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Preface

From the moment | stepped into the world of data science and artificial intelligence, | have been
captivated by the immense potential these fields hold in driving business value across diverse
environments. This fascination has been the guiding force behind my academic journey and has
culminated in this master thesis research.

The development of KarGus, a novel approach to multi-document question answering, has been
both a challenging and enlightening experience. This journey has taken me deep into the realms
of Natural Language Processing, Knowledge Graphs, and Graph Neural Networks, pushing me
to find innovative ways to integrate these technologies. The name “KarGus,” inspired by the
all-seeing Argus of Greek mythology, embodies our ambition to create a system capable of com-
prehensively analyzing and synthesizing information across multiple documents, much like the
hundred eyes of Argus surveying all around him.

Working on this thesis in the dynamic world of consulting at Accenture, under the guidance of
Lars Versnel, has been a transformative experience. It has exposed me to a different way of
thinking, bridging the gap between academic research and real-world business applications. This
experience has not only enriched my technical skills but also broadened my perspective on how
artificial intelligence can be leveraged to solve complex business challenges.

| am particularly grateful to my university supervisor, Neil Yorke-Smith, whose support has been
instrumental in the success of this thesis. His guidance in keeping me on track with milestones,
and his meticulous tips have been crucial in navigating the complexities of this research. Neil's
expertise and encouragement have been a constant source of motivation, pushing me to explore
new ideas and refine my approach.

This research would not have been possible without the support and resources provided by the
Faculty of Electrical Engineering, Mathematics and Computer Science at Delft University of Tech-
nology. The academic environment fostered by the university has been conducive to pushing the
boundaries of what’s possible in information retrieval and artificial intelligence.

As we continue to grapple with the challenges of information overload and the need for efficient
knowledge extraction, particularly in corporate intelligence, | hope that the insights and method-
ologies presented in this thesis will contribute to ongoing efforts in making information more ac-
cessible and actionable. While KarGus represents a significant step forward, it also opens up new
avenues for future research and development in the field of intelligent information retrieval.

This thesis is not just a culmination of my academic journey, but also a reflection of my passion
for leveraging artificial intelligence to create tangible business value. It stands as a testament to
the power of combining academic rigour with real-world applicability, and | am excited to see how
this work might contribute to future advancements in the field.

Martin Michaux

M.B.S.Michaux@student.tudelft.nl
Delft, August 2024



Abstract

This study introduces KarGus, a novel system for multi-document question answering (MD-QA)
designed for diverse domains. KarGus integrates advanced Natural Language Processing tech-
nigues with Knowledge Graph (KG) construction and Graph Neural Networks (GNNs) to enhance
retrieval performance across various specialized fields. We explore the efficacy of combining
semantic similarity, TF-IDF, and Named Entity Recognition features in KG construction and infor-
mation retrieval. Experimental evaluation on a corpus of 30 documents (1810 pages, 10,853 text
chunks) from corporate intelligence demonstrates that KarGus outperforms traditional embedding-
based methods, achieving a Recall@5 of 0.850 compared to the baseline’s 0.823 (p < 0.05). The
optimal configuration emphasized semantic similarity (weight 0.75), keyword relevance (0.2), and
entity information (0.05). Analysis of the KG structure revealed moderately well-defined commu-
nity structures and efficient information traversal properties. While GNN models showed promis-
ing training results, they underperformed in the retrieval task, highlighting challenges in GNN
application to MD-QA. This research contributes to the field of information retrieval by demon-
strating the efficacy of integrating NLP techniques with graph-based approaches in MD-QA. The
adaptable nature of KarGus suggests potential applications across various specialized domains.
Future work will focus on validating cross-domain performance and refining GNN implementations
for diverse retrieval tasks.

Keywords: Multi-Document Question Answering (MD-QA), Knowledge Graphs (KG), Natural

Language Processing (NLP), Graph Neural Networks (GNN), Information Retrieval (IR), Corpo-
rate Intelligence, Retrieval-Augmented Generation (RAG)
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Introduction

The field of natural language processing (NLP) has witnessed remarkable advancements in recent
years, driven by the development of large language models (LLMs) [Brown et al., 2020]. These
models have revolutionized various NLP tasks, including question-answering (QA) systems, en-
abling more human-like communication and opening up new possibilities for intelligent systems.
However, despite their impressive capabilities, LLMs often struggle with factual consistency and
completeness [Kamalloo et al., 2023], especially when dealing with rapidly evolving information
or specialized domains.

This limitation is particularly evident in multi-document question answering (MD-QA) systems,
which often struggle with complex, domain-specific information across various fields. Current ap-
proaches typically rely on simple embedding techniques or keyword matching, which fail to cap-
ture nuanced relationships and contextual information crucial in specialized domains. Moreover,
these systems often lack the ability to dynamically adapt to rapidly evolving knowledge, leading
to outdated or incomplete responses.

To address these challenges, researchers have proposed the Retrieval-Augmented Generation
(RAG) approach [Lewis et al., 2020b]. RAG combines the generative power of LLMs with a re-
trieval component that selects relevant context from external knowledge sources. This integration
allows RAG models to leverage the strengths of LLMs while grounding their responses in factual,
up-to-date information [Lewis et al., 2020a].

However, the effectiveness of RAG models heavily depends on the quality and relevance of the
retrieved information. Traditional retrieval methods often fall short in capturing the complex rela-
tionships and contextual nuances present in specialized domains. This limitation has motivated
the exploration of more sophisticated approaches to enhance the retrieval component of RAG
models.

Knowledge Graphs (KGs) have emerged as a promising solution to these retrieval challenges
[Ji et al., 2022]. KGs offer several advantages over traditional methods: they capture semantic
relationships and interdependencies between concepts, provide a structured representation of
information, and enable more nuanced reasoning over complex data. By constructing a KG from
a document corpus, the retrieval component can leverage rich semantic information to identify and
retrieve relevant information with greater accuracy and contextual awareness [NASTASE et al.,
20185].

The construction and traversal of KGs for Information Retrieval (IR) can be further enhanced
through advanced NLP techniques [Ye et al., 2023]. Methods such as named entity recognition
(NER), term frequency-inverse document frequency (TF-IDF), and text embeddings enable the
extraction of meaningful entities, relationships, and semantic information from unstructured text.
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Incorporating these NLP-driven insights into the KG construction and traversal process creates a
more robust and scalable approach for MD-QA, effectively synthesizing and retrieving information
from complex, large-scale datasets.

Additionally, the emergence of Graph Neural Networks (GNNs) [Wu et al., 2019b] has opened
up new possibilities for processing and reasoning over KGs. GNNs are deep learning models
specifically designed to operate on graph-structured data, allowing them to capture complex re-
lationships and dependencies within KGs. By leveraging GNNs, we can enhance the retrieval
process by learning rich representations of entities and relationships that incorporate both textual
and structural information. This approach enables more sophisticated reasoning over the KG,
potentially uncovering relevant information that may be several hops away from the initial query
nodes.

In this research, we introduce KarGus, a novel system that addresses the limitations of existing
MD-QA systems by uniquely integrating cutting-edge technologies — LLMs, RAG, KGs, advanced
NLP techniques, and GNNs. KarGus innovates by:

1. Combining multiple NLP features (TF-IDF, NER, and semantic embeddings) to create a
richer, more nuanced KG representation of document content.

2. Employing a GNN for graph traversal, enabling more effective navigation of complex docu-
ment structures.

3. Focusing on snippet-level retrieval for more precise answers in specialized contexts.

4. Balancing computational efficiency with retrieval accuracy, making it suitable for real-time
applications in various domains.

By leveraging the strengths of each component, KarGus aims to provide a scalable, adaptable,
and accurate solution for IR and question-answering in complex information environments. This
approach addresses the key challenges in MD-QA, offering a more comprehensive and context-
aware system capable of handling the intricacies of specialized domains and rapidly evolving
knowledge landscapes.

1.1. Background
1.1.1. Large Language Models
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Figure 1.1: Transformer architecture (Source)
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1.1. Background

LLMs are transformer-based neural networks that have been pre-trained on massive amounts of
textual data, enabling them to acquire a broad understanding of natural language [Brown et al.,
2020]. Models like GPT-4, developed by OpenAl, and Gemini, introduced by Google, have demon-
strated remarkable capabilities in generating human-like text, answering questions, and even ex-
hibiting some level of reasoning and common-sense understanding [Brown et al., 2020, Team
et al., 2024]. An example of the architecture can be seen in Figure 1.1.

LLMs leverage the transformer architecture, which uses self-attention mechanisms to process
input sequences in parallel, capturing long-range dependencies more effectively than traditional
recurrent neural networks [Vaswani et al., 2017]. The training process involves exposing the
model to diverse text corpora, allowing it to learn patterns, relationships, and contextual informa-
tion from the data. This pre-training phase is typically followed by fine-tuning on specific tasks,
enabling the model to adapt its knowledge to particular applications such as question answering
[Raffel et al., 2019].

LLMs are trained using self-supervised learning techniques, such as masked language modelling
and next-sentence prediction, which allow them to learn the underlying patterns and relationships
within the training data [Devlin et al., 2018]. This approach enables the models to develop a rich
understanding of language without relying on explicit, labelled data.

Despite their impressive performance, LLMs have limitations [Kaddour et al., 2023]. One signif-
icant challenge is their tendency to “hallucinate” or generate factually incorrect information, es-
pecially when dealing with topics or domains not well-represented in their training data [Maynez
et al., 2020]. Additionally, LLMs lack direct access to up-to-date, specialized knowledge sources,
which can lead to outdated or incomplete responses [Lazaridou et al., 2022].

1.1.2. Retrieval-Augmented Generation
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Figure 1.2: RAG architecture

To address the limitations of LLMs and enhance their performance in QA tasks, researchers have
proposed the RAG approach [Lewis et al., 2020b]. RAG models combine the generative power of
LLMs with a retrieval component that selects relevant context from external knowledge sources,
such as document corpora or knowledge bases [Lewis et al., 2020a].

RAG models consist of two main components: a retriever and a generator. The retriever is re-
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sponsible for identifying and retrieving relevant information from the knowledge source based on
the input query. This component often employs techniques such as dense vector retrieval or se-
mantic search to efficiently find relevant documents or passages [Karpukhin et al., 2020]. The
generator, typically an LLM, generates the final output by conditioning on the retrieved context
and the query. This two-stage process allows the model to leverage both the broad knowledge
captured in the LLM and the specific, up-to-date information from the external knowledge source
[Guu et al., 2020].

An example of the architecture can be seen in Figure 1.2 on two corpora of documents of corporate
intelligence.

The retrieval component plays a crucial role in the RAG model’s performance, as it determines the
relevance and completeness of the information provided to the generator. Effective retrieval can
mitigate the LLM’s tendency to hallucinate and ensure that the generated responses are grounded
in factual, up-to-date knowledge [Borgeaud et al., 2021].

1.1.3. Knowledge Graphs for Information Retrieval
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Figure 1.3: Knowledge Graph Example

One promising approach for the retrieval component in RAG models is the use of KGs. As shown
in the example of Figure 1.3, a KG is a structured representation of information, where entities
(nodes) are connected by relationships (edges), capturing the semantic relationships and inter-
dependencies between concepts [Ji et al., 2022]. By constructing a KG from a document corpus,
the retriever can leverage the rich semantic information encoded in the graph to identify and re-
trieve relevant information more accurately [Wang et al., 2022]. This methodology can replace
the retriever step seen in red in the Figure 1.2.

