
 
 

Delft University of Technology

STREAmS
A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent
flows
Bernardini, Matteo; Modesti, Davide; Salvadore, Francesco; Pirozzoli, Sergio

DOI
10.1016/j.cpc.2021.107906
Publication date
2021
Document Version
Final published version
Published in
Computer Physics Communications

Citation (APA)
Bernardini, M., Modesti, D., Salvadore, F., & Pirozzoli, S. (2021). STREAmS: A high-fidelity accelerated
solver for direct numerical simulation of compressible turbulent flows. Computer Physics Communications,
263, Article 107906. https://doi.org/10.1016/j.cpc.2021.107906

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cpc.2021.107906
https://doi.org/10.1016/j.cpc.2021.107906


Computer Physics Communications 263 (2021) 107906

✩

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

STREAmS: A high-fidelity accelerated solver for direct numerical
simulation of compressible turbulent flows✩,✩✩

Matteo Bernardini a, Davide Modesti b, Francesco Salvadore c,∗, Sergio Pirozzoli a
a Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Roma, Italy
b Aerodynamics Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 2, 2629 HS Delft, The Netherlands
c HPC Department, CINECA, Rome office, via dei Tizii 6/B, 00185 Roma, Italy

a r t i c l e i n f o

Article history:
Received 21 August 2020
Received in revised form 7 November 2020
Accepted 21 December 2020
Available online 20 February 2021

Keywords:
GPUs
CUDA
Compressible flows
Wall turbulence
Direct numerical simulation
Open source

a b s t r a c t

We present STREAmS, an in-house high-fidelity solver for direct numerical simulations (DNS) of
canonical compressible wall-bounded flows, namely turbulent plane channel, zero-pressure gradient
turbulent boundary layer and supersonic oblique shock-wave/boundary layer interaction. The solver
incorporates state-of-the-art numerical algorithms, specifically designed to cope with the challenging
problems associated with the solution of high-speed turbulent flows and can be used across a wide
range of Mach numbers, extending from the low subsonic up to the hypersonic regime. From the
computational viewpoint, STREAmS is oriented to modern HPC platforms thanks to MPI parallelization
and the ability to run on multi-GPU architectures. This paper discusses the main implementation
strategies, with particular reference to the CUDA paradigm, the management of a single code for
traditional and multi-GPU architectures, and the optimization process to take advantage of the latest
generation of NVIDIA GPUs. Performance measurements show that single-GPU optimization more than
halves the computing time as compared to the baseline version. At the same time, the asynchronous
patterns implemented in STREAmS for MPI communications guarantee very good parallel performance
especially in the weak scaling spirit, with efficiency exceeding 97% on 1024 GPUs. For overall evaluation
of STREAmS with respect to other compressible solvers, comparison with a recent GPU-enabled
community solver is presented. It turns out that, although STREAmS is much more limited in terms
of flow configurations that can be addressed, the advantage in terms of accuracy, computing time
and memory occupation is substantial, which makes it an ideal candidate for large-scale simulations
of high-Reynolds number, compressible wall-bounded turbulent flows. The solver is released open
source under GPLv3 license.
Program summary
Program Title: STREAmS
CPC Library link to program files: https://doi.org/10.17632/hdcgjpzr3y.1
Developer’s repository link: https://github.com/matteobernardini/STREAmS
Code Ocean capsule: https://codeocean.com/capsule/8931507/tree/v2
Licensing provisions: GPLv3
Programming language: Fortran 90, CUDA Fortran, MPI
Nature of problem: Solving the three-dimensional compressible Navier–Stokes equations for low and
high Mach regimes in a Cartesian domain configured for channel, boundary layer or shock-boundary
layer interaction flows.
Solution method: The convective terms are discretized using a hybrid energy-conservative shock-
capturing scheme in locally conservative form. Shock-capturing capabilities rely on the use of Lax–
Friedrichs flux vector splitting and weighted essentially non-oscillatory (WENO) reconstruction. The
system is advanced in time using a three-stage, third-order RK scheme. Two-dimensional pencil
distributed MPI parallelization is implemented alongside different patterns of GPU (CUDA Fortran)
accelerated routines.
© 2021 Elsevier B.V. All rights reserved.
✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).

✩ The review of this paper was arranged by Prof. Hazel Andrew.
∗ Corresponding author.
E-mail address: f.salvadore@cineca.it (F. Salvadore).

ttps://doi.org/10.1016/j.cpc.2021.107906
010-4655/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2021.107906
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.107906&domain=pdf
https://doi.org/10.17632/hdcgjpzr3y.1
https://github.com/matteobernardini/STREAmS
https://codeocean.com/capsule/8931507/tree/v2
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:f.salvadore@cineca.it
https://doi.org/10.1016/j.cpc.2021.107906


M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

1

a
o
e
f
w
o

u
n
d
i
e
c
n
i
n
d
c
a
o
b
N
T
m
t
t
c
t
d
e
p
t
m
4
9
H
c
f
a

s
l
p
i
s
a
7
t
a
p
t
w
o
f
o
Z
s
w
u
i
g
u
s

. Introduction

Compressible flows are ubiquitous in aerospace applications
nd in recent years there has been a renewed interest in the field,
wing to the rising investments in high-speed flight and space
xploration. These technological challenges call attention to high-
idelity numerical methods for compressible wall-bounded flows
hich have proved to be a valuable tool to unveil the complexity
f these flows.
The flow physics of compressible wall-bounded turbulence is

ndoubtedly richer than in incompressible flows. The hyperbolic
ature of the equations allows for the presence of propagating
isturbances and discontinuities such as shock waves, which
nteract with the underlying turbulence, leading to flow phenom-
na which are absent in the incompressible case. This additional
omplexity has affected and slowed down the development of
umerical methods for compressible flows, as compared to the
ncompressible ones. Baseline numerical algorithms for direct
umerical simulation (DNS) of incompressible flows were mainly
eveloped between the sixties and the eighties [1–4], and basi-
ally settled since then. The reliability of these algorithms and the
dvent of the open-source software promoted the development
f several incompressible open-source solvers for fluid dynamics,
oth multi-purpose solvers as OpenFOAM [5], Nek5000 [6] and
ektar++ [7] and academic solvers as AFiD [8] and CaNS [9].
hese solvers are based on central processing units (CPUs) and
essage passing interface (MPI) parallelization, which has been

he standard approach in high-performance computing (HPC) in
he past twenty years. However, in the race towards exascale
omputing, the HPC architectures are showing consistent trend
owards the use of graphical processing units (GPUs). In the last
ecade, GPUs have become the favorite solution to achieve accel-
rated cutting-edge performance with high energy efficiency. In
articular, in the second 2019 Top500 survey [10], which reports
he ranking of the most powerful 500 machines worldwide, 136
achines are NVIDIA GPU-Accelerated [11] for a total of about
0% of the total power supplied. In addition, NVIDIA GPUs power
0% of the top 30 supercomputers on the Green500 [12], a list of
PC systems with high performance and improved energy effi-
iency. The incompressible DNS community has already benefited
rom improved computational performance of GPUs, with two
vailable in-house solvers AFiD-GPU [13] and CaNS-GPU [14].
Numerical algorithms for DNS of compressible flows are less

tandardized then the incompressible ones, as several formu-
ations of the underlying equations are possible [15,16], each
roving numerical advantages depending on the flow physics
nvolved. For this reason fewer open-source compressible flow
olvers are available, compared to the incompressible case. Ex-
mples include popular multi-purpose open-source packages [5,
,17,18] and OpenSBLI [19], a Python framework for the au-
omated derivation of finite differences solvers both for CPUs
nd GPUs architectures. Another option is the use of the recent
rogramming paradigm Legion [20] which allows users to use
he same solver on different HPC architectures (including GPUs),
ithout requiring extensive code restructuring. A recent example
f compressible flow solver using Legion is HTR [21], designed
or hypersonic reacting flows. Other examples of compressible
pen-source flow solvers running on GPUs include PyFr [22] and
EFR [23], which are both general-purpose, unstructured flow
olvers based on high-order flux reconstruction. Those solvers
ere designed to solve a range of governing systems on mixed
nstructured grids containing various element types, thus provid-
ng the opportunity of simulating compressible flows in complex
eometries. The realization of codes capable of adequately sim-
lating compressible flows in complex geometries represents a
ignificant step forward, especially from the point of view of real
2

applications. However, solvers such as STREAmS, focused on the
simulation of canonical flows for basic research on turbulence,
can offer considerable advantages over general-purpose solvers.
First, consolidated energy-preserving schemes as those imple-
mented in STREAmS, represent the state-of-the-art solution for
DNS/LES of shock-free turbulent flows, allowing to accurately
simulate the wide range of spatial and temporal scales typical
of turbulence without relying on numerical (artificial) diffusiv-
ity. Those schemes can be efficiently combined with modern
shock-capturing methods as weighted essentially non oscillatory
(WENO) reconstructions, yielding hybrid schemes that currently
represent an optimal strategy for the computation of shocked
flows [24]. Moreover, STREAmS offers tailored boundary condi-
tions, such as digital filtering for turbulent inflow, and shock
injection for the simulation shock/boundary-layer interactions.
Finally, as will be extensively discussed in this work, a Cartesian
code such as STREAmS achieves very high efficiency both in
terms of memory consumption and computater time, yielding
remarkable speed-up with respect to general-purpose solvers.

