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Abstract 

Many composite failure criteria suffer from serious flaws related to prediction accuracy and the 

number of tests required to apply them, as found for example during the World Wide Failure 

Exercises. In 2001, Jon Gosse of Boeing Phantom Works developed a new criterion for matrix failure. 

Initially known as Strain Invariant Failure Theory (SIFT), it was soon extended through collabora-

tion with John Hart-Smith to also include fiber failure. During this process, it was also renamed to 

Onset Theory. 

Onset Theory predicts failure using micromechanically obtained strain invariants in the constituents 

of a composite. As a physics-based criterion, it is claimed to be applicable to all types of loading, 

boundary conditions, geometries, and layups. However, it has yet to see widespread application. 

In this thesis, a consistent approach to Onset Theory has been developed. This addresses and re-

solves the contradictions found in literature regarding the exact details of the application of Onset 

Theory. In addition to that, failure envelopes are generated for comparison with laminate test data. 

Previously, finite element models were required for each specimen and state of strain. In this thesis, 

the entire process has been automated for ease and speed of applicability. 

Using the consistent, automated approach, Onset Theory is shown to quite accurately predict failure 

in composite laminates under biaxial strains. This includes non-catastrophic matrix cracking pre-

ceding ultimate failure, without the necessity of performing a progressive failure analysis. Onset 

Theory also correctly captures trends in the difference between lamina and laminate failure. Most 

importantly, it only requires a single set of critical strain invariants (three in total), regardless of 

loading condition or stacking sequence. This means that extensive and expensive testing can be 

reduced significantly. 
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Chapter 1  

Introduction to Onset Theory 

For several decades there has been an ongoing discussion on the validity of commonly used failure 

criteria for composites. John Hart-Smith in particular has been an adamant opponent of most ex-

isting theories, claiming that they are a “plethora of meaningless smooth curves passed through 

unrelated data points” (Hart-Smith, 1991, p. 1510). However, there has also been some less bellig-

erent investigation, in particular as part of the World Wide Failure Exercise (WWFE). Its outcome 

was that there are indeed severe shortcomings with all present failure criteria (Hinton, Kaddour, & 

Soden, 2002). The authors therefore recommended to develop physics-based, more accurate failure 

criteria. They also identified the need to improve the accessibility of the criteria. A major point of 

criticism was that most theories are quite complex and require significant time and effort to be 

implemented in a form that is suitable for everyday design work. 

In 2001, a new physics-based failure criterion was proposed by (Gosse & Christensen, 2001). Called 

Strain Invariant Failure Theory (SIFT), it attempts to predict failure at the level of constituents 

rather than for a homogenized ply. Since its original conception, SIFT has been renamed to Onset 

Theory (Pipes & Gosse, 2009). Both names will be used interchangeably in this thesis. 

Section 1.1 in the current chapter provides an overview of the motivation and general ideas behind 

Onset Theory. Subsequently, the similarities and differences with other failure theories, as well as 

evidence supporting SIFT, are discussed in Sections 1.2 and 1.3. Finally, Sections 1.4 and 1.5 outline 

the purpose and scope of the present research. 

Chapter 2 contains an overview of the information on Onset Theory found in literature. Various 

contradictions are discovered, which are resolved by developing a detailed, consistent approach in 

Chapter 3. This also addresses the first point of criticism raised by the authors of the WWFE, 

namely that composite failure theories are too complex to be usable. Subsequently, Chapter 4 covers 

the second point of criticism by developing a software tool to automatically apply SIFT in a manner 

suitable for everyday design work. Chapter 5 details verification efforts for theory and implementa-

tion. In Chapter 6 Onset Theory is validated using experimental data, while Chapter 7 contains 

further research enabled by the availability of an automated software tool. Chapter 8 contains the 

conclusions and recommendations resulting from the work done in the previous chapters. 
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1.1 Motivation and Basic Principle1 

During the WWFE several composite failure criteria were evaluated, including Tsai-Wu, maximum 

strain, and maximum stress (which at the time were the most commonly used failure criteria (C. T. 