KGs offer several advantages in IR tasks. They provide a structured and interpretable represen-
tation of knowledge, allowing for more complex reasoning and inference [Wang et al., 2017]. KGs
can capture hierarchical relationships, transitive properties, and domain-specific rules, enabling
more nuanced and context-aware retrieval. Additionally, graph-based algorithms can be applied
to traverse the KG efficiently, identifying relevant information through multi-hop reasoning or by
analyzing the graph’s topology [Saxena et al., 2020].

They have been widely used in various domains, such as search engines [Wu et al., 2019a],
recommendation systems [Guo et al., 2020], and question-answering systems [Diefenbach et al.,
2018], due to their ability to represent and reason over complex relationships between entities.
However, constructing a KG from unstructured text data poses several challenges, as traditional
methods often rely on rule-based or pattern-matching techniques, which can be brittle and require
significant manual effort [Noy et al., 2019].
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1.1.4. NLP Techniques for Knowledge Graph Construction

To overcome the limitations of traditional KG construction methods, recent approaches have fo-
cused on leveraging advanced NLP techniques to automatically extract entities, relationships, and
semantic information from text [Noy et al., 2019]. In this research, we explore the use of the fol-
lowing NLP techniques to enhance the construction and traversal of Knowledge Graphs for IR in
RAG models:

Term Frequency-Inverse Document Frequency

TF-IDF [Sammut and Webb, 2010] is a widely used technique in IR and text mining that evaluates
the importance of a word or phrase within a document corpus. It combines the term frequency
(TF), which measures how frequently a term appears in a document, with the inverse document
frequency (IDF), which quantifies how rare the term is across the entire corpus [Sparck Jones,
1988].

TF is defined as: F
TF(t,d) = =% —
Zf/ed ft’,d
where f; 4 is the frequency of term ¢ in document d, and the denominator is the sum of the fre-
quencies of all terms in document d.

IDF is defined as: N
IDF(t, D) =1 _—
(t.D) Og(|{deD:ted}|>

where N is the total number of documents in the corpus D, and |{d € D : ¢ € d}| is the number of
documents in which the term ¢ appears.

The TF-IDF score is then calculated as:

TF-IDF(t,d, D) = TF(t,d) x IDF(t, D)

TF-IDF provides a numerical measure of a term’s relevance to a document, taking into account
both its local importance (within a single document) and its global importance (across the entire
corpus). This technique helps identify key terms that are both frequent in a specific document
and distinctive across the corpus, making it valuable for extracting important concepts and rela-
tionships for KG construction [Zhang and Ge, 2019].

Named Entity Recognition

NER is a fundamental NLP task that involves identifying and classifying named entities, such as
people, organizations, locations, and other proper nouns, within text [Nadeau and Sekine, 2007].
NER is crucial for extracting and understanding the real-world entities mentioned in documents,
enabling the construction of a more comprehensive and semantically rich KG [Lample et al., 2016].

It typically involves training machine learning models (such as conditional random fields or neural
networks) on labelled datasets to recognize and classify entities based on their context and linguis-
tic features. Modern NER systems often leverage pre-trained language models and fine-tuning
techniques to achieve high accuracy across different domains [Devlin et al., 2018].

Fine-tuning adapts pre-trained models like BERT to domain-specific tasks by updating their pa-
rameters with domain-specific data. This process optimizes the model’s ability to recognize and
classify entities accurately within specialized domains, enhancing its practical utility in applications
such as corporate intelligence and information extraction [Kulkarni et al., 2024].

Text Embeddings
Text embeddings are dense vector representations of text that capture semantic and contextual
information. These embeddings are typically learned using neural network-based techniques,
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such as Word2Vec [Mikolov et al., 2013] or BERT [Devlin et al., 2018], which are trained on large
text corpora to capture the distributional properties of words and their relationships.

These encoders transform discrete textual data into continuous vector spaces, where semantic
similarities can be measured using distance metrics such as cosine similarity. This allows for
efficient similarity comparisons, clustering, and other operations that are challenging with raw
text data. In the context of KG construction, embeddings can be used to identify semantically
related terms, measure the strength of relationships between entities, and even discover latent
connections not explicitly mentioned in the text [Wang et al., 2022].

1.1.5. Graph Neural Networks

GNNs are a class of deep learning models designed to operate on graph-structured data. They
have gained significant attention in recent years due to their ability to learn and reason over com-
plex relational structures, making them particularly well-suited for tasks involving KGs.

GNNs provide a powerful framework for processing and analyzing graph data. These models work
by iteratively updating node representations based on the features of their neighbouring nodes
and edges. This process allows GNNs to capture both local and global structural information,
enabling them to learn rich representations that can be used for various downstream tasks such
as node classification, link prediction, and graph classification [Wu et al., 2019b].

GCN

Graph Convolutional Networks, introduced by Kipf and Welling [Kipf and Welling, 2016], are foun-
dational architecture in the field of GNNs. GCNs generalize the operation of convolution from
grid-like data (e.g., images) to graph-structured data. The key idea behind GCNs is to define
a convolution operator on graph nodes that aggregates feature information from a node’s local
neighbourhood.

The basic GCN layer can be described as:
HY = o(D~2 AD~ 2 HOW®)

Where A = A + Iy is the adjacency matrix with added self-connections, D is the degree matrix
of A, H" is the matrix of node features at layer [, W) is a layer-specific trainable weight matrix,
and o is a non-linear activation function.

GCNs offer several advantages:
» Spectral-based approach: GCNs leverage the spectral theory of graphs, allowing them to
efficiently capture global graph properties.
» Computational efficiency: The localized first-order approximation of spectral graph con-
volutions allows for efficient computation, even on large graphs.

* Inductive capability: GCNs can generalize to unseen nodes, making them suitable for
evolving graph structures.

GraphSAGE

Graph Sample and Aggregate is a popular and effective GNN architecture introduced by [Hamilton
etal., 2017b]. Itis designed to generate embeddings for nodes in large-scale graphs by leveraging
local neighbourhood information.
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Figure 1.4: GraphSAGE architecture (Source)

As shown on 1.4, it processes graphs iteratively, sampling neighbors for each node and aggregat-
ing their information. The aggregation function, a key component, can vary based on the specific
implementation. Common choices include mean, max, or sum pooling of neighbor features. More
advanced versions may use learnable neural network layers or attention mechanisms. This func-
tion combines neighbor data into a fixed-size vector, regardless of the number of neighbors. The
algorithm then merges this aggregated information with the node’s own features, often using con-
catenation followed by a non-linear transformation. This process repeats for several iterations,
expanding each node’s effective neighbourhood. The result is a set of node representations cap-
turing both local and broader graph structure, useful for various downstream tasks. GraphSAGE'’s
flexibility in choosing the aggregation function allows it to adapt to different graph structures and
tasks.

This technique offers several key advantages:

* Inductive learning: Unlike many other GNN models, GraphSAGE can generate embed-
dings for unseen nodes, making it suitable for dynamic or evolving graphs [Hamilton et al.,
2017b].

+ Scalability: GraphSAGE uses a sampling strategy to aggregate information from a node’s
neighbourhood, allowing it to scale to large graphs where considering all neighbors would
be computationally infeasible [Ying et al., 2018].

* Flexibility: The model can incorporate various aggregation functions (e.g., mean, max,
LSTM) and can be easily integrated with different types of node features [Xu et al., 2018].

By leveraging GraphSAGE in the context of KG-based IR, we can learn rich representations of
entities and relationships that capture both textual and structural information. This can lead to
more accurate and contextually relevant retrieval results, enhancing the overall performance of
the QA system [Wang et al., 2022].

1.2. Literature Review

Recent years have seen significant advancements in addressing the challenges of MD-QA, paving
the way for more sophisticated approaches to IR and synthesis. This section explores key contri-
butions in this field, highlighting their approaches, strengths, and limitations in comparison to our
proposed KarGus system.

One notable advancement is the development of retrieval-augmented language models. Izac-
ard et al. [Izacard et al., 2022] proposed a few-shot learning approach with retrieval-augmented
language models, demonstrating improved performance on complex QA tasks without extensive
fine-tuning. This work highlights the potential of combining retrieval mechanisms with powerful lan-
guage models. However, their approach struggles with domain-specific knowledge that requires
a more nuanced understanding.


https://snap.stanford.edu/graphsage/

1.3. Motivation

In the realm of knowledge integration, Liu et al. [Yang et al., 2023] introduced a novel few-
shot learning method leveraging knowledge graph-based self-supervision. Their approach shows
promise in enhancing model performance on domain-specific tasks with limited training data, a cru-
cial consideration for specialized applications. While effective, this method does not fully capture
the complex relationships between documents in a large corpus as it is only LLM-prompted-based.

Wang et al. [Wang et al., 2023] introduced KG Prompting for MD-QA, utilizing a KG to generate
prompts for LLMs. While effective, this approach requires multiple LLM interactions per query, po-
tentially increasing computational demands and response times. In contrast, our KarGus system
employs a more efficient one-time KG traversal using a trained model.

Lee and Kang [Min et al., 2019] presented a method leveraging a graph structure to improve text
retrieval for open-domain question answering. Their approach combines structured knowledge
bases with unstructured text. However, their heavy reliance on TF-IDF for initial text representa-
tion does not fully capture semantic nuances. KarGus addresses this limitation by incorporating
more advanced NLP techniques, including semantic embeddings and named entity recognition.

Seonwoo et al. [Seonwoo et al., 2022] proposed a Virtual Knowledge Graph for zero-shot domain-
specific document retrieval. While innovative, their focus on document-level retrieval differs from
KarGus’s snippet-focused approach, which allows for more granular and precise answers.

The challenge of processing and reasoning over large-scale document collections has been ad-
dressed by Khattab et al. [Khattab et al., 2023], who proposed a "Demonstrate-Search-Predict”
framework composing retrieval and language models for knowledge-intensive NLP tasks. This ap-
proach demonstrates potential for scalable and adaptable QA systems but does not fully leverage
the structural information present in complex document sets.

Lu et al. [Lu et al., 2019] introduced QUEST, a system for answering complex questions using
multi-document evidence. While effective for certain types of complex questions, their triple-based
KG construction strategy is limited in capturing more nuanced document relationships. Our ap-
proach uses a broader range of NLP features and graph structures, potentially allowing for more
flexible and comprehensive document representation.

Other advancements in multi-modal learning, as explored by Zhang et al. [Zhang et al., 2024a],
have opened new avenues for MD-QA by integrating diverse data types. This work points to-
wards future directions where textual, visual, and potentially other modalities of information can
be seamlessly integrated for more comprehensive question answering.

The explainability of QA systems, crucial for their adoption in various settings, has seen progress
with work like that of Wiegreffe and Marasovi¢ [Wiegreffe and Marasovic, 2021]. Their review of
datasets for explainable NLP provides insights into developing more transparent and interpretable
QA systems, an aspect that KarGus aims to address through its graph-based approach.