The STREAmS CPU solver stems from 20 years experience in
our group on compressible wall-bounded flows, and it was used
to carry out several seminal DNS studies of canonical flows in-
cluding supersonic boundary layers [25,26], shock/boundary layer
interactions (SBLI) [27,28], supersonic roughness-induced transi-
tion [29,30] and supersonic internal flows [31,32]. The first core
of the code, without shock-capturing functionality and limited
to the use of a single GPU, was successfully ported to previous
generations of NVIDIA GPUs, showing significant advantage of
this type of architecture [33].

In this work we present STREAmS (Supersonic TuRbulEnt Ac-
celerated navier–stokes Solver), a CUDA Fortran version of the
solver, developed and optimized for the latest generation of GPU
clusters. The solver is targeted to three main canonical wall-
bounded turbulent flows, namely the supersonic plane channel,
the zero-pressure-gradient boundary layer developing over a flat
plate and the oblique shock wave/turbulent boundary layer inter-
action. In the following, the key points of the implemented algo-
rithms are described and a brief validation of the analyzed flows
is presented. Then, CUDA implementation is discussed alongside
with the various stages of single-node optimization. Finally, the
scalability properties are presented and the computational per-
formance compared with both the CPU version of the same solver,
and with the GPU solver ZEFR [23].

2. Methodology

STREAmS solves the fully compressible Navier–Stokes equa-
tions for a perfect heat-conducting gas

∂ρ

∂t
+

∂ρui

∂xi
= 0, (1a)

∂ρui

∂t
+

∂ρuiuj

∂xj
= −

∂p
∂xi

+
∂σij

∂xj
+ f δi1, (1b)

∂ρE
∂t

+
∂ρujH

∂xj
= −

∂qj
∂xj

+
∂σijui

∂xj
+ fu1, (1c)

where ui, i = 1, 2, 3, is the velocity component in the ith
direction, ρ the density, p the pressure, E = cvT +uiui/2 the total
energy per unit mass, and H = E + p/ρ is the total enthalpy. The
components of the heat flux vector qj and of the viscous stress
tensor σij are

σij = µ

(
∂ui

∂xj
+

∂uj

∂xi
−

2
3

∂uk

∂xk
δij

)
, (2)

qj = −k
∂T
∂xj

, (3)



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

w
i

w
r
θ

s
f
t
t
a
c

t
a
s

w

c
t
c
t

i
p
s
u
w
f
l

Fig. 1. Schematic of the computational stencil in one space direction.

here the dependence of the viscosity coefficient on temperature
s accounted for through Sutherland’s law and k = cpµ/Pr is
the thermal conductivity, with Pr = 0.72. The forcing term f
in Eq. (1b) is added in the plane channel flow simulations and is
evaluated at each time step in order to discretely enforce constant
mass-flow-rate in time. The corresponding power spent is added
to the right-hand-side of the total energy equation.

2.1. Spatial discretization

The convective terms in the Navier–Stokes equations are
discretized using a hybrid energy-preserving/shock-capturing
scheme in locally conservative form [34]. Let us consider the
convective flux in one space direction (say x)

fx = ρuϕ, (4)

where ϕ is the transported quantity, namely ϕ = 1 for the mass
equation, ϕ = uj for the momentum equation in the jth direction
and H for the total energy equation. The numerical discretization
of the streamwise derivative of the flux fx on a uniform mesh with
spacing ∆x relies on the identification of a numerical flux f̂x i+1/2
defined at the intermediate nodes such that
∂ fx
∂x

⏐⏐⏐⏐
i
=

1
∆x

(
f̂x, i+1/2 − f̂x, i−1/2

)
. (5)

An energy-preserving numerical flux at the interface i + 1/2
(Fig. 1) can be obtained by defining the three-point averaging
operator [34](
F̃ ,G, J

)
i,l

=
1
8

(Fi + Fi+l) (Gi + Gi+l) (Ji + Ji+l) , (6)

and recasting in conservative form the split formulation of the
Eulerian fluxes [35]

f̂x, i+1/2 = 2
L∑

l=1

al
l−1∑
m=0

(
ρ̃, u, ϕ

)
i−m,l , (7)

where the al are the standard coefficients for central finite-
difference approximations of the first derivative, yielding order of
accuracy 2 L. In smooth (shock-free) regions of the flow STREamS
applies an energy-consistent flux (7), which guarantees that the
total kinetic energy is discretely conserved in the limit case of
inviscid incompressible flow [27]. The order of accuracy of the
discretization can be selected by the user and ranges from the
second up to the eighth order. The locally conservative formu-
lation allows straightforward hybridization of the central flux
with classical shock-capturing reconstructions. In our case, shock-
capturing capabilities rely on the use of the Lax–Friedrichs flux
vector splitting, whereby the components of the positive and
negative characteristic fluxes are reconstructed at the interfaces
using a weighted essentially non-oscillatory (WENO) reconstruc-
tion [36]. Similarly to the central flux, the order of accuracy
of the shock capturing scheme can be changed from first to
seventh order. To judge on the local smoothness of the numerical
solution and switch between the energy preserving and the shock
capturing discretization, STREAmS relies on a modified version of
the Ducros shock sensor [37]

θ = max

⎛⎝ −∇ · u√
∇ · u2

+ ∇ × u2
+ u2/L

, 0

⎞⎠ ∈ [0, 1], (8)

0 0

3

here u0 and L0 are suitable velocity and length scales [25], which
emain fixed during the simulation. The sensor is designed to be

≈ 0 in smooth flow regions and θ ≈ 1 in the presence of
hock waves. For turbulent channel flow u0 and L0 are the bulk
low velocity and channel half width, whereas for boundary layer
hey are the free-stream velocity and the inflow boundary layer
hickness. The viscous terms are expanded to Laplacian form to
void odd–even decoupling phenomena, and approximated with
entral finite-difference formulas (up to eighth order)

∂

∂x

(
µ

∂u
∂x

⏐⏐⏐⏐
i

) ⏐⏐⏐⏐
i
=

∂µ

∂x

⏐⏐⏐⏐
i

∂u
∂x

⏐⏐⏐⏐
i
+ µ

∂2u
∂x2

⏐⏐⏐⏐
i
=

1
∆x2

L∑
l=−L

a2l µi+lui+l + µi
1

∆x2

L∑
l=−L

blui+l,

(9)

where bl are the finite difference coefficients for the second
derivative of order 2 L.

2.2. Time integration

A semi-discrete system of ordinary differential equations
stems from discretization of the spatial derivatives,
dw
dt

= R(w) (10)

where w = [ρ, ρu, ρv, ρw, ρE] is the vector of the conserva-
ive variables and R the vector of the residuals. The system is
dvanced in time using a three-stage, third-order Runge–Kutta
cheme [38],
(ℓ+1)

= w(ℓ)
+ αℓ∆tR(ℓ−1)

+ βℓ∆tR(ℓ), ℓ = 0, 1, 2, (11)

w(0)
= wn, wn+1

= w(3) and the integration coefficients are
αℓ = (0, 17/60, −5/12), βℓ = (8/15, 5/12, 3/4).

As previously noted, the numerical solution of the compress-
ible Navier–Stokes equations is in general terms more compu-
tationally demanding than the incompressible version. This is
certainly due to the presence of additional terms and equations,
but also to the acoustic time step limitation which is absent
in the incompressible case. The Euler equations in characteristic
form are a coupled system of nonlinear advection equations,
with the advection velocities corresponding to the eigenvalues of
the system. Hence, the maximum eigenvalue in the ith direction
λimax = ui + c (where c is the local speed of sound) embeds a
onvective (ui) and an acoustic (c) contribution. With reference
o the flow cases of interest for STREAmS, namely wall-bounded
ompressible turbulent flows, the inviscid time step limitation in
he coordinate directions (x,y,z) can be expressed as

∆t+x =
∆x+

max(u+

0 +c+0 ,c+w )
= ∆x+M0

√
Cf
2 min

(
1,

√
Tw/T0

1+M0

)
,

∆t+y =
∆y+

c+w
= ∆y+M0

√
Cf
2

∆t+z =
∆z+

max(c+0 ,c+w )
= ∆z+M0

√
Cf
2 min

(
1,

√
Tw/T0

)
,

(12)

where unit CFL number is assumed, ∆x and ∆z are the uniform
mesh spacings in the streamwise and spanwise directions, and ∆y
s the minimum mesh spacing in the wall-normal direction. The
lus superscript is used to denote quantities made nondimen-
ional with respect to local wall units, namely the friction velocity
τ = (τw/ρw)1/2, and the viscous length scale δv = νw/uτ ,
here τw is the wall shear stress. The subscript 0 denotes bulk

low properties (for channels) or at the free-stream (for boundary
ayers), and w indicates wall properties, with the skin friction
coefficient given by C = 2τ /(ρ u2).
f w 0 0



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

l

i
w
d

∆

T
b

∆

t
i
l

t
i
a
e

3

o
s
w
s
i
b
d
t

3

M
R
b
t
t
w
t
c

Fig. 2. Inviscid time step limitations for explicit time advancement of com-
pressible wall bounded flows (12), for different coordinate direction, streamwise
(solid), wall-normal (dashed) and spanwise (dash-dotted). The limitations are
normalized with the skin-friction coefficient and reported as a function of the
reference Mach number M0 (bulk Mach number for channel flow and free-
stream Mach number for boundary layer). ∆t+I is the incompressible time step
imitation in the streamwise direction.

