
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Thesis
Motion planning for mobile manipulators in
multi-agent settings using MPC

MSc Robotics

Danning Zhao

Thesis
Motion planning for mobile manipulators in

multi-agent settings using MPC

MSc Robotics

by

Danning Zhao

Student Name Student Number

Danning Zhao 5459583

Supervisor: Dr. J. (Javier) Alonso Mora
Daily Supervisor: Ir. S. (Saray) Bakker
Faculty: Faculty of Mechanical Engineering, Delft
Department: Cognitive Robotics (CoR), Autonomous Multi-robots Lab
Duration: May 13, 2024 – January 13, 2025

Abstract

Mobile manipulators, which integrate a robotic arm on a mobile base, are increasingly being explored
and deployed in sectors such as healthcare, logistics, and aerospace. While motion planning for these
systems has been studied in single-agent scenarios, the use of multiple robots to enhance efficiency
and accelerate task completion in multi-agent settings remains largely unexplored, particularly in real-
world environments. Extending motion planning to multi-mobile manipulators introduces challenges in
real-time performance, collision avoidance, and coordination. To address these, this thesis proposes
a decentralized Model Predictive Control (MPC) framework with a double integrator as dynamic model,
denoted as MPC-d, tailored for multi-mobile manipulators operating in shared workspaces. It inte-
grates optimization-based planning with robust state estimation, ensuring effective collision avoidance.
Furthermore, a prioritized heuristic is introduced, leveraging the prediction horizon of MPC to resolve
potential livelocks. The framework is validated through simulations and real-world experiments. Sim-
ulations compare MPC-d with MPC using a triple-integrator model (MPC-t) and a state-of-the-art geo-
metric planner, called Geometric Fabrics (GF). Results demonstrate that MPC-d achieves comparable
task success rates and collision avoidance compared to GF in pick-and-place scenarios while requiring
less computation time than MPC-t. Real-world experiments confirm the framework’s viability, showcas-
ing effective collision avoidance, enhanced efficiency from the prioritized heuristic, and consistency
with simulation outcomes. Although MPC-d incurs higher computational costs than reactive geometric
methods, it provides reliable performance and motion prediction of other agents in multi-agent settings.

Additionally, this thesis provides an open-source codebase to support further advancements in multi-
robot motion planning. Code: https://github.com/DianeZhao/dinova_mpc

i

https://github.com/DianeZhao/dinova_mpc

Contents

Preface i

1 Introduction 1
1.1 Related work . 2

1.1.1 Local planners for a single mobile manipulator 2
1.1.2 Multi-Robot Motion Planning . 3

1.2 Contribution . 3
1.3 Overview . 4

2 Methodology 6
2.1 Method Overview . 6
2.2 Fundamentals: Planning spaces and kinematics . 6

2.2.1 Planning Space . 6
2.2.2 Kinematic Fundamentals . 7

2.3 Multi-robot model predictive control . 7
2.3.1 System Model . 8
2.3.2 Cost Function . 9
2.3.3 Constraints . 10
2.3.4 Numerical Optimization . 11

2.4 State Estimation . 12
2.4.1 State Estimation for the Ego-Robot Using a Kalman Filter (KF) 13
2.4.2 State Estimation for the Non-Ego Robots . 14
2.4.3 Collision Avoidance in Multi-agent Settings . 14

2.5 A Prioritized Heuristic to Solve Livelocks . 14
2.6 Summary of the Methodology Pipeline . 16

3 Simulation experiments 17
3.1 Experimental Framework . 17
3.2 Experiment 1: Simulated pick-and-place scenarios . 19

3.2.1 Setup . 19
3.2.2 Results . 19

3.3 Experiment 2: Computation Time . 21
3.3.1 Setup . 22
3.3.2 Results . 22

4 Real-world experiments 24
4.1 A single robot experiment . 25

4.1.1 Assessing single robot static obstacle avoidance 25
4.2 Multi-Robot Experiments . 26

4.2.1 A prioritized heuristic to solve livelocks . 26
4.2.2 Results . 27

5 Conclusions and Future Research 29
5.1 Conclusions . 29
5.2 Future Research . 30

References 31

ii

List of Figures

1.1 (a) A mobile manipulator works alongside humans (b) A demonstration of mobile manip-
ulators operating in a multi-agent setting to complete pick-and-place tasks. 2

2.1 Overview of the multi-robot MPC and a pioritized heuristic in a multi-agent settings . . . 16

3.1 Illustration of three simulated scenarios. In each scenario, the robots’ end-effector are
required to reach a static pre-grasp target in SE(3). The grasp target is represented by a
marker placed next to the generated cup, whose color matches that of the corresponding
robot’s arm. The robots are tasked with achieving their targets while avoiding collisions
with each other and static obstacles. 19

3.2 Screenshots capturing task failures across the three scenarios are provided. Differ-
ent colors distinguish the robots: robot-1 (green), robot-2 (magenta), and robot-3 (or-
ange). Each robot’s goal is indicated by a marker next to the generated cup, whose
color matches the corresponding robot’s arm. The collision spheres used for each ego
robot’s collision avoidance are visualized as semi-transparent gray spheres. 21

3.3 Illustrations depicting scenarios with varying numbers of obstacles. The robot ensures its
end-effector remains at its initial pose as indicated by the marker. It checks the minimum
distance among all collision pairs and ensures the collision inequality constraints. . . . 22

3.4 Comparison of controller computation time performancewith increasing numbers of static
and dynamic obstacles. 23

4.1 Real-world environment for static obstacle avoidance experiments. The robot sequen-
tially reaches three end-effector targets, indicated by the markers in the figure 25

4.2 The mobile manipulator avoids the two tables modelled as static obstacles in the real
world. (a-e) The end-effector moves to the other side of table and reaches goal-1. (f-h)
The end-effector moves behind the table and reaches goal-2. (i-l) Then it turns back,
relocating behind another table positioned far away and reaches goal-3. 25

4.3 Two robots are tasked with reaching end-effector target poses, represented by colored
stars, with their trajectories crossing. The initial configurations of the robots are shown
in the figure, and the marker at the center denotes the origin of the world frame. 26

4.4 Setup1. (a-f) MPC-d: A livelock occurs at 6 s when the end-effectors approach each
other. The livelock persists as robot-2 (red) end-effector moves to its own goal and
pushes robot-1 away till 8 s. Eventually, at 8 s, robot-1 gets rid of the livelock and begins
moving toward its respective goal. (g-l) MPC-d*: Both robots slow down at 6 s as they
approach each other. A potential livelock is detected when the Euclidean distance be-
tween the EEs becomes smaller than the 1 m threshold. At 6 s, a livelock is confirmed
when at least one robot’s average velocity v̄, as defined in Eq. 2.39, is larger than the
-0.3 m/s threshold. The heuristic then resets robot-2’s target pose, allowing it to stand
still and let robot-1 pass. By 10 s, the Euclidean distance between the EEs exceeds 1.0
m, indicating that the livelock has been resolved. robot-2’s original target pose is reset,
and both robots reach their targets by 18 s. 28

4.5 Setup 2. (a-f) MPC-d: At 5 s, robot-1, aiming for its goal, pushes robot-2 to avoid colli-
sions. The livelock persists until 14 s, when robot-1 reaches its goal and robot-2 starts
moving toward its own target. (g-l) MPC-d*: At 6 s, a livelock is detected as the average
velocity v̄ of robot-2 is larger than the threshold -0.3 m/s threshold. Robot-1’s target
pose is rest to its current EE pose, letting robot-2 pass. Finally, both robots reach their
targets by 16 s. 28

iii

List of Tables

1.1 Table summarizing information about the optimization-based local planners discussed in
this chapter, detailing their machine setup, cost functions, constraints, computation time,
solver, and global planner. In the cost function and constraints columns, an ’x’ denotes
that the algorithm explicitly defines the corresponding term to meet this standard. Com-
putation times are listed, and for methods with prediction horizons, the horizon time T
is also included. A blank cell indicates that the paper does not explicitly mention the
frequency of its controller, typically because these works primarily focus on the total task
completion time. 5

3.1 Model Predictive Control Parameter Settings . 18
3.2 Collision link names, corresponding parent link names, offsets (in meters) to their parent

links, and sphere radii (in meters) for both the agent and obstacle robots. 18
3.3 Statistics for three different scenarios of the proposed method are presented, compared

against the whole-body Geometric Fabrics (GF) andMPCwith a triple integrator dynamic
model (denoted asMPC-t). Each scenario is randomized across 30 different environments. 19

4.1 State Estimation Parameter Settings . 24
4.2 Parameter Settings for the Heuristic to Solve Livelocks 25
4.3 Statistics for two setups comparing MPC-d with livelock resolution heuristic (denoted as

MPC-d*) and MPC-d without it, each tested 10 times. 27

iv

1
Introduction

A mobile manipulator (MM) is a system that integrates a robot manipulator onto a mobile platform,
offering the advantages of both high manipulation capabilities and the mobility of a moving base [1]. It
finds applications across various sectors, including aerospace industries [2, 3], warehouse logistics [4]
and healthcare [5, 6]. In general, these environments are inherently dynamic multi-agent environments.
For instance, as shown in Fig. 1.1a, the YuMi mobile manipulator can operate in real-world settings such
as hospitals. It has the potential to dispense medications, transport them to necessary locations and
deliver medical supplies to staff.

Moreover, employing multiple robotic systems holds the potential for increasing efficiency and accel-
erating task completion [7–9]. In the future, multiple mobile manipulators could be employed in envi-
ronments shared with humans and other robots that assist the customers or staff. For instance, as
illustrated in Fig. 1.1b, in a restaurant scenario each customer can be assigned a corresponding server
mobile manipulator, with each robot operating autonomously. Each robot needs to ensure that its
movements do not interfere with those of other robots or individuals, thereby maintaining smooth and
efficient service in multi-agent environments. This coordination is crucial for enhancing the overall
customer experience and optimizing efficiency.

For autonomous service robots, tasks typically involve guiding the end-effector (EE) to a specific ref-
erence point while avoiding collisions with the environment. This process, known as motion planning,
determines valid actions for the robot to navigate from one point to another while adhering to physical
and operational constraints [10]. In dynamic environments, such as a restaurant where customers may
pass by, real-time motion planning is essential for ensuring safe and efficient operation, accounting for
collision avoidance, physical limits and precise end-effector positioning.

With the rise of robots operating simultaneously, motion planning faces new challenges. While task
assignment can manage scheduling to reduce interference [11–13], the ability of controllers to quickly
replan in dynamic environments is vital. In these cases, motion planners must balance multiple con-
straints and maintain low time complexity for real-time performance. The computational demands,
especially with high-dimensional mobile manipulators, grow with system complexity, making efficient
and scalable planning a significant challenge.

This thesis investigates the extent to which a single-agent mobile manipulator optimization-based lo-
cal planner can generalize to multi-agent environments while maintaining real-time performance. We
propose to extend a promising Model Predictive Control (MPC) framework [14] towards multiple mo-
bile manipulators and compare several variations against geometric motion planning. Section 1.1 first
examines whole-body local planner methods for single mobile manipulators, with a particular focus on
those validated through real-world experiments. It then explores existing research on multi-manipulator
systems to provide insights and inspiration for adapting these approaches to multi-mobile manipulator
environments. The contributions of this thesis are outlined in Section 1.2.

1

1.1. Related work 2

(a) ABB’s mobile and autonomous YuMi laboratory robot concept
designed to work alongside medical staff and lab workers [15]

(b) Two mobile manipulators performing pick-and-place tasks,
efficiently delivering cups to customers [16]

Figure 1.1: (a) A mobile manipulator works alongside humans (b) A demonstration of mobile manipulators operating in a
multi-agent setting to complete pick-and-place tasks.

1.1. Related work
1.1.1. Local planners for a single mobile manipulator
Obstacle-free motion planning for single robotic manipulators has been extensively explored over the
past few decades [1]. Whole-body motion planning for mobile manipulators can be viewed as an ex-
tension of fixed-base manipulator planning, integrating the Degrees of Freedom (DOF) of both the
mobile base and the manipulator arm into a unified framework. These whole-body motion planning al-
gorithms for mobile manipulators are typically classified into global and local planning methods. Global
planning methods, mainly composed of sampling-based methods [17–20] and global trajectory opti-
mization methods [21, 22], are integrated into open source motion planning frameworks, such as [23,
24]. However, when applied for systems with high DOF robots, they are unsuitable for dynamic envi-
ronments due to long planning times. While local planners have a slightly lower success rate [25], they
exhibit real-time trajectory updates, enabling them to adapt to dynamic environments. These planners
can be roughly categorized into geometric methods [26, 27], sampling-based methods [28, 29] and
optimization-based approaches solved by numerical solvers [14, 25, 30, 31].

Geometric methods [26, 32] are used for reactive and local motion planning which doesn’t require
solving an optimization problem. Desired system behavior is described using second-order differential
equations. Different components or tasks, such as collision avoidance and joint limit avoidance, are
described using a second-order differential equation for each task and combined within the configu-
ration space. Due to the absence of an optimization problem and control horizon, the computation
time is fast (approx. 1 ms) which is beneficial for dynamic real-world environments. Geometric fabrics
are thereby extended to dynamic fabrics [27] accounting for the velocities of obstacles and to multi-
agent scenarios [33]. However, the lack of a prediction horizon can lead to unintuitive responses to
dynamic agents and no hard constraints are implemented for collision avoidance, which is present in
optimization-based local motion planners.

In addition to geometric-based methods, advanced motion planning techniques also include sampling-
based methods like Model Predictive Path Integral (MPPI). MPPI uses a sampling-based optimization
technique to generate trajectories, evaluating them against a predefined cost function to select an
optimal path. Its key advantage lies in its ability to handle non-smooth or non-differentiable cost terms
and constraints, offering flexibility in dynamic and unstructured environments. However, MPPI relies on
penalizing unsafe trajectories rather than enforcing strict constraints, leading to potential violations of
critical safety or feasibility requirements. This limitation often necessitates post-processing steps, such
as the incorporation of Control Barrier Functions (CBF), to ensure stability and collision avoidance [34].

