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Summary

In industrial crystallisation processes, solid crystals are produced in a dense crystal slurry
which is operated under highly turbulent conditions to maintain a well mixed homoge-
neous suspension. The slurry in a typical crystallisation process contains approximately
20 vol % solids with a particle size in the range between 100 and 2000 urn. It has been
recognised in literature that the hydrodynamics of the crystallisation process plays a
crucial role in the dynamics of the crystallisation process. Due to the action of the tur-
bulent flow, crystals will collide with equipment internals or amongst each other, which
may lead to secondary nucleation, the formation of new crystals from crystal fragments.
Secondary nuclei may have a strong effect on the dynamic behaviour of the crystallisa-
tion process and accordingly on the quality of the solid product. This process may have
a large impact on e.g. the scale-up of crystallisation processes.

The objective of this thesis was to study the mechanism of fragmentation and sec-
ondary nucleation due to crystal-crystal collisions for solid particles in a turbulent flow
field, based on the direct numerical simulation of freely moving particles.

To determine the hydrodynamic conditions for such simulations, first a detailed large-
eddy simulation of the internal flow of a pilot scale draft-tube baflled crystalliser was
carried out. In this simulation, it was assumed that a single phase large eddy simulation
(LES) could represent the behaviour of the fluid flow of a dense solid-liquid suspension.
The LES was performed at a Reynolds number of 240,000, using a lattice-Boltzmann
scheme with a Smagorinsky sub-grid scale turbulence model (¢, was 0.11). From the
simulation results, the microscopic turbulent length scales were estimated to become
upto one order of magnitude smaller than the mean particle size in the crystallisation
process.

Since the Kolmogorov length scale was estimated to be of the order of the particle
size or smaller, and since the particle and fluid motion in a dense solid-liquid suspension
are closely coupled, a simulation method had to be developed where the flow field sur-
rounding the particles was fully resolved, with full coupling of the motion of the particle
phase and the fluid phase. For this purpose, a simulation method for freely moving par-
ticles in a turbulent flow field was developed based on the lattice-Boltzmann method.
Two aspects of this approach that required further research where the implementation of
the particle boundary condition, and the method for generation of sustained turbulent
fluid motion.

The adaptive force-field method was used for implementing the no-slip particle
boundary condition. Since this method has not previously been applied in simulations
of freely moving particles, validation of this method was required. A comparison was
made between experiments and simulations on a single sphere settling in a box. The box
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dimensions were chosen such that the full domain could be captured in the simulations,
including the no-slip boundary conditions of the box. Cross-correlation particle imaging
velocimetry (PIV) measurements were carried out at particle Reynolds numbers rang-
ing from 1.5 to 31.9. The particle Stokes number varied from 0.2 to 4 and at bottom
impact no rebound was observed. Detailed data of the flow field induced by the settling
sphere were obtained, along with time series of the sphere’s trajectory and velocity dur-
ing acceleration, steady fall and deceleration at bottom approach. Lattice-Boltzmann
simulations proved to capture the full transient behaviour of both the sphere motion
and the fluid motion. The experimental data were used to assess the effect of spatial
resolution in the simulations over a range of 2 to 8 grid nodes per sphere radius. The
quality of the flow field predictions depended on the Reynolds number. Application of a
lubrication force to compensate for the lack of spatial resolution in the simulations when
the sphere is very close to the bottom of the container, has been studied.

For the generation of sustained turbulent conditions, a spectral forcing scheme has
been implemented in the lattice-Boltzmann framework. With this scheme, a turbulent
flow field with a priori set conditions is generated. It was demonstrated that pre-defined
properties such as the Kolmogorov length scale, the integral length scale and the integral
time scale are well recovered. A specific feature of the forcing scheme is that it allows to
control the power input by eliminating the force-velocity correlation. It is demonstrated
that this feature can be used in the lattice-Boltzmann simulations.

Turbulent suspension simulations with accurately prescribed conditions have been
realised by combining the particle simulations with the turbulent forcing algorithm. In
these simulations, the particle diameter measured 8 grid points, the volume concentration
was varied between 2 and 10 % and the particle to fluid density ratio between 1.15
and 1.73. The Taylor scale Reynolds number was 61. Lubrication force was used to
account for sub-grid hydrodynamic interaction between approaching particles. Results
were presented on the influence of the particle phase on the turbulent energy spectrum
and on the behaviour of the particle phase with respect to particle collisions.

The simulations showed that the presence of the particles reduces the kinetic energy
by facilitating the rate of energy dissipation. Fluid motion is generated at length scales
in the range of the particle size, which results in a strong increase in the rate of energy
dissipation at the small length scales. The simulation results on the energy transfer
in the turbulent suspension flows confirmed earlier findings in literature on two-way
coupled DNS of point particles in turbulence.

Collision data indicated that two separate collision mechanisms occur in the simula-
tions. Collisions due to uncorrelated particle motion are observed (primary collisions),
and collision frequencies obtained for this phenomenon are in agreement with theory on
inertial particle collisions. In contrast to this, also a large quantity of collisions at high
frequency (secondary collisions) was encountered. These so-called secondary collisions
are due to accumulation of particles, due to the correlated motion of particles that re-
sults from the short-range hydrodynamic interaction between the particles, due to the
spatial correlation of the velocities in the turbulent flow field at short separations and
due to the implementation of the method for lubrication forces and particle collisions
in the simulations. The image of two separate types of collision behaviour occurring
in the turbulent suspension is supported by an analysis of the particle phase based on
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the distribution of the relative particle velocities at close separation and on the spatial
correlation functions of the particle velocities.

Finally, crystal-crystal collisions in the turbulent suspension simulations were evalu-
ated to obtain a measure for the rate of fragmentation of ammonium sulphate crystals
in the simulated turbulent flow field. A minimum impact velocity at which fragmenta-
tion occurs was determined from the minimum energy of fragmentation and therefore
depended on the particle size. The impact velocities of the particles in the suspension
simulations were evaluated based on the distribution of the radial velocity near con-
tact. This distribution demonstrated that the probability for higher impact velocities
decreases. Therefore only a small fraction of the collisions, i.e. for which the impact
energy exceeds the minimum energy of fragmentation, will result in fragmentation. The
part of the distribution where the velocity exceeds the minimum energy of fragmenta-
tion could be related to a rate constant of fragmentation, based on a theoretical collision
model. Values of the fragmentation kernel obtained via this theoretical route correspond
well to the values obtained from the collisions registered during the suspension simu-
lations. This indicated that the developed simulation approach provides a consistent
method for estimation of crystal fragmentation frequencies, and thus provides a per-
spective for generating models to predict fragmentation in turbulent crystal suspension
flows.
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Preface

Just like so many things one undertakes in life, writing this thesis has very much been
like undertaking a long trip. Now that I come to the end of it, I want to use this place
to look back on my period in Delft and to share with you some of the experiences that
I gained while doing my PhD work.

I started my PhD in the fall of 1997. I recall clearly that I had no clue as to where
to begin and look for a position, since many fields of research attracted my interest.
At that same time my good friend and roommate Bart Henstra, who also was looking
around for a PhD position, told me that an interesting new project was started named
the DIOC, and that I should talk to professor Johan Grievink about this. I went to
his office and had a very inspiring afternoon, which resulted in me starting my PhD in
October of that year in both his group and that of professor Gerda van Rosmalen.

Then, the first hub in the road appeared. I knew I was going to work in the field of
crystallisation and in the field of process modelling, but what I didn’t know was what the
questions were that were of interest to this field. I had all liberty to choose a direction,
which in academic sense is great, but for a rookie in the field is quite a big task. I read
the DIOC project description, and again, and again, but it didn’t make sense to me.
I decided to go and talk to my supervisors, and the idea came up that using discrete
particle simulations could be of interest to industrial crystallisation. I looked into that
and reasoned that if one wants to study anythiing on individual crystals, then the first
thing one needs to know is the motion of these crystals. I went into the library and
soon came up with a paper by a certain Mr. Ladd, saying basically that if one wants
to look at the motion of particles in fluid, a novel and by far the best way to study this
is by means of the lattice-Boltzmann method. Later, looking into the motio of particles
was was extended to looking into collisions of individual crystals, which then became
formally the subject of my thesis.

So, enthusiastically I started to work. "Great!", I thought, "lets go!...but how does
this lattice-Boltzmann method work?" Many hours later the paper of Ladd still didn’t
make much sense to me and I decided that I needed advise from someone who knows
this method. I looked around, and coincidentally ran into Jos Derksen, who happened
to be using the method, and who offered me to use some of his programs. During the
summer and fall of 1998, I started working with this method and soon I had sorted out
my whole research program. I was first to do particle simulations, from that we would
learn about collisions and then in the second part of my thesis I would do complete
integrated process design of industrial crystalliser with.....yeah...dream on! Very much
as a rookie, I had a million idea’s of where I would take my thesis, but I stil had to learn
alot. T had to learn mostly how much work one can realise during a period of about four
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years. It seems endless at the beginning, it seems almost nothing at the end. I decided
that if I were to succeed in the ambitious plans I had, I needed both the supervision and
dedication to my project of someone who knows his way around fluid mechanics, and so
I asked Jos Derksen if he could be involved in my project more formally. This was very
much supported by both Gerda van Rosmalen and Johan Grievink.

In December 1998, Jos suggested that I should work for a few months at the Kramers
Laboratorium, because there I would be across the hall from him and it would much
speed up my work. I got introduced to the lab as, 'Hi, this is Andreas, he will be here, say,
typically for the next three months’. At that moment I didn’t know yet that this would
be a major change of my PhD project. Harrie van den Akker was both program leader
of the DIOC and the director of the Kramers Laboratorium, and since I was member of
the DIOC, this facilitated very much my move to the Kramers Laboratorium. Before I
knew what was happening, the next change came up. Since I was focussing more and
more on fluid mechanics, it would make sense that my primary advisor would be in this
field. Very courteously, Johan Grievink himself suggested that he would move away from
my project and let Harrie be my promotor. And so, three months became three years.

Ever since I took off and worked hard to finish my PhD thesis, the result of which
lies in front of you. I learned about compartmental modelling and population balances
of crystallisation processes, I learned about the Navier-Stokes equations and about tur-
bulence, I learned about the behaviour of suspensions and about collisions of particles,
and I learned about many other things in life. Much of this is reflected in the following
pages, much more of what I learned isn’t, simply because it is impossible to capture in
pages. I hope that for you as a reader, reading and using this book will be as usefull as
many other theses have been to me, and will be as much of a pleasure to read and use
as it has been for me writing it.

Andreas ten Cate,
Delft 2002.
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Chapter 1

Introduction

1.1 Industrial Crystallisation

Crystallisation is the formation of solid crystals from a clear solution. It is used in
a wide range of applications, ranging from a bench scale purification step in chemical
laboratory work to obtain highly purified chemicals (Laarhoven (1932)), to a full sized
industrial scale unit operation (Myerson (1993)) for the large scale production and sep-
aration of pure solids from impure solutions. Crystallisation on large scales dates back
to the beginning of civilisation for the production of household products such as salt or
sugar. In current days it has developed into an industrial process for the production
of organic and inorganic solids as intermediate or end product for both the consumer
market and the chemical industry. One of the major advantages of crystallisation is that
it is capable of producing solids at high purity at a low energy consumption compared
to other separation processes such as distillation, while yielding a product with often
good handling properties.

From the early 20-th century on, a growing demand for large scale products led to
the development of advanced crystallisation units such as the forced-circulation (FC)
crystalliser, an early example of which is given in figure 1.1, and the draft-tube (DT)
crystalliser. In the FC crystalliser, the crystal slurry is kept in suspension by a pump that
circulates the slurry via a heat exchanger to a vessel where solvent is evaporated. The
DT crystalliser consists of a vessel provided with a marine type impeller that circulates
the crystal slurry through a vertical riser tube in order to maintain the crystal shurry
suspended and well mixed. At the surface, vacuum is applied to generate a boiling slurry
at moderate temperature. Both crystalliser types are called evaporation crystallisers
since supersaturation, the driving force for nucleation and crystal growth, is generated
by evaporation of the solvent.

Application of crystallisation in the process industry requires large scale equipment.
With the scale-up of crystallisation processes from a pilot scale size of the order of 1
m?® to full sized industrial scale processes of the order of 100 m?, the behaviour of the
crystallisation process often changes drastically.

@



2 Chapter 1. Introduction

Figure 1.1: Example of a forced-circulation crystalliser anno 1932. (From Bennet (1984))

The complex behaviour of large scale industrial crystallisation processes is clearly re-
flected in the following quote (Bennet (1993));

Crystallisation has long been considered an art rather than a science, al-
though recent theoretical discoveries and new analytical techniques have pro-
duced a change in this historic position. It is also true that the mechanical
design of the crystalliser has a significant influence on the nucleation rate
due to contact nucleation, which is that caused by contact of the crystals
with each other or with the pump impeller or propeller when suspended in
a supersaturated solution. This phenomenon yields varying rates of nucle-
ation on scale-up and differences in nucleation rate when the same piece of
equipment is used to crystallise different materials.

This quote clearly indicates the complexity of crystallisation processes. An often highly
turbulent boiling suspension is circulated in a crystalliser. The residence time for the
crystals is of the order of hours to assure that crystals grow sufficiently large to obtain a
product with a desired crystal size. At the same time, kinetic processes occur that influ-
ence the condition of a crystallisation process at a time scale of minutes (see also figure
1.3). The kinetic processes are summarised in the scheme of figure 1.2 and comprise,
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Industrial Crystallisation

Microscale Processes

Base material

| birth size increase size decrease ]
Nucleation Growth* Attrition*
« primary

I\- secondary* Agglomeration* I

l

Figure 1.2: Kinetic mechanisms in industrial crystallisation processes. A * indicates
processes dominated by hydrodynamics. '

¢ nucleation; the formation of new crystals,

primary nucleation; the (spontaneous) formation of new crystals from a super-
saturated liquid

secondary nucleation; the formation of new crystals from fragments generated
by crystal collisions in a supersaturated suspension

e crystal growth; the increase in crystal size from deposition of solute from the
supersaturated liquid on the crystal surface,

¢ agglomeration; the glueing of crystals that collide in a supersaturated liquid,

e attrition; the abrasion or breakage of crystals due to contacts or collisions of the
crystals with internal parts of the crystalliser or with neighbour crystals.

For design, scale-up, and control purposes, much attention has been paid to mod-
elling crystallisation processes (Myerson (1993), Mullin (2001)). Traditionally, popula-
tion balance models play a large role in this field of research. These models describe
the evolution of a population of crystals as a function of process conditions, compound
and solvent properties and crystalliser type and layout. In the first propositions the
crystalliser is considered to be an ideally mixed vessel, designated as the Mixed Slurry
Mixed Product Removal (MSMPR) crystalliser (Garside (1985)). Parameters for these
models are determined typically from lab-scale reactors of a few liters volume. A highly
desirable feature for population balance models would be to use parameters obtained
from laboratory experiments to model processes accurately at an industrial scale.

One major issue that raises difficulties in proposing adequate population balance
models is that the relation between crystalliser design, scale, operation, compound prop-
erties and the resulting product is highly non-linear in nature. For instance, a typical
expression for describing the rate of secondary nucleation By in a population balance is
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the empirical power law (Bermingham et al. (1997))
By = kyN"G'M;. (1.1)

where ky is a constant, G is the linear growth rate, N the impeller revolution and My
the crystal mass of the slurry. In this expression, the constants h, ¢ and 7 are parameters
that need to be determined experimentally. Experimental values vary substantially,
such as 1.8 < h < 2.1, 0.5 < i < 3 while j = 1 for describing crystal-impeller collisions
and j = 2 for crystal-crystal collisions. In equation 1.1 a large number of properties
of the crystalliser setup are lumped into the exponential parameters and constants.
These parameters should capture the effects of the physical properties of the compound
involved, the hydrodynamic regime, the crystal slurry circulation time, the slurry settling
properties, the crystalliser layout and the impeller type on the rate of nucleation. The
predictive value of such an approach is limited to the specific crystallisation process for
which the parameters have been determined.

Recently, models were proposed that describe secondary nucleation from a first-
principles basis. Gahn & Mersmann (1997) presented a fracture model that predicts the
formation of secondary nuclei due to the collision of a crystal with a much harder object
such as an impeller. The model is based on the mechanical properties of the crystalline
material, that can be determined a priori at lab scale. With this approach, a step has
been set in the direction of isolating the many fundamental mechanisms that contribute
to the nonlinear behaviour of crystallisation processes.

An important characteristic of the kinetic mechanisms given in figure 1.2 is that
most of them are driven by the hydrodynamics of the process (Garside (1985)). The hy-
drodynamics determine the transport and circulation of the slurry inside the crystalliser
on the large scales (scale of the process equipment). Although from a modeling point
of view the crystalliser is assumed homogeneous, inhomogeneities of the local conditions
may occur in industrial scale crystallisers due to e.g. the spread in residence time of
the slurry in different zones of the crystalliser. The impact that inhomogeneities inside
a crystalliser may have on the resulting product is clearly demonstrated in Hollander
et al. (2001). These authors studied the effects of hydrodynamics on the scale-up of
precipitation reactors in which agglomeration represents the main growth mechanism.
To capture the inhomogeneous distribution of properties such as the crystal mass the
supersaturation or the hydrodynamic regime inside the crystalliser, a compartmentisa-
tion of the population balance model that corresponds to the crystalliser layout has been
proposed (e.g. by Bermingham et al. (1998)). A simulation result of such a model is
given in figure 1.3, where the compartment structure was based on a highly detailed
flow simulation (Ten Cate et al. ((2000)). The large difference between both simulation
results demonstrates that this type of models raises new questions, e.g. as to how to
design an accurate compartment structure.

At smaller scales (around the crystal size), the flow field affects the mass transfer at
the crystal surface and dominates crystal-equipment and crystal-crystal collisions. The
microscopic hydrodynamic conditions are generated by the large scale flow structure
which in its turn depends on equipment design and operating conditions. The complex
nonlinear behaviour obtained in the equation for the rate of nucleation (eq. 1.1) and
hinted at in the above citation (Bennet (1993)) originates from these dependencies.
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Figure 1.3: Simulated time series of the startup behaviour of a crystallisation process.

Influence of turbulent back mixing in a 21-compartment model (dotted line with back-
mixing, continuous line without back mixing) (Ten Cate et al. ((2000)).

1.2 Approach

In this thesis, the issue of secondary nucleation due to crystal-crystal collisions is ad-
dressed. In many studies on secondary nucleation, the contribution of these collisions has
been ignored under the assumption that their contribution is negligble compared to the
contribution of crystal-impeller collisions (e.g. Gahn & Mersmann (19995)). Although
this assumption may be valid for bench or pilot scale crystallisers, with an increase in
equipment size the frequency at which crystals will pass the impeller will decrease and
the ratio of crystal-impeller to crystal-crystal collisions to the contribution of secondary
nucleation may shift towards the latter. This behaviour severly complicates modeling
the scale up behaviour of crystallisers.

Secondary nucleation due to crystal-crystal collisions is typically expected to become
important in dense crystal suspensions (z.e. with high solids volume fractions), operated
under highly turbulent conditions. The turbulent fluid motion will cause particles to have
sufficient relative velocity to undergo collisions that lead to fragmentation. Although
it is recognized that hydrodymamics play a key role in the dynamic behaviour of the
crystallisation process, little knowledge on the exact behaviour of crystal particles in a
dense turbulent suspension has been available to the crystallisation community. Recent
studies of Gahn & Mersmann (1999b), focussing on secondary nucleation due to crystal-
impeller collisions, present an example. In this work, impact efficiencies are predicted
based on the passage of the crystals through the impeller-swept volume, while the flow
field of the suspension near the impeller is approximated as potential flow. Nevertheless,
important aspects such as the turbulent fluctuations of the flow field and the high volume
fraction of particles in the suspension that strongly modifies the fluid behaviour are
disregarded in this work.

A field of research where in recent years large progress has been made in the under-
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standing of particle motion in turbulent suspensions is the area of modeling and com-
putational fluid dynamics of multi-phase or suspension flow. In this area, research has
focussed on many different fundamental aspects of suspension flows, both theoretically
and numerically. Droplets suspended in turbulent air and agglomerating into raindrops
have inspired Saffman & Turner (1956) to develop models that describe the collisions of
fine particles in turbulent flow fields. Based on this work, both theoretical and numerical
studies have been employed to understand the influence of physical parameters such as
the particle-fluid density ratio or the flow field Reynolds number on phenomena such
as the particle collision rates (Sundaram & Collins (1997); Wang et al. (2000)) or the
‘inhomogeneous distribution of particles in turbulent flow fields (Squires & Eaton (1990);
Reade & Collins (2000)). To study the effect of particles on the development of turbulent
flow fields, numerical studies have been carried out where the interaction between the
flow field and the particle phase are coupled (Squires & Eaton (1990)). The latter type
studies focus on suspensions of particles that are much smaller than the microscopic
length scales of the flow field, where the particle volume concentration is very low but
where the mass loading can be considerable and where the particles are approximated
as point particles. ’

Again a different direction in multi-phase hydrodynamic studies is the research field
of dense solid-liquid suspensions. This branch has gained increasing attention over the
last decade with the upcome of -efficient numerical schemes to solve the Navier-Stokes
equations and availability of cheap computational power. For instance, the sedimenta-
tion of suspensions is studied via direct simulation of the full flow field of the individual
particles, with complete hydrodynamic interaction between the particles and the fluid
phase. The basis for this field of research was set out by Ladd (1994a).

In this thesis, an effort is made to bring the two different worlds of industrial crys-
tallisation research and multi-phase flow research closer together. Insights from the
above three different fields of research are combined to obtain a greater understanding
of collision behaviour and fragmentation of particles in a dense suspension under the
action of a turbulent flow field. This led to the following approach:

o the first step is to assess the turbulent flow field of a crystalliser on the basis
of a large eddy simulation, assuming that the flow can be represented using a
pseudo single-phase simulation. This simulation is used to estimate characteristic
turbulent properties of the crystalliser flow field such as the locally occuring rate
of energy dissipation and fluctuating fluid velocities.

¢ the second step is to perform detailed simulations of fully resolved suspensions in a
fully periodic turbulent box, which is assumed to represent the local conditions in
a small section (typically 1 cm?) of a turbulent crystalliser flow field. In crystalli-
sation processes, a suspension typically contains between 10 and 30 vol % solids
at a low density ratio, which indicates the need for full simulation of the suspen-
sion. The conditions of these simulations are chosen such that they correspond to
the turbulent conditions observed locally in the crystalliser. simulation. In these
detailed simulations, turbulence-particle interactions and particle-particle collision
behaviour is studied.
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1.3 Outline of the thesis

The proposed research approach is reflected in the outline of this thesis:

In chapter 2, a detailed large eddy simulation of the internal flow field of a pilot scale
1100 ! crystalliser is presented where the slurry is assumed to behave as a single phase.
This simulation is used in a feasibility study to estimate the requirements for direct
simulation of a turbulent suspension. Macroscopic and microscopic length scales of the
turbulent flow field were calculated from the LES simulation to determine the relation
between the equipment length scales, the turbulence length scales and the particle length
scales.

For the purpose of validating direct simulations of suspensions, a study is presented
in chapter 3 on the transient motion of a single particle settling towards the bottom
of a square vessel. The simulation approach is based on the lattice-Boltzmann scheme
proposed by Eggels & Somers ((1995), while using boundary conditions for the particle
based on an adaptive force field scheme (Derksen & Van den Akker ((1999)). This
approach differs from the one presented by Ladd (1994a). To establish the accuracy of
the method (experimental) validation is required. To this end, simulation results are
compared with experimental results on both the particle trajectory and the flow field,
which was measured by use of particle image velocimetry (PIV).

To obtain turbulent conditions in the computational domain, the spectral forcing
scheme proposed by Alvelius (1999) is used. This method is generally applied to simula-
tions of sustained homogeneous turbulence in a periodic domain, where the Navier-Stokes
equations are solved using a (pseudo-) spectral scheme. In chapter 4, the forcing scheme
is applied to the lattice-Boltzmann method and a number of cases is presented to demon-
strate that turbulent conditions with pre-defined properties are accurately recovered via
this approach.

In chapter 5, the particle simulations of chapter 3 are combined with the forcing
scheme presented in chapter 4 to obtain direct simulations of suspensions with a prior:
determined conditions. In this chapter the numerical setup is presented and results on
5 simulations are discussed, in which the particle volume concentration and particle
density were varied. The influence of the particle phase on the development of the
turbulent flow field is discussed and compared with results presented in literature on
two-way coupled simulations. Particle-particle collisions are analysed and the relative
velocity distribution of the particles is studied to gain understanding of the observed
collision behaviour.

Chapter 6 returns to crystallisation. First, the collision behaviour of approach-
ing particles is studied, where the particle relative motion is dominated by lubrication
forces. Then, an interpretation is given of the particle-particle collisions observed in
the suspension simulations of chapter 5, which are now assumed to represent crystal-
crystal collisions in a crystallisation process. A method is given to estimate the rate of
fragmentation of crystals as a source for secondary nucleation.

Finally, in Chapter 7 the general conclusions of this thesis are presented and an
outlook for future implications of this work is given.

Chapters 2 to 5 of this thesis have appeared in literature or have been or will be
submitted for publication. As a result, some parts in the chapters may appear double.
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The choice of notation throughout this thesis is conform the requirements of the various
journals and therefore varies from chapter to chapter. For clarity, a list of symbols is
added to the end of each chapter.

1.4 Industrial Crystallisation research at Delft Univer-
sity of Technology

Crystallisation research at Delft University of Technology has traditionally been carried
out by the chair for separation processes, situated at the Laboratory for Process Equip-
ment. Two research projects of this laboratory have provided a basis for the research on
crystallisation and precitipation presented in this thesis.

A project for the study of industrial crystallisation, named UNIAK, has been running
since 1984. The original focus of this project has been on instrumentation and control
of industrial evaporation crystallisers. In the early 1980’s, the idea was that, with
upcoming techniques such as laser devices for in-line measuring of particle size and
advanced controller equipment, on-line control and model-based predictive control of
crystallisation equipment should come within reach. These viewpoints formed the basis
for three phases of the UNIAK project running from 1984 up to 2002. The UNIAK
research project formed the basis for the industrial crystallisation aspects of the research
presented in this thesis. At the start of the project of this thesis, the third phase
of UNIAK was half way. At this moment, this phase has lead to the PhD thesis of
Neumann (2001).

Around the same time, research into precipitating systems was carried out in the
PREMIX project, which focussed on the role of hydrodynamics and mixing in precip-
itation processes. In this type of crystallisation processes, supersaturation is created
instantaneously by a chemical reaction. This project formed a collaboration between
the Laboratory for Process Equipment and the Kramers Laboratorium voor Fysische
Technology, and resulted in the thesis of Leeuwen (1998).

1.5 DIOC 6: Mastering the Molecules in Manufactur-
ing

In the early nineties of the last century, the buzz-word in academia was 'inter-disciplinary’.
p

In 1996, Delft University of Technology took the initiative to promote inter-disciplinary
research at the university by starting the so-called Delft Interfacultary Research Cen-
ters (DIOC). These DIOC’s were invoked to stimulate new research at the intersection
between well-established traditional mono-disciplines. 12 DIOC research programs were
selected and approved.

This thesis is supported by the DIOC 6 program named 'Mastering the Molecules
in Manufacturing’, abbreviated as M3. This program started on April 1, 1997, and
aimed at Precision Process Technology, i.e. improving process technology by means
of optimal design and control of chemical production processes, with a central role
for process modelling. The program contained research fields from chemical process
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Figure 1.4: Mastering the Molecules in Manufacturing.

industry as diverse as industrial catalysis; biotechnology; conceptual process design,
control and safety; hydrodynamics of multiphase processes; industrial crystallisation
and precipitation. The rationale of the program is that any chemical process, whether
bulk-, fine- or biochemistry, passes through a stage of process design and optimisation.
Using the commonalities between the different disciplines, one can develop a general
methodology for process design for any type of industrial process.

The first phase of M3, counsisted of 6 projects with a total of 12 PhD students, divided
over as many as five different faculties. To stimulate the multi-disciplinary character,
each PhD student participating in M3 had the difficult task to manage his or her project
while working in two different research groups, often distributed over two different facul-
ties. This thesis contributes to project 3 of M3, Optimal Design and Product Control in
Crystallisation and Precipitation. Two PhD students participated in this project which
formed a collaboration between the groups of Process Systems Engineering Group of
DelftChemTech, the Laboratory for Process Equipment and the Kramers Laboratorium
voor Fysische Technologie. One part of the project, the subject of the thesis of col-
league PhD student Elco Hollander, focussed on the relation between hydrodynamics
and agglomeration in precipitating systems, while the other is the subject of this thesis.
Currently, M3 is in the stage of finalising phase 1, with most participating PhD students
finishing their theses (Zhu (2001),0verkamp (2002),Roubos (2002),Hollander (2002)).






Chapter 2

The microscopic modelling of
hydrodynamics in industrial
crystallisers

In this chapter a method for the calculation of crystal-crystal collisions in
" the flow field of an industrial crystalliser is proposed. The method consists
| of two steps. The first step is to simmulate the internal flow of the crystalliser
\ as a whole. For this purpose, the simulation of the internal flow of an 1100 {
draft tube baffled crystalliser at a Reynolds number of 240,000 is presented.
This simulation was done with a lattice-Boltzmann scheme with a Smagorin-
sky sub grid-scale turbulence model (c; was 0.11) on approximately 35.5-10°
grid nodes. The second step of the method consists of simulating individ-
ual crystals in a fully periodic box with turbulent conditions that represent
the conditions in a point of the crystalliser. Thus collision frequencies and
intensities of the crystals under the local hydrodynamic regime can be ob-
tained. In this contribution a feasibility study of this second step is described.
A theoretical framework is established to identify the key parameters that
determine the relationship between the crystalliser flow and the box simula-
tions. Based on this framework, conditions for box simulations representing
three monitor points in the simulated crystalliser are calculated. Finally,
to demonstrate the method of predicting the motion of individual particles,
sedimentation and consecutive collision of a single sphere with a solid wall is
simulated.

Key words: crystallisation, lattice-Boltzmann, collision rate, large eddy
simulation, discrete particle simulation, turbulence

Parts of this chapter have been published in Chem. Eng. Sci. 56, 2495-2509 (2001).

2.1 Introduction

The design and scale-up of industrial crystallisers requires predictive models that de-
scribe the evolution of the crystal size distribution (CSD) as a function of process con-
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ditions, crystalliser layout and type of crystallisation process. Generally, these models
are based on population balances, mass balances and energy balances and treat the
crystalliser as a single ideally mixed vessel (MSMPR-models). For evaporation crystalli-
sation, these models generally contain strongly nonlinear kinetic expressions for crys-
tal growth, secondary or contact nucleation and agglomeration (Gahn & Mersmann
(1999b)). The model parameters are based on the volume averaged behaviour of the
entire crystalliser. However, an industrial crystalliser is far from homogeneous in terms
of the physical and thermodynamic conditions. With varying crystalliser dimensions,
modes of operation or types of crystalliser, these models therefore require different model
parameters. .

A detailed approach to modelling crystallisation processes should be able to capture
the geometry of the crystalliser on the one hand and contain geometry independent
kinetic models on the other. This approach has been presented by Kramer et al. (1999)
who propose to divide the crystalliser in a number of well defined regions in which
supersaturation, rate of energy dissipation, solids concentration and CSD are more or less
uniformly distributed. With such an approach, kinetic parameters for these models can
be obtained from lab-scale experiments or can be estimated from simulation techniques
while model simulations on industrial scale are able to predict the performance of the
full-scale crystallisation process.

One of the key aspects in the (dynamic) behaviour of a crystallisation process is the
role of hydrodynamics. On a macroscopic scale the hydrodynamic conditions control the
crystal residence time and circulation time in the crystalliser. On a microscopic scale
key processes such as crystal collisions {source for secondary nucleation and agglomera-
tion) and mass transfer for crystal growth are largely determined by the smallest scale
flow phenomena. One of the main difficulties in correctly capturing the effect of the
crystalliser hydrodynamics on the evolution of the crystal product is that the length and
time scales in a crystallisation process vary widely. At one end of the spectrum there
are the crystalliser length and time scales, which lie in ranges of meters and hours. At
the other end, one can consider the individual crystals in the turbulent flow field. Here
dominating length scales are in the range of 100-1000 um for the crystals and 10-100 pm
for the smallest fluid eddies. Time scales are of the order of milliseconds. The main ques-
tion is how to integrate these widely varying scales and formulate a consistent method
for estimating the influence of the small-scale phenomena on the overall performance of
the crystalliser.

In this chapter a method is proposed to solve part of the above posed question. The
crystal-crystal collision rate is an important parameter in describing both agglomera-
tion and the formation of attrition fragments and thus plays an important role in the
crystalliser behaviour. The crystal motion is directly related to the local hydrodynamic
conditions. Therefore, a relationship between the macroscopic and microscopic hydro-
dynamic conditions needs to be established to predict collision rates in the crystalliser
accurately. In this contribution, a two step method is proposed.

The first step of our method is to perform computational fluid dynamics (CFD) sim-
ulations of a given crystallisation process. From these simulations, characteristic flow
data are obtained that describe the local hydrodynamic conditions of the crystalliser.
The fluid phase (typically containing 10 to 20 vol% solids) is treated as a single phase
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Figure 2.1: Two scales of fluid motion. The macroscopic scale (crystalliser) and micro-
scopic scale (individual particles).

with a homogeneous density and viscosity, characteristic for the crystal slurry. This
approach limits the method. It can only be applied to simulations of crystalliser flow
with a virtually homogeneous slurry concentration, i.e. to crystallisers at lab to pilot
scale at high Reynolds numbers. This assumption can be relieved by taking into account
the particle transport, for instance by solving a particle dispersion equation (e.g. Liu
(1999)) and coupling back of the particle concentration to a subgrid scale model that
locally modifies the fluid viscosity, comparable to subgrid scale turbulence modelling.
Typical parameters that are obtained from these simulations are rates of energy dissipa-
tion, turbulent kinetic energy and fluid velocity. These parameters are obtained at the
resolution of the CFD simulation, which is at least one order of magnitude larger than
the particle size of the crystallisation process.

The second step of our method is to focus on the individual crystals in the crys-
talliser. A transition is made from a pseudo single phase simulation to an explicit two
phase simulation and thus, a transition is made from crystalliser flow simulations to
highly detailed CFD simulations of individually suspended particles (see fig. 2.1). The
simulated particles are implemented at high resolution with respect to the CFD grid
and therefore typically occupy a number of grid nodes. The crystalliser slurry consist of
high inertia particles (i.e. particles that do not follow the streamlines of the turbulent
fluid motion) at high volume concentrations. CFD simulations of colliding particles un-
der turbulent fluid motion are reported by for instance Sundaram & Collins (1997) and
Chen et al. (1998c), but these systems are typically investigated at (very) low particle
volume concentrations which do not require a coupling between the particle and fluid
motion. At high volume concentrations, particles will continuously hinder each other.
Therefore, in order to accurately simulate the particle motion, a direct coupling between
the fluid motion and the particle motion is required.

The basic concept to resolve the second step is to design a box with fully periodic
boundaries that contains a large number of particles. In this box turbulence is gener-
ated by forcing the fluid motion on the large scales. The turbulent flow is simulated
up to the smallest occurring scales (i.e. direct numerical simulation (DNS) of the tur-
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bulent flow). The conditions in this periodic box are related to the crystalliser flow
via a number of key parameters. These parameters are the turbulence characteristics
obtained from the crystalliser CFD and the slurry characteristics (particle size, viscosity
and density). From these so-called box simulations, the collision frequency and energy
can be monitored. Collision data obtained in this way can be used in models predicting
the rate of secondary nucleation and attrition (Gahn & Mersmann (1999a)) or agglom-
eration in crystallisers. Since the fluid phase in the crystalliser is currently assumed to
be a homogeneous slurry, no back-coupling of the results from the microscopic parti-
cle simulations (e.g. streak formation of particles and turbulence modification) to the
macroscopic crystalliser simulations is taken into account.

The numerical method chosen to simulate both the full-scale crystalliser flow and the
suspended particles is the lattice-Boltzmann method. This method is chosen because it
has a number of favourable properties. First, the method is efficient and numerically
stable. Second, it has an excellent performance on parallel computers. This is an
important feature, because both the equipment flow simulations and the discrete particle
simulations require large computational resources. Third, the method is inherently time
dependent, which makes it suitable for the implementation of a sub grid-scale (SGS)
turbulence model for large eddy simulations (LES). Turbulence modelling is required
for simulation of the highly turbulent crystalliser flow. Fourth, the method can treat
arbitrarily shaped boundaries which makes it suited for simulating fluid flow in irregular
shaped geometries such as a crystalliser or a cluster of moving particles. Simulations of
generated isotropic turbulence are frequently done with spectral methods. Turbulence
in the lattice-Boltzmann schemes can be generated by agitating the fluid at varying
time and length scales with fluctuating force fields. In section 2.2 the background of the
lattice-Boltzmann method is discussed along with the implementation of the LES model
and the treatment of the boundary conditions.