The acoustic contribution is suppressed in the incompress-
ble Navier–Stokes equations, and the time step limitation of
all-bounded flows is typically controlled by the streamwise
irection,

t+I = ∆x+
√
Cf /2. (13)

he viscous time step limitation in wall-bounded flows is dictated
y the wall-normal direction, and in wall units one has

t+yv = ∆y+2
. (14)

Fig. 2 shows the inviscid time step limitations (12) as a func-
ion of the reference Mach number, compared to the incompress-
ble time step limitation (13). The normalized viscous time step
imitation ∆t+yv/

√
Cf /2, in turbulent flows is much larger than

the inviscid one, provided that ∆y+
≈ 1. Fig. 2 shows that the

ime step for explicit time advancement of compressible flows
s always more limiting as compared to the incompressible case,
nd this is especially true at low Mach number, with an overhead
asily exceeding an order of magnitude [39].

. Validation

STREAmS has been tailored to carry out DNS of three types
f canonical compressible flow configurations, namely super-
onic plane channel flow, supersonic boundary layer and shock
ave/boundary layer interaction. In the following we validate the
olver for these three flows and compare the results to exper-
mental and numerical data available in the literature. We use
oth Reynolds (φ = φ + φ′) and Favre (φ = φ̃ + φ′′, φ̃ = ρφ/ρ)
ecompositions, where the overline symbol denotes averaging in
he homogeneous space directions and in time.

.1. Supersonic plane channel flow

We carry out DNS of plane supersonic channel flow at bulk
ach number Mb = ub/cw = 1.5 and bulk Reynolds number
eb = 2ρbubh/µw = 15241, where ρb = 1/V

∫
V ρdV is the

ulk density and ub = 1/(ρbV )
∫
V ρudV is the bulk velocity in

he channel (both exactly constant in time), and µw and cw are
he dynamic viscosity coefficient and the speed of sound at the
all temperature, respectively. This configuration corresponds
o a friction Reynolds number Reτ = ρwuτh/µw = 502. The
omputational domain is a rectangular box with size 6πh ×
4

Fig. 3. Supersonic plane channel flow at Mb = 1.5 and Reτ = 490. (a) Mean
streamwise velocity profile and (b) Density scaled turbulent stresses τij/τw as
a function of y+ . Present DNS data (black solid) are compared to reference
data [31] (red dashed with squares).

2h × 2πh in the x, y, z coordinate directions, respectively and h
is the channel half-height. The mesh spacing is constant in the
wall-parallel directions, and an error-function mapping is used
to cluster mesh points towards the walls. The number of mesh
points in the three directions is Nx = 1032, Ny = 256, Nz = 512,
corresponding to a mesh spacing in wall units ∆x+

= 9.2, ∆y+
=

0.8–5.8 and ∆z+
= 6.2. Periodicity is enforced in the homoge-

neous wall-parallel directions, and no-slip isothermal conditions
are imposed at the channel walls. The mesh in the wall-normal
direction is staggered such that the wall coincides with an inter-
mediate node, where the convective fluxes are identically zero.
This approach guarantees correct telescoping of the numerical
fluxes and exact conservation of the total mass, with the fur-
ther benefit of doubling the maximum allowed time step [31].
The simulation is initiated with a parabolic streamwise velocity
profile with superposed random and large-scale sinusoidal per-
turbations, corresponding to streamwise-aligned rollers. We first
compare the results of DNS carried out using GPUs and the sixth-
order energy conserving scheme with previous DNS data for the
same configuration [31] and find excellent agreement for both
the mean velocity u+ and the Reynolds stresses τij = ρũ′′

i u
′′

j ,
as shown in Fig. 3. Fig. 4 shows the instantaneous streamwise
velocity in a cross-stream, a streamwise and a wall-parallel plane
at y+

= y/δv = 15 for the sixth-order energy conserving scheme.
The instantaneous flow field exhibits a typical pattern showing
low- and high-speed momentum streaks in wall-parallel planes,
associated with sweeps and ejections, better visible in the cross-
stream plane. In the present flow shock waves are absent, and
shocklets are not expected, hence the obvious choice would be to
simply disable the shock-capturing machinery. However, to high-
light the effect of the various discretization schemes on the mean
flow statistics, we have carried out additional simulations of the



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

w

(

s
f
o
s

Fig. 4. Instantaneous streamwise velocity for plane supersonic channel flow at Reτ = 500 and Mb = 1.5. The wall-parallel plane is at y+
= 15.
Fig. 5. (a) Mean streamwise velocity profile in viscous units u+
= u/uτ and (b, c, d) normal turbulent stresses τii = ρũ′′

i u
′′

i as a function of the viscous scaled
all-normal coordinate y+

= y/δv , for supersonic turbulent channel flow at bulk Mach number Mb = 1.5 and bulk Reynolds number Reb = 15241. Different curves
refer to different numerical discretization of convective fluxes: sixth-order energy conserving (black solid), fourth-order energy conserving (red squares), hybrid
sixth-order energy conserving/fifth order WENO (shock sensor threshold θ = 0.05) (green triangles), full fifth-order WENO (black dotted), full third-order WENO
cyan dash-dotted).
ame flow case using different computational set-ups, namely a
ourth- and sixth-order energy preserving scheme, a hybrid sixth-
rder energy preserving/fifth-order WENO scheme with shock
ensor threshold θ = 0.05, and finally a third- and fifth-order
WENO scheme. Fig. 5(a) shows the resulting mean streamwise
velocity profiles. The results of fourth-order and sixth-order en-
ergy preserving simulations are undistinguishable, and the hybrid
scheme also yields the same results, as the shock sensor is seldom
activated. On the other hand, the results obtained with the full
WENO schemes exhibit deviation from the reference data, ow-
ing to built-in numerical dissipation. Differences between WENO
and fully energy conserving/hybrid approaches are also clear in
the distribution of the normal Reynolds stress tensor compo-
nents, shown in Figs. 5(b, c, d). The peak of τ is overestimated
11

5

both by WENO schemes, whereas the peaks of the other stress
components are underestimated, which is a clear symptom of
excessive numerical dissipation. The analysis confirms that di-
rect numerical simulation of turbulent flows requires the use of
low-dissipative schemes to avoid artificial damping of physical
turbulent fluctuations.

3.2. Turbulent boundary layer

We now consider a spatially-developing zero-pressure-
gradient supersonic turbulent boundary layer evolving over a
flat plate. A direct numerical simulation is carried out at free-
stream Mach number M∞ = 2 and Reynolds number in the
low-moderate regime, up to a momentum thickness Reynolds



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

(
i
p

Fig. 6. Instantaneous density field in a streamwise wall-normal plane. Contour levels are shown in the range 0.55 < ρ/ρ∞ < 1.05.
d
c
p
s
s
d
a
d

3

b
b
r

Fig. 7. Comparison of van-Driest transformed mean streamwise velocity
a) and fluctuating velocity statistics (b) scaled in wall units, with reference
ncompressible DNS [40,41] data at similar friction Reynolds number. Solid line,
resents DNS; symbols, reference data. The dashed lines in (a) denote the linear

u+
= y+ and log-law u+

= 5. + 2.44 ln y+ .

number Reδ2 ≈ 1900, corresponding to a friction Reynolds
number Reτ ≈ 600. Similar to the previous case, shocklets are
not expected at this Mach number, hence the baseline sixth-
order energy-preserving flux is applied throughout. To properly
capture the large-scale structures of the boundary layer (known
as superstructures), the simulation is carried out in a long and
wide computational box, which extends for Lx = 105δin, Ly =

12δin, Lz = 10δin, in the streamwise (x), wall-normal (y) and
spanwise (z) directions, δin being the boundary layer thickness
at the inflow station, computed considering the 99% of the free-
stream velocity. The computational domain is discretized with
a mesh consisting of Nx = 4096, Ny = 256, Nz = 512
grid nodes. Uniform mesh spacing is used in the wall-parallel
directions, and a hyperbolic sine stretching is applied in the wall-
normal direction to cluster grid nodes close to the wall, where
the spacing is ∆y+

w = 0.8. A key ingredient for the simulation of a
compressible turbulent boundary layer is correct implementation
of the boundary conditions, which here are specified as follows.
At the upper and outflow boundaries non-reflecting boundary
conditions are imposed based on characteristic decomposition in
the direction normal to the boundary [42]. A similar characteristic
wave treatment is also applied at the no-slip wall boundary,
at which the wall temperature is set to its nominal recovery
value, Tr/T∞ = 1 + (γ − 1)/2 r M2

