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An inner-outer factorization theorem for linear time-varying systems is obtained via an exten-
sion of the classical Beurling-Lax theorem to the time-varying context. This provides characteristic
features of the inner factor, which can be used to compute realizations of the inner and outer factors
from arealization of the given transfer operator. The resulting algorithm is unidirectional in time.
The outer factor can also be obtained by an expression involving a Riccati recursive equation.

1. Introduction

Recently, there has been some interest in computing inner-outer factorizations of time-varying sys-
tems, asabasic step in robust control applications such asthe design of feedback controllers and sen-
sitivity minimization [1, 2]. For time-invariant single-input single-output systems, the inner-outer
factorization is a factorization of an analytical (causal) transfer function T(2) into the product of an
inner and an outer system: T(z) =V(2)To(2). Theinner part V(z) isanalytica (i.e., hasits poles out-
side the unit disc) and has modulus 1 on the unit circle, whereas the outer part To(2) isanaytical and
may have zeros only outside the unit disc. For example, (with |a|,|B| < 1)
, z-a” _z-a" 1-az
1-Bz

=~ 1oz’ 1-Bz’

Theresulting outer factor issuch that itsinverseisagain astable system, provided thereare no zeroson
theunit circle. For multi-input multi-output systems, the definition of the outer factor ismore abstract
(seee.g., Halmos[3]) and takesthe form of arange condition: To(2) isouter if To(2)H2 = HZ2, where
H,2 is the Hardy space of analytical m-dimensional vector-valued functions. A generalization of this
definition applies in the time-varying context.

The existence of inner-outer factorizations in any context is more or less fundamental to ana-
Iytical Hilbert spaces. Abstract mathematical formulations of it which also apply to the time-varying
setting can befoundin[4, 5]. Inthis paper, we connect the abstract theory to a computational scheme
acting on state space readlizations. One of the aspects of time-varying systemsisthat the state dimen-
sion can vary, and as aresult, the number of ‘zeros’ in the inner and outer factors can vary, too. The
theory in this paper handles such variations automatically. Full details can be found in [6].

An application of the inner-outer factorization is the computation of inverse systems: if T is
acausal and invertible system, then its inverse is not necessarily causal: the inversion might have
introduced an anti-causal part. This effect is known as a dichotomy; it isin general not atrivia task
to determine the causal and anti-causal parts of T~1. With the inner-outer factorization, however, the
inverse of the outer factor isagain causal, whereas the inverse of the inner factor is fully anti-causal,
and determines which part of the inverse outer factor is made anti-causal. This application of the
inner-outer factorization plays acrucial role in e.g., the computation of optimal feedback controllers
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2. Notation

We adopt the notation of [7, 8, 9, 6], so that the description of it in this paper will beterse. Fori =
-+ =1,0,1 ---, let M; be a separable Hilbert space. We will usually take M; =M with M; afinite
number, so that M; isafinite vector space, but we will haveto allow M = £, in section 5. The space
M = x Mox Mqx---isthe space of (non-uniform) sequences u = [---,Up, U, -+ with entries
in M;. Such sequences will represent the signals in our systems. If al M; are finite, then we call
M locally finite. Some (or most) of the dimensions may be zero, and in this way finite non-uniform
vectors are also included in the formalism. The space ¢3* is the space of sequencesin M with finite
2-norm. The space X' (M, ) isthe space of bounded operators T : y = uT acting from £5* into f’z\f .
An operator in such a space has an (infinite) matrix representation where thei j-th entry is an operator
M; - Nj (an M; xNj matrix). The spaceld 0 X consists of bounded operators T which are upper:
Tij=0(i > j). Likewise, we define £ O & to be the space of lower operatorsand D = U n L to be
the space of diagonals.

In X, the causal bilateral shift-operator Z is defined via [---,, Ug,++]Z = [-++,[U-1] Uo, -]
(the square identifies the position of the O-th entry). If u 0 M, then uz O MY, where M isequal
to the space sequence M, shifted over one position. The k-th diagonal shift of an operator A into the
South-East direction is denoted as AK) = ZKAZK,

We shall need Hilbert-Schmidt spaces X», Uz, L2, D2, consisting of those elementsof X, U, L,
D for which the norms of the entries are square summable. These spaces are Hilbert spaces for the
usual Hilbert-Schmidt inner product. They can be considered asinput or output spacesfor our system
operators: if T isabounded operator £ — fz\f , then it may be extended as a bounded operator x> —
X5 by stacking sequencesin £, to form elements of X». Thisleadsfor exampleto the expressiony =
uT, whereu 0 4o(CZ, M) andy 0 X,(€Z , \) [8]. Wewill usethe shorthand X3 for x(CZ, M),
but continue to write X if the precise form of M isnot of interest.

We define P as the projection operator of x> onU,, Py as the projection operator of X on Do,
and P, as the projection operator of A, on L>Z71. 1f X O X», then its k-th diagonal is defined in
terms of Py by Xjq = Po(Z*X), and X = 3 Z*Xyq. The domain of the projector Py can be extended
to operatorsin X.