The main objective of this chapter is to establish the relationship between the two
steps of the simulation methodology and to investigate the feasibility of the proposed
method. For the first step, in section 2.3, the CFD simulation of a pilot scale 1100 {
draft tube baffled crystalliser is reported and results are presented. Then, in section 2.4
an analysis is given of the hydrodynamic length and time scales that occur in the turbu-
lent crystalliser flow and that characterise the crystalliser flow at the microscopic scale.
These parameters are then used to explain how to calculate the parameters that set the
scene for a representative box simulation. It is shown what the requirements of box-
simulations that represent three chosen monitor points in the crystalliser will be with
respect to computational parameters such as the domain size and computational time
for a given particle size. The box-simulations are currently still under construction and
therefore no results of these simulations are reported here. However, as a first example
of a detailed suspended particle simulation, the lattice-Boltzmann simulation of a single
particle settling towards and colliding with a solid wall is presented in section 2.5. In
section 2.6 conclusions are drawn regarding the obtained framework.
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2.2 The lattice-Boltzmann method

The lattice-Boltzmann method has been developed during the last decade and stems
from the lattice gas cellular automata techniques that date back to the seventies and
eighties. The concept of the lattice-Boltzmann method is based on the premise that
the mesoscopic (continuum) behaviour of a fluid is determined by the behaviour of the
individual molecules at the microscopic level. In the lattice-Boltzmann approach, the
fluid is represented by fluid mass placed on the nodes of an equidistant grid (lattice). At
each time cycle, a number of steps are executed; from each grid node, fluid mass moves
to the surrounding grid nodes and conversely mass arrives at each grid node. In this
way conservation of mass is guaranteed. Arriving mass collides, while collision rules are
applied that guarantee conservation of momentum. After the collision step, the mass
is redistributed and a cycle is finished. One of the elegant features of the method is
that although the collision rules describe the fluid behaviour locally on a grid node, the
continuity equation and incompressible Navier-Stokes equations are recovered (Rothman
& Zaleski (1997); Chen & Doolen (1998)).

A number of recent developments in the application of the lattice-Boltzmann method
clearly demonstrate its versatility. In this contribution a methodology is presented to
simulate turbulent slurry flow while resolving the complete hydrodynamic environment
of the particles. The first publications in which this approach to slurry flow is described
are from Ladd, who applied the method to simulate slurry-flow at the most detailed level
(Ladd (19944,b)) and calculated sedimentation with up to 32,000 individual particles
(Ladd (1997)). Another contribution is this field is given by Heemels (1999). Multi-phase
problems have also been addressed by Rothman & Zaleski (1997) (liquid-liquid) or by
Sankaranarayanan et al. (1999) (liquid-gas). Examples of lattice-Boltzmann studies in
which complex and dynamic geometries are combined with mass transfer are simulations
of coral growth (Kaandorp et al. (1996)) and bio film growth (Picioreanu et al. (1999);
Picioreanu (1999)). The internal flow of a crystalliser is highly turbulent and requires the
incorporation of a sub grid-scale (SGS)turbulence model. Examples in which the method
is used to investigate the turbulent fluid flow in a stirred tank are given by Eggels (1996)
and Derksen & Van den Akker ((1999). A review on the lattice-Boltzmann method is
found in Chen & Doolen (1998).

2.2.1 The lattice-Boltzmann equation

Although different types of lattice-Boltzmann schemes have been developed, the different
methods all stem from the evaluation of the same lattice-Boltzmann equation (LBE):

filx+ ¢, t+1) = filx, t) + Y fi(x,1)) (2.1)

This equation states that at a position x and time ¢, an amount €2; is added to f; and
transported to the position X +c; at time t + 1. The subscript indicator i represents the
direction of propagation and is determined by the type of grid, c; is the discrete velocity
at which mass travels from one node to the other, §); is the collision operator which
determines the post collision distribution of mass over the M directions on a grid node.
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The mass density function f; and the collision operator ); have the following universal
properties;

e summation of f; over the M directions of the chosen lattice gives the fluid density
at position x and summation of f;c; gives the momentum vector;

M

Y flxt)=p (2:2)

=1

M
Z fi(x,t)e; = pu (2.3)

e conservation of mass and momentum are guaranteed by the following equations;

M

Y Qi(x,t) =0 (2.4)

D Qe = f(x,1) (2.5)

where f(x,t) represents a source of momentum from an external force field. This force
field can be homogeneous, as in e.g. a gravity field or can be manipulated locally, as in
the method for the boundary condtions, which will be explained later.

For the two applications discussed in this chapter, two different schemes for solution
of the LBE equation were used. The simulation of the internal flow of an 1100 | DTB
crystalliser is based on the method of Somers (1993). Based on this method, a 3D code
for large eddy simulations was developed by Derksen & Van den Akker ({(1999). For
the simulation of settling particles, a single relaxation time scheme is used (Qian et al.
(1992)). Both schemes obtain the same continuity equation

Op+V.pu=0 (2.6)

and momentum equation
dpu+ V- puu = —VP + V- y[V(pu) + (V(pu))T] +f. (2.7)
In the incompressible limit (i.e. for fluid velocities much smaller than the speed of
sound,|u| < u,) equation 2.7 corresponds to the incompressible Navier-Stokes equation.

The lattice-Boltzmann method is inherently dimension less. Length scales are treated
as lattice units (equal to the grid spacing A) and time is represented in time steps.
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2.2.2 Large Eddy Simulation

For the simulation of flows at industrially relevant Reynolds numbers (i.e. at turbulent
conditions) direct simulation of the flow is not feasible and turbulence modelling is
required. The time dependent character of the lattice-Boltzmann method makes it
suitable for the implementation of a sub grid-scale (SGS) model. In this way large-scale
motions are explicitly solved, while all small-scale motions, typically smaller than two
times the grid spacing, are filtered out. This approach is usually referred to as Large
Eddy Simulation (LES). The filtering of small-scale motion is based on the assumption
that the motion of the smallest scales is isotropic in nature and that the SGS energy is
dissipated via an inertial subrange that has a geometry independent character. Thus,
the turbulent flow at the sub grid-scale can be represented by a SGS eddy viscosity (v;).
The LES-model applied in this research is a standard Smagorinsky model (Smagorinsky
((1963)) where the eddy viscosity is related to the local rate of deformation:

v =12, VS? (2.8)

where [,,;,; is the mixing length of the sub grid motion. The rate of deformation S? is

calculated by \
1 {/0u Ou 2
2~ Y% s _ = .
S = 3 (8355 + Bza 3 aﬂV 11> (29)

with 4,5 the Kronecker delta. The Smagorinsky constant ¢, is defined as the ratio
between the mixing length and the grid spacing. This constant is related to the cut-off
length of the turbulence model /;. This can be estimated from (Eggels (1994)), assuming
isotropic homogeneous turbulence at the sub grid-scale:

Imiz = s = 0.08251;. (2.10)

The cut-off length indicates the length scale in the turbulent energy spectrum, below
which all motion is considered homogeneous isotropic turbulence, the contribution of
which to the large scale fluid motion is captured by the turbulence model. Implementa-
tion of this LES model into the lattice-Boltzmann framework is rather straightforward,
because the rate of deformation tensor (equation 2.9) is essentially contained within the
method. A local total viscosity (v + 1) is calculated and applied in the collision step.

2.2.3 Boundary Conditions

Boundary conditions are imposed onto the fluid via the external force vector f(x,¢) from
equation 2.5. A force is applied on a grid node x in order to manipulate the fluid with the
view of obtaining a prescribed velocity at this grid node. Thus, inlet and outlet flows can
be imposed, no-slip boundaries at the surface of an object can be imposed, or the fluid
can be manipulated to generate velocity fluctuations to simulate turbulent conditions.
When imposing the boundary of an object not located at the position of the grid nodes,
an interpolation-extrapolation scheme is used. Derksen et al. (1997} developed a method
of adaptive force fields within the lattice-Boltzmann framework. This method, used
for the Somers (1993) type lattice-Boltzmann scheme has been modified for the single
relaxation time scheme that is used for the particle simulation presented in section 2.5.
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Figure 2.2: Imposing a circle on a 2D lattice. (o) represent lattice nodes and (+) circle
points.
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Figure 2.3: Interpolation of the fluid velocity at point P between grid nodes 1 and 2.

The force field technique is best explained by the following example. Suppose one
wants to impose no-slip boundary conditions at the circle within the flow-domain (see
figure 2.2). The circle is defined by points located in the computational space at the
crosses on the circle. These points have a velocity that is determined by the transla-
tional and rotational velocity components of the object. A force is applied at the nodes
surrounding each of these points to force the fluid to obtain a velocity related to these
points. This force is determined in two steps. First, the actual fluid momentum at a
point on the circle is determined by first-order Lagrange interpolation from the surround-
ing grid nodes. Equation 2.11 and figure 2.3 demonstrate this for the one-dimensional
case.

pu, = (puy +£1) -y + (pug + f2) - (1 — ) (2.11)

The force applied to the grid node in a previous step is incorporated in the interpo-
lation to account for the effect that two points on the circle may affect the fluid at the
same grid node. 7y represents the fractional distance between point P and point 2. Now
a force is defined at point P that opposes the difference between u, and u,.,. Second,
this force f;, applied on nodes 1 and 2, is calculated by extrapolation of the opposing
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force at point P to the grid nodes using the same linear interpolation coefficient ~. For
the one-dimensional example this is given by equations 2.12 and 2.13:

fl =1 +7 p(ueer — ) (2.12)

£ =f+ (1—7) pliye — up) (213) Q

This method can be extended to two and three dimensions by linear interpolation and
extrapolation over the respective 4 or 8 surrounding nodes of an object surface point and
can also be extended to higher order interpolation schemes. The total hydrodynamic
force on an object can be determined by summation of the forces applied at the grid
nodes surrounding the surface of the object.

‘ 2.3 Crystalliser CFD simulations

As a case study, the internal flow of a pilot scale 1100 I DTB crystalliser was simulated.
| The crystalliser subject of this CFD study has been investigated in many previous crys-
‘ tallisation studies (e.g., Bermingham et al. (1998) or Neumann et al. (1999)) for charac-
terisation of its dynamic behaviour in crystallising ammonium sulphate and potassium
nitrate under varying process conditions. Because of the complex geometry and highly
turbulent operating conditions (Re > 4 - 10%), a high-resolution CFD simulation is re-
quired. The flow data, more specifically the turbulence characteristics, thus obtained
will be used as a basis for further studies of colliding particle simulations (see section
2.4).

In the following two sections, the crystalliser setup and operating conditions are
presented and the setup of the simulation is described. Instantaneous as well as time
averaged results were obtained that are discussed in the final part of this section.

In figure 2.4, the crystalliser geometry and dimensions are given. The 1100 | DTB
crystalliser is equipped with a marine type impeller which is placed at the bottom
section inside the draft tube. The impeller revolves in such a way that the flow is
directed upward from the bottom of the draft tube to the top section of the crystalliser.
The draft tube interior contains four baffles. At the top of the crystalliser, vacuum
is applied in order to lower thc boiling temperature of the crystal slurry. The crystal
slurry is circulated downwards along the outside of the draft tube. The outer shell of
the crystalliser, equipped with six baffle skirts and six fines flow outlets, is a settling
zone where an upward flow causes classification such that fine crystals are removed from
the crystalliser. The flow containing fine crystals is passed through an external heat
exchanger for heat input and dissolution of fine crystals and returned to the bottom
section of the crystalliser. The bottom of the crystalliser also contains a feed inlet. The
operating conditions of the crystalliser are given in table 2.1. Under these operating
conditions, the crystalliser produces ammonium sulphate crystals in the size range from

2.3.1 Crystalliser setup and geometry
500 to 1000 wm at a slurry density of 10 to 20 vol%.

e
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Figure 2.4: Crystalliser and stirrer geometry and dimensions. Side view and top view of
the 1100 [ DTB crystalliser and the marine type impeller. Dimensions are given in cm.
The impeller is placed 12 cm from the bottom of the crystalliser. Points (A), (B) and
(C) are monitoring points, placed at (A) the centre of the crystalliser, (B) 15 cm from
the centre and (C) 21 cm from the centre, 7.5 cm above the impeller in a vertical plane
containing two draft tube baffles.

Table 2.1: Operating conditions and simulation settings of the 1100 { DTB crystalliser.
The crystalliser properties were estimated for an ammonium sulfate suspension of 10
vol% solids in a saturated solution at 60° C' (see also table 2.4).

Physical conditions Simulation conditions

Impeller speed [rpm]| 320 Impeller speed [rp ts] 1/3200

v [m?/s] 20410  ug (-] 1410~

Re Impeller [-] 615,000 Re Impeller [-] 240,000

dult feed [m/s] 0.14 b1 feed [lu/ts]  1.17-1073

¢,!! fines [m/s] 1.20 ¢,/ fines [lu/ts] 14.6-107%
timestep [us/ts] 58

gridspacing A {mm/lu] 5.0
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2.3.2 Crystalliser simnulation setup

"The crystalliser was simulated on a computational domain of 552 x 253 x 253 (= 35.5-10)
grid nodes. Thus, a spatial resolution of 5.0 mm per lattice unit was obtained. The
geometry and stirrer were implemented in the computational domain via a second order
adaptive force field technique analogous to the first order method presented in section 2.2.
The Smagorinsky constant c, was set to 0.11. In order to keep the simulation within
the constraint of the incompressibility limit, the impeller speed was kept well below the
speed of sound of the lattice gas and was set to complete one revolution in 3200 time
steps. Table 2.1 contains the simulation settings. The impeller Reynolds number given
in table 2.1 is calculated with
2
Re = ﬁD’ﬂ. (2.14)
v
The impeller Reynolds number is a function of the slurry viscosity, which is a function
of the slurry solids concentration. The slurry viscosity was estimated with Krieger’s
equation (Liu (1999)),

)

where ¢, is the maximum packing limit particle concentration, which was set 0.68. The
effect of the particles on the overall slurry viscosity is twofold. In the first place, during
operation, the slurry density varies from 10 to 20 vol% This causes the impeller Reynolds
number to vary between approximately 800,000 and 400,000 during operation. In the
second place, the slurry concentration is not homogeneously distributed throughout the
crystalliser. Streaks of high and low solids concentrations will form, influencing the local
viscosity throughout the crystalliser.

At the given scale of 1100 [ and the given high Reynolds numbers, as a first approach,
the slurry density may be considered practically homogeneous. The high Reynolds
number of the crystalliser indicates that the assumption of a homogeneous suspension
at least on the large scales can be justified. The difference in Reynolds number between
the pilot scale crystalliser and the LES will hardly result in a change in the overall
obtained flow field. At higher Reynolds numbers the fluid flow will mainly exhibit an
increase in motion at the small length scales (O(n)). The large scales of fluid motion are
limited by the size of the equipment and therefore fixed, while the Kolmogorov scale can
be rescaled based on the Reynolds similarity. Furthermore, the small scale motion is not
resolved but filtered by the turbulence model, which will further suppress the difference
in the flow fields at increasing Reynolds number.

©= (1 — (2.15)

The lattice-Boltzmann/LES code was parallellized by means of domain decompo-
sition. The computational domain was divided in 8 sections. Message passing was
performed by the MPI protocol. The total memory requirement for this simulation was
approximately 3.0 gigabytes. The simulation was performed on 8 nodes of a parallel
cluster of pentium/JJ 500 MHz processors. The simulation of one impeller revolution
on this system took about 26 hours wall clock time. After developiment of the turbulent
flow field the simulation was continued for another 6.4 impeller revolutions in order to
obtain time-averaged data and time-series.



22 Chapter 2. Modelling hydrodynamics of industrial crystallisers

Table 2.2: Operating parameters from the 1100 [ DTB crystalliser. Values derived from
the high resolution CFD and from literature (Neumann et al. (1999))

From CFD | From literature
Po (-] 0.47 0.40
€ (W/kg] 1.73 1.48
Pu -] 0.25-0.30 0.32

2.3.3 Results of the crystalliser LES simulation

In figure 2.5, the velocity field and contour plot of the rate of energy dissipation are
presented as found by the LES simulation. The time averaged contour plot of figure 2.5
(a) clearly demonstrates that a wide distribution in the rates of energy dissipation can
be observed throughout the crystalliser. Of particular interest is the difference in the
rate of energy dissipation between the core of the flow inside the draft tube and the outer
zone. Apparently, the pumping activity of the marine type impeller is mainly present at
the impeller tip. This is observed in the vector plots of both figures 2.5 (a) and (b). At
a larger distance upward from the impeller, the velocity profile becomes more uniform
although averaged velocities in the core remain lower. The contour plots of the rate of
energy dissipation demonstrate that energy dissipation is highest near the impeller tips
and near the draft tube wall and baffles. Figure 2.5 (b) gives an instantaneous realisation
of the flow field. In this figure the resolved turbulent structures can be clearly seen, both
in the velocity field and in the rate of energy dissipation. An interesting feature is that
the rate of energy dissipation in the impeller region is apparently strongly dependent
on the impeller position since the contour plot of figure (a) gives a larger high intensity
region than that of figure (b).

The difference in flow characteristic at different radial positions in the crystalliser is
also clearly seen in the time-series of figure 2.6. At three monitor-points, (A), (B) and
(C) a time-series of flow data was stored. Parameters that were determined from these
points are presented in table 2.3 and will be discussed more extensively in section 2.4.
From point (A) to (C) (from the centre to the outside of the draft tube), the frequency of
the fluctuations increases, which indicates a higher degree of turbulence. A periodicity in
the temporal behaviour due to the impeller passing is not observed even at this relatively
close distance from the impeller. A final remark can be made about the top section of
the crystalliser, where the flow enters the down coming region. Apparently, the flow is
drawn into the down comer due to the impeller action. This causes both a high degree
of turbulence in the top section of the down comer and a short circuit flow at the boiling
zone.

In table 2.2, the performance of the crystalliser impeller as determined from the
simulations is compared to typical literature values. This table demonstrates that the
values obtained are in the same range as those found previously in literature.
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(@

(b

Figure 2.5: Flow field of the 1100 [ DTB crystalliser. (a) The time-averaged vector plot
(left) and contour plot of the rate of energy dissipation (right). (b) An instantaneous
realisation of vector plot (left) and contour plot of the rate of energy dissipation (right).
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Figure 2.6: Time series (left) and pdf (right) of the axial velocity component inside the
draft tube at the three monitor points (A), (B) and (C) (see fig 2.4). The p.d.f. is given
in arbitrary units.

2.4 Length scale analysis

The objective of our study is to develop a method to predict collision rates in the
turbulent flow field of an industrial crystalliser. The collision rates will be calculated
from the direct numerical simulation (DNS) of individual particles in a periodic box. The
development of the box simulations with particles is the subject of the following chapters
(in section 2.5 a single settling sphere is presented to demonstrate of a moving particle).
In this section a length and time scale analysis is given to identify the relationship
between the LES simulation of the crystalliser and to explore the feasibility of a DNS-
particle simulation. The LES simulations assume a pseudo-homogeneous single phase
fluid while the individual particle simulations describe a discrete two phase system. The
LES simulation is used to set the scene for the discrete particle simulations and a number
of assumptions are made to identify the parameters that determine the relationship
between the two types of simulations. The following two sections discuss parameters
that characterise the solid phase and the turbulent crystalliser flow. The third section
introduces a method to estimate the collision rate of a given type of particles in a given
turbulent flow field. This collision rate is used only to estimate the required simulation
time to obtain sufficient statistical data on particle collision rates. The theoretical
parameters that are obtained in the following three sections are evaluated at the monitor
points in the flow field of the crystalliser to demonstrate the evolving dimensions and
characteristics of box simulations that represent these three points.
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2.4.1 Parameters determined by the particulate phase

The first parameter that can be addressed is the particle size. In the type of industrial
crystallisation processes subject of this work, the average particle size varies in a range
of 100 to 1000 pum. Under the turbulent conditions of an industrial crystalliser, the
Kolmogorov length scale typically ranges from 10 to 100 pm. Thus, the size of the
crystals typically exceeds a number of times the Kolmogorov length scales encountered
in the crystalliser. The particle diameter is obviously determined by the choice of model
system from the crystallisation process. The first approach is to represent the solid
phase as mono disperse spheres with a diameter equal to the average particle size of the
crystal product. The true crystal product has a CSD starting at sub-Kolmogorov length
particles. Nevertheless, this choice can be justified based on the argument that the
topic of interest is the collision rate and intensity. To determine attrition, only particles
with sufficient inertia will fracture, being typically the larger particles. Particles are
implemented at high resolution with respect to the grid spacing (see also section 2.5)
and therefore the particle diameter should, as a rule of thumb, cover at least 10 grid
units for sufficient resolution. The grid spacing is determined by the hydrodynamic
conditions (see section 2.4.2) and therefore after choosing a typical particle size, the
particle diameter in lattice units is fixed.

The minimum length of the box size is determined by the length at which the fluid
velocities are uncorrelated (see section 2.4.2). One could argue that not only the fluid
velocity should be uncorrelated at half the box size, but also the particle interactions.
The reason for this is that in order to prevent numerical artifacts, a particle at the
centre of the box should not influence its own trajectory via the periodic boundaries of
the box. Therefore, a criterion to quantify the distance at which two particles influence
each other is determined by the long-range hydrodynamic interaction force. For two
identical spheres in the Stokes regime, the leading term of this interaction force decays
as 1/R (Kim & Karrila (1991)). A rule of thumb that can be applied here is that the box
dimensions should exceed approximately 10 to 20 particle diameters for the interaction
force to break down. Furthermore, because of the turbulent fluid field and the expected
non-Stokesian regime of the particles, the interaction force will break down stronger
than 1/R. Thus, the criterion for the box size determined by the demand of uncorrelated
turbulent flow will be strict enough to prevent the particles to be self-correlated.

The particle concentration in the box simulations is a set parameter that is chosen
based on the crystal slurry concentration encountered in the crystallisation process un-
der consideration. The main assumption that has been made for the overall crystalliser
flow simulation is that the slurry flow is represented as one homogeneous fluid phase.
Thus, the solid phase is assumed to be homogeneously spread throughout the crys-
talliser. When focussing on a small section in the crystalliser a transition is made from
a pseudo single-phase simulation to an explicit two phase simulation of fluid with sus-
pended particles. The assumption of a homogeneous suspension is also required for the
box simulations because of the limited size of the box and the lack of knowledge on the
distribution of the crystals throughout the crystalliser. This is warranted by the fully pe-
riodic boundary conditions of the box for both the fluid phase and the particulate phase.
Because of the limited size of the box and the limited number of contained particles, at



26 Chapter 2. Modelling hydrodynamics of industrial crystallisers

any position inside the box any particle will experience a practically homogeneous and
constant particle concentration.

The particle inertia can be characterised with the particle relaxation time 7, which
is a measure for the response time of a particle subject to external accelerations. For
Stokesian particles this relaxation time is given by

- (2pp +pf)d;<2;
P 36u

Although the particles in the turbulent flow field are likely to exhibit Reynolds numbers
larger than 1, we use this parameter as an estimate for the order of magnitude of the
particle inertia. Two particles coming from two uncorrelated eddies will collide if their
inertia is large enough to make them deviate from the streamlines. The relaxation time
of the particles can be used as a measure to determine which turbulent scales need to be
investigated. The large scale motion of the turbulent fluid flow will cause all particles in
a cluster to move simultaneously in the same direction without effective relative motion
and thus the contribution of the largest scales to collisions will be small. On the other
hand, the smallest scale motion (i.e. at the Kolmogorov length scale) is typically one
order of magnitude smaller than the average particle size and thus the net contribution
of this motion to particle collisions will also be negligible. The scales of fluid motion
that contribute most to the particle collisions are probably the scales that are identified
with a time scale of the same order of magnitude as the particle relaxation time.

(2.16)

2.4.2 Turbulence length and time scales

In order to have a consistent method to translate the GS and SGS turbulent fluid motion
of the crystalliser to a DNS of the fluid flow in a periodic box, the assumptions that are
made for LES modelling need to be investigated and the key parameters that characterise
the flow conditions at both the GS and the SGS need to be determined.

As discussed in section 2.2.2, the LES modelling approach is based on the assumption
that the turbulent motion at the SGS is isotropic. The kinetic energy contained at the
grid scale is transported via a cascade of eddies to the smallest length scale or dissipation
scale where it is dissipated. The energy spectrum of the cascade of large to small eddies
is assumed to behave according to the k~3-law that characterises the inertial subrange
(Eggels (1994)) and can be taken as (Tennekes & Lumley (1973)):

E(k) = ageik™3 (2.17)

where ay is the Kolmogorov constant with an approximate value of 1.6. Thus, the SGS
motion of the LES simulation is characterised by the energy that is contained at the’GS
and SGS and the rate at which energy is locally dissipated. From the LES simulations,
the rate of energy dissipation (¢) and the energy that is contained by the motion at the
GS and the SGS turbulence, Egs and Esgg, are calculated according to the following
equations:

€ =1,8° (2.18)

1
EGS = *2‘(114/2 + 1),2 + w’Z) (219)
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where «/, v' and w’ are the root-mean-square values of the z,7, and z components of the
resolved velocity fluctuations. Finally an equation for Egqs (Eggels (1994)) is:

v} 12,.5%

E — L — max 2.20
568 T 2TE,, T 027 (2.20)

The total turbulent kinetic energy & is given by
k = Egs + Esas (2.21)
A mean square velocity related to the kinetic energy of a scale i can be calculated with

— 2

U7 =35 (2.22)

From the LES simulations a number of characteristic length and time scales can be
determined that need to be resolved by the temporal and spatial resolution of a DNS
of the turbulent flow. The dissipation scale or Kolmogorov length scale is the smallest
length scale encountered in the turbulent flow. This length scale and the time scale
associated with this length scale are given by

3

= (?)% (2.23)

T = (5)2 (2.24)

€

A criterion for good representation of the microscopic length scales is given by the
demand that the grid spacing wave number times the occurring Kolmogorov length is
greater that unity, i.e. A < m7 (Sundaram & Collins (1997)).

A criterion that should be satisfied and determines a minimum box dimension is that
the fluid velocities are uncorrelated over a distance of at least half the box length. With
the assumption of the existence of an inertial subrange, the correlation coefficient fi,(r)
can be used to estimate this length. This coeflicient describes the correlation of fluid
velocities along a line joining two points and for the inertial subrange can be estimated
by the following equation(Abrahamson (1975)):

fu(r) =1— 22 (2.25)

From this equation, the minimum distance Iy at which velocities are uncorrelated is given
when f11(r) =0:

lg =~ (2.26)

A characteristic integral timescale is given by the eddy turnover time. This timescale
is given by the ratio of the kinetic energy of turbulent motion and the rate of energy
dissipation:

T, = % (2.27)
An integral timescale for the SGS motion is determined by the dissipation of the SGS
energy Fsas;
Escs

Tses = (2.28)
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Table 2.3: Parameters obtained from the three monitor points

Position € Eegs Esgs  loasy loscsy 7 T. Tsgs T
[W/kg] [m?/s*] [m?/s*] [m] [mm] [mm] [ms] [ms] [ms]
Point (A) 0.043 0.029 0.003 0.075 2.340 1.503 677.4 66.83 37.45
Point (B) 0.959 0.285 0.020 0.104 1.983 0.692 2975 21.26 7.930
Point (C) 4.122 0.951 0.054 0.147 2.007 0.480 230.6 13.18 3.826

2.4.3 Collision frequencies

In order to obtain sufficient collision statistics a (large) number of collisions must be
obtained during the simulation and this sets a minimum requirement to the simulation
time. Thus, to address the feasibility of the proposed simulation approach, an estimate
of the collision rate is required. The theoretical framework of Abrahamson (1975) can
be used to estimate collision frequencies for given particle and flow conditions. Based on
kinetic gas theory, Abrahamson derived an expression for the collision rate for particles
with large inertia in isotropic turbulence, which is also the subject of this study. His
analysis was based on the correlation between fluid motion and particle motion for
particles in turbulent fluid in an inertial subrange that is described by the correlation
function in equation 2.25. The mean square velocity of an individual particle is calculated
with (Abrahamson (1975)):

U _Tn+b (2.29)
U2 Tfmp+1 '
and b is calculated with 3
Pf
T it — 2.30
(2pp + pf) ( )

The mean square fluid velocity and timescale that need to be applied in expression 2.29
are estimated from either the GS or the SGS kinetic energy. The expression for the
collision rate of mono disperse particles takes the form of:

= 4\/_n2d2\/7 (2.31)

The collision rate of equation 2.31 is used in the following section to estimate the duration
of the box simulations in order to obtain sufficient collision statistics.

2.4.4 Length scales in the 1100 [ DTB crystalliser

The data obtained from the monitor points of the crystalliser simulation is used to
estimate the parameters for the box simulations that should represent the conditions
at the monitor points. A number of properties is given in table 2.3. This data clearly
demonstrates an increase in turbulence towards the outside of the draft tube, as was
already observed in section 2.3. In order to estimate crystal collision frequencies, the
crystal phase needs to be chosen. The crystalliser of section 2.3 is used to produce
ammonium sulphate crystals. In table 2.4 the solid and fluid phase of a typical crystal
slurry are given, determined for a saturated ammonium sulphate solution. The data in
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Table 2.4: Properties of a typical ammonium sulphate slurry. The fluid properties were
determined for a saturated ammonium sulphate solution at 60 °C.

d, 600  [um] n, 884-10%5  [#/mf
pp 1768  [kg/m?| Pf 1250 [kg/m3]
T, 241  |msg] pr 1991073 [kg/(ms)]

C 010 [m®/m?

table 2.3 demonstrates that the Kolmogorov length scale is of the order of the particle
size. However, in the actual crystalliser, the Reynolds number is higher than in that
of the large-eddy simulation. This may further decrease the actual Kolmogorov length
scale in the turbulent suspension by a factor of roughly 0.5.

To estimate the size and resolution for the box simulations, a particle size and box
size need to be chosen. If one were to capture the turbulent flow field of the crystalliser
in the turbulent box simulations, then these simulations should capture at least the
integral length scales lygg) of the crystalliser flow. For case A this would mean that
a box should capture roughly 7.5% ¢m® and accordingly 373.000 particles. A domain
size for such a simulation would be approximately 1250% grid nodes. These figures are
not considered feasible for studies of turbulent suspension simulations. Apart from the
feasibility, the characteristics of the turbulent flow field in the crystalliser are also not
likely to be isotropic on such a length scale, which is a requirement for the turublent
box simulations.

On the other hand, the sub-grid turbulence of the large-eddy simulation is assumed
to be isotropic. The integral scale of this turbulent flow is of the order of 2 mm. By
choosing the domain as 1 em?, a simulation can be set up that contains 880 particles,
and where the integral scale of the sub-grid scale turbulent flow is captured a number of
times. The resolution should be sufficient to meet the requirement on the Kolmogorov
length scale. Therefore the resolution needs to be determined, which is set by choosing
the resolution of the particle size. In a typical simulation of resolved particles, a particle
is chosen to occupy approximatley 10 gridnodes per particle diameter. This fixes the
resolution of the simulations to 60 um/lu. At this resolution, the demand that the
Kolmogorov length scale should be captured by the computational grid is easily met. A
box of 1 em® occupies 167% grid nodes, which can be considered a feasible box size.

In this way, a box simulation of a suspension in an isotropic turbulent flow field will
correspond to the motion of the particles at the sub-grid scale of the crystalliser flow.
The typical particle velocity and particle Reynolds number encountered in this flow field
are given in table 2.5. The velocity fixes the temporal resolution of the simulation.
The lattice-Boltzmann scheme demands that the maximum velocity in the simulation
is maintained well below the speed of sound. Therefore, U, was used as a measure for
the maximum velocity, and was set to correspond to a velocity in grid units of 0.01
lu/ts. Due to this requirement, the Kolmogorov time scale is approximately 2000 time
steps, which assures that sufficient temporal resolution is warranted to capture the high-
frequency motion of the turbulent flow. Table 2.5 gives the particle Reynolds number of
the spheres. By use of equations 2.29 and 2.31, the collision rate is determined that is
encountered at the monitor points. To obtain sufficient collisions for statistical analysis,
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Table 2.5: Estimation of the collision frequencies and particle properties for a DNS
simulation of mono disperse solid spheres in a isotropic turbulent flow.
Position Re, Ug Z tsim Timestep
][] [#/ms) [s] s
Point (A) 12.88 0.002 0.87-10"! 1.14 13.71
Point (B) 34.29 0.014 2.33 -10! 0.43 5.15
Point (C) 55.96 0.036 3.80 -10'! 0.26 3.15

the time in which 100,000 collisions occur is taken as the simulation time, which for
all three simulations is approximately 84.000 time-steps, which can also be considered
feasible.

2.5 Sedimentation of a single particle

In this section a single settling particle is presented to demonstrate the method of the
lattice-Boltzmann simulation of moving particles. A single sphere settling in a semi-
periodic box is presented. A sphere that moves in a cluster of spheres under turbulent
conditions will experience a continuously changing environment and will continuously
collide with neighbouring particles. The simulation of a single sphere settling under grav-
ity and colliding onto the bottom wall of a box with periodic sidewalls and rigid top and
bottom wall is considered a good, first test case for the many-particle box simulations.
Although the setup appears relatively simple, a number of complex processes occur that
require accurate treatment of the hydrodynamic interaction between the particle and the
fluid: (1) simulation of the transient behaviour of the settling sphere requires accurate
description of the flow field between the sphere and the surrounding walls and of the
developing wake behind the sphere, (2) the head-on collision of the particle with the
bottom wall will make the particle reverse instantaneously and requires an accurate and
stable simulation technique that can treat such a discontinuity and (3) upon collision,
the particle will reverse in direction and move through its own wake. The relatively
simple setup of a single settling particle in a box makes this test case also a good option
for experimental validation. A recent paper on experiments of settling and collision of a
sphere in a closed box is given by Gondret et al. (1999).

2.5.1 Setup of the single particle simulation

The simulation of the single settling particle was done with a single relaxation time
lattice-Boltzmann scheme (Chen & Doolen (1998)). For the implementation of the no-
slip boundary condition of the sphere surface the forcing method as described in section
2.2 was used. The no-slip boundary condition of the box top and bottom was imposed by
a so-called bounce back boundary, a standard method for lattice-Boltzmann schemes to
impose no-slip boundary conditions. The hydrodynamic force that dictates the motion of
the sphere was obtained from the force applied on the grid nodes surrounding the sphere.
The particle acceleration was obtained from the momentum balance of the sphere, which
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Table 2.6: Setup and derived parameters of the single particle sedimentation simulation.

d, 10 [Lu] Re 3.4 [-]
pp 540 [-] Ri 0.22 [-]
pr 108 [-] St 38.0 [-]
vp 0067 |-] Upm 2.28-1072 [lu./t.s]

was used for integration of the particle trajectory. Integration of the trajectory was done
via a leapfrog algorithm (Smit & Frenkel (1996)). The particle is described as a rigid
sphere that makes a perfectly elastic collision. The simulation was done on a grid of 60 x
20 x 20 grid nodes with a sphere with a radius of 5 grid nodes and was executed for 4500
time steps. The simulation took 9 minutes on a single pentium// 450 MHz processor.

2.5.2 Results

In table 2.6, the conditions of the simulation and a number of pertinent parameters
are given. The dimensionless numbers governing the particle sedimentation, viz. the
particle Reynolds number (Re, = U, ,.d,/v), Stokes number (St, = U, ndppp/9py)
and Richardson number(Ri = (p, — ps)gd,/psUZ,,), are given and were calculated from
the maximum particle sedimentation velocity (U,,,). In figure 2.7 snapshots of the
sedimenting sphere are given and in figure 2.8 the sphere’s trajectory is presented. Here
the position h represents the distance between the bottom apex of the sphere and the
bottom of the box. The flow pattern of figure 2.7 clearly shows the development of the
circulation flow between the sphere and periodic sidewalls. The periodicity can also be
observed by the fluid acceleration at the wall, indicated by the contour plot at § = 1.14
and further. As the sphere approaches the bottom wall, fluid is clearly squeezed out of
the layer between the sphere and the bottom wall. After collision the particle velocity is
reversed instantaneously, causing a wave to propagate through the fluid upwards, which
is clearly visible at § = 6.38. This is caused due to the slight compressibility of the
lattice-Boltzmann technique. In this picture the post-collision reversed fluid velocity
profile around the sphere is also clearly visible.

2.6 Conclusion and outlook

In this chapter a methodology for the calculation of crystal-crystal collision rates in the
turbulent flow field of an industrial crystalliser is presented. The collision frequency of
crystals in the crystalliser is a complex function of the local hydrodynamic conditions.
Therefore, accurate estimation of collision data requires knowledge of the behaviour of
the flow field at the scale of the individual crystals. To obtain insight in the relationship
between the overall crystalliser hydrodynamics and the motion of individual crystals
in the crystalliser, the proposed method consists of simulating the internal flow of the
industrial crystalliser as a whole and of simulating the motion of the individual particles
suspended in the turbulent flow field in a small sub-domain (box) of the crystalliser. The
flow simulations of the crystalliser as a whole can be used to set the scene for the particle



32 Chapter 2. Modelling hydrodynamics of industrial crystallisers
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Figure 2.7: Snapshots of the lattice-Boltzmann simulation of a sphere settling under a
gravitational force. The contours represent the magnitude, the arrows the direction and
magnitude of the fluid velocity. Dimensionless velocity in lattice units per time step and
dimensionless time as 0 = tUp », /dp.
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Figure 2.8: The trajectory of a sphere settling under a gravitational force. Dimensionless
position (h/d,) vs. dimensionless time (0= tU,,./d,).

simulations. Back-coupling of results from particle simulations to the crystalliser flow
simulation is not considered.