∞
, with r = Pr1/3. The

flow is assumed to be statistically homogeneous in the spanwise
direction, and periodic boundary conditions are thus applied. A
6

critical issue in the simulation of spatially-evolving turbulent
flows is the prescription of the inflow turbulence generation
method. In STREAmS, velocity fluctuations at the inlet plane
are imposed by means of a synthetic digital filtering (DF) ap-
proach [43], extended to the compressible case through use of
the strong Reynolds analogy [44]. An efficient implementation of
the method is achieved using an optimized DF procedure [45],
whereby the filtering operation is decomposed in a sequence of
fast one-dimensional convolutions. The implementation requires
the specification of the Reynolds stress tensor at the inflow plane,
which is interpolated by a dataset of previous DNS of supersonic
boundary layers by the same group [46]. The computation is
initialized by prescribing a mean fully developed turbulent com-
pressible boundary layer obtained by applying the inverse van
Driest transformation [47] to an incompressible profile of the
Musker family [48].

In Fig. 6 we show a snapshot of the instantaneous density
field in a streamwise wall-normal plane. The figure highlights the
main features of the turbulent boundary layer and its multi-scale
structure, characterized by an extremely intermittent behavior in
the outer layer, with regions of relatively quiescent, high-speed
irrotational fluid interspersed with slower, large-scale rotational
bulges. The distributions of the van Driest transformed mean
streamwise velocity profile and velocity fluctuation intensities
at a reference station (xref = 90δin) are reported in Fig. 7 in
inner scaling. The DNS data are compared with the incompress-
ible boundary layer datasets [40,41] at similar friction Reynolds
number (Re ≈ 580). The figure shows near collapse of com-
pressible and incompressible DNS data, after density variations
are accounted for.

To assess the code capabilities at higher Mach numbers we
also carry out a DNS of a shock-free turbulent boundary layer
in the hypersonic regime and compare STREAmS results with
reference hypersonic boundary layer data [49]. The free-stream
Mach number is M∞ = 5.86, the inlet friction Reynolds number
Reτ = 268 and the wall to recovery temperature ratio Tw/Tr =

0.76. The boundary conditions are the same employed for the
supersonic test case, whereas the spatial discretization relies on
the hybrid sixth-order central/fifth-order WENO discretization.
We use a box of size Lx = 50δin, Ly = 15δin, Lz = 12.5δin,
iscretized using Nx = 2048, Ny = 384, Nz = 800 points,
orresponding to a maximum spacing in wall units in the wall
arallel directions ∆x+

= 8.3, ∆z+
= 5.3, and a wall-normal

pacing at the wall ∆yw = 0.8. Fig. 8 compares the mean
treamwise velocity transformed according to van Driest and the
ensity-scaled Reynolds stresses. Excellent agreement is found,
lso considering that simulations have been carried out with
ifferent inflow methods and different numerical schemes.

.3. Shock-wave/turbulent boundary layer interaction

We present a third flow case to test the shock-capturing capa-
ilities of STREAmS. We carry out DNS of shock-wave/turbulent
oundary layer interaction to replicate the flow conditions of
eference experiments [50], characterized by a free-stream Mach



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

h
f
D
s

ρ

p

n
φ

L
[

o
T
a
a
i
s

F
s
s
u

(

Fig. 8. Comparison of van-Driest transformed mean streamwise velocity for
ypersonic turbulent boundary layer at M∞ = 5.86, Reτ = 436 (a) and
luctuating velocity statistics (b) scaled in wall units, compared to reference
NS data [49] at similar friction Reynolds number. Dashed line, present DNS;
olid line with circles, reference data.

Fig. 9. Visualization of main SBLI features. Contours of the instantaneous density
field in a streamwise wall-normal plane (twenty-four levels in the range 0.6 <

/ρ∞ < 1.9), superposed with contours of streamwise velocity in a wall-parallel
lane at y+

= 30 (twenty-four levels in the range 0.4 < u/u∞ < 0.8).

umber M = 2.28 and incidence angle of the shock generator
= 8◦.
The simulation is performed in a computational domain of size

x × Ly × Lz = [100× 12× 6]δin discretized using Nx ×Ny ×Nz =

4096 × 384 × 288] grid points. Here δin denotes the thickness
f the incoming boundary layer upstream of the interaction.
he specification of the boundary conditions follows the setup
dopted for the previous flow case, except for the upper bound-
ry of the computational domain, where the shock is artificially
njected through hard enforcement of the inviscid oblique shock
olution corresponding to the selected flow deflection angle.
The flow organization in the investigated SBLI is given by

ig. 9, where contours of the density field are shown in a
treamwise-wall-normal plane superposed with contours of the
treamwise velocity fluctuations in a wall-parallel plane. The fig-
re shows the complex structure of the interaction, characterized
7

Fig. 10. Distribution of (a) mean wall pressure and (b) streamwise turbulent
fluctuation intensity at y = 0.1L as a function of the scaled interaction coordinate
x − ximp)/L. Solid line, DNS data; open triangles, reference experiment [50].

by the presence of an impinging and a reflected shock, which
cause thickening of the incoming boundary layer, and the forma-
tion of a small recirculation bubble. The typical pattern of high-
and low-speed streaks that characterizes the organization of the
streamwise velocity disappears across the interaction region, and
reforms towards the end of the computational domain, where the
boundary layer gradually relaxes to the equilibrium state.

A comparison of DNS data with the reference experiment is
reported in Fig. 10, where the distribution of the mean wall
pressure and of the streamwise fluctuation intensity is shown
across the interaction zone, in terms of the scaled interaction
coordinate (x−ximp)/L, L being the distance between the nominal
impingement point of the incoming shock and the apparent origin
of the reflected shock. It turns out that the structure of the inter-
action zone is well captured by the simulation, which predicts
a wall pressure rise in excellent agreement with the available
experimental data. Similarly, very good agreement is observed
for the root-mean-square of the streamwise fluctuation intensity,
whose increase in the interaction region is associated with the
amplification of turbulence caused by the adverse pressure gra-
dient imparted by the shock system. An extensive validation of
the CPU version of STREAmS for the case of shock/boundary layer
interaction is available in previous studies of our group [28,51],
where comparisons with experiments and DNS carried out by
other groups are reported.

4. Implementation and performance

4.1. Programming paradigm and GPU porting

HPC is currently facing a major transition as the majority of
systems in operation is still based on CPUs, but GPU-based sys-
tems are experiencing rapid growth. For this reason in this phase
it is very useful to have a code which can be used on different
architectures without requiring further modifications. Tuning the
code for different architectures typically involves considerable
commitment, including management effort in maintaining, up-

dating or modifying multiple versions of the same code. For this



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

r
c
i
w
p
(
t
c
n

G
u
d
i
w
s
a
C
m
H

t
t
c
r
c
#
b
i
C

b
p
w
t
C
p
d
r
i
(
a
a

eason we designed STREAmS to efficiently work on the most
ommon HPC architectures operating today. The code is written
n the Fortran language – mostly using Fortran 90 features –
hich is widely used in HPC, and it is parallelized using the MPI
aradigm. Domain decomposition is carried out in two directions
streamwise and spanwise) in order to limit the amount of data
ransferred for updating the ghost nodes, considering that the
ommunication times may become important when using a large
umber of tasks.
STREAmS has been developed to support the use of multi-

PUs architectures, while retaining the possibility to compile and
se the code on standard CPU-based systems. To achieve this goal,
ifferent programming approaches are possible. A first option
s using directives, for instance OpenACC [52] or OpenMP [53],
hich allows to keep the CPU code completely unchanged. A
econd approach relies on the use of specialized platforms for
specific hardware, which for NVIDIA GPUs are CUDA [54] and
UDA-Fortran [55]. A third strategy is to use more portable but
ore inconvenient or less popular tools, such as OpenCL [56] or
IP: C ++ Heterogeneous-Compute Interface for Portability [57].
For these reasons in STREAmS we opt for CUDA-Fortran as

his allows us to achieve good parallel performance while limiting
he changes to the initial CPU code. In particular, the use of the
uf automatic kernels allows the large majority of the code to
emain unaltered, thus avoiding keeping different versions of the
ode. The GPU-specific parts of the solver are marked by the
ifdef USE_CUDA preprocessing directive. This strategy resem-
les the approach previously adopted by other popular codes
n the field of incompressible turbulence such as AFiD [13] and
aNS [9].
Another important part of the GPU porting is represented

y the memory management between CPU and GPU. AFiD em-
loys duplicated arrays residing on host and device, e.g. w and
_gpu, respectively. The device arrays are distinguished using
he CUDA Fortran device attribute and are active only when
UDA compilation is enabled, i.e. declared in modules inside
reprocessing regions marked by USE_CUDA tokens. When using
evice variables in the computing procedures, the variables are
enamed inside USE_CUDA regions using Fortran module alias-
ng so that the computations can always work with the normal
host) names, i.e. use param, only: w => w_gpu. If the vari-
bles are passed, the declaration of the dummy arguments must
lso be distinguished by adding attributes (device) inside
USE_CUDA regions. CaNS instead uses a more recent approach
based on CUDA managed memory. The managed memory po-
tentially allows to avoid completely the declaration of the CPU
and GPU versions of the same variable that can instead be used
both in CPU and GPU code sections. However, the use of man-
aged memory requires particular care to optimize the underlying
transfers and to avoid undesired automatic transfers. To achieve a
good managed memory implementation, some information must
be provided to the CUDA platform, for example through the
cudaMemAdvise and cudaMemPrefetchAsync functions, which in
our opinion reduce the readability of the code. For this reason
in STREAmS we followed a different approach, based on the fol-
lowing strategy. For each array, two versions are declared inside
the Fortran module: a baseline array w and the corresponding
computing array w_gpu. The latter resides on the device, i.e. has
the device attribute, only if the code is compiled by activating
CUDA.