A subspace H of X3 iscalled (eft) D-invariantif DA O for all D O D, and shift-invariant if
ZH OH. A D-invariant subspace #H fallsapartinto‘slices' (rows) Hx suchthat H = ---xHoxHy X+,
where each Hy is a subspace in £9* (the k-th row of X3") [7, 9, 6]. Let dy be the dimension of Hy,
then we call d = [dk]Z,, the sequence of dimensionsof : d = s-dim#. If all di arefinite, then A is
said to be locally finite. Let By =Cc% (Bk=4if d¢ =), andlet B=---xByx---. Each Hx hasa
basis representation Fy such that Hy = ByFk, where the rows of Fy are the individual basis vectors.
Likewise, a D-invariant subspace H has a basis representation F such that H = D,F [7], where the
k-th (block)-row of F is Fx. The diagonal operator Ar := Po(FFD) = diag[F«Fi]%, plays the role
of Gram operator. If Ar isuniformly positive (i.e., boundedly invertible), the basis representation is
called strong, and the projection operator onto # isin this case given by Py (-) = Po(-FI)ALF. If
Ar =1, then F is called an orthonormal basis representation.

3. Time-varying systems

Anoperator T OU(M,N) iscalled acausal transfer operator: it maps sequencesu [ £3" to sequences
y=uT O£ inacausal way. When T isviewed as an operator from X" to X3, then because X, =
L5771 0U,, itsaction on £,Z7 can be decomposed into two operators Hr and K

T £oZL = Ky + -Hr: ‘Hr = P( 'T|,CZZ‘1); Ky = PLZZZ‘l( 'T|£Zz—1)
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Hr is called the Hankel operator of T. The range and kernel of Hr and HTD are D-invariant subspaces
with important system-theoretic properties[7]:

K(T) ker(-Hr) {UDO Lzt PUT) =0}
H(T) ran(-HyY) = P, UsTH)
Ho(T) = ran(-Hy) = P(L£2Z7T)
Ko(T) = ker(‘HY) = {YOU:P(YTY) =0}.

These subspaces provide decompositions of £,Z* and > as

K = £27
’CO = u27

H O
Ho O
(the overbar denotes closure). #(T) is called the (natural) input state space, and Ho(T) the (natural)
output state space of T. If these subspaces are locally finite, then they have the same s-dimension,
and T issaid to be locally finite. In this case, one can obtain minimal realizations of the type

1) _
UT=y o Mg = XaA+UpB T_|AC (1)
Y[i] = X[i]C-|'U[i]D B D
where
A O D(B,B™), C O D(BN),

)
B O DM,B™), D O DWM,N). @)

The space sequence B is called the system order of the realization. Let Ay be the k-th entry of the
diagonal operator A, and likewise for By, Cy, Dk. If Bx = Cdk, then Ay is a dy x dyy1 matrix, By :
My X dk11, Ck : di X Nk, Dk : Mg % Nk, and all dimensions are time-varying. The realization equations
(1) areequivalent to
Xikrl1 =  XikAx+ UikByk
Yik = XikC«+ UixDk.

T isaredlization of T if its entries Tij or diagonals Tj; are given by

0, i> ] 0, i<0
Tj = ¢ Di, i=] - Ty =1 D, i=0 (3)
BiA1--AjaCj,  i<]. BOAID...AC, i>0

Let Za denote the spectral radius of the operator AZ. If /a < 1 (therealization is said to be strictly
stable), then (I -AZ) isinvertible, and T = D 4 BZ(l —AZ)™'C. In this case, the operators F and Fo
defined by

F = (BZ+BZAZ+BZ(AZ)?+ )"

4
Fo := C+AZC+(AZ)>C+--- )

are bounded operatorsin £Z and ¢/, respectively, and given by F = (BZ(1-AZ)™) and Fo = (I -
AZ)71C, respectively. In case /a < 1, then F and Fy are bounded operators on Dy, and can be defined
via(4) on adense subset of X». Theredizationiscalled (uniformly) controllableif the controllability
Gramian A := Po(FFY) is (uniformly) positive, (uniformly) observableif the observability Gramian
AV PO(FOFE') is(uniformly) positive, and minimal if it is both controllable and observable. Equiv-
aently, arealizationiscontrollableif -F\Dz is one-to-one (injective), and observableif -FO\D2 isone-
to-one. For minimal realizations, F and Fq are basisrepresentationsof (T) and Ho(T), respectively:

H(T) = D5F, Ho(T) = D5Fo.



