L and
right state R used in this example.

The example described above shows a procedure to construct the
wave sequence for a Riemann solution. In the general case, for any part of
left and right states (in (10)) the procedure is similar, where one con-
structs the solution sequence in the projected space of variable Sw and pH
and later in the full space ðSw; pH;ClÞ. We illustrate this procedure in
Appendix E.

4. Analytical and numerical results

In this section we present the solution for an example relevant for oil
recovery. We show the analytical solution from Riemann solver and the
numerical schemes implemented in the commercial simulator COMSOL.
COMSOL consists of a finite element solver and simulation software for
various physics and engineering applications, especially coupled phe-
nomena, or multiphysics, see www.comsol.com This comparison serves
as verification for both solutions.

The in house developed Riemann solver can be used for verification in
numerical solutions for compositional models. In this solver we utilized
all the slow and fast solution paths in a unified manner allowing the
discovery of structures that are not easily obtained by the classical frac-
tional flow method.

The molar concentration coefficients obtained by PHREEQC are
incorporated in multiphase flow simulation programmes, e.g. COMSOL
and the Riemann solver, after applying a smoothing procedure for which
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we choose symbolic regression (EUREQA) (Eureqa is a modeling engine,
which uses evolutionary search to determine regression equations that
describe sets of data in their simplest form. www.nutonian.com/
products/eureqa/). The COMSOL solver utilizes the method of finite el-
ements to obtain the solution with an appropriate numerical diffusion to
stabilize the solution.

Fig. 4 shows the profile of the chloride and hydrogen ion concen-
tration for both the analytical solution obtained by the Riemann solver
and the numerical method with COMSOL. It can be seen that the solu-
tions agree extremely well and therefore the step function hydrogen so-
lution obtained with COMSOL is not a numerical artifact for the
convergence of the numerical solution.

Fig. 5 shows the water saturation profile corresponding to the Rie-
mann problem solved here. There is also excellent agreement between
the analytical and numerical solution. This profile shows a BL-type shock
preceded by a constant state and a saturation of the chemical composi-
tion wave. In turn, these profiles show how the CLICDOW model is able
to represent the mechanisms of enhanced oil recovery.

In this example, the solution consists of the following waves: from L to
A, with λsðAÞ ¼ λΔðAÞ, we take a rarefaction RsðLÞ. From A to B we use a
rarefaction RΔðLÞ. But since we start with the same characteristic speed,
the state A does not represent a constant state. From B to C, we take a
shock SClðBÞwith speed σðB;CÞ, which equals λΔðAÞ; therefore the state B
does not represent a constant state. From C to R, we take a Buckley-
Leverett shock SsðCÞ. But the speed σðB;CÞ ¼ λΔðBÞ is smaller than
σðC;RÞ; therefore the state C represents a constant state. This is because
the self similar solution U ¼ ðSwðξÞ; pHðξÞ;ClðξÞÞ with ξ ¼ x=t takes the
same values between ξ1 ¼ λΔðBÞ and ξ2 ¼ σðC;RÞ (Fig. 5 right). This
constant state is shown in Fig. 5 left from x ¼ 3 to x ¼ 4:3 approximately.
In summary, the solution is RsðLÞ → RΔðAÞ → SClðBÞ → SsðCÞ, see in Fig. 3
left waves in phase state and the profiles ðSwðξÞ; pHðξÞ;ClðξÞÞwith ξ ¼ x=t

http://www.comsol.com
http://www.nutonian.com/products/eureqa/
http://www.nutonian.com/products/eureqa/


Fig. 3. Riemann solution corresponding to left (L) and right states (R). Solution is obtained as a concatenation of three wave curves separated by two constant states:
the first consists of a rarefaction saturation wave RsðLÞ follows by a compatible rarefaction waves RΔðAÞ, a second is an auxiliary rarefaction chloride waves RClðBÞ and
a third is an admissible BL-shock SsðCÞ.

Fig. 4. Profile of chloride (left) and hydrogen (right) waves for analytical method (bold curve) and COMSOL (dashed curve) solution. We have excellent agreement for
the chemical waves. The abscissa x-axis represents the value ξ ¼ x=t for t ¼ 10000 sec.
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in Figs. 4 and 5.
The constant solution appears on those state where the characteristic

speeds and/or shock velocity does not coincide.
We attribute the mismatch between analytical and COMSOL solutions

at 2 < x < 2:7 to the fact that in this interval, we have a rarefaction wave
RΔ with characteristic speed close to the shock speed of SΔ (almost a
contact wave). Sometimes, this kind of wave is not easily captured by the
numerical methods.

Fig. 6 plots the COMSOL solution of the water saturation and the
chloride concentration as a function of distance at times (0:20000½s�)
with intervals Δt ¼ 2000½s�. The saturation (Sw) profile is similar to the
Buckley-Leverett profile except that it shows a constant state between the
Buckley-Leverett shock and the rarefaction wave. The chloride
(Cl� :¼ ρa;Cl) profiles occur downstream of the rarefaction wave (Bryant
et al., 1986, 1987, Helfferich, 1989; Lake, 1989).
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Fig. 7 shows the COMSOL solution of the relative Darcy velocity u
change, the saturation Sw, the chloride concentration Cl and the pH
change versus distance for time (20000½s�). The advantage of the weak
formulation option in COMSOL is that it does not require the addition of
an artificial velocity accumulation term, e.g. DTdu=dt term to obtain the
total Darcy velocity profile.

Fig. 7 plots the weak formulation method results of the carbon di-
oxide concentration and decane concentration in the oleic phase. The
figure shows that the low salinity injection gives an increased carbon
dioxide concentration and a decreased decane concentration upstream
leading to improved recovery.

In Fig. 8, we observe that the residual oil saturation consists of a
fraction of ρdecane=ρo of decane and by 1� ρdecane=ρo of CO2. This implies
that less oil is left behind as residual oil.

Figs. 4, 5 and 7 show the prevailing features of the numerical solution



Fig. 5. (Left) Saturation profile for analytical method (bold curve) and COMSOL solution (dashed curve). We have good agreement between the solutions. Dotted line
represents the Buckley-Leverett (BL) solution for a constant chloride concentration (Cl ¼ 0:3). The abscissa x-axis represents the value ξ ¼ x=t for t ¼ 10000 sec.
(Right) Characteristic lines in the ðx; tÞ plane with the corresponding admissible wave sequence.
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obtained with COMSOL and the Riemann solver, which consists of three
waves for similar injection and initial saturation conditions in Pope
(1980). The hydrogen profile indicates that the pH starts to increase up to
some state and then decreases forming a peak; meanwhile the water
saturation decreases sharply and the pH and saturation move forward
while the residual oil saturation decreases. Close to point of the abrupt
change in pH, the chloride concentration forms a shock (contact wave)
which is also transported in the water phase. Therefore, this shows that
for these conditions the injection of CO2 with brine improves oil recov-
ery. The oil left behind after the passing of the shock is diluted with
carbon dioxide, leading to a more favorable oil recovery. This fact
together with the formation of the front with little residual oil explains
the improvement in oil production. On the other hand, the increase of 5%
in Darcy's velocity, also produces an increase in the speed of the shock
with its corresponding positive effect on the recovery.

On the other hand, the efficiency of low salinity injection can be
inferred in the following example. We assume that left (injection) and
right (initial) state has the same chloride concentration Cl ¼ 0:3 and
pH ¼ 2:74. In this case, the Riemann solution for SwL ¼ 1 and SwR ¼
0:15 consists of the classical Buckley-Leverett solution, i.e. a rarefaction
RsðLÞ to a state D, followed from D to R by a shock SsðAÞ such that λsðDÞ ¼
σðD;RÞ (see Bucklet-Leverett (BL) solution in Fig. 5 right.). The BL shock
amplitude is slightly greater than the low salinity (LS) shock amplitude,
but the BL shock speed is much lower, so the oil recovery with (LS) is
better.