1.2. Contribution 3

In contrast, optimization-based methods like MPC and QP-based approaches directly incorporate sys-
tem dynamics and constraints into their formulations, ensuring hard constraint satisfaction. QP-based
methods are highly reactive and computationally efficient, with low execution times ranging from 4 ms
to 10ms for a single mobile manipulator [25, 35]. These methods excel in real-time scenarios but lack a
prediction horizon, which limits their foresight in dynamic environments. Meanwhile, MPC incorporates
a prediction horizon, solving a constrained optimization problem to produce locally optimal trajectories.
This approach enables MPC to handle more complex scenarios involving dynamic obstacles, but at the
cost of higher computation times, typically ranging from 20 ms to 100 ms [30, 36]. While optimization-
based methods offer robust constraint handling and safety guarantees, they also face challenges. The
inclusion of multiple constraints can lead to infeasibility, potentially causing the robot to stop moving.
Strategies such as relaxing constraints [37] or carefully tuning solver parameters are often required to
mitigate these issues. Furthermore, achieving real-time performance demands not only efficient solver
design but also a deep understanding of numerical optimization and control theory. Practical imple-
mentations frequently reveal nuanced issues, underscoring the importance of real-world testing and
iterative refinement.

Table 1.1 summarizes the information about the optimization-based local planners discussed in this
chapter. It elaborates on their machine setup, cost functions, constraints, computation time, solver,
and global planner. In the cost function and constraints columns, an ’x’ denotes that the algorithm
explicitly defines the corresponding term to meet this standard. Computation times are listed, and for
methods with prediction horizons, the horizon time T is also included. A blank cell indicates that the
paper does not explicitly mention the frequency of its controller, typically because these works primarily
focus on the total task completion time.

1.1.2. Multi-Robot Motion Planning
In general, Multi-robot Motion Planning (MRMP) is an active research field which has gained attention
over the years and is continually evolving within mobile robot systems like Unmanned Aerial Vehicles
(UAVs) [38–40] and Unmanned Ground Vehicles (UGVs) [41]. In scenarios involving multiple (mo-
bile) manipulators, the problem can be specified as leveraging multiple (mobile) manipulators that use
end-effectors to accomplish individual tasks in close proximity while ensuring collision-free movement
among themselves. Planning a feasible and local optimal trajectory for several (mobile) manipulators
remains a challenging problem, as a single mobile manipulator is already computationally demanding
due to its complex kinematic infrastructure as discussed in Section 1.1.1

One approach involves treating a multi-arm robot system as a single composite robot, with its resulting
DOF being the sum of all individual robot DOF [42]. This centralized method offers a unified perspective
on planning trajectories for multi-robot systems. Another approach treats each robot as an individual
agent and aims to avoid collisions with other robots [12, 33, 43] by using well-developed single-agent
local planners. This decentralized approach, emphasizes the autonomy of each robot in navigating
its environment. Deadlocks may occur, where robots come to a halt and are unable to achieve their
objective, caused by the robot’s reactiveness in deciding the next steps based on current local obser-
vations of the environment. Similarly, livelocks, where robots continuously adjust their states without
making progress toward the goal, can also hinder task completion. These are well-known challenges
in decentralized systems that prevent efficient operation [39, 44]. To address these issues, prioritiza-
tion frameworks can be employed, setting and communicating a hierarchy of goals within the group of
affected robots to resolve conflicts and generate a new policy [33, 43].

Despite these advances, most research on multi-manipulator systems is limited to simulations. Real-
world examples of multiple mobile manipulators operating in shared environments remain even rarer.
The challenges in real-world applications, such as hardware limitations, noisy sensor data, and com-
munication constraints, introduce greater complexity compared to simulations. The limited exploration
of multi-mobile manipulator systems in practical settings highlights the need for further investigation
and development in this area.

1.2. Contribution
This work extends real-time optimization-based local planners to enable the simultaneous operation
of multiple high-DOF mobile manipulators within a shared workspace, as shown in Figure 1.1b. In-

1.3. Overview 4

spired by the framework proposed by Adam et al. [14], which utilizes MPC for nonprehensile object
transportation with obstacle avoidance in single mobile manipulators, this research applies MPC to
multi-mobile manipulator systems. The investigation focuses on object delivery and pick-and-place
tasks in dynamic, multi-agent environments. The effectiveness of these methods is validated through
real-world experiments to ensure practical applicability in real operational settings.

This thesis contributes:

1. Extension of whole-body MPC to multi-mobile manipulator systems with real-time per-
formance: To the best of the authors’ knowledge, MPC has not been previously applied to
multi-mobile manipulator systems in the real world. A decentralized MPC approach is proposed,
demonstrating real-time performance, which is crucial for safe operation in dynamic multi-agent
environments.

2. A comparison study with prior work and state-of-the-art geometric-based local planner in
simulation: This work conducts a comparison between MPC and a purely reactive geometric-
based method [27]. The study evaluates their performance in various simulated multi-agent sce-
narios. This comparative analysis illustrates the differences between reactive geometric methods
and predictive optimization-based approaches, particularly in dynamic, multi-agent environments.

3. A heuristic approach for resolving livelocks: A heuristic is developed to establish prioritization
between mobile manipulators, resolving potential conflicts such as livelocks that can arise from
decentralized planning approaches in multi-robot systems. This ensures efficient coordination
and smooth operation in shared workspaces.

4. Open-source codebase: The code developed for this thesis, encompassing both simulation
and real-world experiments, will be made available as open-source. This aims to facilitate further
research and development in multi-robot motion planning and real-time control.

1.3. Overview
Chapter 2 provides a detailed explanation of the implementation of MPC and the heuristic deadlock
resolution approach. Chapter 3 focuses on validating the proposed approach in various simulated
environments, with a discussion of the corresponding results. Following this, Chapter 4 presents the
real-world experiments and their results. Finally, Chapter 5 concludes the thesis with a critical discus-
sion of the findings and outlines potential future directions to further advance this work.

1.3.
O

verview
5

Table 1.1: Table summarizing information about the optimization-based local planners discussed in this chapter, detailing their machine setup, cost functions, constraints, computation time,
solver, and global planner. In the cost function and constraints columns, an ’x’ denotes that the algorithm explicitly defines the corresponding term to meet this standard. Computation times are
listed, and for methods with prediction horizons, the horizon time T is also included. A blank cell indicates that the paper does not explicitly mention the frequency of its controller, typically

because these works primarily focus on the total task completion time.

Machine setup Cost function and constraints Global planners
Al
go
rit
hm

C
ita
tio
n

Ye
ar

m
an
ip
ul
at
or

m
an
ip
ul
at
or
+o
m
ni
di
re
ct
io
na
l

m
an
ip
ul
at
or
+n
on
-h
ol
on
om

ic

m
an
ip
ul
at
or
+q
ua
dr
up
ed
al

ba
se

tra
je
ct
or
y

ba
se

de
si
re
d
ve
lo
ci
ty

EE
de
si
re
d
po
se

EE
de
si
re
d
co
nf
ig
ur
at
io
n

EE
de
si
re
d
ve
lo
ci
ty

ph
ys
ic
al
lim

its

se
lf-
co
llis
io
n

st
at
ic
ob
st
ac
le
s

dy
na
m
ic
ob
st
ac
le
s

ob
st
ac
le
m
ot
io
n
m
od
el

m
an
ip
ul
ab
ilit
y

So
lv
er

C
om

pu
ta
tio
n
tim

e

ba
se

m
an
ip
ul
at
io
n

C
od
es

av
ai
la
bl
e

QP-based

MMC [45] 2020 x x x x qpsolvers 2.53ms x
NEO [25] 2021 x x x x x x qpsolvers 10ms x
Holistic [35] 2022 x x x x x qpsolvers 4.8ms x
VMC [46] 2022 x x x x x qpsolvers x
MotM [47] 2023 x x x x x qpsolvers
Reactive Base MotM [48] 2024 x x x x x x x qpsolvers STAA*
IDK [49] 2021 x x x x qpOASES [50] 8ms

MPC

Fully-integrated [51] 2019 x x x x x OCS2(SLQ) 10ms(T=1s) RRT*
Perceptive-MPC [51] 2020 x x x x x OCS2(SLQ) 50ms(T=2s) RRT* x
Articulated Object
Interaction [30] 2021 x x x x x x OCS2(SLQ) 33ms(T=4s) x

Collision-Free MPC [52] 2022 x x x x x x OCS2(SLQ) 14ms(T=1s)
Keep Upright [14] 2023 x x x x x x OCS2(SQP) 23ms(T=1s) x
Free Space
Decomposition [36] 2021 x x x x x x x ForcesPro

(Interior point) cubic Bezier Curve x

MPPI
STORM [28] 2021 x x x x x x x 20ms x
MPPI-IsaacGym [29] 2023 x x x x x x x 40ms(T=6s) x
Robust-sampling-mpc [34] 2023 x x x x x 10ms(T=1s) x

2
Methodology

2.1. Method Overview
This chapter details the proposed framework for motion planning in multi-agent settings, combining
multi-robot Model Predictive Control (MPC), robust state estimation, and a heuristic for livelock reso-
lution to enable efficient and collision-free operation in shared workspaces. At its core, the framework
leverages multi-robot MPC to plan motions across all degrees of freedom for the ego mobile manip-
ulator, integrating input reference targets provided by either a user or the heuristic. State estimation
plays a crucial role, ensuring accurate determination of the robot’s full state while tracking the states of
dynamic obstacles, such as other robots. These estimated states are then communicated to the con-
troller to dynamically adapt the motion plans to the environment. To address the common challenge
of livelock in decentralized multi-agent systems, the framework introduces a heuristic that effectively
coordinates agents, enabling smooth operation in complex environments.

The chapter is structured as follows: key concepts foundational to the proposed approach are intro-
duced in Section 2.2, including planning spaces and kinematic fundamentals, to establish the context
for subsequent sections. Second, Section 2.3 presents a detailed description of multi-robot MPC, in-
cluding its formulation and the application of Sequential Quadratic Programming (SQP) for solving the
constrained nonlinear optimization problem. Following this, Section 2.4 discusses state estimation for
both the ego robot and non-ego robots. Finally, the functionality of a heuristic to solve livelocks is intro-
duced in Section 2.5. The chapter concludes with a summary of the complete methodology pipeline,
presented in Section 2.6 as Fig. 2.1, which visually illustrates the interactions and data flow among the
framework’s key components.

2.2. Fundamentals: Planning spaces and kinematics
Before investigating specific mobile manipulator planning methods, it’s essential to clarify terminologies
and common definitions used in motion planning algorithms.

2.2.1. Planning Space
Configuration Space (CS)
The configuration of a robot uniquely determines the position of every point in the system relative to
a fixed reference frame. When the parameters used to define the configuration are independent, they
are referred to as the generalized coordinates of the system, and the number of these independent
parameters is termed the Degrees of Freedom (DOF) of the system.

The space in which a configuration is represented as a point is referred to as the Configuration Space C
and the number of parameters used to specify a configuration is denoted as the dimension N [10].
For the case of a mobile manipulator, the configuration usually consists of both the base and arm
configurations, denoted as q = [qT

base, q
T
arm]T . To be more precise, the base configuration can be

described as the 2D position coordinates [x, y] in the horizontal plane and orientation θ, i.e., qbase =

6

2.3. Multi-robot model predictive control 7

[x, y, θ]. The arm configuration is composed of all joint angles, expressed as qarm = [q1, q2, ..., qnarm],
where narm is the number of degrees of freedom in the arm. In addition, for manipulators, the term
Joint Space is interchangeably used to refer to the Configuration Space.

Task Space (TS)
In broad terms, Task Space refers to the space where a specific behavior is specified [27]. An example
is defining it as the intended position and orientation of the end-effector (EE). An alternative instance is
the avoidance of obstacles between a body connection and the surrounding environment. The analysis
in this context focuses on the operational space of the end-effector. Typically, Cartesian coordinates
are used to define the translational position of the end-effector in three-dimensional Euclidean space
R3, while the rotation group SO(3) is employed to describe its orientation. Together, these components
constitute the task space, represented mathematically as R3 × SO(3) = SE(3) [10, 53].

2.2.2. Kinematic Fundamentals
Forward Kinematics (FK)
To determine the position and orientation of a point p attached to any link of a mobile manipulator, the
function K, known as the forward kinematics (FK) function, can be employed. This function maps the
configuration q of the mobile manipulator to a pose Xp ∈ SE(3). The relationship is expressed as:

Xp = Kp(q), (2.1)

where Xp corresponds to the pose of point p within the robot’s kinematic chain, including its position
and orientation.

Differential Kinematics (DK)
To obtain the velocity of the point p attached to a link of the mobile manipulator, differential kine-
matics (DK) can be utilized. This method establishes a relationship between the joint velocities v =
[q̇T

base, q̇
T
arm]T and the velocity νp of point p through the manipulator Jacobian J(q). The relationship

is expressed as:
νp = Jp(q)v, (2.2)

where νp = [vx, vy, vz, ωx, ωy, ωz]
T denotes the linear and angular velocity of point p in 3D space.

2.3. Multi-robot model predictive control
Model Predictive Control (MPC) is a family of advanced control techniques that use a model of the
system to predict its future behavior over a defined horizon. At each time step, it solves a constrained
optimization problem to determine the optimal control input u, guiding the system toward its defined ob-
jectives. In this work, the MPC framework is tailored to enable the ego robot to reach target end-effector
poses while avoiding collisions with other robots and obstacles in the environment. More specifically,
the multi-robot MPC problem is formulated to optimize control inputs over a finite prediction horizon T ,
minimizing a cost function subject to system dynamics and constraints. This can be expressed formally
as the following optimization problem:

min
X,U

N−1∑
k=0

1

2
L(xk,uk) +

1

2
L(xN), (2.3a)

subject to xk+1 = f(xk,uk), ∀k = 0, 1, . . . , N − 1, (2.3b)
x0 = xinit, (2.3c)
0 ≤ d(xk), ∀k = 0, 1, . . . , N, (2.3d)
x ≤ xk ≤ x, ∀k = 0, 1, . . . , N, (2.3e)
u ≤ uk ≤ u, ∀k = 0, 1, . . . , N − 1. (2.3f)

where X = [xT
0 , · · · ,xT

N]T and U = [uT
0 , · · · ,uT

N−1]
T are the sequences of state and input variables,

respectively. L(·) is a time-varying stage cost. The optimization is subjected to the initial condition
(Eq. 2.3c), system dynamics (Eq. 2.3b), collision avoidance constraints (Eq. 2.3d), state limits (Eq. 2.3e)
and input limits (Eq. 2.3f).

