

Delft University of Technology

Exploring Computing at the Edge
A Multi-Interface System Architecture Enabled Mobile Device Cloud
Balasubramanian, Venkatraman; Aloqaily, Moavad; Zaman, Faisal; Jararweh, Yaser

DOI
10.1109/CloudNet.2018.8549296
Publication date
2018
Document Version
Final published version
Published in
Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking, CloudNet 2018

Citation (APA)
Balasubramanian, V., Aloqaily, M., Zaman, F., & Jararweh, Y. (2018). Exploring Computing at the Edge: A
Multi-Interface System Architecture Enabled Mobile Device Cloud. In A. Nakao , T. Taleb , H. Tode , & Y.
Okazaki (Eds.), Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking, CloudNet
2018 Article 8549296 IEEE. https://doi.org/10.1109/CloudNet.2018.8549296
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CloudNet.2018.8549296
https://doi.org/10.1109/CloudNet.2018.8549296

Exploring Computing at the Edge: A Multi-interface
System Architecture Enabled Mobile Device Cloud

Venkatraman Balasubramanian‡, Moayad Aloqaily?, Faisal Zaman†, and Yaser Jararwehσ
‡Delft University of Technology(TUD), Netherlands.

?Australian College of Kuwait, Kuwait, Kuwait
†Ciena Networks, Ottawa, ON, Canada.

σDuquesne University, Pittsburgh, PA, USA
E-mails: ‡V.balasubramanian@tudelft.nl, ?M.Aloqaily@ack.edu.kw, †Fzaman@ciena.com, σJararwehy@duq.edu

Abstract—Today, mobile applications advancements have over-
come limited device capabilities by offloading to costly public
cloud. As the edge computing paradigm began to take prece-
dence, a mobile device cloud (MDC) formed at the edge based
on idle intra-device resources emerged. This is a result of a
customized user-centric composition service request for a time-
bound application. Herein, devices volunteer their intra-device
resources for producing a compute environment in turn satisfying
the needs of the consumer. Now, with the growth of device
technology and the available interfaces for accessing multiple
radio technologies, a new transport layer protocol called Multi-
path TCP was introduced in literature. This protocol enables
multiple sub-flows to join for transmitting data simultaneously.
However, in scenarios like formation of device clouds, there are
issues pertaining to sub-flows that are involved in a device cloud
composition. One such issue is the management of sub-flow
buffer. As each of these sub-flows have their own respective
buffering and characteristic delays, it leads to sub-optimal
performance in term of buffer occupancy. Thereby, degrading the
quality of the device cloud composition. To this end, we propose
an OS side architecture that plays a crucial role in managing
the traffic coming from different flows. We model an agent that
works conservatively satisfying Kleinrock’s law and show a proof
of concept experiment

Index Terms—Mobile Edge Computing, Mobile Cloud, Inter-
net of Things, composition, QoS, Sensor Network.

I. INTRODUCTION

MObile device usage has increased manifolds with the
IoT revolution [1]. Nevertheless, there are mobile

applications such as real-time gaming, face recognition, mu-
sic OCR and other such computation intensive applications
which have become difficult to process locally in the device.
These applications overcome the device limited issues for
application processing and offload computations to the cloud.
Cloud services have limitations pertaining to the access,
infrastructure costs, high round trip times, to name a few.
In many services applications are solely dependent on the
time and place where-in it needs to be executed [2], [3],
[4]. Such place-bound activities demand a separate set of
requirements which must be addressed closest to the user.
This computing environment formed “on-the-fly” with the co-
operation between the devices is known as Mobile Device
Cloud (MDC) [4] An MDC is a collection of individual

devices with seemingly low computational capabilities but
collaborate with one-another in the vicinity together form-
ing a low-cost yet resource rich computation entity. This
computational environment is spread over ecosystems such
as wireless local area networks (WLANs) and Mobile Ad-
hoc networks (MANETs) where nodes cooperatively maintain
the network. These are predominantly considered as shown
in [4], [5] where users can form a wireless network on
the spot. Typically, in these cloud environments two factors
are visible viz. consumer and provider nodes are mobile
and service composition changes dynamically based on the
resources (nodes) available. This work considers offloading
in such environments where individual devices can behave as
a service providing node or a service requesting node. We
illustrate one such scenario below.