The injected volume of the carbon dioxide saturated water is higher
than the injected water only, which explains the fact that the area under
Fig. 6. Saturation and Cl� :¼ ρa;Cl profiles. Initial and boundary pH ¼ 2:74.
Initial Clinit ¼ 0:3½mol=liter� and Clbound ¼ 0:01½mol=liter� at the boundary. From
left to right: t ¼ ð0; 20000½s�Þ with ï€ Δt ¼ 2000½s�. In this and all calculations
below we use the porosity is φ ¼ 0:37, μw ¼ 1:0e� 3½Pas�, μo ¼ 2:0e� 3½Pas�,
λ ¼ 3, Dm ¼ 1e� 9½m2=s�, Dcap ¼ 1:0e� 8½m2=s�.The x-axis represents dimen-
sionless distance.
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the saturation curve is higher for carbon dioxide flooding.
When the salinity is constant, our model can be reduced to the model

studied in De Nevers et al. (De Nevers et al., 1964), Pope (1980) by
imposing similar injection and initial conditions. The structure of the
Riemann solution in our example from left (SwL ¼ 1, pHL ¼ 2:7) (up-
stream) to right (SwR ¼ 0:15, pHL ¼ 4) (downstream) consists of two
rarefaction waves connected by a chemical shock; the latter is continued
with a constant state and finally a fast Buckley-Leverett saturation shock.
In the first rarefaction wave only the saturation changes, while in the
second one, both saturation and composition change. The connection
point between the rarefaction waves can be constructed from a curve of
states where the two characteristic velocities coincide.

In Pope (1980), the solution of the Riemann problem is obtained for
constant viscosity oil as a sequence of a shock, a constant state, followed by
another shock. Although we can only obtain a qualitative comparison with
this solution because the author of Pope (1980) only presents a sketch, we
can see from our sequence of waves of the Riemann solution that this so-
lution differs from the one obtained in this paper with a similar initial
Fig. 7. Saturation wave, compositional waves and Darcy's velocity at
t ¼ 10000½s�. The x-axis represents dimensionless distance.

Fig. 8. Profiles of carbon dioxide and decane in dimensionless space. The x-axis
represents dimensionless distance.
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condition, which consists of a rarefaction, a constant state and a shock. We
attribute the difference to the fact that the author uses a simplified model
in which the total Darcy velocity is not allowed to change.

In De Nevers et al., (1964), a sketch of the appropriate solution of a
similar Riemann problem is also presented. It consists of a wave sequence
starting with the injection state, followed by a shock, a rarefaction and
finally a shock, which is similar to ours. We attribute another cause for
the difference between the solutions obtained in De Nevers et al. (De
Nevers et al., 1964), Pope (1980) and those in the present paper to the
sensitivity of the model to the flow fw.

5. Conclusion

We developed a Riemann solver for oil recovery problems for low
salinity carbonated waterflooding model including geochemical aspects.
907
The methodology is adequate for one dimensional incompressible two-
phase flow in porous media with a few chemical components.

Due to mass transfer between phases and a different partial molar
volume of CO2 in the aqueous and oleic phase, a variable Darcy velocity
ensues. We quantify this change and we evaluated its contributions to the
enhance oil recovery.

The performance of our Riemann solver is illustrated for carbonated
water injection in a rock containing oil, brine water and carbon dioxide.
We formulate four balance equations, in which we substitute expressions
that are obtained from the geochemical software (PHREEQC) by
regression.

There is acceptable agreement between the numerical solutions. This
shows that the Riemann solver can effectively and accurately solve the
injection problem for carbonated waterflooding with low salinity and
elucidate the mechanism for enhancement of oil recovery.
Appendix

Appendix A. Chemical species and Gibbs' rule

As there is some arbitrariness in choosing the relevant aqueous species we follow Appelo et al. (2014) and Appelo and Postma (2004, 1999) and use
the geochemistry program PHREEQC to analyze phenomena in the aqueous phase. PHREEQC makes a choice to disregard certain components, the
concentrations of which are negligible. When we add water, carbon dioxide, salt and decane, there are eight different relevant chemical species,
(Ns ¼ 8), six that occur only in the aqueous phase, one, i.e. carbon dioxide, which occurs both in the aqueous phase and oleic phase and one alkane
(decane), which occurs only in the oleic phase. The six species that occur in the aqueous phase have molal (Appelo and Postma (2004)) concentrations of
species j and phase a, which is denoted byma;j, i.e. in moles=kg of solvent (water). The molality of carbon dioxide in the oleic phase is denoted bymo;CO2

[moles of component CO2 per kg of decane]. The molality of decane in the oleic phase is denoted by mo;dec ¼ 1. There are three (Nr ¼ 3) equilibrium
reactions.

ðCO2Þaq þ H2O⇌HCO�
3 þ Hþ; Ka ¼ aa;HCO3 aa;H

aa;CO2aa;H2O
; HCO�

3 ⇌CO2�
3 þ Hþ; Kb ¼ aa;CO3aa;H

aa;HCO3

; H2O⇌OH� þ Hþ; Kw ¼ aa;OHaa;H
aa;H2O

;

where aa;j [mol/kg-solvent] denotes the activity of molecule j in phase a; the reference state is an ideal solution with concentration of one molal. The
activity is the product of the molality and the activity coefficient γ, i.e. aa;j ¼ γa;jma;j. The temperature dependent equilibrium constants can be found in
the data bases of PHREEQC, e.g. phreeqc.dat or pitzer.dat. The choice of the data bases also determines how the activity coefficients will be calculated,
phreeqc.dat selects the Debye-H}uckel expressions (Clarke and Glew, 1980; Fernandez et al., 1997), whereas pitzer.dat selects the Pitzer expressions
Beyer and Staples (1986); Bradley and Pitzer (1979); Pitzer (1981, 1987); Pitzer and Mayorga (1973).

Appendix A.1. Gibbs phase rule
Gibbs phase rule to determine the number of chemical degrees of freedom consist in the following: Gibbs phase rule states Merkel et al. (2005) that

the number of degrees of freedom Nf is given by Nf ¼ Ns � Nr � Ns þ 2� p, where Ns is the number of different chemical species, Nr is the number of
possible equilibrium reactions,Nc is the number of constraints, e.g. the charge balance. The number 2 represents the temperature and pressure and p the
number of phases. Hence there are p equations of state (EOS). As we consider an aqueous and an oleic phase, the number of phases is p ¼ 2. The charge
balance equation acts as a constraint in Gibbs phase rule (Nc ¼ 1). Because the charge balance equation can also be derived from the mass balance
equations an alternative approach is to put Nc ¼ 0, leading to one more degree of freedom for the composition dependence, but add an additional mass
balance equation in Section IV (the total carbon equation). This is, however, less convenient, because then the composition depends on three instead of
two variables.

If the relevant parameters are not tabulated, this is left to the user or default values for ideal solutions are used. The number of degrees of freedom
can be calculated by Nf ¼ Ns � Nr � Nc þ 2� p ¼ 8� 3� 1þ 2� 2 ¼ 4. Given the pressure and temperature there are only two degrees of freedom for
the composition variables, which we choose to be the pH ¼ �log10½aHþ� and the chloride concentration ½Cl��. When the number of phases changes, the
number of degrees of freedom for the compositions also changes (e.g. from a two phase system to a single phase system it increases by one). Therefore
the total number of unknowns remains unchanged. In our examples we only consider the two-phase system.

In this way, we determine that we need only two chemically independent constituent of the system. Now we obtain the rest of the variables
[CO2],[H2O],[HCO3],[CO3],[OH] in terms of pH and the chloride concentration ½Cl��. Afterwards, we obtain relationships among the chemical
species concentrations in terms of pH and Cl. At this point, we obtain a system in four dependent variables water saturation Sw, hydrogen con-
centration pH, chloride concentration Cl and Darcy's velocity u with four conservation laws (1)–(4). This procedure is justified from the physical
point of view because the underlying model is fully described by the thermodynamics and conservation laws for chemical species. From the
mathematical point of view, this means that we reduced a differential algebraic system (differential equations more constraints) to the differential
system where the constraint are embedded into the coefficients, in which we solve the Riemann problem. In this paper, we focus on the solution of
the differential system.