2.3. Multi-robot model predictive control 8

The main components of this MPC formulation are outlined as follows. Section 2.3.1 discusses the
system dynamics, followed by the end-effector tracking and regularization cost function in Section 2.3.2.
Collision avoidance constraints are presented in Section 2.3.3, and the solver details are provided in
Section 2.3.4.

2.3.1. System Model
Robot Model
The robot considered is a velocity-controlled mobile manipulator, with the state vector defined as xr =
[qT

r ,v
T
r]

T . Here, qr = [qT
rbase

, qT
rarm

]T represents the generalized configuration and the generalized
velocity is given by vr = [q̇T

rbase
, q̇T

rarm
]T . The input ur is taken to be acceleration ar = [q̈T

rbase
, q̈T

rarm
]T .

This input is integrated to obtain the velocity commands sent to the actual robot. With nr = dim(qr)
representing the dimension of the generalized configuration vector, the system dynamics are modelled
as a second-order integrator within the prediction horizon of the Model Predictive Control, and are
expressed as:

ẋr = Arxr +Brur, (2.4)
where

Ar =

[
0nr×nr

Inr×nr

0nr×nr
0nr×nr

]
∈ R2nr×2nr , Br =

[
0nr×nr

Inr×nr

]
∈ R2nr×nr . (2.5)

Obstacles Model
Obstacles encountered during the planning process can be categorized into two types: static obstacles,
whose positions remain constant throughout the entire process, and dynamic obstacles, which require
updates to their states in real time. Dynamic obstacles may have known velocities, or they may simply
require position updates. Static obstacles are straightforward to incorporate into the MPC framework
by including their descriptions via a Unified Robot Description Format (URDF) file. In contrast, when
dynamic obstacles are present, their states are integrated with the robot’s states to facilitate collision
avoidance and motion prediction. These dynamic obstacles are modelled as spheres with a known
radius. Similar to the robot’s state, the state of each obstacle i for i = 1, 2, . . . , no, where no represents
the total number of obstacles, comprises its position and velocity, represented as xoi = [qT

oi ,v
T
oi]

T .
Here, qoi = [xoi , yoi , zoi] denotes the obstacle’s position in the global frame, while voi = [ẋoi , ẏoi , żoi]
represents its translational velocity. It is important to note that the initial states of the obstacles are
provided. To predict their future states along the prediction horizon, a constant velocity model is em-
ployed at each time step, which approximates their motion dynamics. In summary, the dynamic model

of obstacle i can be described as ẋoi = Aoxoi , where Aoi =

[
03×3 I3×3

03×3 03×3

]
.

System Model
In summary, for a mobile manipulator considering no dynamic obstacles, the augmented system state
is

x = [xr,xo1 , . . . ,xono
] =

[
qT
r vT

r qT
o1 vT

o1 . . . qT
ono

vT
ono

]T ∈ R2nr+6no . (2.6)
The input u is the acceleration input ur for the mobile manipulator. The dynamics of the entire system
in Eq. 2.3a is described as:

ẋ = Ax+Bu, (2.7)
where

A =


Ar

Ao1

. . .
Aono

 ∈ R(2nr+6no)×(2nr+6no), B =


Br

03×3

...
03×3

 ∈ R(nr+3no)×nr . (2.8)

To implement the MPC scheme, the continuous system dynamics in Eq. 2.7 needs to be discretized.
The discrete-time model is derived from the continuous model using a discretization method, such as
the backward Euler or Runge-Kutta method. As a result, the discretized state transition is expressed
as:

xk+1 = f(xk,uk), (2.9)
where k represents the time step index, and f(·) is the discrete state transition function.

2.3. Multi-robot model predictive control 9

2.3.2. Cost Function
The stage cost function L(xk,uk) comprises the end-effector tracking error ∥ϵ(xk)∥2W ϵ

, the state regu-
larization cost ∥xk∥2W x

, and the control effort regularization cost ∥uk∥2Wu
, with weighting matricesW r,

W x, and W u, respectively. In summary, the stage cost function L can be expressed as:

L(xk,uk) = ∥ϵ(xk)∥2W ϵ
+ ∥xk∥2W x

+ ∥uk∥2Wu
. (2.10)

The following sections describe the formulation of cost terms for end-effector tracking, as well as for
state and input regularization.

Task Space Tracking Cost
The pose of the robot’s end-effector, ree(qr) ∈ SE(3), is determined from the robot’s full-body config-
uration qr using the forward kinematics function K. As discussed in Section 2.2.2, this function maps
the robot’s current configuration qr to the position and orientation of the end-effector within the task
space.

Deviations ϵ(xk) in the end-effector pose ree from the reference pose r̂ee are penalized. Although the
desired end-effector pose may vary over time, this work simplifies the scenario by assuming that the
end-effector tracks a single constant reference point throughout the entire time horizon T . The end-
effector pose deviation is defined as ϵ =

[
ϵTpos ϵTO

]T ∈ R6. For the translational error ϵpos ∈ R3, the
difference between the current and desired position vectors is used:

ϵpos = rpos − r̂pos. (2.11)

To compute the rotational error ϵO ∈ R3, an orientation error formulation based on quaternions rep-
resenting the current pose ξ and the desired pose ξ̂ is utilized [54]. The current pose is represented
by the quaternion ξ = [ξw, ξx, ξy, ξz], where ξw is the scalar part, and the vector part is given by the
components [ξx, ξy, ξz]. Similarly, the desired pose is represented by the quaternion ξ̂ = [ξ̂w, ξ̂x, ξ̂y, ξ̂z],
where ξ̂w indicates the scalar part, and [ξ̂x, ξ̂y, ξ̂z] denotes the vector part of the desired quaternion.

The rotational error ϵO is computed using the following formulation:

ϵO(ξ, ξ̂) = ξw · [ξ̂x, ξ̂y, ξ̂z]T − ξ̂w · [ξx, ξy, ξz]T + [ξ̂x, ξ̂y, ξ̂z]
T × [ξx, ξy, ξz]

T . (2.12)

In summary, the cost function ∥ϵ(xk)∥2W ϵ
can be detailed as:

∥ϵ(xk)∥2W ϵ
= ϵ(xk)

TW ϵϵ(xk) = ϵpos(xk)
TW ϵposϵpos(xk) + ϵO(xk)

TW ϵOϵO(xk). (2.13)

Moreover, in practice, there exists a trade-off between tracking cost and regularization cost. When
the end-effector is far from the goal, a high regularization cost leads to smoother motion and reduced
controller overshoot. Conversely, when the end-effector approaches the goal, a high regularization
cost can dominate the cost function, resulting in slower progress and prolonging the time needed to
reach the goal. To mitigate this issue, a dynamic scaling of the tracking cost weight is employed,
denoted as αr. Specifically, when the end-effector is within a certain threshold distance, represented
as αt, the tracking weight is increased to counterbalance the regularization cost, thereby accelerating
convergence toward the goal. It is important to note that both αr and αt are constants that can be
fine-tuned to optimize performance.

In summary, the dynamic tracking cost weight can be formulated as:

W ϵ =

{
W ϵ if ∥ϵpos∥2 > αt

αr ·W ϵ if ∥ϵpos∥2 ≤ αt.
(2.14)

Regularization cost
In this work, the regularization term is formulated to penalize significant deviations in the system’s states
xk and control inputs uk. Specifically, both the reference state xref and reference input uref are set
to zero. It is crucial to note that the penalization primarily focuses on the velocity components of the

2.3. Multi-robot model predictive control 10

state vector, while the deviations of the configuration component are not directly penalized because
their associated cost is set to zero. This design choice effectively encourages the system to minimize
excessive control efforts and large state deviations in velocity, thereby promoting smoother and more
stable motion during operation. The regularization cost is defined as ∥xk∥2W x

+ ∥uk∥2Wu
, where W x

and W u are weight matrices that determine the level of penalization for deviations in the states and
control inputs, respectively.

As described in Section 2.3.1, the system state x includes both robot states and obstacle states. How-
ever, only the robot states are penalized in the regularization cost, as the obstacle states are used
solely for collision avoidance. Therefore, the cost weights associated with the obstacle states are set
to zero. With W xr

∈ R2nr×2nr representing the cost weight matrix for penalizing the robot’s states,
and W ur

∈ Rnr×nr for penalizing the inputs, the regularization cost matrices are given by:

W x =


W xr

06×6

. . .
06×6

 ∈ R(2nr+6no)×(2nr+6no), W u = W ur ∈ Rnr×nr . (2.15)

Quadratic approximation of the cost function
To deploy Model Predictive Control on real-world robotic platforms, it is essential to ensure the op-
timization problem remains well-conditioned to avoid numerical issues. More specifically, for the Se-
quential Quadratic Programming (SQP) method, which is discussed in detail in Section 2.3.4, a positive
semidefinite (p.s.d.) Hessian is used to ensure that the resulting quadratic program (QP) subproblems
are convex and can be solved efficiently [55].

For regularization cost functions in Eq. 2.15, the second derivatives are represented by the weighting
matricesW x andW u, which can bemade positive semidefinite through careful selection of their weight
parameters. However, for the end-effector cost in Eq. 2.13, where the robot’s forward kinematics are
typically non-p.s.d., the second derivatives are approximated using the Gauss-Newton method. This
method has proven effective in practice [31, 56], resulting in the following approximation for the Hessian:

∇2
xx

(
∥ϵ(x)∥2Wϵ

)
≈ 2∇xϵ

T
posW ϵpos∇xϵpos + 2∇xϵ

T
OW ϵO∇xϵO. (2.16)

2.3.3. Constraints
This subsection examines the constraints integral to the Model Predictive Control framework, includ-
ing state and input limitations that maintain the system’s physical boundaries and collision avoidance
constraints that prevent interactions with obstacles.

State and Input Constraints
In addition to regularization costs, hard constraints on both input and state variables ensure the system
operates within physical limits. These constraints are crucial for safe and reliable robot operation, as
they enforce the hardware and environmental boundaries directly.

As defined in the system state equation Eq. 2.6, the overall state comprises both the robot’s and obsta-
cles’ states. However, only the robot’s states are subject to these limits. Therefore, the state constraints
in Eq. 2.3e can be rewritten as:

xr ≤ xr ≤ xr, (2.17)

where xr and xr represent the lower and upper bounds of the robot’s state, respectively. For input
constraints in Eq. 2.3f, no reformulation is necessary, since the system input is the same as the robot’s
input.

Collision Constraints
Self-collision and obstacle collision avoidance are achieved by ensuring that the robot maintains a dis-
tance greater than a minimal safety threshold from links on the ego-robot and obstacles. The robot
is represented using primitive collision bodies, and GJK-based distance queries are utilized within
FCL [57]. Let nc denote the total number of collision pairs. The index ic ranges over the set {1, 2, . . . , nc}.

2.3. Multi-robot model predictive control 11

For each ic-th collision body pair, the shortest distance dic is defined as the signed distance between
the nearest points pA

ic
and pB

ic
in the inertial frame. This distance can be expressed as follows:

ric(x) = ±∥pA
ic(x)− pB

ic(x)∥2. (2.18)

A negative sign indicates colliding bodies, while a positive sign indicates non-overlapping cases. The
vector d(x) captures the differences between the minimum distances of all pairs of collision spheres
and safety thresholds ϵic . Each element of d(x) can be expressed as:

dic(x) = ric(x)− ϵic . (2.19)

Consequently, the collision avoidance constraint in Eq. 2.3d can be expressed as:

0 ≤ d(xk) = [d1(xk), . . . , dic(xk), . . . , dnc(xk)]. (2.20)

Linear approximations of the constraints
The gradient of the distance function is necessary for formulating the quadratic program problem in
the SQP framework. According to the approach outlined in [52, 58, 59], the gradient of the distance
function with respect to the robot’s state can be derived as:

∇xdic = ±n̂T
ic

(
JA

ic − JB
ic

)
, (2.21)

where JA
ic and JB

ic are the Jacobians of p
A
ic
and pB

ic
, respectively. The normal vector n̂ic is defined as:

n̂ic =
pA
ic
− pB

ic

∥pA
ic
− pB

ic
∥2

. (2.22)

2.3.4. Numerical Optimization
In nonlinearModel Predictive Control, all decision variables can be collected into a vectorw = [XT ,UT]T ,
whereX = [x0, . . . ,xN] andU = [u0, . . . ,uN−1] represent the state and input sequences, respectively.
The optimization problem can be formulated as a Nonlinear Programming Problem (NLP) problem. This
formulation captures the cost to be minimized over the prediction horizon and the constraints to be sat-
isfied. The general NLP formulation is:

min
w

ϕ(w),

subject to: F (w) = 0,

G(w) ≤ 0,

(2.23)

where ϕ(w) is the cost function, F (w) ∈ RnF represents the collection of initial state and system
dynamics constraints, and G(w) ∈ RnG represents the collection of general inequality constraints.

Sequential Quadratic Programming (SQP)
To address the NLP problem, the Sequential Quadratic Programming (SQP) method is employed. It
approximates the original nonlinear problem by iteratively solving a sequence of quadratic subproblems.
Each subproblem optimizes a quadratic approximation of the Lagrangian while adhering to linearized
constraints. In every iteration, the method leverages gradient information from the original problem to
refine the solution [60]. The Lagrangian function for the general NLP problem is defined as:

L(w,λ,ν) = ϕ(w) + λTF (w) + νTG(w), (2.24)

where λ ∈ RnF are the Lagrange multipliers associated with the equality constraints F (w) = 0, and
ν ∈ RnG are the multipliers associated with the inequality constraints G(w) ≤ 0.

At each optimization iteration n, the SQP method solves a quadratic subproblem that approximates
the original nonlinear problem by minimizing a quadratic model of the Lagrangian, subject to linearized

2.4. State Estimation 12

constraints. The quadratic subproblem is given by:

min
δwn

1

2
δwT

n∇2
wwL(wn,λn,νn)δwn +∇wϕ(wn)

T δwn, (2.25a)

subject to: ∇wF (wn)
T δwn + F (wn) = 0, (2.25b)

∇wG(wn)
T δwn +G(wn) ≤ 0, (2.25c)

where δwn represents the search direction, indicating the change in the decision variables. The term
∇2

wwL(wn,λn,νn) denotes the Hessian of the Lagrangian with respect to w, evaluated at the current
iteration n. Additionally,∇wϕ(wn) signifies the gradient of the objective function. Furthermore, the gra-
dients ∇wF (wn) and ∇wG(wn) correspond to the gradients of the equality and inequality constraints,
respectively.

