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An inner-outer factorization theorem for linear time-varying systems is obtained via an exten-
sion of the classical Beurling-Lax theorem to the time-varying context. This provides characteristic
features of the inner factor, which can be used to compute realizations of the inner and outer factors
from a realization of the given transfer operator. The resulting algorithm is unidirectional in time.
The outer factor can also be obtained by an expression involving a Riccati recursive equation.

1. Introduction

Recently, there has been some interest in computing inner-outer factorizations of time-varying sys-
tems, as a basic step in robust control applications such as the design of feedback controllers and sen-
sitivity minimization [1, 2]. For time-invariant single-input single-output systems, the inner-outer
factorization is a factorization of an analytical (causal) transfer function T

�
z � into the product of an

inner and an outer system: T
�
z ��� V

�
z � T0
�
z � . The inner part V

�
z � is analytical (i.e., has its poles out-

side the unit disc) and has modulus 1 on the unit circle, whereas the outer part T0
�
z � is analytical and

may have zeros only outside the unit disc. For example, (with |α | � |β | � 1)

z
z − α∗

1 − βz
� z

z − α∗

1 − αz
·
1 − αz
1 − βz �

The resulting outer factor is such that its inverse is again a stable system, provided there are no zeros on
the unit circle. For multi-input multi-output systems, the definition of the outer factor is more abstract
(see e.g., Halmos [3]) and takes the form of a range condition: T0

�
z � is outer if T0

�
z � H 2

m � H 2
n , where

H 2
m is the Hardy space of analytical m-dimensional vector-valued functions. A generalization of this

definition applies in the time-varying context.
The existence of inner-outer factorizations in any context is more or less fundamental to ana-

lytical Hilbert spaces. Abstract mathematical formulations of it which also apply to the time-varying
setting can be found in [4, 5]. In this paper, we connect the abstract theory to a computational scheme
acting on state space realizations. One of the aspects of time-varying systems is that the state dimen-
sion can vary, and as a result, the number of ‘zeros’ in the inner and outer factors can vary, too. The
theory in this paper handles such variations automatically. Full details can be found in [6].

An application of the inner-outer factorization is the computation of inverse systems: if T is
a causal and invertible system, then its inverse is not necessarily causal: the inversion might have
introduced an anti-causal part. This effect is known as a dichotomy; it is in general not a trivial task
to determine the causal and anti-causal parts of T−1. With the inner-outer factorization, however, the
inverse of the outer factor is again causal, whereas the inverse of the inner factor is fully anti-causal,
and determines which part of the inverse outer factor is made anti-causal. This application of the
inner-outer factorization plays a crucial role in e.g., the computation of optimal feedback controllers
[1].



2. Notation

We adopt the notation of [7, 8, 9, 6], so that the description of it in this paper will be terse. For i �
· · · � −1 � 0 � 1 � · · ·, let � i be a separable Hilbert space. We will usually take � i � |CMi with Mi a finite
number, so that � i is a finite vector space, but we will have to allow � �	� 2 in section 5. The space� � · · · × � 0 × � 1 × · · · is the space of (non-uniform) sequences u ��
 · · · � u0 � u1 � · · · � with entries
in � i. Such sequences will represent the signals in our systems. If all � i are finite, then we call� locally finite. Some (or most) of the dimensions may be zero, and in this way finite non-uniform
vectors are also included in the formalism. The space ��
2 is the space of sequences in � with finite
2-norm. The space � � ������� is the space of bounded operators T : y � uT acting from ��
2 into ���2 .
An operator in such a space has an (infinite) matrix representation where the i j-th entry is an operator� i → � j (an Mi × N j matrix). The space � ⊂ � consists of bounded operators T which are upper:
Ti j � 0

�
i � j � . Likewise, we define � ⊂ � to be the space of lower operators and ����� ∩ � to be

the space of diagonals.

In � , the causal bilateral shift-operator Z is defined via 
 · · · � u0 � u1 � · · · � Z ��
 · · · � u−1 � u0 � · · · �
(the square identifies the position of the 0-th entry). If u ∈ � , then uZ ∈ ��� 1 � , where � � 1 � is equal
to the space sequence � , shifted over one position. The k-th diagonal shift of an operator A into the
South-East direction is denoted as A � k � � Z∗kAZk.

We shall need Hilbert-Schmidt spaces � 2, � 2, � 2, � 2, consisting of those elements of � , � , � ,� for which the norms of the entries are square summable. These spaces are Hilbert spaces for the
usual Hilbert-Schmidt inner product. They can be considered as input or output spaces for our system
operators: if T is a bounded operator �!
2 → �"�2 , then it may be extended as a bounded operator � 2 →� 2 by stacking sequences in � 2 to form elements of � 2. This leads for example to the expression y �
uT , where u ∈ � 2

�
|C #Z �$�%� and y ∈ � 2

�
|C #Z ���&� [8]. We will use the shorthand � 
2 for � 2

�
|C #Z �$�%� ,

but continue to write � 2 if the precise form of � is not of interest.
We define P as the projection operator of � 2 on � 2, P0 as the projection operator of � 2 on � 2,

and P '
2Z−1 as the projection operator of � 2 on � 2Z−1. If X ∈ � 2, then its k-th diagonal is defined in

terms of P0 by X ( k ) � P0
�
Z−kX � , and X � ∑ZkX ( k ) . The domain of the projector P0 can be extended

to operators in � .
A subspace * of �+
2 is called (left) D-invariant if D * ⊂ * for all D ∈ � , and shift-invariant if

Z * ⊂ * . A D-invariant subspace * falls apart into ‘slices’ (rows) * k such that *,� · · ·× * 0 × * 1 × · · ·,
where each * k is a subspace in � 
2 (the k-th row of � 
2 ) [7, 9, 6]. Let dk be the dimension of * k,
then we call d ��
 dk � ∞−∞ the sequence of dimensions of * : d � s-dim * . If all dk are finite, then * is
said to be locally finite. Let - k � |C dk ( - k �.� 2 if dk � ∞), and let -/� · · · × - k × · · ·. Each * k has a
basis representation Fk such that * k �0- kFk, where the rows of Fk are the individual basis vectors.
Likewise, a D-invariant subspace * has a basis representation F such that *��.� 2F [7], where the
k-th (block)-row of F is Fk. The diagonal operator ΛF : � P0

�
FF∗ �1� diag 
FkF∗

k � ∞−∞ plays the role
of Gram operator. If ΛF is uniformly positive (i.e., boundedly invertible), the basis representation is
called strong, and the projection operator onto * is in this case given by P 2 � · �3� P0

�
·F∗ � Λ−1

F F. If
ΛF � I, then F is called an orthonormal basis representation.