We use PHREEQC for the equilibrium calculations and chose 71.11 �C, because at this temperature the literature gives most data on the decane-CO2
system. The pH¼ 2.74 in our example and the corresponding pressure is 251 atm. A pressure of 136 atm close to 2000 psia would typically occur at a pH
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of 2.86. In this pH range the solution is very sensitive to the pH values.
In the example studied here, we perform the estimation of the molar concentrations ρa;Clð�1Þ, ρa;Hþ, ρa;Oð2�Þ, ρo;Cð�4Þ in terms of pH and Cl by using

first the PHREEQC program (Parkhurst and Appelo (2013), Parkhurst et al. (1999)) (Formulas for molar concentration are given in Section 2.1). We
add some formulas to this program to obtain ρo;CO2

in terms of ρa;CO2
by using Henry's law. Secondly, we use a nonlinear regression package Eureqa.

The above method consists of the following steps: first, we assume as known the values of certain initial concentrations ðpHiÞ, which we obtain from
number of degrees of freedom determined by Gibbs rule, (e.g. hydrogen, chloride). Afterwards, using the Newton-Raphson procedure implemented in
PHREEQC program, we obtain the concentration of other quantities. Using a non-linear regression we can obtain the concentrations of all the chemical
species as function of two concentration variables.

PHREEQC program uses the values of the temperature dependent equilibrium coefficients of the equilibrium reactions for a preset temperature.
Since a set of all master species transport equations implies the preservation of the charges, we use this equation (charge conservation) in the re-
covery procedure to reduce uncertainty. Also, we replace one combination of the mass conservation equations by the charge conservation. In the
presence of the remaining mass conservation equations, the charge conservation is equivalent to the equation it replaces, The result is one extra
constraint equation, which can be used to eliminate one of the unknown variables. We are left with a smaller set of PDEs for mass conservation,
which is easier to solve.

Appendix A.2. Partition of CO2 into aqueous and oleic phases
The partition of carbon dioxide between the aqueous and oleic phases is not covered in PHREEQC and needs to be separately implemented. It is,

however, possible to add basic programs in PHREEQC that allow including the two-phase behavior. First, we formulate the underlying theory. The
equilibrium between aqueous and oleic carbon dioxide can be represented by

ðCO2Þo⇌ðCO2Þaq:
The equilibrium relation will be obtained by using an extended Henry's law both for the aqueous CO2 system and for the oleic CO2 system, relating

the fugacity of the gaseous carbon dioxide to the activities of carbon dioxide in the aqueous and oleic phase respectively. The extended Henry's law is
formulated as the Krichevski-Ilinskaya equation, which contains two main coefficients. For the carbon dioxide-decane system, the coefficients are the
oleic Henry constant and an activity coefficient described by a Margules expression (Poling et al., 2001). For the aqueous system the coefficients are the
aqueous Henry constant and the Pitzer activity coefficient for carbon dioxide. To obtain the values of the coefficients for the carbon dioxide-decane
system we use the experimental data by Nagarajan and Robinson Jr (Nagarajan and Robinson, 1986). It is not possible to smoothly connect these
data to other experimental data (Chou et al. (1990), Cullick and Mathis (1984), Eustaquio-Rinc�on and Trejo (2001), Jennings and Schucker (1996),
Kariznovi et al. (2013), Kukarni et al. (1974), Reamer and Sage, 1963), Shaver et al. (2001)), either because pressure and temperature conditions are
different or because there is no smooth transition between the data. By comparing the Henry coefficient of carbon dioxide between the oleic phase and
the gas phase to the Henry coefficient between the aqueous and the gas phase it is possible to derive the partition coefficient of carbon dioxide between
the oleic phase and the aqueous phase. By extending Henry's law Poling et al. (2001), i.e. p ¼ Hx, where the pressure p is replaced by the fugacity fg;CO2

and the mole fraction x by the activity of carbon dioxide in phase α, i.e. aα;CO2 (α ¼ a; o), we make it applicable for high pressures in the subcritical region
and for concentrated solutions. We obtain for the aqueous phase aa;CO2 ¼ γα;CO2

xa;CO2 .

fg;CO2

�
γa;CO2

xa;CO2 ¼ HH
wgexp

�
v∞o;CO2

RT

�
P� Ps

1

�	
; (A.1)

The right side of Eq. (A.1) represents Henry's coefficient corrected for the high prevailing pressure. The symbol v∞o;co2 denotes the partial molar
volume in the aqueous phase and Ps

1 the saturation pressure at atmospheric conditions. For the oleic phase we obtain

fg;CO2

xo;CO2 exp
�

A
RTð1� xo;CO2 Þ2

	 ¼ HH
wgexp

�
v∞o;CO2

RT

�
P� Ps

1

�	
;

where the activity γo;CO2
xo;CO2 is obtained using Margules expression for the activity coefficient (Poling et al. (2001))

γo;CO2
exp
�

A
RT

ð1� xo;CO2 Þ2
	
:

We assume that the fugacities fg;CO2 in equilibrium with the aqueous or oleic phase have been given the same values, which implies that we disregard
the small amounts of water vapor and decane vapor in the gaseous phase. This allows us to eliminate fg;CO2 from the two equations. The ratio of the
activities of carbon dioxide in the aqueous phase and the oleic phase is therefore constant if pressure and temperature are constant. The consequence is
that the mole fractions change as the activity coefficient γa;CO2

varies.
For carbon dioxide in the aqueous phase, Henry coefficients as a function of temperature are tabulated in Sander (1999), Zawisza and Malesinska

(1981). Reference Sander (1999) gives the inverse Henry constant kH ½M=atm� , with kH ¼ ca;CO2=P, where ca;CO2 is the concentration of carbon dioxide in
the aqueous phase and

ln
�
kH
�
koH
� ¼ �ΔHw=Rð1=T � 1=ToÞ; (A.2)

where for carbon dioxide dissolution in water we have koH ¼ 34:0½mole=m3=atm� at temperature To ¼ 298:15½K� and ΔHw=R ¼ 2400½K� with R denotes
the gas constant universal. Sometimes kH is not called the inverse Henry constant (coefficient), but just the Henry coefficient. The positive value of
ΔHw=R arises as the Henry coefficient HH

w�g gives the conversion of the dissolved phase to the gas phase and this reaction is endothermic. Conversion of

kH to HH
w�g uses equation (A.2) at T ¼ 298:15 and T ¼ 344:3K, respectively, i.e. HH

w�g ¼ ðρw½kg=m3�=Mw½kg=mole�Þ kHð1=34:0Þ½atm=mole=m3� ¼
908
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1593:2atm and HH
w�g ¼ ðρw½kg=m3�=Mw½kg=mole�Þ kHð1=100:0Þ½atm=mole=m3� ¼ 542:05:2atm. For the tabulated values Sander (1999), the fugacity is

equal to the low saturation pressure and this equality allows to determineHH
w�g from the data. The activity coefficient γa;CO2

deviates noticeably from one
only in ionic solutions and is only negligibly affected by neutral molecules. The activity coefficients of neutral molecules, such as CO2ðaqÞ, can be found
in terms of the Setch�enow coefficient (Randall and Failey, 1927a, 1927b, 1927c; Reardon and Langmuir, 1976; Byrne and Stoessell, 1982, Anderson and
Crerar, 1993) use the Setch�enov equation log10γa;CO2

¼P kSiμi :¼ μkS, which takes into account the ionic species dependence, i.e. the ionic strength of
species i:μi ¼ ma;iz2i =2 with specific coefficient kSi leading to an average Setch�enow coefficient kS at ionic strength μ ¼P μi.