After solving the quadratic subproblem, the new iterate wn+1 is updated using the equation wn+1 =
wn + αnδwn. In this equation, δwn represents the search direction obtained from the subproblem
solution, while αn is the step size determined through a line search. The line search is formulated as

αn = argmin
α>0

ϕ(wn + αδwn), (2.26)

which aims to find the optimal step size that minimizes the objective function along the direction of δwn.
Furthermore, the Lagrange multipliers λn and νn are updated based on the dual variables obtained
from the solution of the subproblem.

Sub-QP problem
In practice, when setting up the quadratic program problem in Eq. 2.25 for a solver, the Lagrangian
multipliers λn and νn are typically not explicitly included in the Hessian of the cost function provided to
the QP solver [56]. To ensure efficient numerical solvability, it is crucial that the optimization problem is
well-conditioned. Specifically, when the Hessian in Eq.2.25a is positive semidefinite (p.s.d.), the result-
ing quadratic program becomes convex, enabling efficient solution [55]. As discussed in Section 2.10,
this condition is satisfied by using an approximate positive semidefinite Hessian for the tracking cost
in Eq. 2.16, instead of the full Hessian of the Lagrangian. Moreover, soft constraints are employed to
relax all constraints except for the system dynamics. For a general inequality constraint g(x,u) ≤ 0,
a slack variable s ≥ 0 is introduced as an additional decision variable. This modifies the inequality to
g(x,u) ≤ s, allowing the system to handle constraint violations more flexibly. To minimize violations, a
penalty term for s is added to the objective function in Eq. 2.25a. Specifically, an L2-norm penalty of
the form wss

2 is introduced for each slack variable, where ws > 0 is a tunable weight that controls the
trade-off between constraint violation and optimality.

2.4. State Estimation
Accurate state estimation is essential for effective motion planning, particularly for both the ego robot
and other non-ego robots. In a simulation environment, states can be obtained directly from the physics
engine, simplifying the process. However, in real-world applications, accurately estimating the robot’s
state is more challenging due to factors such as sensor noise. Precise knowledge of the robots’ states
is crucial for safe operation and collision detection, as this information is provided to the controller and
processed through forward kinematics to determine the positions of potential collision pairs. Addition-
ally, state information is necessary to ensure that the robot operates within its physical limits, preventing
damage and maintaining operational safety.

In this section, the methods for real-world state estimation for both the ego robot and the non-ego
agents are detailed. A total of m robots are considered, represented by the set R = {1, 2, . . . ,m}. In
this set, the ego robot is indexed by i, while the other robots are represented by the index j in the
set R \ {i}. For the analysis, one robot, denoted as j, is selected from this set of non-ego robots.
Specifically, Section 2.4.1 introduces the use of a Kalman Filter (KF) for state estimation of the ego
robot i, while Section 2.4.2 covers the numerical differential method for estimating the states of the
selected non-ego robot j.

2.4. State Estimation 13

2.4.1. State Estimation for the Ego-Robot Using a Kalman Filter (KF)
A Kalman Filter [61] is employed for state estimation in the hardware experiments to estimate the ego
robot’s state vector xr = [qT

r ,v
T
r]

T . The Kalman filter is a recursive algorithm that combines predictions
from a system model with noisy sensor measurements, providing an updated estimate of the state and
reducing uncertainty over time. The Kalman filter operates in two main phases:

• Prediction step: In this step, the current state estimate is propagated forward using the robot’s
dynamic model, represented by the discrete-time equation:

x+
r = Ārxr + B̄ru, (2.27)

where Ār and B̄r are the system matrices derived from the Taylor series expansion of the
continuous-time dynamics. These matrices are defined as:

Ār =

[
Inr

δtInr×nr

0nr×nr Inr×nr

]
∈ R2nr×2nr , B̄r =

[
1
2δt

2Inr×nr

δtInr×nr

]
∈ R2nr×nr . (2.28)

Here, δt is the sampling time for each iteration of the robot control loop. The prediction step also
updates the associated uncertainty through the process covariance matrix Q̄, which accounts for
uncertainties in the system model due to process noise:

Q̄ = B̄rQB̄
T
r , (2.29)

whereQ represents the process noise covariance. The predicted state covariance is updated as:

P+
r = ĀrP rĀ

T
r + Q̄. (2.30)

• Update step: After obtaining new sensor data z, the predicted state is updated using the obser-
vation model:

z = Cxr, (2.31)

where C is the matrix that maps the state vector to the sensor measurements:

C =
[
Inr×nr

0nr×nr

]
∈ Rnr×2nr . (2.32)

The Kalman gainK is then calculated to weigh the predicted state and the measurements, based
on their respective uncertainties:

K = P+
r C

T (CP+
r C

T +R)−1, (2.33)

where R is the measurement covariance matrix that represents the uncertainty in the sensor
readings. The Kalman gainK determines howmuch the filter relies on the sensor measurements
z relative to the predicted state x+

r , based on their respective uncertainties. The updated state
estimate is computed as:

xr = x+
r +K(z −Cx+

r), (2.34)

where z −Cx+
r is the innovation term, representing the difference between the actual measure-

ments and the predicted measurements. This equation corrects the predicted state by blending it
with the new sensor measurements, weighted by the Kalman gain. Finally, the state covariance
is updated to reflect the reduced uncertainty after incorporating the measurements:

P r = (I −KC)P+
r . (2.35)

In this work, the ego-robot’s state is measured through two sources: the mobile base pose is cap-
tured using a Vicon motion capture system, and the robot arm’s joint angles are measured using joint
encoders. These measurements are fused with the system model through the Kalman Filter to contin-
uously refine the robot’s state estimate over time.

2.5. A Prioritized Heuristic to Solve Livelocks 14

2.4.2. State Estimation for the Non-Ego Robots
Accurate knowledge of the full state vector of the non-ego robot xor = [qT

or,v
T
or]

T is necessary for
collision avoidance. This state vector includes the whole-body configuration qor and velocity vor, which
are used to model the positions and velocities of obstacles representing the non-ego robot. The base
configuration and arm joint positions qor are obtained from the Vicon motion capture system and arm
encoders, respectively. The arm joint velocities varm

or are measured by the encoders, while the base
velocity vbase

or is estimated via numerical differentiation of the base’s position data. For simplicity, the
index j for the non-ego robot and the subscripts for the base configuration qbase

or and velocity vbase
or are

omitted in the following equations. The estimated base velocity is expressed as:

vmeasured =
q − qprev

∆t
, (2.36)

where q represents the current configuration of the robot’s base, qprev is the previous configuration, and
∆t denotes the time interval between consecutive measurements. To mitigate the noise introduced by
numerical differentiation, an exponential smoothing filter is applied, described by the following equation:

vfiltered = (1− β)vprev + βvmeasured. (2.37)

In this equation, β represents the smoothing factor, vfiltered denotes the filtered base velocity, and
vprev is the previously filtered velocity. The smoothing factor β is determined using the relationship for
both linear and angular velocities:

β = 1− e−
∆t
τ . (2.38)

Here, τ is the time constant for velocity smoothing. Different time constants τlinear and τangular are
employed for linear and angular velocities.

2.4.3. Collision Avoidance in Multi-agent Settings
In the formulation of multi-robot Model Predictive Control, as presented in Section 2.3, the obstacle
states xoi =

[
qT
oi vT

oi

]T are assumed to be known. This section details how these states are derived
based on the ego-robot and non-ego robot states obtained in Section 2.4.1 and Section 2.4.2.

In robotic systems, efficient collision detection is crucial for ensuring safe motion. One common ap-
proach to simplify this process is to approximate the geometry of the robot’s links using bounding
spheres, rather than relying on the robot’s actual geometric shapes. This method significantly reduces
computational complexity, as calculating distances or detecting intersections between spheres is far
simpler and faster than performing these tasks on arbitrary shapes [62]. By using spheres to repre-
sent the robot’s links, the collision detection process becomes more efficient, especially in dynamic
environments with numerous moving parts or obstacles.

Assuming a collision sphere i is attached to a robot link l by its centre, the state of the sphere is
represented as xoi =

[
qT
oi vT

oi

]T . Once the full-body state of the robot, x =
[
qT ,vT

]T , is obtained,
the position qoi and velocity voi of the sphere can be determined using forward kinematics (FK) and
differential kinematics (DK), as outlined in Section 2.2.2. For example, for spheres representing the
non-ego robot, the configuration and velocity are given by qoi = Koi(qor) and voi = Joi(qor)vor.

2.5. A Prioritized Heuristic to Solve Livelocks
In multi-agent robotic systems, deadlocks and livelocks can lead to inefficiencies and delays, especially
when robots fail to resolve conflicts in their trajectories or task assignments. For multiple mobile ma-
nipulators, such challenges often arise during navigation to distant targets for object delivery or when
end-effectors operate in close proximity for grasping or placing objects. This thesis addresses livelocks
in object delivery scenarios, which frequently occur when robots approach each other. For instance,
in a two-robot case, the slightly faster robot may inadvertently hinder the slower robot’s progress by
pushing it away from its target during collision avoidance. To address this, a prioritized heuristic is pro-
posed, leveraging the inherent prediction horizon of the decentralized MPC framework. The heuristic
is structured around livelock detection and resolution, as summarized in Algorithm 1.

The livelock detection criterion, outlined in line 5 of Algorithm 1, comprises two conditions. First, robots’
end-effectors should be within a distance threshold dee,l of each other, as livelocks are more likely to

2.5. A Prioritized Heuristic to Solve Livelocks 15

Algorithm 1 Task Execution Loop with the Heuristic
1: Input: (r̂ee1 , r̂ee2) ▷ End-effector reference targets
2: goal_reached← False
3: while NOT goal_reached do
4: ree1(t), ree2(t) ▷ Get current end-effector poses
5: livelock = Eq. 2.40 ▷ Detect livelock
6: if livelock then
7: if ∥r̂pos1 − rpos1(t)∥2 < ∥r̂pos2 − rpos2(t)∥2 then
8: publish(r̂ee1 , ree2(t)) ▷ Reset robot-2 target and let it standstill
9: else
10: publish(ree1(t), r̂ee2) ▷ Reset robot-1 target and let it standstill
11: end if
12: end if
13: if ∥rpos1(t)− rpos2(t)∥2 > dee,r) then
14: livelock← False ▷ Livelock solved
15: publish(r̂ee1 , r̂ee2) ▷ Publish original targets
16: end if
17: if ∥r̂pos1 − rpos1(t)∥2 < dee,r̂ ∧ ∥r̂pos2 − rpos2(t)∥2 < dee,r̂ then
18: goal_reached← True
19: end if
20: end while

occur when robots operate in close proximity. Furthermore, the MPC framework, which continuously
predicts the trajectories of dynamic obstacles representing non-ego robots with constant velocity, gen-
erates preemptive policies that slow down the ego-robot to avoid collisions. This decrease in velocity
occurs before the actual clearance between any collision pair reaches the minimum pairwise distance
threshold ϵic defined in the collision avoidance constraint in Section 2.3.3. Given this behavior, the
heuristic evaluates the velocity vi for each robot i, defined as the rate of change in the Euclidean
distance between the robot’s end-effector position rpos,i(t) and its target position r̂pos,i. This measure
quantifies the robot’s progress toward its target without the knowledge of the optimized trajectory within
the whole prediction horizon. The average velocity v̄i over a specified past duration Tl is computed as:

v̄i =
1

nv

nv∑
k=1

∥rposi(tk)− r̂posi∥2 − ∥rposi(tk−1)− r̂posi∥2
tk − tk−1

, (2.39)

where nv is the number of velocity values recorded at discrete time steps within Tl, and tk− tk−1 is the
time difference between consecutive steps. In summary, in a two-robot scenario, a livelock is detected
if the following condition holds:

(∥rpos1(t)− rpos2(t)∥2 < dee,l) ∧ (v̄1 > v̄l ∨ v̄2 > v̄l), (2.40)

where v̄l is a predefined negative velocity threshold. Since v̄l represents the decrease in distance to
the target, a value exceeding this threshold indicates insufficient progress toward the target, or even
positive, which would mean the robot is moving away from its target. This condition effectively identifies
livelocks where robots remain close together but fail to make meaningful progress toward their goals.
The duration Tl represents a sufficient time window over which the robot’s behavior is monitored to
ensure that any decresed velocity to the target persists long enough to be indicative of a livelock rather
than a temporary adjustment.

After a livelock is detected, as detailed in lines 6–12 of Algorithm 1, a hierarchy is established based on
the proximity of the robots to their respective targets. The robot whose end-effector is closer to its target
is assigned a higher priority and allowed to proceed first. Conversely, the robot whose end-effector is
farther from its target is assigned a lower priority. The lower-priority robot temporarily resets its target
to its current end-effector pose, ree(t), and remains stationary. When the distance between the end-
effectors exceeds the specified threshold dee,r, the robots are considered sufficiently separated, and
the livelock is resolved, as shown in lines 13-14 of Algorithm 1. The lower-priority robot then restores its

2.6. Summary of the Methodology Pipeline 16

original target r̂ee and continues moving toward it. The task is considered finished when the distances
to targets of both robots’ end-effector are within threshold dee,r̂.

2.6. Summary of the Methodology Pipeline
At the conclusion of this chapter, the pipeline of the proposed framework is summarized, emphasizing
the interaction between the key components for motion planning in multi-agent settings. This overview
demonstrates how multi-robot Model Predictive Control, state estimation, and a heuristic for livelock
resolution work together to ensure efficient, collision-free operation in shared environments. The fol-
lowing diagram Fig. 2.1, as an example for two robots, provides a clear visual representation of the
sequence of processes involved, with key input and output variables indicated for each block.

Figure 2.1: Overview of the multi-robot MPC and a pioritized heuristic in a multi-agent settings

3
Simulation experiments

This section describes all simulation experiments used to validate and benchmark the proposed MPC
with a double integrator dynamic model (denoted as MPC-d). The quantitative experiments com-
pare the proposed method with Geometric Fabrics (GF) [27] and the original approach, MPC with a
triple integrator dynamic model [14] (denoted as MPC-t). Differences between optimization-based and
geometric-based methods are highlighted, along with the benefits of the proposed approach. Addition-
ally, the variation in computation time for GF, MPC-d, and MPC-t as the number of obstacles increases
is analyzed.