3. Time-varying systems

An operator T ∈ � � ������� is called a causal transfer operator: it maps sequences u ∈ ��
2 to sequences
y � uT ∈ � �2 in a causal way. When T is viewed as an operator from � 
2 to � �2 , then because � 2 �� 2Z−1 ⊕ � 2, its action on � 2Z−1 can be decomposed into two operators HT and KT :

·T 44 ' 2Z−1 � ·KT 5 ·HT : ·HT � P
�
·T 44 ' 2Z−1 � ; ·KT � P '

2Z−1

�
·T 44 ' 2Z−1 �

2



HT is called the Hankel operator of T . The range and kernel of HT and H∗
T are D-invariant subspaces

with important system-theoretic properties [7]:6 �
T � � ker

�
·HT �7� {U ∈ � 2Z−1 : P

�
UT �8� 0}* � T � � ran

�
·H∗

T �7� P '
2Z−1

� � 2T∗ �* 0
�
T �7� ran

�
·HT �7� P

� � 2Z−1T �6
0
�
T � � ker

�
·H∗

T �7� {Y ∈ � 2 : P
�
YT∗ �8� 0} �

These subspaces provide decompositions of � 2Z−1 and � 2 as* ⊕
6 � � 2Z−1* 0 ⊕
6

0 � � 2 �
(the overbar denotes closure). * � T � is called the (natural) input state space, and * 0

�
T � the (natural)

output state space of T . If these subspaces are locally finite, then they have the same s-dimension,
and T is said to be locally finite. In this case, one can obtain minimal realizations of the type

UT � Y ⇔
X � −1 �( i 9 1 ) � X ( i ) A 5 U ( i) B
Y ( i ) � X ( i )C 5 U ( i) D T � : A C

B D ; (1)

where
A ∈ � � -<�$- � −1 � �=� C ∈ � � -<�����=�
B ∈ � � ���$- � −1 � �=� D ∈ � � �����&� � (2)

The space sequence - is called the system order of the realization. Let Ak be the k-th entry of the
diagonal operator A, and likewise for Bk, Ck, Dk. If - k � |C dk , then Ak is a dk × dk 9 1 matrix, Bk :
Mk × dk 9 1, Ck : dk × Nk, Dk : Mk × Nk, and all dimensions are time-varying. The realization equations
(1) are equivalent to

xi > k 9 1 � xi > kAk 5 ui > kBk

yi > k � xi > kCk 5 ui > kDk �
T is a realization of T if its entries Ti j or diagonals T( i ) are given by

Ti j � ?@A @B 0 � i � j
Di � i � j
BiAi 9 1 · · ·A j−1C j � i � j � ⇔ T( i) � ?@A @B 0 � i � 0

D � i � 0
B � i � A � i−1 � · · ·A � 1 � C � i � 0

(3)

Let � A denote the spectral radius of the operator AZ. If � A � 1 (the realization is said to be strictly
stable), then

�
I − AZ � is invertible, and T � D 5 BZ

�
I − AZ � −1C. In this case, the operators F and F0

defined by
F : � C BZ 5 BZ AZ 5 BZ

�
AZ � 2 5 · · · D ∗

F0 : � C 5 AZC 5 � AZ � 2C 5 · · ·
(4)

are bounded operators in � Z−1 and � , respectively, and given by F �EC BZ
�
I − AZ � −1 D and F0 � � I −

AZ � −1C, respectively. In case � A ≤ 1, then F and F0 are bounded operators on � 2, and can be defined
via (4) on a dense subset of � 2. The realization is called (uniformly) controllable if the controllability
Gramian ΛF : � P0

�
FF∗ � is (uniformly) positive, (uniformly) observable if the observability Gramian

ΛF0 � P0
�
F0F∗

0 � is (uniformly) positive, and minimal if it is both controllable and observable. Equiv-
alently, a realization is controllable if ·F 44 F 2

is one-to-one (injective), and observable if ·F0 44 F 2
is one-

to-one. For minimal realizations, F and F0 are basis representations of * � T � and * 0
�
T � , respectively:* � T ��� �HG2 F � * 0

�
T ��� �HG2 F0 �

3



More in general, for a controllable realization, * 0
�
T � ⊂ � 2F0, and for an observable realization,* � T � ⊂ � 2F. We mention the following properties, which are valid for � A ≤ 1 [7, 6]:I

F0 � C 5 AZF0

T � D 5 BZF0

I
ZF � A∗F 5 B∗

T∗ � D∗ 5 C∗F

I
ΛF0 � I ⇒ AA∗ 5 CC∗ � I
ΛF � I ⇒ A∗A 5 B∗B � I

(5)

4. State space properties of inner systems

A system V is an isometry if VV∗ � I, a co-isometry if V∗V � I, and unitary if both VV∗ � I and
V∗V � I. A system is inner if it is unitary and upper. A realization V is called unitary (or lossless) if
VV∗ � I and V∗V � I, where

V � : AV CV

BV DV ; � (6)

Proposition 1. Let V ∈ � . Then

VV∗ � I ⇒
6

0
�
V �J�K� 2V ⊕ ker

�
·V∗ 44 L 2

� �
If VV∗ � I and ker

�
·V∗ 44 L 2

���NM then V is inner. Dually,

V∗V � I ⇒
6 �

V �J�O� 2Z−1V∗ ⊕ ker
�
·V 44 ' 2Z−1 � �

If V∗V � I and ker
�
·V 44 ' 2Z−1 �8�.M , then V is inner.