For CO2 in the oleic phase, we use the data set of Nagarajan and Robinson Jr (Nagarajan and Robinson, 1986), as it shows less scatter than other
data sources and it reports both the compositions and the densities. Moreover, it gives data for a relevant temperature value, i.e. T ¼ 344:3K.
Unfortunately this dataset does not show any results for pressures below 63.85 bar. The data presented by other authors are not sufficiently complete
to derive the behavior over the full concentration range. For this reason, we use again the Krichevsky-Ilinskaya equation (Poling et al. (2001)) to
relate the carbon dioxide pressure in the gas phase to the concentration in the oleic phase. It is a relationship, which needs to be determined
experimentally. Comparing to the data quoted in (Nagarajan and Robinson Jr (Nagarajan and Robinson, 1986)), we find for the decane-CO2 system
at 344:3K that HH

o�g ¼ expð16:04Þ½Pa� ¼ 91:25½atm� and A ¼ 2045:6½J=mol�. The activity coefficient γo;CO2
corrects the mole fraction xo;CO2 to the

activity ao,CO2.The value of A and the Henry coefficient were obtained by substituting experimental data of Nagarajan and Robinson Jr (Nagarajan
and Robinson, 1986) in equation

xo;CO2 exp
�

A
RT

ð1� xo;CO2 Þ2
	

¼ xa;CO2γa;CO2

HH
w�g

HH
o�g

exp
�
v∞a;co2 � v∞o;co2

RT

�
Po � Ps

1

�	
: (A.3)

Here Δv ¼ v∞a;co2 � v∞o;co2 is the difference between the partial molar volumes of carbon dioxide in the aqueous phase and in the oleic phase. The
pressure Po is chosen such that there is no gaseous phase, as CO2 will dissolve in the oil, e.g. Po ¼ 200 bar. The right side of Eq. (A.3), consists for a part
of information on aa;CO2 ¼ xa;CO2 γa;CO2

that can be obtained with PHREEQC as a function of the pH and the chloride concentration and for a part from the
Henry coefficients, and the partial molar volumes as explained above. The partial molar volumes of carbon dioxide in the oleic phase, (Nagarajan and
Robinson Jr (Nagarajan and Robinson, 1986)) and the partial molar volume in the aqueous phase Parkhurst and Appelo (2013) are almost independent
of the composition and thus constant. The difference of the partial molar volumes in the oleic and the aqueous phase must be attributed to the different
effect of the carbon dioxide molecule on the volume of the mixture, see Israelachvili (2015) page 120. We used a data set at 71:11oC, because at that
temperature many measurements were obtained and reported in the literature. The Henry coefficient obtained from a linear regression shows the error
of Henry's coefficient, i.e. ln HH

o�g ¼ 16:044� 0:026. Using this procedure we get a smooth transition between the measured high pressure data and the
interpolated low pressure data. For the temperature used T ¼ 71:11oC ¼ 344:26K and use Equation (A.2) to obtain lnðHH

o�gÞ ¼ 6:295. The ratio
HH

w�g=H
H
o�g ¼ 5:940. We use a system pressure of 200 bar to avoid the presence of gaseous CO2, with respect to which the vapor pressure of water and

decane are completely negligible, we obtain that Keq ¼ HH
w�g=H

H
o�gexp

�
v∞a;co2�v∞o;co2

RT ðP0 � Ps
1Þ
	

¼ 4:396:

We can use EUREQA to obtain an explicit expression for xo;CO2 of Eq. (A.3)

xo;CO2 ¼ 2:3061325 ψ þ 1:0883494 ψ2 &þ 0:020187636 exp
�
1:0576301 ψ2

�� 0:020750111� 2:4334976 ψ
ffiffiffiffi
ψ

p
;

for which we denote the right side of Eq. (A.3) with ψ, which contains aa;CO2 ¼ xa;CO2 γa;CO2
and can be obtained with PHREEQC as a function of the pH.

The mole fraction of carbon dioxide in the oleic phase can be implemented in a BASIC routine appended to PHREEQC. This supplements the aqueous
concentrations, which are conventionally obtained with PHREEQC (Appelo and Postma (1999), Appelo et al. (2014)). PHREEQC also gives the molar
density of the aqueous phase as a function of the composition.
Appendix B. Method of Characteristic (MOC)
Appendix B.1. Rarefaction waves
We solve the Riemann-Goursat problem by the method of characteristics. To do so, we assume that the wave W ¼ ðSw; pH;Cl; uÞ are differentiable

functions of the variable ξ ¼ x=t, then Wðx; tÞ ¼ WðxðξÞ; tðξÞÞ ¼ WðξÞ, and we obtain:�
� ξ

∂G
∂W þ ∂F

∂W

	
∂
∂ξ ðW Þ ¼ 0: (B.1)

The first eigenvalue is λSw ¼ ufw '=ϕ associated to the eigenvector r!s ¼ ð1; 0; 0;0ÞT (saturation wave R Sw ) and the second (chemical composition
wave R Δ) is

λΔ ¼ ðu=ϕÞððfw � ðΔ� 1ÞÞ=ðSw � ðΔ� 1ÞÞÞ;

associated to the eigenvector r!Δ in. The third eigenvalue is λCl ¼ ðu=ϕÞfw=Sw which is a contact discontinuity (chloride wave R Cl) because
▽λCl � rCl ¼ 0, which is associated to the eigenvector r!Cl. The saturation waves are curves with constant hydrogen (see Appendix B.2 for details).

Thus, we have three families of rarefaction waves, the saturation rarefaction, denoted byR s and the chemical rarefactions, denoted byR Δ andR Cl.
These waves are obtained as integral curves of each eigenpair, i.e. dR s=dξ ¼ r!s and dR H=dξ ¼ r!H . To select the correct direction of the integral curve,
we assume that the wave speed λ is increasing along of characteristic wave, which means that rλ � r!> 0 for each eigenpair. In the wave R s only
saturation changes and hydrogen and chloride concentrations remain constant; along such a wave the Darcy's velocity u is also constant. In this case, we
have the classical Buckley-Leverett rarefaction wave.
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The rarefaction R Δ is a composition wave in which the saturation, hydrogen, chloride concentrations and Darcy's velocity vary due to volume
changes. This wave is obtained by integration of the complete first order differential system of equations (B.27)–(B.29), which is avoided in the
fractional flow method as described in Pope (1980). For the rarefaction R Cl mainly chloride and hydrogen concentrations change.

Appendix B.2. Method of characteristics. Technical calculation
MOC allows to calculate the velocity at which the waves propagate through the porous medium. The basis of the method is to assume that the

independent variables W ¼ ðSw; pH;Cl; uÞ are functions of the variable ξ ¼ x=t. Along any curve with tangent ðdt; dxÞ we have

dW ¼ ∂W
∂t dt þ ∂W

∂x dx:

Using the system of conservation law (1)–(2), we obtain along characteristic curves for i ¼ 1;2;3

∂Gi

∂W
dW
dt

þ ∂Fi

∂W
dW
dx

¼ 0; (B.2)

where

∂Gi

∂W ¼ ∂Gi

∂sw
dsw
dξ

þ ∂Gi

∂y
dy
dξ

þ ∂Gi

∂u
du
dξ
;

∂Fi

∂W ¼ ∂Fi

∂sw
dsw
dξ

þ ∂Fi

∂y
dy
dξ

þ ∂Fi

∂u
du
dξ

:

In matrix notation equation (B.2) is�
� ξ

∂G
∂W þ ∂F

∂W

	
dW
∂ξ ¼ 0; (B.3)

where the accumulation and flux functions G are given in (8).
From now we rewrite above system of equations with another notation such that mathematical manipulation are more easily to do. Let us denote by

C1 ¼ ρa;Hð1Þ, C2 ¼ 0, C3 ¼ ρa;Clð�1Þ, C4 ¼ 4ρo;CO2
, C5 ¼ ρa;O�H , C6 ¼ ρo;Cð�4Þ and C7 ¼ 0. We consider a system evolving chemical species

θ ¼ ðθ1; θ2Þ ¼ ðpH;ClÞ, water saturation Sw and Darcy's velocity u. Molar concentrations are rewritten as Ci ¼ CiðθÞ, for i ¼ 1;⋯; 7 and the system of
equations (1)–(2) can rewritten as:

∂
∂t ðϕSwC1Þ þ ∂

∂x ðufwC1Þ ¼ 0; (B.4)