It is demonstrated that the lattice-Boltzmann method combined with a LES type
turbulence model can be used as an efficient technique to resolve the complex flow
field of the 1100 [ DTB crystalliser. High resolution simulations done at a Reynolds
number of 240,000 produced detailed information on the turbulence characteristics of
the crystalliser. A pseude single phase simulation was used to represent the two phase
slurry flow of the crystalliser. Although this approach sets limitations to simulations
where particle dispersion becomes an important factor for the resulting flow field, it is
demonstrated that the here performed simulation is in good agreement with previous
literature values for global characterising dimensionless numbers (Po and Pu numbers)
of the presented crystalliser.

By analysis of the appropriate length and time scales a theoretical framework is
established to relate the conditions of the crystalliser to the conditions of the box simu-
lations. A key parameter that identifies the particle phase is the particle relaxation time,
a parameter that indicates the particle response to external accelerations. Parameters
obtained from the LES simulations that identify the turbulence characteristics are the
turbulent kinetic energy at the GS and SGS and the rate of energy dissipation. These
determine the integral time scales of fluid motion. The length scale at which fluid motion
is uncorrelated sets limitations to the feasible size at which the box size can represent
the flow field of the crystalliser. Therefore periodic box simulations can be used to study
particle collisions comparable to the motion at the sub-grid scale level of the large-eddy
simulation. It is concluded that simulation of individual particles in a periodic box under
turbulent conditions is feasible and can be used to simulate the local conditions of the
crystalliser.

The many-particle box simulations are currently under development. As a first test
case of microscopic particle modelling, the sedimentation and collision of a single sphere
towards a solid wall is simulated to demonstrate that the lattice-Boltzmann method
is capable of simulating moving and colliding spheres in a confined geometry. Special
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attention is required for the accurate treatment of a collision of two particles. Two
approaching particles at grid-spacing distance will violate the lattice-Boltzmann frame-
work for an accurate description of the flow in the layer between the particles and which
describes the evolving hydrodynamic forces. This requires a sub-grid collision model
that gives an accurate treatment of the flow in the layer between the spheres. Available
approaches are application of lubrication theory or the use of a collision model along the
lines of a method described by Zenit & Hunt (1999). For validation of a collision model,
the dynamics of a particle approaching a wall will be experimentally investigated. In our
laboratory, an experimental setup is being developed for the sedimentation and collision
of a single sphere in a confined geometry. In this experiment the flow field of the sphere
upon collision will be measured, using particle image velocimetry.

Future work will further consist of the application of a method to generate turbulent
fluid flow in the lattice-Boltzmann framework. When this is achieved, box simulations
will be performed in correspondence with the flow conditions and box dimensions es-
timated in this contribution. The obtained collision frequencies and intensities can be
used to calculate agglomeration and attrition rates in crystallisation processes.

List of Symbols

Symbol description unit
c; discrete velocity -
Cs Smagorinsky constant
Dy impeller diameter m
d, particle diameter m
E Energy m2s2
fi mass density function —
fi velocity correlation function -
f force vector —
h z-coordinate m
k wave number m™!
lmiz mixing length m
Iy cut off length m
lo zero corelation length m
Ny particle number concentration  #m 3
impeller speed revs!
N, number of particles #m3
9 number of gridcells #
Nis number of timesteps #
M lattice directions -
P pressure Pa
r distance m
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rate of deformation
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description

grid spacing

average energy dissipation rate
energy dissipation rate
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length ratio

turbulent kinetic energy
dimensionless time
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dynamic viscosity of pure liquid
kinematic viscosity
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kinematic viscosity of 1B scheme
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particle relaxation time
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volume flux

Power number
Pumping number
Reynolds number
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unit



36 Chapter 2. Modelling hydrodynamics of industrial crystallisers
CFD Computational Fluid Dynamics
CSD  Crystal Size Distribution
DNS Direct Numerical Simulation
DTB Draft Tube Baffle crystallizer
GS Grid Scale
LES Large Eddy Simulation

SGS

Sub-Grid Scale




Chapter 3

PIV experiments and
lattice-Boltzmann simulations on a
single sphere settling under gravity

A comparison is made between experiments and simulations on a single
sphere settling in silicon oil in a box. Cross-correlation particle imaging
velocimetry (PIV) measurements were carried out at particle Reynolds num-
bers ranging from 1.5 to 31.9. The particle Stokes number varied from 0.2 to
4 and at bottom impact no rebound was observed. Detailed data of the flow
field induced by the settling sphere were obtained, along with time series
of the sphere’s trajectory and velocity during acceleration, steady fall and
deceleration at bottom approach.

Lattice-Boltzmann simulations prove to capture the full transient behaviour
of both the sphere motion and the fluid motion. The experimental data were
used to assess the effect of spatial resolution in the simulations over a range of
2 to 8 grid nodes per sphere radius. The quality of the flow field predictions
depends on the Reynolds number. When the sphere is very close to the
bottom of the container, lubrication theory has been applied to compensate
for the lack of spatial resolution in the simulations.

Key words: lattice-Boltzmann, PIV measurement, discrete particle simu-
lation, sedimentation

This chapter has been accepted for publication in Phys. Fluids (2002)

3.1 Introduction

Particle motion and particle collisions play an important role in the performance of many
industrial processes involving suspension flow. For instance, in industrial crystallisation,
crystal-crystal collisions determine kinetic mechanisms such as agglomeration and nu-
cleation due to crystal fracturing. Presently, we are developing a method to study
suspensions under turbulent conditions. For this method, it is attempted to fully resolve
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the flow field around the particles and to make a direct coupling between the particle
and the fluid motion. To validate the way the particles are represented in the simula-
tion procedure, we compare experimental and numerical results on the motion of a single
sphere settling in a closed box. In the experiment, the transient motion of a single sphere
and its associated flow field were measured from the moment of release to a steady-state
or maximum settling velocity to deceleration and rest at the bottom of the box. For
this experiment, the Reynolds number, based on the steady state settling velocity of a
sphere in an infinite medium (Re = ppuqcdp/pts) was varied between 1.5 and 32. This
range of Reynolds numbers was chosen because it corresponds to the range of Reynolds
numbers encountered in our sample crystallisation process for production of ammonium
sulfate crystals (Ten Cate et al. (2001)).

A particle settling towards a wall has been studied previously by Brenner (1961),
who derived an analytical solution in the creeping flow regime. However, at the Reynolds
numbers studied, the particle is well out of this regime. Recent experimental work in this
field has been presented by several authors (Gondret et al. (2002, 1999); Zenit & Hunt
(1999); Joseph et al. (2001)), who studied the wall approach and rebound, to obtain
restitution coefficients for submerged particles colliding with a wall. The parameter
that determines rebound is the Stokes number (St = 1/9Rep,/ps). Gondret et al
(2002) demonstrated that the critical Stokes number above which rebound occurs is
approximately 10. In our experiments, the Stokes number was varied between 0.19 and
4.13 and no rebound was observed.

We chose to perform the experiment in a closed container for a number of reasons.
Firstly, the box width to particle diameter ratio was kept relatively small, to avoid the
need to make assumptions regarding the domain size or the external boundary conditions
in the simulations. In this way the full flow field of the box can be simulated, using no-slip
boundary conditions for the outer tank walls, while having sufficient resolution to capture
the flow field of the particle and still simulate the flow at a moderate computational
domain size. In this way, the influence of the container walls on the particle motion
is contained both in the experiment and in the numerical simulation. Secondly, the
experiment is transient and has a limited time-span. This has the advantage that the
transient character of the simulations can be assessed throughout the different stages of
acceleration, steady fall and deceleration at bottom approach.

The first objective of this chapter is to present our experimental data on a settling
sphere in a confined geometry. The data set consists of the velocity field of the fluid
surrounding the settling sphere and the trajectory (i.e. position as a function of time).
The velocity field has been measured using cross correlation particle image velocimetry
(PIV) (Raffel et al. (1998)). The PIV experiment is described in the next section.

The second objective is to present our approach to the simulation of freely moving
particles based on the lattice-Boltzmann method. This method was chosen because it
provides a robust numerical scheme that can efficiently treat the complex geometry of
freely moving particles. A further advantage of this method is that it can be parallelised
at high computational efficiency. The use of the lattice-Boltzmann scheme for simulation
of suspensions has been proposed by Ladd (1994a,b), who also presented validation of
his method. A number of other authors (e.g.Behrend (1995); Qi (1999); Aidun et al.
(1998b)) have used the lattice-Boltzmann method to simulate suspended particles. Re-




3.2. Experimental Setup 39

cent developments on direct simulation of suspensions can alse be found in Koch & Hill
(2001).

Our approach differs from the method of these authors in two ways. Firstly,we
use a scheme for solving the lattice-Boltzmann equation, based on the work of Eggels
& Somers ((1995). This scheme explicitly treats the higher order terms in the lattice-
Boltzmann equation which improves the stability of the numerical scheme and allows for
the use of a low kinematic viscosity. Secondly, we use a fundamentally different method
for implementation of the moving no-slip boundary at the surface of the solid particle.
In our approach, we apply the adaptive force-field technique that has been used in the
work of Derksen & Van den Akker ((1999) to implement both the rotating impeller
and the steady vessel walls in the numerical study of the turbulent flow in a stirred
vessel. To our knowledge this approach has not been applied previously for simulating
freely moving particles. However, based on the good results obtained in previous studies
(Derksen & Van den Akker ((1999, 2000)), we had confidence that this approach could
also be used to simulate freely moving particles at a relatively low spatial resolution per
particle, bearing in mind that the method needs to be applied to simulate many particles
(0(10%)) in a turbulent flow.

Therefore, our final objective is to assess and benchmark our numerical method with
the flow cases considered in this chapter. In section 3.3, a number of specific details of the
setup of our particle simulations are discussed. A comparison between the experimental
and numerical results is made in section 3.4.

3.2 Experimental Setup

The objective of the experiment was to accurately measure both the trajectory (i.e. the
position as a function of time) and the associated flow field of a settling sphere from
its moment of release until rest at the bottom of a vessel, where the ratio of the vessel
dimensions to sphere radius was kept relatively small, such that the full flow field could
be simulated under identical conditions.

As the settling sphere, a precision Nylon ball bearing with a diameter d, = 15 mm
and density p, = 1120 kg/m?® was selected. The container dimensions were chosen
as depth x width x height = 100 x 100 x 160 mm (see Fig. 3.1). Upon start of an
experiment, the sphere was released while simultaneously triggering the camera, system
to start filming. The sphere was hanging 120 mm from the bottom of the tank at the
capillary tip of a Pasteur pipette that was connected to a vacuum system. The sphere
was released by abruptly opening an electronic valve, thus disconnecting the vacuum
from the pipette.

Various types of silicon oil were used as the working fluid, because of their good
optical accessibility and weak temperature dependency of the viscosity. The Reynolds
number of the settling sphere was based on the sedimentation velocity uq, of a sphere in
an infinite medium. To determine u,, a relation for the drag coefficient due to Abraham

(1970) was used.
24 9.06 2
= = (224 3.1
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Figure 3.1: Experimental setup for the PIV measurement of a single settling particle in
a confined geometry

Table 3.1: Setup of the sedimentation experiments

Pr Ly Uoo Re St Camera frequency Resolution
[kg/m®] [Ns/m?] [m/s]

(-1 [-] [s7'] [-]
Case E1 970 373 0038 15 019 60 low
Case E2 965 212 0060 4.1 0.53 100 low
CaseE3 962 113 0091 11.6 150 170 high
Case E4 960 58 0128 319 413 248 high

The four experimental cases are defined in table 3.1.

The flow field was visualised with seeding particles illuminated with a (laser) light
sheet. As the light source, a Spectra-Physics 4W Argon-ion laser (2016-05) operating in
all lines mode was used. A cylindrical and a spherical lens converted the laser beam into
a sheet of 190 um thickness. The laser sheet entered the vessel via the bottom. Neutrally
buoyant hollow glass spheres approximately 10 um in size were used as seeding particles.
A continuous camera with a frame rate up to 250 Hz and an array size of 512 x 512
pixels was used to record the experiment. The flow field was measured on a grid of
interrogation areas (IA’s). An IA typically contained 32 x 32 pixels. The fluid velocity
was determined in each interrogation area by estimating the displacement of the seeding
particles between two consecutive frames through cross-correlation (Westerweel (1993)).

The desired spatial resolution and the maximum camera frame rate set a restriction
to the maximum fluid velocity that can be accurately measured, as between two frames
the tracer particles are not allowed to shift more than i part of the linear size of an
interrogation area (Raffel et al. (1998)). This limits the maximum sedimentation velocity
of the sphere, which can be taken as a measure for the maximum fluid velocity during
an experiment. The required resolution depends on the Reynolds number of the flow,
because at higher Reynolds numbers, the structures in the flow become smaller. The flow
was measured at either of the two resolutions given in Fig. 3.2. At the low resolution
(Fig. 3.2 (b)), when the array size is chosen to map three sphere diameters, the maximum
allowed sphere velocity is 0.18 m/s, which is larger than any of the settling velocities
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Figure 3.2: Measurement positions at high (a) and low (b) resolution.
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Figure 3.3: Processing steps in detection of sphere position. (a) Raw PIV-recording with
sphere. (b) Part of recording after a Kuwahara-filter has been applied. (c) Result of
thresholding image b. (d) Magnification of the rear side of the sphere.

of the Nylon sphere as given in table 3.1. At the high resolution (fig. 3.2 (a)), the
maximum allowed velocity is 0.13 m/s, which is close to the sedimentation velocity of
case F4. However, the sphere is expected to move at a velocity that is lower than u
due to hindrance from the container walls. Based on the i part displacement rule, the
camera frame rate was adjusted for each experiment.

To capture the full trajectory of the particle, three overlapping fields of view (FOV)
were used at low resolution (cases E1 and F2) while the measurements at high resolution
(cases E3 and E4) were done in four FOV’s (see figure 3.2). A raw image is given in
Fig 3.3 (a). As can be seen, the leading side of the sphere was made dark to prevent
overradiation due to reflections at the sphere surface.

In each frame, the sphere position had to be determined accurately for a good inter-
pretation of the flow field. Because the laser sheet enters from the bottom and is blocked
by the sedimenting sphere, no fluid velocities could be measured behind the sphere (Fig.
3.5 (a)). The sphere’s position was determined from the coloured top of the sphere. The
motion blur was removed from the sphere by using an edge-preserving Kuwahara filter
(Scilimage (1994)) (Fig. 3.3 (b)) and after having applied a threshold (Fig. 3.3 (c)), the
y-position of the sphere was determined at pixel accuracy (Fig. 3.3 (d)). The resulting
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Figure 3.4: Experimental data on sphere trajectory (a) and sedimentation velocity (b)
at the four measured Reynolds numbers and comparison of measurement duplication of

trajectory (c) and sedimentation velocity (d) at Re = 1.5.

sphere trajectories and velocities are given in Fig. 3.4.

A raw vector image of the flow at a particle Reynolds number of 1.5 is given in Fig. 3.5
(a). Interrogation was done with IA's of 32 x 32 pixels with a 50 % overlap, resulting in
a total of 961 vectors per image. After determination of the sphere position, the vectors
inside and behind the sphere were removed from the image and (for reference) a sphere
was placed in the figure, as can be seen in Fig. 3.5 (b). In this figure, the maximum
velocities are found closely underneath the sphere where tracer particle displacements
of approximately 7 pixels were found. Velocities far away from the sphere become very
low, which gives particle displacements smaller than 0.5 pixel. Sub-pixel displacements
were estimated using a Gaussian peak fit estimator (Westerweel (1993)). The accuracy is
approximately 0.1 pixel for displacements larger than 0.5 pixel, leading to a relative error
of 2 % for the highest velocities, whereas the relative error is approximately 17 % for
particle displacements less than 0.5 pixel. After removal of the vectors inside and behind
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Figure 3.5: Measurement of the flow field at Re = 1.5 (F1) at a dimensionless gap
height of h/d, = 0.5. Raw flow field (a) and flow field after removal of the vectors at
and behind the sphere (b) with a second measurement at the same Reynolds number
and sphere position (c).

the sphere, approximately 10 spurious vectors remain per frame. This is about 1% of
the total amount of vectors which is low compared to a typical value of 5% encountered
in turbulent flow fields (Westerweel (1994)). This is due to the flow being laminar and
virtually two-dimensional in the center plane of the sphere, which results in practically no
out of plane motion. To test the reproducibility of the experiment, all measurements were
done twice. In Figs. 3.4 (c) and (d), the trajectories and sedimentation velocities have
been plotted for case F1. The two trajectories practically coincide. The measurements
at higher Reynolds numbers give comparable results. The flow fields around the sphere
of case E'l are presented in Fig. 3.5 to demonstrate that the PIV measurements yields
an accurately reproducible result here as well.

3.3 Simulation

For computational simulation of the sedimentation experiment, a lattice-Boltzmann
scheme (Chen & Doolen (1998)) was used. This scheme exploits a microscopic model for
fluid motion on a uniform cubic lattice. Fluid masses propagate on the lattice. Collision
rules that conserve mass and momentum guarantee that, in the limit of low Mach num-
bers, both the continuity equation and the Navier-Stokes equations for incompressible
fluid flow are satisfied.

In this section, a number of issues will be addressed that had to be solved to make
our simulation method applicable to frecly moving particles. First, we explain the imple-
mentation of the no-slip boundary condition at the particle surface and then we discuss
the issues of (i) treatment of the inertia of the internal fluid that may affect the particle
motion in a non-physical manner and (ii) the non-physical dependency of the drag-force
on the viscosity. As a consequence of this dependency, if one wants to perform accurate
dynamic simulations of particles with a radius of a limited number of grid nodes, (iii) a
separate calibration procedure for the particle radius is required. This calibration and
scaling procedure of the simulations is discussed and finally (iv) the application of an
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additional lubrication force is presented, which is required when the distance between
the particle and the wall has reduced to less than one grid spacing.

3.3.1 Boundary conditions

The implementation of (moving) boundary conditions in the lattice-Boltzmann frame-
work has received considerable attention in recent years and constitutes a field of on-
going research (Mei et al. (1999); Chen et al. (1998a); Verberg & Ladd (2000); Rohde
et al. (2002)). Most of the methods presented in these references are adaptations of
the bounce back rule for boundary conditions, as explained by Ladd (1994a). In the
standard application of the bounce back rule a link between two grid nodes that crosses
a no-slip boundary is cut and mass that propagates from the flow domain towards the
solid boundary is reflected along the link of its origin. One drawback of this approach
is that in the straightforward implementation according to Ladd (1994a) curved solid
objects are approximated by staircase shaped objects.

In the current application the boundary of the solid sphere is implemented via the
so-called adaptive force-field technique, similar to Derksen & Van den Akker ((1999).
The scheme is based on a method for implementation of no-slip boundary conditions
in spectral simulations (Goldstein et al. (1993)). The method locally forces the fluid
velacity near the boundary and interferes with the flow field not at the mesoscopic
level of the propagating fluid mass but at the macroscopic level of the fluid velocities.
An adavantage of the method is that implementation of curved boundary conditions is
done via an interpolation-extrapolation scheme which produces a smooth surface instead
of a sharply cut staircase shaped surface. Specifically for moving surfaces this is an
advantageous feature since it reduces unphysical shape changes of the surface due to its
motion with respect to the grid.

The sphere surface is represented by a set of M control points, placed at the sphere’s
surface, evenly spaced at a resolution slightly higher than the grid spacing. At each
control point, the local fluid velocity is forced to the surface velocity of the sphere.
The steps in the procedure are as follows; First, the fluid velocity at a control point is
determined via first-order Lagrange interpolation from the velocity at the surrounding
grid nodes. Then, the deviation between the desired surface velocity @; at control point
1 and the interpolated fluid velocity # is used to determine the force that needs to be
applied to the fluid to better approach the local surface velocity. The surface velocity is
given by the translational and rotational velocity components

- —

@ =ty + Oy X 7 (3.2)

where 7} is the position of the control point relative to the center of mass of the sphere
(7: = &; — Z,). The deviation of the fluid velocity at a control point 7 is calculated by

&=, = Y I(F)d, (3.3)
7

where @; is the fluid velocity at grid node j and I(;) is the set of interpolation coeffi-
cients, which is a function of the relative distances 7;; between the surrounding lattice
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nodes j and the control point ;. The coefficients that were used for interpolation were
also used for projection of the force from the control point onto the surrounding grid
nodes, where the forces (F;) are updated with a relaxation scheme

Fy(x,t) = aFy(x,t - 1)+ BI(7,)pd(t) (3.4)

where ¢ indicates the time step. We move to the next control point and the procedure
is repeated until all M control points have been updated. If desired, this procedure can
be iterated.

The scheme of equation 3.4 that imposes locally the desired boundary condition is
a contro] scheme that is characterised by the constants @ and . The scheme adjusts
the imposed body force ﬁj(x, t) proportional to the deviation of the local velocity. The
dynamic action, accuracy, and stability of the control scheme is determined by the
relaxation parameters and the topology of the control points 7;. The parameters o and
3 were determined empirically as 0.95 and 1.8 respectively.

After having updated the forces at the grid nodes, we calculate the hydrodynamic
force and torque on the sphere according to

F, =Y Fix) (3.5)

T, =Y 7 x Fi(x,1) (3.6)

where 7; is the relative distance between the grid node j and the center of mass of the
particle. The summation is over all boundary nodes in both the external and internal
regions at the sphere’s surface. The force and torque are used to integrate the equations
of motion of the sphere. This is done by using an Euler forward integration scheme
where the forces are averaged over two time steps to suppress unphysical fluctuations.

3.3.2 Internal mass

The boundary condition scheme requires the objects to have internal fluid. An advantage
of this is that when a node shifts from the inside of an object into the exterior, it already
contains fluid mass and the state of this node does not need to be changed. For the same
reason, Ladd (1994b) also has internal mass in his particles. A drawback of keeping
internal mass is that its inertia affects the motion of the sphere via a contribution
to F"p (see Eq. 3.5). Different approaches have been proposed to solve this problem.
Ladd (Ladd (1994b)) suggests to integrate the equation of motion with a corrected
particle mass. Although this is a fair approximation for systems with large solid/fluid
density ratios, for solid particles in liquid with a density ratio typically between 1 and 2,
numerical instabilities can occur when integrating the equation of motion. Other authors
(Aidun et al. (1998b); Aidun & Lu (1995); Heemels (1999)) have proposed methods to
remove the internal mass, but this can not be done for the adaptive force-field technique.
Qi (Qi (1999))proposes to compensate the hydrodynamic force F‘;, for contribution from
nodes entering or leaving the interior of a particle, which is comparable to our approach.
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The force applied to the fluid nodes influences the fluid on both the inside and the
outside of the sphere. Hence, the total force that acts on the sphere, as calculated with
equation 3.5, is the sum of the internal and external components of the force:

F-.p,t()t = ﬁp,int + ﬁp,ext (37)
When integrating the equation of motion, the only physical contribution to the sphere’s
motion comes from the external flow field. To determine the external contribution Fj, cs,
we calculate the change of momentum of the internal fluid between two successive time
steps,

F()pomt = / / / piline (2, 8) — pil(, t — 1) AV (3.8)
‘/;phere

and subtract this from the total force F"p,,ot. When using this approach the correct
physical behaviour is obtained, which allows us to simulate particle motion at a density
ratio as low as 1.15, as is demonstrated in section 3.4. A similar correction procedure is
applied for the torque.

3.3.3 Low Reynolds number calibration

Results presented by Ladd (Ladd (19945)) indicated that boundary conditions in lattice-
Boltzmann schemes based on the bounce back rule suffer from a non-physical dependency
of the resulting drag force on the kinematic viscosity. A study by Rohde et al. (2002)
indicated that also more advanced boundary condition methods that are based on the
bounce back rule still exhibit this behaviour. A detailed analysis of this behaviour is
given by He et al. (1997), who demonstrate that in lattice-Boltzmann methods, the
exact position at which the no-slip condition is obtained is a function of the kinematic
viscosity. Although there is a fundamental difference between the bounce back boundary
condition and our approach, this non-physical dependency is also observed in our current
approach.

An explanation for the fact that this behaviour is also observed in our simulations
may be that due to the interpolation and extrapolation procedure, the sphere’s surface is
smeared out and the fluid experiences a sphere that is slightly bigger than the sphere on
which the M control points lie. The result of this effect is that the drag force obtained
from the simulation is larger than the force that would correspond to the sphere’s given
input radius.

To compensate for this effect, Ladd (1994b) proposed a procedure for estimating the
effective sphere radius (hereafter called hydrodynamic radius). Ladd demonstrated that
the hydrodynamic radius varied with viscosity by approximately one grid node. The
calibration procedure is based on an analytic expression of Hasimoto (1959) for the drag
force on a fixed sphere in a periodic array of spheres in the creeping flow regime,

brpryU, 1 9 _ 47rrf,

F, 1.0 = 1.7601C%5 + C; — 1.5593C; C,= SIh (3.9)
where 1, is the sphere radius, L indicates the size of the unit cell and U, is the volu-
metrically averaged fluid velocity across the periodic cell. For a given fluid velocity and
drag force, equation 3.9 is solved to calculate the hydrodynamic radius.




3.3. Simulation 47

In our simulations we use a similar calibration procedure as proposed by Ladd. We
want to stress here that this calibration procedure is performed independent of the
experimental conditions or results. The sole purpose of this procedure is to determined
the equivalent particle diameter, given a certain viscosity. A sphere is placed in the
center of a fully periodic cell and the fluid is set into motion via a pressure gradient,
such that the Reynolds number remains small. The hydrodynamic radius is determined
as the average of the radius at 20 sphere positions, which were taken parallel to the
flow because the settling sphere also moves along a single axis. One can ask if this low
Reynolds number calibration procedure is allowed when it is our objective to simulate
the transient motion of a sphere moving at non-zero Reynolds numbers. Therefore, in
section 3.4.4 the sensitivity of the simulations to the hydrodynamic radius is investigated.

3.3.4 Scaling

When setting up a simulation of the sedimentation experiment, the scaling of mass,
length and time needs to be determined. With respect to mass, only the ratio of fluid
and solid density enters the equations of motion of the system. At a constant ratio,
the actual values can be chosen arbitrarily without influencing the simulation result.
Their numerical values were set identical to the experimental values. Length and time
are scaled by using the low Reynolds number calibration procedure. A first estimate
for the length scale is based on the input radius of the sphere. A first estimate for the
time scale is then determined by setting uo, to 0.01 lu/ts . With these first estimates,
all parameters are scaled from the physical experiment into lattice units. Based on
this first scaling, a calibration simulation is carried out to determine the hydrodynamic
radius. Finally, in the sedimentation simulations, length is scaled on the basis of the
hydrodynamic radius and time is scaled via the kinematic viscosity. In section 3.4,
calibration results of input radii between 2 and 8 lattice units will be presented, and the
sensitivity of the simulations to a variation or inaccuracy in the hydrodynamic radius
will be discussed.

3.3.5 Sub-grid lubrication force

When simulating a sphere approaching a fixed wall, at some moment in time the grid
lacks resolution to resolve the flow in the gap between the sphere and the wall. The
interpolation scheme breaks down at the gap between the first grid node and the posi-
tion of the no-slip condition at the wall and the repulsive forces that occur due to the
squeezing motion of the fluid in the gap can no longer be computed accurately. This
problem was noticed by Ladd (1997), who proposed to include an explicit expression
for the leading order lubrication forces, calculated with lubrication theory (Crowe et al.
(1997); Kim & Karrila (1991)). In our simulations, when the gap has become smaller
than Ay (set to 1 grid spacing), the force acting on the sphere due to the flow in the
unresolved gap is calculated explicitly. The additional lubrication force at gap distance

1In lattice-Boltzmann simulations, e, << ¢ (the speed of sound, ¢, = %\/2) is required to assure
incompressible flow conditions
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h is calculated with

Fy = —6mprpu, (% — 2—:) (3.10)
where h is the gap between the wall and the sphere and u is the velocity component of
the sphere perpendicular to the wall. The total force that acts on the particle is taken as
the sum of the force calculated via this equation and the sum of forces that are obtained
from the flow simulation. In the following section, the validity of this approach will be
tested by comparing simulation results with experimental data.

3.4 Results and discussion

3.4.1 Overview of simulations

In table 3.2, an overview of the simulations is given. Cases S1 to S4 were chosen as
base settings for the simulations. In the following two sections, these simulations will
be used to discuss various aspects of the flow field and sedimentation trajectory and
will be compared to experimental results. In cases S5 to S8, the input radius was
varied between 2 and 8 grid nodes to study the influence of resolution on the accuracy
and performance of the simulation. Simulations S9 to S15 were done to study the
sensitivity of the simulations to the hydrodynamic radius. Finally, in simulations S18
and S19, the lubrication force was applied to explore its usefulness for representing the
bottom approach of the sphere. All simulations were executed for a physical time of
approximately 4 seconds.

3.4.2 Sedimentation trajectory

In this paragraph, a physical interpretation of the sedimenting sphere is given based
on the results of simulations S1 and S4, to demonstrate the characteristic differences
in behaviour of the particle sedimentation between both cases and to provide physical
insight in the different flow cases. In Fig. 3.6 the flow field is plotted at four different
stages during settling. In Fig. 3.7, the development of the kinetic energy of the sphere
and the fluid is given. The intermediate results at Reynolds numbers of 4.1 and 11.6
have been left out.

The velocity field of the particle settling at Re = 1.5 is not symmetric in the direction
of motion (fig. 3.6 (a2)), demonstrating that the flow field is not in the Stokes regime.
In Fig. 3.6 (al), the sphere has moved one diameter below the point of release. At
this moment, the sphere has almost reached its steady-state velocity. The rate at which
the flow field develops is demonstrated in Fig. 3.7(a), by the evolution of the kinetic
energy of the fluid, which keeps pace with the kinetic energy of the sphere. As the sphere
approaches the bottom, the kinetic energy of the wake again reduces in pace with the
decay of kinetic energy of the particle, which decelerates because of the squeezing of the
liquid between the sphere and the bottom wall (fig. 3.6 (a3)). This causes the flow field
in front of the sphere to deform and generates outward fluid motion across the bottom.
Very quickly after the sphere has come to a halt, the fluid also comes to rest.
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Table 3.2: Overview of sedimentation simulations. The table contains the input ra-
dius and calibrated radius of the sphere, with corresponding length (L.S.) and time
(T.S.) scaling factors. L.F. indicates the use of lubrication theory at bottom approach.
Umaz/Uso 18 the ratio of the maximum sedimentation velocity and the theoretical steady
state velocity of a freely moving sphere in an infinite medium. At the bottom of the
table, the experimentally obtained velocity ratio is included for comparison.

Case 1y Th Re L.S. T.S. LF U/t
] [l [} 1073m/lu 107%s/ts [ -]
S1 4 4487 1.5 1.671 3.891 - 0.894
S 2 4 4562 4.1 1.645 2.410 - 0.950
S3 4 4.657 11.6 1.610 1.526 - 0.955
S4 4 4810 31.9 1.559 1.010 - 0.947
S5 8 8.084 1.5 0.928 2.398 - 0.857
S6 8 8.689 31.9 0.863 0.619 - 0.947
S7 2 2698 1.5 2.780 5.381 - 0.889
S8 2 3.003 31.9 2.497 1.295 - 0.921
S9 4 4.000 1.5 1.875 4.897 - 0.768
S 10 4 4400 1.5 1.705 4.047 - 0.871
S11 4 4.600 1.5 1.630 3.703 - 0.924
S12 4 5.000 1.5 1.500 3.134 - 1.009
S13 4 4000 31.9 1.875 1.460 - 0.757
S 14 4 4.600 31.9 1.630 1.104 - 0.891
S 15 4 5.000 319 1.500 0.935 - 0.969
S 16 3 3559 15 2.107 4.639 - 0.897
- S17 3 3650 4.1 2.055 2.818 - 0.948
S18 3 35589 15 2.107 4.639 N 0.897
S19 3 3.650 4.1 2.055 2.818 N4 0.948
E1 - - 15 - 5 - 0947
E2 - - 41 ; ; - 0953
E3 - - 116 ; - - 0.959
E4 - - 319 ; - - 0.955
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Figure 3.6: Comparison of the flow field of the sedimenting sphere at (a), Re = 1.5 (top,
case S1) and (b), Re = 31.9 (bottom,case S4). The contours indicate the normalised

velocity magnitude. h/d, indicates the dimensionless gap between the bottom apex of
the sphere and the tank bottom wall, t indicates time.
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Figure 3.7: Simulated result of the kinetic energy of sphere and fluid vs. time at Re = 1.5,
case 51, (a) and Re = 31.9, case 54, (b). The dashed line in (b) is an exponential fit to
the decay of the fluid kinetic energy.

The particle settling at a Reynolds number of 31.9 shows distinctively different be-
haviour. Compared to the case of Re = 1.5 a much larger, elongated wake develops. In
Fig. 3.6 (b3), the deflected front of the flow field at bottom approach is again clearly
visible. Another distinctive feature is that while both the kinetic energy of the particle
and the fluid increase at the same pace initially, the particle reaches a plateau while the
wake keeps on picking up kinetic energy until the particle reaches the tank bottom. At
this stage, the kinetic energy of the fluid has not reached a steady state. Notice that the
level of kinetic energy of both the fluid and the particle at the high Reynolds number
are about one order of magnitude larger than that of the Re = 1.5 case. Figure 3.7(b)
further demonstrates that the sphere abruptly comes to a halt when the sphere hits the
bottom wall, which is in contrast with the more gentle deceleration of the sphere at
Re = 1.5. After the sphere has come to a halt, the wake still contains a considerable
amount of kinetic energy that slowly decays. An empirical time constant related to this
process can be estimated by assuming an exponential function,

K§(t) = K jmas xp (—t> (3.11)
Td
which is plotted in Fig. 3.7(b) with 7, =0.3 [ s ].

A remark can be made on the distribution of the kinetic energy over the particle and
the fluid. During settling the potential energy of the particle is transferred to the fluid
and dissipated. At maximum settling velocity, the kinetic energy of the fluid is much
larger than that of the particle. The volume of the moving fluid is much larger than
the volume of the particle (see also Fig. 3.6) and since the solid/liquid density ratio is
small, the fluid can easily contain much more kinetic energy than the particle.

Three physical time scales can be used to interpret the flow field and transient
behaviour of the sedimenting sphere. The first time scale is the particle advection time
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(Tpa = dp/t), which is a measure for the time it takes the particle to travel one sphere
diameter. The second time scale is the particle relaxation time, (7,, =~ ppd5/18psv)
which is a measure for the time it takes for a particle to respond to an acceleration. The
third time scale is the momentum diffusion time (7, ~ d,?/v), which is a measure for
diffusion of momentum into the fluid over a distance of one particle diameter. These three
groups determine two independent dimensionless numbers, the Reynolds and Stokes
number.

The different shapes of the flow field in the high and low Reynolds number cases
can be interpreted by regarding the Reynolds numbers as the ratio of 7, and 7,, . At
Re =1.5, 7, is 0.59 s and 7,4 is 0.39 s. The time it takes for the particle to travel one
diameter is almost the same as the time it takes for momentum to diffuse one diameter
into the fluid. This explains the penetration of the flow field into the fluid in front of
the sphere and sideways to the sphere over a length comparable to the size of the wake.
In contrast to this, the shape of the wake at Re = 31.9 is completely different. The
characteristic time scales are 7, = 3.72 s and 7,, = 0.12 5. Thus, momentum diffusion
goes at a much slower rate than particle advection, resulting in an elongated wake and
a very limited extension of the flow field in front of the sphere.

The time scale for momentum diffusion can also be used to interpret Fig. 3.7. At
Re = 1.5, the diffusion time scale is much shorter than the time it takes for the particle
to reach the bottom, thus allowing the wake to develop into a steady state. At Re = 31.9,
the particle reaches the bottom after approximately 1.3 seconds while 7, is 3.72 seconds,
which explains why the wake was not fully developed before the bottom was reached.
It is interesting to note that the time constant for decay of the kinetic energy is much
shorter than the time constant for momentum diffusion. The decay of kinetic energy
is associated with the dissipation due to viscous effects that originate from gradients in
the fluid. This process is apparently much faster than the momentum diffusion.

The second dimensionless number is the Stokes number (St = (1/9)ppdyptoe/psv =
(1/9)Repp/ps ~ Tpr/Tpa), Which is a measure for the ratio of particle inertia to viscous
forces. With a practically constant density ratio throughout the experiment, the Stokes
number is proportional to the Reynolds number and was not varied independently. The
Stokes number characterises the transient behaviour of the particle at acceleration and
bottom approach. At the low Reynolds number, the particle starts to decelerate at some
distance from the bottom while at high Reynolds number, the particle hardly decelerates
prior to contact.