PROOF Let VV∗ � I. Because V is an isometry, the subspaces � 2V � ran
�
V � , � 2Z−1V and � 2V are

closed, and � 2V �P� 2Z−1V ⊕ � 2V . � 2V ⊂
6

0, because P '
2Z−1

� 
 � 2V � V∗ �Q� 0. The remaining subspace6
0 R � 2V consists of elements6

0 R � 2V � {X ∈ � 2 : P '
2Z−1

�
XV∗ �8� 0 ∧ P

�
XV∗ �8� 0}� {X ∈ � 2 : XV∗ � 0}� ker

�
·V∗ 44 L 2

� �
Hence

6
0 �P� 2V ⊕ ker

�
·V∗ 44 L 2

� .
If ker
�
·V∗ 44 L 2

�8�NM , then X ∈ � 2 � XV∗ � 0 ⇒ X � 0 � This implies

X ∈ Z−n � 2 � XV∗ � 0 ⇒ X � 0
�
all n ∈ #Z �=�

since
�
ZnX � V∗ � 0 ⇔ XV∗ � 0. Letting n → ∞ yields ker

�
·V∗ �S�&M , so that V has a left inverse,

which must be equal to the right inverse V∗. Hence V∗V � I and V is inner. Dual results hold in case
V∗V � I. T

Unitary realizations and inner systems are closely connected: one can show that a locally finite
inner system has a unitary realization, and the converse is true at least when the realization is strictly
stable. More precisely, we have the following theorem.

Theorem 2. Let V given by equation (6) be a state realization of a bounded transfer operator V ∈� � �����&� , where � and � are locally finite spaces of sequences. Let ΛF and ΛF0 be the controlla-
bility and the observability Gramians of the given realization. If � AV � 1, then

V∗V � I ⇒ V∗V � I � ΛF � I �
VV∗ � I ⇒ VV∗ � I � ΛF0 � I � (7)

If � AV ≤ 1, then
V∗V � I � ΛF � I ⇒ V∗V � I �
VV∗ � I � ΛF0 � I ⇒ VV∗ � I �

4



PROOF A proof for the case � AV � 1 appears in [9]. The proof for the generalization to � A � 1 is
omitted in this paper. T

5. Beurling-Lax theorem

Theorem 3. All DZ-invariant subspaces
6

0 in � �2 have the form
6

0 �U� 
2 V, whereV ∈ � � �������
is an isometry (VV∗ � I).

PROOF Let V 0 � 6 0 R Z
6

0. This is a D-invariant subspace in � �2 . We can assume it is non-empty,
for else

6
0 � Z
6

0 � Zn 6
0 for all n ≥ 0, and since X ∈ � 2 ⇒ limn→∞ P

�
Z−nX ��� 0, this implies that6

0 � 0, and there is nothing to prove. Likewise, define V n � Zn 6
0 R Zn 9 1 6

0. Then V n � Zn V 0, and6
0 �WV 0 ⊕ V 1 ⊕ V 2 ⊕ · · ·.

Suppose s-dim V 0 � M, and define the sequence of Hilbert spaces � to have entries � k � |CMk� � k �/� 2 if Mk � ∞). Then there exist isometries Vk : � k →
� V 0 � k such that

� V 0 � k �W� kVk. Let V
be the operator whose k-th block-row is equal to Vk. V is an orthonormal basis representation of V 0,
as in section 2, such that V 0 �X� 
2 V � P0

�
VV∗ �Y� I �

Then V n �W� 2ZnV . Because V i ⊥ V j
�
i /� j � , it follows that D1ZnV ⊥ D2V

�
n ≥ 1 � for all D1 > 2 ∈ � 2,

i.e.,
P0
�
ZnVV∗ �7� 0

P0
�
VV∗Z−n �7� 0

so that VV∗ � I: V is an isometry. The orthogonal collection { � 2ZnV} ∈
6

0
�
n ≥ 0 � , and together

spans the space � 2V . Hence
6

0 � { � 2ZnV} �.� 2V . The factor V is unique up to a left diagonal
unitary factor. T

The above proof is along the lines of the proof of Helson [3, Z VI.3] for the time-invariant Hardy
space setting. This proof was in turn based on the work of Beurling for the scalar (SISO) case and
Lax for the extension to vector valued functions. A remaining question is to give conditions under
which V is actually unitary. For time-invariant systems, this condition is that

6
0 is “full range” [3].

Systems T for which
6

0
�
T � is full range have been called “roomy” in [10]. Systems of finite degree

are roomy: if * 0
�
T � is finite dimensional, then its complement

6
0
�
T � is automatically full range. For

time-varying systems, only less definite results can be obtained, which we omit in this paper.
Note that, in the above theorem, � can have components � k which are infinite dimensional,

even if � is locally finite, depending on
6

0. In our application of the theorem in the next section,
however,

6
0 is such that � will be locally finite automatically, starting from locally finite spaces.

Corollary 4. If V ∈ � � �����&� is an isometry, then there exists an isometry U ∈ � � � U ����� such
that ker

�
·V∗ 44 LQ[2 �8�P� 
 U

2 U. The operator

W � : U
V ;

is inner, with * 0
�
W ��� * 0

�
V � .