A. Scenario

In a stadium where attendees are gathered to see music
artists perform, it is a common site that not all the attendees
know the lyrics of a particular song. Various applications like
musicOCR convert audio to lyrics and assists the attendees in
such situations. However, requesting cloud support would lead
to higher round trip times adding to application processing etc.
that would render the application to be useless. In such cases
a mobile device cloud composition comes of use. As shown
in Figure 1 and [4] , a request beacon is sent to an access
point for discovering nearby devices (known devices of 2-3
friends) who volunteer their resources (R1, R2, etc) for MDC
formation. Once the request is received, the AP will assist
in finding the resources. The ownership of the resources are
with individuals who are readily present in the vicinity and
are ready to volunteer their services. The diverse collection of
resources (natively stored, and are called virtual resources) are
composed into a usable device cloud infrastructure via service
APIs . A key-enabler here is the protocol called Multipath
TCP (MPTCP) [6]. However, due to unsatisfactory device
queuing mechanisms and heavy message passing there is drop
in quality of the MDC and most times also leads to disruption.
Thus, the problems we are targeting are as follows

• Congestion is a problem in such environments as the
amount of control messages and request submission978-1-5386-6831-3/18/$31.00 c© 2018 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on July 09,2020 at 09:02:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Scenario Overview

messages increases per-device/request. This leads to poor
service times because of heavy on-device buffering which
ends up in bloating thereby affecting the MDC negatively.

In view of the above problem, this paper makes the following
contributions,

• We propose an architecture that addresses the congestion
problem with a transport agent that imposes an appli-
cation dependent policy for delay specific composition
requests. This works in the kernel space with radio and
buffer filling information as inputs.

• We introduce a balking technique that allows low latency
queuing in mobile device cloud services. To this end, we
propose a mathematical model of a Balking Threshold (ε)
a threshold policy that leads to low on-device buffering
and a faster request serving scheme, which is integral for
a time-bound Mobile Device Cloud application. We show
how mean utilization remains constant (β) satisfying
Kleinrock’s law and provide a sensitivity analysis of the
algorithm by rigorous simulated measurements.

The rest of the paper is organized as follows, the related
work Section II delineate the novelty of the proposed solution
with a brief discussion on the most recent related work. In
Section III, the system design is presented with elaboration
on the different components included in the solution. Section
IV shows performance evaluation and Section V provides
concluding remarks.

II. RELATED WORK

In [3], Mtibaa et al. propose computational offloading
among mobile devices. Authors show how leveraging the
nearby idle computational resources can save execution time
and energy consumed. Likewise, in [7] Shi et al. propose
Serendipity, an MDC specific profiling and offloading tech-
nique that is a continuation of cirrus cloud. A similar vein of
research in cloud computing is the Ad-hoc Cloud Computing
paradigm. Forming computing environments “on-the-fly” is
still the approach followed here. The ad hoc cloud architecture
proposed by [2], contains a volunteering set of ad hoc devices
who participate for the processing of tasks submitted by cloud

users over an ad hoc cloud server. They use reliable ad hoc
devices to form small clouds for different applications within
an organization to host virtual ad hoc cloud.

In concert with these approaches, in [4] authors propose
Mobile Ad-hoc Clouds, that has gained attention with the rise
in the number of devices per-person per-household. Unlike all
of the above strategies, that are either a base-station controlled
D2D techniques or traditional TCP techniques, we propose a
Multipath-TCP (MPTCP) enabled device cloud that brings the
major benefit of maximizing throughput reaping the multiple
paths available between two end-points.

Fig. 2: Congestion Manager Design

III. SYSTEM DESIGN

As shown in Figure 2 our approach is to incorporate
queue management techniques considering multiple-interface
technologies. Various transport layer solutions such as [8],
[9] work across flows, but do not provide any buffer control
inside the device. Assuming, new wireless technologies begin
to show up such as 5G and beyond, IoT tech etc., it would be
difficult to incorporate on-device solution every-time a new
technology is developed. Thus, we propose our design called
Congestion Manager that operates in the Kernel space with
inputs from the radio transmissions and queuing information.

The main characteristics that we maintain at the Congestion
Manager is of a congestion window, a packet transmission rate
and composition specific balking value.

A. Congestion Window, Arrival and Service Times

As observed in most congestion control algorithms [8] a
sending rate is always specified before the Radio firmware
or Tx/Rx begins or becomes active. This is the congestion
window (cwnd), which is defined as the maximum unac-
knowledged packets in transit. We consider Poisson arrival
λ/unit-time and an exponential service µ/unit-time at the
device. Now, the arrivals are such that, the queues have to
maintain a considerably low service latency and should offload

Authorized licensed use limited to: TU Delft Library. Downloaded on July 09,2020 at 09:02:26 UTC from IEEE Xplore. Restrictions apply.

packets if it goes beyond a certain point. Our goal here is
not to see how many requests can sit inside a queue but to
demonstrate how fast the requests can be serviced. So, we
ensure reduced buffering and faster service periods. This is
done by the agent that acts as the conduit between the Queue
collector and the Shaper.