3.4.3 Comparison of numerical and experimental results

A first comparison is made in terms of the maximum velocity of the particle during
sedimentation. In table 3.2, the ratios tmaz/Ux from the experiments and simulations
are given. The experimental results demonstrate that the particle reaches a maximum
velocity of approximately 95 % of the steady state value in an infinite medium. The
experimental data indicate a maximum of the velocity ratio value for case E3. An
explanation for this observation is that the sphere moving at the lowest Reynolds number
experiences the largest resistance due to the container wall. At increasing Reynolds
number, the lateral extension of the sphere induced flow reduces, thus reducing the wall
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Figure 3.8: Comparison between measured (M) and simulated (S) sphere trajectory (a),
represented by the dimensionless gap height h/d,, and sedimentation velocity (b) at two
Reynolds numbers (simulation data from S1 and S4).

hindrance effect on the sphere. The lower tmqz /U ratio at the highest Reynolds number
(i.e. case F4) is likely caused by the fact that the sphere was still accelerating when
it arrived at the bottom. This trend is also observed in the simulated results, although
more pronounced. The maximum sedimentation velocity predicted by the simulations is
generally within 1 % of the experimental result, except at the lowest Reynolds number,
where the difference is approximately 5 %. Increased resolution does not result in an
improvement. The calibration procedure has a strong impact on the terminal velocity.
Its sensitivity will be further discussed in section 3.4.4.

For comparison of numerical and experimental findings as to the dynamic behaviour
of the sphere, the trajectory and velocity of the sphere versus time have been plotted in
Figs. 3.8 (a) and (b). At the lowest Reynolds number, the sphere decelerates at a larger
distance from the bottom than at the higher Reynolds number. Along with the results
at Re = 4.1 and Re = 11.6 (not shown), these results demonstrate that the complete
trajectory of the sphere is captured accurately by the simulation procedure.

The simulated fluid motion has been compared in detail with the flow fields from the
PIV experiment. With the use of a continuous camera, not only the spatial structure of
the flow field is obtained but also the temporal behaviour. Figure 3.9 shows the flow field
of the sphere at position h/d, = 0.5 at the four Reynolds numbers considered. (Notice
that Figs. 3.9 (c) and (d) are at a higher resolution than (a) and (b)). At the sphere
position in question, the flow in front of the sphere interferes with the bottom surface,
while the wake is still seemingly undisturbed. The correspondence in position of the
velocity magnitude contours is indicative of a good agreement between the numerical
and experimental flow field. At the side of the sphere a clear vortex is found that changes
shape and position with an increase in Reynolds number. The center of this vortex is
found at the same position for the numerical and experimental result.

Another (quantitative) assessment is obtained by comparing the time series of the
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Figure 3.9: Comparison of the simulated (top, cases S1 to S4) and measured (bottom,
FE1 to E4) flow field of the sphere at a dimensionless gap height of h/d, = 0.5. Contours
indicate the normalised velocity magnitude, the vectors indicate the direction of the fluid
flow only.
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Figure 3.10: Measurement position of the time series of fluid flow.

fluid velocity in a particular point in the flow domain. As monitor point we chose a point
fixed in place, positioned one diameter from the bottom of the tank and one diameter
out of the center of the sphere (see Fig. 3.10).

Time series of the fluid velocity in this point are given for Re = 1.5 (fig. 3.11)
and Re = 31.9 (fig. 3.12). At the low Reynolds number, the fluid flow in the -
direction is mainly effected by the squeezing action of the sphere. A distinctive positive
peak is observed, due to the outward motion of the fluid. The fluid velocity drops
almost back to zero at the moment the sphere touches the bottom of the container. At
Re = 31.9, the sphere settling velocity is much higher; as a result, the z-velocity starts
rising much earlier in time. After the vortex has passed the monitor point, the velocity
decreases again. As the sphere comes to rest, the fluid motion in the wake still contains
a considerable amount of inertia and passes over the sphere, giving rise to the slight
increase in z-velocity, followed by the decay to zero.

At Re = 1.5, the flow in the y-direction is directed downwards, indicated by the
negative value of the velocity component. The experimental data shows a steep decay to
a minimum y-velocity, after which the velocity rises again. With careful observation, a
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second, smaller decay can be observed in the data before returning to zero, although this
decay is barely visible since the magnitude of the decay is comparable to the noise in the
data. This behaviour is related to both the position of the vortex centre relative to the
monitor point and the decreasing velocity of the sphere. At this Reynolds number the
flow field extends the furthest sideways into the fluid and the monitor point is positioned
between the sphere and the vortex centre. As a result, the y-velocity does not change
sign. Since the y-velocity is smaller near the core of the vortex, an increase in velocity
may be found as the centre passes the monitor point, after which a velocity decrease is
anticipated. However, since the particle decelerates, the magnitude of this decrease is
smaller than the main negative peak.

At Re = 31.9 the monitor point is positioned on the right side of the vortex. Thus,
the y-velocity initially gets negative, but as the vortex passes the monitor point, the
y-velocity changes sign because the flow on the right side of the vortex centre is directed
upward. Eventually the vortex has passed and what follows is the wake of the sphere,
resulting in a downward velocity that again slowly decays after the sphere has come to
rest.

At Re = 1.5, the y-velocity shows the largest difference between simulation and
experimental result. At low resolution of the simulation, a clear mismatch is observed
between the numerical and experimental curve. Apparently, at lower Reynolds number,
the position of the vortex is very sensitive to the resolution. The fluid velocity becomes
positive, which is indicative of the monitor point being at the outer side of the vortex. As
the resolution is increased, the position of the vortex is predicted more accurately and the
simulated time series of the y-velocity is in much better agreement with the experimental
result. The simulations at the high Reynolds number are in good agreement with the
experimental data, although at this Reynolds number too, an increase in resolution
improves the predictions. The curves that represent the velocity magnitude vs. time
demonstrate that at the low Reynolds number, the fluid velocity is underpredicted by a
few percent only, which is in agreement with the contour plots of Fig. 3.9.

3.4.4 Hydrodynamic radius dependency

In simulations S9 to S15, the hydrodynamic radius was varied deliberately (i.e. without
applying the calibration procedure) to study its impact on #me, /Ue. The hydrodynamic
radius is used as the measure to determine length scaling. Therefore, by varying the
hydrodynamic radius the scaling constants for time and length scale will change. In order
to keep the ratio of particle to domain size the same, also the computational domain
will vary with varying hydrodynamic radius. The input radius of the sphere, however,
remains constant. Without calibration the velocity ratio is underpredicted some 20 %.
The simulations further show that the velocity ratio ../t is strongly dependent on
the hydrodynamic radius. When varying the hydrodynamic radius on purpose, both
Umaz a0d Uy change, as can be seen in table 3.3.

Firstly, increasing the hydrodynamic radius may increase tpn,,. The force Fy;pu
drives the sphere during sedimentation and is determined from the balance between drag
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Table 3.3: Influence of the hydrodynamic radius on the maximum sedimentation velocity.

Case 19 Th Re Umaz Uoo
lu]  [l)  [-] [1073u/ts] [1073u/ts]
S9 4 4000 1.5 7.678 10.000
S10 4 4400 1.5 7.920 9.091
S1 4 4487 1.5 7.968 8.914
S11 4 4600 1.5 8.034 8.696
S12 4 5.000 15 8.074 8.000
S13 4 4.000 31.9 7.573 10.000
S14 4 4.600 31.9 7.749 8.696
S4 4 4810 319 7.877 8.315
S15 4 5.000 31.9 7.754 8.000
force, gravity and buoyancy;
Fuinpu = 5710%07 = 1) (3.12)

When the sphere moves at ty,;, this force is balanced by the hydrodynamic forces that
act on the sphere and which are obtained from the simulation. Fj;npy: is independent
of the hydrodynamic radius. With a changing hydrodynamic radius, length scales pro-
portional to L, while time scales with the length squared, L?, because time is scaled
via the kinematic viscosity. Thus, when scaling equation 3.12 from physical quantities
to simulation quantities, the equation is independent of the scaling factors, because p is
kept constant, 753 scales as L* while g scales as 1/L3. At the same time, the input radius
of the sphere and the viscosity are kept constant. Therefore, u,,,, can only vary because
a change in the container geometry occurs. By increasing the hydrodynamic radius, the
scaling factor for length decreases and the container geometry is represented by a larger
number of grid nodes. Consequently, because of the larger domain, the sphere experi-
ences a smaller resistance due to the parallel walls and u,,,, increases. The sensitivity of
this effect depends on the Reynolds number at which sphere settles, as can be observed
in table 3.3. At Re = 1.5, g, increases by 5.2 % when varying the hydrodynamic
radius from 4 to 5 grid units while at Re = 31.9, t,. increases by 2.4 % only.

Secondly, when increasing the hydrodynamic radius, u., decreases as 1/L, which can
be observed in table 3.3 where u, is recalculated to lattice units. Thus, u,, decreases by
20 % for both the low and the high Reynolds number when increasing the hydrodynamic
radius from 4 to 5 lattice units.

For the cases studied, these dependencies show that a variation in radius of the
order of one lattice unit mainly affects the reference state u,. In our base cases (with
ro = 4 lu), increasing the hydrodynamic radius with 1 lattice unit resulted in a variation
of the ratio Uyqe/too of approximately 30 %. Increasing the resolution may decrease
this sensitivity. A variation of one lattice unit on an input radius of e.g. 8 lattice nodes
causes Uy to vary by 11% while the relative increase in u,,q, is expected to be smaller.

The calibration procedure proposed in section 3.3 is used to determine the hydro-
dynamic radius a priori. Table 3.2 demonstrates that using this calibration method
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Figure 3.13: The use of a lubrication force (Fj,;) on the particle sedimentation velocity
at near wall approach at (a) Re = 1.5, cases 516 and S18, and (b) Re = 4.1, cases S17
and S19.

results in a 1% accurate match between the numerical and experimental values of the
velocity ratio is found for the simulations at Re > 4.1. At the lowest Reynolds num-
ber, a systematic underprediction of the velocity ratio of approximately 5% is found.
This difference corresponds to the deviations observed in Fig. 3.8. These deviations
are considered acceptable, since without calibration an underprediction of more than
20 % is obtained. However, the systematic deviation at the lowest Reynolds number is
striking for two reasons. One, the deviation is independent of the resolution (see table
3.2). If the deviation decreases with an increase in resolution, one would anticipate the
simulations to eventually match the experimental data at high resolution, which is not
the case. Two, one would expect that the calibration procedure would work best at the
lowest Reynolds number, since it is based on creeping flow conditions. The simulation
at Re = 1.5 comes closest to this situation.

3.4.5 Lubrication force

When the sphere approaches the bottom wall, the gap between the sphere and the
bottom may become too narrow for a proper resolution of the flow on the original grid.
As a result, the hydrodynamic force on the sphere will be underpredicted. In Fig.
3.13, the sedimentation velocities of the sphere at Reynolds numbers of 1.5 and 4.1,
respectively, are given at the final stage of bottom approach. In the simulations, the
particle velocity is set to zero at the moment of bottom contact. This moment is clearly
visible in both figures, where the dotted line indicates the sedimentation velocity of the
sphere in simulations S16 and S17. This abrupt stop indicates that the sphere velocity
was not reduced to zero at the moment contact was established between the sphere and
the bottom wall. The dotted line further shows unphysical fluctuations in the velocity
of the sphere when the bottom of the sphere passes the first nodes above the bottom
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wall. Simulations at higher resolution showed that an increase in resolution reduces the
fluctuations but the abrupt stop remains.

When applying the sub-grid scale lubrication force according to equation 3.10, the
velocity of the sphere reduces more gradually although some fluctuations are still ob-
served. The use of the lubrication force improves the velocity decay initially, which is
demonstrated by an improved correspondence between the experimental and numerical
data. Due to the dissipative action of the lubrication force, however, at a small sepa-
ration from the bottom the settling velocity has almost reached zero (of the order of
the numerical accuracy) and the sedimentation time series extends further for an un-
realistically long time (not in the figure). Application of a force based on lubrication
theory is valid for separations that exceed either the molecular mean free path length
of the molecules of the fluid (Sundararajakumar & Koch (1996)) (although this effect
is negligible for solid-liquid suspensions) or that exceed the surface roughness (Joseph
et al. (2001)) of the particle and the tank wall. For detailed simulations or experiments
either of the two limits can be used as a cutoff measure for the final separation at which
an apparent contact is established. In the current study, both effects are of the order of
0.1 to 1 um or smaller, which is of a much greater detail than provided by either our ex-
perimental observations or numerical simulations. The application of a lubrication force
improves the simulation result in that it provides a measure for a lacking sub-grid scale
repulsive force at bottom approach. At the same time it raises a difficulty in establishing
the exact moment of contact between the particle and the container wall.

3.5 Conclusion

We investigated the motion of a single sphere settling in a box filled with silicon oil.
By keeping the ratio of the box dimensions to the sphere radius relatively small, we
were able to perform simulations of the full flow field with incorporation of the no-
slip boundary conditions due to the tank wall. We were able to validate the transient
behaviour of the sphere over the whole time span of the sedimentation from release via
steady fall to deceleration at bottom approach. Time series of the particle trajectory
and particle settling velocity were measured and detailed snapshots of the flow field
were produced by using PIV. The data could also be represented as time series of the
fluid velocity in monitor points. Lattice-Boltzmann simulations of cases identical to
the experiments were performed. The boundary conditions for the solid sphere were
imposed using the adaptive force-field technique. This technique requires the sphere to
have internal fluid that contributes to the sphere’s inertia. A correction method has
been proposed to compensate for this inertial effect. The simulations also require a
correction for the hydrodynamic radius. The data demonstrated that the simulations
are in agreement with measurements over a range of resolutions between 2 and 8 grid
nodes per sphere radius. The transient behaviour of both the sphere and fluid motion
is captured accurately, as demonstrated by a comparison between experimental and
numerical results in terms of particle trajectory and velocity as well as of fiuid velocity.
The hydrodynamic radius was found to affect the sedimentation velocity in two ways.
First, a change in hydrodynamic radius causes a change in domain size, which varies




60 Chapter 3. PIV Experiments and simulations on a settling sphere

the sedimentation velocity by 2 to 5 %, depending on the Reynolds number. Second, a
change in radius causes a change in time scaling, resulting in a variation of the velocity
up to 20 % for a sphere with an input radius of 4 lattice units. A calibration procedure
was used for a priori determining the hydrodynamic radius of the sphere. For the
cases of Re = 4.1 to Re = 31.9, this calibration procedure predicts the maximum
sedimentation velocity within 1% accuracy. At Re = 1.5, the sedimentation velocity
was underpredicted by approximately 5% (independent of resolution). At approach of
the bottom wall, resolution lacks to resolve the flow in the gap. Lubrication theory was
used to provide the lacking hydrodynamic interactive force at bottom approach, but this
apparently overpredicts the time to contact with the bottom.
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Dim. numbers

Cy Drag coefficient
C- Volume fraction
Re Reynolds number
St Stokes number
Acronyms

PIV Particle Image Velocimetry




Chapter 4

Application of spectral forcing in
lattice-Boltzmann simulations of
homogeneous turbulence

In this chapter it is demonstrated that by combining a spectral forcing scheme
for the generation of a sustained homogeneous turbulent with a lattice-
Boltzmann method for solution of the continuity and Navier-Stokes equa-
tions, turbulent conditions are generated with an accurate recovery of a priori
set properties such as the Kolmogorov length scale, the integral length scale
and the integral time scale. A specific feature of the forcing scheme is that it
allows control of the power input by eliminating the force-velocity correlation.
This feature has also been incorporated into the lattice-Boltzmann simula-
tions. Furthermore, the forcing scheme also enables forcing of anisotropic
turbulence.

Key words: turbulence, lattice-Boltzmann, forcing, anisotropic turbulence

4.1 Introduction

In turbulent flows, energy production takes place at large length scales (O(A), the in-
tegral length scale) whereas energy dissipation occurs at the microscopic length scales
(O(n), around the Kolmogorov length scale). The transfer of kinetic energy from the
large to the small scales is characterised by a cascade process which can be described by
the well-known universal power-law spectrum (e.g. Tennekes & Lumley (1973))

E(k) = cxe?3k=53, (4.1)

The property that turbulent flows obey a universal spectrum has been exploited in
numerical studies of forced turbulence. In this approach, an artificial force is defined that
sets the fluid in motion at the large scales (see figure 4.1). By solving all occurring length
scales in a direct numerical simulation of the Navier-Stokes equations, the microscopic
scales will evolve naturally. This approach is in clear contrast with conventional & —e and
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Figure 4.1: Typical representation of the power spectrum of kinetic energy in a turbulent
flow. 'LES’ indicates the filtering position of LES in the power spectrum, 'Forcing’
indicates the wavenumber position of the spectral forcing scheme.

LES type turbulence modeling, where the large scale motion is resolved while the small
scale behaviour of the turbulent flow field is modeled. By performing direct simulations
of forced turbulent flow, universal microscopic properties of the turbulent flow field can
be studied that hold no relation to a physical source for power input.

For this purpose, different types of forcing schemes have been developed. Typical
examples of such forcing schemes are given by e.g. Eswaran & Pope (1988), and more
recently by Overholt & Pope (1998) or Alvelius (1999). In these approaches, a body force
is defined in a spherical shell at low wavenumbers. Using a pseudo-spectral method for
solution of the Navier-Stokes equations is the natural choice for forcing turbulence. In
this type of schemes the computational domain is (partially) solved in wavenumber space.
Introducing spectral forcing to the flow field is then straightforward since both methods
are defined in the Fourier domain. Nevertheless, spectral forcing only represents a means
to impose an artificial momentum source term in the Navier-Stokes equations, which is
essentially independent of the numerical solution method.

The objective is eventually to perform direct numerical simulations of turbulent
suspensions (i.e. solid-liquid systems) at high resolution, which requires an efficient
numerical method for solution of the Navier-Stokes equations. Successful application
of the lattice-Boltzmann method to resolved suspension simulations (e.g.Ladd (1997))
and high resolution bubbly flow (Sankaranarayanan et al. (2002)) has proven that this
method is suited for such applications.

This requires a method to generate turbulent conditions in the lattice-Boltzmann
scheme. For this purpose, we use the forcing method of Alvelius (1999). His method
offers the possibility to reduce large scale fluctuations that occur in forced turbulence
due to force-velocity correlation. In the following sections the theoretical background of
the forcing method is briefly reproduced. Simulation results are presented in which the
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specific features of the forcing method, as applied to single-phase flow, are assessed.

4.2 Spectral Forcing

In this section, the forcing method developed by Alvelius (1999) is presented. The forcing
that drives the flow field is defined in wavenumber space. The random force is active in a
spherical shell at small wavenumbers where the forcing intensity is given by a prescribed
distribution over the wavenumbers. Alvelius (1999) recognised that for such a force, the
power input in the Navier-Stokes equations contains two contributions. Consider the
force to be constant for the duration of one timestep. The discretised power input for
the duration of one time step At (i.e. n — n + 1) becomes

Kl K™ 1 _
;T glefadtruifa=hP+ B (4.2)

where the overbar indicates spatial averaging of the force vector f, (the summation
convention is implied on repeated greek subscripts). Thus, P, gives the constant power
input due to the force-force correlation, while P represents an uncontrolled fluctuating
quantity that is due to the force-velocity correlation. As will be demonstrated, the force
can be chosen in such a way that (by construction) the term P, is set to zero each time
step.

Firstly, the force is defined such that it is divergence free. In Fourier space ! this
gives:

kafa=0 (4.3)
which is obeyed by choosing

fa(k,t) = Aran(k, t)era(k) + Bran(k, t)esn (k) (4.4)

where e; and e, are two orthogonal unit vectors, normal to k. A, and B,,, are terms
that distribute the power input randomly in the directions e; and e;. The choice of
Alvelius (1999) for the unit vectors e; and e, are

k, ko
GRS R E 5 L )
and 2 2\1/2
k.k, k,k, k2 + k)Y
€1 = 75 % = g gy €2 = _EtRIT (4.6)
k(K2 + k2)1/2 k(k2 + k2)1/2 k

where k = |k|.
The power input of the force-force correlation in spectral space is then given by

P 1o YRS <
Lo moor [ K(fufdk= [ Flk)dk (4.7)
At 2 A A

1The superscript ’ "’ indicates the Fourier transform of a variable
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ky

Figure 4.2: 2D representation of the placement of the forcing distribution in the Fourier
domain. The dotted curves indicate the placement of the Gaussian distribution of the
force signal along the x and y axis, the greyscale contour indicates the position of the
Gaussian distribution in the 2D plane.

where F(k) is the function that defines the distribution of the forcing spectrum in
wavenumber space. The form for A,,, and B,,, was chosen as

1/2

A’ran = (575:2) exp(le)(]A(qﬁ) (48)
1/2

Brn = (og3) - ©xP(ite)gato) (®9)

where g4 and gp are random factors that determine the direction of the forcing vector
at each wavenumber and that obey g% + g% = 1. This is done by choosing the angles ¢
€ [0, 7], and ,,6, € [0, 27] as uniformly distributed random numbers, which are chosen
at each discrete wavenumber for each time step.

The distribution of the power input over the wavenumbers is determined by the def-
inition of F(k). In order to determine the power input a priori, a Gaussian distribution
of the spectrum function F(k) is chosen, which is schematically represented in figure
4.2. The force distribution is active in the wavenumber range k € [k,, ky], with a forcing
maximum at ky,

F(k) = Aexp (—w) (4.10)

and where c is a parameter that determines the width of the distribution. The power
input is determined by the amplitude A according to
_h 1
At fktb exp (_(k*k[)z) dk

c

(4.11)
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To control the power input, a constraint needs to be determined for ensuring that
P, remains zero for each time step. The force-velocity correlation is given by

Py =dnfn = / / / o (k, 1) £ (k, t)dkodk,dk, (4.12)
v

which is generally non-zero on the interval [kq, k] and is zero by definition outside this
range. P, is set to zero by making 44(k,t)fi(k,t) = 0 (x indicates the added complex
of f,) at each of the active wavenumbers. This gives the condition:

R‘ea‘l[A:an€1 + B:an£2] =0 (413)

with § = G461, and €2 = Gyez,. Using this constraint, equations 4.8 and 4.9 lose one
degree of freedom and 6, can be determined from

ga(@)Real(&,] + gp(¢)(sin YImag|&] + cos PReal[£])
—94(¢)Imag[61] + g5(¢)(sin yYReal[€s] — cos YImaglés])

tané; = (4.14)

after choosing randomly for each wavenumber at each time step the angle v, which is
defined as ¢ = #; — 6y, on the interval |0, 27].

A choice for the functions g4 and gg needs to be made to determine the mean
orientation of the power input. This is determined by the product of gse;, and the
product of gges,. With the choice for the e—vectors of equations 4.5 and 4.6, the power
input specified for the different directions becomes,

(P) = (P,) = Pu(§ + 3(92)) (4.15)
(P.) = Pi3(1~(g2)) (4.16)
and the ratio of the power input, ry, in the different  — z or y — z direction becomes

_B)  1+2(gh)
"B Tl () (4.17)

which is determined by the choice of g4(¢). By choosing g4 = sin(2¢) and gg = cos(2¢),
7; = 1 and the forcing becomes isotropic. Choosing g4 in the form

~ tanh(b(¢ — 7/2))

ga(d) = tanh(br/2)

(4.18)

results in

1 1 2
(ga(o) = tanh(br/2) (ta11h(b7r/2) B b—7T> (419)

where b determines the degree of anisotropy. With this choice of e-vectors, axisymmetric
anisotropic turbulence is obtained.
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4.3 Simulations

For solving the continuity and the Navier-Stokes equations, the lattice-Boltzmann method
is used. This method has been presented in more detail in section 2.2 of chapter 2. In the
simulations presented here, the lattice-Boltzmann scheme of Eggels & Somers ((1995)
was used. The continuity and momentum equations for the fluid motion are given by
Op Opua

ot T oa,

=0 (4.20)

and

Opua  Opuqug _ 9p 0 Oug | Oua 19 Oug
o T 0wy | 0w. 0z |"P\Bza Oz VP g, ) T PIe (421

2 0z,

where p is the fluid density, v is the kinematic fluid viscosity, p is the pressure and
fo is the body force that acts on the fluid. These equations satisfy the continuity and
Navier-Stokes equations for incompressible flow in the limit of low Mach numbers (i.e.
when the fluid velocity remains well below the speed of sound, ¢, = /I [lu/ts]).

Turbulent conditions are generated by manipulating the force field f,(x,t). The
forcing scheme discussed in the previous section defines the force field (f,(k, t)) in Fourier
space. Since the lattice-Boltzmann method is defined in physical space, the force must
be transformed to the physical domain before being applied. This is achieved via an
inverse Fourier transform, after which the force is straightforwardly imposed on the flow
domain. Implementation of the controlled version of the forcing scheme requires the
Fourier transform of the velocity field, 4, (k,¢). As a result, application of the forcing
scheme in three dimensions requires three inverse Fourier transforms for the generation
of the force field, while the controlled version of the forcing scheme requires an additional
three forward Fourier transforms for the velocity field.

A number of parameters defines the conditions of the simulations. The first parame-
ter is the domain size; nz X ny x nz grid points. The forcing parameters are closely related
to the grid dimensions. The forcing is defined on the wavenumber interval [k,, k;] by the
number of discrete Fourier modes f,. in this range and the wavenumber of maximum
forcing amplitude k;. The smallest wave number that can be represented on the grid is
defined by the domain size and follows ko = k, = 27 /nz. The discrete wavenumbers in
the Fourier domain are integer multiplications of ky. The largest forced wavenumber is
determined as k, = f,, X kg, while the forcing maximum is chosen as the central value
in the range [k,, ky). An integral forcing length scale is defined as I« = 27 /k;.

The next parameter that needs to be defined is a characteristic velocity u+. To assure
that the simulations obey the incompressibility restriction, this characteristic velocity
is chosen typically one order of magnitude smaller than the speed of sound ¢,. The
velocity u« is used as a way to determine the power input via the scaling law for energy
dissipation € ~ 3/ and the assumption that statistical equilibrium is achieved between
dissipation and production, € = P. The power input is now set according to P = us3/l«.

The final parameter is the Kolmogorov length scale 1. This length scale is a measure
for the smallest distance over which gradients in the flow field can exist. In terms of
lattice-Boltzmann units, a Kolmogorov length of 1 [ lu | corresponds to one grid spacing.
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Table 4.1: Parameter settings of forced turbulence simulations F; to F7.
Run n kmaz?  far 1« Regorce Remark

(] -1 [-] [] (-]
Fi 05 1571 7 32 256

Ey 0.5 1.571
F; 1 3.142

32 256 force from file
32 102 anisotropic, b= 10

Fy 0.5 1571 7 32 256 uncontrolled
F; 1 3142 7 32 102
Fy 01 0314 7 32 2189
F; 1 3.142 3 64 256
7
7

In spectral simulations, the resolution is often defined in terms of k.. X 7 where ko is
the largest resolved wavenumber, which is given by k.. = nz/2x ke = 7. A criterion for
proper resolution of a DNS of turbulent flow is given by k... X 7 > 1. Accordingly, the
Kolmogorov length scale should obey n > 0.318 [ lu |. By choosing a Kolmogorov length,
the kinematic viscosity of the fluid is fixed via the definition of the Kolmogorov length
and the equilibrium assumption between production and dissipation: v = (P 174)1/ 5,

With the definition of I+, ux and the viscosity, a forcing Reynolds number is obtained
that characterises the simulation conditions,

4/3
Refo‘rce = u%l* = (%) . (422)

This Reynolds number is a measure of the ratio between the largest and the smallest
scales of the simulation. The parameter settings of the simulations discussed in this
chapter are presented in table 4.1.

The parameter settings for the various simulations presented in this chapter is given
in table 4.1. A number of parameters were identical for simulations F; to F;. The
domain size was nz X ny X nz ~ 128% and u« = 0.05 [ lu/ts |. The simulations were
executed for 15000 [ ts |, corresponding to 11.7 forcing timescales I+/ux for simulation
F5 and 23.4 I+/u~ for the other simulations. All simulations have controlled power input
unless stated differently. The concentration parameter ¢ of equation 4.10 was chosen 1.0
for all simulations. In the work of Alvelius (1999), the value for this parameter is chosen
0.01. This concentrates the input spectrum at a single wavenumber, rather than on the
interval [k,, k). The current value was chosen such that the Gaussian distribution of
the force spectrum influences all discrete wavenumbers on the interval [k,, ks).

In simulations F] and F3, the implementation of the forcing scheme into the lattice-
Boltzmann framework is demonstrated and the difference between controlled and uncon-
trolled forcing is tested. In cases F3, F| and F}, the forcing Reynolds number is varied in
increasing order to investigate the behaviour at decreasing Kolmogorov length. In sim-
ulation Fy the resolution-constraint &,,,,n7 > 1 is violated to observe its impact on the
numerical stability and physical validity of the simulations. In simulation Fj, the impact
of the number of forcing Fourier modes on the flow field is investigated. In simulation Fg
forcing conditions were imposed using a set of 120 force fields f,(x,t). These fields were
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Table 4.2: Simulation results. Properties indicated with a « were nondimensionalised
with v+ and [

Run Kkp.n Reyn uwx Ax Agx Tox (¢/Pip (¢/P)s S,

F 1.56 398 0.80 051 034 042 1.02 095 -0.40

b 1.56 399 081 051 034 043 1.02 094 -0.40

F; 3.14 199 0.72 036 0.40 0.55 1.01 1.00 -0.43

Fy 036 171.6 0.86 1.05 0.28 0.32 0.60 0.41 -0.18

Fy 3.02 41.7 0.85 0.53 0.33 0.38 1.17 1.21  -0.38

F 1.58 394 0.79 0.51 0.34 0.43 0.98 093 -041

F; 3.12 25.2 0.81 0.51 034 0.42 1.02 096 -0.40

prepared and stored prior to execution of the simulation, to increase the computational
speed. As a result, the white noise forcing signal is mimicked by a limited set of force
field realisations. The resulting flow field and time series are compared with simulations
Fy and F,. Finally, run F; was carried out to test the feature of anisotropic forcing in
the lattice-Boltzmann simulations.

4.4 Results and Discussion

4.4.1 Statistical quantities

A number of dimensionless statistical quantities that characterise the turbulent flow are
given in table 4.2.

To characterise the large scales of the turbulent flow, an integral length scale A is
given. This scale is determined both via the scaling law A = u/*/e (' is the rms fluid
velocity) and via the energy spectrum,

7 [hmes E(k)
Ay = 2 25 k. :
=53 /0 o dk (4.23)

These two integral scales have a different physical meaning. The integral scale A rep-
resents the large scale of the flow field based on the energy dissipation whereas A, is a
measure for the distance over which the velocity correlation drops to zero (Pope (2000)).
As depends on the spatial structure of the low field, which is determined by the size of
the computational grid and the spectral forcing.

A Reynolds number often used to characterise simulations of isotropic turbulence is
the Reynolds number based on the Taylor microscale, given by

72 %
A= (15”" ) . (4.24)

€

The table shows that the Taylor Reynolds number is about one order of magnitude
smaller than the forcing Reynolds number. It is also noticed that Re, is practically
constant for simulations with the same forcing Reynolds number.
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The integral time scale given in the table is associated with the motion of the large
scales in the fluid flow, and is defined by

To = A Jul. (4.25)

Two properties given in the table that are directly linked to the resolution of the
small scales in the flow field are the rate of energy dissipation,

_ m _ kmax _ kmax )
= ”(a_zj + ) = /0 D(k)dk = 2 /0 RE()dk  (4.26)

and the velocity derivative skewness,

((2)°")

S, = -——~—3u TR (4.27)
(3)7)
At an increasing turbulent Reynolds number, motion is generated at smaller length
scales. In a DNS, the smallest length scales have to be captured accurately on the
computational grid. Both the rate of energy dissipation and the velocity derivative
skewness give an indication of the accurate representation of the velocity gradients and
consequently indicate the quality of the simulations.

The lattice-Boltzmann scheme inherently contains the deformation rate of the flow
field (Eggels & Somers ((1995)), and consequently the rate of energy dissipation can
be computed directly from the numerical scheme, i.e. without the need to determine
spatial derivatives. The rate of energy dissipation can also be calculated from the energy
spectrum (equation 4.26), which is directly related to the velocity field. In steady tur-
bulent flows, the rate of energy dissipation and the power input should be in statistical
equilibrium, and the ratio of power input over energy dissipation should be 1. Table 4.2
shows that ¢, as well as ¢;5 in the different simulations are in good agreement, which
demonstrates that the velocity field and the gradients in the simulations are calculated
in a consistent manner. Apart from simulation Fj, the ratios ¢/P are close to 1.0. The
somewhat lower rate of energy dissipation obtained via the energy spectrum may be a
result of the discretisation of the 1D energy spectrum obtained from the 3D velocity
field.

In simulation Fj, the Kolmogorov length scale was set to 0.1 grid spacing. This
violates the rule of thumb for accurate DNS. The rate of energy dissipation obtained
from the simulations indicates that only 60 % of the power input is recovered, and the
small scales of the flow field are not captured accurately by the simulations. This will
be further discussed in a later section.

The velocity derivative skewness S, is the normalized third order moment of the
distribution of the velocity gradients, and can be associated with the time evolution
of the longitudinal velocity correlation functions (Hinze (1975),Pope (2000)). It is a
measure for the shape of the pdf of the velocity gradients. This parameter obtains
a negative value which varies with the Reynolds number, and for DNS simulations is
reported in the range -0.4 to -0.5 for both decaying and sustained isotropic turbulence

~—
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Figure 4.3: Timeseries of kinetic energy and rate of energy dissipation of simulations F}

(a), Fy (b) and Fg (c).

(e.g. Alvelius (1999),Wang et al. (2000)). The values in the table indicate that for
well resolved turbulent conditions a value is observed in the same range, whereas for
simulation Fy, the reported value is found outside this range.

4.4.2 Transient behaviour

A comparison of the evolution of the kinetic energy and the rate of energy dissipation
of simulations Fy, Fy and Fy is given in figure 4.3. This figure shows the difference
between controlled and uncontrolled forcing and the influence of forcing while using a
true white noise forcing signal compared to a signal generated by using a limited number
of forcing fields. At the start of the simulations the fluid was at rest. The initial slope of
the simulations should therefore be equal to the power input P, since in the absence of
dissipation, dK/dt = P holds. This is indicated by the tangent line through the origin
of the time series.

Figure 4.3 (c) shows that the initial slope of the kinetic energy is below the expected
value while for the two other cases the initial energy increase has the expected behaviour.
Using a limited number of force fields (F) results in a reduced power input. This is
clear from the time series and from the somewhat lower rms velocity u'x, given in table
4.2. Figure 4.3 further shows that the fluctuations in the kinetic energy and the rate
of energy dissipation increase for simulations F; and Fy. The standard deviation in K
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Figure 4.4: Cross section of the flow fields of simulations F3 (a), Fy (b) and F} (c). The
contours indicate the vorticity component w,, perpendicular to the plotted plane.

(determined from the steady-state part of the time series) for these three simulations
was 0.6, 3.2 and 4.8 % respectively.

One phenomenon that can be observed in figure 4.3 is that the evolution of the rate of
energy dissipation follows that of the kinetic energy. Most kinetic energy is contained at
the large scales. The turbulent flow field needs to develop before fluid motion reaches the
length scales where dissipation takes place. The increase of the rate of energy dissipation
therefore lags the development of the kinetic energy. An appropriate time scale for the
transfer of kinetic energy (Pope (2000)) is %Tg (T. = K/e, the eddy turnover timescale).
For the cases in figure 4.3, this time is ¢« = 0.1.

4.4.3 Flow field and energy spectra

The energy spectra of figure 4.5 (a) show that with a decrease in Kolmogorov length scale
(simulations Fj, Fy and Fy), fluid motion is generated up to higher wavenumbers. This
is also visible in the flow fields in figure 4.4. The spectra clearly indicate the appearance
of an inertial subrange, characterised by the —5/3 slope (see equation 4.1).

In simulation Fy, the Kolmogorov length was smaller than the rule of thumb minimal
value of 0.318 [ [u|. The energy spectrum of simulation Fy demonstrates that the energy
content at the smallest scales has risen approximately 6 orders of magnitude. As a result,
the gradients at the small length scales become too steep and although on the large scales
the fluid motion still exhibits a physical behaviour, the fluid motion at the smallest scales
is not accurately resolved, as can be observed from the spurious behaviour of the velocity
vectors in the flow field. Although the simulation remains stable, the flow field of figure
4.4 (c) demonstrates that the numerical method breaks down at the small scales (also
indicated by the value of ¢/P and S, in table 4.2).

The dissipation spectrum (figure 4.5 (b)) shows the shift of dissipation towards higher
wave numbers when the Reynolds number is increased. For simulations F3, F} and Fj,
the power input and hence the total energy dissipation is identical. As a consequence, the
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Figure 4.5: Normalised energy spectrum (a) and dissipation spectrum (b) for simulations
Fs, Fy and Fy at increasing order of Reynolds number. (E«(k) = E(k)/(us*lx), D«(k) =
D(k) X l*z/U*s).
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integrated value of the dissipation spectrum should be equal for these three simulations.
For simulation Fj, the dissipation mainly occurs around k/k; = 1.0, whereas for simula-
tion Fy dissipation extends to k/k; = 10.0. Equation 4.26 contains the relation between
€, the dissipation spectrum and the energy spectrum. This relation indicates that the
energy is weigthed with k2, which stresses the constribution of the energy spectrum at
larger wavenumbers in the resulting dissipation spectrum. In the inertial subrange, the
dissipation spectrum should obtain a positive slope of 2 — 5/3 = 1/3, which is indicated
in the figure.