real, allocatable, dimension(:,:,:,:) :: w, w_gpu
#ifdef USE_CUDA
attributes(device) :: w_gpu
#endif
8

Moreover, w_gpu is explicitly allocated only if CUDA compila-
tion is active.

#ifdef USE_CUDA
allocate(w_gpu(1:nx, 1:ny, 1:nz, 5))
#endif

The baseline array w is used during the code initialization
and finalization stages while w_gpu is used during the time
marching section. To this aim, before starting the time evolution
it is necessary to ensure that w_gpu contains the same data as w.
If CUDA is active, this is achieved by making a CPU-to-GPU copy
managed transparently by CUDA-Fortran. If CUDA is not active,
Fortran’s move_alloc procedure is used, which allows to move
the allocation from w to w_gpu, both on CPU.

#ifdef USE_CUDA
w_gpu = w
#else
call move_alloc(w, w_gpu)
#endif

A similar procedure is applied for the reverse transfer from
GPU to CPU. In conclusion, with this memory management the
changes to the original solver are limited to variable declaration
and allocation and data transfer between CPU and GPU at the
beginning and at the end of the computation, while all the other
parts of the code may remain mostly unchanged. Specification of
the CUDA kernels is done by using automatic cuf syntax,

!$cuf kernel do(3) <<<*,*>>>
do k=1,nz
do j=1,ny
do i=1,nx
do m=1,nv
w_gpu(m,i,j,k) = w_gpu(m,i,j,k)+fln_gpu(m,i,j,k)
enddo
enddo
enddo
enddo
!@cuf iercuda=cudaDeviceSynchronize()

The use of automatic kernels requires following some best prac-
tices to satisfy the constraints of the cuf directives, as the elimi-
nation of the interdependencies among loop iterations. The GPU
code obtained using automatic kernels has satisfactory perfor-
mance, both in terms of time to solution and scalability, but su-
perior performance can be achieved using advanced optimization
techniques, which are discussed in the following section.

4.2. Single-GPU optimization and performance

For the purpose of optimization, an important preliminary
step is the identification of the most computationally demanding
code sections, which in a fluid dynamics solver correspond to
the evaluation of the convective (Eulerian) and viscous fluxes. In
STREAmS, an efficient implementation of the convective fluxes for
CPUs was proposed by [34], which however cannot be directly
ported to GPU, owing to use of large temporary arrays which
would be allocated to the CUDA kernel stack. Hence, STREAmS
relies on different implementation of the Eulerian fluxes on CPU
and GPU, and in the latter case cuf directives are replaced by
explicit kernels.

Starting from the baseline implementation, various optimiza-
tion steps have been performed to accelerate the code on GPUs,



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

f
p
d
a
s

f
t
t
E
a

u
e
B
t
x
p
D
t
t
o
a

Table 1
Performance results using the energy conserving fluxes for turbulent channel flow with mesh 360 × 240 × 360 on one V100 GPU. For
the most computationally demanding sections of the code, i.e. convective fluxes calculations (Euler-x, Euler-y, Euler-z), diffusive fluxes
(Viscous-I, Viscous-II) and a Runge–Kutta update (RK-I), the execution times are shown at the different optimization stages A-B-C-D-E.

Steps A B C D E

Optimization Start Layout Transpose Primitive MPI buffer layout
Metric Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)
Euler-x 76 330 36 24 24
Euler-y 18 22 22 16 14
Euler-z 20 22 22 15 15
Viscous-I 45 54 54 11 11
Viscous-II 10 7.5 7.5 6.6 6.6
RK-I 20 5 5 5 5
Total 656 1396 515 311 297
.

r
f

w

with particular focus on the latest NVIDIA V100 card. A pre-
liminary performance analysis carried out with the nvprof pro-
iler revealed that STREAmS has low arithmetic intensity and its
erformance is memory bound, as typical of structured, finite-
ifference solvers. For this reason, the management of memory
ccesses is crucial for optimization. The following optimization
teps were then carried out:

(A) Start: Baseline code.
(B) Layout: Change the layout of field and flux variables from,

e.g., w_gpu(nv,nx,ny,nz) to w_gpu(nx,ny,nz,nv).
This allows in principle to improve GPU access, and in par-
ticular to get coalesced access where contiguous indices in
the innermost array component are accessed by contiguous
threads in the CUDA blocks.

(C) Transpose: In the case of the calculation of convective
terms along the x direction, the CUDA threads correspond
to different y and z components, which makes coalesced
accesses incompatible with the memory layout. For this
reason in the x-convective kernels we introduced support
arrays with memory layout w_trans_gpu(ny,nx,nz,nv)
These arrays are populated by transposing the original
arrays, which is performed very quickly using cuf kernels
thanks to specialized algorithms used by the compiler
(optimal implementations typically rely on CUDA shared
memory).

(D) Primitive - Primitive variables are pre-calculated at each
step and used for the calculation of convective and diffu-
sive terms. This change reduces the number of memory
accesses, the number of divisions by the density and po-
tentially helps limiting the number of used registers, which
can be crucial to avoid register spilling.

(E) MPI buffer layout - MPI buffer layout has also been updated
to improve coalescence of accesses.

In Table 1 we report the performance in terms of elapsed time
or the most demanding code sections, after the various optimiza-
ion steps described above. In particular, we report the elapsed
ime for the evaluation of the convective fluxes (Euler-x,
uler-y, Euler-z), diffusive fluxes (Viscous-I, Viscous-II)
nd Runge–Kutta updates (RK-I).
As expected, we note that in the baseline solver the eval-

ation of convective fluxes in x direction is considerably more
xpensive than in y and z. Changing the memory layout (step
) yields global performance degradation, but it is instrumen-
al to fully exploiting memory transposition for computing the
fluxes implemented in step C, after which we observe significant
erformance improvement. Pre-storing primitive variables (step
) yields significant reduction of the elapsed time, especially in
he evaluation of the viscous fluxes, which may be traced back
o reduced number of memory accesses and to reduced number
f registers, so that register spilling no longer occurs. Finally,
djusting the MPI buffer layout (step E) further allows us to
9

educe to total time to solution, yielding overall speed-up of a
actor of 2.2 with respect to the baseline code version.

In order to quantify the advantages of the code optimization,
e extract relevant performance metrics, using the nvprof pro-

filer. Considering that STREAmS is a memory bound solver, we
focus on the efficiency of memory accesses, and in Table 2 we
compare the value of the following metrics for the initial and final
(optimized) versions of the code:

• dram_read_throughput: Device Memory (DRAM) Read
Throughput

• dram_write_throughput: Device Memory (DRAM) Write
Throughput

• gld_requested_throughput: Requested Global Load
Throughput

• gst_requested_throughput: Requested Global Store
Throughput

• gld_throughput: Global Load Throughput
• gst_throughput: Global Store Throughput
• gld_efficiency: Global Memory Load Efficiency
• gst_efficiency: Global Memory Store Efficiency

As expected from a structured finite difference code, the
DRAM throughputs show that the access to device memory is
intensive, whereas the weight of floating point operations, data
dependencies or other operations is limited. These throughputs
however do not allow us to extract the actual code efficiency.
Although these values show improvements for the optimized
code (except for Viscous-II), these minor variations alone do
not explain the significant overall runtime advantage between the
baseline and optimized code (speed-up around 2.2). To under-
stand the reasons for such behavior, it is necessary to consider
the other metrics that can also give better estimates of the code
absolute performance.