PROOF If V is an isometry, then (proposition 1)� �2 � * 0
�
V � ⊕ ker

�
·V∗ 44 LQ[2 � ⊕ � 
2 V � (8)

where
6J\

0 : � ker
�
·V∗ 44 L 2 � is shift-invariant, so that according to theorem 3 there exists an isome-

try U ∈ � � � U ����� such that
6J\

0 �N� 
 U
2 U . In view of proposition 1, W is inner if WW∗ � I and

5



ker
�
·W∗ 44 L 2

�]��M . WW∗ � I requires UV∗ � 0, which is true because � 2V ⊥ � 2U . Hence � 2W �� 2U ⊕ � 2V , and since * 0
�
W � ⊃ * 0

�
V � , we must have (from equation (8)) that * 0

�
W �8� * 0

�
V � and

ker
�
·W∗ 44 L 2

���NM . Hence W is inner, and * 0
�
W � is closed. T

6. Inner-outer factorization

We will say that an operator T0 ∈ � is (left) outer if� 2T0 �K� 2 � (9)

Other definitions are possible (see e.g., Arveson [4]); the above definition is such that ran
�
·T0 �]�� 2T0 ��� 2, so that ker

�
·T∗

0 �S�&M and T0 has an algebraic left inverse which is upper (it can be un-
bounded if � 2T0 is not closed). A factorization of an operator T into T � T0V , where T0 is outer and
V is inner (or an isometry: VV∗ � I) is called an outer-inner factorization. This factorization can be
obtained from theorem 3 by defining

6
0 to be

6
0 � � 2T . The closures here and in (9) are necessary

in cases where � 2T is not a closed subspace. This happens when there are ‘zeros on the unit circle’,
for example when T � I − Z. The existence of inner-outer factorizations is established in the follow-
ing theorem. A more general proof (in the context of nest algebras which specializes to the current
setting) is given by Arveson [4].

Theorem 5. Let T ∈ � � ������� . Then T has a factorization

T � T0V

where V ∈ � � � V ����� is an isometry (VV∗ � I), T0 ∈ � � ���$� V � is outer, and � V ⊂ � (entrywise).

PROOF Define
6

0 � � 2T . Then
6

0 is a D-invariant subspace which is shift-invariant: Z
6

0 ⊂
6

0.
According to theorem 3, there exists a space sequence � V and an isometric operator V ∈ � � � V �����
such that � 
2 T �	� 
 V

2 V . By construction, � 
2 T �.� 
 V
2 V ⊕ Z� 
2 T with � V of minimal dimen-

sions. Because also � 
2 T � 
 � 
2 ⊕ Z� 
2 � T , but � 
2 T is not necessarily orthogonal to Z� 
 T , it
follows that � V ⊂ � . In particular, the entries of � V are finite vector spaces.

Define T0 � TV∗. Then � 2T0 � � 2TV∗ � � 2TV∗ � � 2VV∗ �^� 2, so that T0 is outer. It remains
to prove that T � T0V , i.e., T � TV∗V . This is immediate if V is inner. If V is not inner, then corollary
4 ensures the existence of an isometry U such that� 2 � * 0

�
V � ⊕ � 2U ⊕ � 2V �

where
6J\

0 : �/� 2U � ker
�
·V∗ 44 L 2 � , and W �`_ UV a is inner. Then U∗U 5 V∗V � I, VU∗ � 0, and T �

TV∗V ⇔ T
�
I −V∗V �b� 0 ⇔ TU∗U � 0 � But � 2TU∗ ⊂ � 2VU∗ �WM , which implies TU∗ � 0. Hence

T � T0V . T
One can show that, in theorem 5, V is inner if and only if ker

�
·T∗ ���.M . If V is not inner, then

the extension W of V in theorem 5 is inner, and such that * 0
�
V �c�.* 0

�
W � , but the resulting factor

T0 � TW∗ based on W is not precisely outer according to the definition in (9):� 2T0 � � 2TW∗ �d� 2VW∗ �K� 2 
 0 I �
so that this T0 reaches only a subset of � 2 and maps the rest to 0.

The inner-outer factorization is based on the identification of a subspace
6

0 � � 2T as
6

0 �� 2V . The complement in � 2 of this space is * 0
�
V � ⊕ 6 \0 and is characterized by the elements X ∈ � 2

satisfying P0
� � 2TX∗ ��� 0, that is, XT∗ ⊥ � 2. Hence* 0
�
V � ⊕

6 \
0 � {X ∈ � 2 : XT∗ ∈ � 2Z−1} � {X ∈ � 2 : P

�
XT∗ �8� 0} �

6



In this expression,
6 \

0 �e� 2U � ker
�
·V∗ 44 L 2 � according to its definition. We now show that also

6 \
0 �

ker
�
·T∗ 44 L 2 �b� {X ∈ � 2 : XT∗ � 0}. Indeed, if X ∈

6J\
0, then X � X1U for some X1 ∈ � 2, and because

UT∗ � 0, it follows that XT∗ � 0. Conversely, if XT∗ � 0, then XV∗T∗
0 � 0, and because ker

�
·T∗

0 �Q�	M ,
it follows that XV∗ � 0 so that X ∈

6f\
0. Hence

6f\
0 � ker

�
·T∗ 44 L 2 � .

7. Computation of the inner-outer factorization T � VT0

Let T ∈ � � ������� , with ����� locally finite spaces of sequences. In this section, we work with a
dual factorization of T : T � VT0 (for different V and T0), where T0 is ‘right outer’: � 2Z−1T∗

0 �W� 2Z−1

(or T0 � 2 �.� 2), and where the left inner (isometric) factor V satisfies V∗V � I and is obtained by
identifying the subspace

6 �
V �Y�W� 2Z−1V∗ with � 2Z−1T∗. For this factorization,* � V � ⊕ 6 \ � {U ∈ � 2Z−1 : UT ∈ � 2} � 6 \ � ker

�
·T 44 ' 2Z−1 � �

We have defined in section 3 the decomposition of T , restricted to � 2Z−1, as

·T 44 ' 2Z−1 � ·KT 5 ·HT � ·KT � P '
2Z−1

�
·T 44 ' 2Z−1 � �

It is thus seen that * � V � is the largest subspace in � 2Z−1 for which * � V � KT � 0 and which is orthog-
onal to

6 \
. This property provides a way to compute the inner-outer factorization.