More in genera, for a controllable realization, Ho(T) O D2Fp, and for an observable realization,
H(T) O D,F. We mention the following properties, which are valid for 4 < 1[7, 6]:

T = D+ BZF T = DU4+CHF Ae=1 O AA+BB =1
®)

{Fo — C+AZF {ZF = AF+B- {/\Fozl 0 AA%+ccl = |

4. State space properties of inner systems

A system V is an isometry if VWV = |, a co-isometry if VBV = |, and unitary if both VWV = | and
VRV = 1. A systemisinner if it isunitary and upper. A realization V is called unitary (or lossless) if
VVH=1and VBV = I, where

V = (6)

Ay Cy
By Dv |’

Proposition 1. LetV OU. Then
Wo=1 0 Ko(V) = UV O ker(-V,,).
If VW= and ker(-VH,, ) = 0 thenV isinner. Dually,
VV =1 0 K(V) = L2V Oker(-V], 1)
IfVV =1 andker(-V|, 1) =0, thenV isinner.
PROOF LetVV"= 1. BecauseV is an isometry, the subspaces X,V = ran(V), £2Z7V and UV are

closed, and XV = L2V OUV. UV 0 Ko, because P 71 ([U2V] V) = 0. Theremaining subspace
Koo U,V consists of elements

KooUN = {XOUz:Pp,z4(XVH) =0 0PXVH) =0}
= {XOU:XV'=0}
ker(-v,,)-

Hence Ko = UpV O ker(-VH,, ).
If ker(-V"],,) =0, then X DU, XV"=0 0O X =0. Thisimplies

XOZ"Uy, XV9=0 O X=0 (dlnOz),

since (Z"X)VP=0 « XV"=0. Lettingn - o yieldsker(-V") = §, so that V has a left inverse,
which must be equal to the right inverse VE. HenceV™V = | andV isinner. Dual results hold in case
Vi =1. O

Unitary realizations and inner systems are closely connected: one can show that alocally finite
inner system has a unitary realization, and the converseistrue at least when therealization is strictly
stable. More precisely, we have the following theorem.

Theorem 2.  LetV given by equation (6) be a state realization of a bounded transfer operator V [
UM, N), where M and N arelocally finite spaces of sequences. Let Ag and Ag, be the controlla-
bility and the observability Gramians of the given realization. If £5, < 1, then

ViV =| O VWV =1, Ag=I, @
vhl=1 0 Wl=1, Ag=I.
IfﬂAvsl,then
ViV =1, Ag=1 O VR =1,
VWE=1, Agp,=1 O  WU=I.



PROOF A proof for the case £, < 1 appearsin [9]. The proof for the generalizationto /4 = 11is
omitted in this paper. O

5. Beurling-L ax theorem

Theorem 3.  All DZ-invariant subspaceslcoinué\/ havetheform o = U3V, whereV OU (M, N)
isan isometry (VWP =1).

PROOF Let Rg= Ko ZKy. ThisisaD-invariant subspacein Z,{é‘/. We can assumeit is non-empty,
for else Ko = ZKo = Z"Kp for dll n= 0, and since X O U, O limy_, » P(Z7"X) = 0, thisimplies that
Ko = 0, and thereis nothing to prove. Likewise, defineRp = Z"Ko© Z"1Ko. ThenRp = Z"Ro, and
Ko=RoOR:0OR,0O---.

Supposes-dimR o = M, and definethe sequence of Hilbert spaces M to haveentries M =C M
(My = L7 if Mg = ). Then there exist isometries\Vi : My - (Ro)k suchthat (Ro)x = My\Vk. LetV
be the operator whose k-th block-row is equal to V. V is an orthonormal basis representation of R,
asin section 2, such that

Ro=DV, Po(W5) =1.

Then Ry = DoZ"V. Because Ri OR;j (i#]), it followsthat D1Z"V 0D,V (n>1) for al D1» O Do,
i.e.,
Po(Z"'VWY) = 0
Po(W"Z™ = 0
so that VVP = I: V is an isometry. The orthogonal collection { D,Z"V} 0 Ko (n = 0), and together
spans the space U,V. Hence Ko = {D2Z"V} = U,V. The factor V is unique up to aleft diagonal
unitary factor. O

The above proof isaong the lines of the proof of Helson [3, §V1.3] for thetime-invariant Hardy
space setting. This proof was in turn based on the work of Beurling for the scalar (SISO) case and
Lax for the extension to vector valued functions. A remaining question is to give conditions under
whichV is actually unitary. For time-invariant systems, this condition isthat Ko is“full range” [3].
Systems T for which Ko(T) isfull range have been called “roomy” in [10]. Systems of finite degree
areroomy: if Ho(T) isfinitedimensional, thenits complement Ko(T) isautomatically full range. For
time-varying systems, only less definite results can be obtained, which we omit in this paper.

Note that, in the above theorem, M can have components My which are infinite dimensional,
even if A islocaly finite, depending on Ko. In our application of the theorem in the next section,
however, K is such that M will be locally finite automatically, starting from locally finite spaces.