The section begins with an overview of the experimental framework in Section 3.1, including the MPC
hyperparameters. This is followed by a comparative study of the performance of MPC-d, MPC-t and
GF in various realistic pick-and-place scenarios in Section 3.2. Finally, Section 3.3 presents a detailed
comparison of the computation times.

3.1. Experimental Framework
Simulations are conducted to evaluate the controller’s performance in an idealized environment using
the simulated platform Pybullet, comprising a 9-DOF mobile manipulator with a Clearpath Dingo om-
nidirectional base and a Kinova GEN3 Lite arm. As detailed in Section 2.3.4, the MPC formulation
described in Eq.2.3 is solved using Sequential Quadratic Programming (SQP) implemented in the Op-
timal Control of Switched Systems (OCS2) toolbox, with QP subproblems solved by the HPIPM [63].
The automatic differentiation library CppAD [64] is used to obtain Jacobians, and GJK-based distance
queries in Flexible Collision Library (FCL) [57] enables collision detection. The simulation experiments
are conducted on a desktop system with a Dell Precision 5820 Tower, featuring an Intel Xeon W-2123
processor running at 3.6 GHz with eight cores, and 8 GB of RAM.

Table 3.1 summarizes the parameters used for theMPC-d andMPC-t. The general parameters, such as
sampling time, prediction horizon, tracking error weights, slack weights, safety thresholds and physical
limits are shared across both MPC methods. The table also lists parameters unique to each controller,
such as reference state weights and control input weights which are tailored to their respective dynamic
models. Notably, the regularization costs for the arm’s velocity are set high to mitigate overshooting
during goal tracking, especially along the z-axis. Specifically, for MPC-t, the state upper boundaries are
defined as xr = [qr,vr,ar] = [qbase, qarm,vbase,varm,abase,aarm], while for MPC-d, they are given
by xr = [qr,vr] = [qbase, qarm,vbase,varm]. In both MPC-based controllers, the lower boundaries
are defined as xr = −xr, u = −u. For GF, the physical limits, including configuration, velocity, and
acceleration boundaries, are the same as those used in the MPC. This consistency ensures that all
controllers operate within the same dynamic and physical constraints.

The robot’s states xr are directly obtained from the simulation environment. These states are either
provided as inputs to the ego robot’s controller or used for forward kinematics (FK) and differential
kinematics (DK) to derive the states of obstacles xoi representing non-ego robots. To assess collision
avoidance, the ego-robot is approximated by 5 collision spheres and the non-ego robot is simplified

17

3.1. Experimental Framework 18

using 3 collision spheres. Their parent links and radii are detailed in Table 3.2. In practice, the Pinocchio
library [65] is used to efficiently compute the positions and velocities of the collision spheres attached to
specific robot links by leveraging a kinematic model derived from the robot’s URDF file and the full-body
states.

Table 3.1: Model Predictive Control Parameter Settings

(a) Common MPC Parameter Settings

Parameter Symbol Value
Sampling Time ∆t 0.1 s
Prediction Horizon T 2 s
Tracking Error Weights W ϵ diag(1.5, 1.5, 5, 2, 2, 2) ∈ R6×6

Slack Weights ws 100
Base Configuration Limits qbase [10m, 10m, 10rad]
Arm Configuration Limits qarm [2.69, 1.76, 2.62, 2.62, 2.53, 2.60] rad
Base Velocity Limits vbase [0.3m/s, 0.3m/s, 0.5rad/s]
Arm Velocity Limits varm [0.4, 1.1, 1.1, 1, 1, 1] rad/s
Safety Threshold ϵic 0.1m

(b) MPC with Triple Integrator as Dynamic Model

Parameter Symbol Value
Reference State Weights W xr diag(0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 4, 2, 3, 7, 4, 3, 3, 3,

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01)

Base Acceleration Limits abase

[
2.5m/s2, 2.5m/s2, 1rad/s2

]
Arm Acceleration Limits aarm [5, 5, 5, 9, 9, 9] rad/s2

Control Input Weights W u 0.001 I9

Base Input Limits ubase [20m/s3, 20m/s3, 20rad/s3]
Arm Input Limits uarm [80, 80, 80, 80, 80, 80]rad/s3

(c) MPC with Double Integrator as Dynamic Model

Parameter Symbol Value
Reference State Weights W xr

diag(0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 4, 2, 3, 7, 4, 3, 3, 3)
Control Input Weights W u 0.1 I9

Base Input Limits ubase

[
2.5m/s2, 2.5m/s2, 1rad/s2

]
Arm Input Limits uarm [5, 5, 5, 9, 9, 9] rad/s2

Dynamic Scale αt 5
Threshold Distance αd 0.5m

Table 3.2: Collision link names, corresponding parent link names, offsets (in meters) to their parent links, and sphere radii (in
meters) for both the agent and obstacle robots.

Ego Robot
Collision Link Name Parent Link Name Offset [m] Sphere Radius [m]
tool_frame_collision_link tool_frame [0,0,0] 0.10
upper_wrist_collision_link upper_wrist_link [0,0,0] 0.10
lower_wrist_collision_link lower_wrist_link [0,0,0] 0.10
forearm_collision_link forearm_link [0,0,0] 0.10
base_collision_link base_link [0,0,0] 0.45

Non-Ego Robot
Collision Link Name Parent Link Name Offset [m] Sphere Radius [m]
tool_frame_collision_link tool_frame [0,0,0] 0.20
lower_wrist_collision_link lower_wrist_link [0,0,0] 0.17
base_collision_link base_link [0,0,0] 0.50

3.2. Experiment 1: Simulated pick-and-place scenarios 19

3.2. Experiment 1: Simulated pick-and-place scenarios
3.2.1. Setup
The proposed method is evaluated across three distinct realistic pick-and-place scenarios and com-
pared against two baseline methods: GF [32] and the original MPC-t approach [14]. In each sce-
nario, the robots’ end-effectors are required to reach a static pre-grasp target in SE(3), encompass-
ing both position and orientation. Each scenario is simulated in 30 randomized environments, with
variations in the robots’ initial configurations and the positions of obstacles and objects, as illustrated
in Fig. 3.1. The starting positions of the holonomic bases are uniformly sampled within the range
[x, y, θ] ∈ [−3.0, 3.0]m × [2.0, 5.0]m × [−2.0, 2.0]rad, with the arm initialized in a fixed home configura-
tion qhome

arm = [0.0, 0.0, 1.54, 0.0, 0.0, 0.0]rad. The tables are positioned near the origin of the world frame
at [x, y, z] = [−3.0, 0.0, 0.0]m, [0.0, 0.0, 0.0]m, and [3.0, 0.0, 0.0]m, and each is modelled as two verti-
cally stacked collision spheres to capture the key spatial constraints for collision avoidance. Object
poses are uniformly sampled within an annular region around the centre of the table, defined by an
inner radius of 0.2m and an outer radius of 0.3 m. Each robot is assigned to reach a static target pose,
determined based on the object’s position. Task success is defined as all agents reaching their respec-
tive target positions within a task-specific Euclidean distance tolerance without any collisions occurring.
For comparison with the baseline methods, success rate, time to reach the goal, computation time, and
collision rate are evaluated. Collision violations are identified by checking for contact between all rigid
bodies at each timestep by using the collision check functionality of the Pybullet physics engine.

(a) Scenario 1 (S1): Two tables (b) Scenario 2 (S2): One table (c) Scenario 3 (S3): Three robots

Figure 3.1: Illustration of three simulated scenarios. In each scenario, the robots’ end-effector are required to reach a static
pre-grasp target in SE(3). The grasp target is represented by a marker placed next to the generated cup, whose color matches
that of the corresponding robot’s arm. The robots are tasked with achieving their targets while avoiding collisions with each

other and static obstacles.

3.2.2. Results
Table 3.3 presents the performance of GF, MPC-d, and MPC-t across three scenarios, evaluated using
metrics such as success rate, time-to-success, computation time, and collision rate. Specifically, MPC-
d exhibits performance comparable to the state-of-the-art GF in terms of success rate and collision
rate across all scenarios. Regarding computation time, although MPC-d incurs higher computational
costs compared to GF, it demonstrates a significant reduction relative to MPC-t. This efficiency allows
MPC-d to maintain real-time performance across all scenarios, highlighting its potential for application
in real-world settings.

Table 3.3: Statistics for three different scenarios of the proposed method are presented, compared against the whole-body
Geometric Fabrics (GF) and MPC with a triple integrator dynamic model (denoted as MPC-t). Each scenario is randomized

across 30 different environments.

Scenario Method Success rate [%] Time-to-Success [s] Computation time [ms] Collision-rate [%]

Two tables
GF 63.3 23.09 ± 7.96 1.30 ± 0.29 6.7

MPC-t 70.0 15.92 ± 4.85 35.39 ± 2.68 6.7
MPC-d 80.0 12.85 ± 4.35 16.23 ± 1.46 6.7

One table
GF 50.0 23.53 ± 3.92 1.27 ± 0.26 0

MPC-t 53.3 17.10 ± 5.33 34.91 ± 2.3 0
MPC-d 80.0 13.66 ± 4.68 16.02 ± 1.35 0

Three agents
GF 46.7 45.74 ± 12.50 1.456 ± 0.33 10.0

MPC-t 70.0 22.73 ± 8.84 99.33 ± 5.07 10.0
MPC-d 70.0 15.89 ± 4.07 38.13 ± 2.08 3.3

3.2. Experiment 1: Simulated pick-and-place scenarios 20

In Scenario 1, mobile manipulators are tasked with picking up a cup placed on two separate tables.
Some scenarios require the robots to cross paths while avoiding collisions, as depicted in Fig. 3.1a. The
grasp target poses are generated randomly, often near the center of the tables, necessitating the robotic
arms to extend to reach the goal. The MPC-t and MPC-d methods achieve success rates of 70.0%
and 80.0%, respectively, slightly outperforming GF, which achieves a success rate of 63.3%. Failures
occur when the robot’s end-effector cannot reach its target due to collision avoidance constraints, often
involving the robot’s upper wrist link and the table, as shown in Fig. 3.2a. Collisions are observed across
all methods, particularly in scenarios where the robots’ trajectories intersect. For GF, inter-robot or self-
collisions are the primary causes, as illustrated in Fig. 3.2e and Fig. 3.2f. Conversely, the MPC-based
methods primarily experience collisions between robots and tables, typically during livelock situations
where one robot’s arm blocks another’s path to its goal, as seen in Fig. 3.2d. Although MPC-based
methods maintain a minimum distance between the robot’s collision spheres and the table’s bounding
spheres, the corners of the tables are not adequately captured by the current collision models. To
mitigate such issues, a heuristic approach, as discussed in Section 2.5, could resolve livelocks by
managing the robots’ navigation priorities before reaching their goals. Additionally, future work should
focus on improving obstacle modelling to enhance collision avoidance performance.

In Scenario 2, each of the two mobile manipulators is assigned to grasp an allocated cup on the same
table as illustrated in Fig. 3.1b. Robots need to navigate in close proximity to the other agent while
avoiding a static obstacle near their trajectories. The higher 80% success rate achieved by the MPC-d
method, compared to the 50% and 53.3% success rates of GF and MPC-t respectively is due to its
ability to manage crossed trajectories at grasp poses. Recall that in MPC-d, the target tracking weight
W ϵ is dynamically adjusted based on the robot’s proximity to its goal. As the robot approaches its
goal, the tracking weight increases, resulting in a higher speed of its end-effector. In scenarios where
one robot reaches its goal, this increase in target tracking weight helps the other robot make faster
progress toward its own goal. Although the first robot may initially block the second robot’s trajectory,
its end-effector is moved away to avoid a collision, allowing the second robot to proceed. This dynamic
adjustment of the tracking weight helps to resolve local minima and improve overall performance. In
contrast, GF tends to result in localized solutions and struggles to handle trajectory conflicts effectively.
However, the dynamic weight adjustment and collision avoidance alone cannot resolve all scenarios
involving grasp poses with crossed trajectories. Deadlock still occurs when one robot blocks another’s
path, or when both robots are hindered by collision avoidance between bases near their goals, as
shown in Fig.3.2b and Fig.3.2c. Therefore, a higher-level task planner will be necessary in the future
to address these complex interactions more effectively.

To demonstrate the scalability of the proposed method to an arbitrary number of agents, Scenario 1 is
extended to include three decentralized mobile manipulators in Scenario 3. As illustrated in Fig. 3.1c,
the trajectories of the three robots may intersect. It is observed that the MPC-based methods, MPC-
d and MPC-t, achieve higher success rates of 70% and 70%, respectively, compared to the 46.7%
success rate of GF. Notably, while the computation time of GF remains relatively unchanged across
scenarios, MPC-t experiences a significant increase in computation time due to the higher number
of collision-avoidance constraints, resulting in a loss of real-time performance. In contrast, MPC-d
maintains real-time performance even in this more complex scenario. Due to the crowded nature
of the scenario, collisions occur across the compared decentralized methods. As in Scenario 1, GF
primarily suffers from inter-robot and self-collisions. On the other hand, while the MPC-based methods
successfully eliminate inter-robot collisions in deadlock situations, the robotic arms may collide with the
tables during attempts to avoid other robots.

In summary, benchmarking different local motion planning methods for mobile manipulators presents
significant challenges, as there are no existing off-the-shelf solutions or published statistics for direct
comparison. Additionally, achieving consistent behavior across multiple planners is complex and re-
quires extensive adjustments. While configuration, velocity, and acceleration bounds are set identically
across all controllers, differences in the design of cost and constraint functions among methods can
still result in varying outcomes and behaviors. Moreover, achieving consistent behavior requires expert
knowledge and a deep understanding of the specific characteristics and underlying principles of each
approach. When evaluating time-to-success across all scenarios, GF consistently shows higher values
than MPC-based methods. This difference is likely due to the different tracking cost weights, with larger
weights promoting more aggressive behavior that helps the robot reach its goal faster.

3.3. Experiment 2: Computation Time 21

(a) S1: Robot-1 (green) is unable to reach its
goal due to collision avoidance constraints
between its upper-wrist link and the table.