∂
∂t ðϕð1� SwÞC2 þ SwC3Þ þ ∂

∂x uðð1� fwÞC2 þ fwC3Þ ¼ 0; (B.5)

∂
∂t ðϕð1� SwÞC4 þ SwC5Þ þ ∂

∂x uðð1� fwÞC4 þ fwC5Þ ¼ 0 (B.6)

∂
∂t ðϕð1� SwÞC6 þ SwC7Þ þ ∂

∂x uðð1� fwÞC6 þ fwC7Þ ¼ 0: (B.7)

Notice that in the equations (B.4) and (B.7), we introduced C2 ¼ 0 and C7 ¼ 0 to ensure compatibility with system of equations (7)–(9).
Denoting A ¼ ∂F

∂U and B ¼ ∂G
∂U, the system of eigenvalues is written as A r!¼ Bλ r!, where r ¼ ðSw; θ; uÞT and B, A:

B ¼ ϕ

0BBBBBBBBBBBB@

C1 Sw
∂C1

∂θ1
Sw
∂C1

∂θ2
0

C3 � C2 ð1� SwÞ ∂C2

∂θ1
þ Sw

∂C3

∂θ1
ð1� SwÞ ∂C2

∂θ2
þ Sw

∂C3

∂θ2
0

C5 � C4 ð1� SwÞ ∂C4

∂θ1
þ Sw

∂C5

∂θ1
ð1� SwÞ ∂C4

∂θ2
þ Sw

∂C5

∂θ2
0

C7 � C6 ð1� SwÞ ∂C6

∂θ1
þ Sw

∂C7

∂θ1
ð1� SwÞ ∂C6

∂θ2
þ Sw

∂C7

∂θ2
0

1CCCCCCCCCCCCA
; (B.8)

A ¼

0BBBBBBBBBBBB@

uC1
∂fw
∂Sw

uf
∂C1

∂θ1
ufw

∂C1

∂θ2
∂F1

∂u

uðC3 � C2Þ ∂fw∂Sw
uð1� fwÞ ∂C2

∂θ1
þ ufw

∂C3

∂θ1
uð1� fwÞ ∂C2

∂θ2
þ ufw

∂C3

∂θ2
∂F2

∂u

uðC5 � C4Þ ∂fw∂Sw
uð1� fwÞ ∂C4

∂θ1
þ ufw

∂C5

∂θ1
uð1� fwÞ ∂C4

∂θ2
þ ufw

∂C5

∂θ2
∂F3

∂u

uðC7 � C6Þ ∂fw∂Sw
uð1� fwÞ ∂C6

∂θ1
þ ufw

∂C7

∂θ1
uð1� fwÞ ∂C6

∂θ2
þ ufw

∂C7

∂θ2
∂F4

∂u

1CCCCCCCCCCCCA
; (B.9)

with ∂F1
∂u ¼ fwC1, ∂F2∂u ¼ ð1� fwÞC2 þ fwC3, ∂F3∂u ¼ ð1� fwÞC4 þ fwC5 and ∂F4

∂u ¼ ð1� fwÞC6 þ fwC7. To obtain the eigenvalues we solve detðA� λBÞ ¼ 0, where
A� λB is:
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0B C1ξ1 ξ3
∂C1

∂θ1
ξ3
∂C1

∂θ2
fwC1

1C
BBBBBBBBBBB@

ðC3 � C2Þξ1 ξ2
∂C2

∂θ1
þ ξ3

∂C3

∂θ1
ξ2
∂C2

∂θ2
þ ξ3

∂C3

∂θ2
ð1� fwÞC2 þ fwC3

ðC5 � C4Þξ1 ξ2
∂C4

∂θ1
þ ξ3

∂C5

∂θ1
ξ2
∂C4

∂θ2
þ ξ3

∂C5

∂θ2
ð1� fwÞC4 þ fwC5

ðC7 � C6Þξ1 ξ2
∂C6

∂θ1
þ ξ3

∂C7

∂θ1
ξ2
∂C6

∂θ2
þ ξ3

∂C7

∂θ2
ð1� fwÞC6 þ fwC7

CCCCCCCCCCCA
: (B.10)

where

ξ1 ¼
�
u
∂fw
∂Sw

� φλ

	
; ξ2 ¼ uð1� fwÞ � φλð1� SwÞ and ξ3 ¼ ufw � φλSw: (B.11)

After applying Gauss elimination procedure we obtain0BBBBBBBB@

C1ξ1 ξ3
∂C1

∂θ1
ξ3
∂C1

∂θ2
f C1

0 ξ3η21 ξ3η22 0

0 ξ3χ3 þ ξ2χ1 ξ3χ4 þ ξ2χ2 0

0 ξ3η41 � ξ2C1
∂C6

∂θ1
ξ3η42 � ξ2C1

∂C6

∂θ2
�C1C6

1CCCCCCCCA
; (B.12)

where

ηij ¼ �∂C1

∂θj
ðC2i�1 � C2i�2Þ þ C1

∂C2i�1

∂θj
; with i ¼ 1;…; 4; j ¼ 1; 2:

χ1 ¼ C1

�
C4

∂C6

∂θ1
� C6

∂C4

∂θ1

	
; χ2 ¼ C1

�
C4

∂C6

∂θ2
� C6

∂C4

∂θ2

	
; (B.13)

χ3 ¼ C6η31 � C4η41 χ4 ¼ C6η32 � C4η42: (B.14)

Then the first eigenvalue satisfies ξ1 ¼ 0 so we have

λs ¼ ðu=ϕÞ ∂fw∂Sw
; (B.15)

associated to the saturation wave. One can prove that the eigenvector associated to this eigenvalue is rs ¼ ð1;0; 0;0Þ.
Second eigenvalue satisfies ξ3 ¼ 0, so we obtain

λCl ¼ ðu=ϕÞ fw
Sw

: (B.16)

This eigenvector rCl ¼ ðr1Cl; r2Cl; r3Cl; r4ClÞ associated to λCl satisfies0BBBBBBB@

C1ðλs � λClÞ 0 0 f C1

0 0 0 0

0 ξ2χ1 ξ2χ2 0

0 �ξ2C1
∂C6

∂θ1
�ξ2C1

∂C6

∂θ2
�C1C6

1CCCCCCCA
0BB@

r1Cl
r2Cl
r3Cl
r4Cl

1CCA ¼ 0: (B.17)

Denoting bλs ¼ ð1=uÞλs and bλCl ¼ ð1=uÞλCl and solving system in (B.17) we obtain

r1Cl ¼ Swfwðfw � SwÞ
�
� χ1

∂C6

∂θ2
þ χ2

∂C6

∂θ1

	
;

r2Cl ¼ χ2C6

�bλs � bλCl�;
r3Cl ¼ χ1C6

�bλs � bλCl�;
r4Cl ¼ �uSwðfw � SwÞ

�bλs � bλCl��� χ1
∂C6

∂θ2
þ χ2

∂C6

∂θ1

	
;

where χ1 and χ2 are given in (B.13). The third eigenvalue satisfies:
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det
η21 η22

ξ3χ3 þ ξ2χ1 ξ3χ4 þ ξ2χ2
¼ 0; (B.18)
� 	
For this eigenvalue, we rewrite the integral curve parametrized by ξ in the plane Cl versus pH, i.e.

dθ1
dξ
dθ2
dξ

¼ r2Cl
r3Cl

; (B.19)

where θ1 ¼ pH and θ2 ¼ Cl. After some calculations, the equality C6=C4 ¼ constant holds.
For general case, we postulate that the eigenvalues have the form:

λΔ ¼ ðu=ϕÞ ð1� fwÞ � Δ
ð1� SwÞ � Δ

: (B.20)

In fact, substituting λΔ given by ðB:20Þ in ξ2 and ξ3, we obtain:

ξ2 ¼ uð1� fwÞ � ϕλð1� SwÞ ¼ �uΔ
ð1� fwÞ � ð1� SwÞ

1� Sw � Δ
: (B.21)

and

ξ3 ¼ ufw � ϕλSw ¼ �uð1� ΔÞ 1� fw � ð1� SwÞ
1� Sw � Δ

: (B.22)

Substituting ξ2 and ξ3 in ðB:18Þ, after some calculations we obtain:

det
�

η21 η22
ð1� ΔÞχ3 þ Δχ1 ð1� ΔÞχ4 þ Δχ2

	
¼ 0; (B.23)

since we assume that ð1� fw � ð1� SwÞÞ=ð1� Sw � ΔÞ 6¼ 0. After some calculations we obtains

Δ ¼ η21ðC6η31 � C4η41Þ � η22ðC6η32 � C4η42Þ
η21χ2 � η22χ1 � ðη21ðC6η31 � C4η41Þ � η22ðC6η32 � C4η42ÞÞ

: (B.24)

In particular, the eigenvalue λCl in (B.16) is obtained taking Δ ¼ 1.