Corollary 4. 1fV OU(M,N) isan isometry, then there exists an isometry U O U(My,N') such
that ker(-V",,) = Uy"U. The operator

W = v
Vv
isinner, with Ho(W) = Ho(V).
PROOF If V isan isometry, then (proposition 1)
W = Ho(v) O ker(-VT,,0) O UV, ®

where K, := ker( -VD|u2) is shift-invariant, so that according to theorem 3 there exists an isome-
try U OU(My,N) such that £ = ué"‘UU. In view of proposition 1, W is inner if WW” =1 and
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ker( -WD\M = (. WW = | requiresUV" = 0, which is true because 4V OUU. Hence UoW =
UU O UV, and since Ho(W) 0 Ho(V), we must have (from equation (8)) that Ho(W) = Ho(V) and
ker(-W",, ) = 0. HenceW isinner, and #o(W) is closed. O

6. Inner-outer factorization

We will say that an operator To O is (left) outer if
UsTo = Uy. 9)

Other definitions are possible (see e.g., Arveson [4]); the above definition is such that ran(-Tp) =
XoTo = X, so that ker(-Tg) = 0 and Ty has an algebraic |eft inverse which is upper (it can be un-
bounded if X>Tg isnot closed). A factorization of an operator T into T = TV, where Ty is outer and
V isinner (or an isometry: VVI = 1) is called an outer-inner factorization. This factorization can be
obtained from theorem 3 by defining Ko to be Ko = U, T. The closures here and in (9) are necessary
in caseswhere T is not a closed subspace. This happens when there are ‘ zeros on the unit circle’,
for examplewhen T = | —Z. The existence of inner-outer factorizationsis established in the follow-
ing theorem. A more general proof (in the context of nest algebras which specializes to the current
setting) is given by Arveson [4].

Theorem 5. LetT OU(M,N). Then T hasa factorization
T = ToV

whereV OU(My,N) isanisometry (VW= 1), To DU (M, My) isouter, and My O M (entrywise).

PROOF Define Ko = U>T. Then Kq is a D-invariant subspace which is shift-invariant: ZKq 0 Ko.
According to theorem 3, there exists a space sequence My, and anisometric operator V OU(My,N)
such that UMT = U2V, By construction, UMT = D)™V O ZUMT with My of minimal dimen-
sions. Because also Uy T = [D9* O ZUM]T, but DT is not necessarily orthogonal to Z/MT, it
followsthat My O M. In particular, the entries of My arefinite vector spaces.

DefineTo = TVE. ThenlsTo = Us TVE = U TVE = UVVD = Uy, so that Ty isouter. It remains
toprovethat T=TpV,i.e, T= TVHV. Thisisimmediateif V isinner. If V isnot inner, then corollary
4 ensures the existence of an isometry U such that

Uy = Ho(V) O UU O UV,

where K 1= UoU = ker( -VD\UZ), andW = [\L;] isinner. ThenU"U +V™ =1,VU"=0,and T =
TV < T(1-VV) =0 « TU™ =0.Butt,TU"O0UVU = ), whichimpliesTU"= 0. Hence
T=ToV. -

One can show that, in theorem 5, V isinner if and only if ker(-T5) = (. If V isnot inner, then

the extension W of V in theorem 5 isinner, and such that Ho(V) = Ho(W), but the resulting factor
To = TW based on W is not precisely outer according to the definition in (9):

UsTo = U TWE = UVWE = 1[0 1]

so that this Ty reaches only a subset of I/, and mapstherest to O.

The inner-outer factorization is based on the identification of a subspace Ko = T as Ko =
UoV. The complement in 4 of thisspaceisHo(V) O K¢ andis characterized by the elements X O U
satisfying Po(U2TXY) = 0, that is, XTZ O 4,. Hence

Ho(V) O Ky = {X DU : XTPO L2271} = {X DUy : P(XTH) =
6



In this expression, K¢ = UU = ker(-V"|,, ) according to its definition. We now show that also Ko =
ker( -TD\UZ) ={X OU,: XT"=0}. Indeed, if X O K§, then X = X;U for some X; [J U, and because
UTY=0, itfollowsthat XTP= 0. Conversely, if XT"=0, then XV"T}'= 0, and becauseker (- T§) = 0,
it follows that XV = 0 so that X [ Kg. Hence K = ker(-T,, ).

7. Computation of the inner-outer factorization T =VTy

Let T OUM,N), with M, N locdly finite spaces of sequences. In this section, we work with a
dual factorizationof T: T = VT (for different V and Tp), where Tg is‘right outer’: L‘ZZ‘lTOD: L7712
(or Tolda = Us), and where the left inner (isometric) factor V satisfies VRV = | and is obtained by
identifying the subspace KC(V) = £,Z VP with £,Z1TE. For this factorization,

HNV)OK' ={UDLZH:UTOU}, K = ker(-T|,54)-
We have defined in section 3 the decomposition of T, restricted to £,Z 7, as
'T‘czz-lz Kr + -Hr, 'KT:P[,zz‘l('T|£2Z‘1)'

It isthus seen that (V) isthe largest subspacein £,Z for whichH(V)Kt = 0 and whichis orthog-
onal to K'. This property provides away to compute the inner-outer factorization.