B. Congestion Handler and the Balking Agent

Congestion Handler keeps the statistics of how fast the
packets are arriving and provides this information to the queue
collector. Balking Agent does the job of shaping traffic based
on value that puts an upper bound on all the queues based on
the interface conditions and queuing discipline. Traditionally,
Balking is the refusal of an element (queuing parameter) to
join a queue [10]. We exploit this technique to an extent where
this threshold restricts the amount of requests indirectly in
one queue making all the queues participate without waiting
for buffering. Consider a balking agent pruning the queue at
memory location τ . At time t, for a Poisson arrival of request
λ being served by a device µ, the queue size Q. As the queue
size is reduced to Q − τ , it is the point where the arrivals
move to the next available fast moving queue. Typically,
an offloading process works on a priority basis, however,
we explore a novel mechanism of balking based request
offloading between interfaces to maintain service continuity
and reduce network congestion. In doing so, we investigate the
probability of maintaining the service guarantees at reasonable
latency. Although, the difference between the two techniques
is minimal, priority techniques do not let the incoming packets
not join a certain queue. Through balking we achieve this.
Consider a memoryless system with a probability of n requests
at a time (t + h) where a small event time period of h
determines the requests being serviced, if there are (n − 1)
requests at time t during h, when one request arrived with no
completed service requests. In such a case we define, a balking
probability ε= n/N , where n is the requests in the system
including the request being serviced and N is the requests
who are going to join the queue. We consider that the serviced
requests continues to grow. The mean balking rate (υ) from
[10] is taken as,

υ

λ
=

n=N∑
n=1

εpn (1)

Our objective is to minimize Z the packet drop x related
due to balking

Z = min{x, υ} (2)

such that, a buffer bi for interface i with link conditions
estimated with wi we have pruning done at τ , represented as
τ ≤ biwi. Further, the new arrival after the first balk, would be
reduced as (λ− υ)=δ. We avoid the steps showing the steady
state probability where all the time dependence is negated.

pn−1(t)δ + pn+1(t)µ = pn(t)(δh+ µ) (3)

In such a situation when a system does not have any requests
queued we evaluate for p0(t+ h) as

p0(t+ h) = p0(t)(1− δh) + p1(t)(1− δh)µ (4)

As, the probability of no service (1−µh) is 1, effectively we
maintain

δ

µ
≤ 1 (5)

The expected number of requests waiting to be served in the
system Ls is reduced as

Ls = Q+ δ/µ (6)

From little’s law we can also know Q=Lq based on the
associated time and length of the system

Lq = δWq (7)

where, Wq is the average time spent in the queue. Hence, we
have the new arrival as, µp1+υp0p0

Now, for establishing work conservation with λ from above
equation, we have,

ρi = λixi (8)

where xi is the mean service time, λi is the average arrival
rate. By Kleinrock’s conservation law, we have for an average
queue delay qi

i=n∑
i=0

ρiqi = β (9)

This is the mean utilization of the link to the ith connection.
∀ i ∈ {0..n} flows and β is a constant.

Significance- As the queuing time per device decreases,
the packet’s served by a work conserving scheduler takes
short time. To keep mean utilization (ρi = λixi) constant
for the system, let’s say it comes at the expense of increase
in delay in a device with low resources to spare (as a
composition can have processing/storage resources of different
varieties) then the delay is bound to increase at such a serving
unit. That is, Kleinrock’s law for a queuing delay qi states
that,

∑i=n
i=0 ρiqi = β and ∀ i ∈ {0..n} flows and β is a

constant.Essentially, utilization is conserved even in such a
scenario. In order to maintain brevity, we show the complete
proof in our future work. The functional interaction is shown
in Figure 3.

Fig. 3: Functional Interaction

Authorized licensed use limited to: TU Delft Library. Downloaded on July 09,2020 at 09:02:26 UTC from IEEE Xplore. Restrictions apply.

a: Effect of Balking b: Requests offloaded c: Latency Reduction

Fig. 4: Performance Evaluation

IV. PERFORMANCE ANALYSIS

In this section we perform the sensitivity analysis of our
algorithm.Owing to lack of libraries in traditional simulators
suitable for simulating such a diverse set of scenarios, we
developed our simulator in Python. We run trials for 4000
mins each and average the measurements. The Balking thresh-
old is drawn from exponential distribution and is assigned to
each job. Jobs are served in the order of arrival and a max of
two jobs are allowed to remain in the system. Each job has
an alloted timer values distributed exponentially with τ . On
reaching τ the job is reallocated to another interface queue.
We call this event as Balking. Figure 4a shows the chunks
of requests which are balked at respective balking instances.
Figure 4b shows the offloaded requests at the time of balking.
We avoid link estimation factors as found in [11] owing to
space limitations. The balking algorithm is run on a software
controller over a Linux implementation of MPTCP that further
enables, the resulting delay characteristics are shown in Figure
4c. Implementation level approximations were made to enable
delay characteristics more suitable to our application. Over
50 sample balked requests were considered. Owing to the
movements and change in link conditions the fluctuations are
evident. However, with the balking threshold in the device
the congestion manager can restrict requests. In non-balking
scenarios, there were more fluctuations observed that can be
attributed to the constant packet-in messages to the controller
without a pre-defined threshold monitoring.