The Requested Global Throughputs correspond to the requested
accesses from the programmer point of view and thus represent
significant parameters for evaluating the code efficiency. Indeed
remarkable improvements are found for all code sections (see
Table 2), consistently with the observed code speed up. In some
cases the requested throughputs significantly exceed the real
peak value of the GPU memory (about 825 GB/s), which is pos-
sible thanks to cache effects that limit the number of accesses to
the device’s memory. To explain the reason for the improvement
of Requested Global Throughputs it is necessary to investigate the
Global Throughputs, which correspond to the required memory
accesses. The ratio between the requested throughputs and the
required throughputs represents the throughput efficiency, and
this quantity shows a dramatic improvement between baseline
and optimized code. In particular, most sections of the optimized
code exceed 90% efficiency, whereas this metric never exceeds
30% for the baseline version. The optimized code requests mem-
ory accesses in a more effective way so that the required accesses



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

T
P
c

A

a
t
f
3
a

a
c
e
r
n

t
g
i

able 2
erformance results using the energy conserving fluxes for turbulent channel flow with mesh 360 × 240 × 360 on one V100 GPU. For the most demanding
ode sections, elapsed times and 8 significant metrics concerning memory access are reported, namely: dram_read_throughput, dram_write_throughput,
gld_requested_throughput, gst_requested_throughput, gld_throughput, gst_throughput, gld_efficiency, gst_efficiency. Baseline code version

and optimized version E in Table 1 are compared.
# Sections Elapsed

Times [ms]
DRAM
Throughputs [GB/s]

Requested Global
Throughputs [GB/s]

Global
Throughputs [GB/s]

Global Memory
Efficiencies [%]

Read Write Load Store Load Store Load Store

Base Opt Base Opt Base Opt Base Opt Base Opt Base Opt Base Opt Base Opt Base Opt

Euler-x 76 24 173 264 46 174 160 523 30 130 660 734 122 150 25 63 25 90
Euler-y 18 14 316 358 153 169 685 824 128 161 2444 920 514 170 28 90 25 94
Euler-z 20 15 301 356 138 161 634 782 120 153 2267 874 477 163 28 90 25 94
Viscous-I 45 11 250 260 62 105 702 2270 26 103 2372 2630 104 106 30 86 25 97
Viscous-II 10 6.6 548 350 118 139 553 781 94 139 2069 973 378 139 27 80 25 100
RK-I 20 5 228 232 323 464 80 327 113 463 319 603 454 464 25 54 25 100
s
t
d
v

4

a

Fig. 11. Elapsed time per time step (s) for STREAmS, using different HPC
rchitectures. For CPU-based runs a single computing node is employed using
he MPI parallelization. For GPU-based runs a single GPU is used. Convective
luxes are evaluated using the energy conserving discretization with a mesh
60 × 240 × 360. The upper horizontal axis shows the release dates of each
rchitecture.

re closer to the requested ones. On the contrary, the baseline
ode reaches very high Global Throughputs values due to cache
ffects, but the number of accesses required to satisfy these
equests is too high, mainly due to the memory layout which is
ot adequate for the card architecture.
It is interesting to note that for Euler-x the need to manually

ranspose the data to have efficient memory access limits the
lobal memory efficiency to approximately 60% in reading, even
n the optimized case. On the contrary, Euler-y and Euler-z do
not require data transposition to obtain coalescence and therefore
achieve efficiencies close to 100%. It is also interesting to note that
Viscous-II presents lower values for both global and DRAM
throughputs when switching to the optimized version. However,
the significant increase in the efficiency allows for a important
improvement of the requested access throughputs, and therefore
of the time-to-solution.

A concise evaluation of STREAmS performance on different
CPU and GPU architectures is provided in Fig. 11. The reference
unit for CPU architectures is the single compute node that is
exploited using MPI parallelization, and in particular the IntelMPI
library. As for GPUs, the reference is the single card. The im-
provement over the years of performance per node and per GPU
is evident and it appears more marked for GPUs for which the
advantage over the traditional node is considerable. More specific
performance metrics (e.g. related for example to power consump-
tion) would be necessary for a fair comparison between the two
architectures, but this is beyond our objectives.

4.3. Parallel optimization and scalability

Large computational domains require the use of multiple
GPUs, in which each MPI process typically manages one graphic
10
card. Communication between multiple GPUs can be carried out
in two main fashions. The first option relies on manual copy
between host and GPU to guarantee that the MPI communications
always occur between variables residing on the host. The second
option relies on the so-called CUDA-Aware MPI implementations
which allow the user to call MPI application programming inter-
face (API) passing device-resident variables. STREAmS has been
parallelized to support both data communication patterns, se-
lectable according to compilation options. This allows to correctly
run in environments where CUDA-Aware implementations are
not available. To improve the scalability performance, the GPU
implementation of STREAmS optionally supports asynchronous
patterns in which the GPU computations are overlapped with the
swapping procedure necessary to exchange information across
adjacent blocks. This is done by exploiting the built-in asyn-
chrony of the CUDA kernels and the capabilities of the CUDA
streams. In this regard, two slightly different well-established
strategies were implemented depending on the availability of
the CUDA-Aware MPI. As an example, Fig. 12 shows a sketch
of the time-lines corresponding to the evaluation of the stream-
wise convective fluxes. Fluxes at interior nodes can be evaluated
before updating ghost nodes, which allows overlapping with
MPI communications. Following this idea, the CUDA-Aware MPI
implementation (left) is straightforward while the standard MPI
implementation (right) requires asynchronous CPU–GPU trans-
fers using cudaMemcpyAsync in a specific CUDA stream. After
receiving ghost nodes values, fluxes at boundary nodes can be
evaluated. A similar strategy is implemented in different sections
of the code to increase the compute-communication overlapping
as much as possible.

Parallel performance was evaluated on the CINECA
Marconi100 Cluster, based on Power 9 Architecture and coupled
with NVIDIA Tesla Volta GPUs V100 – 4 GPUs per node – and
equipped with NVLink. The compiler is the NVIDIA HPC-SDK
compiler, which inherited the PGI compiler history.

Fig. 13(a) shows the weak scaling as a function of the num-
ber of GPUs for synchronous and asynchronous communications,
using 360 × 240 × 360 grid points per GPU. We find improved
weak scaling for the asynchronous pattern, especially for a large
number of GPUs, with efficiency of about 97% on 1024 GPUs.

Fig. 13(b) shows the strong scaling speed-up of the syn-
chronous and asynchronous versions of the code, i.e. keeping
constant the total number of grid points 512 × 230 × 360. The
efficiency is larger than 90% for 8 GPUs, whereas it drops to 70%
for 16 GPUs. On the upper horizontal axis of Fig. 13(b) we also
how the number of grid points per GPU, which suggests that
he optimal number of grid points per GPUs before performance
egradation is about 500,000. The advantage of the asynchronous
ersion of the code is visible, but not remarkable.

.4. Performance comparison

It is valuable to compare the global performance of STREAmS
gainst pre-existing compressible solvers, and in particular codes



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

i
i
t

Fig. 12. Sketch of asynchronous time lines for the evaluation of convective fluxes. (a) CUDA-aware implementation in which the evaluation of convective fluxes at
nterior nodes (Euler-x internal) is superposed to MPI communications (SendRecv), followed by evaluation of the convective fluxes at boundary nodes. (b) Standard MPI
mplementation in which the evaluation of convective fluxes at interior nodes is superposed to device-to-host transfers (D2H), MPI communications and host-to-device
ransfers (H2D), followed by evaluation of the convective fluxes at boundary nodes.
Fig. 13. Weak (a) and strong (b) scaling performance of STREAmS for the synchronous (circles) and asynchronous (triangles) communications, using the GPU V100
powered cluster Marconi100. The weak scaling is plotted as time ratio (elapsed time using N GPUs divided by the elapsed time using 1 GPU) versus the number
of GPUs using the sixth-order energy conserving discretization for the convective fluxes with 360 × 240 × 360 grid for each GPU. The strong scaling is plotted as
speed-up (elapsed time using 1 GPU divided by elapsed time using N GPUs) using the sixth-order energy conserving discretization for the convective fluxes with
mesh 512 × 230 × 360. The upper horizontal axis in (b) shows the millions of grid points processed by each GPU.
c
T
g
S
m
e
w

optimized for multi-GPU use. Generally, direct comparison be-
tween codes implementing different numerical approaches is not
straightforward. For this purpose, we follow the strategy used to
compare various community codes for turbulent Rayleigh–Bénard
convection [59], which consists in performance comparison for
code configurations yielding the same quality of results. In the
present work, the ZEFR code [23] was selected for compari-
son. ZEFR is a recently released state-of-the-art solver that uses
high-accuracy Flux-Reconstruction [60] methods on unstructured
grids, and features a highly optimized multi-GPU implementa-
tion. ZEFR is capable of simulating complex geometries also in
overset grid mode and can therefore be used for realistic flow
simulations, whereas STREAmS is rather oriented to research in
basic flow physics. For performance comparison, turbulent chan-
nel flow at Reτ = 180 was selected. The bulk Mach number
is set to 0.2, so that compressibility effects may be regarded
as negligible, and incompressible data [58] may be taken as
benchmark.