Let Q bean orthonormal basisrepresentationof 7 (V): H (V) = D,Q, andlet Fo beabasisrepre-
sentation of Ho(T), or more generally, asubspaceinif, containing Ho(T). Thefact that H(V)Kt =0
trandatesto the condition QT 0. Because (V)T 0 Ho(T), wemust havethat QT = YF, for some
bounded diagonal operator Y, which plays an instrumental role in the derivation of a state realization
for V. It remains to implement the condition (V) O X'. Supposethat Q has a component in K/, so
that DQ U K, for some D 0 D,. Then, since K’ = ker(-T|, ),

DQUK' < DQT=DYFg=0 - DO0Oker(-Y).

Hence H (V) = D»Q can be described as the largest subspace D,Q in £,Z7 for which QT = YFg
with ker(-Y) = 0.

If B isthe state sequence spaceof T, and By isthe state sequence spaceof V, thenY O D(By, B).
The condition ker(-Y) = @) impliesthat By O B (pointwise), so that the state dimension of V isat each
point in time less than or equal to the state dimension of T at that point.

Proposition 6.  Let T (U bealocallyfinitetransfer operator, let T = { A, B,C, D} bean observable
realization of T, and assume /5 < 1. LetV be a left inner (isometric) factor of T so that To = VET
isright outer. Then the pair (Av,By) that corresponds to an orthonormal basis representation Q of

H (V) satisfies

i) AJYA+BB = YD
(i) AJYC+B/D = 0
(i) AVAy +ByBy = |
(iv) ker(:Y) = 0.

for some bounded Y (1 D, and conversely, all solutions (Ay, By) of these equations give basis repre-
sentations of H(V).

PROOF Let Fo = (I -AZ)™C. Because Ho(T) O D,Fo, we have P(QT) = YFq for some bounded
Y O D, and we will show that Y is given by a solution to equation (i). Indeed, let Y be defined by
P(QT) = YFo. We will apply the relations ZQ = AJQ + B; Fg = C+ AZFg, T = D + BZF (cf.
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equation (5)). Firstly, P(ZYY Fo) = YWP(Z1Fg) = (YA)D Fo. On the other hand,

AYP(ZIQT) = P(ZHANQIT)
= P(Z'ZQ-BT)
= P(@QT) - 8,78t
= YFo - B/VBWF,.

Hence, because observability meansthat - FO\D2 iS one-to-one,

P(Z1YFo) = P(Z71QT)
0 (AYYAWFy + (BB)MFo = YFo
= AJYA + ByB = YU,
Conversely, since/a < 1impliesthat any solution'Y of (i) must be unique, it followsthat thissolution
will satisfy P(QT) =Y Fo.
LetY begivenby P(QT) =Y Fo. To derive the equivalence of (ii) with the condition QT =,
we will use the fact that QT DU < Po(Z"QT) =0foral n> 0.

n=1:  Po(ZQT) = Po([AJQ+By]T)

A/Po(QT) +B,D
AJYC+B{D

Hence Po(ZQT) =0 = AJYC+ByD = 0. For n > 1, assume Po(Z"1QT) = 0. Then

Po(Z"QT) = Po(Z"1[zQT))
Po(ZHAJQIT) + Po(Z™*ByT)
_ I:(n—l)P 7Z-10T [(n‘l)P Zn-1T1
= Ay TPo(ZTTQT) + By TPo(ZTT)
0+ 0.
Hence (ii) is both necessary and sufficient for the condition QT O U to be satisfied. The fact that

we took Q to be an orthonormal basis representation implies condition (iii), and condition (iv) has
aready been derived. O

It is possible to construct solutions (Ay, By) for the four equations in proposition 6, and from
these solutions arealization V for the inner (isometric) factor V of T follows. Taking the k-th entry
of each diagonal in (i)—(iv) givesthe recursive equations

(i) AakYkAk + BakBk = Yk+l
(i) AakYka + Baka =0
(i) A Avk+ByBuk = |
(iv) Yit1 full row-rank.

Ay and By can be computed from these equations starting at some point in time, once aninitial value
for'Y is known (thisis discussed below). The recursion for Yk, 1 is convergent because /p < 1. As
suming Yy known, the computation of Y 1, Avk and By x requires four steps:

O
A\I/,k _ YiC« ..
(@) [ 5 ] - | o ] for (i)
(b) Yeor = (A B [ YkB/:k ] [for (i)]
(c) l Ykgl ] [ 8;:: N [QR-factorization of Y, , for (iv)]
Avk A\I/,k 0
(d) [ B [ B\ ] Qtk:




where [ ]Y denotes the linear algebra operation of taking aminimal orthonormal basis of the full or-
thogona complement of the column space of its argument (the basis vectors form the columns of the
result). Steps (a) and (b) determine,’, ;, which can be too large: its kernel needs not be empty. In
step (c), the kernel is determined as the span of the rows of Q. x and subsequently removed, which
yieldsYk+1 and A\/7k, B\/’k.