While these advancements have significantly pushed the boundaries of MD-QA, challenges re-
main in developing systems that can effectively handle the complexities of varied environments.
These include the need for domain adaptability, handling of highly specialized information, and the
ability to reason over large, diverse document sets. By addressing these aspects, KarGus aims
to address these persistent challenges in the context of different domains for MD-QA, offering a
more comprehensive and adaptable solution to the challenges posed by complex, multi-document
information retrieval and question answering.

1.3. Motivation

The field of MD-QA [Rajpurkar et al., 2016] faces significant challenges that necessitate the devel-
opment of more effective and scalable approaches. Existing methods, particularly those relying
on traditional embedding-based indexing, struggle to capture the intricate semantic relationships
and interdependencies among entities and concepts. This limitation often results in inaccurate
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retrievals and suboptimal responses, especially in domains requiring deep contextual understand-
ing, such as corporate intelligence, legal research, and academic inquiries.

Embedding-based methods, while useful for retrieval tasks, struggle with complex questions like
the question 1.5. They often focus on matching keywords in the question with keywords in docu-
ments, potentially overlooking the deeper meaning and relationships between concepts [Arseniev-
Koehler, 2021, Bojanowski et al., 2017]. For instance, in our example, an embedding method
might "recognize” documents containing "goals” and "researchers” but miss the crucial connec-
tion to "quantum computers” and the specific intent of finding researchers’ goals in that domain.

Furthermore, as the volume and complexity of information continue to grow exponentially, these
shortcomings become increasingly pronounced. The vast and intricate nature of modern datasets
demands methods that can effectively synthesize and interpret information from multiple sources,
which traditional systems fail to accomplish. Additionally, these systems often lack the ability to
dynamically adapt to rapidly evolving knowledge, leading to outdated or incomplete responses.

The integration of domain-specific knowledge [Gururangan et al., 2020] with general language
understanding remains a critical challenge. While LLMs have made significant strides in NLP,
they often lack the capacity to ground their responses in specific, up-to-date domain knowledge.
This gap can result in inconsistencies, outdated information, or even fabricated responses when
dealing with specialized or rapidly changing fields.

Scalability is another pressing concern [Khattab et al., 2023]. The growing volume of information
necessitates approaches that can efficiently process and analyze large-scale datasets without
compromising quality or relevance. This challenge is particularly acute in enterprise environments,
where quick and accurate information retrieval from vast document repositories can significantly
impact decision-making processes.

These limitations underscore the need for a novel approach that can address the multifaceted
challenges of MD-QA. Such an approach should be capable of capturing complex semantic rela-
tionships, adapting to diverse and evolving datasets, integrating domain-specific knowledge, and
scaling efficiently to handle large volumes of information. By addressing these challenges, a new
system has the potential to transform information retrieval and question answering across a broad
spectrum of fields, enabling more reliable, insightful, and contextually relevant interactions with
complex information spaces.

What are the two major goals that researchers are currently working on in order to
improve quantum computers?

Figure 1.5: Example of a complex query

1.4. Proposed Approach

To address the limitations of existing MD-QA systems, we introduce KarGus, a novel system that
integrates cutting-edge technologies — LLMs, RAG, KGs, advanced NLP techniques, and GNNs
[Izacard et al., 2022, Opdahl and Nunavath, 2020]. Unlike previous KG-based approaches that
rely solely on entity relationships, KarGus incorporates semantic similarity, TF-IDF, and named
entity recognition to create a more comprehensive and nuanced representation of document con-
tent.

The name "KarGus” is inspired by Argus Panoptes, the all-seeing giant in Greek mythology known
for his hundred eyes, reflecting our system’s aim to "see” and process all relevant information
within a document corpus. Figure 1.6 illustrates how KarGus captures and interconnects multiple
aspects of information.
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1.4.1. Advanced NLP Integration
The first core objective of our research focuses on how we can leverage the strengths of advanced
NLP techniques to enhance MD-QA performance. This leads to our first research question:

Research Question 1: How can the unique combination of advanced NLP techniques in KarGus
enhance MD-QA performance compared to traditional single-feature approaches?

To address this question, we conduct a comprehensive analysis of NLP features and their heuris-
tics. Our approach includes:

» An ablation study to examine individual feature contributions
» A weight study to analyze collective feature effects on the KG’s construction and scoring
» An impact study of different relationship types in the KG’s traversal

This analysis aims to identify the most effective combination of NLP features and heuristic weights
for constructing and traversing the KG, optimizing its ability to capture relevant information and
relationships.

1.4.2. Heuristic Optimization

While integrating multiple NLP features can potentially improve performance, it's crucial to under-
stand their individual and collective impacts on the system’s retrieval capabilities. This leads to
our second research question:

Research Question 2: What is the impact of different NLP feature combinations, heuristic weights,
and relationship types on the system’s retrieval performance?

To address this question, we focus on:
* Fine-tuning the system’s performance by adjusting the influence of each NLP feature
» Analyzing the impact of different relationship types on information retrieval within the graph
» Optimizing the balance between feature complexity and retrieval accuracy

This approach allows us to develop a more nuanced understanding of how different aspects of
our NLP-driven KG construction and traversal affect the overall performance of KarGus.

1.4.3. GNN Integration and Performance Comparison

The integration of GNNs represents a significant advancement in our approach. By learning from
the rich structural information encoded in the KG, along with the NLP-derived features, the GNN
can discover complex patterns and relationships that may not be apparent through traditional
retrieval methods. This leads to our third research question:
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Research Question 3: How does KarGus's retrieval performance, leveraging its innovative KG
and GNN approach, compare to traditional embedding-based methods in diverse, specialized
domains? Furthermore, how do different GNN architectures, specifically GCN and GraphSAGE,
perform relative to each other in this context?

To address this question, we:

» Develop, train, and test both GCN and GraphSAGE GNNs within the KarGus system

» Use NLP techniques and their heuristic scores as node features, incorporating the graph
structure

» Compare the performance of GCN and GraphSAGE against each other and against tradi-
tional baseline methods in information retrieval

» Analyze the strengths and weaknesses of each GNN architecture in the context of our MD-
QA task

This comprehensive comparison not only positions KarGus against traditional methods but also
provides insights into the relative merits of different GNN architectures for MD-QA tasks. By
evaluating both GCN and GraphSAGE, we aim to understand which architecture is better suited for
capturing the complex relationships in our knowledge graphs and translating that understanding
into improved retrieval performance.

KarGus combines NLP-driven KG construction, heuristic-based traversal, and GNN-powered rea-
soning to transform information retrieval across diverse fields. Unlike traditional embedding meth-
ods that rely on keyword matching, KarGus analyzes conceptual connections and captures long-
range dependencies within queries. This approach enables deeper contextual understanding,
making it particularly effective for complex, multi-document queries in domains such as corporate
intelligence, legal research, and academic literature review.

Referring back to the example in Figure 1.5, KarGus can discern the relationship between "goals”
and "researchers improving quantum computers,” ensuring relevant answers to nuanced inquiries.
By addressing our research questions, KarGus aims to provide an accurate, context-aware so-
lution for information retrieval and question answering in complex environments. This has the
potential to significantly enhance how organizations extract insights from large, diverse document
sets, leading to more informed decision-making and knowledge discovery.
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2.1. Introduction
2.1.1. Background

The progress of Large Language Models
(LLMs) has transformed question-answering
systems [Chen and Zeng, 2013], enabling so-
phisticated query comprehension and coher-
ent answer generation [Lewis et al., 2020a].
Models like GPT-4 and Gemini [Chowdhery
et al., 2022] showcase remarkable capabili-
ties in human-like text generation and reason-
ing [Kamalloo et al., 2023]. However, apply-
ing LLMs to multi-document question answering
(MD-QA) across diverse domains presents sig-
nificant challenges, particularly in ensuring fac-
tual accuracy and avoiding hallucinations [Ka-
malloo et al., 2023].

To address these limitations, researchers have
developed the Retrieval-Augmented Genera-
tion (RAG) approach [Lewis et al., 2020b, Izac-
ard et al., 2022], which combines LLMs with
external knowledge retrieval. While RAG mod-
els improve factual grounding, current meth-
ods often rely on embedding vector databases
[Reimers and Gurevych, 2019], which strug-
gle to capture complex semantic relationships
in large-scale information spaces [Arseniev-
Koehler, 2021, Bojanowski et al., 2017].

Existing MD-QA systems, typically based on
simple embedding techniques or keyword
matching, often fail to capture the nuanced re-
lationships and contextual information crucial
in specialized domains. This limitation under-
scores the need for more advanced approaches
that can effectively handle complex, domain-
specific queries across various fields.

Recent advancements in QA systems have
highlighted persistent challenges in scalabil-
ity and integration, particularly when deal-
ing with complex, multi-document scenarios
[Zhang et al., 2024b]. Existing research strug-
gles to efficiently integrate advanced NLP tech-
niques within retrieval systems that can adapt
to vast and varied datasets across diverse do-
mains such as legal research, academic in-
quiries, and specialized industries [Gupta, 2011,
Bowman et al., 2015, Liu et al., 2018, Zhang
et al.,, 2019, Liu et al., 2020, Arbaaeen and
Shah, 2021].

Knowledge Graphs (KGs) offer a promising so-
lution to these challenges [NASTASE et al.,
2015]. By capturing semantic relationships
and interdependencies between concepts, KGs
enable more accurate and context-aware in-
formation retrieval [Lin et al., 2021, Probierz
et al.,, 2023]. The construction and traversal
of KGs can be further enhanced through ad-
vanced NLP techniques such as named en-
tity recognition (NER), term frequency-inverse
document frequency (TF-IDF), and text embed-
dings [Marwan Omar, 2022, Schneider et al.,
2022]. These techniques allow for the extrac-
tion of meaningful entities, relationships, and se-
mantic information from unstructured text, cre-
ating a more robust and scalable approach for
MD-QA.

The emergence of Graph Neural Networks
(GNNs) has opened up new possibilities for
processing and reasoning over KGs [Hamilton
etal., 2017b, Wu et al., 2019b]. GNNs can cap-
ture complex relationships and dependencies
within KGs, potentially uncovering relevant in-
formation that may be several hops away from
the initial query nodes. These graph-based ap-
proaches have shown promise in improving per-
formance in IR and question-answering tasks
[Lin et al., 2021, NASTASE et al., 2015, Pro-
bierz et al., 2023, Schneider et al., 2022].

Despite these advancements, there remains a
need for a unified approach that effectively com-
bines these technologies to address the mul-
tifaceted challenges of MD-QA across diverse
domains. This research aims to fill this gap by
developing a novel system that integrates ad-
vanced NLP techniques, KG construction, and
GNN-based reasoning to provide more accu-
rate, context-aware, and scalable solutions for
complex information retrieval tasks.

12
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Figure 2.1: nodes based on similarity using KNN. Then GNN learns node features (NLP scores), edge types
(semantic/lexical similarities), and graph structure. Finally, for new queries, GNN leverages these
learned features to traverse the KG, producing a refined KG for accurate IR.

2.1.2. Proposed Approach

To address the limitations of existing MD-QA
methods in handling complex, domain-specific
queries and capturing nuanced relationships
within large document sets, we propose Kar-
Gus, a novel system integrating advanced
NLP techniques, dynamic KG construction, and
GNNs for enhanced MD-QA across diverse do-
mains [Liu et al., 2022].