Sun, Quinn, Tao, & Oplinger, 1996, fig. 1)). Additional advanced failure criteria were also included 

in the comparison. Based on the results, the authors concluded that none of the theories was able 

to correctly predict either initial or final strength of multidirectional laminates (Hinton et al., 2002). 

The ultimate strength of a laminate could be predicted to within ±50% at best. 

In the years since there has been little improvement. The second WWFE showed that the predictions 

by the best theories were within 10% of the experimental data in only 30% of the test cases (Kaddour 

& Hinton, 2013). Even after adjusting the criteria to match the test data, this number did not 

increase beyond 40%. In other words, in 60% of the cases predictions will be more than 10% off, 

even when using the best available failure theories and fine-tuning them to the test data. For the 

third WWFE, the comparison with experimental data does not seem to be available yet at the time 

of this writing, but there is a significant spread of predictions seen in (Kaddour, Hinton, Smith, & 

Li, 2013). This means that at least some theories have to be incorrect. 

The result of the lack of credibility of existing failure theories leads to the reliance on expensive and 

extensive tests as the predominant means of designing and certifying composite structures. For 

example, (Paris, 2001) cites close to 10 000 coupons being tested by Boeing during the design of a 

composite helicopter. This process has to be repeated for every new material and structure. 

The main issue with many failure criteria is that they are not physics-based. Instead of evaluating 

failure of the individual constituents of the composite, failure criteria such as Tsai-Wu use a smooth, 

interactive failure envelope for each ply, essentially curve-fitting test data. This works well as long 

as failure predictions are made close to the load conditions used to determine the envelope. However, 

in general fiber and matrix failure have to be considered separately (C. T. Sun et al., 1996). 

Several attempts have been made to solve this issue. One of them is a new theory developed by 

Boeing about 15 years ago. Referred to initially as the Strain Invariant Failure Theory (SIFT) and 

later on as Onset Theory, it uses the first and second invariants of the strain tensor as criteria for 

failure. In fact, through the second invariant SIFT relies on the same mechanism as the von Mises 

yield criterion for metals. SIFT, as a failure theory for composites, adds the first invariant to the 

theory and uses micromechanics to identify individual constituent strains. Its fundamental proposi-

tion is that failure of a composite occurs if one of the strain invariants exceeds its critical value. 

For other failure criteria failure is often characterized in terms of an interaction of the longitudinal 

and transverse tension and compression strengths of a lamina. Contrary to that Onset Theory takes 

into account two non-interactive fundamental failure modes for each of the constituents: failure due 

to dilatation (change in volume) through the first invariant, and failure in distortion (change in 

shape) through the second. The type of load by which they are triggered is considered irrelevant. In 

this way, SIFT attempts to investigate the underlying phenomena and failure mechanisms. 

                                              
1 A similar version of this section has been handed in for AE4010 Research Methodologies. 
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1.2 Comparison with Other Failure Theories 

One of the most prominent distinguishing aspects of Onset Theory is the evaluation of failure at a 

constituent level rather than at the homogenized ply level, as stated before. This means that it 

predicts the actual failure mode and constituent which fails, instead of predicting an entire ply to 

be failed with no distinction between for example transverse matrix cracking and fiber breakage. 

Another advantage of SIFT is its use of physics-based failure criteria which reduce to well-estab-

lished failure criteria for isotropic materials. It is relatively complex due to the necessity to determine 

the local fiber and matrix strains. However, the underlying failure analysis is quite simple. In other 

words, the micromechanical enhancement explained in Subsection 2.1.4 is a (micro)structural anal-

ysis, similar to calculating strains in a skin/stringer combination made of different materials. Once 

the local strains are available, the failure theory works regardless of the material type (metal, carbon 

fiber, or epoxy matrix). While this type of general applicability is not a necessary requirement for 

a proper failure criterion, it would be expected from a true physics-based failure criterion. 