V. CONCLUSION AND FUTURE WORK

We propose a Multipath-TCP enabled Mobile Device Cloud
system architecture for time-bound applications. Offloading
computation in a one-hop device cloud is beneficial in terms
of cost and average service time. We target a specific problem
of excessive on device buffering that leads to bloating in case
of densely crowded environments.

To do this end, we adapt a balking technique that enables
a better queue management between interface queues, so
that the overall queuing time reduces which in-turn control
buffer occupancy from the OS kernel. We demonstrate the
use and effectiveness of the architectural deployments through
simulation measurements and sensitivity analysis. Our model
works better in terms of providing low end-end delay between

a set of consumer and providers. In the future, we plan
to investigate decision making process within the queuing
time for offloading between multiple composition services and
resource allocation [12], in addition to renting cloud services
as observed in [13].1

REFERENCES

[1] F. Anjomshoa, M. Aloqaily, B. Kantarci, M. Erol-Kantarci, and
S. Schuckers, “Social behaviometrics for personalized devices in the
internet of things era,” IEEE Access, vol. 5, pp. 12 199–12 213, 2017.

[2] G. A. McGilvary, A. Barker, and M. Atkinson, “Ad hoc cloud comput-
ing,” in 2015 IEEE 8th International Conference on Cloud Computing,
June 2015, pp. 1063–1068.

[3] A. Mtibaa, K. A. Harras, and A. Fahim, “Towards computational
offloading in mobile device clouds,” in 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science, vol. 1, Dec
2013, pp. 331–338.

[4] V. Balasubramanian and A. Karmouch, “An infrastructure as a service
for mobile ad-hoc cloud,” in 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC), Jan 2017, pp. 1–
7.

[5] S. A. Abid, M. Othman, and N. Shah, “A survey on dht-based
routing for large-scale mobile ad hoc networks,” ACM Comput. Surv.,
vol. 47, no. 2, pp. 20:1–20:46, Aug. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2632296

[6] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/wifi handover with multipath tcp,” in Proceedings
of the 2012 ACM SIGCOMM Workshop on Cellular Networks:
Operations, Challenges, and Future Design, ser. CellNet ’12. New
York, NY, USA: ACM, 2012, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/2342468.2342476

[7] C. Shi, M. H. Ammar, E. W. Zegura, and M. Naik, “Computing in cirrus
clouds: The challenge of intermittent connectivity,” in Proceedings of
the First Edition of the MCC Workshop on Mobile Cloud Computing,
ser. MCC ’12. New York, NY, USA: ACM, 2012, pp. 23–28.

[8] K. Nichols and V. Jacobson, “Controlling queue delay,” Queue,
vol. 10, no. 5, pp. 20:20–20:34, May 2012. [Online]. Available:
http://doi.acm.org/10.1145/2208917.2209336

[9] “Van jacobson et al.” http://ee.lbl.gov/papers/congavoid.pdf.
[10] J. C. J. Ancker and A. V. Gafarian, “Some queuing problems with

balking and reneging. i,” Operations Research, vol. 11, no. 1, pp.
88–100, 1963. [Online]. Available: https://doi.org/10.1287/opre.11.1.88

[11] M. Kulin, C. Fortuna, E. De Poorter, D. Deschrijver, and I. Moerman,
“Data-driven design of intelligent wireless networks: An overview and
tutorial,” Sensors, vol. 16, no. 6, 2016.

[12] B. Venkatraman, F. A. Zaman, and A. Karmouch, “Optimization of
device selection in a mobile ad-hoc cloud based on composition score,”
in 2017 2nd International Conference on Communication Systems,
Computing and IT Applications (CSCITA), April 2017, pp. 257–262.

[13] B. Brik, N. Lagraa, N. Tamani, A. Lakas, and Y. Ghamri-Doudane,
“Renting out cloud services in mobile vehicular cloud,” IEEE Transac-
tions on Vehicular Technology, 2018.

1‡ was working in TUD during the culmination of this work

Authorized licensed use limited to: TU Delft Library. Downloaded on July 09,2020 at 09:02:26 UTC from IEEE Xplore. Restrictions apply.