With Ay and By known, we can proceed in two directions. It was noted in the previous section
that it will not always be possible to obtain an inner factor V: if ker( 'T|zzz-1) +0, then V will be
isometric. V can be extended to an inner operator W = [U V], where U is the isometry satisfying
L2 = ker(-T|, ;). TheresultingW istoo large in the sense that U T = 0, but since H (W) =

H(V), arealization W isreadily obtained from Ay, By by requiring that W is unitary (theorem 2):

0
Ay GCw . Gk Avk
W = unitar a ' = '
B\/ DW ] y [ DW,k ] BV,k
A redlization for U is obtained from the condition UT = 0, where UET evaluates as
UT = [Dj+CyQIT
— DJ[D+BZFq+CHYFo (10)

= [DGD+C{YC]+ [DyB+CHYAIZFg
HenceU"T = O requiresboth CjYA+ DB = 0and CjYC+ DD = 0, and in view of the above steps

(a)—(d), it follows that
(e [m]-[&]
By k 2k Dvk Bk

Cu x
e bl
(® [ Doy

With V known, arealization for the outer factor Ty is obtained by evaluating To = VT interms
of state space quantities. Thisyields, much asin equation (10),

To = [CYC+DYD] + [C/YA+ D{B]Fo

A c ] (12)
CYA+D{B CJyYC+D{D |-

An algorithm to compute V and T from arealization of T for finite nx n (block)-matricesis
givenasalgorithm 1. The body of the algorithm consistsof the steps (a)—(e) that have been explained
above. Oneissue that remains to be discussed concerns the initialization of Y. In an agorithm for
finite matrices, we can take Y1 = [ -] because the input space M for T (and hence V) has empty di-
mensions before time instant 1, so that aminimal realization for V has zero states before time instant
1. For the more general class of systemswhich are time-invariant before, say, point 1intime, anini-
tial value for Y is determined in the following way. Y1 now has to satisfy an equation rather than a
recursion: Y1 = Yp = AE[OYOAO—}— B&OBO, where, as before,

AIaoAV,O + B\?’OBV,O =1,
AaoYOCO + B\%Do = 0.

We will show that the solution of these equations is the same as the classical solution of the inner-
outer factorization, and is determined by the zeros of the time-invariant part of T that are in the unit
disc. For convenience of notation, definey = Yo, a= Ag, b= Bg, ¢ =Cy, d = Do, a = Ay, B = Bvo.
We will aso assumethat d (and hence T) isinvertible, and that its zeros are distinct. Then

To =

y = aya+ph Y = -aycd?
0 = a%c+ pHd - y = aYy(a-cd?b) (12)
I = o+ BB | = oo+ BB.



In: {T} (an observablerealization of T)
Out:  {Vi},{(To)k} (redlizations of the isometric and outer factors)

Y1 =]
fork=1,---,n
[ / i
k k\~k
a b
YAk
o v - ]
Y, [ o
(©) [ karl] = 8;‘;] Yii1 [QR-factorization of Y, ,]
Avk =A\I/k ]
d ' = =
O I R A
- O
CVk y k
e ' = )
( ) [Dv’k i /7k
Ve = Avk Cuk
| Buk Dk
(Tok = Ax Ck
i I CUkYiAc+ Dy Bk CyjYCi+ Dy Dk

end

Algorithm 1. Inner-outer factorization algorithm for T = VT (finite matrix case).

Bring in eigenval ue decompositionsof a and (a—cd™b): a =r@r™; a-cd™b = sps™. Then

(rys) = ¢{rys)y.

Because both ¢ and ( are diagonal matrices, the above expression shows that (rys) must be a rect-
angular diagonal matrix (or a permutation thereof), and hence the diagonal entries of g are equal to a
subset of the diagonal entriesof Y. Inview of the requirement a o = | - BB, ¢ can contain only the
entriesof P~ that are smaller than 1. BecauseV must be of the highest possible system order whiley
must havefull row rank, @isprecisely equal tothoseentries. It remainsto notethat theentriesof ™ =
eig(a-cdb)* areequal tothezerosof T. Thisisbecause T =d ™ +d bz [l - (a-cdb)Z] ed?
has polesequal to eig(a—cd~*b)™. With the poles of theinner system thus determined, it isastraight-
forward matter (involving a Lyapunov equation) to compute a, 3, and y from (12).