Some of the input data for the micromechanical enhancement can be difficult to obtain. In particu-

lar, the full set of anisotropic elasticity constants for a single carbon fiber is not readily available. 

According to (Soden, Hinton, & Kaddour, 1998) they are in fact back-calculated (using microme-

chanics) from tests on a unidirectional lamina. However, this is still far more straightforward than 

the rather arbitrary determination of the 𝐹12 interaction parameter in Tsai-Wu (see e.g. (Bergmann, 

1998) for a discussion of this issue). Other criteria suffer from similar shortcomings. For example, 

(Puck, Kopp, & Knops, 2002) published “guidelines for the determination of the parameters in 

Puck’s action plane strength criterion” (title of the paper), containing statements such as “validated 

data for 𝑝⊥⊥
(−)

 […] do not exist”, or “no clues concerning reasonable values for 𝑝⊥⊥
(+)

 exist apart from 

the presumption that all inclination parameters should be approximately of the same magnitude”. 

In particular for Tsai-Wu, the result of having unknown, unmeasurable parameters in the theory is 

that they are “tuned” to achieve good correlation with an existing database. This is true for phe-

nomenological criteria in general. On the other hand, Onset Theory only uses a single reference 

strength per failure mode, rather than arbitrarily adjusting several parameters to match existing 

test data. The adjustment process also makes it very difficult for other researchers to reproduce 

results or apply a phenomenological criterion in general, because the required adjustment process is 

not based on physical reasoning but depends on the intuition of the researcher. 

While phenomenological criteria show good results close to existing tests, they make new designs 

(in particular radically new ones) difficult because a new test database has to be created every time. 

SIFT, on the other hand, is in theory applicable to the “general condition (all possible laminate 

stacking sequences, structural geometries, loading and boundary conditions)” (Gosse, 2004a, p. 1). 

This last statement, in fact, is the primary stipulated advantage of SIFT over any other failure 

criterion. Once the strain amplification factors have been computed and the critical invariants de-

termined, no additional tests are required regardless of the structure being investigated. 

In summary, this means that SIFT seems to be a very promising theory to predict failure of com-

posites. Whether there is indeed any credibility to the theory is explored further in Section 1.3. 
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1.3 Supporting Evidence 

Before any significant amount of effort is spent on the details of Onset Theory, it should be inves-

tigated whether there is any credible supporting evidence in the published literature so far. 

One of the main arguments made by (Gosse & Christensen, 2001) during their development of Onset 

Theory is that the critical strain invariants do not change for various tests, whereas the critical 

values for failure criteria such as maximum strain vary significantly. However, this result would be 

expected from the original authors of the theory. What is of more interest is evidence provided by 

other researchers. If such evidence does not exist, the reasons should be explored carefully. While 

this could be the case due to the complexity of the theory or lack of awareness of the existence of 

the theory, it is quite likely to instead be an indicator that the theory is not performing (well). 

Fortunately, there are three different types of evidence that lend credence to Onset Theory. First 

of all, there is indeed a number of researchers and research groups only loosely associated with the 

original authors, who do report good results using Onset Theory. Most of them did have some form 

of collaboration in place. However, this seems to mostly be about understanding the theory and 

obtaining critical invariants. This type of evidence is discussed in Subsection 1.3.1. 

Secondly, several researchers showed that the two critical invariants for the matrix are independent 

of each other, based on series of tests. This is a crucial difference to other failure theories. Typically, 

the same test (e.g. longitudinal tensile strength) is repeated several times to obtain statistical infor-

mation on the distribution of test results. The issue with this strategy is that it can at best confirm 

that the tests are carried out in a consistent manner. A theory for which the critical values are 

determined based on for example longitudinal tensile tests cannot be confirmed by retesting longi-

tudinal tension. A different test would be needed. To this extent Onset Theory employs redundant 

testing. Several different tests are carried out for each critical invariant. This confirms or invalidates 

the theory (according to which the results should be identical) and also makes it possible to easily 

spot a faulty test without repeating the same test over and over again (Hart-Smith, 2010). Subsec-

tions 1.3.2 and 6.2.1 show how redundant testing results in evidence supporting Onset Theory. 