(b) S2: After robot-2 (magenta) reaches its goal,
it blocks robot-1’s path while trying to keep its
end effector at the target. As a result, robot-1

cannot reach its own goal.

(c) S2: Both robots navigate to their respective
goals, but as they get closer and avoid

collisions with each other’s base, both stop and
neither of them reaches their goal.

(d) S1 and S3 (MPC): Deadlock occurs when
robot-2 (magenta) attempts to reach its goal
which is blocked by robot-1 (green). To avoid
colliding with robot-2, robot-1 collides with the

edge of the table.

(e) S1 and S3 (GF): An inter-robot collision
occurs between robot-1 (green) and robot-3

(orange) as they attempt to reach their goals by
using GF

(f) S1 and S3 (GF): The arm of robot-1 (green)
folds, resulting in a self-collision as the robot

attempts to reach its goal by using GF.

Figure 3.2: Screenshots capturing task failures across the three scenarios are provided. Different colors distinguish the robots:
robot-1 (green), robot-2 (magenta), and robot-3 (orange). Each robot’s goal is indicated by a marker next to the generated cup,
whose color matches the corresponding robot’s arm. The collision spheres used for each ego robot’s collision avoidance are

visualized as semi-transparent gray spheres.

3.3. Experiment 2: Computation Time
This section presents a comparison study on the increase in computation time across three different
methods as the number of obstacles increases. Since each method uses sphere-sphere collision avoid-
ance inequality constraints, it is crucial to evaluate their scalability with respect to the growing number
of obstacles.

The GFmethod does not differentiate between static and dynamic obstacles. In contrast, for MPC-t and
MPC-d, if the obstacle states need to be updated during runtime, the states xoi of these obstacles have
to be stacked with system states. This increases the optimization problem’s dimensionality, thereby
increasing computation time. To mitigate this issue, obstacles can be categorized into two types:

1. Static obstacles: These obstacles have fixed states that remain unchanged during the planning
process. For instance, stationary objects like tables can be treated as static obstacles. They can
be represented using a URDF file and provided to the controller during initialization. GJK-based
distance queries from Flexible Collision Library (FCL) [57] are used to calculate the minimum dis-
tance between each collision pair, ensuring collision avoidance during runtime. Inequality collision
avoidance constraints are applied to each sphere representing the ego robot. Consequently, for
every static obstacle added, 5 additional inequality constraints are introduced into the optimiza-
tion problem, as all the collision spheres representing the ego-robot as detailed in Section 3.1 are
considered.

2. Dynamic obstacles: The obstacles states are updated at runtime. Their states xoi are stacked
with the system’s states to propagate their behavior over the prediction horizon. To accommodate
these updates, the controller increases the dimensionality of the optimization problem, which
raises computation time. For MPC-d, the state includes the 3D position and velocity, totalling 6
dimensions. For MPC-t, the state includes acceleration as well, adding 9 additional dimensions
for each dynamic obstacle. Similarly to static obstacles, inequality collision avoidance constraints
are applied to each sphere representing the ego robot. As a result, every dynamic obstacle
added introduces 5 additional inequality constraints to the optimization problem. The controller
ensures that the dynamic obstacles’ states are propagated during the prediction horizon and that
constraints are satisfied throughout this period.

3.3. Experiment 2: Computation Time 22

3.3.1. Setup
The robot is positioned at the origin of the world with a fixed arm configuration. In all cases, the robot’s
end-effector is required to remain stationary at its initial pose. Obstacle positions are uniformly sampled
within the range [x, y, z] ∈ [−4.0, 4.0] m × [−4.0, 4.0] m × [0.0, 1.0] m, while their radii are uniformly
sampled within the range [0.1, 0.5] m, as illustrated in Fig. 3.3. The velocity and acceleration of the
obstacles are set to zero. Computation times are recorded throughout the simulation sessions, each
with a fixed duration. For each method and each specific number of obstacles, 10 tests are conducted,
with obstacle positions randomized for each run.

(a) 20 obstacles (b) 100 obstacles

Figure 3.3: Illustrations depicting scenarios with varying numbers of obstacles. The robot ensures its end-effector remains at
its initial pose as indicated by the marker. It checks the minimum distance among all collision pairs and ensures the collision

inequality constraints.

3.3.2. Results
Figure 3.4a illustrates the computation times of GF, MPC-d, and MPC-t with increasing numbers of
static obstacles. The number of static obstacles ranges from 0 to 100, allowing for a comprehensive
analysis of performance across varying environmental complexities. The MPC-based methods exhibit
a noticeable increase in computation time as the number of obstacles grows. Specifically, MPC-d
rises from 2.3 ms for 0 obstacles to 36.4 ms for 100 obstacles, while MPC-t follows a similar trend,
increasing from 3.4ms to 42.2ms. Although these computation times are higher compared to GF, both
MPC methods maintain real-time performance even at the upper limit of 100 obstacles, demonstrating
their capability in handling complex environments. In contrast, the GF method exhibits remarkable
scalability, with a much more gradual increase in computation time as the number of static obstacles
increases. Beginning at just 0.4 ms for 0 obstacles, GF maintain a linear progression, reaching only
10.6 ms for 100 obstacles. This underscores its efficiency and suitability for real-time applications,
particularly in environments with high complexity.

Figure 3.4b presents the results for dynamic obstacles, where the number of obstacles varies between
3 and 21. Different from the static obstacles scenarios, in this scenario, a significant difference emerges
between the MPC-based methods and GF. Similar to the static obstacles scenario, GF exhibits minimal
increases in computation time and maintains real-time performance throughout the range. In contrast,
the MPC-based methods show a substantial increase in computation time as the number of dynamic
obstacles rises, with MPC-d growing from 5.8 ms for 3 obstacles to 128.4 ms for 21 obstacles, and
MPC-t increasing from 11.0 ms to 331.8 ms over the same range. Notably, MPC-t exceeds the real-
time performance threshold of 50.0 ms when the number of obstacles surpasses 9, reaching 52.0 ms,
while MPC-d loses real-time performance at 57.3 ms when the number of obstacles exceeds 15. Addi-
tionally, it is worth noting that MPC-d consistently achieves approximately half the computation time of
MPC-t for the same number of dynamic obstacles. The higher computation times in MPC-based meth-
ods stem from their need to account for real-time updates of dynamic obstacle states and propagate
these behaviors over the prediction horizon, increasing the optimization problem’s dimensionality. This
demonstrates the direct correlation between increased system dimensionality and computation cost in
handling dynamic obstacles.

3.3. Experiment 2: Computation Time 23

(a) (b)

Figure 3.4: Comparison of controller computation time performance with increasing numbers of static and dynamic obstacles.

The results highlight a clear trade-off between the methods. GF offer excellent scalability and mini-
mal computational overhead, maintaining real-time performance even in complex environments with
both static and dynamic obstacles. On the other hand, by making a split between static and dynamic
obstacles, the MPC-based methods achieve real-time performance in static environments with a large
number of obstacles and in dynamic environments with fewer than 9 obstacles for MPC-t and fewer than
15 obstacles for MPC-d. The advantage of MPC lies in its ability to propagate obstacle states across the
entire prediction horizon, providing enhanced collision avoidance, particularly for high-speed obstacles
representing non-ego robots. In contrast, GF can only update obstacles positions at runtime, making
it purely reactive. To optimize MPC performance, separating static and dynamic obstacles could be a
beneficial approach. A limitation of this setup is that after the first policy is generated, the MPC system
operates with reduced computational complexity for subsequent policies, especially when the robot’s
trajectory stabilizes or it nears its goal. This might lead to an underestimation of the true computational
cost, as the system faces fewer environmental changes. Furthermore, the simple task configurations
used in the experiments do not fully capture real-world scenarios, such as continuously moving ob-
stacles or complex manipulation tasks. For future improvements, a more dynamic environment with
high-speed obstacles should be introduced, alongside tasks that require continuous re-planning, like
complex pick-and-place operations. This would better reflect real-world challenges and more thor-
oughly evaluate the capacity of MPC-based methods to handle complex, changing conditions.

4
Real-world experiments

Experiments are conducted to evaluate the real-world applicability of the proposed framework. The
robot’s state estimation integrates data from a Vicon motion capture system and onboard sensors. For
the ego robot, joint encoders capture the arm’s positions qarm, while the Vicon system precisely tracks
the base’s position and orientation qbase. These measurements are fused using a Kalman Filter (KF)
to estimate the full robot state xr = [qT

r ,v
T
r]

T , as described in Section 2.4.1. For non-ego robots, joint
encoders provide arm joint positions and velocities, while base velocities are computed via numeri-
cal differentiation, as detailed in Section 2.4.2. Collision sphere states xoi = [qT

oi ,v
T
oi]

T for non-ego
robots are determined using forward kinematics (FK) and differential kinematics (DK), as outlined in
Section 2.4.3. Additional collision pairs, such as those between the robot’s end-effector and the ground,
are incorporated to ensure safe operations. Static tables in the environment are modeled as cubes with
known dimensions and positions supplied by the Vicon system. These parameters are used to gen-
erate URDF files, which are then integrated into the MPC for planning, as discussed in Section 3.3.
The MPC-d framework, illustrated in Fig.2.1, runs on a laptop with an Intel Core i5-10300H CPU at
2.50 GHz and 16 GiB of RAM. Robots receive velocity commands published by the laptop. The MPC
parameters used in real-world experiments remain consistent with the simulation, as listed in Table 3.1
and Table 3.2. State estimation parameters specific to the real-world setup are provided in Table 4.1,
and the heuristic parameters are summarized in Table 4.2.

A video demonstration of the experiments is available at https://autonomousrobots.nl/msc_projects_
finished/25-danningzhao-multiagentmpc.

Table 4.1: State Estimation Parameter Settings

(a) Kalman Filter Parameter Settings

Parameter Symbol Value
Sampling Time δt 8ms
Process Noise Covariance Q 10I9×9

Measurement Noise Covariance R 0.001I9×9

State Transition Matrix Ār

[
I9 δtI9×9

09×9 I9×9

]
∈ R18×18

Control Input Matrix B̄r

[
1
2δt

2I9×9

δtI9×9

]
∈ R18×9

Measurement Model C
[
I9×9 09×9

]
∈ R9×18

Initial Covariance Estimate P 0 0.1I18×18

(b) Numerical Differentiation Parameters

Parameter Symbol Value
Time Interval ∆t 8ms
Time Constant-linear τlinear 0.045
Time Constant-angular τangular 0.025

24

https://autonomousrobots.nl/msc_projects_finished/25-danningzhao-multiagentmpc
https://autonomousrobots.nl/msc_projects_finished/25-danningzhao-multiagentmpc

4.1. A single robot experiment 25

Table 4.2: Parameter Settings for the Heuristic to Solve Livelocks

Parameter Symbol Value
Livelock Detection Distance Threshold dee,l 1m
Average Velocity Threshold for Detection v̄l −0.3m/s
Duration for Calculating v̄ Tl 0.5 s
Livelock Resolution Distance Threshold dee,r 1m
Task Completion Tolerance dee,r̂ 0.07m

4.1. A single robot experiment
Before progressing to multi-robot experiments, it is essential to validate the functionality of MPC on a
single robot. This section tests the static obstacle avoidance capabilities of MPC-d.

4.1.1. Assessing single robot static obstacle avoidance

Figure 4.1: Real-world environment for static obstacle avoidance experiments. The robot sequentially reaches three
end-effector targets, indicated by the markers in the figure

(a) t = 0 s (b) t = 2 s (c) t = 3 s (d) t = 4 s (e) t = 6 s (f) t = 8 s

(g) t = 10 s (h) t = 12 s (i) t = 14 s (j) t = 16 s (k) t = 18 s (l) t = 26 s

Figure 4.2: The mobile manipulator avoids the two tables modelled as static obstacles in the real world. (a-e) The end-effector
moves to the other side of table and reaches goal-1. (f-h) The end-effector moves behind the table and reaches goal-2. (i-l)

Then it turns back, relocating behind another table positioned far away and reaches goal-3.

Figure 4.1 illustrates the setup for the static obstacle avoidance experiment. Starting from the initial
configuration shown, the robot’s end-effector is tasked to reach three sequential goals, indicated by
markers, without colliding with the tables. As illustrated in Fig. 4.2, the mobile manipulator can reach

4.2. Multi-Robot Experiments 26

three different goals without any collision. The computation time of the MPC-d has a value of 6 ms on
average, aligning with the results observed in the simulation experiments.

4.2. Multi-Robot Experiments
4.2.1. A prioritized heuristic to solve livelocks

(a) Setup 1. Robots are symmetrically positioned about the
x-axis. Robot-1 (blue) starts with the base configuration

qbase1
= [−2m, 2m, 0rad], while robot-2 (red) starts with

qbase2
= [−2m,−2m, 0rad].

(b) Setup 2. Robot-2 (red) retains the same initial base
configuration qbase2

= [−2m,−2m, 0rad], while
robot-1 (blue) starts at qbase1

= [−2.5m, 2m, 0rad].

Figure 4.3: Two robots are tasked with reaching end-effector target poses, represented by colored stars, with their trajectories
crossing. The initial configurations of the robots are shown in the figure, and the marker at the center denotes the origin of the

world frame.

To evaluate the dynamic collision avoidance functionality and the efficiency of the heuristic in Section 2.5
in resolving livelock situations, two robots are tasked with reaching end-effector target poses that are
symmetric about the x-axis, causing their trajectories to cross, as illustrated in Fig. 4.3. Robot-1, posi-
tioned at the bottom right and marked in blue, and robot-2, positioned at the top right and marked in red,
start with their arm configurations fixed in a home position, qhome

arm = [0.0, 0.0, 0.0, 1.7, 1.57,−1.57]rad.
The target positions for robot-1 and robot-2 are specified as [x, y, z] = [2,−2, 0.45]m and [x, y, z] =

[2, 2, 0.45]m, respectively, with the desired quaternion for the end-effector orientation defined as ξ̂ =

[ξ̂w, ξ̂x, ξ̂y, ξ̂z] = [0.0, 0.707, 0.0, 0.707]. The tables are positioned below the targets, with their coor-
dinates in the world frame specified as [x, y, z] = [2.0, 2.0, 0.0]m and [0.0, 0.0, 0.0]m. Two setups
are designed to analyze the robots’ different behavior during livelock. In setup 1, both robots are
symmetrically positioned about the x-axis, with the initial base configuration for robot-1 defined as
qbase1 = [x, y, θ] = [−2m, 2m, 0 rad] and for robot-2 as qbase2 = [x, y, θ] = [−2m,−2m, 0 rad], both
within the world frame. In setup 2, robot-2 starts from the same initial base configuration as in setup
1, while robot-1 begins from qbase1 = [x, y, θ] = [−2.5m, 2m, 0rad]. In practice, base positions deviate
a maximum of 5 cm in x and y from this initial base configuration, while θ deviates a maximum of 10◦.
Task success is defined as both agents reaching their target positions within 7 cm of the goal without
collisions. Performance of MPC-d and its extension MPC-d* with a heuristic livelock resolution is com-
pared using metrics including time-to-goal, total path length, and collision rate. The total path length is
calculated as the sum of the trajectory lengths based on the x, y-positions of both robots’ chassis links.
Collisions are identified visually by detecting contact between any rigid body, with ground collisions
checked only for the arm.