The influence of the forcing is clearly visible in the energy and the dissipation spectra.
On the one hand, the use of 7 Fourier modes for forcing gives an accurate representation
of the Gaussian distribution of the forcing intensity (see equation 4.10) which allows for
the use of a large concentration parameter (f,, = 7,¢ = 1.0). On the other hand, the
effect is that the forcing dominates the energy spectrum and therefore the fluid motion
over a larger range of wavenumbers. To overcome this behaviour, Alvelius (1999) uses a
much smaller concentration parameter (O (0.01)), to concentrate the forcing spectrum
around a single wavenumber k;. In his results, the energy spectrum therefore exhibits a
much more pronounced peak.

By using a larger number of discrete forcing wavenumbers and a larger concentration
parameter, the power input is distributed more evenly over a wider range of wavenum-
bers than by choosing a small concentration parameter. The advantage of this is that
the overall contribution of P, will decrease. The value of the fluctuating force f,(k) will
have a lower value at each discrete wavenumber, and hence the product of u, (k) f.(k)
will be smaller. If one intends to use the forcing scheme for uncontrolled simulations of
turbulence, then in this way the contribution P, can also be suppressed. The disadvan-
tage of this is that at the large wavenumbers, the energy spectrum of the turbulent flow
is controlled over a wide range of wavenumbers, rather then being concetrated closely
around the forcing wavenumber £;.

The influence of the number of Fourier modes on the turbulent flow field is tested in
simulation Fj (see figure 4.6). This figure allows for a comparison between simulations
F5 and Fj, for which the same Kolmogorov length scale was set, and between Fy and
F, for which the same forcing Reynolds number was chosen. Table 4.2 indicates that
the Taylor Reynolds number for simulations F5 and F} are indeed of the same order.
Since the Reynolds number is a measure for the ratio between the microscopic and
macroscopic length scales, one would anticipate that the integral length scale between
both simulations differs by a factor 2 ( since np = 0.5 x 7R, ), which is indeed the case
(notice that the integral length scale in table 4.2 is normalised with I+ which also differs
a factor 2).

A comparison of the recovered energy dissipation with the pre-defined power input
indicates remarkably that /P > 1.0 (see table 4.2). This is due to the poor represen-
tation of the Gaussian distribution of F(k) over a limited range of 3 wave numbers.
Due to the discretisation, the resulting power input P; was considerably larger than the
desired power input (P; = 1.154 X Py, ). This discretisation error was negligible for
all other simulations. An increase of 15 % in powerinput results only in a 4 % decrease
in Kolmogorov length (n ~ €7/%). As a result, the small scale structure of the flow
field of simulations F3 and Fj is comparable. This is consistent with the correspondence
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Figure 4.6: Normalised energy spectrum (a) and dissipation spectrum (b) for simulations
Fs, Fy and Fy at order of increasing Reynolds number. (Ex(k) = E(k)/(us?l+), Dx(k) =
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between the two spectra at large wavenumber (figure 4.6): At large wave numbers both
the energy and dissipation spectra of simulations F3 and Fy practically collapse.

4.4.4 Grid anisotropy and the correlation functions

For simulations Fy and F7, the longitudinal and transverse correlation functions, f (r)
and g(r) respectively, are given in figure 4.7. The correlation functions are a measure
for the velocity correlation over a separation r, parallel or perpendicular to the velocity
component (see equations 5.21). In figure 4.7(a), these functions are plotted for sim-
ulation F} where the isotropic property of the simulation is tested by calculating the
functions in two different ways, explained below.

Since the simulations are carried out on a cubic grid, the flow field and consequently
the forcing is carried out in an inherently anisotropic domain. To test if this has any
consequences for the directional character of the resulting flow field, the correlation
functions were determined (i), through the Fourier transform of the velocity field and
(i) through sampling of the flow field via a large number of randomly placed sample
points.

When determining the correlation functions via the Fourier transform, the veloc-
ity field is automatically aligned with the grid and anisotropic properties that may be
present due to the grid are contained in the resulting correlation functions. For the
second method, the velocity field was sampled with a large number of (100,000 per field)
randomly placed points. The fluid velocity was computed at these points via first order
interpolation. The correlation functions were then determined by calculating the cor-
relation between all pairs of sample points. The orientation was based on an internal
coordinate system, determined by the axis connecting each pair and two axes that are
perpendicular to the connecting axis and to each other (see also section 5.5.3). By using
random pairs of particles the orientation of the coordinate system is randomised for each
pair. For a truly isotropic field and ideal interpolation, both methods should give the
same f(r) and g(r).

For the major part the correlation functions of both approaches coincide which
demonstrates that no gross anisotropy is present in the simulations. The deviations
in the randomly determined correlation function at short separations may be a result of
either the accuracy of the interpolation procedure or of the discretisation effect, since the
correlation near zero separation was calculated from particle pairs that were separated
at a distance on the order of the grid spacing or less. The longitudinal correlation re-
duces to zero and remains uncorrelated over large separations, as expected for turbulent
flows. The interpolated transverse velocity correlation g(r) obtains non-zero values at
larger separation distances. This results from lack of statistical convergence, since the
correlation function was only determined for a single flow field realisation. Ensemble
averaging a number of independent flow field realisations should result in a convergence
to zero.

The correlation functions presented in figure 4.7 (b) give the longitudinal and trans-
verse correlation of the anisotropically forced simulation F;. In this simulation the
anisotropic forcing parameter b was set to a value of 10, indicating that the power in-
put in the z- and y-directions was 11.2 times that of the z-direction. The longitudinal
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Figure 4.7: Normalised autocorrelation functions f(r) and g(r) of; (a) simulation Fj,
where the correlation functions were determined via the Fourier transform of the velocity
field (grid) and via random sample points (random); (b) simulation F7, where the flow
field is anisotropic. The correlation functions were determined from a single flow field
realisation.
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Figure 4.8: Timeseries of the normalised Reynolds stresses of simulation F;.

correlation function f,, describes the correlation of the x velocity component over a
separation in the x direction while the transverse correlation function gzy Presents the
correlation of the x velocity component over a separation in the y direction. The figure
demonstrates that the f,, correlation decays faster than f,,. The correlation length
scale A« gives a measure for the integral length scale over which the correlation drops
to zero, comparable to the integral length scale A,+. It is anticipated that As«; will be
smaller in the z-direction than in the z- or y-direction since the integral length scales
with «'* and u, or w, are larger than u). This was confirmed by the values determined
for Axs,, as 0. 459 and for A«y,, as 0.274. No firm conclusions can be drawn with respect
to g,y and g, since the correlation functions were obtained from a single flow field
realization.

4.4.5 Axisymmetric anisotropic turbulence

The time-series of the Reynolds stresses R;;(= u;u;) of simulation Fy (figure 4.8) show
the evolution of the flow field of anisotropic forced turbulence. At startup, the value of
the - and y-components increase much faster than the z-component, as is anticipated.
The fluid motion in the z direction gains momentum out of the  — y plane once steady
state is achieved, since the forcing is 11.3 times larger in the x-y plane, which should be
compared to the steady-state ratio of a factor two, between R,, and R,, or R,,. The
off-diagonal components of R;; fluctuate around zero.
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Figure 4.9: Invariants A, and A3 calculated from the time series of the Reynolds stresses
of simulations F3 and F; (a). The lines indicate the position of the Lumley triangle. F3
fluctuates close to zero, as indicated in the enlargement (b).
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The anisotropy of a flow field is characterised by the anisotropy tensor a;; that can
be derived from the Reynolds stresses,

Rij 2
K 3
and its invariants. The first invariant of this tensor is zero by definition while the second
and third invariant of this tensor are A, = ai;aj; and As = a;a;,a5. For 3D isotropic
flow, both invariants will also become zero. In figure 4.9, the values of the anisotropy
invariants are plotted for the duration of simulations F; and Fy. Figure 4.9 (b) gives a
detail of figure (a) which demonstrates that the invariants are indeed practically zero in
the case of isotropic forcing.

With the definition of the anisotropic forcing parameters, P, and P, are defined
equal and much larger than P;. The resulting anisotropic flow is called axisymmetric
turbulence. For this type of flow, the anisotropy tensor can be written as

;= bij (4.28)

a/2 0 0
iy = 0 «/2 0 . (4.29)
0 0 -«

and the corresponding invariants can be expressed in terms of the parameter . For
a > 0, the relation is given by A; = —6(A4,/6)%2, indicating that the kinetic energy in
the symmetry plane exceeds that of the out-of-plane direction, while A; = 6(A4,/6)%/?
is valid when the opposite holds, i.e. when o < 0. These curves are plotted in the A,
- Az plane of figure 4.9. The curves pose a limiting case for anisotropic conditions and
represent the bottom corner of the so-called Lumley triangle (see also Lumley (1978) or
Derksen et al. (1999)). Figure 4.9 (b) demonstrates that the invariants of the isotropic
simulation F; are indeed bounded by the two branches of the Lumley triangle and are
close to isotropy.

With R,, being lower than R,, or R,, for simulation F7, & > 0 and the points in the
Ay — Aj plane are accordingly found near or at the left branch of the Lumley triangle.
This demonstrates that axisymmetric turbulence is obtained throughout the timeseries
of the simulations. The average value of o was 0.237. The dots near the left line show
the evolution of the anisotropy in the A, — A3 plane. As already noticed, from startup of
the simulation R, lags the steep increase of R, and R,,. Consequently, the invariant
Aj starts at an initial value of —0.15 and proceeds in time to a steady state value of
approximately -0.01.

4.5 Conclusion

In this chapter the application of a forcing scheme for the generation of sustained homo-
geneous turbulent conditions to a lattice-Boltzmann scheme was demonstrated. Using
this forcing scheme, a turbulent flow field can be obtained with o priori defined tur-
bulent conditions. The scheme describes the generation of a homogeneous body force
that fluctuates as a white noise signal in time and on large length scales in space. The
scheme contains a specifically advantageous feature which enables the control of the
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power input by elimination of undesired fluctuations due to the velocity-force correla-
tion. It is demonstrated that the scheme can also be used to obtain anisotropic turbulent
conditions. It was further demonstrated that by straightforward implementation of the
forcing scheme in the lattice-Boltzmann framework all specific features of the forcing
scheme are recovered. The lattice-Boltzmann scheme proves to be an efficient method
for precise direct numerical simulations of turbulence.
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Chapter 5

Fully resolved simulations of colliding
monodisperse spheres in forced
isotropic turbulence

Fully resolved simulations of particles suspended in a sustained turbulent
flow field are presented. For solution of the Navier-Stokes equation a lattice-
Boltzmann scheme was used. A spectral forcing scheme is applied to maintain
turbulent conditions at a Taylor Reynolds number of 61, based on the Taylor
microscale. The parameter space ranged from 2 % to 10 % solids volume
fraction and for the solid to fluid density ratio between 1.15 and 1.73. A
lubrication force is used to account for sub-grid hydrodynamic interaction
between approaching particles. Results are presented on the influence of the
particle phase on the turbulence spectrum and on particle collisions.

The simulations show that the presence of the particles reduces the kinetic
energy by facilitating the energy dissipation. Fluid motion is generated at
length scales equal or smaller than the particle size, which results in a strong
increase in the rate of energy dissipation at these length scales.

Collision data indicates that two separate collision mechanisms occur in the
simulations. Collisions due to uncorrelated particle motion are observed
(primary collisions), and collision frequencies are in agreement with theory on
inertial particle collisions. In addition to this, also a large amount of collisions
at high frequencies is encountered. These secondary collisions are due to
the correlated motion of particles resulting from short range hydrodynamic
interactions and due to spatial correlation of the turbulent velocity field at
short distances. This view is supported by the distribution of relative particle
velocities, the particle velocity correlation functions and the particle radial
distribution function.

Key words: lattice-Boltzmann, suspensions, collisions, turbulence, DNS

This chapter has been submitted to J. Fluid Mech.
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5.1 Introduction

In industrial processes where solid materials are produced or handled, often dense slurries
are processed under highly turbulent conditions. Turbulence is required to maintain the
slurry suspended and well mixed. While operating under such conditions, phenomena
such as breakage, agglomeration and segregation can occur; they can be either desired or
form potential problems in the operation of these processes ( Zwietering (1958), Wibowo
& Ng (2001)).

One example is industrial crystallisation, which deals with the production of solid
crystals from a supersaturated liquid. In industrial crystallisation processes, the sus-
pension typically contains between 5 and 20 vol % solids with an average particle size
in the range of 100 to 1000 um, with a solid to liquid density ratio in the range of 1
to 2.5. This class of processes is generally operated under highly turbulent conditions.
The turbulence microscopic scale can be as small as 10 ym, which is typically one order
of magnitude smaller than the mean crystal size (Ten Cate et al. (2001)). Phenomena
occurring in crystallisation processes that are strongly dependent on the interaction be-
tween the particle phase and the turbulent flow field are agglomeration (Hollander et al.
(2001)), abrasion and fracture (Gahn & Mersmann (1999a)). These phenomena have a
strong influence on the performance of the crystallisation process and therefore on the
product quality.

Since the particles are significantly larger than the Kolmogorov length scale and since
the particle volume concentration in crystallisation systems is considerable, strong hy-
drodynamic interactions between particles and fluid motion and strong particle-particle
interactions are anticipated. To gain insight into the behaviour of such suspensions, a
simulation approach has been developed in which a number of freely moving particles
is placed in a fully periodic domain. The flow field around each particle is resolved and
predefined turbulent conditions are imposed by means of a spectral forcing technique.
In this way simulations of a sustained turbulent suspension can be performed where full
hydrodynamic coupling between the fluid and particle motion is obtained.

Direct simulations of suspensions have been pursued by a number of authors (see
e.g. the review by Koch & Hill (2001)). Recent literature indicates that a versatile
approach is based on the lattice-Boltzmann method (Chen & Doolen (1998)), which is
a numerical method for solution of the Navier-Stokes equations on an equidistant cubic
grid. In this type of simulations, a particle diameter occupies typically between 2 and 20
grid cells. The method was established and validated by Ladd (1994a,b). The method
has been used in recent studies to simulate suspension problems for particles moving in
the Stokes regime or at low but non-zero particle Reynolds numbers (e.g. sedimentation
of large numbers of particles Ladd (1997, 2002), motion of spherical and non-spherical
particles (Qi (1999), Aidun et al. (1998a), Ding & Aidun (2000)). Because of these
promising results it was decided to use the lattice-Boltzmann method for our current
study. However, the approach presented in this paper differs from the methods used by
these authors on a number of points.

Firstly, a major difference is that in our approach the particles are moving in a fully
turbulent flow field. To obtain meaningful statistical data, transient simulations are
required that cover a sufficiently long time span with statistically stationary conditions.
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A forcing scheme, developed by Alvelius (1999), is applied to the lattice-Boltzmann
scheme to obtain a turbulent flow field with accurately defined conditions (turbulent
kinetic energy K, turbulent Reynolds number, rate of energy dissipation €).

Secondly, both the type of lattice-Boltzmann scheme and method to implement the
no-slip particle boundary condition are different. The lattice-Boltzmann scheme used
here is based on Eggels & Somers ((1995). Their approach explicitly treats the higher
order terms of the lattice-Boltzmann equation, which improves the numerical stability of
the scheme and allows the use of lower kinematic viscosities as compared to the standard
BGK scheme, which is a desired feature for performing turbulent simulations. The
technique to impose the boundary conditions is called the adaptive force-field technique.
This method is used by Derksen & Van den Akker ({1999, 2000) in LES studies of the
turbulent flow field in various applications. To our knowledge this approach has not yet
been applied for simulating freely moving particles. However, based on the good results
obtained with the LES, we had confidence that the adaptive force-field method could be
used for suspension simulations at a relatively low spatial resolution per particle. Our
previous study where simulations and PIV experiments of a single sphere settling under
gravity were compared demonstrated that an accurate representation of the sphere’s
motion and the flow field it induced was obtained at relatively low resolutions (Ten Cate
et al. (2002b)).

Thirdly, particles moving in a turbulent flow field can collide. In our simulations a
collision detection algorithm (Chen et al. (1998b)) is used that deals with the fully elastic
collisions. Further, as particles approach, a moment will occur where the separation
becomes smaller than the grid spacing. The computational grid then lacks resolution
to capture the details of the fluid motion in the gap between the particles and the
repulsive force acting on the approaching particles will be under predicted. An analytical
expression of the lubrication force is used, similar to Ladd (1997), to account for the
lacking hydrodynamic forces. In the next section our numerical approach is presented
in detail.

Our first results on turbulent suspension simulations have been reported in a previous
study (Ten Cate et al. (2002a)). In that study the periodic domain consisted of 128°
grid nodes. In the current study, the domain size spans 256° grid nodes to increase
the separation of wavenumbers related to the integral length scale of turbulence, the
particle diameter and the Kolmogorov length scale, and further to increase the number
of particles per simulation to increase the quality of the statistical data.

A vast body of literature exists that discusses the interactions between suspended
particles and a turbulent flow field. The main issues treated in these studies are the
motion and collisions of particles due to the turbulent flow field and the modification of
turbulence due to the presence of a second phase.

A theoretical basis for the collision rate of small particles (i.e. d, << 7, where d,, is
the particle diameter and 7, the Kolmogorov length scale) suspended in a turbulent flow
is provided by Saffman & Turner (1956), for the purpose of describing agglomeration of
droplets in atmospheric flows. Theoretical extensions of this work were proposed by Yuu
(1984) and Kruis & Kusters (1997) to improve the description of the particle motion in
turbulent flow fields. Abrahamson (1975) presented a model to predict collision rates of
particles with considerable inertia.
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These models have been used to interpret the phenomena observed in a wide range
of numerical studies on turbulent suspensions, where the particle phase is represented
by particles that are much smaller than the resolution of the computational grid, and
where Stokes drag is assumed to dominate the motion of the particles. Based on this
approach, the collision rate of small particles in isotropic turbulence is studied extensively
by Sundaram & Collins (1997) and later by Reade & Collins (2000) and Wang et al.
(1998, 2000).

Theoretical models that describe the modification of the turbulent flow field due to
the presence of particles have been presented by e.g. Felderhof & Ooms (1989); Ooms &
Jansen (2000); Yuan & Michaelides (1992); Crowe (2000). Turbulence modification has
also been studied via direct numerical simulations of isotropic turbulence where a two-
way coupling between the fluid and the particle phase was present, examples of which
are given by e.g. Squires & Eaton (1990), Elghobashi & Truesdell (1993) and Boivin
et al. (1998).

We would like to stress that due to the application (i.e. industrial crystallisation), our
focus has been on a different regime compared to the above citations. Our simulations
were performed to study the behaviour of dense turbulent solid-liquid suspensions, where
particles exhibit strong hydrodynamic interactions, while the particle size is larger than
the Kolmogorov scale and the volume fraction amounted to 2 to 10 %. This requires
that in our simulations the flow field associated with the particles is fully resolved.

In contrast with our approach, the above mentioned studies focus on systems where
the particle size is much smaller than the Kolmogorov length while the volume fraction
is of the order of 107* to 107°. In spite of the low volume fraction in these latter studies,
the mass loading was considerable due to a relatively high particle to fluid density ratio.
In our simulations, the density ratio was kept between 1.15 and 1.73. As a result, the
mass loading in our simulations is of the same order as in the above mentioned studies.

Although the regime in our simulation is much different from that in the above
studies, some of the concepts used in or obtained from these studies are used in this paper
for qualitative comparison and discussion of the trends in our results. The objectives of
this paper are;

e presentation of our method for simulation of fully resolved dense suspensions

¢ demonstration of the use of a spectral forcing scheme in lattice-Boltzmann simu-
lations for generation of sustained turbulence with pre-defined conditions

¢ discussion of the modification of the turbulent energy spectrum under influence of
suspended particles

e interpretation of the collision behaviour and the relative particle motion observed
in dense turbulent solid-liquid suspensions

These objectives are reflected in the organisation of the paper; after the presentation of
our numerical approach, the settings and results on a single phase isotropic turbulent
simulation are presented in section 5.3. The same turbulent conditions are used the
suspension simulations presented in section 5.4, where the influence of the particle phase
on the turbulent fluid kinetic energy spectra is discussed, and in section 5.5, where a
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detailed discussion is given on the behaviour of the particle phase in our simulations. The
latter discussion is based on the theoretical framework presented by Wang et al. (2000)
and Reade & Collins (2000) and focusses on phenomena such as the influence of the
turbulent flow field and the short range hydrodynamic interactions on the distribution
of relative velocities, particle accumulation effects and particle collision rates. The paper
ends with conclusions in section 5.6.

5.2 Setup of the Direct Numerical Simulation

5.2.1 The lattice-Boltzmann method

A lattice-Boltzmann scheme has been used for simulation of the fluid flow. This scheme
is based on a microscopic model for fluid behaviour. where the rules for the update of
the fluid velocities are handled locally on the grid nodes. An advantageous property of
the lattice-Boltzmann scheme is that it performs excellent on parallel computers, since
it only involves localized operations.

The fluid is represented by mass that propagates at discrete time steps on an equidis-
tant grid (lattice). Collision rules that guarantee conservation of mass and momentum
are applied on the mass arriving at a grid node. This process is represented by the
lattice-Boltzmann equation (LBE)

ni(x 4+ ci, t + 1) = ni(x,t) + Ti(n). (5.1)

Due to collision an amount mass n;, aligned in the direction ¢; (with ¢ = 1, M) at
position x and time ¢, is updated with an amount I'; after which it propagates to the
position x + ¢; at the next time step. Here, c; is the set of discrete velocities with which
mass moves on the grid, and I'; is the collision operator that depends on all masses,
t.e. the vector n, involved in the collision step. In the lattice-Boltzmann scheme all
properties are defined in lattice units for length [{u], time steps [ts| and arbitrary units
of mass [m)].

Different approaches have been employed to solve equation 5.1 (see e.g. Ladd
(1994a), Chen & Doolen (1998), Rothman & Zaleski (1997)). In this work we use a
scheme developed by Eggels & Somers ((1995). With this scheme the following continu-
ity and momentum equation for the fluid are recovered

dp

. =0 .
8t+v pu (5.2)

a,d’;;l +V.puu=-Vp+ V. pv[Vu+ (Vu)?] - V(%puv ‘u) +F (5.3)
where p(x,t) is the pressure and v is the kinematic fluid viscosity. In the limit of low
Mach numbers (i.e. u << ¢, the speed of sound of the lattice-Boltzmann scheme),
the above set of equations represents the continuity and Navier-Stokes equations for
incompressible flow. The body force F(x,t) in equation 5.3 is used in our simulations
for two goals. Firstly, it is used for the generation of sustained turbulent conditions and
secondly, it is used for the implementation of the particle boundary conditions.
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5.2.2 Turbulence Forcing

In a typical turbulent flow, kinetic energy is produced at large scales, and dissipated at
the small scales. By forcing the fluid at small wave numbers, the fluid is set in motion
at large length scales. At sufficiently large Reynolds numbers, i.e. at a sufficiently large
separation between production and dissipation scales, the small scale structure exhibits
universal characteristics of turbulent fluid motion independently of the means of power
input. Schemes for forcing turbulent conditions have been developed by a number of
authors, e.g. Eswaran & Pope (1988), and more recently by Overholt & Pope (1998)
and Alvelius (1999).

For application of these schemes in numerical simulations, (pseudo) spectral methods
for the solution of the Navier-Stokes equations are the natural choice, since such numer-
ical schemes are defined in wavenumber space, as is the forcing scheme. However, the
forcing scheme is not necessarily associated with spectral methods. In our work we use
the algorithm developed by Alvelius (1999) for forcing the flow in the lattice-Boltzmann
scheme. The turbulent forcing signal is generated in Fourier space and, after computing
the inverse Fourier transform, is applied in the physical domain (i.e. in equation 5.3
via the body force F(x,t)). The force is defined as a divergence free white noise signal,
fluctuating randomly in time and space. The white noise character assures that the
forcing signal is uncorrelated with any time scale of the turbulent flow field. Alvelius
shows that during one discrete time step, the volume averaged power input P is the sum
of two contributions,

1— _
P=P+P= §fkfk At + frug (5.4)

(Fy = pfi) which are the force-force correlation and the velocity-force correlation re-
spectively, and where the overbar indicates volume-averaging. The force is placed in the
discrete Fourier space in a cubic cell with sides f,.. The forcing intensity is distributed
over the wavenumbers as a Gaussian distribution, active on the interval [k,, k3], with the
maximum intensity at a desired wavenumber k; (see figure 5.1).

The power input P is fixed via the Gaussian distribution of the force in Fourier
space. P, introduces an uncontrolled power input that influences the turbulent kinetic
energy and can generate substantial fluctuations. The method of Alvelius (1999) allows
to choose the force such that the contribution of P, is zero at each time step. This
results in a much smoother time development of the turbulent kinetic energy. Using this
option requires the Fourier transform of the velocity field every time step. It was not
used in the study because of this additional computational cost.

Alvelius chose the distribution of the power input to be narrowly concentrated around
the forcing wavenumber ky, which can cause the total power input to rise up to 1.5 times
P,. In the simulations presented in this chapter we chose to distribute the power input
more evenly over the wavenumbers in the forcing interval [k,, k;] by increasing variance
of the Gaussian distribution. This is controlled by a concentration parameter ¢, which
was set to 1.0 in our current simulation, as opposed to the value of 0.01 that is used by
Alvelius (1999) (also see equation 4.10). In this way we found that the large increase in
power input due to P, could be effectively suppressed.

For a further enhancement of the computational efficiency, rather than generating a
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ky

Figure 5.1: 2D representation of the forcing distribution in the Fourier domain. Dotted
curves indicate the Gaussian distribution along the x and y axis, the contour indicates
the Gaussian distribution in the 2D plane.

new force field each time step, 120 force fields were generated prior to the simulations.
These were imposed on the fluid domain in random order during the simulations. In
this way, a forcing signal that sufficiently resembled a white noise signal was generated.

5.2.3 Solid particle boundary conditions

Development of accurate (moving) boundary condition methods is an ongoing field of
research in lattice-Boltzmann techniques. In the work presented by Ladd (1994a), a
bounce-back approach is applied for the moving no-slip boundary condition at the surface
of solid particles. In this approach fluid mass that propagates on a link that crosses the
surface of the particle bounces back halfway between the grid nodes and returns towards
the bulk fluid domain. The momentum change at bounce-back is associated with the
hydrodynamic force acting on the particle. With this type of boundary conditions,
curved objects will become staircase shaped, due to the discrete cut of the links between
nodes on the cubic grid. A number of adaptations of the bounce back technique have
been suggested to improve the representation of curved boundaries (e.g. Chen et al.
(1998a); Rohde et al. (2002); Mei et al. (1999); Verberg & Ladd (2002); Bouzidi et al.
(2001)).

The bounce back type boundary condition is applied in most lattice-Boltzmann stud-
ies of suspended particles (e.g. Ladd (1994a,b), Behrend (1995), Qi (1999), Aidun et al.
(1998a)). In contrast to these studies, we use a forcing scheme to implement the moving
no-slip boundary condition. Our approach is derived from a forcing scheme that was
originally applied in spectral codes (Goldstein et al. (1993)) and was adapted for the
lattice-Boltzmann method (Derksen & Van den Akker ((1999)).

The sphere surface is represented by a set of control points, placed at the sphere’s
surface, evenly spaced at a distance, somewhat smaller than the grid spacing (see figure
5.2). At each control point, the surrounding fluid velocity is forced to the surface velocity
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Figure 5.2: Representation of a sphere on a cubic grid. The cross-hairs indicate control
points at the sphere surface.

of the sphere. The fluid velocity at a control point is determined via first-order Lagrange
interpolation of the velocity from the surrounding grid nodes. For a freely moving sphere,
the surface velocity (u,) is given by sum of the translational and rotational velocity
components

u; =u, +{, X1, (5.5)

where u,, is the translational velocity of the control point, which is identical to that of
the particle, r, is the position of the control point relative to the center of the sphere
(r, = x, — x.) and £, is the angular velocity of the particle. The deviation between the
desired surface velocity u, and the interpolated fluid velocity u is used to update the
force that is applied to the fluid. This deviation is calculated by

d=u, - Z I(r;)u; (5.6)

where u; is the fluid velocity at grid node j and I(r;) is the set of interpolation coef-
ficients, which is a function of the position r; of the control point with respect to the
surrounding grid nodes. The same interpolation coefficients are used for projecting the
force from the control point onto the surrounding grid nodes, where the forces F; acting
at grid node j are updated through a relaxation scheme

F;(x,t) = oF (x,t — 1) + BI(r;)pd. (5.7)

The scheme of equation 5.7 that imposes locally the desired boundary condition is a
control scheme that is characterised by the relaxation parameters « and 3. The scheme
adjusts the imposed body force F; (x, t) proportional to the deviation of the local velocity.
The dynamic action, accuracy, and stability of the control scheme are determined by the
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relaxation parameters and the topology of the control points. The parameters o and 3
were determined empirically as 0.95 and 1.8 respectively.

After updating the forces at the grid nodes, the hydrodynamic force and torque on
the sphere are calculated with

F, =Y F(x,1) (5.8)
J

T, = er x Fj(x,1) (5.9)

The summation is over all boundary nodes, both inside and outside of the sphere.

5.2.4 Internal fluid nodes

The adaptive force-field scheme requires fluid mass on the grid nodes occupied by the
solid object (also indicated in figure 5.2). An advantage of this is that when a node
shifts from the inside of an object into the exterior, it already contains fluid mass and
the state of the node does not need to be changed. As a result, the scheme will be
inherently mass-conservative. For these reasons Ladd (1994b) also keeps internal fluid
in the particles. One drawback is that the internal fluid inertia influences the motion
of the sphere via a contribution to F, and T, (see Eqs. 5.8 and 5.9), which requires a
correction procedure.

This problem has been recognised by a number of authors who have suggested dif-
ferent approaches to solve it. Ladd (1994b) suggests to integrate the equation of motion
with an effective particle mass. This is a fair approximation for systems with large
solid/fluid density ratios but for solid particles in liquid with a density ratio typically
between 1 and 2, numerical instabilities may occur when integrating the equation of
motion this way. Other authors have proposed methods to remove the internal mass,
e.g. Aidun & Lu (1995), Aidun et al. (1998a) and Heemels (1999), but these can not
be applied in combination with the adaptive force-field technique. Qi (1999) allows
particles to have internal mass but adds a force term (similar to Aidun et al. (1998a))
when computing the hydrodynamic force on the particle, to compensate for non-physical
fluctuations in the hydrodynamic force F, that arise from nodes entering or leaving the
interior of a particle.

We propose the following straightforward correction procedure to compensate for the
contribution of the inertia of the internal fluid. The force applied to the fluid nodes for
implementation of the boundary condition influences the fluid both on the inside and
the outside of the sphere. Hence, the total force that acts on the sphere, as calculated
with equation 5.8, is a sum of the internal and external contribution to the force:

Fp,tot = Fp,int + Fp,ea:t (510)

When integrating the equation of motion, the only physical contribution to the sphere’s
motion is due to Fp.;. To estimate the internal contribution F;,;, we calculate the
change in momentum of the internal fluid between two successive time steps,

F(t)l'),mf = ///‘/ {puint(xv t) - /)uint(xvt - 1)} dv. (511)

sphere
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F, ezt Is then determined by subtracting Fy;,; from the total force Fy o A similar
procedure is applied for the torque. With this approach, the correct physical behaviour
is obtained. This has been demonstrated in a study on the sedimentation of a single
sphere in a closed container (Ten Cate et al. (2002b)).

5.2.5 Hydrodynamic radius

The next important issue that should be addressed when performing suspension simu-
lations is the effective radius at which a particle is implemented. By placing a sphere
on a cubic grid, the shape is approximated by imposing the boundary condition of the
sphere surface on the grid. When applying the bounce back method, the no-slip condi-
tion is assumed to be present half way between two grid nodes and the sphere becomes
staircase shaped. The resulting drag force that acts on the sphere is different from the
drag force on a perfectly smooth sphere. In the adaptive force-field approach a similar
effect occurs. The boundary is imposed by placing a force on the grid nodes via an
interpolation-extrapolation procedure that extends outside of the exact location of the
sphere surface and here the measured drag force also differs from the force on an ideal
sphere.

Ladd (1994b) compared simulations on a sphere in a fully periodic array of spheres
with the analytical solution of this problem (Hasimoto (1959)). Ladd (19945) suggested
to use the analytical solution as a calibration method, by calculating an effective sphere
radius (hereafter called hydrodynamic radius) based on the drag force obtained from
simulation. This approach demonstrated that the hydrodynamic radius varies with
viscosity in a non-physical manner, on the order of 0.5 to 1 lattice spacing.

This non-physical dependency of the drag force is also reported by Rohde et al.
(2002), who performed simulations with an improved bounce back boundary scheme. A
reason for this dependency may be given by He et al. (1997), who demonstrated ana-
lytically that in bounce back methods for lattice-Boltzmann schemes, the exact location
of the no-slip condition is a function of viscosity. However, it is not only an artifact of
bounce back type boundary conditions, since a similar dependency is also observed with
our adaptive force-field approach.

For particles with large input radii, a variation in the effective radius of the order
of 0.5 to 1.0 grid spacing is not of great importance. However, if one seeks to perform
simulations at a relatively low resolution, a calibration of the hydrodynamic radius
is required. This has been demonstrated in our previous study where the simulated
motion of a single settling sphere was compared with experimental data (Ten Cate et al.
(20025)). We found that by calibrating the particle radius via the analytical expression
of Hasimoto (1959), the transient settling behaviour of a single sphere settling in a
closed tank could be predicted at an accuracy of approximately 1 to 5 %. Although
the calibration is performed in the creeping flow regime, as required by the analytical
expression, the sedimentation experiment was done at Reynolds numbers between 1.5
and 32. We therefore view that the calibration procedure offers a reasonable method to
estimate the inaccuracy of the boundary condition, even when the particles in the actual
case are simulated at non-zero Reynolds numbers.
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5.2.6 Short range interactions

An important situation occurs when two suspended particles approach towards close
proximity. For real suspended particles, the fluid that is squeezed out of the gap between
approaching particles will induce a strong repulsive hydrodynamic force on the particles.
Conversely, as the particles separate, the gap must be filled with fluid again and the force
will become attractive. These hydrodynamic effects can have a strong influence on the
behaviour of solid/liquid suspensions and require an accurate treatment in suspension
simulations.

In our simulations the flow field surrounding the particles is simulated explicitly and
hydrodynamic interactions between particles are inherently present. However, as two
particles approach, one should guarantee that hydrodynamic effects at short distances
are present, and onc should take care that particles may collide. For the latter we
use an efficient collision detection algorithm in our simulations according to Chen et al.
(1998b) to prevent that particles will overlap and to detect and registrate particle-particle
collisions.

The application of a collision detection algorithm alone is not sufficient. For two
approaching particles moving on a cubic grid, a moment will occur where the gap s
between the particles becomes too small to be resolved by the computational grid. As
a result, the hydrodynamic force that acts on the particles due to the squeezing of the
interstitial fluid will be under predicted. This effect was recognised by Ladd (1997), who
proposed to calculate the hydrodynamic forces explicitly, using the leading order term
of the analytic expression for the lubrication force (e.g. Kim & Karrila (1991); Crowe
et al. (1997)). This force is calculated for particles that have reached a distance smaller
than A, (set to two lattice spacings in our simulations), as given by

2
rp - 2 (L D)z ) .12
where s is the width of the gap between particles 7 and j, u; and u; are the particle
velocities and X;; = (x; — X;)/ | X; — X; | is the vector with unit length connecting the
centers of the two particles.

Ladd & Verberg (2001) chose to implement the lubrication force according to equa~
tion 5.12 on a particle pair-wise basis. In our simulations the implementation of this
force was done in the following way. First, the force acting on grid nodes where particle
boundary force contributions overlap is treated. The adaptive force-field method for the
boundary conditions extrapolates forces to the grid extending outside of the particle.
When two particles approach, both particles may impose forces on the same grid nodes
inbetween the particles. Since the resulting force on these grid nodes can not be identi-
fied with any of the two particles in particular, the force acting on these grid nodes is
set to zero.

Second, the lubrication force acting on each particle is calculated by means of equa-
tion 5.12. In suspensions at high volume concentrations a particle may have multiple
interactions with a number of surrounding particles. Therefore, the lubrication forces are
calculated for the interaction between cach particle and all of its neighbouring particles
each time step.
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Third, combining lubrication forces with the collision algorithm requires special at-
tention. When both are active, particle pairs can become trapped in an unphysical
pair-wise oscillating motion. This behaviour is an artifact due to time discretisation.
At collision, the axial velocity component of the colliding spheres is reversed and the
spheres are separated by the remaining part of their post collision trajectory. At high
temporal resolution, this will be a small separation, which in the following time step
may give rise to a very large lubrication force, that has becomes attractive instead of
repulsive, because of the reversed axial velocity component. The attractive force can
become so large that it reverses the particle velocities and brings them together again.
In the following time step the particles will collide again and so on.