KarGus’s architecture consists of two primary
modules: Graph Construction and Graph
Traversal. The Graph Construction module
dynamically builds a KG from multiple docu-
ments using advanced NLP techniques, cap-
turing the interconnected nature of information
across documents as seen in Figure 3.5. The
Graph Traversal module employs a GNN to nav-
igate this KG and retrieve relevant information
based on complex queries, enabling the system
to uncover information several hops away from
initial query nodes.
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Figure 2.2: Subgraph of the KarGus Knowledge Graph

KarGus contributes to the field of MD-QA
through several key innovations:

» A multi-faceted NLP approach combining
semantic similarity, TF-IDF, and named
entity recognition for comprehensive doc-
ument representation.

» Dynamic KG construction that captures
both semantic and lexical relationships
across multiple documents.

* GNN-based traversal for effective naviga-
tion of complex information structures.

+ A scalable and adaptable architecture bal-
ancing computational efficiency with re-
trieval accuracy.

This approach allows KarGus to handle queries
requiring deep contextual understanding, going
beyond simple keyword matching. By leverag-
ing the rich structure of the knowledge graph,
the system improves the relevance and se-
mantic connectivity of retrieved information, ad-
dressing a key challenge in complex MD-QA
tasks.

Our experimental results demonstrate that Kar-
Gus outperforms traditional embedding-based
methods [Arseniev-Koehler, 2021, Bojanowski
etal., 2017], particularly in capturing both broad
contextual information and specific entity rela-
tionships. This makes it well-suited for domains
requiring nuanced understanding of complex
document sets, such as corporate intelligence.

While this article’s example is focused on corpo-
rate intelligence, KarGus’s design allows for po-
tential adaptation to other domains like legal re-
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search and academic literature review. Future
work includes exploring the integration of Kar-
Gus within a RAG system, potentially enabling
even more powerful and context-aware informa-
tion retrieval and generation capabilities.

2.1.3. Related work

Recent research has made significant strides in
integrating KGs into MD-QA systems. Wang et
al. [Wang et al., 2023] introduced KG Prompt-
ing, which uses KGs to generate prompts for
LLMs. While effective, this approach requires
multiple LLM interactions per query, potentially
increasing computational demands. In contrast,
using a trained agent, KarGus employs a more
efficient one-time KG traversal.

Lee and Kang [Min et al., 2019] combined struc-
tured knowledge bases with unstructured text
for open-domain question answering. However,
their heavy reliance on TF-IDF for initial text rep-
resentation may not fully capture semantic nu-
ances. KarGus addresses this limitation by in-
corporating more advanced NLP techniques, in-
cluding semantic embeddings and named entity
recognition.

Seonwoo et al. [Seonwoo et al., 2022] pro-
posed a Virtual Knowledge Graph (VKG) for
zero-shot domain-specific document retrieval.
While innovative, their focus on document-
level retrieval differs from KarGus’s segment-
focused approach, which allows for more gran-
ular and precise answers.

Other notable works include Xu and Wallace’s
[Xu and Lapata, 2020] KG-based approach for
query-focused multi-document summarization,
Lu et al.’s [Lu et al., 2019] QUEST system for
complex question answering, and Kang and
Kim’s [Kang et al., 2023] method for maintain-
ing knowledge consistency in open-domain di-
alogues. While these approaches have ad-
vanced the field, they often focus on specific
subtasks or domains.

Table 2.1 provides a comparative overview of
KarGus and other the recent approaches in MD-
QA mentioned in this section. KarGus builds
upon prior works by uniquely integrating multi-
ple NLP features in graph construction, utilizing
a GNN for traversal, and focusing on segment-
level retrieval. This approach allows for more
precise and contextually relevant IR. By balanc-
ing broad context with specificity, KarGus can

handle complex, information-dense documents
and provide more accurate answers across var-
ious domains. Its domain adaptability further
sets it apart from existing solutions, pushing the
boundaries of MD-QA beyond previous meth-
ods.

2.2. Methodology

This section details the methodological ap-
proach employed in the KarGus system, focus-
ing on integrating advanced NLP techniques
with KG construction and traversal methods.
Figure 2.1 illustrates the overall architecture
of the KarGus system, comprising three main
components: NLP Feature Extraction, Knowl-
edge Graph Construction, and GNN-based Re-
trieval. We begin by describing the NLP heuris-
tics utilized to capture semantic and lexical re-
lationships within the document corpus. Subse-
quently, we explain the process of KG construc-
tion and the GNN-based retrieval mechanism.

2.2.1. NLP Heuristics

To effectively capture semantic and lexical re-
lationships within and between documents, we
employ three complementary NLP heuristics:
Text Embedding, TF-IDF, and NER scores.
These heuristics were selected based on their
proven effectiveness in various NLP tasks [Mar-
wan Omar, 2022] and their ability to capture dif-
ferent aspects of textual similarity. The Figure
3.1 in the Appendix section illustrates the inte-
gration of these features in our system.

For both chunk-chunk (when constructing the
dynamic KG) and query-chunk (when receiving
a query) comparisons, we utilize a unified set of
comparison functions:

Text Embedding Comparison

embed_compare(z,y) = cos(embed(x), embed(y))

2.1)

We employ the OpenAl "Ada 002" Text En-
coder model to generate dense vector represen-
tations for both document chunks and queries.
This model was chosen for its state-of-the-
art performance in capturing nuanced contex-
tual information [Reimers and Gurevych, 2019].
The embedding process transforms text into a
15636-dimensional vector space, where seman-


https://platform.openai.com/docs/guides/embeddings
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2.2. Methodology
Approach Multi-NLP  Dynamic KG GNN Segment-level Domain
Features  Construction Integration Retrieval Adaptability
KarGus (Ours) v v v v High
[Wang et al., 2023] v Medium
[Min et al., 2019] Low
[Seonwoo et al., 2022] v v High
[Xu and Lapata, 2020] v Medium
[Lu et al., 2019] v v Low

Table 2.1: Comparison of KarGus with Related Works

tic similarities can be efficiently computed using
cosine similarity.

This approach allows us to identify contextually
similar content that may not share exact lex-
ical matches, enabling the system to capture
nuanced relationships between different parts
of a document or between a query and docu-
ment chunks, enabled by the Equation 2.1. The
use of pre-trained embeddings also provides a
level of transfer learning, allowing our system
to leverage semantic knowledge gained from
large-scale language modeling.

Doc Chunkmg

TF-IDF Comparison
|I|I|I|II|

Figure 2.3: TF-IDF pipeline

Corpus of Docs

!

TF*IDF

Our TF-IDF implementation, illustrated in Figure
2.3 and enabled by Equation 2.4, balances the
local importance of a term within a document
(TF) with its global importance across the cor-
pus (IDF) [Sammut and Webb, 2010].

(Ko NIy |

tfidf, (v,y) = - ———— L —
' max(|K,|, |K,])

(2.2)

tfidfy (z, y) = (1 — ) - cos(tfidf(z), tfidf(y)) (2.3)

tiidf_compare(z, y) = tfidf, (x, y) + tfidfs(z, y)
(2.4)

The process involves two stages of vectoriza-
tion:

* For each document, we compute an "over-
all vectorizer” based on the full corpus.
This vectorizer captures the global impor-
tance of terms across all documents.

» We create a "per-doc vectorizer” for each
chunk within the document. This local
vectorizer considers the top 20 keywords
per chunk, optimizing computational effi-
ciency while maintaining comprehensive
representation.

NER Comparison

NER is employed to identify and leverage key
entities within the text. To enhance perfor-
mance for our specific task, we fine-tuned a
general SpaCy NER model. This fine-tuning
process, showed in Figure 2.4, involved gen-
erating NER pairs (entitY:label) using prompt
engineering with the OpenAl GPT-3.5 Turbo
model, followed by training the existing SpaCy
open-source model on these generated pairs.
This fine-tuning was necessary to adapt the
model to the specific entity types and naming
conventions present in our corpus, particularly
for domain-specific terms that may not be well-
represented in general-purpose NER models.

We utilize this fine-tuned SpaCy NER model
and compare to other chunks or queries us-
ing Equation 2.9. We compute the named enti-
ties and generate Word2Vec (W2V) vectors for
each identified entity. The choice of W2V for
entity representation was based on its ability to
capture semantic relationships between entities
in a computationally efficient manner [Mikolov
etal., 2013].

|Ey N Ey|
max(|Ez|, | Ey|)

sim(ey, Ey) = maé( cos(W2V(e;), W2V (e,))
ey€Lly
(2.6)

nery(z,y) = 8- (2.5)
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Figure 2.4: NER Model Fine-tuning Process

Ei‘ Y sim(e,, B,)  (2.7)

‘ e, B,

neryy(z,y) = (1 — B) -nery(z,y)  (2.8)

ner_compare(z,y) = nery(z,y) + nerap(x, y)
(2.9)

nery, (z,y) =

Overall

In these comparison equations, x and y repre-
sent either two chunks or a query and a chunk,
as clarified in Table 2.2. K, and K, are the key-
word sets, I, and £, are the entity sets, and «
and g are the weighting factors (empirically set
to initially 0.5). This unified approach allows for
consistent comparison across different textual
units while capturing multiple dimensions of sim-
ilarity. Examples of comparing two chunks in
each NLP feature are displayed in Figures 3.2,
3.3 and 3.4 in the Appendix.

The distinction in TF-IDF vectorizers, observed
in Figure 2.3 between chunk-chunk and query-
chunk comparisons is crucial for both scala-
bility and representation balance. For chunk-
chunk comparisons within a document, we use
a document-specific vectorizer, allowing for effi-
cient updates when new documents are added
to the corpus without requiring recomputation of
existing comparisons. In contrast, query-chunk
comparisons utilize an overall corpus vectorizer,
providing a more comprehensive lexical repre-
sentation across the entire document set. This
approach strikes a balance between computa-
tional efficiency in dynamic KG construction and
the need for broader semantic/lexical represen-
tation when processing queries, ensuring that
our system remains scalable while maintaining
robust retrieval capabilities.

This multi-faceted process enables KarGus to
capture both broad contextual information and
specific entity relationships, crucial for handling
complex queries in specialized domains like
corporate intelligence. By combining semantic

understanding with lexical matching and entity
recognition, our system can effectively process
a wide range of query types, from broad topical
inquiries to specific entity-focused questions,
while maintaining consistency between docu-
ment analysis and query processing methodolo-
gies.

2.2.2. Knowledge Graph Construc-
tion

The construction of the KG in the KarGus sys-
tem leverages the NLP heuristics described
above to create a rich, interconnected represen-
tation of the document corpus [Ye et al., 2023].
The process involves two main steps: docu-
ment processing and graph connectivity.

Documents Processing:

We employ the Langchain tool for text chunking,
configured to segment documents into chunks
of 512 tokens with an overlap of 64 tokens, us-
ing a RecursiveCharacterTextSplitter.

The chunk size of 512 tokens aligns with the typ-
ical input size of many transformer-based mod-
els, facilitating potential future integrations. The
overlap of 64 tokens helps maintain context con-
tinuity between chunks, reducing the risk of split-
ting important semantic units. Each resulting
node, representing a document chunk, is en-
riched with the NLP features described earlier:
TF-IDF scores, NER entities and their embed-
dings, and text embedding similarity scores.