Let Q be an orthonormal basis representation of * � V � : * � V �g�^� 2Q, and let F0 be a basis repre-
sentation of * 0

�
T � , or more generally, a subspace in � 2 containing * 0

�
T � . The fact that * � V � KT �	M

translates to the condition QT ∈ � . Because * � V � T ⊂ * 0
�
T � , we must have that QT � YF0 for some

bounded diagonal operator Y , which plays an instrumental role in the derivation of a state realization
for V . It remains to implement the condition * � V � ⊥ 6f\ . Suppose that Q has a component in

6f\
, so

that DQ ∈
6f\

, for some D ∈ � 2. Then, since
6J\ � ker

�
·T 44 ' 2Z−1 � ,

DQ ∈
6 \

⇔ DQT � DY F0 � 0 ⇔ D ∈ ker
�
·Y � �

Hence * � V �h�i� 2Q can be described as the largest subspace � 2Q in � 2Z−1 for which QT � Y F0

with ker
�
·Y ���.M .

If - is the state sequence space of T , and - V is the state sequence space ofV , thenY ∈ � � - V �$-j� .
The condition ker

�
·Y �b�/M implies that - V ⊂ - (pointwise), so that the state dimension of V is at each

point in time less than or equal to the state dimension of T at that point.

Proposition 6. Let T ∈ � be a locally finite transfer operator, let T � {A � B � C � D} be an observable
realization of T, and assume � A � 1. Let V be a left inner (isometric) factor of T so that T0 � V∗T
is right outer. Then the pair

�
AV � BV � that corresponds to an orthonormal basis representation Q of* � V � satisfies �

i � A∗
V Y A 5 B∗

V B � Y � −1 ��
ii � A∗

V Y C 5 B∗
V D � 0�

iii � A∗
V AV 5 B∗

V BV � I�
iv � ker

�
·Y �7� M �

for some bounded Y ∈ � , and conversely, all solutions
�
AV � BV � of these equations give basis repre-

sentations of * � V � .
PROOF Let F0 � � I − AZ � −1C. Because * 0

�
T � ⊂ � 2F0, we have P

�
QT �c� YF0 for some bounded

Y ∈ � , and we will show that Y is given by a solution to equation
�
i � . Indeed, let Y be defined by

P
�
QT �c� Y F0. We will apply the relations ZQ � A∗

VQ 5 B∗
V ; F0 � C 5 AZF0, T � D 5 BZF0 (cf.
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equation (5)). Firstly, P
�
Z−1Y F0 �8� Y � 1 � P � Z−1 F0 �8� � YA �k� 1 � F0. On the other hand,

A∗ � 1 �
V P
�
Z−1QT �l� P

�
Z−1 
A∗

VQ � T �� P
�
Z−1 
 ZQ − B∗

V � T �� P
�
QT � − B∗ � 1 �

V B � 1 � F0� Y F0 − B∗ � 1 �
V B � 1 � F0 �

Hence, because observability means that ·F0 44 F 2
is one-to-one,

P
�
Z−1Y F0 �8� P

�
Z−1QT �

⇒
�
A∗

VYA � � 1 � F0 5 � B∗
V B � � 1 � F0 � Y F0

⇔ A∗
VYA 5 B∗

VB � Y � −1 � �
Conversely, since � A � 1 implies that any solution Y of

�
i � must be unique, it follows that this solution

will satisfy P
�
QT ��� Y F0.

Let Y be given by P
�
QT �b� Y F0. To derive the equivalence of

�
ii � with the condition QT �e� ,

we will use the fact that QT ∈ � ⇔ P0
�
ZnQT ��� 0 for all n � 0.

n � 1 : P0
�
ZQT �7� P0

� 
A∗
V Q 5 B∗

V � T �� A∗
V P0
�
QT � 5 B∗

VD� A∗
VYC 5 B∗

VD

Hence P0
�
ZQT �8� 0 ⇔ A∗

VYC 5 B∗
VD � 0. For n � 1, assume P0

�
Zn−1QT �8� 0. Then

P0
�
ZnQT �l� P0

�
Zn−1 
 ZQT �m�� P0
�
Zn−1 
 A∗

VQ � T � 5 P0
�
Zn−1B∗

V T �� A∗ � n−1 �
V P0

�
Zn−1QT � 5 B∗ � n−1 �

V P0
�
Zn−1T �� 0 5 0 �

Hence
�
ii � is both necessary and sufficient for the condition QT ∈ � to be satisfied. The fact that

we took Q to be an orthonormal basis representation implies condition
�
iii � , and condition

�
iv � has

already been derived. T
It is possible to construct solutions

�
AV � BV � for the four equations in proposition 6, and from

these solutions a realization V for the inner (isometric) factor V of T follows. Taking the k-th entry
of each diagonal in

�
i � – � iv � gives the recursive equations?@@@A @@@B

�
i � A∗

V > kYk Ak 5 B∗
V > kBk � Yk 9 1�

ii � A∗
V > kYk Ck 5 B∗

V > kDk � 0�
iii � A∗

V > kAV > k 5 B∗
V > kBV > k � I�

iv � Yk 9 1 full row-rank.

AV and BV can be computed from these equations starting at some point in time, once an initial value
for Y is known (this is discussed below). The recursion for Yk 9 1 is convergent because � A � 1. As-
suming Yk known, the computation of Yk 9 1, AV > k and BV > k requires four steps:�

a � :
A
\
V > k

B
\
V > k ; � :

YkCk

Dk ; ⊥ 
 for
�
ii �n��

b � Y
\

k 9 1 � 
A \ ∗V > k B
\ ∗
V > k � : YkAk

Bk ; 
 for
�
i �n��

c � :
Yk 9 1

0 ; � :
Q1 > k
Q2 > k ; Y

\
k 9 1 
QR-factorization of Y

\
k 9 1 for

�
iv �n��

d � :
AV > k
BV > k ; � :

A
\
V > k

B
\
V > k ; Q∗

1 > k �
8



where 
 · � ⊥ denotes the linear algebra operation of taking a minimal orthonormal basis of the full or-
thogonal complement of the column space of its argument (the basis vectors form the columns of the
result). Steps