Denoting bλΔ ¼ ð1=uÞλΔ the eigenvectors associated to λΔ can be found as:

r!Δ ¼ �ðfw � SwÞr1;
�bλs � bλΔ�r2;&�bλs � bλΔ�r3; u

�bλs � bλΔ�ðfw � SwÞr4
�
;

where ðr2; r3Þ are eigenvectors of matrix�
η21 η22

ð1� ΔÞχ3 þ Δχ1 ð1� ΔÞχ4 þ Δχ2

	
; (B.25)

moreover, r4 ¼ fw�Sw
1�Sw�Δbr4, with

br4 ¼  X2
i¼1

Δðη4iC2 � η2iC4Þ þ ð1� ΔÞC1

�
∂C4

∂θi
C2 � ∂C3

∂θi
C4

	!
;

and

r1 ¼ uΔ
1� Sw � Δ

ðhrθC1; ðr2; r3Þi þ ð1� fwÞC1br4Þ;
here rθC1 is the gradient of C1 with respect to θ variable. The integral fields in the space θ do not depend on saturation.

The saturation waves are curves with constant hydrogen. The chemical composition curves (i ¼ R Δ;R Cl) can be obtained by solving first the
differential equations

dSw=dξ ¼ r1i
�ðSw; pH;ClÞ ¼ ðfw � SwÞri1ðpH;ClÞ; (B.26)

dpH=dξ ¼ r2i Sw; pH;Cl
�

(B.27)

dCl=dξ ¼ r3i ðSw; pH;ClÞ ¼ �bλSw � bλΔ�ri3ðpH;ClÞ; (B.28)
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and secondly solving the ODE

du=dξ ¼ r4i ðSw; pH;Cl; uÞ ¼ uðfw � SwÞ
�bλSw � bλΔ�ri4ðpH;ClÞ: (B.29)

To select the correct direction of the integral curve, we assume that the wave speed λ is increasing along of characteristic wave, which means that
rλ � r! > 0 for each eigenpair.

The integration (B.27)-(B.29) is avoided in the fractional flowmethod as described in Pope (1980). If we approximate our model by one in which no
volume change on mixing occurs, the Darcy velocity is uniform in space and the method of characteristics can be fully applied as in Orr (2007)
Appendix C. Rankine-Hugoniot curve

Another type of solution are shock waves, which represent discontinuities. In phase space ðsw; pH;Cl; uÞ these discontinuity curves form the Rankine-
Hugoniot locus (RH-locus). For a given left state ðs�w ; pH�;Cl�; u�Þ, the RH-locus is the set of right states ðsþw ; pHþ;Clþ; uþÞ that satisfy the Rankine-
Hugoniot RH relationships

σ
�
Gi

�
sþw ; pH

þ;Clþ
�� Gi

�
s�w ; pH

�;Cl�
�� ¼

uþ bFi

�
sþw ; pH

þ;Clþ
�� u� bFi

�
s�w ; pH

�;Cl�
�
; (C.1)

with i ¼ 1;2;3; 4. HerecF1 ,cF2 ,cF3 andcF4 are given in (8) andG1, G2, G3 andG4 are given in (9) and the function σ represents the shock speed. In Lambert
and Marchesin (2009), the authors obtain the RH-locus in space variables saturation, hydrogen concentration and chloride and then the RH-locus in the
whole space ðsw; pH;Cl; uÞ is calculated.

Thus the Hugoniot locus is the union of three branches, i.e. S s [ S H1 [ S H2 , with

S s ¼
��

Sþw ;Cl
þ; pHþ� : Clþ � Cl� ¼ 0; and pHþ � pH� ¼ 0

�
: (C.2)

Along this branch we have that u ¼ uþ ¼ u� and σ ¼ u½bFi �=½Gi�, with i ¼ 1;2; 3;4. Thus we call this curve a Buckley Leverett shock, in which only
saturation varies. And the another two branches S H1 and S H2 consist of the intersection of two surfaces given in (C.3) and (C.4).

From (C.1) a sufficient condition for the existence of a non-trivial solution uþ; u� and σ for (C.1) is that the following determinant conditions be
satisfied in a region

H1

�
Sþw ; pH

þ;Clþ
� ¼ det


�
�cF1

� cF1
� ½G1�

�
�cF2

� cF2
� ½G2�

�
�cF3

� cF3
� ½G3�

 ¼ 0; (C.3)

and

H2

�
Sþw ; pH

þ;Clþ
� ¼ det


�
�cF1

� cF1
� ½G1�

�
�cF2

� cF2
� ½G2�

�
�cF4

� cF4
� ½G4�

 ¼ 0: (C.4)

This is a nonlinear system of equations in the variables Sþw , pH
þ and Clþ for a fixed left state. The curve found in ðSþw ; pHþ;ClþÞ space gives the possible

discontinuities that satisfy the shock conditions.
Since equations (C.3) and (C.4) determine the locus of two surfaces, their intersection (or Hugoniot locus) is a curve in three dimensional space

determined by the variables ðSþw ; pHþ;ClþÞ. Assuming the flux and accumulation are differentiable to order one, one can verify that the functionsH1 and
H2 in equations (C.3) and (C.4) can be decomposed into

Hi ¼
�
Clþ � Cl�

�
SH1

i

�
Sþw ; pH

þ;Clþ
�þ �pHþ � pH��SH2

i

�
Sþw ; pH

þ;Clþ
�
;

with SHj
i ðS�w ; pH�;Cl�Þ 6¼ 0 for (i; j ¼ 1;2). The result above is obtained using Taylor's Series for H1 and H2 and the facts

H1

�
S�w ;Cl

�; pH�� ¼ 0;H2

�
S�w ; pH

�;Cl�
� ¼ 0;

∂H1

∂sw
�
S�w ; pH

�;Cl�
� ¼ 0; and

∂H2

∂sw
�
S�w ; pH

�;Cl�
� ¼ 0

hold.
Appendix D. Bifurcation surfaces

In this section, we present the coincidence and inflection loci, which are used to construct the Riemann solution, and to determine the bifurcation
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surfaceswhere qualitative changes of the behavior of the solution are expected. Rarefaction wave solutions of the Riemann problem can suffer structural
modifications along the loci where wave velocities coincide, i.e. coincidence loci. Here the coincidence are surfaces satisfying

C sΔ ¼ fλs ¼ λΔg; C ClΔ ¼ fλCl ¼ λΔg C sCl ¼ fλs ¼ λClg: (D.1)

When the quantities Sw, pH and Cl vary, we have a coincidence surface. Let us denote C ¼ fðsw; pH;Cl; uÞ; such that fw ¼ Swg. One can prove that
C sCl ¼ C . Choosing certain experimental data of interest obtained with the PHREEQC program, the coincidence surface in the projected space for fixed
u consists of the following: For the data studied here the surface λs ¼ λΔ consists of two surfaces close to the part of the planes Sw ¼ 0:41 and Sw ¼ 0:76
inside the physical domain, (See Fig. D.9). Similarly, the locus λCl ¼ λΔ consists of the plane Sw ¼ 1 and another surface which is close to the plane
Sw ¼ 0:60. The coincidence surface λs ¼ λCl consists of region of the physical domain close to the planes Sw ¼ 0:15 and Sw ¼ 0:7371. A fundamental
feature of all coincidence surfaces is that they do not intersect each other for the data set studied here (see Fig. D.9). Besides, notice that we verify that
coincidence surface λs ¼ λΔ is included in the inflection surface associated to the wave R Δ, as was pointed out theoretically in Helmut, 2011).