8. Closed-form expression for the outer factor realization

Inthetime-invariant setting, itiswell known that the outer factor To of T can bewrittenin closed form
in terms of the original state matrices{ A, B,C,D} of T and only one unknown intermediate quantity,
which is the solution of a Riccati equation with { A,B,C,D} as parameters. One way to obtain the
Riccati equation is by performing a spectral factorization of the squared relation THT = TODTO. Ric-
cati equations can be solved recursively; efficient solution methods for the recursive version are the
so-called sguare-root algorithms, in which extra intermediate quantities are introduced to avoid the
computation of inverses and square roots. The algorithm to compute the redlization for Tg given in
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(12) can be viewed as such a square-root algorithm: besidesY, it contains the intermediate quantities
Ay and By. Wewill show in this section how the corresponding Riccati recursion can be derived.

Theorem 7. Let T OU bealocally finite transfer operator, let T = { A,B,C, D} be an observable
realization of T, and assume /5 < 1. Then a realization of the outer factor Tp of T so that To = VT
A C

isgiven by
|
To = [ RD] CMA+DB C™MC+D™D

where M = 0 is the solution of maximal rank of

MY = A'MA+ BB - [A'MC + BD] (DD +C"MC)" [D"B+CMA| (13)
and Risa minimal full range factor (ker(-RY) = 0) of
RRY = (D'D+CHMO)T,

provided the pseudo-inverse is bounded (see discussion below).

PROOF Let T be given by equation (11), so that Cy and Dy are given, according to steps (a) and

(6), as
o | _
5 -

RO D(N, M) is adiagonal whose ‘tall’ matrix entries R make the columns of [Ygf‘] isometric,
removing columns that are linearly dependent:

YC
D

YC

5 |’ (14)

RID'D+CMC)R = Iy;,,  where M:=YPy,

Let X = D™D + C™MC, then R™XR = | implies RR” = X", where (-)! denotes the operator pseudo-
inverse[11]. According to step (c), (YPY)(™) = (Y'By")(*1), so that we obtain from step (b)
(YY)D = [AYD B [ n ] A7 B |
B, B
AYD B9 <| - RRCHYE Dq) YE’:
= A¥YH1-YCRRCYYY YA + BYI-DRR'DYB -
- A%YYYCRRDY) B - BYDRRCHYI) YA,

YC

and with M = Y5Y, M satisfies the equation
MY = ASMA + BB - [ATMC+B™D] RRU[D'B+CMA] .

This equation has more solutionsM. AsY O D(By, B) has By of maximal possible dimensions such
that ker(-Y) =, the solution M of the Riccati equation must be positive and of maximal rank toyield
an outer factor Ty. (Notethat if D™D isinvertible, then M = Oisawaysasolution, and yields To = T.)

|

The above Riccati equation bears a close resemblanceto the Riccati equation that was obtained
in the solution of the time-varying lossless embedding problem[12]. Indeed, it iswell-known that the
spectral factorization problem and the lossless embedding problem are connected: a Cayley transfor-
mation on P(THT) yields a contractive scattering operator which can be embedded to an inner opera-
tor, from which the outer factor can be extracted. Initial conditionsfor M can be obtained asMy, = [ -]

11



when T startswith zero states at some point kg in time, or from a solution of the Riccati equationif T
istime-invariant before kg. Again, the solution requires eigenval ue decompositions, and must satisfy
the side conditionsthat M > 0 and has maximal rank. Initial conditions for the spectral factorization
problem are investigated in [13].

Inthe above proof, we required the boundedness of the pseudo-inverseof (D™D +CHMC) incase
thisoperator isnot uniformly positive (thisisno issuewhen D™D isuniformly positive). Wewill show
that if ran(-T) is closed, then the pseudo-inverseis also bounded. This condition is a generalization
of the time-invariant “no zeros of T are on the unit circle”. If ran(-T) is not closed, then £,Z 1Ty is
densein £,Z1, but not closed. In this case, Ty has a one-sided inverse which is unbounded. Similar
issues played arole in the solution of the embedding problem [12], where it was shown that, even if
R was unbounded, the products RY(D"B 4 CtMA) and RY(C"MC + D'D) remained bounded because
of range inclusions that are automatically satisfied. The same happens here.

Proposition 8.  Intheorem 7, (D™D +C"™MC)" is bounded if ran( - T) is closed.

Whether the range is closed or not, M is bounded, as are the products R(D"D + C"MC) and
RYC"MA+ D'B).
PrROOF If ran(-Tp) is closed, then Tp has a one-sided inverse which is again upper. It follows that
in this case ran(-Dr,) is closed, so that DY Dy, = XRR-X = XXX = X = DD + C"MC has closed
range and a bounded pseudo-inverse. Because To = VT, ran(-To) can be closed only if ran(-T) is
closed. If ran(-T) is closed, then (A,V) Ty is closed. But from VSV = | it followsthat AoV = X», s0
that in this caseran( - Tp) is closed, too.