�
a � and

�
b � determine Y

\
k 9 1, which can be too large: its kernel needs not be empty. In

step
�
c � , the kernel is determined as the span of the rows of Q2 > k and subsequently removed, which

yields Yk 9 1 and AV > k � BV > k.
With AV and BV known, we can proceed in two directions. It was noted in the previous section

that it will not always be possible to obtain an inner factor V : if ker
�
·T 44 ' 2Z−1 � /�oM , then V will be

isometric. V can be extended to an inner operator W �p
U V � , where U is the isometry satisfying� 2Z−1U∗ � ker
�
·T 44 ' 2Z−1 � . The resulting W is too large in the sense that U∗T � 0, but since * �W �8�* � V � , a realization W is readily obtained from AV � BV by requiring that W is unitary (theorem 2):

W � : AV CW

BV DW ; unitary ⇒

:
CW > k
DW > k ; � : AV > k

BV > k ; ⊥

A realization for U is obtained from the condition U∗T � 0, where U∗T evaluates as

U∗T � 
D∗
U 5 C∗

UQ � T� D∗
U 
D 5 BZ F0 � 5 C∗

UY F0� 
D∗
UD 5 C∗

UYC � 5 
D∗
UB 5 C∗

UYA � Z F0

(10)

Hence U∗T � 0 requires both C∗
UYA 5 D∗

UB � 0 and C∗
UYC 5 D∗

UD � 0, and in view of the above steps�
a � – � d � , it follows that�

e � :
CU > k
DU > k ; � : A

\
V > k

B
\
V > k ; Q∗

2 > k � :
CV > k
DV > k ; � : A

\
V > k

B
\
V > k ; ⊥ �

With V known, a realization for the outer factor T0 is obtained by evaluating T0 � V∗T in terms
of state space quantities. This yields, much as in equation (10),

T0 �q
C∗
VYC 5 D∗

VD � 5 
C∗
VYA 5 D∗

VB � F0

T0 � : A C
C∗

VYA 5 D∗
VB C∗

VYC 5 D∗
VD ; � (11)

An algorithm to compute V and T0 from a realization of T for finite n × n (block)-matrices is
given as algorithm 1. The body of the algorithm consists of the steps

�
a � – � e � that have been explained

above. One issue that remains to be discussed concerns the initialization of Y . In an algorithm for
finite matrices, we can take Y1 �r
 · � because the input space � for T (and hence V) has empty di-
mensions before time instant 1, so that a minimal realization for V has zero states before time instant
1. For the more general class of systems which are time-invariant before, say, point 1 in time, an ini-
tial value for Y is determined in the following way. Y1 now has to satisfy an equation rather than a
recursion: Y1 � Y0 � A∗

V > 0Y0A0 5 B∗
V > 0B0 � where, as before,

A∗
V > 0AV > 0 5 B∗

V > 0BV > 0 � I �
A∗

V > 0Y0C0 5 B∗
V > 0D0 � 0 �

We will show that the solution of these equations is the same as the classical solution of the inner-
outer factorization, and is determined by the zeros of the time-invariant part of T that are in the unit
disc. For convenience of notation, define y � Y0, a � A0, b � B0, c � C0, d � D0, α � AV > 0, β � BV > 0.
We will also assume that d (and hence T) is invertible, and that its zeros are distinct. Then

y � α∗ya 5 β∗b
0 � α∗yc 5 β∗d
I � α∗α 5 β∗β

⇔
β∗ � −α∗ycd−1

y � α∗y
�
a − cd−1b �

I � α∗α 5 β∗β � (12)
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In: {Tk} (an observable realization of T)
Out: {Vk} � { � T0 � k} (realizations of the isometric and outer factors)

Y1 ��
 · �
for k � 1 � · · · � nsttttttttttttttttttttttttttttttu

�
a � :

A
\
V > k

B
\
V > k ; � :

YkCk

Dk ; ⊥�
b � Y

\
k 9 1 � 
 A \ ∗V > k B

\ ∗
V > k � : YkAk

Bk ;�
c � :

Yk 9 1

0 ; � :
Q1 > k
Q2 > k ; Y

\
k 9 1 
QR-factorization of Y

\
k 9 1 ��

d � :
AV > k
BV > k ; � :

A
\
V > k

B
\
V > k ; Q∗

1 > k�
e � :

CV > k
DV > k ; � :

A
\
V > k

B
\
V > k ; ⊥

Vk � :
AV > k CV > k
BV > k DV > k ;�

T0 � k � :
Ak Ck

C∗
V > kYkAk 5 D∗

V > kBk C∗
V > kYkCk 5 D∗

V > kDk ;
end

Algorithm 1. Inner-outer factorization algorithm for T � VT0 (finite matrix case).

Bring in eigenvalue decompositions of α and
�
a − cd−1b � : α � rφr−1 ; a − cd−1b � sψs−1 � Then�

r∗ys �f� φ∗ � r∗ys � ψ �
Because both φ and ψ are diagonal matrices, the above expression shows that

�
r∗ys � must be a rect-

angular diagonal matrix (or a permutation thereof), and hence the diagonal entries of φ are equal to a
subset of the diagonal entries of ψ−∗. In view of the requirement α∗α � I −β∗β, φ can contain only the
entries of ψ−∗ that are smaller than 1. Because V must be of the highest possible system order while y
must have full row rank, φ is precisely equal to those entries. It remains to note that the entries of ψ−1 �
eig
�
a−cd−1b � −1 are equal to the zeros of T . This is because T−1 � d−1 5 d−1bz v I −

�
a − cd−1b � z w −1

cd−1

has poles equal to eig
�
a−cd−1b � −1. With the poles of the inner system thus determined, it is a straight-

forward matter (involving a Lyapunov equation) to compute α � β, and y from (12).

8. Closed-form expression for the outer factor realization

In the time-invariant setting, it is well known that the outer factor T0 of T can be written in closed form
in terms of the original state matrices {A � B � C � D} of T and only one unknown intermediate quantity,
which is the solution of a Riccati equation with {A � B � C � D} as parameters. One way to obtain the
Riccati equation is by performing a spectral factorization of the squared relation T∗T � T∗

0 T0. Ric-
cati equations can be solved recursively; efficient solution methods for the recursive version are the
so-called square-root algorithms, in which extra intermediate quantities are introduced to avoid the
computation of inverses and square roots. The algorithm to compute the realization for T0 given in
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(11) can be viewed as such a square-root algorithm: besides Y , it contains the intermediate quantities
AV and BV . We will show in this section how the corresponding Riccati recursion can be derived.