On inflection surfaces genuine nonlinearity is not satisfied (Lax, 1957), so we define the inflection locus for saturation waves and for composition
waves as:

Ik ¼
8<:W : ▽λk ⋅ rk ¼

lk ⋅
�
rtk

∂2F
∂W2rk � λkrtk

∂2G
∂W2rk

	
ðlk ⋅ BrkÞ ¼ 0

9=;; (D.2)

with W ¼ ðsw; pH;Cl; uÞ, with either k ¼ s;Δ or Cl. Here B is the Jacobian of the accumulation G and ∂2F
∂W2, ∂2G

∂W2 denote the Hessian of accumulation and
flux, respectively. We denote by rk and lk the right and left generalized eigenvectors of the matrix in (B.1), respectively (Helmut, 2011).

The role of inflection surfaces is to indicate where the corresponding family of rarefaction curves stop. One can check that in the projected state space
ðSw; pH;ClÞ the inflection surface for the saturation wave consists of the physical domain intersecting the plane

ℐs ¼
�
ðSw; pH;ClÞ : ∂fw∂Sw

¼ 0
�
; (D.3)

In our case,ℐs corresponds approximately to the region fðSw; pH;ClÞ : Sw ¼ 0:5791; 2:7 	 pH 	 3;0:01 	 Cl 	 0:3g. Moreover, the inflection locus
for the field RΔ, denoted by ℐΔ, is given by:

ℐΔ ¼ C sCl [ C sΔ; (D.4)

The field R Cl is linearly degenerated, in this case rarefactions and shocks coincide, i.e. R Cl ¼ S Cl and the wave speed is constant. We show the
inflection surface in Fig. D.10. Riemann solution requires the characterization of the position and of features in the bifurcation surface. The bifurcation
structures are almost parallel to the plane of constant saturation, i.e. the changes occurs on the direction Sw. One can check that in the projected state
space ðSw; pH;ClÞ the inflection surface for the saturation wave consists of the physical domain intersecting the plane given in (D.2). In our case, this
surface corresponds approximately to the region fðs; pH;ClÞ : s ¼ 0:5791; 2:7 	 pH 	 3; 0:01 	 Cl 	 0:3g (see Fig. D.10).
Appendix E. Riemann solution strategy in the projected space ðSw; pHÞ

In this appendix, we describe the Riemann solution (RS) in the projected space of variable Sw and pH. With this solution we construct the RS in the
full space ðSw; pH;C; uÞ. In this way, we show the wave curve method satisfying the geometry compatibility condition more clearly.
Fig. D.9. Coincidence Surfaces λΔ ¼ λs, λCl ¼ λs and λCl ¼ λΔ. These surfaces
have almost constant saturation. It is expected that across the coincidence sur-
face the structure of the Riemann solution changes.
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When we seek the Riemann solution using a wave sequence fulfilling
the geometric compatibility condition in a four-dimensional space
ðSw; pH;Cl; uÞ the evaluation of many possibilities are required, resulting
in a practically intractable method. However, combining geometric
compatibility with the compatibility condition for the model described in
Section 3.2, we can obtain a practically tractable method. With the
compatibility condition for the model the waves R s, R Δ, S s and S Δ

belong to the constant chloride plane. i.e. Cl ¼ constant. Moreover, the
waves R Cl and S Cl are transversal to planes Cl ¼ constant while main-
taining the same characteristic velocity. These properties allow to
develop the following procedure for constructing the Riemann solution:

(I) We consider Riemann data as in 10, i.e. with the form L ¼
ðSwL; pHL;ClL; uLÞ and R ¼ ðSwR; pHR;ClR; uRÞ. We project data on two
different planes: ðSw; pHÞ-plane, which we denote by ~L and ~R (see

Figs. E.11 and E.12 left) and the ðCl; pHÞ-plane, which we denote by bL
and bR (see Figs E.11 and E.12 right). There is no bifurcation projection on
the ðCl; pHÞ-plane; in this projection the system is strictly hyperbolic. The
field associated to λΔ is genuinely non-linear and the field associated to
λCl is linearly degenerated. We can use the classical theory of Lax to
obtain the wave sequence in this projected plane.

(II) We obtain the Riemann solution connecting ~L and ~R in the
ðSw; pHÞ-plane (we denote this wave sequence as K1), and the solution
connecting bL and bR in the ðCl; pHÞ-plane (we denote this wave sequence
as K2).

Once we have sequences K1 and K2, we compare both wave se-



Fig. D.10. Inflection surfaces depend on eigenvalues ▽λΔ � rΔ ¼ 0 and
▽λs � rs ¼ 0. These surfaces have almost constant saturation Sw. Waves R Δ and
R s stop at the inflection locus.

Fig. E.11. Projection of L and R data into ðSw; pHÞ and ðCl; pHÞ planes.

Fig. E.12. a)- left. Projection of L and R on ðSw; pHÞ plane, projections are
denoted as ~L and ~R, respectively. b)- right. Projection of L and R on ðCl; pHÞ
plane, projections are denoted as bL and bR, respectively.

Fig. E.13. a)- left. Projection in the ðSw; pHÞ plane of coincidence and inflection
surfaces described in Appendix D. Here C ¼ fðsw; pH;Cl; uÞ; such that fw ¼ Swg,
while C sΔ, C ClΔ and C sCl appear in (D.1). The inflection surface ℐs is defined
in (D.3). b)- right. Regions in the ðSw; pHÞ plane defined by coincidence and
inflection surfaces. Here curves are out of scale such that we are able to define
regions R1 to R6 in the same figure.

Fig. E.14. a)- left. Rarefactions R Δ and R s; arrows indicate the direction of
increasing speed for each family. b)- right. The Riemann solution described in ð1Þ.

Fig. E.15. a)- left. Curves projected in ðCl; pHÞ plane. The vertical black line
corresponds to R Δ and the arrow indicates the increasing of wave speed, the

dashed part of vertical line is S Δ. The diagonal curve is S Cl. The state bB cor-
responds to the state in the intersection between R Δ and S Cl. The Riemann
solution construction is described in Fig. E.14. right b)- right. Similar waves. The
Riemann solution solution is described in Fig. E.16.

Fig. E.16. a)- left. Wave sequence for states satisfying b)- right. The Riemann
solution described in ð4Þ. The Riemann solution in the ðx; tÞ-plane. Here
E1 ¼ ðSwL; pHL;ClRÞ, E1 ¼ ðSwA; pHL;ClRÞ and E3 ¼ ðSwB; pHR;ClRÞ.
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quences and we obtain a procedure to solve the complete Riemann problem for states L and R in which waves obey the geometric compatibility
condition. Once we have the Riemann solution in the ðSw; pH;ClÞ space, we can obtain the solution in the full space ðSw; pH;Cl; uÞ, see Lambert and
Marchesin (2009); Lambert et al. (2010).

Obtaining the wave sequence in the ðSw; pHÞ space, we use the bifurcation curves obtained by the projection on the ðSw; pHÞ plane of the coincidence
915
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and inflection surfaces described in Appendix D, see Fig. E.13 left. These bifurcation curves divide the physical space ðSw; pHÞ in the subregions R1 to R6

as in Fig. E.13 right. In R1, we have that λCl < λs < λΔ; in R2 and R3, λCl < λΔ < λs; in R4, λΔ < λCl < λs; in R5, λΔ < λs < λCl; in R6, λs < λΔ < λCl.
The geometrical compatibility condition requires the following rule: When a Riemann datum ~L belongs to the subregions R2 to R5 where λΔ < λs, we

take as initial wave a composition rarefaction shock wave S Δ orR Δ, followed by either the constant state or a saturation wave (see below), which can
be either of the rarefaction (ℛs) or shock (S s) and must have a velocity higher or equal than the previous wave. On the other hand, when ~L belongs to
the subregions R1 and R6 (λΔ > λs), we start with a saturationR s or shock S s wave followed by waves of type SΔ orR Δ. Besides, in subregions R1 to R3,
S Cl has the characteristic speed λCl slower than the rest of the waves; in R4, λCl is faster than λΔ and λCl slower than λs and in R5 and R6 is faster than the
speed of the other waves. We utilize these velocities to obtain the Riemann solution.