Graph Connectivity:

To establish connections between nodes, we uti-
lize the K-nearest neighbors (KNN) algorithm
[Peterson, 2009], leveraging the computed NLP
features. The connectivity process focuses on
linking nodes within the same document, em-
ploying a refined set of criteria based on our
NLP heuristics.

The choice of KNN was motivated by its abil-


https://www.langchain.com/
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ity to create a sparse yet meaningful graph
structure, balancing connectivity with computa-
tional efficiency. Alternative methods such as
threshold-based connectivity or fully-connected
graphs were considered but found to be either
too restrictive or computationally prohibitive for
large document sets.

Lexical features are evaluated using:

» The length of common TF-IDF keywords
 Cosine similarity of TF-IDF vectors
» Commonality of NER entities

* Average cosine similarities of their

Word2Vec matrices

Semantic features are assessed through the
cosine similarity of text embedding vectors, en-
abling the connection of contextually similar
nodes that may differ lexically.

The choice of k£ = 5 for the number of nearest
neighbors was determined empirically, offering
an optimal balance between connectivity and
sparsity. As illustrated in our experiments in Fig-
ure 3.6 of the Appendix, this configuration main-
tains essential semantic links without excessive
density, which could otherwise impede perfor-
mance with irrelevant connections [Lin et al.,
2021].

2.2.3. Features Analysis

To optimize the retrieval accuracy of the Kar-
Gus system, a comprehensive feature analysis
is conducted. This analysis is essential to un-
derstand the individual and collective impact of
various NLP features and heuristic weights on
the system’s performance. Our methodology
consists of several stages, described below:

Evaluation of NLP Features: Initially, we fo-
cus on evaluating the performance of differ-
ent combinations of the NLP features. This
step involves testing each feature individually
as well as in all possible combinations. To
maintain consistency across tests, equal heuris-

tic weights are applied to each feature during
this phase. The aim is to identify which fea-
tures contribute most significantly to accurate
retrieval outcomes and how they interact when
combined.

Assessment of Heuristic Weights: Upon de-
termining the effective combinations of NLP
features, we proceed to test varying heuristic
weights for these combinations. The objective
here is to ascertain the most impactful weights,
which will inform the configuration of our GNN.
Different sets of weights are applied to evalu-
ate how they influence the retrieval efficacy of
the system. This process involves a meticulous
analysis to determine the optimal weight distri-
bution that maximizes the relevance and accu-
racy of the retrieved documents.

Analysis of Pathways to Ground Truth In
instances where the ground truth node does
not appear among the initial set of retrieved
nodes, we compute the shortest path from the
starting nodes to the ground truth node. Dur-
ing this traversal, we track the types of edges
encountered—categorized into semantic, tf-idf
lexical, and NER lexical similarity edges. This
tracking helps us to identify which types of con-
nections are most frequently utilized in reach-
ing the correct answers. The analysis of these
pathways provides critical insights into the rel-
ative importance of different edge types in the
graph structure, guiding further refinements in
the graph’s construction and the strategic appli-
cation of heuristic weights.

To implement this analysis, we employ a se-
ries of experiments where each configuration of
features and weights is tested against a bench-
mark dataset. The performance metrics from
these experiments are collected and analyzed
to derive statistical significance and practical
relevance. The findings from this comprehen-
sive feature analysis will directly inform the en-
hancement strategies for the KarGus system,
ensuring that our system not only performs effi-

Score Type Chunk-Chunk Comparison Query-Chunk Comparison
Semantic embed_compare(cy, ¢3) embed_compare(g, ¢)
TF-IDF tfidf_comparey,.(c1, c2)* tfidf_compare qpus (4, €)**
NER ner_compare(cy, ¢o) ner_compare(q, c)

Comparison Functions for Chunk-Chunk and Query-Chunk, where ¢; and ¢z are document
Table 2.2: chunks, ¢ is the query, c is a document chunk, * means using per-document vectorizer, and

** means using overall corpus vectorizer.
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ciently but also scales effectively across diverse
datasets. It also contributes substantially to the
refinement of our retrieval system, setting a ro-
bust foundation for the subsequent integration
and optimization of the GNN within the KarGus
framework.

2.2.4. Graph Neural Network

To enhance the retrieval performance of our
system, we implemented two GNN architec-
tures: Graph SAmple and aggreGatE (Graph-
SAGE) and Graph Convolutional Network
(GCN). These approaches leverage both the
node and edge features derived from our NLP
heuristics and the structural information en-
coded in our KG.

GraphSAGE: Graph SAmple and aggreGatE is
our primary GNN model [Hamilton et al., 2017b].
It is an inductive framework for node embed-
ding that aggregates feature information from a
node’s local neighborhood. We chose Graph-
SAGE for several key reasons:

* Inductive learning capability, crucial for
our dynamic KG where new document
chunks may be added over time.

+ Scalability to large graphs, supporting our
goal of handling extensive document cor-
pora efficiently.

* Flexibility in aggregation functions, allow-
ing us to effectively incorporate our di-
verse NLP features (TF-IDF, NER, and
text embeddings).

* Neighborhood aggregation approach,
which aligns well with our graph construc-
tion method based on semantic and lexi-
cal similarities.

GCN: As a baseline comparison, we also im-
plement a Graph Convolutional Network [Kipf
and Welling, 2017]. GCN is afundamental GNN
architecture that allows us to assess the trade-
offs between the more advanced GraphSAGE
model and a simpler GNN architecture in the
context of our MD-QA task.

Model Implementation and Training

In implementing our GNN models, we prioritized
computational efficiency and scalability. We
used NLP feature scores (TF-IDF, NER, and

semantic similarity) as node features, avoid-
ing high-dimensional text embedding vectors to
reduce processing time and memory require-
ments. This decision aligns with research
by [Xu et al.,, 2018], who demonstrated that
carefully selected low-dimensional features can
yield comparable performance to full embed-
dings in graph-based NLP tasks.

Using the parameters described in 3.7.4, our
training process for both GNN models involves
several steps:

1. Dataset Preparation: We utilized a
dataset of 200 question-answer pairs,
with 150 pairs designated for training and
50 for testing.

2. Feature Computation: Heuristic scores
comparing each question to all KG nodes
formed the initial feature set, capturing rel-
evance across multiple dimensions.

3. Score Assignment:
novel scoring strategy:

We employed a

» Ground truth nodes received a high
score (1.0), establishing clear tar-
gets for the model.

» Other nodes were scored based on
heuristic scores and weights from
our feature analysis.

* Neighborhood nodes had enhanced
scores, decreasing with graph dis-
tance from the ground truth. This ap-
proach creates a relevance gradient
that helps the model learn both con-
tent and structural importance.

4. Model Training: GraphSAGE and GCN
models were trained using node fea-
tures (heuristic scores), edge connections
(the structure of the KG), edge features’
(type and weight), and target importance
scores. This comprehensive input allows
the models to learn complex patterns in
the graph structure and content.

5. Evaluation: We used the test set to
assess model performance, focusing on
ground truth node ranking and the rele-
vance of top-k retrieved nodes. This eval-
uation approach is consistent with stan-
dard practices in information retrieval re-
search.

"The edge features include the type (between TFIDF_LEXICAL_SIMILARITY, NE_ENTITIES_LEXICAL_SIMILARITY
and SEMANTIC_SIMILARITY) and the weight (between 0 and 1 representing how similar the two nodes are).
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"What are the two major
goals that researchers are
currently working on in order
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computers?”
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Figure 2.5: GNN Retriever

By integrating GNN models with our NLP-
driven KG, we aimed to achieve more nuanced,
context-aware retrieval, potentially uncovering
relevant information several hops away from ini-
tial query nodes.

2.3. Evaluation

The evaluation of the KarGus system focuses
on assessing the performance of our MD-QA re-
triever [Kamalloo et al., 2023]. To achieve this,
we utilize a robust methodology that involves
generating question-ground truth node pairs us-
ing a pre-trained LLM. This setup allows us to
objectively measure the effectiveness of our re-
triever models in returning contextually relevant
documents.

2.3.1. Generation of Evaluation Data:

Using the capabilities of the OpenAl GPT-3.5
Turbo LLM coupled with Llamalndex, we gen-
erate diverse pairs of questions and their cor-
responding ground truth nodes. These pairs
serve as a benchmark to test the performance
of our retrieval methods. The generation pro-
cess ensures that each question is associated
with the most contextually appropriate segment
within our corpus of documents, hence estab-
lishing a clear target for evaluation purposes.

2.3.2. Metrics for Comparison:

During the NLP Feature Analysis experimenta-
tion 2.4.3, to compare the performance of var-
ious retrievers, we employ the MLflow library,
which provides a suite of evaluation metrics.
Each retriever is tested against the generated
dataset, and the following metrics are calcu-
lated for comprehensive assessment:

* Precision at k (P@k): Measures the pro-
portion of retrieved documents among the
top k that is the correct ground truth node,
indicating the accuracy of the retriever in
retrieving relevant documents.

* Recall at k (R@Kk): Indicates whether the
ground truth node appears within the top
k retrieved documents, essentially check-
ing the retriever’s success in finding the
relevant document.

Normalized Discounted Cumulative
Gain at k (NDCG@k): Evaluates the
ranking quality by giving higher scores
to cases where the ground truth node ap-
pears higher in the top k results, reward-
ing effective ranking.

These metrics offer a comprehensive evalua-
tion of retriever performance, encompassing
both the accuracy and ranking quality of the re-
trieved results.

2.3.3. Comparative Analysis:

For the Performance Comparison tests 2.4.5,
we selected recall as our primary evaluation
metric due to the nature of our retrieval task:
each query has exactly one relevant document.
Recall atk (where k is 5 or 10) directly measures
our system’s ability to find this single relevant
document within the top k results, providing a
clear and interpretable measure of retrieval ef-
fectiveness.

Our analysis encompasses three key dimen-
sions:

* NLP Feature Impact: We tested the in-
dividual and collective impact of different
NLP features and heuristic weights on re-
trieval effectiveness. We compared our
NLP-driven retrievers to a baseline em-
bedding index method using Facebook
Al Similarity Search (FAISS) with Ope-
nAl’'s Text Encoder "text-embedding-ada-
002" encoder.

Heuristic Performance: We evaluated
the performance of the top-ranked nodes,
as determined by our initial heuristic
scores, against the baseline.


https://docs.llamaindex.ai/en/stable/examples/evaluation/retrieval/retriever_eval/
https://mlflow.org/docs/latest/llms/rag/notebooks/retriever-evaluation-tutorial.html
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
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* GNN Performance: We assessed the
performance of our trained Graph Neu-
ral Network models (GraphSAGE and
GCN) against both the baseline and our
heuristic-based approach, providing in-
sights into the effectiveness of graph-
based learning in our retrieval task.

This multi-faceted approach allows us to com-
prehensively evaluate our system’s perfor-
mance, comparing different components of our
method against established baselines and each
other. It provides a thorough assessment of the
strengths and limitations of our NLP-driven and
graph-based retrieval methods in the context of
our specific MD-QA task.

2.4. Results

This section describes the experimental setup
used to validate the effectiveness of the KarGus
system in the corporate intelligence domain. It
encompasses the data used, the analysis of
NLP features, and performance comparisons of
different system components.