Theorem 7. Let T ∈ � be a locally finite transfer operator, let T � {A � B � C � D} be an observable
realization of T, and assume � A � 1. Then a realization of the outer factor T0 of T so that T0 � V∗T
is given by

T0 � : I
R∗ ; : A C

C∗MA 5 D∗B C∗MC 5 D∗D ;
where M ≥ 0 is the solution of maximal rank of

M � −1 � � A∗MA 5 B∗B − v A∗MC 5 B∗D w � D∗D 5 C∗MC � † v D∗B 5 C∗MA w (13)

and R is a minimal full range factor (ker
�
·R∗ �8�NM ) of

RR∗ � � D∗D 5 C∗MC � † �
provided the pseudo-inverse is bounded (see discussion below).

PROOF Let T0 be given by equation (11), so that CV and DV are given, according to steps
�
a � and�

e � , as :
CV

DV ; � : YC
D ; ⊥⊥ � : YC

D ; R � (14)

R ∈ � � ����� V � is a diagonal whose ‘tall’ matrix entries Rk make the columns of _ YkCk
Dk a isometric,

removing columns that are linearly dependent:

R∗ � D∗D 5 C∗MC � R � I� V � where M : � Y∗Y �
Let X � D∗D 5 C∗MC, then R∗XR � I implies RR∗ � X†, where

�
· � † denotes the operator pseudo-

inverse [11]. According to step
�
c � , � Y∗Y � � −1 � � � Y \ ∗Y \ � � −1 � , so that we obtain from step

�
b ��

Y∗Y � � −1 � � 
 A∗Y∗ B∗ � : A
\
V

B
\
V ; 
 A \ ∗V B

\ ∗
V � : YA

B ;� 
 A∗Y∗ B∗ �8x I −

:
YC
D ; RR∗ 
C∗Y∗ D∗ �ky : YA

B ;� A∗Y∗ � I −YCRR∗C∗Y∗ � YA 5 B∗ � I − DRR∗D∗ � B −
− A∗Y∗ � YCRR∗D∗ � B − B∗ � DRR∗C∗Y∗ � YA �

and with M � Y∗Y , M satisfies the equation

M � −1 � � A∗MA 5 B∗B − v A∗MC 5 B∗D w RR∗ vD∗B 5 C∗MA w �
This equation has more solutions M. As Y ∈ � � - V �$-j� has - V of maximal possible dimensions such
that ker

�
·Y �z�/M , the solution M of the Riccati equation must be positive and of maximal rank to yield

an outer factor T0. (Note that if D∗D is invertible, then M � 0 is always a solution, and yields T0 � T .)T
The above Riccati equation bears a close resemblance to the Riccati equation that was obtained

in the solution of the time-varying lossless embedding problem [12]. Indeed, it is well-known that the
spectral factorization problem and the lossless embedding problem are connected: a Cayley transfor-
mation on P

�
T∗T � yields a contractive scattering operator which can be embedded to an inner opera-

tor, from which the outer factor can be extracted. Initial conditions for M can be obtained as Mk0 �i
 · �
11



when T starts with zero states at some point k0 in time, or from a solution of the Riccati equation if T
is time-invariant before k0. Again, the solution requires eigenvalue decompositions, and must satisfy
the side conditions that M ≥ 0 and has maximal rank. Initial conditions for the spectral factorization
problem are investigated in [13].

In the above proof, we required the boundedness of the pseudo-inverse of
�
D∗D 5 C∗MC � in case

this operator is not uniformly positive (this is no issue when D∗D is uniformly positive). We will show
that if ran

�
·T � is closed, then the pseudo-inverse is also bounded. This condition is a generalization

of the time-invariant “no zeros of T are on the unit circle”. If ran
�
·T � is not closed, then � 2Z−1T0 is

dense in � 2Z−1, but not closed. In this case, T0 has a one-sided inverse which is unbounded. Similar
issues played a role in the solution of the embedding problem [12], where it was shown that, even if
R was unbounded, the products R∗ � D∗B 5 C∗MA � and R∗ � C∗MC 5 D∗D � remained bounded because
of range inclusions that are automatically satisfied. The same happens here.

Proposition 8. In theorem 7,
�
D∗D 5 C∗MC � † is bounded if ran

�
·T � is closed.

Whether the range is closed or not, M is bounded, as are the products R∗ � D∗D 5 C∗MC � and
R∗ � C∗MA 5 D∗B � .
PROOF If ran

�
·T0 � is closed, then T0 has a one-sided inverse which is again upper. It follows that

in this case ran
�
·DT0 � is closed, so that D∗

T0
DT0 � XRR∗X � XX†X � X � D∗D 5 C∗MC has closed

range and a bounded pseudo-inverse. Because T0 � V∗T , ran
�
·T0 � can be closed only if ran

�
·T � is

closed. If ran
�
·T � is closed, then

� � 2V � T0 is closed. But from V∗V � I it follows that � 2V �.� 2, so
that in this case ran

�
·T0 � is closed, too.