We use a computational domain with size 4π × 2 × 2π , with
uniform mesh in the streamwise and spanwise directions, and
stretching in the wall-normal direction to have ∆y+

≈1 at the
wall. The M1 reference (coarse) mesh consists of 60 × 40 × 60
points for STREAmS, which is operated with fourth-order accu-
racy. The reference mesh for ZEFR has 15 × 10 × 15 cells, hence
using fourth-order polynomials for flux reconstruction allows us
to match the number of degree of freedoms (DOF) between the
two codes. We have then carried out a mesh refinement study in
which meshes M2, M4, M6, M8 have 2, 4, 6, 8 as many points
as the baseline mesh, in each coordinate direction. The viscous-
scaled wall-normal spacing at the wall is kept the same for all
cases. Fig. 14 compares profiles of mean velocity and Reynolds
stresses, along with the convergence error in terms of the L∞
11
norm of the distance of the computed solution on mesh Mi from
the reference solution,

Eϕ(i) =
maxy(|ϕ(i) − ϕref |)

maxy(|ϕref |)
. (15)

The trends in the first two columns show that both codes
onverge to the reference solution, however at different rates.
he third column allows quantitative assessment of the conver-
ence and shows that, for the same number of grid nodes/DOF,
TREAmS is more accurate than ZEFR. This trend applies to all
esh levels, including simulations that can be considered prop-
rly resolved. In particular, the M4 mesh has resolution in the
all-parallel directions ∆x+

= 9.4, ∆z+
= 4.7, which are

generally regarded to be adequate for DNS of turbulent channel
flow. For STREAmS this mesh resolution yields convergence errors
of 3% or less with respect to reference data, whereas achieving the
same error levels with ZEFR requires three times the number of
DOF (i.e. the M6 mesh).

The outcome of the performance comparison is detailed in
Table 3, where data concerning computer time and memory
usage are reported. To avoid issues related to different level of
parallelism between the two codes, performance evaluation is
based on single GPU simulations, with memory allocation greater
than 50%. The elapsed time per point/DOF per iteration (ETP)
shows that STREAmS is about three times faster than ZEFR, and
the memory allocation per grid point (MPP) is about six times
lower.

It is worth noting that the energy-conserving scheme used in
STREAmS requires repeated memory access to the fluid dynamic
fields, due to the double summation in the evaluation of the
numerical fluxes (7). Therefore, compared to the flux reconstruc-
tion scheme used in ZEFR, we do not expect the memory saving
per degree of freedom to scale linearly with computational time



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

d

Fig. 14. Mesh sensitivity analysis for STREAmS and ZEFR using turbulent channel flow at Reτ = 180, (a, b) u+ , (d, e) ρũ′′u′′/τw , (g, h) ρṽ′′v′′/τw , (j, k) ρw′′w′′/τw ,
(m, n) ρũ′′v′′/τw . Reference incompressible data [58] are also reported both for STREAmS (first column) and ZEFR (zecond column). (c, f, i, l, o) Convergence error as
efined in Eq. (15) as a function of mesh resolution level.
Table 3
Performance comparison between STREAmS and ZEFR codes based on mesh sensitivity analyses for turbulent channel flow
at Reτ = 180, Mb = 0.2. The codes are compared at mesh resolution which allows to achieve the same error level. ETP and
MPP values are evaluated running single-GPU simulations in optimal performance conditions for both codes, i.e. when most
GPU memory is used.
Quantity Symbol STREAmS ZEFR

Elapsed time per point/DOF (ns) ETP 9.6 28.3
Memory per point (B) MPP 350 2060
Equivalent number of points/DOFs (M) ENP 9.2 31.1
Equivalent elapsed time ETP × ENP 88 880
Equivalent memory MPP × ENP 3.2 64.1
12



M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906

s
o
h

b
i
t
n
t

aving. Nevertheless, the computational time saving per degree
f freedom is still important, and the optimization strategies we
ave adopted are fundamental to achieve this performance.
In Table 3 we also define an equivalent number of points (ENP)

ased on the comparison of accuracy results obtained above,
.e. ZEFR requires three times the number of DOF to achieve
he same results accuracy. In the end, we find that for direct
umerical simulation of canonical wall-bounded flows the time
o solution of STREAmS is ETP×ENP ∼ 10 lower than in ZEFR, and
the equivalent memory usage (MPP× ENP) is about twenty-one
times less.

In a nutshell, the results show that using a solver specifically
designed for DNS of canonical turbulent flows such as STREAmS
yields much higher performance than a general-purpose code,
such as ZEFR. This conclusion is similar to what found for incom-
pressible solvers for turbulent Rayleigh–Bénard convection [59].
This is also confirmed by the fact that the largest DNS of turbulent
flows carried out in recent years [26,61–63] have been performed
using dedicated flow solvers, rather than multi-purpose codes.

5. Conclusions

We have presented a recent version of our in-house com-
pressible flow solver STREAmS, which has been ported to CUDA-
Fortran. The solver is tailored to canonical compressible turbulent
wall-bounded flows, including channels, supersonic and hyper-
sonic boundary layers, and shock wave/turbulent boundary layer
interactions. STREAmS stems from two decades experience of our
research group in DNS of compressible wall-bounded flows, and
a baseline version of the solver is released open-source under
GPLv3 license, with the aim of providing the fluid dynamics
community with a highly-parallel and efficient compressible flow
solver. The use of CUDA-Fortran with the use of cuf automatic
kernels allows the user to limit modifications to the original code,
and to compile and run the code on different HPC architectures.
However, implementing ad-hoc GPU optimization allows us to
speed up the solver by a factor of about two. Tests carried out on
the GPU cluster Marconi100 at CINECA show very good scalability
performance, proving that the solver can be used for large-scale
direct numerical simulations. A mesh sensitivity analysis for a
turbulent channel flow has been carried out to compare the
performance of STREAmS with that of ZEFR, which is a state-
of-the-art, general-purpose compressible solver. The study has
revealed significant advantage of STREAmS in terms of reduced
computational effort to reach similar results, although limited to
the simple geometrical configurations handled by STREAmS. The
availability of the GPU version of the solver allows the flow com-
munity to take advantage of contemporary pre-Exascale systems
and of the next generation of Exascale supercomputers currently
under development, thus providing a state-of-the art platform
to significantly extend the range of simulated Reynolds number
to the genuine high-Reynolds number regime (Reτ > 104), and
provide definite answers to key issues in turbulence research.

CRediT authorship contribution statement

Matteo Bernardini: Conceptualization, Methodology, Investi-
gation, Software, Validation, Project administration, Supervision,
Writing - original draft, Visualization, Data curation. Da-
vide Modesti: Conceptualization, Methodology, Investigation,
Software, Validation, Writing - original draft, Visualization, Re-
sources. Francesco Salvadore: Conceptualization, Methodology,
Investigation, Software, Writing - original draft, Visualization,
Data curation, Resources. Sergio Pirozzoli: Conceptualization,
Methodology, Investigation, Software, Validation, Writing -
review & editing.
13
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

M. Bernardini was supported by the Scientific Independence of
Young Researchers program 2014 (Active Control of Shock-Wave/
Boundary-Layer Interactions project, grant RBSI14TKWU), which
is funded by the Ministero dell’Istruzione, dell’Universià e della
Ricerca. The authors are especially grateful for the computational
resources provided by the CINECA Italian Computing Center. The
authors also wish to thank Massimiliano Fatica e Josh Romero
(NVIDIA) for the useful suggestions and discussions.

References

[1] F. Harlow, J. Welch, Phys. Fluids 8 (12) (1965) 2182–2189.
[2] G. Patterson, S. Orszag, Phys. Fluids 14 (11) (1971) 2538–2541.
[3] J. Kim, P. Moin, J. Comput. Phys. 59 (2) (1985) 308–323.
[4] J. Kim, P. Moin, R. Moser, J. Fluid Mech. 177 (1987) 133–166.
[5] H. Weller, G. Tabor, H. Jasak, C. Fureby, Comput. Phys. 12 (6) (1998)

620–631.
[6] P. Fisher, J. Kruse, J. Mullen, H. Tufo, J. Lottes, S. Kerkemeier, NEK5000:

open source spectral element CFD solver, 2008, URL http://nek5000.mcs.
anl.gov/index.php/MainPage.

[7] C. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo,
D.D. Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Hu, Y.
Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R. Kirby, S. Sherwin,
Comput. Phys. Comm. 192 (2015) 205–219.

[8] E. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, Comput. Fluids
116 (2015) 10–16.

[9] P. Costa, Comput. Math. Appl. 76 (8) (2018) 1853–1862.
[10] J. Dongarra, P. Luszczek, in: D. Padua (Ed.), Encyclopedia of Parallel

Computing, Springer US, Boston, MA, 2011, pp. 2055–2057, http://dx.doi.
org/10.1007/978-0-387-09766-4_157, https://doi.org/10.1007/978-0-387-
09766-4_157.

[11] 136 GPU-Accelerated Supercomputers Feature in TOP500 | NVIDIA Blog,
2019, https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-
supercomputers-top500/. (Accessed 16 January 2020).