This is prevented in our simulations by setting the lubrication force to zero for
particles that can travel the gap s between the particle pair in one time step and are
about to collide (notice that in lattice-Boltzmann simulations the time step has a value
1),

Fy =F3 5> [(u; —uy)|

=0 < (m-w) (19

In this way, the lubrication is also turned on again after collision, when particles are
separated a distance that is comparable to their separating velocity.

One should also realise that application of the analytical expression of the lubrication
force has its limitations. According to this theory (Eq. 5.12) the motion of two particle
approaching at a certain initial velocity will be fully dissipated and particles will always
come to a halt at a finite separation. Experiments, however, indicate that particles
suspended in a liquid will rebound when bouncing with a bottom (Gondret et al. (1999,
2002)) or with a vertical wall (Joseph et al. (2001)). The limitations of lubrication
theory are owed to the break down of the lubrication model when the gap becomes of
the order of the particle surface roughness or of the order of the molecular mean free path
(Sundararajakumar & Koch (1996)). Furthermore, in a true suspension, inertial particles
may collide because forces may act on the suspended particles due to e.g. gravity or
velocity gradients in the flow field that can push particles together and enforce contact.
In previous work on the simulation of a single settling sphere (Ten Cate et al. (2002b)) it
was observed that application of a lubrication force adds a repulsive force which improves
the description of the wall approach, but postpones the moment of contact between the
particle and the bottom wall for an unrealistically long time.

5.3 Single phase isotropic forced turbulence

5.3.1 Definition of turbulent conditions

Homogeneous, isotropic turbulent conditions are imposed on a computational grid with
a size of 256 nodes and periodic boundary conditions. The turbulent flow field is
characterised by a number of a priori defined input parameters which are given in table
5.1 together with a number of turbulence characteristics. The forcing is defined by setting
a characteristic root mean square velocity (v,) and a characteristic forcing length scale
l.. The rms velocity was chosen as 0.02 because the lattice-Boltzmann scheme requires
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Input parameters Value

Ny, Ty, Ny 256
Ny 40000
A 0.02
l, 128
fnr 3
ks 0.049
Pipur % 108 6.25
P, x 108 7.19
n 1.2
v x 108 5.06

Table 5.1: Parameter settings for the single phase turbulent simulations

velocities to remain well below the speed of sound (¢, = 1v/2 in the scheme used) to
obey the demand of low Mach numbers for incompressible flow. The central forcing
wavenumber determines the forcing length scale: k; = 2r/l,. The forcing length scale
was set to [, = n,;/2. The power input is determined by the equilibrium between
production and dissipation, resulting in Py, = v.°/l,. In table 5.1 Piput 1s given,
together with the effective power input Py, as calculated with equation 5.4. The deviation
results from the error made in discretising the power input on a cube in the Fourier
domain with sides of three points.

The chioce for the Kolmogorov length scale determines the value of the kinematic
viscosity. In a statistical equilibrium, the rate of energy dissipation balances the power
input, i.e. P = € and the Kolmogorov length and time scales are set a prior: via;
n=(4/e)s and 7, = (v/ 6)%. The Kolmogorov length scale was carefully chosen as 1.2
[ lu ] after a number of considerations: (i) we would like to obtain a clear separation of
length scales between the microscopic length scale 7, the particle size d,, and the integral
scale of the turbulence A, (ii) in a DNS of turbulence the rule-of-thumb k.1 > 1
warrants sufficient resolution, where ki, is the maximum resolved wavenumber (ky,q; =
7/A, with A = 1, the lattice spacing), and (iii) the uncontrolled contribution of P; to
the power input can result in strong local velocity fluctuations or velocity gradients.
Therefore, 7 = 1.2 was a conservative choice to stay well away from the minimum
resolution demand and assure full resolution of the turbulent suspension simulations.

5.3.2 Results of single phase turbulence

In table 5.2, a number of properties is presented that characterise the turbulent flow
simulations. The parameters are presented in two columns to distinguish between values
calculated directly from the velocity field and values obtained via the energy spectrum
E(k), which is computed by means of the Fourier transform of the velocity field. Flow
field data was stored every 4000 time steps (approximately 2 integral time scales) and
the figures in the table were determined by averaging over 10 independent flow field
realisations.
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Property Flow field Via E(k)

K x 10¢ 4928 4.28
o 0.017 0.017
€ x 108 6.48 6.42
n 1.19 1.20
Nmin 0.45

Th 279 283
A 18.27 18.38
Re, 60.98 61.22
Scale A; T;
Ak, Tx 74.28 6598
Ar,Ts 37.71 2245
As, Ty 42.47 2515
A, T, 22.17 1313

Table 5.2: Turbulence properties from the single phase simulation.

The volume and time averaged turbulent kinetic energy K and turbulence intensity
u' are calculated from the flow field and the energy spectrum E(k) with

3
K = §Ul2 =

B =

Tu= / " Bk, (5.14)

The values, obtained from the velocity field and the energy spectrum, are equal by
definition.

Since the deformation rate tensor is inherently contained in the lattice-Boltzmann
scheme (Eggels & Somers ((1995)), the rate of energy dissipation can be determined
directly using this tensor (i.e. no spatial differentiation of the velocity field is required).
Alternatively, the rate of energy dissipation can be calculated from the dissipation spec-

trum: - )
_ (Ou;  Ouj\Ou; mos
€= V(axj + 83&) Oz; - 2V/0 k E(k)dk (5'15)

The two values for the rate of energy dissipation in the table only differ 1 %, indicat-
ing that the deformation rate contained in the lattice-Boltzmann scheme is consistent
with the velocity field. The values of 7 indicate that the input Kolmogorov length scale
is recovered well. The minimum Kolmogorov length as encountered in instantaneous
realisations of the flow field can be regarded as a measure for the lowest resolution in
the simulations. This parameter still satisfies the kyq.n > 1 constraint, which warrants
the quality of the DNS.

In isotropic turbulence simulations, the flow is often characterised using the Taylor
microscale and the corresponding Reynolds number,

15 121
,\z( O'Z“ )2 (5.16)
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Figure 5.3: Scaled turbulent kinetic energy (£ = E(k)/(€*/°*,"/3)) and dissipation (D =
2vk*E(k)/(en)) spectra. 'Forcing’ indicates the position of the forcing spectrum and is
not on scale. —5/3 law indicates the spectral decay associated with the inertial subrange.

and

Rey =~ 61, as found in our simulation, has been applied in a number of DNS sim-
ulations by various authors, on grids of the order of 64° to 96° points (e.g. Eswaran
& Pope (1988); Overholt & Pope (1998); Boivin et al. (1998); Reade & Collins (2000))
while Reynolds numbers of approximately 200 have been reported in simulations with
grids of 256° points (Yeung & Zhou (1997)). The Taylor Reynolds number in our sim-
ulations remains relatively low with respect to the grid size. This is the result of the
pre-defined Kolmogorov length of 1.2 grid spacing. The Reynolds number is a measure
of the ratio between the largest and the smallest scale in the simulation; by choosing a
'large’ Kolmogorov length scale the Reynolds number will be low.

In figure 5.3 the normalised energy spectrum and the dissipation spectrum of the
single phase simulation are given. The initial decay of the energy spectrum shows a
—5/3 slope associated with the inertial subrange. The figure also contains the forcing
spectrum to indicate its position in wavenumber space. The forcing dominates the
turbulent motion at the largest scales, which is visible in the shape of the energy spectrum
at the low wave numbers. The shape of the normalised dissipation spectrum indicates
that dissipation takes place throughout the whole spectrum, but extends further into
larger wave numbers (the smaller scales) than the energy spectrum. The spectra are

comparable to those presented by e.g. Eswaran & Pope (1988), Sundaram & Collins
(1997) or Alvelius (1999).
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Figure 5.4: Longitudinal f(r) and lateral g(r) correlation functions of the turbulent
simulation. ¢’(r) is the value of g(r) as computed from f(r) with relation 5.22.

Four different integral length scales of the turbulence are presented in table 5.2. The
integral length scale Ay is calculated from the turbulence intensity and the rate of energy
dissipation with the scaling law,

3
ul

A = - (5.18)
A second integral length scale is computed from the energy spectrum:
k
n maz Fo(k)
Ag = —_— .
E2WA dk (5.19)

which is the length scale derived from the integration of the velocity correlation function.
For reference, also the longitudinal and transverse integral length scales Ay and Ay, ob-
tained from integration of the longitudinal and transverse velocity correlation functions
f(r) and g(r) (see below) are given. In isotropic turbulence their ratio is approximately
2, which is the case here (Hinze (1975)).
Based on these length scales, integral time scales can be calculated, using
A
L= (5.20)
The integral time scale Tk, calculated from the kinetic energy is the eddy turnover time
or eddy lifetime and is identical to K/e.
In figure 5.4, the longitudinal (f(r)) and lateral or transverse (g(r)) velocity correla-
tion functions have been plotted. For the longitudinal correlation function the separation
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7 is in the same direction as the velocity component, for the transverse correlation func-
tion, r is perpendicular to the velocity component. The functions are given by

flr)y= ————UI(X)M(); tre) g(r2) =

u/ U

w (X)ur (x + rep)

v (5.21)

where the subscript ¢ indicates the direction of the axis in an arbitrary orthogonal
coordinate system. The average is taken in space as well as in time.

The correlation functions f(r) and g(r) in figure 5.4 show the typical behaviour for
turbulent flow. A deviation from natural turbulent flows is that at larger separations
the correlation functions do not reduce to zero. This is a result of the periodic domain
as well as of the forcing scheme. Comparable correlations functions were obtained by
Eswaran & Pope (1988) and Overholt & Pope (1998), who used a different numerical
method for solving the Navier-Stokes equations as well as for generating the turbulence
forcing.

A relation between the longitudinal and lateral correlation functions f(r) and g(r)
for homogeneous isotropic turbulence is given by Hinze (1975) (pp. 185),

rofr).

o(r) = () + 525

(5.22)
In figure 5.4, ¢'(r) denotes g{r) based on f(r) and equation 5.22. The excellent agreement
at the shorter length scales indicates that indeed isotropic incompressible turbulent flow
is simulated. The deviations at larger separations may differ because the correlation
functions do not drop to zero.

5.4 Two Phase Direct Numerical Simulations

5.4.1 Particle phase definition

Five simulations were performed (see table 5.3) where the volume fraction (@, = V,,/V»t)
was varied at a constant density ratio (simulations S; to S3), and the particle density
was varied at a constant volume fraction (simulations Sy, Sz and S in increasing order).
In simulations Sy, Sy and Ss, the particle densities were chosen such that the total mass
of the system (1myo; = m, +my, while ®,,, = m,/my) of S4 corresponds to that of S; and
S5 to that of S;.

Particle inertia is characterised by the particle Stokes number, which for particles
suspended in a turbulent flow field can be defined as the ratio of the particle relaxation
time (7, = p,d>/18u) and a relevant turbulent time scale,

T

(5.23)
For the turbulent time scale often the Kolmogorov time scale is chosen (see e.g. Sun-
daram & Collins (1997),Sommerfeld (2001)), but as table 5.2 already indicates, at least
5 different time scales can be determined for our simulations. Three different Stokes
numbers are given in table 5.3. Stx and Stz are based on the integral time scales while
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Parameter Volume fraction Density ratio

Sl Sz Sg S4 S5
N, 773 2200 3868 2200 2200
P, 0.020 0.057 0.100 0.057 0.057
pp/pf 1.414 1.414 1414 1146 1.728
®,, 0.029 0.085 0.157 0.069 0.104
Mt x 108 16.92 17.17 1747 16.92 17.47
Tp 1369 1369 1369 1109 1673
Sty 0.207 0.207 0.207 0.168 0.254
Stg 0.610 0.610 0.610 0.494 0.745
St, 4.845 4.845 4.845 3.926 5.921

Table 5.3: Definition and properties of the particle phase for suspension simulations
S1 to Ss. The particle input radius was set to 4 lattice units for all simulations, the
corresponding hydrodynamic radius was 4.696 [lu].

St, is based on the Kolmogorov time scale. The Stokes numbers indicate that the time
scale of particle inertia is approximately 5 times larger than the Kolmogorov time scale
and about half the integral time scale.

At the start of a simulation, the particles were placed randomly and without contact
in a fully developed single phase turbulent flow field. The initial flow field was identical
for every simulation and the particles initially had zero velocity. The order in which
the precalculated force fields were exposed was identical for all simulations, in order to
have identical time series of the forcing signal. Obviously, the evolution of the flow fields
differed per case due to changes in the flow field that originate from the presence of
the particle phase. The motion of the particles modifies the flow field directly, which
furthermore results in a change of the uncontrolled contribution P, (see also section
5.2.2).

5.4.2 Kinetic energy distribution in the turbulent suspension
simulations

In figures 5.5 (A) to (D), cross sections of the flow field are given at increasing particle
concentration. In the single phase simulation of figure 5.5 (A), a number of vortical
structures can be seen, typical of a turbulent flow field. At increasing particle concen-
tration, the pattern of the rate of energy dissipation is altered. An increase of the rate
of energy dissipation close to the particle surfaces can be observed.

The presence of particles changes the distribution of kinetic energy and rate of energy
dissipation over the different length scales, as can be seen in the spectra of figure 5.6.
The spectra were determined by averaging 10 realisations of the full fluid domain and
contain the contribution of all grid nodes, from those both in the bulk fluid domain as
well as from those inside the particles.

The particle volume only covers up to 10 vol % of the domain. The kinetic en-
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Figure 5.5: Cross sections of single realisations of the flow field of the single phase
simulation (A), S; (B), S2 (C) and S; (D) respectively. The particles are plotted at
their position, intersected by the plane of view. The contours indicate the logarithmic
value of the rate of energy dissipation. The vectors represent the velocity in the fluid
and have been plotted at a linear interval of 1 out of 3.
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Figure 5.6: Scaled energy spectra (E = E(k)/(¢2/°n®/?)) of the single phase simulations
and simulations ) to S; (a) and energy and dissipation spectra (D = 2vk?E(k)/(en)) of
single phase simulation and suspension simulation S,. The forcing spectrum and —5/3

slope are included (see also fig. 5.3). The wave number axis is scaled with the particle
diameter wave number k; = 27/d,,.
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1. 2.
k< kpfiv k> kpiv

A v
-

K/Kiw €/ed K/Kpy €/ern K/Kps €/cpa
Fluid 0.996 0.885 1.000 1.000 1.000 1.000
S 0.994 0.823 0.974 0.946 1.237 1.560
Sy 0.992 0.712 0.927 0.816 1.570 2.535
Ss 0.992 0.646 0.884 0.705 1.683 2.973
Sy 0.993 0.721 0.967 0.838 1.574  2.488
Ss 0.993 0.717 0.948 0.817 1.581 2.477

Table 5.4: Distribution of kinetic energy and rate of energy dissipation over wavenumbers
smaller (1.) or larger (2.) than the pivot wavenumber k. K/K;, and €/e;; indicate
the kinetic energy and rate of energy dissipation contained at wavenumbers smaller than
kpiv, Telative to the total amount in the respective simulation. The other columns indicate
the change in distribution of kinetic energy and rate of energy dissipation relative to that
of the single phase simulation on the same wavenumber interval.

ergy spectrum in the suspension simulations presented in figure 5.6 exhibits a smooth
behaviour up to wave numbers around k/k; = 1.5, which is likely associated with the
fluid motion in the flow field near the particle surface. At larger wave numbers, for
k/ka > 1.5, the energy spectrum contains a fluctuating contribution due to the pres-
ence of the discrete particle boundaries in the continuous fluid domain. For the energy
spectrum, this contribution can be considered negligble compared to the overall kinetic
energy content. For the dissipation spectrum this fluctuating behaviour of the energy
spectrum, which is partly due to the change in fluid motion near the particle surface and
partly due to the discrete particle boundary, increases energy dissipation at the smallest
scales significantly. Since one can not distinguish between both contributions, careful
consideration of the dissipation spectrum is required. However, the particle motion is
determined by the interaction with their surrounding external flow field. Therefore, the
change in the spectra at the larger scales will likely be a result from this interaction
rather than from the discrete nature of the boundary condition.

At the largest scales, the fluid motion is strongly dominated by the turbulent forc-
ing. As a result, little difference exists between the spectra of the various simulations for
k/kq < 0.1. As the wavenumbers increase, the fluid spectrum is influenced less by the
force and the impact of the particles on the kinetic energy can be clearly distinguished.
Figure 5.6 (a) shows that an increase in particle volume concentration reduces the fluid
kinetic energy at intermediate wave numbers (0.15 < k/ky < 0.7). At larger wavenum-
bers the spectra cross at a clear pivot point at wavenumber Epiv (kpiv/ka =~ 0.72). The
particles generate fluid motion beyond this point, at length scales on the order of the
particle diameter and smaller. As compared to the single phase simulation, the increase
in volume fraction particles increases the kinetic energy at this wave number range. It
is striking that the energy spectra of all suspension simulations exhibit a pivot point
around the same wavenumber. This is probably due to the fact that the length scales

i

!
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in the simulations are kept constant. The simulations have been performed with one
particle size and at one turbulent Reynolds number.

In figure 5.6 (b) the influence of the particles on both the energy and the dissipation
spectrum are compared. It is clear that the increased motion at larger wavenumbers,
generated by the particles, strongly increases the rate of energy dissipation at larger
wavenumbers. Our interpretation is that due to the difference in velocity between the
particles and the bulk fluid, gradients arise at and near the particle surface that increase
the rate of energy dissipation at higher wavenumbers.

The trends in the spectra are quantified in table 5.4. In this table the total kinetic
energy content and the total rate of energy dissipation are divided in a part smaller and
a part larger than k,;, . The table indicates on the one hand that about 99.4 % of the
kinetic energy within each simulation is contained at wavenumbers less than k;,, and
this varies little under the influence of the particles. On the other hand, the rate of
energy dissipation is strongly redistributed by the action of the particles. A decrease
from 89 % for single phase to 65 % for Sj is observed.

The table also quantifies the influence of the particle parameters on the evolving
flow field. Changing the particle volume fraction reduces the kinetic energy of the flow
field much stronger than changing the particle inertia. Velocity gradients (and hence
dissipation of kinetic energy) are generated at the boundary of the solid particles by the
slip-velocity. By increasing the number of particles, the total amount of particle surface
is increased, resulting in an increase of the rate of energy dissipation. Increasing the
particle inertia will reduce the response of particles to the turbulent flow field, resulting
in an increasing slip velocity of the particles (see e.g. Abrahamson (1975),Kruis &
Kusters (1997) for a discussion on the response of particles to a turbulent flow field).
This effect will increase the gradients at the surface of the particle, but apparently this
effect is less strong than the effect of volume fraction. Table 5.4 demonstrates that the
kinetic energy and rate of energy dissipation in simulations S4, S; and S5 are reduced
by approximately 6 %. The standard deviation of the fluctuations in kinetic energy is
of the order of 10 % which may cause the lack of a clear trend in these (Sy, Sy and Ss)
simulation results.

Modulation of the kinetic energy spectrum by presence of particles has been studied
via direct numerical simulations by a number of authors (e.g. particles in forced isotropic
turbulence by Squires & Eaton (1990) and Boivin et al. (1998) and in decaying isotropic
turbulence by Elghobashi & Truesdell (1993)). In the work of these authors, the particles
were very much smaller than the numerical grid, the volume fraction was on the order of
107, while the mass loading was considerable (®,, up to 1.0). The particle inertia was
characterised by the particle relaxation time while Stokes drag was assumed to calculate
the particle motion. In these two-way coupled simulations the interaction between the
particles and the fluid phase was imposed by projecting the force acting on the particles
back to the fluid grid.

Clearly, large differences exist between this approach and our simulations. In our
simulations all scales of the fluid motion are resolved, whereas details of the flow field
near the particle are not captured in the work presented by the authors mentioned above.
Still, for a mass loading of approximately 10 %, the work of these authors indicates a
decrease in turbulent kinetic energy of approximately 10 %, which is comparable to the
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decrease observed in simulations S, and Ss in table 5.4.

In the work of Boivin et al. (1998), simulations are presented where both the particle
mass loading and the particle Stokes numbers are in the same range as in our simula-
tions. In that work, a decrease of the rate of energy dissipation in the fluid phase of
approximately 20 % was observed. Due to their two-way coupling approach, the de-
crease of the energy dissipation is caused by the particle drag, given by the Stokes drag
relation. In our simulations the total energy dissipation in the fluid phase is conserved.
Due to the turbulent forcing in our simulations, a practically constant power input is
warranted and an equilibrium between power input and dissipation requires a constant
rate of dissipation. On the other hand, our simulations indicate a decrease of the rate
of energy dissipation at large scales (table 5.4, k < kp;,) by 5 to 30 %, which is of a
comparable order as what is found by the above authors. This demonstrates that, al-
though the simulation approach of the above mentioned authors lacks the detail of the
small scale phenomena as present in our simulations, the large scale phenomena of both
simulation approaches are consistent.

5.5 Analysis of particle phase behaviour

In this section, the motion of the particle phase in our simulations is studied in detail
to characterise the particle collision behaviour observed in the simulations and to char-
acterise the relation between the particle motion and the turbulent flow field. As stated
in the introduction, particle collisions in turbulent suspensions have been studied by a
large number of authors and a considerable theoretical framework exists to describe and
model particle motion in turbulent flow fields. In the following paragraphs we will first
give a short review of the collision theory as presented by Wang et al. (2000). This theo-
retical basis will subsequently be used to discuss characteristic features of our suspension
simulations such as the distribution of relative particle velocities.

5.5.1 A short review on the formulation of the collision kernel

Two limiting cases of turbulent suspension flows are dilute flows, where the particle
motion is dominated by hydrodynamic transport effects, and dense flows, where the
motion of the particles is dominated by inter-particle collisions (Sommerfeld (2001)).
Based on their high volume fraction one may expect that the suspensions here studied
are well in the dense regime. However, the two regimes are not only characterised by the
volume fraction. The ratio of the particle relaxation time and the average time between
two collisions (7.) gives a more precise indication of the regime of the suspension. In the
dilute flow limit: 7, << 7; the dense flow limit: 7, >> 7.. In dense two phase flows,
particles are not able to respond to the fluid flow between successive collisions. This
applies to heavy particles in low volume concentrations or for light particles at higher
volume concentrations.

We are interested in the behaviour of turbulent slurries at moderate to high volume
fractions, that consist of large particles (d, > n). The average time between particle
collisions is 7. = 1/f,, the inverse of the collision frequency f,, which is equal to the
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collision rate per unit volume divided by the particle number density. For a mono
disperse system of N, particles in a volume £, the collision frequency is given by

fo=—=2C= %F (5.24)

where N, is the rate of collisions per unit volume, ng = N,/ is the particle number
concentration. In equation 5.24 the average collision kernel I' is defined. In order
to estimate the regime we are in, an upper bound estimate for I is approximated by

(Abrahamson (1975)):
16
D= /= R’ (5.25)

where u, is the particle rms velocity and R = d,. Based on this approximation the
ratio 7,/7, ranges from 0.2 to 0.8 in our simulations. As a result, collisions as well as
hydrodynamic forces will contribute to the overall motion of the particles.

An expression for the collision kernel I' can be derived based on two different ap-
proaches, known as the cylindrical and the spherical approach. Wang et al. (1998) give
an analysis of both formulations and demonstrate that the spherical formulation is the
more appropriate way to describe the collision process. We will restrict ourselves to the
spherical formulation. According to the original concept of Saffman & Turner (1956), a
collision sphere is defined as a central sphere with a radius R = r; + r; which for mono
disperse systems is R = 2r,. In the center of this collision sphere, a particle is placed.
The collision kernel is given by the mean inward velocity w,”, times the probability P
to observe this velocity,

I, = 4 R*Pw, (5.26)

where w, is the radial component of the relative velocity w;; = u,; — up; and P is
the probability to observe w, < 0. If radial influx and outflux are in equilibrium, the
collision kernel can be rewritten in terms of the absolute mean radial velocity (|w;|),
which is given by

0 00
(Jw,|) = / —wP(w)dw +/ wP(w)dw = Pw, + (1 — P)w} (5.27)
—00 0
where the angle brackets denote ensemble averaging over all directions in space and
time-averaging. The ratio of net inward to net outward flux is given by
Pw;
Ch=—— T — 5.28
P7 (1 - Py (5.28)
which should be equal to 1 for a system in equilibrium. Wang et al. (2000) indicate
that the ratio w; /w; can be viewed as a rough measure for the compressibility of the
particle velocity field. Both C, and w; /w; will be discussed for our simulations in
a later section. When substituting equations 5.27 and 5.28 into equation 5.26, while
assuming equilibrium between in- and outflux, the spherical formulation is obtained

" = 27 R*(Jw, ). (5.29)
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The collision kernel is thus estimated as half the surface area of the collision sphere times
the average magnitude of the radial relative velocity.
If one assumes the particle velocity to be Gaussian distributed, then the relative
velocity magnitude (|wr|) can be related to the variance of the distribution as (|w,|) =
2/mo,, with o, given by

0w = Vw? = [2(u)? = 2(up1u,)}*° (5.30)

with u,; the radial velocity component of particle i. The relative velocity magnitude of
the particles therefore is a function of the velocity correlation of the particles at contact.
For isotropic turbulence, the correlation (u,ju,) of the radial velocity of the fluid is
given by the longitudinal velocity correlation function f(r) as was discussed earlier. An
equivalent expression for the particle transverse relative velocity is given by

ow =W} = [2(up)® = 2(ug, u )] (5.31)

where (u;;u;2) can be compared with the fluid lateral correlation function g(r).

The velocity correlation functions of the particles describe the relative velocity at
contact and depend on the particle-turbulence interaction. The particle properties and
particle-turbulence interaction simultaneously determine the particle correlation func-
tions which in general deviates from the fluid correlation functions.

The effect of the particle size on the collision rate is demonstrated by evaluating the
longitudinal correlation function f(r) at contact. In our simulations, the separation R of
the centers of mass of two particles at contact is about 8 times the Kolmogorov length.
At this separation, the fluid correlation functions f(r) and g(r) have dropped already
considerably (see figure 5.4). If one assumes that the particle velocity correlation is equal

to f(r), then \/@ is given by
w? = [2(uy)*(1 — f(R))*. (5.32)

Since f(R) < 1, the relative velocity is larger at contact as R becomes larger and as a
result, an increase in particle size increases the collision rate. In the following section,
we will discuss the lateral and transverse relative velocities of the particles as a function
of their separation.

The formulation of equation 5.29 holds for particles that exhibit a homogeneous,
random spatial distribution. Finite-inertia particles in turbulent flows, however, have a
tendency to collect in regions with low vorticity and high strain rate. As demonstrated
by Sundaram & Collins (1997), the impact of this "preferential concentration’ effect can
be separated from the turbulent transport effect via the radial distribution function at
contact, g.(R). This function is defined as the probability to observe a particle pair at
separation I divided by the probability to observe a particle pair at this separation in a
uniform, random cluster of particles. By including this term, the spherical formulation
of the collision kernel becomes

" = 27 R*(|lw,|)g.(R). (5.33)

The radial distribution function g,(r) will be discussed to demonstrate the presence of
particle accumulation and preferential concentration in our suspension simulations.
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5.5.2 Collision frequencies

In our simulations two collision mechanisms are observed. These two types of collisions
are designated primary collisions, which are a result of uncorrelated particle motion, and
secondary collisions, which are a result of correlated particle motion. Correlation of the
particle motion arises due to the short range hydrodynamic interactions between two
particles at short separation, due to the spatial correlation present in the turbulent flow
field, and may also be influenced by the numerical treatment of the collision process in
the simulations.

The typical behaviour of approaching particle pairs as observed in the simulations
is that for approaching particles the relative velocity reduces due to the structure of the
turbulent flow field. As they come close and make contact, the hydrodynamic forces
acting in the gap between the particles may cause the particle pair to capture each other
and stay in each others vicinity for some time, until the particles are separated again by
the external flow field.

We study the probability density function (pdf) of the time between two collisions.
Uncorrelated particles move randomly and behave as a kinetic gas. The distribution of
collision times for such random processes is described by an exponential distribution,

Pi(t,) = ~eap(~) (5.34)

TC TC
where 7, is the average time between two collisions (see also equation 5.24).

In figure 5.7, the distribution of the time interval between two collisions of a single
particle with another particle is given, obtained from all particles during the run of a
simulation. The pdf shows an exponential decay at long collision times. A particle that
moves freely in the fluid bulk until a collision with another particle takes place. After
such a collision, the probability that a second collision occurs increases strongly since
the relative velocity is reduced. This behaviour is also observed in the distribution of the
relative velocity, which will be discussed in section 5.5.3. After a number of collisions
closely spaced in time, the particles are separated again and move freely until a new
uncorrelated collision occurs. If more than two particles form a cluster, also three or
more neighbour particles can collide with each other collectively, which further enhances
the high frequency collision rates.

This conceptual image is supported by the collision events registered during the
simulations. The collisions show that two particles that form a collision pair often stay
in each others vicinity and have many collisions during the run of a simulation (see also
Ten Cate et al. (2002a)). Three particle collisions are also observed, where inbetween
two collisions of particles A and B, a collision between a particle A and C can occur.
Sundaram & Collins (1996) demonstrate that similar behaviour can occur for particles
in a simple shear flow, even when lubrication forces are not present. They show that
two particles in a shear flow will have multiple collisions, because their post collision
trajectories coincide.

To quantify the two different collision mechanisms, we propose the following form
for the probability density function,

pc(tc) = acPc,l (tc) + (1 - ac)Pc,Z(tc) (5'35)
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Figure 5.7: Probability density function of collision times. Simulations S, to S3 (a)
indicate the influence of volume concentration and simulations Sy, Sy and Sy (b) demon-

strate the influence of particle to fluid density ratio on the collision time pdf. The lines
of P,1(t.) relate to equations 5.34 and 5.35.
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ae(%) Te1/T  Tean/Tk Te2/Tk Tep Tcan
S, 8.80+ 054 1.08+0.07 1.15 0.028 6.11 5.71
Sy 879+ 044 0.56 £ 0.01 0.41 0.025 4.12 5.58
Sy 9.21 £0.60 0.34 £0.01 0.25 0.026 390 5.36
Sy 695030 0.60%0.01 0.40 0.025 3.85 5.73
Ss 11.71 + 0.44 0.57 = 0.01 0.41 0.026 4.04 5.64

Table 5.5: Characteristic collision time scales 7. of suspension simulations S; to Ss.

where P, is the probability to observe primary collisions, and P, the probability for
secondary collisions. P, is a result of uncorrelated particle motion and may therefore
be described by equation 5.34. In this formulation, the collision process is characterised
by three parameters: «, is the fraction of primary collisions, 7. is the collision time of
primary collisions and 7. is the average time for secondary collisions. The parameters
. and 7, can be determined by fitting the long-time tail of the distributions. After
determination of these two parameters, 7.2 can be determined from F.» via

Tez = /0 b Poa(te)dt, = /0 T (W) dt.. (5.36)

The curve fits of P, are presented in figure 5.7 while the parameter values are given in
table 5.5.

The results indicate that by describing the collision process according to equation
5.35, the influence of particle volume concentration can be separated from that of parti-
cle inertia. At increasing particle concentration, the collision time 7., decreases, which
corresponds to a decrease in mean free path of the particles. This is clearly demon-
strated in figure 5.7 (a), where the slope of the tail is a function of the particle volume
concentration. Table 5.5 indicates that o, remains practically constant. When the par-
ticle density is varied at constant volume concentration (see figure 5.7 (b)), the particle
collision time is practically constant while a, increases. As particle density increases, the
particles become less sensitive to the details of the collision process (lubrication force,
velocity correlation or the numerical collision procedure), which favors the occurrence of
primary collisions.

In table 5.5, the time inbetween primary collisions is compared with the theory of
Abrahamson (1975), where the collision rate is calculated via equations 5.24 and 5.25,
with u;, determined from the particle kinetic energy. For low volume concentrations 7
corresponds well with Abrahamson’s result, but as the volume concentration increases,
the simulations show a systematically larger collision time. According to Abrahamson
(1975) (equation 5.25), the collision kernel is a function of the particle rms velocity, and
not of volume concentration. Table 5.5 however suggests that this is not the complete
picture and a correction on the collision kernel for primary collisions is required.
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5.5.3 Fluid and particle relative velocities

The radial relative velocity of a particle pair plays a dominant role in the collision kernel.
In this section we present the distribution of the relative velocities of the particles in the
simulations. This distribution is compared to the distribution of the relative velocity in
the fluid phase. We demonstrate the change of the distribution at different separations,
and present the relationship with the longitudinal and transverse correlation functions.

Radial and transverse relative velocity components of the fluid single phase simula-~
tion have been plotted in figure 5.8. The relative velocities in these figures are determined
from w; = w;(z + r) — u;(z), where the separation distance r had values of 1, 8 and 32
lattice units. At r = 1, the radial relative velocity reduces to the velocity gradient du/0z
while the transverse relative velocity reduces to du/dy. The figure demonstrates clearly
how the distribution of the relative velocity changes with distance. As a reference, a
normalised exponential and Gaussian distribution are given.

At a separation of 1, we see that the radial relative velocity distribution is nega-
tively skewed with a skewness value of -0.5. This skewness is a typical characteristic of
isotropic turbulence, also reported by e.g. Alvelius (1999) and Wang et al. (2000). It
is further noticed that, for a separation of = 1, the tail of the distribution follows the
exponential curve at negative relative velocities, while at positive values the distribution
has a Gaussian shape.

As the separation increases to 8 lu, the skewness decreases and the shape of the
distribution tends to the Gaussian curve. When the separation further increases to 32
lu, the correlation decreases (see figure 5.4) and the distribution of the radial relative
velocity becomes Gaussian. The relative velocity magnitude and the velocity correlation
values corresponding to the data in figure 5.8 are given in table 5.6. The tendency of the
relative velocities towards a Gaussian distribution is expected since the relative velocity
of two uncorrelated Gaussian distributed velocity components is Gaussian distributed
(see equations 5.30 and 5.31).

The transverse relative velocity is also given in figure 5.8. In an isotropic flow field no
directional distinction can be made regarding the velocities in the plane perpendicular
to the radial direction. The sign of the transverse relative velocity indicates velocities
relative to an arbitrarily chosen coordinate system. The distribution must then be
symmetric by definition. The distribution of the transverse relative velocities exhibits an
exponential shape at short separation distances and changes into a Gaussian distribution
at larger separations. The Gaussian distribution can be anticipated for the transverse
velocity based on the same argument that was given for the radial relative velocities (see
equation 5.31).

In table 5.6, the standard deviation or rms value of the radial and transverse relative
velocity at the three separations distances is presented. Transverse rms velocities are
larger than the radial components. Equations 5.30 and 5.31 show that the radial and
transverse velocity standard deviation depend on the velocity correlation. In isotropic
turbulence g(r) has a stronger decrease than f(r) and thus, the rms value of w, must be
larger than that of w;.

For the computation of the radial and transverse velocity distributions of the parti-
cle phase, the radial and transverse velocity component need to be defined. The radial
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Figure 5.8: Distributions of the radial and transverse relative velocity components of the
single phase simulation. The relative velocities were determined at separation distances
r=1,r=28and r =32 [lu].
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Fluid ] 5,
ro @Y (uaug) it s (WD (uipaup) /uy
x10° x 103

Radial 1 0.91 0.998 0.5 3.12 0.979

8 6.63 0.918 2.5 6.90 0.895

32 16.49 0.494 315 16.20 0.423
Transverse 1 1.28 0.997 0.5 7.20 0.886

8 8.98 0.850 2.5 9.17 0.815

32 19.91 0.262 31.5 19.26 0.184

Table 5.6: Standard deviation of the relative velocities of the fluid for the single phase
simulation and for the particle phase in simulation S;, both determined at three different
separation distances r or s.

velocity is defined by w, = w - R/R, where R is the vector connecting the centers of any
two particles. A definition for the transverse component is given by w; = |[w x R|/|R|
(Wang et al. (2000)). The transverse velocity vectors, projected in the plane perpen-
dicular to R, are not necessarily aligned. Therefore, the velocity vectors need to be
decomposed in two orthogonal components in the plane perpendicular to the connect-
ing axis. In our analysis, the transverse velocity distribution and transverse velocity
correlation functions are calculated for the particle phase via the orthogonal coordinate
system defined by Alvelius (1999). The principal axis is given by eg = R/R. The two
axes orthogonal to ey and to each other that define the new coordinate system are given
by the unit vectors e; and eq, defined as

€0,y €0,z
1o = ey = — ey, =0 (5.37)
(e +e6y)? Y (ef, +eg,) 2 T
e _ 60,160,2 e _ eﬂ‘yeﬂg e _ (eg,r + 6(2),y)1/2 (5 38)
28 = T 9y €20 = T3 5 gy €2,= . .
¢ e()(e%,z + e%,y)l/Q 7 Y e0(6[2),.% + e(iy)l/?’ : €o

By using this coordinate system, the particle velocities can be decomposed in a
longitudinal and two parallel velocities from which one radial and two transverse relative
velocity components can be determined. Since the turbulent flow field is isotropic, all
quantities should be recovered regardless of the orientation of the coordinate system.