2.4.1. Data Collection

360° Value for Our People,

Planet and Communities

One Chunk

Figure 2.6: Example of a chunk

The dataset comprises a selection of corpo-
rate documents, including annual reports and
project reports from Accenture and its competi-
tors. The dataset totals 30 documents and 1810
pages, segmented into 10853 text chunks? us-
ing the Langchain tool with a chunk size of 512
tokens and an overlap of 64 tokens. An exam-
ple of a chunk split is shown in the Figure 2.6.
For the construction of the KG, we chose a k-
value of 5 for the KNN algorithm as described
in section 2.2.2.

21 token = 0.75 words

Each experiment was conducted using 200
questions, with each question’s answer resid-
ing in a randomly selected chunk from the en-
tire corpus. This approach ensures a diverse
and comprehensive evaluation of the system'’s
retrieval capabilities.

2.4.2. Knowledge Graph Analysis

The analysis of the 30 subgraphs revealed a
structure balancing local clustering with global
connectivity. The KG demonstrated an average
modularity score of 0.4372, indicating moder-
ately well-defined community structures. Most
documents exhibited a moderate number of
edges and nodes, with two notable outliers (Fig-
ures 3.7a, 3.7b). The community size distribu-
tion skewed towards small to moderate-sized
clusters, with modularity values ranging widely
across subgraphs (Figures 3.8a, 3.8b).

The graph’s connectivity is characterized by an
average clustering coefficient of 0.28 and a
mean transitivity of 0.23 (Figures 3.9a, 3.10a).
These metrics, combined with relatively short
average path lengths, suggest a network struc-
ture conducive to efficient information traversal.
A slight positive assortativity (mean 0.07, Figure
3.10b) indicates a tendency for nodes to con-
nect with others of similar degree, potentially en-
hancing network resilience.

The degree distribution approximated a normal
pattern with a peak around 20, notably featur-
ing some highly connected hub nodes (Figure
3.11a). Analysis of centrality measures — de-
gree, PageRank, and betweenness — further
highlighted the presence of influential nodes
within the graph structure (Figures 3.12a, 3.12b,
3.12c¢). For instance, the degree centrality dis-
tribution revealed a subset of nodes with signif-
icantly higher connectivity, crucial for informa-
tion flow. These characteristics collectively de-
scribe a graph structure that balances local clus-
tering with global connectivity, potentially sup-
porting efficient information retrieval operations.

2.4.3. NLP Features Analysis

The impact of different NLP feature combina-
tions (TF-IDF keywords, NER entities, and se-
mantic similarity) and heuristic weights on re-
trieval performance were analyzed. This anal-
ysis involved the following steps:
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Feature Combination Impact

We evaluated the performance of individual
NLP features and their combinations, compar-
ing them against a baseline using balanced
heuristic weights (1/3 each for semantic, key-
word, and entity features). Figure 2.8a illus-
trates the full KG performance, while Figure
2.8b shows the baseline performance.

Metrics Comparison at Different Ks of KG _all Metrics Comparison at Different Ks of baseline

mmmmm

sssssssssss

(a) Full KG Performance (b) Baseline Performance

Figure 2.7: Comparison of Full KG Balanced Heuristic
Weights and Baseline Performance

The key findings of this experiments include:

» The baseline outperformed our KG’s initial
starting nodes, as expected.

» Semantic similarity emerged as the most
crucial component, with its performance
matching the baseline when used alone.
Higher k values improved recall and
NDCG but decreased precision.

» Entity-based retrieval performed signifi-
cantly lower, likely due to the specificity
of entity information. However, it showed
potential when combined with other fea-
tures.

» Keyword-based retrieval, while slightly
lower performing than semantic similarity,
demonstrated good potential. The combi-
nation of semantic and keyword features
notably improved retrieval performance.

» As k increased, recall and NDCG im-
proved for keyword-based retrieval, high-
lighting the importance of keyword rele-
vance in capturing contextual appropriate-
ness.

The balanced heuristic weights revealed that
while semantic similarity was the most impor-
tant feature, keywords showed good potential,
and entities added value in combination with
others. These insights guided our subsequent
phase of optimizing heuristic weights to further
improve retrieval performance.

Heuristic Weights

We systematically tested various heuristic
weight configurations to optimize the perfor-
mance of our KG retrieval system. Figure 2.8a
shows the performance of the optimal configu-
ration, while Figure 2.8b presents the baseline
performance for comparison.

Metrics Comparison at Different Ks of KG _all

Metrics Comparison at Different Ks of baseline

(a) 0.75 Semantic, 0.2

Keyword, 0.05 Entity (b) Baseline Performance

Figure 2.8: Comparison KG Optimal Heuristic Weights
and Baseline Performance

Here follow the major outcomes of this analysis:

* Increasing the weight of the semantic
heuristic markedly improved performance,
capturing crucial contextual and concep-
tual relationships between nodes.

» Keyword relevance proved complemen-
tary to semantic features. Configurations
with keyword weights of 0.2-0.3 improved
both precision and recall.

+ Entity-based retrieval consistently
showed lower performance. A small en-
tity weight (0.05) was found to be optimal,
likely due to the specific and sparse na-
ture of entity information.

» The optimal configuration (0.75 semantic,
0.2 keyword, 0.05 entity) allowed our KG’s
starting nodes to surpass the baseline in
top-k evaluations.

This analysis demonstrates the effectiveness
of our weighted approach in balancing differ-
ent features for improved retrieval performance.
Future work could explore more advanced op-
timization techniques, such as genetic algo-
rithms, to fine-tune these weights further across
various datasets and queries.

Following this, we conducted a pathway anal-
ysis to examine graph relationships and their
impact on identifying ground truth nodes not
among the starting nodes, providing additional
insights into our KG’s structure and retrieval ca-
pabilities.
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Pathway Analysis

The pathway analysis provides crucial insights
into our system’s retrieval mechanisms, particu-
larly when the ground truth node is not among
the initial results. Figure 2.9 illustrates the dis-
tribution of edge types in successful retrievals.

Edge type

Figure 2.9: Edge Types

The main results of this experimentation are:

» TF-IDF lexical similarity edges were most
frequent, followed by the embedding se-
mantic similarity and entities lexical simi-
larity, highlighting the importance of lexi-
cal features in retrieval.

* The average shortest path to the ground
truth node was 2.04, demonstrating effi-
cient graph traversal.

* Ground truth nodes were present in the
starting nodes 87% of the time (Figure
3.14a), indicating high initial retrieval ac-
curacy.

* In 97% of cases, correct starting nodes
were in the right document (Figure 3.14b),
significantly contributing to system effec-
tiveness.

These results underscore the robustness of
our approach, showing that the system excels
at identifying relevant nodes either directly or
through efficient graph traversal. The combina-
tion of semantic and lexical features provides a
comprehensive retrieval strategy, with TF-IDF
lexical similarities playing a particularly strong
role. This analysis offers valuable insights for
refining graph construction, traversal heuristics,
and feature weighting, demonstrating the sys-
tem’s capability in handling various retrieval sce-
narios effectively.

2.4.4. Graph Neural Network
This experiment evaluates the performance of
two GNN models: GCN and GraphSAGE. The

models were tested across various dataset
sizes, with and without edge features.

Training

Their performances were evaluated across
dataset sizes ranging from 100 to 2,170,600
nodes, with data splitinto 60% training, 20% val-
idation, and 20% testing. Figure 2.10 illustrates
the training results for both models.

Test MSE vs Dataset Size for GCN and SAGE Models

Figure 2.10: SAGE and GCN Training results

Both GCN and GraphSAGE demonstrated im-
proved performance with increasing dataset
size, as evidenced by decreasing Mean
Squared Error (MSE) values. Notably, GCN'’s
Test MSE decreased from 0.0401 to 0.0004 as
the dataset grew, indicating enhanced learn-
ing and generalization capabilities with larger
datasets.

For datasets below 10,000 nodes, GraphSAGE
showed comparable or slightly superior perfor-
mance to GCN, likely due to its inductive learn-
ing capability and flexible aggregation functions.
However, as the dataset size exceeded 10,000
nodes, GCN consistently outperformed Graph-
SAGE. This performance inversion suggests
that GCN’s spectral graph convolution opera-
tion becomes more effective at capturing global
graph properties with increased data availabil-
ity.

The impact of edge features varied between
models. GraphSAGE consistently benefited
from edge feature inclusion across all dataset
sizes, while GCN showed minimal impact on
smaller datasets but slight advantages on larger
ones. This difference highlights the models’ dis-
tinct approaches to leveraging structural infor-
mation in the graph.
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These findings underscore the importance of
considering dataset size and structural char-
acteristics when choosing between GCN and
SAGE for graph-based learning tasks in infor-
mation retrieval contexts.

Testing

For the testing phase, we used the full dataset
with 60% (120 questions) used for training and
tested on the remaining 40% (remaining 80
questions). The GNN models were evaluated
using recall at k=5 and k=10, which directly
measures the system’s ability to find the single
relevant document within the top k results. The
results are summarized in Table 2.3.

Model Edge F? R@5 R@10
GraphSAGE False 0.022 0.037
GraphSAGE True 0.004 0.003
GCN False  0.002 0.001
GCN True 0.002 0.001

Table 2.3: GNN Model Test Performance (Recall@k),
where Edge F? means w/ or w/o the edge features

They indicate that the GNN models, despite
showing promising trends during training, strug-
gle to achieve high recall scores in the testing
phase. The GraphSAGE model without edge
features performed the best among the GNN
configurations, aligning with our initial hypoth-
esis that GraphSAGE would be more effective
for our task. However, the overall performance
is significantly lower than expected, suggest-
ing that further optimization and refinement of
the GNN approach is necessary for effective re-
trieval in our MD-QA context.

2.4.5. Performance Comparison

Table 2.4 presents a comprehensive compari-
son of different retriever configurations, includ-
ing the baseline, optimized KG-based retriev-
ers, and GNN models. The results reveal sev-
eral key insights into the performance of our MD-
QA system in corporate intelligence settings.

The baseline and semantic-only KG ap-
proaches demonstrated identical performance
(Recall@5 = 0.823, Recall@10 = 0.865), vali-
dating our KG-based semantic similarity imple-
mentation. However, NER-only retrieval per-
formed poorly (Recall@5 = 0.105), indicating
its insufficiency as a standalone feature for ac-
curate retrieval in this context.

Combinations of features in the KG-based ap-
proach generally outperformed individual fea-
tures, highlighting the benefits of our multi-
feature methodology. The optimized KG-based
configuration (0.75 Semantic, 0.2 TFIDF, 0.05
NER) achieved the highest Recall@5 (0.850),
surpassing the baseline. This result under-
scores the importance of nuanced feature inte-
gration and weight optimization in complex re-
trieval tasks.

Notably, the GNN models (GraphSAGE and
GCN) significantly underperformed compared
to both the baseline and the optimized KG-
based approaches, with the best GNN con-
figuration (GraphSAGE without edge features)
achieving only a Recall@5 of 0.022. This sub-
stantial performance gap suggests that while
GNNs show potential, they require consider-
able further development to be competitive in
this specific MD-QA task.

KarGus demonstrates superior performance in
handling complex queries that require synthe-
sizing information across multiple documents,
a common challenge in corporate intelligence.
The system’s ability to outperform the base-
line embedding method (Recall@5 of 0.850 vs
0.823) showcases its effectiveness in captur-
ing long-range dependencies and contextual
relationships often missed by traditional ap-
proaches.