4.2. Multi-Robot Experiments 27

4.2.2. Results
Given these start pose disturbances and other uncertainties, the results remain consistent and demon-
strate the efficiencies of the proposed method under real-world conditions. Table 4.3 compares the
performance of MPC-d and its extension, MPC-d*, which incorporates a heuristic for livelock resolu-
tion, across two setups. MPC-d* outperforms MPC-d in both time-to-success and total path length,
demonstrating the effectiveness of the prioritized heuristic.

Table 4.3: Statistics for two setups comparing MPC-d with livelock resolution heuristic (denoted as MPC-d*) and MPC-d
without it, each tested 10 times.

Setup Method Time-to-Success [s] Total Path Length [m] Collision-rate [%]

1 MPC-d 18.21 ± 1.12 13.83 ± 0.88 0
MPC-d* 17.05 ± 0.84 12.94 ± 0.71 0

2 MPC-d 25.73 ± 1.02 17.50 ± 1.39 0
MPC-d* 15.80 ± 0.55 12.99 ± 1.50 0

In setup 1, MPC-d* achieves an improved time-to-success of 17.05 ± 0.84 s and a total path length
of 12.94 ± 0.71 m, compared to MPC-d with a time-to-success of 18.21 ± 1.12 s and a total path
length of 13.83 ± 0.88 m. This slight improvement is mainly due to the resolution of the livelock. As
shown in Fig. 4.4(a-f), the livelock occurs when the end-effectors approach each other, preventing one
robot from reaching its goal. During the livelock, one robot pushes the other robot away from its own
goal, requiring the hindered robot to spend an additional 1−2 s to escape and proceed toward its goal.
With the prioritized heuristic, the livelock is detected early, allowing one robot to reset its target pose
and let the other pass first, leading to reduced time-to-success and path length, as demonstrated in
Fig. 4.4(g-l).

In setup 2, MPC-d* results in a much smaller time-to-success of 15.80 ± 0.55 s and a total path length
of 12.99 ± 1.50 m, compared to MPC-d, which has a time-to-success of 25.73 ± 1.02 s and a total
path length of 17.50 ± 1.39 m. As shown in Fig. 4.5(a-f), the livelock occurs when the slightly faster
robot keeps pushing the slower one aside until it reaches its goal. This interaction leads to longer
paths and higher times-to-success compared to setup 1. It is worth highlighting that no collisions occur
between the hindered robot and tables, demonstrating the collision avoidance capability of MPC-d. By
incorporating the heuristic, the livelock is resolved earlier, enabling both robots to efficiently progress
toward their respective goals, as illustrated in Fig. 4.5(g-l).

In summary, the heuristic improves performance by reducing both time-to-success and path length
while minimizing collision probability. Notably, the total path length of MPC-d* closely approximates the
sum of straight-line paths connecting each robot to its goal, as the heuristic enables near-straight tra-
jectories. The experiments primarily focus on object delivery scenarios, addressing challenges where
robots are tasked to navigate to targets far away. Detecting deadlocks or livelocks in multi-agent sce-
narios remains a significant challenge, often requiring tailored actions depending on the specific type
of problem encountered.

4.2. Multi-Robot Experiments 28

(a) t = 0 s (b) t = 6 s (c) t = 7 s (d) t = 8 s (e) t = 10 s (f) t = 18 s

(g) t = 0 s (h) t = 4 s (i) t = 6 s (j) t = 8 s (k) t = 10 s (l) t = 18 s

Figure 4.4: Setup1. (a-f) MPC-d: A livelock occurs at 6 s when the end-effectors approach each other. The livelock persists as
robot-2 (red) end-effector moves to its own goal and pushes robot-1 away till 8 s. Eventually, at 8 s, robot-1 gets rid of the

livelock and begins moving toward its respective goal. (g-l) MPC-d*: Both robots slow down at 6 s as they approach each other.
A potential livelock is detected when the Euclidean distance between the EEs becomes smaller than the 1 m threshold. At 6 s,

a livelock is confirmed when at least one robot’s average velocity v̄, as defined in Eq. 2.39, is larger than the -0.3 m/s
threshold. The heuristic then resets robot-2’s target pose, allowing it to stand still and let robot-1 pass. By 10 s, the Euclidean
distance between the EEs exceeds 1.0 m, indicating that the livelock has been resolved. robot-2’s original target pose is reset,

and both robots reach their targets by 18 s.

(a) t = 0 s (b) t = 5 s (c) t = 12 s (d) t = 14 s (e) t = 20 s (f) t = 28 s

(g) t = 0 s (h) t = 4 s (i) t = 6 s (j) t = 8 s (k) t = 10 s (l) t = 16 s

Figure 4.5: Setup 2. (a-f) MPC-d: At 5 s, robot-1, aiming for its goal, pushes robot-2 to avoid collisions. The livelock persists
until 14 s, when robot-1 reaches its goal and robot-2 starts moving toward its own target. (g-l) MPC-d*: At 6 s, a livelock is

detected as the average velocity v̄ of robot-2 is larger than the threshold -0.3 m/s threshold. Robot-1’s target pose is rest to its
current EE pose, letting robot-2 pass. Finally, both robots reach their targets by 16 s.

5
Conclusions and Future Research

This chapter summarizes this thesis’s key findings and contributions, emphasizing the advancements
in motion planning for mobile manipulators in multi-agent settings using MPC. Additionally, it addresses
the limitations encountered during the research and outlines potential directions for future work to refine
and extend the proposed methods.

5.1. Conclusions
Research on motion planning for mobile manipulators has mainly focused on single-agent systems
employing local planners such as geometric-based, sampling-based, and optimization-based methods.
While these methods have achieved real-time performance in dynamic environments, extending them
to multiple (mobile) manipulator systems presents additional challenges, especially for optimization-
based methods. Existing studies on multi-manipulator motion planning have explored centralized and
decentralized approaches, with the latter gaining attention for its scalability and adaptability. However,
research addressing multiple mobile manipulators remains even rarer, particularly those tested and
validated in real-world environments. Moreover, deadlocks and livelocks pose persistent challenges in
decentralized frameworks, especially in dynamic, multi-agent settings.

To address these limitations, this thesis builds on the optimization-based local planner MPC [14], adapt-
ing it to multi-mobile manipulator systems operating in shared workspaces. A decentralized MPC
framework is proposed in Chapter 2, with its core being the MPC-d, which uses a double integrator
as the dynamic model introduced in Section 2.3. This modification ensures computational efficiency
for real-time motion planning while maintaining predictive capabilities for obstacles. Furthermore, ac-
curate state estimation detailed in Section 2.4 is essential for both ego and non-ego robots, enabling
safe operation and collision avoidance by providing precise system states to the controller. To address
the common livelock issue in decentralized frameworks, which arises from obstacle avoidance based
on local observations, a heuristic is introduced in Section 2.5. It employs a prioritization framework
that establishes a hierarchy of goals within livelock groups, effectively resolving conflicts and ensuring
progress in multi-robot setups.

To validate the performance of MPC-d, a comparison study with original work MPC-t [14], which uses
a triple integrator as the dynamic model, and GF [27] was conducted in simulation, including two key
experiments: pick-and-place scenarios and a computation time analysis, as detailed in Chapter 3. In
Section 3.2, the pick-and-place experiments demonstrated that MPC-d performed comparably to GF in
terms of success rate and collision avoidance. While MPC-d incurred higher computational costs than
GF, it was more computationally efficient than MPC-t. In Section 3.3, GF showed excellent scalability,
maintaining real-time performance even with up to 100 dynamic obstacles. In contrast, MPC-d main-
tained real-time performance in crowded static environments and in dynamic environments with up to
15 obstacles. The key advantage of MPC-d is its ability to propagate obstacle states over the prediction
horizon, enabling better collision avoidance for high-speed obstacles, unlike the purely reactive GF.

In Chapter 4, real-world experiments validate the proposed multi-mobile manipulator MPC framework.

29

5.2. Future Research 30

Section 4.1 presents a qualitative experiment demonstrating the goal-reaching and static obstacle
avoidance capabilities of MPC-d on a single robot. Subsequently, quantitative experiments in Sec-
tion 4.2 assess dynamic obstacle avoidance and the efficiency of the heuristic in resolving livelock
situations in an object delivery scenario. Both experiments confirm effective collision avoidance be-
tween robots and environmental obstacles. Additionally, the heuristic enhances performance by reduc-
ing time-to-success and path length while maintaining minimal collision risk. The computation time of
MPC-d aligns with simulation results, highlighting its adaptability for real-world applications.

Overall, the results demonstrate that MPC-d achieves performance comparable to the state-of-the-art
geometric method GF in multi-agent settings. While MPC-d’s inherent optimization-based formulation
results in higher computation time compared to geometric methods like GF, it still maintains real-time
performance, even in scenarios involving up to three robots. Additionally, the obstacle prediction hori-
zon facilitates the design of a prioritized heuristic to proactively resolve livelock situations. Real-world
experiments further validate the proposed pipeline’s alignment with simulation results, confirming its
efficient state estimation for both ego and non-ego robots, as well as its robust real-time performance.
These findings underscore the adaptability and effectiveness of MPC-d in real-world applications.

5.2. Future Research
The proposed framework demonstrates reliable real-time performance and adaptability, validated through
both simulation and real-world experiments. However, there remain several research directions for fur-
ther improvement and exploration to enhance its scalability, adaptability, and performance in complex
real-world environments.

First, future work could investigate replacing explicit pairwise collision checks with an Euclidean Signed
Distance Field (ESDF) [66] for static obstacle avoidance. As discussed in Section 3.3, the computation
time grows significantly with the number of obstacles due to the explicit pairwise constraints. An ESDF,
which encodes the distance to the nearest obstacle, could serve as a cost function within the MPC
framework, eliminating the need for explicitly defining the shapes of obstacles. Moreover, integrating
the ESDF with a perception pipeline could enable the system to dynamically update the distance field
using sensor data, allowing for operation in previously unknown environments. Prior research [30, 31,
52] has demonstrated the utility of ESDF in motion planning for mobile manipulators, showcasing its
potential to improve scalability and maintain real-time performance in a complex environment.

Secondly, the proposed MPC-d pipeline serves as a local planner, focusing on short-term trajectory
generation but lacking global guidance. As highlighted in the scenario experiments in Section 3.2,
certain target poses become unreachable due to the conservative collision avoidance strategy. To
address this, future research could explore integrating a grasp planner, as discussed in [67, 68]. Such
a planner would adapt target poses by considering object geometry, environmental constraints, and
robot kinematics, ensuring better reachability. Furthermore, while the heuristic introduced in Section 2.5
resolves livelocks in specific object delivery scenarios, deadlocks in multi-robot pick-and-place tasks,
caused by inter-robot collision avoidance, remain a significant challenge. Optimizing task allocation
and scheduling as explored in works such as [11, 12] can reduce deadlocks by improving coordination
among robots.

Finally, another promising direction for future research involves leveraging learning-based methods to
automate target selection and optimize parameter tuning within MPC frameworks for motion planning
in multi-agent settings. For instance, deep Reinforcement Learning (RL) can be used to provide long-
term guidance to the local MPC planner by recommending interaction-aware subgoals that account for
the robot’s progress and its interactions with surrounding agents [69]. Additionally, neural networks
(NNs) could be employed to approximate the optimization process within the MPC framework, offer-
ing significant computational speedups while maintaining system stability and constraint satisfaction
through safety augmentation techniques [70]. These combined methods could enable faster and more
adaptive motion planning in dynamic, multi-agent environments, further enhancing the practicality of
MPC-based systems in real-world applications.

References

[1] T. Sandakalum and M. H. Ang, “Motion planning for mobile manipulators—a systematic review,”
Machines, vol. 10, no. 2, 2022. [Online]. Available: https://www.mdpi.com/2075-1702/10/2/97.

[2] M. Yang, E. Yang, R. C. Zante, M. Post, and X. Liu, “Collaborative mobile industrial manipula-
tor: A review of system architecture and applications,” in 2019 25th International Conference on
Automation and Computing (ICAC), 2019, pp. 1–6.

[3] K. Zhou et al., “Mobile manipulator is coming to aerospace manufacturing industry,” in 2014 IEEE
International Symposium on Robotic and Sensors Environments (ROSE) Proceedings, 2014,
pp. 94–99.

[4] J. Aleotti et al., “Toward future automatic warehouses: An autonomous depalletizing system
based on mobile manipulation and 3d perception,” Applied Sciences, vol. 11, no. 13, 2021. [On-
line]. Available: https://www.mdpi.com/2076-3417/11/13/5959.

[5] J. Gros, D. Zatyagov, M. Papa, C. Colloseus, S. Ludwig, and D. Aschenbrenner, “Unlocking the
benefits of mobile manipulators for small and medium-sized enterprises: A comprehensive study,”
Procedia CIRP, vol. 120, pp. 1339–1344, 2023.

[6] L. Tagliavini, L. Baglieri, G. Colucci, A. Botta, C. Visconte, and G. Quaglia, “Dot paquitop, an
autonomous mobile manipulator for hospital assistance,” Electronics, vol. 12, no. 2, p. 268, 2023.

[7] Z. Feng, G. Hu, Y. Sun, and J. Soon, “An overview of collaborative robotic manipulation in multi-
robot systems,” Annual Reviews in Control, vol. 49, pp. 113–127, 2020.