In figure 5.10 the relative velocity distributions of the particle phase of simulation S,
are given at three different separations. The separation s refers to the gap between the
two sphere surfaces, i.e. s = r — R. For each realisation statistical data was obtained
on 1/2N,(N, — 1) particle pairs. The velocity distribution at a given separation s was
determined from all particles in the flow field that were scparated at s+0.5 lu, and data
was obtained over 75 realisations of the particle field at a time spacing of 470 time steps.

The distribution of the radial relative velocity component at s = 0.5 {u exhibits a
number of peculiar characteristics. The distribution is strongly asymmetric and is much
more negatively skewed (-2.43) than the distribution of the fluid velocity at a separation
of 1 [u in the single phase simulation (see figure 5.8). The negative relative velocity (.e.

i



116 Chapter 5. Resolved simulations of colliding spheres in forced turbulence
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Figure 5.9: 2D representation of the axial and transverse vector decomposition for a
particle pair.

approach velocity) contains a strongly stretched tail, while the positive relative velocity
(separation) is found within the Gaussian distribution. As the separation increases, the
skewness reduces and the tail in the distribution disappears. At s = 2.5, the skewness
has become -0.94.

The strong negative skewness as well as the stretched tails in the distribution are
also observed in the results of Wang et al. (2000), who studied collision characteristics
of small particles (d, < 77) in one-way coupled simulations carried out in frozen flow
fields. As the particle relaxation time in their simulations was increased from 7,/7, =0
to 7,/7x = 1, the skewness in the distribution decreased to a minimum of -2.03. In
their results tails were observed in both the positive and the negative direction of the
radial relative velocity distributions. Clearly the tails in the distribution in their work
are a result of the response of the particles to the turbulent flow field, controlled by the
particle inertia.

The shape of the distribution of the radial relative velocity reflects the collision be-
haviour in terms of primary and secondary collisions. At the approach of two particles,
the relative velocity of the particles decreases due to the dissipative action of the lubri-
cation force and due to the velocity correlation in the turbulent flow field. Further, for
separating particles at close proximity, the lubrication force becomes attractive. Suf-
ficient inertia is required for the particles to escape from the attractive force after a
collision: else, the local external flow field might bring the particles together again and
a next collision at low relative velocity takes place.

As a consequence, approaching particles are found in a wide range of negative relative
velocities. The shape of the distribution is caused by two separate contributions; (i) the
distribution contains the relative velocities of particles that were initially separated over
larger distances with uncorrelated velocities. The relative velocity of such particles
can have larger values than particles that are in each others vicinty, contributing to the
relatively long tail in the velocity distribution; (ii) the distribution contains contributions
of particle pairs that were already in each other’s vicinity and remain there, increasing
the pdf at low relative velocities (secondary collisions). The dissipative effect of the
lubrication force may suppress the presence of large positive relative velocities, which
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Figure 5.10: Distribution of the radial and transverse relative velocity components of
simulation S;. The relative velocities were determined from particles that were separated
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between two spheres.
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results in the steep decay of the tail of the distribution at the positive side. At higher
values of s, the shape of the distribution changes rapidly. When s increases from 0.5 to
2.5, the short range hydrodynamic interactions decay strongly, which results in a change
of the pdf towards a Gaussian distribution. At further separation, the distribuiton
becomes practically Gaussian in a similar way as the distribution of the radial fluid
velocity distribution.

The transverse relative velocity shows a symmetric and practically Gaussian distri-
bution, even at the closest separation. The symmetric shape is due to the isotropic
nature of the turbulent flow field. The Gaussian shape of the particle phase is a striking
feature, bearing in mind the almost exponential shape of the distribution of the fluid
transverse velocity at a separation of 8 lu.

The difference between transverse velocity distribution of the fluid in the single phase
and that of the particles in the suspension may be caused by two effects. In the first
place, the effect can be caused by the particle inertia. At increasing inertia, particles will
respond to the larger scales in the fluid motion which are Gaussian distributed. In the
second place, the effect may be a result of the size of the particles. Particles are larger
than the Kolmogorov scale and therefore pick up hydrodynamic forces at their surface
from all directions. The fluctuating flow field at the particle surface averages out the
forces that act on the particle. This effect evens out the fluctuations in the fluid velocity
over the size of the particle, leading to a Gaussian transverse velocity distribution.

A large difference can also be seen between the radial and the transverse relative
velocity magnitude in the particle phase (see table 5.6). The lubrication force is active
in the radial direction. In the transverse direction only shearing forces are active which
are orders of magnitude smaller and consequently have a negligible effect on the particle
motion. As a result, the transverse velocity only reduces 20 % as the separation reduces
from 2.5 to 0.5 [ lu ], while for the radial velocity a decrease of 55 % is observed (table
5.6).

In figure 5.11 the radial relative velocity distribution is given for simulations Sy,
Sy and Ss, i.e. in the order of increasing particle density. At close examination, the
data hints towards a widening of the tails in the distribution at increase of the particle
relaxation time. This would be in agreement with the results on the particle collisions
presented in section 5.5.2 (i.e. more primary collisions for heavier particles). Due to
the scatter in the data no definitive distinction can be made to determine the influence
of the particle relaxation time on the shape of the distribution. The transverse relative
velocity distributions also practically collapse (not shown). The window in which the
particle properties were varied was rather small and further work should be performed
to study the effect of the particle inertia on the relative velocity distributions.

The normalised velocity variance of the radial and the transverse velocity components
for the fluid and the particle phase are given in figure 5.12 as a function of the separation
r. For the fluid phase one can recognise the shape of the curves as 1 — f(r) and 1 — g(r)
(see also fig. 5.4), the longitudinal and transverse correlation functions (see equations
5.30 and 5.31). At decreasing separation, the particle relative velocity reduces faster than
the fluid relative velocity due to a stronger correlation of the particle motion as compared
to the fluid motion. As the particles mainly respond to the larger scale structures in
the fluid, their velocity will become stronger correlated over intermediate separations
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than the fluid velocity. At closest approach, the short range hydrodynamic interactions
dominate the relative radial velocity, causing a steep decay. The transverse velocity
of the particles near contact is also reduced much stronger than the fluid transverse
velocity.

The flux-balance coefficient C, of equation 5.28 is given in figure 5.13(a) as a function
of the separation r. This figure demonstrates that the flux balance assumption is valid for
the fluid phase, as should be the case, and also for the particle phase, where the scatter
in the data is only 3 %. The particle flux in the simulations therefore has reached a
steady-state.

The ratio w; /w; of figure 5.13(b) exhibits a monotonous increase at decreasing
separation. According to Wang et al. (2000) this ratio is a measure for the compressibility
of the (particle) velocity field. However, if C, equals 1, as is practically the case for
both the solid phase and the fluid phase in our simulations, w; /w} equals (1 — P)/P.
Therefore, the latter is mainly a measure for the asymmetry of the relative velocity
distributions. One can relate the curves of figure 5.13 (b) with the distributions of
figures 5.8 and 5.10. The ratio (1 — P)/P merely represents the ratio of the probability
to have negative and positive relative velocities. Therefore, the shape of the curves in
figure 5.13(b) can be considered as a characteristic feature of the turbulent (particle)
velocity field. The strong increase of the ratio for the particle phase at close approach
is then caused by the increased asymmetry of the particle phase relative velocity pdf.

5.5.4 Accumulation and preferential concentration of particles

In direct numerical simulations of turbulent suspensions with the point particle approach,
accumulation of inertial particles in regions of low vorticity and high strain rates has
been observed by a number of authors (Squires & Eaton (1990), Sundaram & Collins
(1997)) and was studied in more detail by e.g. Reade & Collins (2000) and Wang et al.
(2000). This accumulation effect can have a large impact on the rate of collisions of
particles. The above authors used the radial distribution function at contact, g.(R)
(see also equation 5.33), to quantify the accumulation effect as a function of physical
properties such as the flow Reynolds number and the particle relaxation time.

The radial distribution function g,(r) indicates the probability of observing a particle
pair separated at a distance r, with respect to the probability of observing a particle
pair in a uniformly distributed field. A residual radial distribution function is defined as

h.(r) = g.(r) — 1. (5.39)

In figure 5.5, this accumulation effect can be observed, especially in figures (C) and
(D), 7.e. at 5 and 10 vol% particles respectively. In figure 5.14, a 3D representation of
an instantaneous particle field at 2 vol% is given. In this figure, the spatial distribution
of the particles also suggests the presence of regions where particles have accumulated
and regions with less particles.

In figure 5.15, the residual radial distribution function of simulation S5 is given. The
figure indicates that particle accumulation occurs at particle separations smaller than 4 |
lu ]. The radial distribution function increases strongly when the separation s goes to 0.
The radial distribution function has been determined from the simulation by counting
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Figure 5.14: 3D snapshot of the particle field of simulation S; (2 vol% particles). The
square at the bottom indicates the dimensions of the computational domain.
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Figure 5.15: h,(r) of simulation S,. s indicates the gap between the sphere surfaces (s =
7 — R). The error bars indicate the standard deviation, determined over 75 realisations
of the particle field. & = 0.094 (4 explained in text), corresponding to 0.01 7.

the number of particle pairs in a realisation of the flow field, the centers of mass of which
lie between r — §/2 and r + §/2,

(Npai'rs) x ‘/dommjn
V. NN, -2

which is normalised by the average number of particle pairs in a shell volume V, =
drl(r +6/2)3 — (r — 8/2)%/3.

Determination of this function requires the choice of a bin width §. With a relatively
large contact radius R, V; becomes proportional to § via V, ~ 47 R%§ and g, becomes
proportional to 1/4. The choice of § is delicate since it implies a compromise between the
resolution of g. and statistical convergence. With a relatively low number of particles
per simulation, and only a limited number of independent realisations, the accuracy at
which g-(R + ¢/2) can be determined is limited, which is indicated by the error bars
plotted in figure 5.15. This is also expressed in the second column of table 5.7, which
contains the average number of pairs counted in a single realisation of the particle field,
where § was 1 [ lu |, similar to the interval at which the relative velocity distributions
in section 5.5.3 were determined.

The usual explanation for the increase of g.(R) is that vortical structures in the flow
field collect particles at their edge. It is likely that this mechanism is also present in our
simulations, but since the separation of scales between the particle size and the integral
length scale of the turbulence is only a factor 4, this effect probably plays a weak role
in our simulations.

A second mechanism for the increase in particle concentrations at short separations
can be attributed to the influence of the short range hydrodynamic interactions. In a

gr(r) = (5.40)
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Simulation g.(R+ 6/2) (Npgirs)

S 2.70 £ 0.36  59.18

S, 2.80 + 0.14 497.23
Sy 2.98 + 0.10 1634.13
Sy 2.69 + 0.13  476.53
Ss 2.88 + 0.16 510.52

Table 5.7: g,(R) and its standard deviation, at r = R + 0.5 and shell width § = 1. The
function value was obtained from 75 particle field realisations. (Npeirs) indicates the
average number of pairs per realisation.

study of Ladd (1997) on fully resolved settling spheres, also a strong increase in the
radial distribution function at short separations is observed. In that study a similar
approach for taking into account the lubrication force was used. As observed in the
previous section, the relative radial velocity is reduced upon approach and a capturing
mechanism occurs for particles with low relative velocities. This may give rise to the
increase in particle concentration at small separations.

In table 5.7, also trends in the dependency of ¢, on the simulation parameters can
be observed. Both an increase in particle concentration and an increase in particle
inertia appear to enhance the accumulation effect, although these effects are smaller than
the statistical accuracy. In previous studies of Sundaram & Collins (1997) the radial
distribution function was found to be practically independent of the volume fraction in
the limit of low volume concentrations. The increase in the radial distribution function
with increasing volume fraction and particle inertia is therefore possibly the result of
the high volume concentration of particles in these simulations.

5.6 Summary and conclusions

A simulation approach was developed for the study of dense turbulent solid-liquid sus-
pensions. Fully resolved simulations were performed of a sustained isotropic turbulent
flow, using a lattice-Boltzmann scheme for the fluid flow simulation with a spectral forc-
ing scheme for the generation of turbulent conditions. The suspension contained up
to 3900 freely moving particles. The particle diameter spanned approximately 8 grid
points, assuring that the flow field around the particles was fully resolved. For particles
approaching contact, a collision detection algorithm was used. This was combined with
a sub-grid model based on lubrication theory to compensate for the lack of resolution
to compute the flow in the gap between two particles separated at less than the grid
spacing. Five turbulent suspension simulations were carried out at a Taylor Reynolds
number of 61, where the volume fraction of particles was chosen between 2 and 10 %
and where the particle to fluid density ratio was varied between 1.15 and 1.73. The re-
sults of these simulations were characterised in two ways. First, the interaction between
the particle phase and the turbulent flow field was studied. Second, the behaviour of
the particle phase was characterised by studying particle collisions and particle relative
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velocity distributions.

The influence of the particles on the energy spectrum showed that particles generate
fluid motion at scales of the order of the particle size. This is reflected by an increase in
the kinetic energy contained in the wavenumbers of the order of or larger than the particle
wavenumber. Due to the relative motion between the particles and the fluid, gradients
are generated near the particle surface which enhance the rate of energy dissipation at
large wave numbers and consequently suppress the kinetic energy in the spectrum at
smaller wavenumbers. The decrease of kinetic energy and energy dissipation at small
wavenumbers are in quantitative agreement with results obtained from numerical studies
on two-way coupled suspensions where the solid phase was treated as point particles.
It was demonstrated that at a constant mass loading, the changes in the spectrum are
much more sensitive to the volume fraction of particles than to the particle inertia.

The characteristics of the particle phase were further analysed using a number of con-
cepts that originate from theory to describe particle collisions in turbulent flow fields.
The collision behaviour of the particles in the suspension simulations was studied based
on the collision time, i.e. the time that particles travel between successive collisions.
Other properties that were studied are, the radial and transverse relative velocity distri-
bution near contact, the flux-balance assumption, particle and fluid velocity correlation
functions, and particle accumulation effects.

The collision time distribution steeply rises for short collision times and decays expo-
nentially for longer times, indicating the presence of two separate collision mechanisms.
An exponential decay corresponds to a random collision process for particles that exhibit
uncorrelated motion, comparable to the behaviour of a kinetic gas. The peak for short
collision times corresponds to repetitive contacts between particles in correlated mo-
tion. Collisions due to uncorrelated particle motion were designated primary collisions,
collisions due to correlated motion were designated secondary collisions. The latter orig-
inates from a number of aspects such as short range hydrodynamic interactions, spatial
correlation in the turbulent flow field at short separations, and the numerical treatment
of the lubrication forces and particle collisions in the simulations. In this respect there
is room for improvement, since the choices made in the sub-grid forces and collision
modeling may significantly influence the short range suspension behaviour.

From a decomposition of the collision time pdf-s, two parameters were obtained to
characterise primary collisions, viz. the average collision time (7.;), and the ratio of
primary collisions to the total number of collisions (o). An increase of the particle
volume fraction decreased the average time between primary collisions. At low volume
concentration, the mean time compared well with kinetic theory for inertial particles at
low volume concentrations (Abrahamson (1975)) whereas at higher volume fraction, the
average collision time proved to be longer than predicted by kinetic theory. By increasing
the particle inertia, the fraction of primary collisions «. was found to increase, leaving
7, practically unaffected.

The radial relative velocity distribution near contact showed a large tail for negative
velocities and a strong increase at small velocities, while the distribution was strongly
suppressed at larger positive velocities. This pdf supports the image of primary and
secondary collisions where particles may approach at large velocitics, but at close range
reduce their relative velocties due to the action of lubrication forces and velocity corre-
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lation in the turbulent flow field. As particles separate, the lubrication force becomes
attractive. This may explain the strong decay at positive values of the radial velocity
distribution. As separation increases, the pdf of the radial relative velocity becomes
Gaussian.

The transverse relative velocity distribution remained practically Gaussian even at
close separations, although the distribution of transverse velocities of the fluid phase
follows an exponential distribution. Particle size effects cause this different behaviour of
solid and liquid phase.

The magnitude of the radial and transverse relative velocities respectively show a
1 — f(r) and 1 — g(r) like dependency of the separation r, where f(r) and g(r) are the
longitudinal and transverse velocity correlation functions. This demonstrates that the
particle motion is strongly linked to the turbulent flow field. The particle relative velocity
shows a stronger decay than that of the fluid phase as the separation reduces to zero.
A check of the flux-balance assumption demonstrated that the particle field reaches a
dynamic steady state since the ratio of inward to outward particle flux practically equals
1.

The spatial distribution of the particles was further characterised by the radial dis-
tribution function, which indicates that an increase in particle concentration at short
separations occurs. This increase in concentration is caused by both the familiar 'pref-
erential concentration’ effect and by the short-range hydrodynamic interactions.

Our method proves to be an efficient tool to obtain detailed insight in the behaviour
of turbulent suspensions with a full recovery of the two-way interactions between the
particle and the fluid phase. This simulation approach can be used to gain insight in
e.g. the collision behaviour of crystals in dense turbulent suspensions as encountered
in industrial crysallisation processes. In these processes, crystal collisions occurring
at sufficiently high impact velocity may lead to fragmentation. Our simulations offer
possibilities to study for instance the rate of fragmentation of crystals in dense turbulent
suspensions, based on e.g. the radial velocity distribution near impact.
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Chapter 6

An assessment of fragmentation due to
crystal-crystal collisions

The crystal-crystal collisions that are observed in the turbulent suspen-
sion simulations of the previous chapter are evaluated to determine whether
crystal-crystal collisions may lead to fragmentation and to obtain a measure
for the rate of fragmentation of ammonium sulphate crystals. Since particle
collisions are strongly dependent on the short range hydrodynamic interac-
tions between the particles, a model for lubrication forces is given, that con-
tains contributions of the advective and accelerative terms from the Navier-
Stokes equations. An effective particle impact velocity was calculated when
particles reach a separation comparable to their surface roughness. Evalua-
tion of the impact velocities showed that incorporating additional terms in
the models makes little difference. Impact velocities of the particles in the
suspension simulations are evaluated based on the radial velocity distribu-
tions near contact, while incorporating lubrication theory. The minimum
fragmentation velocity depends on the particle size, since fragmentation is
based on a minimum impact energy. Values of the fragmentation kernel ob-
tained via this theoretical route correspond well to the values obtained from
the collisions registered during the simulations.

Key words: lubrication, collisions, fragmentation, ammonium sulphate

6.1 Introduction

In industrial crystallisation processes, the phenomena of fragmentation and erosion of
crystals may have a large impact on the behaviour of the crystallisation process and on
the quality of the resulting product. Fragmentation leads to secondary nucleation, the
formation of new crystals from fragments, which may strongly influence the dynamics
of the crystallisation process. Fine particles in a crystalliser may also lead to undesired
properties of the produced solid compound such as a large content of fines. Fragmenta-
tion occurs when a crystal collides with an internal part of the crystalliser or with other
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particles at a sufficiently high impact velocity. Throughout this thesis, particle motion
in a turbulent suspension has therefore been studied from different perspectives.

As a first exercise, the flow field of a pilot scale DTB crystalliser was studied. A
detailed LES simulation was carried out where the fluid phase was approximated as a
pseudo single phase with average properties of the crystal slurry. This study demon-
strated the inhomogeneous distribution of hydrodynamic conditions in the crystalliser,
which opposes the assumption that the behaviour of a crystalliser can be described
effectively by a single ideally mixed stirred vessel, as in the often used MSMPR concept.

Describing the fluid phase as a pseudo single phase is questionable. Many ill-
understood phenomena occur in turbulent suspensions that strongly influence the overall
behaviour of the flow field. Particle-turbulence interactions can strongly alter the char-
acteristics of a turbulent flow field, particle-particle collisions may lead to agglomeration
or fragmentation, gravity causes sedimentation of particles, preferential concentration
effects may increase or decrease the local accumulation of particles and turbulent dis-
persion enhances mixing properties or transport of particles.

To gain a better understanding of the interactions in turbulent suspension flow, nu-
merical studies of one-way and two-way coupled turbulent suspensions are presented in
literature (e.g. Sundaram & Collins (1997), Reade & Collins (2000)), in which the parti-
cle size is assumed to be much smaller than the microscopic scales of turbulence. In this
type of simulations, most properties occur at sub-grid level and the particle interactions
in the flow field can only be effectively modelled at very low volume concentrations of
particles. Slurries in crystallisation processes often contain 10 to 20 vol % of solids.
Further, due to the highly turbulent conditions, particle size and turbulent microscopic
length scales in this type of processes are in the same range, leading to strong interac-
tions between the turbulence and the particle phase. For numerical studies of this type
of slurries, a much more detailed type of simulations is required.

In this thesis, a simulation approach is presented, where the flow field of the particles
was fully resolved and where turbulent conditions were generated with accurately defined
characteristics. Simulations of a single particle settling under gravity have been com-
pared to experimental data to assess the accuracy of the simulation procedure (chapter
3). The turbulent flow field was generated by using a spectral forcing technique (chapter
4). Finally, by combining the various techniques, fully resolved simulations of turbulent
suspensions have been carried out, containing up to 3900 particles. The results of these
simulations have been presented in chapter 5.

In the current chapter, we return to the industrial crystallisation processes of chap-
ter 2. A number of important questions remain to be answered. The main question
addressed in this section is whether particle-particle collisions in a turbulent flow can
lead to fragmentation. The simulation results of chapter 5 will be used as a basis to
answer this question. The collision rate of particles in a turbulent flow field is given by

. ng
N.=T2 (6.1)

2
where ng is the particle number density and I is the collision rate constant. This constant
is a complex function of the many parameters that determine the flow field conditions
and the particle properties. In section 5.5, a theoretical approach to determine this rate
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constant is presented. Although large differences exist between the conditions for which
this approach was originally derived and the regime in which our simulations have been
carried out, it provided a useful basis for analysing our results.

This analysis demonstrated that the inertial particles in our numerical simulations
exhibit two types of collisions. The first type of collisions was designated primary colli-
sions, related to the uncorrelated particle motion of randomly moving particles. Many
collisions were observed at relatively high collision frequencies, that arise due to the
short range hydrodynamic interactions and due to the correlation of velocities at short
separations. These collisions were designated secondary collisions.

It is the objective of this chapter to establish whether the submerged particles in the
turbulent flow field can collide at sufficient impact velocity for fragmentation to occur
and if so, to determine a rate constant of fragmentation based on the simulation results
of chapter 5. The radial relative velocity distributions of particles near contact (see figure
5.10) that were obtained from the turbulent suspension simulations demonstrate that
for a random pair of particles at close separation, a wide range of approaching velocities
can be observed. For an actual collision to occur, only the higher approach velocities
will be sufficient to overcome the repulsive action of lubrication forces and result in
subsequent collision. Once particles are at contact, fragmentation will only occur when
the kinetic energy of the particle impact exceeds the minimum impact energy required
for fragmentation.

To assess this process of approach, collision and possible fragmentation, we will first
take a closer look at the lubrication force model in the first part of this chapter. This
model dictates the motion of two approaching spherical particles in a fluid separated at
a short distance. The original model for lubrication forces has been derived based on the
assumption that the flow in the gap is in the creeping flow regime. A feature of this model
is that particles essentially will never touch, regardless of their initial velocity. Zenit &
Hunt (1999) derived a variation of the lubrication model that contained also the transient
and advective terms of the Navier-Stokes equations, and concluded that collision may
occur when these terms are included. Their derivation was unfortunately incorrect and
therefore we revisit this model in the next section, with the correct derivation.

In practice however, when the separation of two approaching particles becomes very
small, it will come close to the molecular path length or to the surface ronghnesses of
the particles. In both situations the model description breaks down (Sundararajakumar
& Koch (1996) and Joseph et al. (2001)). Using either form of the lubrication model, an
effective impact velocity can be estimated by defining a cutoff separation, related to e.g.
the surface roughness of the particles, as a threshold at which contact is established.
Both classical lubrication theory and the full transient model are evaluated to study
their prediction of the resulting impact velocity.

In the second part of this chapter, the particle radial velocity distribution obtained
from the suspension simulations is evaluated to see whether it is likely that fragmentation
occurs. It is assumed that the approach velocity of two particles is dominated by the
lubrication force and the lubrication force model is used to predict the impact velocity of
a particle pair, when their initial separation is chosen as the average separation at which
the relative velocity distribution of figure 5.10 was determined. This impact velocity is
then compared to the minimum impact velocity that is required for fragmentation. The
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latter velocity is predicted by a theoretical model of Gahn & Mersmann (1997).

Finally, the conditions of our isotropic suspension simulation are compared to the
conditions encountered in the LES simulation of the internal crystalliser flow in chapter
2 and a kinetic constant for the rate of fragmentation is determined, based on both a
theoretical approach and on the collisions registered in the turbulent suspension simu-
lations. This chapter is concluded with a number of remarks regarding crystal collisions
in a true turbulent flow field as found in industrial equipment.

6.2 Lubrication forces

6.2.1 Formulation of lubrication forces

An analytical expression for the force acting on two approaching particles is given by
standard lubrication theory (e.g. Crowe et al. (1997) or Kim & Karrila (1991)). This
theory assumes creeping flow in the gap between the particles. A more extensive analysis
of this force was presented by Zenit & Hunt (1999), who incorporated next to the viscous
term, the advective and the accelerative terms of the Navier-Stokes equations in their
analysis. For particles in a transient turbulent flow field, these terms may contribute to
the particle motion. The derivation of Zenit & Hunt (1999) is revisited in appendix A,
where also an analysis of the various terms in the full model! is given. In their analysis,
several terms were ignored which resulted in an erroneous formulation. .

The geometry of two approaching particles, along with the cylindrical coordinate
system (r, 0, z) is given in figure 6.1. The relative velocity of the two particles at sep-
aration hg is w. The approaching particles induce transverse fluid motion in the gap,
which will be a function of r.

The starting point for our derivation of the full model is the momentum equation
for the flow in the gap, given by the Navier-Stokes equation in cylindrical coordinates
(Bird et al. (1960)), with the assumption that the velocity components uy and u, are
negligible and the pressure is assumed only to be a function of ,

Ou, du, 10p 1 o%u,

T T, 1 6.
ot Vo T Tpior | p; 022 (6:2)

When using only the rhs terms of this equation, the expression for repulsive force ac-
cording to the lubrication theory can be derived (Crowe et al. (1997)).

By using the continuity equation, while assuming an approximation for the particle
geometry, and by assuming Poiseuille flow in the gap, the following expression for the
repulsive force can be obtained,

~ ~dV Sl o
F(t) = A(H)= + BH)V?* + C(H)=—V (6.3)
dt Reo
where all dimensionless properties are indicated by carets, H is the dimensionless gap
ho/a and V is the dimensionless relative velocity w/|wg|. Expressions for Reg, the sphere

!The creeping flow approximation will be referred to as (classical) lubrication theory while the ex-
tensive model will be referred to as full model.
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Figure 6.1: Schematic representation of the flow between two approaching spheres.

Reynolds number at the initial velocity wp, and the dimensionless groups A, B and C
are given by

Rey  P12al%ol (6.4)
n
A(ﬁ):%[ﬁén(Hgl)—l] (6.5)
~ 3 H+1 1 1
By =2 |m(2-) - 4+ — 6.6
() 32[ ( i ) H+1 (H+1)2] (66)

oy =3 [—1__} (6.7)

In expression 6.3, one can clearly recognize the contribution of the terms for accel-
eration (A), momentum advection (B) and viscous flow (C). Term (C) is identical to
the result for the leading order lubrication force approximation at small separations (for
H - 0),

s
4R60H

The influence of each of the terms A, B, C and Rey in expression 6.3 can be deter-
mined by integrating the equations of motion of two approaching freely moving spheres.
The equations of motion are given by

F=

(6.8)

v -
ol —oF .
dt (6:9)

o
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and ~
dH =
bt §
dt ’

where I is the density ratio p,/p; which is a dimensionless measure for mass.

(6.10)

6.2.2 Impact velocity

The viscous term of equation 6.7, also present in equation 6.8 is proportional to 1/ a.
When the gap between two particles reduces to zero, the repulsive force will go to infin-
ity. As a result, when integrating the equations of motion of two approaching particles,
the particles always come to rest before contact is established. As, in reality, collisions
between suspended particles do occur, lubrication theory proves to be inadequate for
predicting the collision process. Two phenomena that may cause the lubrication approx-
imation to break down are that the gap becomes of the order of the free path length of
the molecules of the fluid (O(10nm) for liquids, Sundararajakumar & Koch (1996)), or
of the order of the surface roughness of the particles(Q(0.1zm), Joseph et al. (2001)).

For the calculation of a finite impact velocity, a minimum separation distance of
the order of the surface roughness is defined up to which the lubrication formulation is
assumed to be applicable. The particles are assumed to make contact at this threshold
separation. The impact velocity w; is calculated by integrating the trajectory of the
particles from an initial separation to the point of contact. For lubrication theory, the
impact velocity can be calculated analytically;

~w 18 H, 1 h;
wo * 4Regl (HO) * 25t (h()) (1)

in which Stq is the particle Stokes number at initial relative velocity wo while h; is the
collision length that indicates the integration limit. This equation demonstrates that
the collision velocity is a weak function of h;. By plotting the impact velocity w; as
a function of the initial velocity wy, a straight line with slope 1 is obtained, since the
Reynolds number is proportional to wy (see figure 6.2). The critical initial velocity w,
where particles just touch at zero impact velocity, corresponds to the position where the
line crosses the z-axis.

Figure 6.2 also presents the characteristics of the full model. A first striking feature
is that it also predicts a linear relation between w; and wg. One can observe that the
slope of the line in this case is slightly less than 1. As a result, the lines intersect at
a velocity of approximately 0.07 [ lu/ts | while the full model predicts a lower w,. A
second property in the figure is the sensitivity of the full model to the final separation
h;. Tt is noticed that upon variation of h;, the slope of the margin lines, calculated with
the full model, remains constant.

A quantitative comparison between the two models is made in table 6.1. Both
models exhibit a weak dependency of w. on h;, as w, varies just by 40 % when h; is
varied one order of magnitude. The table indicates that in the current regime, the
full model exhibits an identical relative behaviour as the classic lubrication formulation.
Lubrication theory is used for predicting the impact velocity of colliding particles in
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Figure 6.2: Impact velocity as a function of initial approach velocity, calculated for both
models. The margins indicate the influence of the integration endpoint in the full model,
which is varied by a factor of 5.(I' = 1.414, 7 = 5.06 1073 [ M lu/ts |,a = 4.696 | lu ],
Ho=0.5/a=0.106 | - ]).

Table 6.1: Sensitivity of critical velocity w,. to h;. h; Is varied relative to the reference
length h;,.; which was chosen as 0.1 pum.(Conditions according to figure 6.2.)

Lubrication Full model
hif R res W, w, relative We w, relative
[ -] lw/ts)  [%] [lu/ts] [%]
0.1 0.0138 140 0.0110 140
0.2 0.0127 128 0.0101 128
0.5 0.0111 112 0.0089 113
1 0.0099 100 0.0079 100
2 0.0087 88 0.0070 &9
5 0.0071 72 0.0057 72
10 0.0059 60 0.0047 60
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the following section, since both models exhibit a comparable behaviour at the same
accuracy.

6.3 Crystal fragmentation

6.3.1 Crystal fracture modeling

In the recent study of Gahn & Mersmann (1997), a physical model is developed for the
fracture process of crystals. This model predicts the formation of a volume of crystal
fragments upon the impact of a crystal with a second material, based on the mechanical
properties of the crystalline material. For the theoretical fracture model a number of
simplifying assumptions regarding e.g. the geometry of the fracture region of the crystal
and the fracture process are made. One important assumption of the fracture model
is that only the contact of a crystal corner with another flat and much harder object
is considered. This assumption is not applicable to colliding monodisperse spherical
particles. The current excercise illustrates how the results of the turbulent suspension
simulations in principle can be used to estimate the contribution of particle-particle
collisions to abrasion and fragmentation of crystals and therefore it is assumed that the
theoretical fracture model is applicable.

An important feature of the fracture model of Gahn & Mersmann (1997) is the
prediction of a minimum impact energy E.;, that must be exceeded for fragmentation
to occur. Based on this result, one can easily determine the relation between particle
size and minimum impact velocity Wy min, required for fragmentation,

12Emin
Wemin = 4 | . (6.12)
foman depp

Througout this thesis, ammonium sulphate has been used as a model compound. The
minimum impact energy for this compound, E,y, is 1.87 107° [ J ] (Gahn & Mersmann
(1997)). The velocity Wy mi, is given in figure 6.3 as a function of crystal size, which
is varied from 100 to 2000 pm, which is the range of crystal sizes encountered in the
production of ammonium sulphate crystals.

6.3.2 Fragmentation impact velocity

Before presenting a rate of fragmentation one would first like to know if sufficiently
large velocities are encountered in the turbulent suspension for collision and subsequent
fragmentation to take place. From the simulations presented in chapter 5, a distribution
of radial relative velocities as a function of the separation distance was obtained (figure
5.10). In this section, the distribution at closest particle separation (0.5 [ lu | ~ H =
0.11) is used to evaluate the collision process. A fragmentation velocity can be estimated
under the assumptions that

o the crystal suspension consists of monodisperse spheres at a constant volume frac-
tion
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Figure 6.3: Minimum fracture velocity wym:, both in [ m/s | and | lu/ts |, as a function
of crystal size in um.

the fragmentation behaviour is predicted correctly by the fragmentation model of
Gahn & Mersmann (1997)

the motion of non-spherical particles can be approximated by spherical particles

o the main force acting on the approaching particles is the lubrication force of the
fluid in the gap between the spheres

the collision process is much faster than the change in local hydrodynamic condi-
tions of the turbulent flow field.

As a starting point, let’s consider two particles at an initial separation of 0.5 [ Ju |,
approaching at an initial velocity wy. Assuming that the particle approach in the final
stage of the collision trajectory is dominated by the repulsive action of the lubrication
force, a sufficiently large initial velocity is required for the particles to touch, as indicated
by the critical velocity w,. from the previous section. Below w,., approaching particles
may have come to a halt before the gap has reduced to zero, while above this velocity
particles may collide at a finite impact velocity, as given in figure 6.22. The velocity w,
is indicated by a vertical line in the relative velocity distribution of figure 6.4.

Fragmentation may occur if the impact velocity exceeds the minimum fracture ve-
locity w¢ min- In contrast to w,, which is determined from a dimensionless relation, the
fragmentation velocity wy,,;, depends on particle size (see figure 6.3). The minimal

2The relative velocity is defined such that an increase in approaching velocity corresponds to a more
negative value of w
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Figure 6.4: Pdf of approach velocities (i.e. negative w) of simulation Sy at A = 0.5 [ lu
|- The vertical lines indicate w, and wyg for ammonium sulphate particles of 1000 pm.

velocity that a pair of particles upon approach must exceed for fragmentation to occur
is now simply given by wyo = We+Wfmin- As an example, wy g is plotted in figure 6.4 for
a particle diameter of 1000 um. For particles of 1000 um, the probability that collisions
which result in fragmentation are observed is now given by that part of the relative
velocity distribution that is left of the wyg line. In table 6.2, the fracture velocity wymin
and threshold velocity wyp are given for a range of crystal sizes.

Since fragmentation of smaller particles requires a larger impact velocity, the largest
approach velocity for which data was obtained from simulation S; corresponds to a
particle size of 520 um. This size is the smallest crystal size for which the probability of
fragmentation could be determined based on the pdf. Larger velocities may occur, but
the probability of such events becomes negligibly small.

Table 6.2: Variation of fragmentation velocity and suspension simulation properties with
particle size.

dy  Wimin/(WH? wie/(w?)/? Boxsize E x10° €x10°  logio(e/€m)
) -] -] lmm) () w8 [
520 6.38 9.55 14 30.67 78.00 -0.35
1000 4.58 7.75 27 8.29 5.70 -1.48
1500 3.74 6.91 41 3.69 1.13 -2.19
2000 3.24 6.41 55 2.07 0.36 -2.69
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To place the turbulent box simulations into perspective, the rescaled box dimensions
are mentioned in table 6.2. If one compares the domain size to the length scales in
the crystalliser flow (see also table 2.3), one can see a difference of about one order of
magnitude between the large-scale turbulent structures that may exists in the crystalliser
flow field and the size of the box simulations. Since the integral length scales in the
box simulations cover a fraction of the domain size, a direct comparison between the
crystalliser conditions and the box simulations is difficult. The Reynolds number of
the turbulent flow in the crystalliser is also orders of magnitude larger than in the box
simulations and the kinetic energy content in the large-scale structures of the crystalliser
flow is orders of magnitude larger than that observed in the microscopic box simulations.