These findings collectively highlight the effec-
tiveness of our optimized KG-based approach
and underscore the challenges in applying
GNNs to this specific retrieval task. The results
point to promising areas for future research, in-
cluding further optimization of KG-based meth-
ods and investigation into specialized GNN ar-
chitectures for corporate intelligence applica-
tions.

2.5. Discussion

The development and evaluation of KarGus
have revealed significant insights into the chal-
lenges and opportunities in MD-QA for corpo-
rate intelligence. Our analysis, including the re-
cent GNN experiments, has uncovered several
key areas that warrant further discussion.

The success of KarGus in outperforming tra-
ditional methods, particularly in handling com-
plex corporate queries, represents a significant
step forward in MD-QA for specialized domains.
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Retriever Recall@5 Recall@10
Baseline 0.823 0.865
Full KG* 0.635 0.692
KG Semantic only* 0.823 0.865
KG NER only* 0.105 0.132
KG TFIDF only* 0.586 0.675
KG NER and TFIDF* 0.453 0.592
KG NER and Semantic* 0.456 0.540
KG TFIDF and Semantic* 0.725 0.775
0.75 Semantic, 0.2 TFIDF, 0.05 NER 0.850 0.870
0.6 Semantic, 0.3 TFIDF, 0.1 NER 0.783 0.835
0.8 Semantic, 0.15 TFIDF, 0.05 NER 0.835 0.885
SAGE (without edge features) 0.022 0.037
SAGE (with edge features) 0.004 0.003
GCN (without edge features) 0.002 0.001
GCN (with edge features) 0.002 0.001

Table 2.4: Comparison of Retriever Configurations with * as balanced weights

Our approach demonstrates the potential of in-
tegrating advanced NLP techniques with graph-
based representations to create more intelli-
gent and context-aware information retrieval
systems.

However, our error analysis revealed several
critical challenges. The system’s performance
in entity recognition, particularly for complex
organizational structures and novel industry
terms, indicates a need for more robust NER
in specialized domains. Graph traversal effi-
ciency also emerged as a significant challenge,
with an average shortest path of 2.04 edges to
reach ground truth nodes not in the initial set.
This suggests that while our current approach is
reasonably effective, more sophisticated graph
construction and navigation techniques could
substantially enhance retrieval performance.

The sensitivity of system performance to heuris-
tic weights suggests that a static weighting ap-
proach may be insufficient. Dynamic weight
adjustment mechanisms could significantly en-
hance the system’s adaptability and robustness
across different document types within the cor-
porate domain.

Notably, the performance of our GNN models,
particularly GraphSAGE and GCN, fell signifi-
cantly short of expectations. This outcome pro-
vides valuable insights into the challenges of
applying graph-based deep learning to MD-QA
tasks in corporate intelligence settings and un-
derscores the need for further research in adapt-
ing GNN techniques to this specific domain.

2.6. Conclusion

In this paper, we presented KarGus, a novel
system for MD-QA in corporate intelligence
settings. By integrating advanced NLP tech-
niques with KG construction and GNNs, Kar-
Gus demonstrates improvements over tradi-
tional embedding-based methods in handling
complex, domain-specific queries.

Our experiments show that KarGus achieves
a Recall@5 of 0.850, outperforming the base-
line (0.823) and showcasing its ability to cap-
ture long-range dependencies and contextual
relationships. The system’s multi-faceted ap-
proach, combining semantic similarity, TF-IDF,
and named entity recognition, proves effective
in creating a comprehensive and nuanced rep-
resentation of document content.

While KarGus shows promise, our analysis also
reveals important areas for future work, includ-
ing testing cross-domain adaptability, improving
graph traversal efficiency, and refining GNN im-
plementations for this specific task. These find-
ings lay the groundwork for future research in
advanced MD-QA systems for specialized do-
mains.

Overall, KarGus represents a significant step
forward in addressing the challenges of com-
plex information retrieval, demonstrating the po-
tential of graph-based approaches in enhancing
the accuracy and contextual relevance of MD-
QA systems.



Conclusion

3.1. Research Summary

This thesis introduced KarGus, a novel approach to multi-document question answering (MD-
QA) designed to address critical challenges in various applications, with a particular focus on
corporate intelligence. KarGus represents a significant advancement in information retrieval (IR)
and synthesis from complex document sets, combining advanced Natural Language Processing
(NLP) techniques, Knowledge Graph (KG) construction, and Graph Neural Networks (GNNs).

The development of KarGus was motivated by the limitations of existing MD-QA methods, par-
ticularly their struggle with effectively synthesizing information across multiple documents and
handling domain-specific terminology. These challenges are especially critical in corporate intelli-
gence settings, tested in our experimentations, where the ability to quickly and accurately extract
relevant information from vast document repositories can significantly impact decision-making
processes.

Our research methodology encompassed several key components:

1. Advanced NLP Integration: We developed a multi-faceted approach combining semantic
similarity, TF-IDF, and Named Entity Recognition (NER) for comprehensive document rep-
resentation. This integration allowed for a richer understanding of document content and
relationships.

2. Dynamic Knowledge Graph Construction: We implemented a novel method for dynam-
ically constructing knowledge graphs from document sets. This approach captures both
semantic and lexical relationships across documents, creating a rich, interconnected repre-
sentation of the information space.

3. Graph Neural Network Implementation: We explored the use of two GNN architectures -
Graph Sample and Aggregate (GraphSAGE) and Graph Convolutional Networks (GCN) - for
graph-based reasoning. These models were trained to learn from the structural information
encoded in our KGs, along with NLP-derived features.

4. Comparative Performance Analysis: We conducted extensive experiments to compare
KarGus against traditional embedding-based methods. Our evaluation metrics included Re-
call@k, with a particular focus on Recall@5 and Recall@10.

5. Feature and Weight Optimization: Through rigorous testing, we determined optimal con-
figurations for NLP feature combinations and their respective weights, fine-tuning KarGus
for peak performance.

6. Graph Structure Analysis: We performed in-depth analysis of the resulting knowledge

25
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graph structures, examining properties such as modularity, clustering coefficient, and tran-
sitivity to understand the efficiency of information traversal.

Key findings from our research include:

» KarGus outperformed the baseline embedding method, achieving a Recall@5 of 0.850 com-
pared to the baseline’s 0.823.

» The optimal configuration emphasized semantic similarity (weight 0.75), keyword relevance
(0.2), and entity information (0.05).

* GNN models showed promising results in training but underperformed in the retrieval task,
highlighting the challenges in applying GNNs to MD-QA.

* Analysis of the KG structure revealed moderately well-defined community structures and
efficient information traversal properties.

Our approach integrates semantic analysis, entity recognition, and graph-based representation
to create a more robust and context-aware retrieval system. By constructing a KG that captures
both the semantic and structural relationships within and between documents, KarGus provides
a more comprehensive and nuanced understanding of the information landscape, particularly in
complex domains like corporate intelligence.

This research contributes significantly to the field of IR and MD-QA, offering new insights into the
integration of NLP techniques with graph-based approaches. It lays the groundwork for future
advancements in context-aware, multi-document information synthesis and retrieval systems.

3.2. Research Questions

Our research was guided by three primary questions:

RQ1: How can the unique combination of advanced NLP techniques in KarGus enhance MD-QA
performance compared to traditional single-feature approaches?

RQ2: What is the impact of different NLP feature combinations, heuristic weights, and relationship
types on the system’s retrieval performance?

RQ3: How does KarGus’s retrieval performance, leveraging its innovative KG and GNN approach,
compare to traditional embedding-based methods in diverse, specialized domains?

In addition to these primary research questions, we also explored the potential of GNNs in en-
hancing our system’s performance. However, our experiments with GNN models, specifically
GraphSAGE and GCN, yielded suboptimal results in the retrieval task despite showing promise
during training. Due to this underperformance, we decided to treat the GNN component as an
exploratory study outside the scope of our main research questions. This decision allowed us to
maintain focus on the core strengths of KarGus while still providing valuable insights into the chal-
lenges of applying GNNs to MD-QA tasks in corporate intelligence settings. The GNN exploration,
while not central to our main findings, offers important directions for future research in integrating
graph-based deep learning with knowledge graph-powered question answering systems.

3.3. Discussion of the results

3.3.1. Integration of NLP Techniques

Our research demonstrated that the integration of semantic similarity, TF-IDF, and NER features in
KG construction enhances the system'’s ability to capture complex relationships within documents.
This multi-faceted approach allowed for a more nuanced representation of document content,
enabling more accurate and contextually relevant retrievals. Specifically, our experiments showed
that:

+ Semantic similarity emerged as the most crucial component, with its performance matching
the baseline when used alone. The semantic-only approach achieved a Recall@5 of 0.823
and a Recall@10 of 0.865, identical to the baseline performance.
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» TF-IDF based retrieval, while slightly lower performing than semantic similarity, demon-
strated good potential with a Recall@5 of 0.586 and a Recall@10 of 0.675.

+ Entity-based retrieval performed significantly lower (Recall@5 of 0.105, Recall@10 of 0.132),
likely due to the specificity of entity information. However, it showed potential when com-
bined with other features.

The combination of these NLP techniques in graph construction proved particularly effective in
capturing both the broad semantic context and specific entity relationships, contributing to a more
comprehensive understanding of document content.

3.3.2. Impact of Feature Combinations and Weights
Our experiments revealed that different combinations of NLP features and their associated weights
have a substantial impact on retrieval performance. Key findings include:

» The optimal configuration, emphasizing semantic similarity (weight 0.75) while incorporating
keyword relevance (weight 0.2) and entity information (weight 0.05), achieved the highest
performance with a Recall@5 of 0.850 and a Recall@10 of 0.870.

 This optimal configuration outperformed both the baseline and individual feature approaches,
demonstrating the value of our multi-feature methodology.

» The combination of semantic and keyword features notably improved retrieval performance,
achieving a Recall@5 of 0.725 and a Recall@10 of 0.775 when weighted equally.

These results underscore the importance of balancing different NLP features to capture various
aspects of document content and query relevance. The dominance of semantic similarity in the
optimal configuration highlights its crucial role in understanding the contextual meaning of both
queries and documents, while the inclusion of keyword and entity information provides important
complementary signals.

3.3.3. Comparison with Traditional Methods
The comparison between KarGus and traditional embedding-based methods revealed significant
insights:

» Overall Performance: KarGus demonstrated superior performance in handling queries
from corporate documents, achieving a Recall@5 of 0.850 and Recall@10 of 0.870, outper-
forming the baseline’s 0.823 and 0.865 respectively.

 Information Synthesis: The improved recall suggests KarGus is more effective at identify-
ing and synthesizing relevant information across document chunks, indicating potential for
handling complex, multi-document queries typical in corporate intelligence settings.

+ Contextual Understanding: The graph-based approach of KarGus showed a strong abil-
ity to capture contextual relationships, leading to more accurate retrievals in our corporate
document dataset.

» Domain Applicability: While primarily tested on corporate intelligence documents, Kar-
Gus’s performance suggests promising adaptability to specialized domains where nuanced
understanding of terminology and concepts is crucial.

* Query Complexity Handling: The marked improvement in recall indicates KarGus’s po-
tential for effectively handling multi-concept queries and those requiring deeper information
synthesis, areas where traditional methods often face challenges.