[8] H. Touzani, H. Hadj-Abdelkader, N. Séguy, and S. Bouchafa, “Multi-robot task sequencing &
automatic path planning for cycle time optimization: Application for car production line,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1335–1342, 2021.

[9] H. Touzani et al., “Efficient industrial solution for robotic task sequencing problem with mutual
collision avoidance & cycle time optimization,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 2597–2604, 2022.

[10] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press, 2006, Avail-
able at http://planning.cs.uiuc.edu/.

[11] N. Gafur, V. Yfantis, and M. Ruskowski, “Optimal scheduling and non-cooperative distributed
model predictive control for multiple robotic manipulators,” in 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), IEEE, 2021, pp. 390–397.

[12] A. Tika, N. Gafur, V. Yfantis, and N. Bajcinca, “Optimal scheduling and model predictive control
for trajectory planning of cooperative robot manipulators,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 9080–9086, 2020.

[13] V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint, “Long-horizon multi-robot
rearrangement planning for construction assembly,” IEEE Transactions onRobotics, vol. 39, no. 1,
pp. 239–252, 2022.

[14] A. Heins and A. P. Schoellig, “Keep it upright: Model predictive control for nonprehensile object
transportation with obstacle avoidance on a mobile manipulator,” IEEE Robotics and Automation
Letters, 2023.

[15] ABB. “Abb demonstrates concept of mobile laboratory robot for hospital of the future.” (2024),
[Online]. Available: https://new.abb.com/news/detail/37301/abb-demonstrates-concept-
of-mobile-laboratory-robot-for-hospital-of-the-future.

[16] A. M.-R. L. Delft. “Rss 2024 lab-tour demo - interact.” (2024), [Online]. Available: https://www.
youtube.com/watch?v=AldMFKnlW3M&list=PLOksz-MTFhN2T4gYQlLHR2lGCdC0BDkJw.

31

https://www.mdpi.com/2075-1702/10/2/97
https://www.mdpi.com/2076-3417/11/13/5959
https://new.abb.com/news/detail/37301/abb-demonstrates-concept-of-mobile-laboratory-robot-for-hospital-of-the-future
https://new.abb.com/news/detail/37301/abb-demonstrates-concept-of-mobile-laboratory-robot-for-hospital-of-the-future
https://www.youtube.com/watch?v=AldMFKnlW3M&list=PLOksz-MTFhN2T4gYQlLHR2lGCdC0BDkJw
https://www.youtube.com/watch?v=AldMFKnlW3M&list=PLOksz-MTFhN2T4gYQlLHR2lGCdC0BDkJw

References 32

[17] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-query path planning,” in
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, 2000, 995–1001 vol.2.

[18] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipulation planning on con-
straint manifolds,” in 2009 IEEE international conference on robotics and automation, IEEE, 2009,
pp. 625–632.

[19] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A framework for pose-constrained
manipulation planning,” The International Journal of Robotics Research, vol. 30, no. 12, pp. 1435–
1460, 2011.

[20] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces for constrained sampling-based
planning,” The International Journal of Robotics Research, vol. 38, no. 10-11, pp. 1151–1178,
2019.

[21] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient optimization techniques
for efficient motion planning,” in 2009 IEEE international conference on robotics and automation,
IEEE, 2009, pp. 489–494.

[22] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp: Stochastic trajec-
tory optimization for motion planning,” in 2011 IEEE international conference on robotics and
automation, IEEE, 2011, pp. 4569–4574.

[23] Moveit! [Online]. Available: https://moveit.ros.org/.
[24] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE Robotics Au-

tomation Magazine, vol. 19, no. 4, pp. 72–82, 2012.
[25] J. Haviland and P. Corke, “Neo: A novel expeditious optimisation algorithm for reactive motion

control of manipulators,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1043–1050,
2021.

[26] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Riemannian motion policies,” arXiv
preprint arXiv:1801.02854, 2018.

[27] M. Spahn, M. Wisse, and J. Alonso-Mora, “Dynamic optimization fabrics for motion generation,”
IEEE Transactions on Robotics, 2023.

[28] M. Bhardwaj et al., “Storm: An integrated framework for fast joint-space model-predictive control
for reactive manipulation,” in Conference on Robot Learning, PMLR, 2022, pp. 750–759.

[29] C. Pezzato, C. Salmi, M. Spahn, E. Trevisan, J. Alonso-Mora, and C. H. Corbato, “Sampling-
basedmodel predictive control leveraging parallelizable physics simulations,” arXiv preprint arXiv:2307.09105,
2023.

[30] M. Mittal, D. Hoeller, F. Farshidian, M. Hutter, and A. Garg, “Articulated object interaction in un-
known scenes with whole-body mobile manipulation,” in 2022 IEEE/RSJ international conference
on intelligent robots and systems (IROS), IEEE, 2022, pp. 1647–1654.

[31] J. Pankert and M. Hutter, “Perceptive model predictive control for continuous mobile manipula-
tion,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6177–6184, 2020.

[32] N. Ratliff and K. Van Wyk, “Fabrics: A foundationally stable medium for encoding prior experi-
ence,” arXiv preprint arXiv:2309.07368, 2023.

[33] S. Bakker, L. Knoedler, M. Spahn, W. Böhmer, and J. Alonso-Mora, “Multi-robot local motion
planning using dynamic optimization fabrics,” in 2023 International Symposium on Multi-Robot
and Multi-Agent Systems (MRS), IEEE, 2023, pp. 149–155.

[34] G. Rizzi, J. J. Chung, A. Gawel, L. Ott, M. Tognon, and R. Siegwart, “Robust sampling-based con-
trol of mobilemanipulators for interaction with articulated objects,” IEEE Transactions onRobotics,
vol. 39, no. 3, pp. 1929–1946, 2023.

[35] J. Haviland, N. Sünderhauf, and P. Corke, “A holistic approach to reactive mobile manipulation,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3122–3129, 2022.

[36] M. Spahn, B. Brito, and J. Alonso-Mora, “Coupled mobile manipulation via trajectory optimiza-
tion with free space decomposition,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), 2021, pp. 12 759–12765.

https://moveit.ros.org/

References 33

[37] R. J. M. Afonso and R. K. H. Galvão, “Infeasibility handling in constrained mpc,” Frontiers of
Model Predictive Control, pp. 47–64, 2012.

[38] Á. Madridano, A. Al-Kaff, D. Martín, and A. De La Escalera, “Trajectory planning for multi-robot
systems: Methods and applications,” Expert Systems with Applications, vol. 173, p. 114 660,
2021.

[39] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory generation with distributed
model predictive control for multi-robot motion planning,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 604–611, 2020.

[40] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent point-to-point transitions
via distributed model predictive control,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 375–382, 2019.

[41] M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: Past, present, and future [point of
view],” Proceedings of the IEEE, vol. 109, no. 7, pp. 1152–1165, 2021.

[42] A. Tika and N. Bajcinca, “Predictive control of cooperative robots sharing common workspace,”
IEEE Transactions on Control Systems Technology, 2023.

[43] N. Gafur, G. Kanagalingam, and M. Ruskowski, “Dynamic collision avoidance for multiple robotic
manipulators based on a non-cooperative multi-agent game,” arXiv preprint arXiv:2103.00583,
2021.

[44] Y. Chen, M. Guo, and Z. Li, “Deadlock resolution and recursive feasibility in mpc-based multi-
robot trajectory generation,” IEEE Transactions on Automatic Control, pp. 1–16, 2024.

[45] J. Haviland and P. Corke, “A purely-reactive manipulability-maximising motion controller,” arXiv
preprint arXiv:2002.11901, 2020.

[46] K. He et al., “Visibility maximization controller for robotic manipulation,” IEEE Robotics and Au-
tomation Letters, vol. 7, no. 3, pp. 8479–8486, 2022.

[47] B. Burgess-Limerick, C. Lehnert, J. Leitner, and P. Corke, “An architecture for reactive mobile
manipulation on-the-move,” in 2023 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2023, pp. 1623–1629.

[48] B. Burgess-Limerick, J. Haviland, C. Lehnert, and P. Corke, “Reactive base control for on-the-
move mobile manipulation in dynamic environments,” IEEE Robotics and Automation Letters,
2024.

[49] A. Heins, M. Jakob, and A. P. Schoellig, “Mobile manipulation in unknown environments with
differential inverse kinematics control,” in 2021 18th Conference on Robots and Vision (CRV),
2021, pp. 64–71.

[50] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “Qpoases: A parametric
active-set algorithm for quadratic programming,”Mathematical Programming Computation, vol. 6,
pp. 327–363, 2014.

[51] A. Gawel et al., “A fully-integrated sensing and control system for high-accuracy mobile robotic
building construction,” in 2019 IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS), IEEE, 2019, pp. 2300–2307.

[52] J.-R. Chiu, J.-P. Sleiman, M. Mittal, F. Farshidian, and M. Hutter, “A collision-free mpc for whole-
body dynamic locomotion and manipulation,” in 2022 international conference on robotics and
automation (ICRA), IEEE, 2022, pp. 4686–4693.

[53] M.W. Spong, S. Hutchinson, and M. Vidyasagar,Robot modeling and control. JohnWiley & Sons,
2020.

[54] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, 1st.
Springer Publishing Company, Incorporated, 2008.

[55] D. Kouzoupis, G. Frison, A. Zanelli, and M. Diehl, “Recent advances in quadratic programming
algorithms for nonlinear model predictive control,” Vietnam Journal of Mathematics, vol. 46, no. 4,
pp. 863–882, 2018.

References 34

[56] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Perceptive locomotion through
nonlinear model-predictive control,” IEEE Transactions on Robotics, vol. 39, no. 5, pp. 3402–
3421, 2023.

[57] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for collision and proximity
queries,” in 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 3859–
3866.

[58] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally optimal,
collision-free trajectories with sequential convex optimization.,” inRobotics: science and systems,
Berlin, Germany, vol. 9, 2013, pp. 1–10.

[59] J. Schulman et al., “Motion planning with sequential convex optimization and convex collision
checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[60] S. J. Wright, Numerical optimization, 2006.
[61] T. D. Barfoot, State Estimation for Robotics. Cambridge University Press, 2017.
[62] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[63] G. Frison andM. Diehl, “Hpipm: A high-performance quadratic programming framework for model

predictive control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020.
[64] “Cppad: A package for differentiation of c++ algorithms.” (2024), [Online]. Available: https://

github.com/coin-or/CppAD (visited on 10/07/2024).
[65] J. Carpentier et al., “The pinocchio c++ library : A fast and flexible implementation of rigid body dy-

namics algorithms and their analytical derivatives,” in 2019 IEEE/SICE International Symposium
on System Integration (SII), 2019, pp. 614–619.

[66] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremental 3d euclidean
signed distance fields for on-board mav planning,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2017, pp. 1366–1373.

[67] R. Newbury et al., “Deep learning approaches to grasp synthesis: A review,” IEEE Transactions
on Robotics, vol. 39, no. 5, pp. 3994–4015, 2023.

[68] Z. He, N. Chavan-Dafle, J. Huh, S. Song, and V. Isler, “Pick2place: Task-aware 6dof grasp es-
timation via object-centric perspective affordance,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 7996–8002.

[69] B. Brito, M. Everett, J. P. How, and J. Alonso-Mora, “Where to go next: Learning a subgoal rec-
ommendation policy for navigation in dynamic environments,” IEEE Robotics and Automation
Letters, vol. 6, no. 3, pp. 4616–4623, 2021.

[70] H. Hose, J. Köhler, M. N. Zeilinger, and S. Trimpe, “Approximate non-linear model predictive
control with safety-augmented neural networks,” arXiv preprint arXiv:2304.09575, 2023.

https://github.com/coin-or/CppAD
https://github.com/coin-or/CppAD

Glossary

CBF Control Barrier Functions. 2
CS Configuration Space. 6, 7

DK differential kinematics. 7, 14, 17, 24
DOF Degrees of Freedom. 2, 3, 6, 17

EE end-effector. iii, 1, 3, 5, 7–10, 14–16, 19, 20, 22, 24–28
ESDF Euclidean Signed Distance Field. 30

FCL Flexible Collision Library. 17, 21
FK forward kinematics. 7, 10, 12, 14, 17, 24

GF Geometric Fabrics. i, iv, 17, 19–23, 29, 30
GJK Gilbert–Johnson–Keerthi. 10, 21

IDK inverse differential kinematics. 5

KF Kalman Filter. ii, 12, 13, 24

MM mobile manipulator. 1, 3
MotM manipulation on-the-move. 5
MPC Model Predictive Control. i, iii, iv, 1, 3–8, 10, 11, 14–30
MPPI Model Predictive Path Integral. 2, 5
MRMP Multi-robot Motion Planning. 3

NLP Nonlinear Programming Problem. 11
NNs neural networks. 30

OCS2 Optimal Control of Switched Systems. 5, 17

p.s.d. positive semidefinite. 10, 12

QP quadratic program. 3, 5, 10–12, 17

RL Reinforcement Learning. 30

SLQ Sequential Linear Quadratic. 5
SQP Sequential Quadratic Programming. 5, 6, 10, 11, 17

TS Task Space. 7, 9

UAVs Unmanned Aerial Vehicles. 3
UGVs Unmanned Ground Vehicles. 3
URDF Unified Robot Description Format. 8, 18, 21, 24

VMC Visibility Maximization Controller. 5

35

	Preface
	Introduction
	Related work
	Local planners for a single mobile manipulator
	Multi-Robot Motion Planning

	Contribution
	Overview

	Methodology
	Method Overview
	Fundamentals: Planning spaces and kinematics
	Planning Space
	Kinematic Fundamentals

	Multi-robot model predictive control
	System Model
	Cost Function
	Constraints
	Numerical Optimization

	State Estimation
	State Estimation for the Ego-Robot Using a kf
	State Estimation for the Non-Ego Robots
	Collision Avoidance in Multi-agent Settings

	A Prioritized Heuristic to Solve Livelocks
	Summary of the Methodology Pipeline

	Simulation experiments
	Experimental Framework
	Experiment 1: Simulated pick-and-place scenarios
	Setup
	Results

	Experiment 2: Computation Time
	Setup
	Results

	Real-world experiments
	A single robot experiment
	Assessing single robot static obstacle avoidance

	Multi-Robot Experiments
	A prioritized heuristic to solve livelocks
	Results

	Conclusions and Future Research
	Conclusions
	Future Research

	References