On the other hand, the ratio between the Kolmogorov scale and the particle size
is comparable and the level of kinetic energy at the sub-grid scale of the crystalliser
simulation is of the same order of magnitude as in the box simulations. For an inter-
pretation of the simulation results in the light of the crystallisation process, the box
simulations are therefore best regarded to represent a part of the macroscopic flow feld
that moves along in a frame of reference with coherent large-scale turbulent structures.
The collisions that are then registered in our suspension simulations are collisions due
to turbulent motion originating from the smaller scales of the crystalliser flow field. One
important assumption one needs to make when relating the particle collisions from the
box simulations to the crystalliser behaviour in this way is that the cascade of the turbu-
lent energy spectrum in a turbulent suspension still exists and the microscopic structure
of the turbulent flow field remains practically the same. This is highly unlikely, as it is
demonstrated that the energy spectrum of the turbulent box simulations already changes
considerably under the action of the particle phase.

Nevertheless, let us at least make an attempt to give an interpretation of the collisions
observed in our suspension simulations. The relative proportions of microscopic scales
observed in our box simulations are consistent with that of the crystalliser flow field. We
therefore interpretate the simulations based on the rate of energy dissipation. The rate
of energy dissipation is based on the gradients in the flow field and is thus related to the
small-scale properties such as the Kolmogorov length. The rate of energy dissipation of
the turbulent box simulations in table 6.2 scales with particle size. As a consequence the
turbulent box simulation will represent different local turbulent conditions for different
particle sizes.

The volume averaged power input of the crystalliser (table 2.2) exceeds the rates
of energy dissipation in table 6.2 by almost an order of magnitude. In the crystalliser,
the power input is concentrated at the impeller, where due to the impeller action, also
the strongest turbulent conditions can be found. In the impeller region relative particle
velocities may be present that may lead to fragmentation as a result of particle-particle
collisions.

To determine whether particle collisions play a role in other regions of the crystalliser
geometry, a comparison can be made with the contour plots of figure 2.5. For this
purpose, the logarithmic value of the rate of energy dissipation in table 6.2 was rescaled
with the volume averaged power input obtained from the crystalliser simulation. The
contour plots indicate that a considerable part of the crystalliser volume contains levels
of energy dissipation that exceed a value of 10-°* (obtained for particles of 520 um).

i
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Table 6.3: Fragmentation rate kernels for particles of 1000um. For results S to S, the
particle to fluid density ratio corresponds to that of ammonium sulphate in supersat-
urated fluid, while for S; and Ss the density ratio was chosen differently (see chapter
5).

Ty N, Lya(wyo) It 2(wWgmin)
[x1079m3/s] [-] [x107°m?/s] [x1079m3/s]
St 10.94 147 2.51 27.63
So 10.42 1131 2.00 24.56
Ss3 14.29 4795 2.97 27.18
Sy 7.33 796 1.78 22.96
Ss 11.79 1280 3.99 30.42

This indicates that, given all the assumptions, the range of the rate of energy dissipation
represented by the rescaled microscopic box simulations is within the range of energy
dissipation levels encountered in the crystallisation process, and fragmentation due to
crystal-crystal collisions may occur throughout large sections of the crystalliser volume.

6.3.3 Rate of fragmentation

In section 5.5, a discussion has been presented on the collision rate of particles in the
turbulent flow field and a theoretical model for the collision rate constante I' was pre-
sented. As an extension to that discussion, in this section an approach to determine the
rate constant for fragmentation, Iy, is discussed.

Two routes can be travelled to determine I'y. The first route is simply to count
collisions during the course of a simulation, of which the impact velocity exceeds wy min,
assuming that the collision process is accurately captured in the suspension simulations.
By using equation 6.1, a collision rate and consequently a collision kernel for fragmenta-
tion can then be determined. This value is given in table 6.3 as I'y;, together with the
number of collisions from which this value was determined.

For the second route, a collision rate can be determined by using the pdf of the
relative radial velocity (figure 6.4) and the formal definition of the collision kernel from
equation 5.26. According to this equation, the rate of collisions is proportional to the
flux of particles through a reference sphere of size R = 2 x ,,. To apply this model to the
simulation data, it must be adapted to capture the flux of particles through a reference
sphere R = 2 x 1, + §, where 4 is the average particle pair separation at which the pdf
of figure 6.4 was determined, and thus reads,

T2 =4n(R +6)%g (R + 8)aswym. (6.13)

In this equation, the flux of particles that leads to fragmentation is determined from
figure 6.4 by the integral
wy
QfWem = —/ wP(w)dw (6.14)
—00
i.e. for particles that approach at a sufficiently large velocity to overcome the lubrication
forces and collide. The velocity wy, represents the mean relative velocity over the
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integration region. The parameter a; in this equation represents the probability to
observe a particle pair (at a separation of 0.5 [ lu |) with an approach velocity that
exceeds wy,
wy
ap = / P(w)dw. (6.15)
—00

To determine the collision rate kernel via this route, an upper integration boundary
wy must be chosen. If one assumes that the collision process is dominated by the
lubrication forces, then based on the appraoch presented in section 6.3.2, w t,0 should be
chosen as upper boundary. As justification for this approach one can claim that most of
the repulsive action of the lubrication force takes place when the gap between the two
particles becomes of the order of 0.02 times the particle radius, which is in the range
where the lubrication force is turned off in the simulations, and one needs to account for
that.

However, other effects are also likely to increase the value of the collision kernel. It
has been demonstrated that at close approach, the radial distribution function g,(R)
may be much larger than g.(R + §) (see Reade & Collins (2000) and figure 5.15 versus
table 5.7), thus increasing the collision kernel. Furthermore, the distribution in figure 6.4
is a statistically averaged result of the simulations that already contain at least partly
the effect of lubrication forces. As an alternative, an upper limit value for the collision
kernel can be estimated using wy,min as the upper integration boundary in stead of wy .

Values for I'j;, determined via these two approaches, are given in table 6.3 for
particles of 1000um, based on the pdf results of simulation S; to S5. The table shows
a number of trends. First of all, as anticipated, the collision rate constant I'j; lies
between I'yo(wyo) and I'fo(wf men) for all simulations. The effective collision rate in the
simulations decreases due to the many different hydrodynamic interactions , whereas
a theoretical prediction that accounts for lubrication forces tends to overestimate the
reduction of the collision rate roughly by a factor 4.

Two other trends present in the fragmentation kernel are that (i) an increase in
volume concentration appears to increase the rate constant and (i), an increase in
particle-fluid density ratio also tends to increase the rate constant. As to (i), one should
notice that especially for simulation S}, the values are based on a relatively small number
of collisions. I'yy is also calculated from the tail of the relative velocity distribution,
which is also based on a small number of observations. It is also striking that the
trend in these kernels appears to contradict the trend in the collision kernels for primary
collisions (table 5.5). For (ii) the trend corresponds better to the observations in table
5.5. Nevertheless, what is important is that the trends are consistent from simulations
S1 to Ss, irrespective of the method in which the different collision kernels have been
determined. This shows that the different sorts of data (collision data and relative
velocity distributions) obtained from the simulations exhibit consistency.

6.3.4 Some remarks on fragmentation in turbulent crystal slur-
ries

In the previous sections, fragmentation of crystals due to particle-particle collisions was
evaluated. The main issue of that section was that a demonstration is given on how
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Figure 6.6: Schematic representation of the motion of irregular shaped crystals in a
turublent flow field.

the data obtained from the numerical simulations of chapter 5 may be interpreted for
estimating a rate of fragmentation. Off course, this analysis has limited applicability.
One limitation for instance is that only the impact energy due to motion along the radial
axis is considered. Since the particles move freely in a turbulent flow field, they can also
rotate and exhibit transverse velocity components which may result in an enhancement
of the mechanical wear of crystals. Therefore, a number of remarks need to be made
to place the previous analysis in perspective with true crystallisation processes and to
form a more complete image of particle behaviour in a turbulent suspension.

e When computing the particle relative velocity based on lubrication theory, the
relative velocity of approaching particles may reduce to zero before the particles
touch. One should realise, however, that this process is only valid for two particles
in a stagnant fluid. Two particles in a turbulent flow field may experience a force
due to the external flow field that may be aligned along their connecting axis and
push the particles together. In such a case, the particle trajectory may be altered
since the equation of motion contains the force due to the external flow field. Thus,
larger values for w may be observed than predicted if only lubrication forces were
active. A further analysis of simulation data with respect to the external forces
that act on the particles is therefore required, to obtain further insight in the
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characteristics and dynamics of the collision process.

e Next to a radial velocity component, the particles also have a transverse velocity.
The simulation data indicate that the transverse velocity components are Gaussian
distributed and that the rms value of the transverse velocity is two times larger
than the radial velocity component (see figure 5.8 and table 5.6). Lubrication
forces acting on a pair of approaching particles have a repulsive action that keeps
the particles separated. In analogy to the lubrication forces, hydrodynamic shear
forces may exist, that have an action that opposes particle rotation and transverse
velocity. As these forces were estimated to be much smaller (O(1073) times),
they may offer little resistance to the particle transverse motion and the particles
maintain large transverse velocities even at close separations. A contribution of
shear forces to mechanical wear is therefore also unlikely.

e Due to the relatively large transverse velocities of particles, even at close separa-
tions, abrasion of the particle surface by lateral motion may occur. This effect may
have a large contribution to the final shape of the crystals produced in industrial
crystallisation equipment. An example is presented in figure 6.5, where sodium
chloride crystals are shown that were taken from an industrial process. The figure
shows that, although the original sodium chloride lattice is cubic, the particles
become ball shaped due to abrasion during the crystallisation process.

¢ In addition to the transverse motion, rotation of the particles near contact also may
contribute to the abrasion of the particle surface. Since shear forces at the particle
surface are relatively small, rotation may occur in the suspensions. Although
particle rotation is captured in the simulations, it has currently not been analysed.

e In crystallisation processes, particles usually have a nonspherical shape with many
surface irregularities. In general, the edges and corners of a crystal are most
sensitive to fragmentation and breakage, since the load of the collision energy is
concentrated in a small volume of the crystal. The shape of the crystals may have
two effects on colliding particles in a turbulent suspension;

In the first place, the irregular shape may have an impact on the orientation of
the particles in the flow field. Nonspherical particles that move in a range roughly
indicated by 0.05 < Re < 100 have a natural tendency to rotate towards highest
drag force, because this orientation is the most stable (Lund & Trees (2001)). To
assess the influence of the irregular shape of particles on their orientation and
collision behaviour, detailed lattice-Boltzmann simulations can be done similar to
the suspension simulations presented in this thesis. Recent examples of three-
dimensional lattice-Boltzmann simulations are given by Aidun et al. (1998b) for
one or two sedimenting spheroids and by Qi (2001) who presents results on the
suspension behaviour of 16 cylindrical particles at Re = 16.7. The findings of the
latter indeed indicate that the particles are mostly oriented perpendicular to their
direction of motion and that cylindrical particles tend to form T-shaped pairs.
This perpendicular orientation towards the main flow is schematically represented
in figure 6.6. If particles become aligned in the flow field, a side to side collision of
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their respective planes seems unlikely due to the stronger repulsive forces that act
in the gap between the particles. However, aligned particles may also suffer from
head to tail collisions which can cause particle edges to fragment.

In the second place, the impact that occurs at protruding edges or corners of non-
spherical particles can occur at a higher impact velocity because a lower repulsive
lubrication force may act on this type of shapes. This may again contribute to an
increased wear of particle edges and corners.

6.4 Conclusion

To study the influence of the transient motion of approaching particles on the repulsive
force that acts on approaching particles, a formulation of lubrication forces is presented
that includes the advective and accelerative terms of the Navier-Stokes equation. This
formulation was compared to classic lubrication theory (in which Stokes flow is assumed)
for prediction of the impact velocity.

As particles approach contact, the lubrication force will reach an infinite value and
according to theory particles will never touch. In practice this theoretical approach
breaks down either because the gap width reaches the mean free path length of the gas
or liquid molecules, or the gap becomes of the order of the surface roughness of the
approaching particles. In evaluating the lubrication models, contact between particles is
assumed by choosing an endpoint separation of the order of the estimated particle surface
roughness. The impact velocity is defined as the velocity at the endpoint separation. It
was shown that this velocity is a weak function of the chosen endpoint and that both
models exhibit comparable behaviour.

Crystal fragmentation occurs whenever particles collide at an impact velocity which
exceeds the minimum impact energy. In the second part of this chapter, an analysis
of the approach and collision behaviour of particles in a turbulent flow field is given,
to determine whether collisions at sufficiently large impact velocity can occur and to
determine an effective rate of fragmentation. The analysis was based on the simulation
results of chapter 5.

The distribution of the radial velocity components for particles near contact demon-
strates that a wide range of approach velocities occurs. The approach velocity can be
related to the minimum impact energy by choosing a specific particle size. By doing
so, all properties of the suspension simulations are fixed. The fragmentation velocity
wy indicates the approach velocity above which particles may collide at such impact
that fragmentation may occur. This velocity was calculated, while assuming lubrication
forces to dominate the relative particle motion. The analysis demonstrated that the
impact velocity required for fragmentation decreases with an increasing particle size.
Correspondingly, the probability to observe a particle pair at impact velocity wyo in-
creases with increasing particle sizes. Collision rates could be estimated for particles
larger than 520 pm.

A comparison of the volume averaged rate of energy dissipation of the suspension
simulations and the crystalliser simulations presented in chapter 2 of this thesis demon-
strates that the microscopic turbulent conditions of the suspension simulations are com-
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parable to the microscopic properties of the crysalliser flow field, whereas the large scale
properties of the crystalliser flow field could not be captured.

For the box simulations, a rate of fragmentation was determined in two ways. First,
the collision rate constant was based on the collisions registered during the simulations.
Second, the rate constant was based on a theoretical evaluation of the relative velocity
distribution near contact. In the latter case, the impact of the lubrication force on the
prediction of the rate of fragmentation was evaluated.

The fragmentation rate constant determined by counting collisions was found to lie
inbetween the values determined theoretically with and without the influence of lubri-
cation theory, where the use of lubrication theory seems to lead to an underprediction.
This may be due to the effect of local particle accumulation, as well as by the limited
accuracy with which lubrication forces are implemented in the suspension simulations.
The data demonstrated that the rate of fragmentation increases with an increase in
particle to fluid density ratio.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

At the start of the project described in this thesis, little knowledge was present in the
industrial crystallisation community on the precise interactions between hydrodynamics
and the properties of products produced in industrial crystallisation processes. It was
recognised that hydrodynamics play a crucial role in the dynamics of the crystallisation
proces, and that crystal-crystal collisions may have a large impact on design and scale-up
of crystallisation processes. Quantification of phenomena such as secondary nucleation
due to crystal-crystal collisions, however, appeared virtually impossible. In this thesis,
a step forward has been made in quantifying particle collision phenomena in dense
turbulent solid-liquid suspensions such as those encountered in industrial crystallisation
processes.

A procedure was proposed to assess crystal-crystal collisions that starts by investi-
gating the properties of the turbulent flow field of a typical crystallisation process using
large-eddy simulations. From these simulations, the conditions for performing direct
numerical simulations of turbulent suspensions were estimated.

The next step was to develop a method for the direct simulation of suspended solid
particles in liquid. For this purpose, a lattice-Boltzmann scheme was used, where the
no-slip particle boundary conditions were implemented using the adaptive force-field
technique. Since this approach has not been used previously for the simulation of freely
moving particles, validation was necessary.

For this purpose, a comparison between simulations and PIV experiments on a single
sphere settling in a container was made. This demonstrated that the transient motion
of particles could be simulated sufficiently accurate at non-zero Reynolds numbers at a
relatively low resolution.

For generation of sustained isotropic turbulent conditions, a spectral forcing scheme,
originally developed for (pseudo-) spectral simulation methods, was applied to the
lattice-Boltzmann scheme. It was demonstrated that all properties of the forcing scheme
were accurately recovered in our lattice-Boltzmann framework.

Simulations of a forced turbulent suspension were performed by combining the par-
ticle simulations with the turbulence forcing scheme. Results were reported on five
turbulent suspension simulations where volume fraction and particle-fluid density ratio
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were varied. From these simulations, both the influence of the particles on the turbulent
energy spectrum and the turbulence induced collisions were studied. The energy spectra
showed that particles generate fluid motion at the scales of the particle size. This small-
scale motion enhances energy dissipation and suppresses the development of turbulent
kinetic energy at larger scales. Our numerical results agreed well with two-way coupled
simulations on turbulent suspensions presented in literature.

A study of the motion of the particle phase showed complex particle-particle inter-
actions. As particles approach one another, their relative velocity may decrease due to
an increased spatial correlation of the turbulent flow field at shorter separations. Par-
ticles in solid-liquid suspensions also exhibit strong hydrodynamic interactions, which
may further reduce their relative velocity. Upon separation, the hydrodynamic forces
become attractive, causing particles to stay in each other’s vicinity for a long time, until
they are separated by e.g. external turbulent action. In line with the above picture,
the distribution of the time between collisions showed that two types of collision mech-
anisms were present,viz. due to uncorrelated particle motion (primary collisions) and
due to correlated particle motion (secondary collisions). The rate constant obtained for
primary collisions corresponded well with theoretical models.

Finally, our simulation results were interpreted in the light of fragmentation of crys-
tals due to crystal-crystal collisions, based on a mechanical model for crystal fragmenta-
tion. This analysis demonstrated that larger particles are more likely to exhibit fragmen-
tation. The impact velocity required for fragmentation to occur depends on the crystal
size and larger particles therefore require a lower impact velocity. Since lower particle
approaching velocities are more likely to occur, larger particles are more likely to exhibit
fragmentation. Based on these results, a fragmentation rate constant was determined,
that depends on both the particle volume fraction and particle-to-fluid density ratio.

7.2 Direct Numerical Simulations

In this thesis, the main focus has been on performing detailed numerical simulations of
turbulent suspensions. First results were obtained on domain sizes of 128* grid points
(Ten Cate et al. (2002a)), which was later increased to 256* grid nodes (chapter 5), to
increase the separation between integral, particle and Kolmogorov length scales. Still,
in the current simulations, the integral length scale of turbulence was only 5 times
larger than the particle diameter. In the 128% simulations, the particle field appeared
practically homogeneous. Preferential concentration effects could be observed in the
256° simulations, but they still do not seem significant. For a further increase of the
integral length scale, simulations at larger computational grids are required.

Another important issue is the resolution at which the particles are resolved. Simu-
lation results were presented on turbulent suspensions with particles that had an input
diameter of 8 grid nodes. For dense suspensions, the resolution of the flow around the
particle can play an important role in the resulting particle suspension behaviour. A
resolution study of the current type of simulations can be performed by increasing the
particle input diameter. This also requires larger computational domains to maintain a
constant ratio of the integral, particle and Kolmogorov length scale.
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Clearly, for both reasons, there is a need for larger computational domains which
implies larger computational efforts. The simulations performed on 256% computational
grids were done on only 6 processors in parallel and took about 3 GB computer memory
and 3 weeks of computation on a Linux cluster with 500 MHz processors. By increasing
the computational grid two times in each direction, i.e. move to 512° computational
grids, roughly 8 times more computer memory and 16 times more computational power
would be required to perform the simulations in three weeks time (time discretisation
scales linear in lattice-Boltzmann simulations). This would mean a computational effort
of roughly 24 GB computer memory and 96 processors at 500 MHz. If one would move
to 10243 grids, 192 GB computer memory would be required and 1536 processors are
needed.

These numbers seem ridiculously large. Nevertheless, the development of cluster
computing has boomed during the last 5 years and simulations with O(100) processors
are currently performed on a routine basis in supercomputer centers. A good example
of the development of parallel computing is given by the developments at the Kramers
Laboratorium. At the start of this project the Laboratory owned a 4 processor HP
Convex computer, which was outclassed by a simple set of two dual pentium 450 MHz
PC’s about two years after the Convex had been installed. During this project it be-
came apparent that parallel computing on off-the-shelf PC’s was very rewarding and
soon the two dual machines were upgraded to a cluster of 6 machines, which later again
was extended with a second cluster of 10 dual pentium 500 MHz machines. The most
recent cluster installed at the Kramers Laboratorium consists of 20 machines of dual
1600 MHz Athlon processors, which comes close to the demand for 512° simulations.
Computer systems with of the order of 1000 processors are found in the top 500 super-
computers currently present in the world, and for research purposes, such computations
are currently achieveable.

Other aspects of moving into larger simulations are the parallelisation of the com-
puter code, and the need to handle very large data files. For simulations with, say,
100 processors, domain decomposition in one direction, as is currently done, will be
insufficient, since the overhead on communication will strongly increase in this way.
Parallelisation in more than one direction sets new challenges. For instance, a draw-
back of parallelisation in more directions is that fast Fourier transforms, needed for the
generation of turbulent forcing, become highly inefficient and alternative approaches are
needed. Also, post-processing the large datasets generated in this type of simulations
requires efficient handling of the data files and computer memory.

Clearly, going to larger simulations is on the one hand challenging, looks promising
from a research perspective and practically inevitable. On the other hand, it poses
a number of practical difficulties that should be solved. With the high pace of the
developments in computer power, the time is currently ready to get experience in this
type of simulations and move into this direction.
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7.3 Perspectives for modeling industrial crystallisation
processes

After all these complex excersises of a fundamental nature, what perspective does the
approach presented in this thesis offer to crystallisation processes? Bear in mind that
a real industrial crystallisation process is typically of the order of 100 m?®, contains
a dense suspension of crystals with a continuous crystal size distribution, is operated
under highly turbulent conditions, often placed under vacuum, and boiling to generate
supersaturation. The process spans a tremendous range of length scales, from meters
for the equipment size to nanometers for the size of nuclei, and spans a wide range of
time scales, of the order of hours for the process dynamics up to microseconds for the
turbulence and particle response time scales. With the currently available numerical
methods and computational power, an approach is suggested to study the influence of
secondary nucleation on the dynamics of crystallisation processes.

A common way of modeling crystallisation processes is by means of population bal-
ances that describe the evolution of crystal size in time. A description of a crystallisation
process that accurately represents the full process can not be achieved in models, simply
because the many relations that connect local conditions and population balance kinetics
are unknown. Based on the here presented simulation approach, one can at least start
to evaluate for instance the role of secondary nucleation due to crystal-crystal collisions
in the overall behaviour of the crystallisation process.

Let us assume, for the sake of simplicity, that the internal flow of a crystalliser is
accurately predictable via LES computations. Let us further assume that the microscopic
suspension simulations presented in this thesis provide an accurate method to obtain
fragmentation constants ['s as a function of the rate of energy dissipation, particle to
fluid density ratio and solids volume fraction, that can be straigthforwardly applied to
describe fragmentation processes in crystallisers due to crystal-crystal collisions.

Our simulations showed that I'y was a function of volume fraction and density ratio.
When studying a single model compound, the density ratio can be taken as a constant.
The simulations were done at a single turbulent Reynolds number, and the rate of
energy dissipation was constant. From a study in which volume fraction and turbulent
conditions are varied, a model relation should be obtained for I'f(K, ¢, ®,,d,).

This rate constant can then be used straightforwardly in a population balance model.
The one problem with the regular approach to population balances is that homogeneous
conditions throughout the crystalliser vessel are assumed. As an example, for the rate of
energy dissipation often the volume averaged specific power input is chosen. This value
is orders of magnitude larger than the levels of energy dissipation encountered in large
parts of the crystalliser. Therefore, prediction of a rate of secondary nucleation based
on this result will be orders of magnitude too large, compared to the rate present in
the crystalliser volume (see also Hollander et al. (2001)). To incorporate inhomogeneous
properties such as the rate of energy dissipation, a compartmental discretisation of the
population balance has been proposed (Bermingham et al. (1998)). This raises new
difficulties, since choosing control volumes is often arbitrary. To overcome this, the
compartment structure of the population balance model should contain a resolution
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comparable to the resolution of the flow field, which is virtually impossible due to its
computational demand.

Monte Carlo (MC) approaches for solving population balances (Smith & Matsoukas
(1998)) offer an alternative opportunity to tackle this problem. In such an approach,
a large number of particles is taken where each particle has a given particle size, such
that the ensemble of particles represents a continuous particle size distribution. These
particles can be tracked through the flow field of a crystalliser. The kinetic parameter
[’y can then be determined in each cell of the flow field, based on the local volume con-
centration of particles and the local rate of energy dissipation. A stochastic simulation
of the kinetic processes then determines which particles of the group of particles residing
in each cell have collided at such impact that secondary nuclei have been formed.

The advantages of such an approach are that the physical properties of the flow
field, which determine, e.g. the local residence time and circulation of the particles,
are inherently present, and that collisions of particles with, e.g. the internal parts of
the crystalliser can also be incorporated. Another advantage is that MC simulations
can be extended easily to describe other kinetic phenomena such as agglomeration or
growth, and to include other particle properties such as morphology or internal stress
of the particles. The latter is especially difficult to model in a conventional discretised
population balance approach, since it requires discretisation of the population in addi-
tional dimensions. A drawback of MC simulations is that a dynamic simulation of the
flow field at high resolution takes a number of hours per impeller revolution to compute.
Simulations of a crystalliser the dynamic response of which is on the order of hours is
therefore not feasible. To overcome this problem one should revert to an approach using
time averaged or frozen flow fields.

To compute collisions between particles on a statistical basis, each cell in a MC
simulation should contain a sufficient number of particles. An estimate of the required
number of particles depends on the specific approach. For MC simulations of mixing
processes, a rule-of-thumb of 50 particles per cell is used. For a detailed simulation of
the crystalliser flow field as presented in chapter 2, 10 particles per grid cell corresponds
to approximately 106 million particles in total; such a number would occupy about 3
GB computer memory and may currently be regarded feasible.

On the basis of the type of simulations proposed, the impact of the rate of secondary
nucleation on scale-up can be studied numerically. Furthermore, by incorporating other
kinetic mechanisms such as agglomeration, crystal growth, crystal fragmentation due to
crystal-impeller collisions and crystal growth rate dispersion, a more complete model for
crystallisation processes with full incorporation of the crystalliser hydrodynamics may
be obtained.






Appendix A

Derivation of the full lubrication model

The starting point for the derivation of the full model for the lubrication force is given
by the Navier-Stokes equation in the cylindrical coordinate system (equation 6.2) and
the geometry of two approaching semi-spheres as given in figure 6.1. In accordance with
lubrication theory, the velocity profile for u, is assumed parabolic, where the second
derivative of the velocity profile can be expressed as a function of the mean flow U,
0Pu —12U
R Sy (A1)
0z* h?
Using the continuity equation, a relation between the mean velocity U and the relative
particle velocity w is obtained,

T
which can be used to rewrite the momentum balance such that an equation for the

pressure distribution in the gap is obtained,
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which contains the contributions of I. fluid acceleration, I1. advection and III. viscous
forces. This expression for the pressure drop needs to be integrated over the surface of
the sphere to obtain an expression for the forces acting on the spheres;

27 a
F= / / p(r)rdfdr (A4)
o Jo
which requires an approximation of the gap h(r) between the spheres. The leading order

term of the force is obtained by taking the first and second order terms of the Taylor
expansion on the double sphere geometry

2
h(r) = ho + 2a — 2VaZ — 1% ~ hg + % +..0(3) (A.5)

where a is the sphere radius. Rewriting and integrating terms 7,11 and /1] will give
the following expressions for the different contributions to the force on the sphere;
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F1=27r/0 / pgr(%;%i)dr rdr (A.6)
a b
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Time and length scales are made dimensionless using the particle radius a and the
initial approaching velocity wo. The force is made dimensionless by dividing both the
lhs and rhs of the equations with the following group,

4 h2

-3‘?'(' G, pf— (All)
and by defining a Reynolds number according to equation 6.4 and the dimensionless
distance, velocity and acceleration of the spheres as

ho
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x (A12)
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which results in the dimensionless groups for the force,
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and

(A.17)

(A.18)






Samenvatting

In de chemische industrie worden veel vaste produkten geproduceerd in industriéle
kristallisatie processen. Een typisch kristallisatie process bevat rond de 20 vol% kristallen
waarbij de kristal grootte verdeling varieert tussen de 100 en 2000 gm. Om een homo-
gene suspensie te verkrijgen wordt de kristal slurrie rondgepompt onder hoog turbulente
condities. In deze turbulente stroming kunnen botsingen tussen kritallen en de appa-
ratuur of kristal-kristal botsingen tot secundaire nucleatie leiden. Met de term nucleatie
wordt de vorming van nieuwe kristallen aangeduid. In grootschalige industriéle pro-
cessen vormt secundaire mucleatie, het ontstaan van nieuwe kristallen uit fragmenten
die afbreken wanneer kristallen botsen, de belangrijkste bron van nieuwe kristallen.
Aangezien bij opschaling van kristallisatie processen de turbulente eigenschappen van het
stromingsveld sterk kunnen veranderen kan secundaire nucleatie het dynamisch gedrag,
en dientengevolge de kwaliteit van het beoogde produkt, sterk beinvloeden.

De doelstelling van dit proefschrift was om secundaire nucleatie door kristal-kristal
botsingen in een turbulent stromingsveld te bestuderen. Hiertoe werd een methode
ontwikkeld voor de direkte numerieke simulatie van deeltjes die vrijelijk in een turbulente
stroming bewegen.

Daarvoor werd allereerst onderzocht welke stromings condities voor dergelijke sim-
ulaties van toepassing zijn aan de hand van een gedetailleerde large-eddy simulatie van
de stroming in een experimentele 1100 [ kristallisator. Hierbij werd aangenomen dat het
stromings gedrag van de kristal-slurrie benaderd kan worden met een enkele homogene
fase, waarbij de invloed van de kristal slurrie word benaderd met een effectieve vis-
cositeit. Het Reynolds getal van de LES simulatie bedroeg 240000, en werd uitgevoerd
met een rooster-Boltzmann simulatie, met een Smagorinsky sub-grid schaal turbulentie
model (¢ bedroeg 0.11). Uit deze simulaties werden turbulente lengteschalen afgeschat.
Hierbij bleek dat deze tot een orde kleiner konden worden dan de gemiddelde kristal
grootte in het kristallisatie proces.

Omdat de grootte van de kristallen overeenkomt met die van de kleinste lengteschalen
van de turbulente stroming, en omdat er een sterke interactie bestaat tussen de beweging
van de vloeistof en die van de vaste deeltjes in de vloeistof, is een direkte simulatie van
de vloeistof rondom de deeltjes vereist wanneer men het gedrag van vaste deeltjes in een
turbulente suspensie wil bestuderen. Hiertoe werd een simulatie methode ontwikkeld
gebaseerd op het rooster-Boltzmann schema. Twee punten die verder onderzoek vereisten
waren het testen van de methode waarmee de randvoorwaarden van de vaste deeltjes
werden opgelegd, en de methode waarmee een turbulente stroming opgewekt kan worden.

De methode voor de randvoorwaarden van de vaste deeltjes zoals die in dit proef-
schrift beschreven wordt is gebaseerd op de ’adaptive force-field’ methode. Validatie van
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deze aanpak was nodig aangezien deze nog niet eerder toegepast was op vrij bewegende
vaste deeltjes. Hiertoe werd er een vergelijking gemaakt tussen experimenten en simu-
laties aan een enkel deeltje dat bezinkt in een glazen bak. De afmetingen van de bak
waren zo gekozen dat het stromings veld volledig gesimuleerd kon worden, met inbegrip
van de invloed van de vaste wanden van de bak. Vier kruis-correlatie PIV metingen
aan een bezinkend deeltje zijn uitgevoerd, waarbij het Reynolds getal tussen 1.5 en 31.9
is gevarieerd. Het Stokes getal varieerde hierbij tussen de 0.2 en 4 en opstuiteren van
het deeltje werd hierbij niet waargenomen. De experimenten leverden gedetailleerde in-
formatie over het stromings veld, de baan van de kogel en de snelheid van de vallende
kogel tijdens optrekken, bezinken en afremmen bij het naderen van de bodem. Rooster-
Boltzmann simulaties waren in staat het volledige tijdsafhankelijke gedrag van zowel
de kogel als die van de vloeistof na te bootsen. De experimentele data werd gebruikt
om de invloed van de ruimtelijke resolutie op de simulaties te onderzoeken, waarbij de
bol radius gevarieerd werd tussen 2 en 8 rooster punten. Hieruit bleek dat de kwaliteit
van de berekeningen van het Reynolds getal af hing. Tevens werd het gebruik van een
analytische uitdrukking voor de smerings-kracht op het naderen van de bodemwand on-
derzocht. Deze kracht kan worden gebruikt wanneer er onvoldoende ruimtelijke resolutie
is om de stroming tussen de bol en de bodemwand te simuleren.

Voor het opwekken van een homogeen isotroop turbulent stromingsveld werd een
spectraal krachten schema toegepast op het rooster-Boltzmann schema. Met dit schema
kan een turbulent stromingsveld gegenereerd worden waarvan de eigenschappen a priori
kunnen worden vastgelegd. Een bijzondere eigenschap van het schema is dat het in staat
is om de vermogens toevoer die uit de kracht-snelheids koppeling ontstaat te elimineren,
waardoor de turbulente eigenschappen van het stromingsveld nauwkeurig gecontroleerd
kunnen worden.

Door de deeltjes simulatie met het spetraal krachten schema te combineren konden
simulaties van turbulente suspensies worden uitgevoerd. Vijf simulaties zijn er uitgevo-
erd waarbij de deeltjes diameter 8 gridpunten bedroeg en waarbij de volume concentratie
deeltjes gevarieerd werd tussen 2 en 10 vol%, terwijl de vast/vloeistof dichtheids ratio
gevarieerd werd tussen de 1.15 en 1.73. Het Taylor schaal Reynolds getal bedroeg 61 in
deze simulaties. Voor elkaar naderende of zich van elkaar verwijderende deeltjes werd
een analytische uitdrukking voor de smerings kracht gebruikt wanneer de deeltjes zich
minder dan twee roosterpunten van elkaar bevonden. Er werden resultaten gepresen-
teerd die de invloed van vaste deeltjes op het turbulente energiespectrum laten zien en
er werden resultaten gepresenteerd die het botsingsgedrag van de vaste deeltjes in het
turbulente stromingsveld bespreken.

De simulaties laten zien dat door de aanwezigheid van vaste deeltjes de kinetis-
che energie van het systeem wordt onderdrukt omdat vaste deeltjes de dissipatie van
kinetische energie te vergemakkelijken. De vaste deeltjes genereren vloeistof beweging
op lengteschalen ter grootte van de deeltjes, wat resulteert in snelheids gradienten ron-
dom de deeltjes, die een sterke toename van energie dissipatie op de lengteschalen van
de deeltjes tot gevolg heeft. De resultaten bevestigen eerdere bevindingen uit de lit-
eratuur, waarin twee-weg gekoppelde directe simulaties van turbulente suspensies met
punt-deeltjes worden beschreven.

Informatie over het botsings gedrag van de deeltjes in de simulaties laat zien dat er
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twee botsingsmechanismen optreden. Botsingen treden op door ongecorreleerde bewegin-
gen van deeltjes (primaire botsingen). De botsingsfrequenties voor deze botsingen komen
overeen met voorspellingen op basis van een theoretisch botsingsmodel voor trage deelt-
jes. Daarnaast wordt er een groot aantal botsingen met hoge frequentie waargenormen.
Deze zogenaamde secundaire botsingen treden op omdat de bewegingen van twee deelt-
jes die zich in elkaars omgeving bevinden gecorreleerd zijn vanwege de hydrodynamische
interactie tussen de deeltjes op korte afstand, vanwege ruimtelijke correlatie die optreed
in het turbulente stromingsveld en vanwege de numerieke methode waarop lubricatie-
krachten en botsingen in de simulaties geimplementeerd zijn. Dit wordt ondersteund
door een analyse van de deeltjes fase, gebaseerd op de verdeling van de relatieve deeltjes
snelheden en de ruimtelijke deeltjes correlatie.

In het laatste gedeelte van dit proefschrift worden de deeltjesbotsingen die in de
simulaties worden waargenomen gebruikt om een maat voor de breukfrequentie van am-
monium sulfaat kristallen in een turbulente suspensie te bepalen. Een minimale botsings
snelheid waarbij breuk optreed kan worden bepaald uit de minimale breuk energie, waar-
door deze snelheid varieert met de grootte van het kristal. Uit de simulaties wordt de
verdeling van de radiele relatieve snelheden bij botsing verkregen. Deze verdeling laat
zien dat naar mate de snelheid groter wordt, de kans dat deze snelheid aangetroffen wordt
kleiner wordt. Aangezien kleinere kristallen een hogere botsings-snelheid nodig hebben
om de minimale breuk energie te overschreiden, neemt de kans dat breuk optreed af
voor kleinere kristallen. Een theoretische benadering om de breuk frequentie te bepalen,
gebaseerd op de relatieve snelbeids verdelingen in de simulaties, komt goed overeen met
de botsingsfrequenties die in de simulaties waargenomen worden. Dit laat zien dat de
gepresenteerde methode consistent is en biedt een perspectief voor het opstellen van
modellen voor breukgedrag van kristallen in een turbulente stroming.
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The movie in the right margin of this thesis represents the
simulated flow field of a sphere settling in a closed box, com-
parable to those presented in chapter 3. The contours in-
dicate the velocity magnitude of the fluid. The conditions
were:

Height/d, = 41, Width/d, = Depth/d, = 4.1, Re, = 46.

The images on the back cover are raw PIV images of a sphere
settling towards the bottom wall of a closed box, taken from
the experiment as described in chapter 3, case Ej.