These results validate the potential of our KG-based approach in enhancing MD-QA performance,
particularly in complex document environments like corporate intelligence. KarGus'’s ability to
outperform traditional methods in identifying relevant information positions it as a powerful tool for
advanced IR tasks in specialized domains.
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3.3.4. Graph Neural Network Performance
Our experiments with GNNs in the context of MD-QA revealed both promising aspects and signif-
icant challenges:

 Training Performance: Both GraphSAGE and GCN models showed encouraging trends
during training, with decreasing Mean Squared Error as dataset size increased.

* Model Comparison: GraphSAGE performed better on smaller datasets, while GCN ex-
celled with larger datasets (>10,000 nodes), suggesting scale-dependent architecture choices.

* Retrieval Task Challenges: Despite promising training results, GNN performance in the
retrieval task fell short of expectations. The best configuration (GraphSAGE without edge
features) achieved only a Recall@5 of 0.022 and a Recall@10 of 0.037.

» Performance Gap: The substantial difference between training performance and retrieval
task results highlights the complexity of applying GNNs to practical MD-QA applications.

These findings underscore both the potential and challenges of GNNs in MD-QA, pointing to
avenues for future research in architecture optimization and better alignment of GNN learning
with retrieval tasks in corporate environments.

3.4. Future Work

Our research findings point to several key areas for future development of KarGus. Implementing
a Genetic Algorithm for heuristic optimization could enhance our feature weighting system, al-
lowing for dynamic adjustment based on document and query characteristics. Refining the NER
model’s fine-tuning process and improving entity integration could boost the system’s ability to
handle domain-specific terminology.

Further investigation into optimal parameter values for NLP integration, such as alpha and beta,
could lead to performance improvements. Given the challenges with GNN performance, exploring
alternative training approaches, including the use of node embeddings as features, is crucial.
Testing the system’s performance on tabular data could expand its applicability to diverse data
formats.

Assessing KarGus'’s scalability and adaptability across various corpus sizes and domains is es-
sential for its practical implementation. Integrating KarGus into a RAG environment would provide
insights into its real-world performance and potential for enhancing LLM outputs.

Exploring cross-lingual capabilities and incorporating temporal dynamics into the KG could signif-
icantly broaden the system’s applicability. Lastly, developing explainable Al techniques to eluci-
date retrieval decisions would enhance trust and usability in corporate settings.

These areas of future work aim to address current limitations and expand KarGus’s capabilities,
potentially leading to more sophisticated and versatile MD-QA systems for corporate intelligence
applications.

3.5. Answering the Research Questions
Based on our findings, we can now provide comprehensive answers to our research questions:

RQ1: Advanced NLP techniques can be effectively integrated into a KG-based retrieval system
through a multi-faceted approach that combines semantic similarity, TF-IDF, and NER. This inte-
gration allows for a richer representation of document content and relationships, enabling more
accurate and contextually relevant retrievals. Our experiments showed that semantic similarity
emerged as the most crucial component, matching the baseline performance when used alone
(Recall@5 of 0.823, Recall@10 of 0.865). TF-IDF based retrieval demonstrated good potential
(Recall@5 of 0.586, Recall@10 of 0.675), while entity-based retrieval, although lower performing
individually (Recall@5 of 0.105, Recall@10 of 0.132), showed value when combined with other
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features. This multi-feature approach proved particularly effective in capturing both broad seman-
tic context and specific entity relationships, contributing to a more comprehensive understanding
of document content.

RQ2: Different NLP feature combinations and heuristic weights have a substantial impact on
retrieval performance. Our research found that a configuration emphasizing semantic similarity
(75%) while incorporating keyword relevance (20%) and entity information (5%) yielded the best
results, outperforming both individual features and the baseline approach. This optimal config-
uration achieved a Recall@5 of 0.850 and a Recall@10 of 0.870, improving upon the baseline
and individual feature performances. The combination of semantic and keyword features notably
enhanced retrieval performance, achieving a Recall@5 of 0.725 and a Recall@10 of 0.775 when
weighted equally. These results underscore the importance of balancing different NLP features
to capture various aspects of document content and query relevance, with semantic similarity
playing a crucial role in understanding contextual meaning, complemented by keyword and entity
information.

RQ3: KarGus demonstrates improved retrieval performance compared to traditional embedding-
based methods, particularly in handling complex queries that require synthesizing information
from multiple documents. The optimized KG-based approach achieved a Recall@5 of 0.850 and
a Recall@10 of 0.870, outperforming the baseline’s 0.823 and 0.865 respectively. This improve-
ment is attributed to the system’s ability to capture long-range dependencies and contextual re-
lationships through its graph-based approach. KarGus shows great potential in scenarios where
relevant information is distributed across multiple documents or requires understanding complex
inter-document relationships, a common challenge in corporate intelligence contexts. However,
the integration of GNNs, while showing promise during training, did not translate to improved re-
trieval performance. The best GNN configuration (GraphSAGE without edge features) achieved
only a Recall@5 of 0.022, highlighting the need for further research to bridge the gap between
GNN learning and effective IR in practical MD-QA applications.

3.6. Final Conclusion

KarGus presents a novel approach to MD-QA for various applications, demonstrating the potential
of integrating advanced NLP techniques with graph-based approaches. The system'’s ability to
outperform traditional methods, particularly in handling complex queries and capturing long-range
dependencies, showcases the promise of this approach.

While challenges remain, particularly in cross-domain adaptation and the effective application of
GNNs to MD-QA tasks, KarGus provides a solid foundation for future research and development
in this critical area of IR and knowledge management. The insights gained from this research
contribute to the broader field of NLP and IR, offering new perspectives on how to effectively
combine semantic analysis, graph-based representations, and neural network techniques for en-
hanced question answering.

As organizations continue to grapple with increasing volumes of unstructured data, systems like
KarGus pave the way for more intelligent, context-aware, and adaptive IR solutions. The con-
tinued development and refinement of such systems will play a crucial role in unlocking the full
potential of organizational knowledge, enabling more informed decision-making, and driving inno-
vation in data-driven industries.

Moving forward, the focus should be on addressing the challenges identified in this research, par-
ticularly in improving GNN performance for MD-QA tasks and further validating KarGus’s adapt-
ability across diverse document types and domains. While KarGus has demonstrated strong
performance and inherent adaptability in corporate intelligence settings, expanding our experi-
ments to a wider range of specialized domains would provide valuable insights into the system’s
full potential.

The development of sophisticated MD-QA systems continues to evolve, and this research con-
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tributes valuable insights to the advancing field of information management and artificial intelli-
gence. KarGus offers a promising foundation for future explorations, with its demonstrated adapt-
ability and performance contributing to the ongoing progress in this area of study.
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Appendix

3.7. Methodology

3.7.1. NLP Features Decision

The selection of these specific NLP features was the result of careful consideration and preliminary
experimentation. While other advanced NLP techniques, such as topic modeling, were initially
considered, they were not included in the final implementation. Our decision to focus on text
embeddings, TF-IDF, and NER was based on several key factors:

» Computational Efficiency: These methods offer an optimal balance between performance
and computational cost, which is crucial for maintaining system scalability, especially when
dealing with large document corpora.

* Interpretability: The chosen features provide clear, interpretable results, which is benefi-
cial for both system development and potential future expansions. This interpretability aids
in understanding the model’s decision-making process and facilitates debugging and im-
provement.

+ Complementary Information: Text embeddings capture semantic relationships, TF-IDF
focuses on term importance, and NER identifies key entities. This combination provides
a well-rounded representation of the text without significant overlap, ensuring that different
aspects of the text are captured effectively.

* Proven Effectiveness: These techniques have demonstrated robust performance across
various NLP tasks and domains, as evidenced by numerous studies in the literature [cita-
tions].

While more techniques could potentially offer additional insights, our preliminary experiments sug-
gested that the added complexity and computational overhead did not yield significant improve-
ments in retrieval performance for our specific use case. However, the modular nature of our
system allows for the integration of additional NLP features in future iterations, should they prove
beneficial.

3.7.2. NLP Heuristics
3.7.3. Knowledge Graph Construction
3.7.4. GNN Model Architecture and Training

For both GraphSAGE and GCN models, we used the following architecture and training parame-
ters:

» Hidden layers: 16 dimensions

» Output layer: 1 neuron (for regression task)
+ Training epochs: 200

* Optimizer: Adam

* Learning rate: 0.001

* Momentum: 0.9

* Weight decay: 5e-4

These parameters were chosen based on common practices in the field and default values often
used in graph neural network implementations:
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Graph Sparsity vs. k values

Figure 3.6: Graph Average Sparsity Plot

1. Hidden dimension (16): This dimension was selected as a balance between model complex-
ity and computational efficiency, following similar approaches in graph-based tasks [Kipf and
Welling, 2016].

2. Output neuron (1): As our task is a regression problem (predicting relevance scores), a
single output neuron is appropriate.

3. Epochs (200): This number was chosen to allow sufficient training time while considering
computational constraints.

4. Optimizer (Adam): Adam is widely used due to its adaptive learning rate properties and
good performance across a variety of tasks [Kingma and Ba, 2015].

5. Learning rate (0.001): This is a common default value for the Adam optimizer, providing a
good balance between convergence speed and stability.

6. Momentum (0.9): This value helps accelerate stochastic gradient descent in the relevant
direction and dampens oscillations, and is a standard value used in many deep learning
applications [Sutskever et al., 2013].

7. Weight decay (5e-4): This value was chosen to provide regularization and prevent overfitting,
based on common practices in graph neural network literature [Hamilton et al., 2017a].

It's important to note that these parameters were not optimized through extensive empirical testing
for our specific task. Future work could involve a more thorough exploration of the parameter
space to potentially improve model performance.

3.8. Results

3.8.1. Knowledge Graph Analysis
3.8.2. NLP Features Analysis
3.8.3. Pathway Analysis

3.8.4. Heuristics Weights
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Table 3.1: Comprehensive Results of GCN and SAGE Models during Training

Dataset Size | Model | Edge Features | Train MSE | Val MSE | Test MSE
100 | GCN With 0.0237 0.0235 0.0401
Without 0.0239 0.0238 0.0407

SAGE | With 0.0438 0.0371 0.0408

Without 0.0313 0.0270 0.0418

1,000 | GCN With 0.0138 0.0122 0.0138
Without 0.0140 0.0118 0.0142

SAGE | With 0.0150 0.0115 0.0147

Without 0.0170 0.0170 0.0172

10,000 | GCN With 0.0015 0.0014 0.0011
Without 0.0017 0.0016 0.0012

SAGE | With 0.0011 0.0010 0.0007

Without 0.0033 0.0032 0.0028

100,000 | GCN With 0.0005 0.0006 0.0005
Without 0.0005 0.0006 0.0005

SAGE | With 0.0027 0.0028 0.0027

Without 0.0051 0.0051 0.0050

1,000,000 | GCN With 0.0006 0.0006 0.0006
Without 0.0004 0.0004 0.0004

SAGE | With 0.0054 0.0054 0.0054

Without 0.0058 0.0058 0.0058

2,170,600 | GCN With 0.0007 0.0007 0.0007
Without 0.0004 0.0005 0.0004

SAGE | With 0.0026 0.0027 0.0027

Without 0.0059 0.0059 0.0059
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