Taking into account above comments, we show in details how to solve the Riemann problem from the state L to R. We analyze the case in which
R ¼ ðSwR; pHRÞ belong to the line pH ¼ pHR, which are shown in Fig. E.14 right and some chosen left L states:

ðIIIÞ When ~L ¼ ðSwL; pHLÞ is in R6 and ~R ¼ ðSwR; pHRÞ is such that pHL < pHR, the first wave is R sðLÞ. This wave is constructed from ~L to state A ¼
ðSwA; pHAÞ at the coincidence curve C sΔ, such that λsðA;ClLÞ ¼ λΔðA;ClLÞ < λClðA;ClLÞ. From A, we have a rarefaction R ΔðAÞ. From here, we use the
projections of the waves in the ðCl; pHÞ planes, which is useful to leave a state from Cl ¼ CLL to Cl ¼ ClR (see Fig. E.15). We draw this curve to state B ¼
ðSwB; pHB;ClBÞ (we remind that ~B ¼ ðSwB; pHBÞ and bB ¼ ðClB; pHBÞ). Notice that this state B is such that its projection in the ðCl; pHÞ plane, denoted by bB,
lies at the intersection of curve S s from bR to R Δ from bL, see Fig. E.15 left. Notice that the coordinate pHB > pHR. From B, we have five possibilities
(III.1), (III.2), (III.3), (III.4) and (III.5), which we describe below:

ðIII:1Þ We assume ~R 2 R5 (see Fig. E.13) and SwC < SwR < SwB, here SwC corresponds to a coordinate of state C ¼ ðSwC; pHRÞ on the coincidence
surface C sCl. In this case from ~B to state ðSwR; pHBÞ, we have aR sð~BÞ, such that λsðSw~R; pH~R;ClLÞ < λClðSw~R; pH~R;ClLÞ. From ðSwR; pHBÞwe have a wave

S Cl connecting ðSwR; pHR;ClLÞ to R, i.e. the Riemann solution consists of LR s
→

ðSwA; pHA;ClLÞR Δ
→

ðSwB; pHB;ClLÞR s
→

ðSwR; pHB;ClLÞS Cl
→

R.

ðIII:2ÞWe assume that ~R 2 R4 (see Fig. E.13) and SwD < SwR < SwC, here SwD corresponds to a coordinate of state D ¼ ðSwD; pHRÞ on the inflection
ℐs. In this case, from ~B to state C we have a R s such that λsðSwC; pHB;ClLÞ ¼ λClðSwR; pHB;ClLÞ. From C, connecting C ¼ ðSwC; pHB;ClLÞ to
ðSwC; pHR;ClRÞ, we have a curve S Cl, with speed λCl. In the projected ðSw; pHÞ plane Cl ¼ ClR, we continue R s from C to ~R. The Riemann solution

consists of a sequence of waves, i.e. L��!ℛs ðSwA; pHA;ClLÞ��!ℛΔ ðSwB; pHB;ClLÞ��!ℛs ðSwC; pHB;ClLÞ��!S Cl ðSwC; pHR;ClRÞ��!ℛs R.
ðIII:3Þ We assume ~R 2 R2 or ~R 2 R1 and SwR < SwD. In this case, from ~B to state C, we have a R s such that λsðSwC; pHR;ClLÞ ¼ λClðSwR; pHR;ClLÞ.

From C, connecting C ¼ ðSwC ; pHB;ClLÞ to ðSwC; pHB;ClRÞ, we have a waveS Cl, with speed λCl. In the projected ðSw; pHÞ plane Cl ¼ ClR , we continueR s

from C to state E ¼ ðSwE ; pHRÞ such that the shock speed from E to ~R, denoted by σðE; ~RÞ, has the same speed as λsðEÞ, i.e. σðE; ~RÞ ¼ λsðE;ClRÞ. Connecting
E to ~R, there is a shock S s. The Riemann solution consists of L��!ℛs ðSwA; pHA;ClLÞ��!ℛΔ ðSwB; pHB;ClLÞ��!ℛs ðSwC; pHB;ClLÞ��!S Cl ðSwC; pHR;ClRÞ��!ℛs ðSwE ; pHR;ClRÞ��!ℛs R (Fig. E.14 right).

ðIII:4Þ We assume that ~R 2 R6 (In Fig. E.14 right), ~R belongs to the region 5 or 6, but it is given by the condition below). We assume also
SwB < SwR < SwM , here M ¼ ðSwM ; pHMÞ is the state such that σðSwB; SwMÞ ¼ λClðSwB; pHB;ClLÞ. Notice that in the direction of state with saturation
coordinate SwB to state with saturation coordinate SwR we have a S s, however, the shock speed connecting these two states is larger than λCl. Thus we
have a wave S Cl, with speed λCl, connecting B ¼ ðSwB; pHB;ClLÞ to ðSwB; pHR;ClRÞ. In the projected ðSw; pHÞ plane, we connect ðSwB; pHRÞ to state ~R

with a shock S s. The Riemann solution consists of LR s
→

ðSwA; pHA;ClLÞR Δ
→

ðSwB; pHB;ClLÞS Cl
→

ðSwB; pHR;ClRÞS s
→

R.

ðIII:5Þ We assume ~R 2 R6 (In Fig. E.14 right, ~R belongs to the region R5 or R6, but it is given by the condition below). We assume also
SwM < SwR < SwN , hereN ¼ ðSwN ; pHNÞ is the state such that σðSwB; SwNÞ ¼ λΔðSwB; pHB;ClLÞ, i.e., any shock from a state ðSwB; pHBÞ to state ðSw
; pHRÞ
for Sw
 > SwN has speed smaller than λΔðSwB; pHB;ClLÞ, thus this state cannot be reached by a sequence of this type. Here the shock speed connecting a
state with coordinate SwB to state with coordinate SwR is smaller than λCl. Thus from ðSwB; pHBÞ to ðSwR; pHBÞ we have a shock S s, and finally con-

necting ðSwR; pHB;ClLÞ to ðSwR; pHR;ClRÞ a shock S Cl. The Riemann solution consists of LR s
→

ðSwA; pHA;ClLÞR Δ
→

ðSwB; pHB;ClLÞS s
→

ðSwR; pHB;ClLÞS Cl
→

R.

For state R for which coordinate SwR > SwN , we need a different wave sequence, which we do not construct here, but the construction should respect
the geometrical compatibility of waves.

To show a possibility for which the first wave is a S Cl, see Fig. E.16, we construct the following wave.
(IV)- If we consider L and R such that ~L is in R1 and ~R is in R6, we know that the slower wave is λCl. Thus the first wave from ~L is a S Cl to

B ¼ ðSwB; pHB;ClRÞ. This state B is obtained such that bB ¼ ðpHB;ClRÞ lies on the intersection between S Cl from bL and R Δ from bR in the ðCl; pHÞ plane,
see Fig. E.15 right. We define the state ~B ¼ ðSwB; pHBÞ in the ðSw; pHÞ plane, thus from ~B, connecting ~B to X ¼ ðSwX ; pHBÞ there exists aR s which stay on
the coincidence curveC sΔ. From X to a state Y ¼ ðSwY ; pHRÞ there is a rarefactionR Δ and from Ywe have a shock S s to state ~R. The Riemann solution

consists of LS Cl
→

ðSwL; pHB;ClRÞR s
→

ðSwX ; pHB;ClRÞR Δ
→

ðSwY ; pHR;ClRÞS s
→

R. In Fig. E.16 left we describe the wave sequence in the projected ðSw; pHÞ
plane and in Fig. E.16 right we describe the solution in (x,t)�plane.
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