Becausetherealization of T isobservable, it wasargued in proposition 6 that Y (and henceM) is
bounded. From thefirst equality in (14) we see that [S"V] is obtained by taking an orthonormal basis

in the closure of the range of [Yg] . Risunbounded if the latter range is not closed. Nonetheless,
O
|5 is well-defined and isometric, and Dy, = RD'D +CMC) = | ] |'s'] i bounded. In the
O
same way, it is shown that Cr, = R(C"MA+ D'B) = [S\C] [YBA] is bounded. O

Asiswell known, My 1 inthe Riccati recursion can be computed more efficiently using square-
root algorithms (see e.g., Morf [14] for alist of pre-1975 references). In such algorithms, the square-
rootY of M iscomputed, rather than M itself. The square-root algorithm that correspondsto the above
equationsis: find W\, unitary, such that the following product has zerosin the indicated positions:

Yiegr O
wg| AcG | g g
k I Bk Dk D—er

Given Yk, W can be abtained by a simple QR-factorization. Using the fact that W( is unitary, mul-
tiplying the above equation with its transpose shows that two of the three non-zero block-entries of
the right-hand side follow as Yy.; and Rl In fact, Wy turns out to be precisely equal to the rediza-
tion of the inner factor W as determined in the previous section. Initial valuesof Y can be obtained as
discussed earlier.

9. Inner-outer factorization examples

We finish this paper with some example results of the inner-outer factorization algorithm on finite
(4 x 4) matrices. In the finite matrix case, interesting things can occur only when T is singular or
when the dimensions of T are not uniform.
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1. Theagorithm, applied to

0146
;_|0025
000 3
0000

(the underlined entries form the O-th diagonal) yields an ailmost trivial isometric factor V or
inner factor W (the dots correspond to columns or rows with vanishing dimensions):

o1 1
_0(1)8 _0288 AMw = [1111]

V= = W= = Ny = [0112
1001 09010 #By = [0111]
. 000 0001 W=

It is seen that V is not inner, because T is singular. W is the inner extension of V. The only
effect of W is aredefinition of time intervals: W acts as a shift operator. To =W-T is

#M7, = [01172

W= H#NT, 1111

O oo o..

o ool .

coinv &

o lw o o .
Il

The multiplication by W™ has shifted the rows of T downwards. Thisis possible: the result Ty
is still upper. VET isequal to WET with its last row removed.

2. Take
1 4
8122 #M = [1117
T=|001 3 #N = [1117
000 1 #83 = [01217]

Hence T is again singular, but now a simple shift will not suffice. The algorithm computesW

as
-0.707 0577 0367 0.180

W -0.707 -0.577 -0.367 -0.180 Zj\\/’lww _ % i i 2
0 0577 -0.733 -0.359 B — 0111
0 0 -0.440 0.898
0 -1414 -4.243 -7.778

To=WT=]|0 0 1732 2309 Z%TO - 0112
0 0 0 —2.273 no= 111
0 0 0 0

V isequal to W with itslast column removed, so that To = VT isequal to the above Tp with its
last row removed.

3. Inthe previous examples, we considered systems T with a constant number of inputs and out-
puts (equal to 1), for which V1 only if T issingular. However, a non-identical V can aso
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occur if the number of inputs and outputs of T are varying in time. Thus consider

1.000 0.500 0.250 0.125

1.000 0.300 0.100 0.027 #M = [2110
T= 0 1.000 0.500 0.250 N = [1111]]

0 0 1000 0.300 #8 = [0121]

[ -0.707 0.099 0.025 -0.699

-0.707 -0.099 -0.025 0.699 #My = [2110]
V= 0 0990 -0.005 0.139 Ny = [1111]
0 0 0999 0035 #3y = [0111]

Inthiscase, V isitself inner. The outer factor Ty follows as

-1.414 -0565 -0.247 -0.107

0 1010 0509 0.257 #My, = [1111]
To=V'T =

0 0 1001 0.301 #NT, = [11117]

0 0 0 -0.023

Aninteresting observation from these examplesisthat theinner-outer factorization of finite ma-
tricesT isequal to the QR-factorizationof T whenit isconsidered asan ordinary matrix without block
entries.

10. Concluding remarks

We have derived, in section 7, asimple algorithm to compute realizations of the (left) inner and outer
factors of arealization of a given system T. The computations are unidirectional: starting from an
initial value of a quantity Yk, state matrices are computed recursively from that point on. Theinitial
value can be obtained straightforwardly in caseswhere the state dimension of T vanishesbefore some
point in time, or where T is time-invariant before a point in time. From the algorithm, it can be ob-
served that the number of states in the inner factor (the number of ‘zeros inside the unit disc’) is at
each point k always less than the number of states of T, and cannot change at point k if Dy is square
and invertible at that point, unless the number of states of T decreases at that point. It canincreaseif
Dk issingular, or if the number of inputsincreasesat that point, and can decreaseif the state dimension
of T decreases, or if the number of inputs decreases. For finite matrices, the inner-outer factorization
reduces to a QR-factorization.

The outer factor can be computed as a by-product of the same algorithm, or aternatively viaa
Riccati-type recursive equation.

This research was supported in part by the commission of the EC under the ESPRIT BRA pro-
gram 6632 (NANA2).
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