Because the realization of T is observable, it was argued in proposition 6 that Y (and hence M) is
bounded. From the first equality in (14) we see that _ CV

DV a is obtained by taking an orthonormal basis

in the closure of the range of _ YC
D a . R is unbounded if the latter range is not closed. Nonetheless,_ CV

DV a is well-defined and isometric, and DT0 � R
�
D∗D 5 C∗MC �h� _ CV

DV a ∗ _ YC
D a is bounded. In the

same way, it is shown that CT0 � R∗ � C∗MA 5 D∗B �8�{_ CV
DV a ∗ _ YA

B a is bounded. T
As is well known, Mk 9 1 in the Riccati recursion can be computed more efficiently using square-

root algorithms (see e.g., Morf [14] for a list of pre-1975 references). In such algorithms, the square-
root Y of M is computed, rather than M itself. The square-root algorithm that corresponds to the above
equations is: find Wk, unitary, such that the following product has zeros in the indicated positions:

W∗
k

:
Yk

I ; : Ak Ck

Bk Dk ; � stu Yk 9 1 0
0 0

∗ R†
k

|~}� �
Given Yk, Wk can be obtained by a simple QR-factorization. Using the fact that Wk is unitary, mul-
tiplying the above equation with its transpose shows that two of the three non-zero block-entries of
the right-hand side follow as Yk 9 1 and R†

k . In fact, Wk turns out to be precisely equal to the realiza-
tion of the inner factor W as determined in the previous section. Initial values of Y can be obtained as
discussed earlier.

9. Inner-outer factorization examples

We finish this paper with some example results of the inner-outer factorization algorithm on finite
(4 × 4) matrices. In the finite matrix case, interesting things can occur only when T is singular or
when the dimensions of T are not uniform.
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1. The algorithm, applied to

T � stttu 0 1 4 6
0 0 2 5
0 0 0 3
0 0 0 0

|~}}}�
(the underlined entries form the 0-th diagonal) yields an almost trivial isometric factor V or
inner factor W (the dots correspond to columns or rows with vanishing dimensions):

V � stttu · 1 0 0
· 0 1 0
· 0 0 1
· 0 0 0

|~}}}� W � stttu · 1 0 0 0
· 0 1 0 0
· 0 0 1 0
· 0 0 0 1

|~}}}� # � W � 
 1 1 1 1 �
#� W � 
 0 1 1 2 �
# - W � 
 0 1 1 1 �

It is seen that V is not inner, because T is singular. W is the inner extension of V . The only
effect of W is a redefinition of time intervals: W acts as a shift operator. T0 � W∗T is

W∗T � stttttu · · · ·
0 1 4 6
0 0 2 5
0 0 0 3
0 0 0 0

|~}}}}}� # � T0 � 
 0 1 1 2�
#� T0 � 
 1 1 1 1�

The multiplication by W∗ has shifted the rows of T downwards. This is possible: the result T0

is still upper. V∗T is equal to W∗T with its last row removed.

2. Take

T � stttu 0 1 4 6
0 1 2 5
0 0 1 3
0 0 0 1

|~}}}� # � � 
 1 1 1 1 �
#� � 
 1 1 1 1 �
# - � 
 0 1 2 1 �

Hence T is again singular, but now a simple shift will not suffice. The algorithm computes W
as

W � stttu · −0 � 707 0 � 577 0 � 367 0 � 180
· −0 � 707 −0 � 577 −0 � 367 −0 � 180
· 0 0 � 577 −0 � 733 −0 � 359
· 0 0 −0 � 440 0 � 898

|~}}}� # � W � 
 1 1 1 1 �
#� W � 
 0 1 1 2 �
# - W � 
 0 1 1 1 �

T0 � W∗T � stttttu · · · ·
0 −1 � 414 −4 � 243 −7 � 778
0 0 1 � 732 2 � 309
0 0 0 −2 � 273
0 0 0 0

|~}}}}}� # � T0 � 
 0 1 1 2 �
#� T0 � 
 1 1 1 1 �

V is equal to W with its last column removed, so that T0 � V∗T is equal to the above T0 with its
last row removed.

3. In the previous examples, we considered systems T with a constant number of inputs and out-
puts (equal to 1), for which V /� I only if T is singular. However, a non-identical V can also
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occur if the number of inputs and outputs of T are varying in time. Thus consider

T � stttttu 1 � 000 0 � 500 0 � 250 0 � 125
1 � 000 0 � 300 0 � 100 0 � 027

0 1 � 000 0 � 500 0 � 250
0 0 1 � 000 0 � 300
· · · ·

|~}}}}}� # � � 
 2 1 1 0 �
#� � 
 1 1 1 1 �
# - � 
 0 1 2 1 �

V � stttttu −0 � 707 0 � 099 0 � 025 −0 � 699
−0 � 707 −0 � 099 −0 � 025 0 � 699

0 0 � 990 −0 � 005 0 � 139
0 0 0 � 999 0 � 035
· · · ·

|~}}}}}� # � V � 
 2 1 1 0 �
#� V � 
 1 1 1 1 �
# - V � 
 0 1 1 1 �

In this case, V is itself inner. The outer factor T0 follows as

T0 � V∗T � stttu −1 � 414 −0 � 565 −0 � 247 −0 � 107
0 1 � 010 0 � 509 0 � 257
0 0 1 � 001 0 � 301
0 0 0 −0 � 023

|~}}}� # � T0 � 
 1 1 1 1 �
#� T0 � 
 1 1 1 1 �

An interesting observation from these examples is that the inner-outer factorization of finite ma-
trices T is equal to the QR-factorization of T when it is considered as an ordinary matrix without block
entries.

10. Concluding remarks

We have derived, in section 7, a simple algorithm to compute realizations of the (left) inner and outer
factors of a realization of a given system T . The computations are unidirectional: starting from an
initial value of a quantity Yk, state matrices are computed recursively from that point on. The initial
value can be obtained straightforwardly in cases where the state dimension of T vanishes before some
point in time, or where T is time-invariant before a point in time. From the algorithm, it can be ob-
served that the number of states in the inner factor (the number of ‘zeros inside the unit disc’) is at
each point k always less than the number of states of T , and cannot change at point k if Dk is square
and invertible at that point, unless the number of states of T decreases at that point. It can increase if
Dk is singular, or if the number of inputs increases at that point, and can decrease if the state dimension
of T decreases, or if the number of inputs decreases. For finite matrices, the inner-outer factorization
reduces to a QR-factorization.

The outer factor can be computed as a by-product of the same algorithm, or alternatively via a
Riccati-type recursive equation.

This research was supported in part by the commission of the EC under the ESPRIT BRA pro-
gram 6632 (NANA2).
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