[12] The GREEN 500, 2020, https://www.top500.org/green500/. (Accessed 16
January 2020).

[13] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-
Mónico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica, R. Stevens, Comput. Phys.
Commun. 229 (2018) 199–210.

[14] P. Costa, E. Phillips, L. Brandt, M. Fatica, Comput. Math. Appl. (2020).
[15] A. Honein, P. Moin, J. Comput. Phys. 201 (2) (2004) 531–545.
[16] G. Coppola, F. Capuano, S. Pirozzoli, L. de Luca, J. Comput. Phys. 382 (2019)

86–104.
[17] D. Modesti, S. Pirozzoli, Comput. Fluids 152 (2017) 14–23.
[18] T. Economon, F. Palacios, S. Copeland, T. Lukaczyk, J. Alonso, AIAA J. 54 (3)

(2015) 828–846.
[19] C. Jacobs, S. Jammy, N. Sandham, J. Comput. Sci. 18 (2017) 12–23.
[20] Legion Webpage, 2020, https://legion.stanford.edu/ (Accessed 31 March

2020).
[21] M.D. Renzo, L. Fu, J. Urzay, Comput. Phys. Comm. (2020) 107262.
[22] F. Witherden, A. Farrington, P. Vincent, Comput. Phys. Comm. 185 (11)

(2014) 3028–3040.
[23] J. Romero, J. Crabill, J. Watkins, F. Witherden, A. Jameson, Comput. Phys.

Comm. 250 (2020) 107169.
[24] S. Pirozzoli, Annu. Rev. Fluid Mech. 43 (2011) 163–194.
[25] S. Pirozzoli, M. Bernardini, J. Fluid Mech. 688 (2011) 120–168.
[26] S. Pirozzoli, M. Bernardini, Phys. Fluids 25 (2) (2013) 021704.
[27] S. Pirozzoli, M. Bernardini, F. Grasso, J. Fluid Mech. 657 (2010) 361–393.
[28] S. Pirozzoli, M. Bernardini, AIAA J. 49 (2011) 1307–1312.
[29] M. Bernardini, S. Pirozzoli, P. Orlandi, Int. J. Heat Fluid Flow 35 (2012)

45–51.
[30] M. Bernardini, S. Pirozzoli, P. Orlandi, S. Lele, AIAA J. 52 (10) (2014)

2261–2269, http://dx.doi.org/10.2514/1.j052842.
[31] D. Modesti, S. Pirozzoli, Int. J. Heat Fluid Flow 59 (2016) 33–49.
[32] D. Modesti, S. Pirozzoli, F. Grasso, Int. J. Heat Fluid Flow 76 (2019) 130–140.
[33] F. Salvadore, M. Bernardini, M. Botti, J. Comput. Phys. 235 (2013) 129–142.
[34] S. Pirozzoli, J. Comput. Phys. 229 (19) (2010) 7180–7190.
[35] C. Kennedy, A. Gruber, J. Comput. Phys. 227 (3) (2008) 1676–1700.
[36] G. Jiang, C.W. Shu, J. Comput. Phys. 126 (1996) 202.

http://refhub.elsevier.com/S0010-4655(21)00047-3/sb1
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb2
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb3
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb4
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb5
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb5
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb5
http://nek5000.mcs.anl.gov/index.php/MainPage
http://nek5000.mcs.anl.gov/index.php/MainPage
http://nek5000.mcs.anl.gov/index.php/MainPage
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb7
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb7
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb7
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb7
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb7
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb7
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb7
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb8
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb8
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb8
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb9
http://dx.doi.org/10.1007/978-0-387-09766-4_157
http://dx.doi.org/10.1007/978-0-387-09766-4_157
http://dx.doi.org/10.1007/978-0-387-09766-4_157
https://doi.org/10.1007/978-0-387-09766-4_157
https://doi.org/10.1007/978-0-387-09766-4_157
https://doi.org/10.1007/978-0-387-09766-4_157
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://www.top500.org/green500/
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb13
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb13
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb13
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb13
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb13
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb14
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb15
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb16
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb16
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb16
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb17
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb18
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb18
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb18
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb19
https://legion.stanford.edu/
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb21
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb22
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb22
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb22
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb23
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb23
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb23
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb24
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb25
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb26
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb27
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb28
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb29
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb29
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb29
http://dx.doi.org/10.2514/1.j052842
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb31
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb32
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb33
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb34
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb35
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb36


M. Bernardini, D. Modesti, F. Salvadore et al. Computer Physics Communications 263 (2021) 107906
[37] F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, D. Gacherieu, T.
Poinsot, J. Comput. Phys. 152 (2) (1999) 517–549.

[38] P. Spalart, R. Moser, M. Rogers, J. Comput. Phys. 96 (2) (1991) 297–324.
[39] D. Modesti, S. Pirozzoli, J. Sci. Comput. 75 (2018) 308–331.
[40] M. Simens, J. Jimenez, S. Hoyas, Y. Mizuno, J. Comput. Phys. 228 (2009)

4218–4231.
[41] J. Jimenez, S. Hoyas, M. Simens, Y. Mizuno, J. Fluid Mech. 657 (2010)

335–360.
[42] T. Poinsot, S. Lele, J. Comput. Phys. 101 (1) (1992) 104–129.
[43] M. Klein, A. Sadiki, J. Janicka, J. Comput. Phys. 186 (2) (2003) 652–665.
[44] E. Touber, N.D. Sandham, Theor. Comput. Fluid Dyn. 23 (2009) 79–107.
[45] A. Kempf, S. Wysocki, M. Pettit, Comput. & Fluids 60 (2012) 58–60.
[46] S. Pirozzoli, M. Bernardini, Supersonic turbulent boundary layers - DNS

database, 2011, http://newton.dma.uniroma1.it/dnsm2.
[47] A. Smits, J. Dussauge, Turbulent Shear Layers in Supersonic Flow, American

Institute of Physics, New York, 2006.
[48] A. Musker, AIAA J. 17 (1979) 655–657.
[49] C. Zhang, L. Duan, M. Choudhari, AIAA J. 56 (11) (2018) 4297–4311.
[50] P. Dupont, C. Haddad, J. Debiéve, J. Fluid Mech. 559 (2006) 255–277.
[51] P. Volpiani, M. Bernardini, J. Larsson, Phys. Rev. Fluids 5 (1) (2020) 014602.
[52] OpenACC, 2020, https://www.openacc.org/, (Accessed 16 January 2020).
14
[53] OpenMP, 2020, https://www.openmp.org/. (Accessed 16 January 2020).
[54] CUDA, 2020, https://developer.nvidia.com/cuda-zone, (Accessed 16 January

2020).
[55] CUDA FORTRAN, 2020, https://developer.nvidia.com/cuda-fortran. (Ac-

cessed 16 January 2020).
[56] OpenCL, 2020, https://www.khronos.org/opencl/. (Accessed 16 January

2020).
[57] HIP : C++ Heterogeneous-Compute Interface for Portability, 2020, https:

//gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/.
(Accessed 16 January 2020).

[58] R.D. Moser, J. Kim, N.N. Mansour, Phys. Fluids 11 (4) (1999) 943–945.
[59] G. Kooij, M.A. Botchev, E.M. Frederix, B.J. Geurts, S. Horn, D. Lohse, E.P.

van der Poel, O. S., R.J. Stevens, R. Verzicco, Comput. Fluids 166 (2018)
1–8.

[60] H.T. Huynh, American Institute of Aeronautics and Astronautics, 2007,
pp. 2007–4079,

[61] M. Bernardini, S. Pirozzoli, P. Orlandi, J. Fluid Mech. 742 (2014) 171–191.
[62] M. Lee, R. Moser, J. Fluid Mech. 774 (2015) 395–415.
[63] D. Buaria, K. Sreenivasan, Dissipation range of the energy spectrum in high

Reynolds number turbulence, 2020, arXiv preprint arXiv:2004.06274.

http://refhub.elsevier.com/S0010-4655(21)00047-3/sb37
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb37
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb37
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb38
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb39
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb40
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb40
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb40
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb41
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb41
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb41
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb42
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb43
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb44
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb45
http://newton.dma.uniroma1.it/dnsm2
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb47
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb47
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb47
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb48
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb49
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb50
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb51
https://www.openacc.org/
https://www.openmp.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-fortran
https://www.khronos.org/opencl/
https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/
https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/
https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb58
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb59
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb59
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb59
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb59
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb59
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb60
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb60
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb60
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb61
http://refhub.elsevier.com/S0010-4655(21)00047-3/sb62
http://arxiv.org/abs/2004.06274

	STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows
	Introduction
	Methodology
	Spatial discretization
	Time integration

	Validation
	Supersonic plane channel flow
	Turbulent boundary layer
	Shock-wave/turbulent boundary layer interaction

	Implementation and performance
	Programming paradigm and GPU porting
	Single-GPU optimization and performance
	Parallel optimization and scalability
	Performance comparison

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