Another form of redundancy, also confirming the propositions of SIFT, is visible in the results by 

(Z. Li, Guan, & He, 2011), who showed that the invariants for one constituent are independent of 

the other constituent. This is discussed in more detail in Subsection 6.2.1. 

As the third type of evidence, it can be argued that there is some consistency in the critical values 

obtained years apart by researchers from different countries, as investigated in detail in Section 6.2. 

Together with the other two arguments, it is clear that Onset Theory certainly deserves a detailed 

investigation. There are several different researchers who all report good correlation with test data, 

better than the one achieved with other common failure criteria; the critical matrix invariants are 

independent of each other, as shown by redundant (as opposed to repeated) testing; and the results 

are reproducible by different researchers. This is strong evidence for at least a certain level of cred-

ibility of the theory. The subsequent two sections contain more details on the supporting evidence. 
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1.3.1 Results by Independent Researchers 

One of the noteworthy research groups is based at the National University of Singapore. In a series 

of PhD theses and published articles, predictions are made regarding progressive failure of a com-

posite beam subject to 3-point bending (see e.g. (Tay, Tan, Tan, & Gosse, 2005)). These predictions 

matched the type and location of damage rather closely. 

Another research group from the University of New South Wales (Australia) also investigated a 

variety of different complex structures (in particular T-joints and curved beams under 4-point bend-

ing (R. Li, Kelly, & Ness, 2003), as well as the bearing strength of bolted joints (Pearce & Kelly, 

2012)) and also observed a good correlation between predictions and test data. 

Neither of these publications have dedicated comparisons between predictions made using SIFT and 

predictions from other failure criteria. However, the PhD thesis of one of the researchers does contain 

additional information (Tan, 2005). SIFT and Tsai-Wu are combined with a damage progression 

algorithm called the “Element-Failure Method” (EFM). Using SIFT results in the good agreement 

reported in (Tay, Tan, Tan, et al., 2005). On the other hand, Tsai-Wu is judged to be unsuitable 

because it does not yield predictions comparable to the experimental results. On first glance, this 

seems like a very strong argument in favor of SIFT. However, it is unclear whether the discrepancy 

when using EFM in combination with Tsai-Wu is due to the EFM part or the Tsai-Wu part. EFM 

in combination with SIFT is the focus of the thesis. Therefore, it is likely that EFM is being fine-

tuned such that in combination with SIFT it gives good correlation with the existing experimental 

data. This is further supported by the fact that the critical invariants are obtained from Jon Gosse, 

the original author of SIFT, even though the materials are different (Gosse used IM7/977-3, whereas 

the thesis is using T800H/924C). In addition to that, the strain amplification factors are also taken 

from Gosse. Both of these factors cast some doubt on the agreement between prediction and test in 

this thesis. In summary, this means that the EFM part of the failure prediction may simply be fine-

tuned towards SIFT. What makes the comparison even less meaningful is the fact that the author 

acknowledges using Tsai-Wu strength data for a different material combination. Predictions for the 

T800H/924C material are made using strength values for T300/5208. This means that based on this 

article no conclusion can be drawn on the validity of SIFT as compared to Tsai-Wu. However, the 

fact that EFM in combination with SIFT yields good results is still a piece of supporting evidence 

for SIFT, because the fatal flaw in the comparison lies with the Tsai-Wu criterion. 

The presumed fine-tuning of results to the individual test cases is a general point of criticism with 

all sources stated so far. They investigate single, rather complex test cases, requiring significant 

adjustments. The question is whether SIFT itself was successful, or whether it was simply working 

well enough to be fine-tuned – the exact process other failure theories are criticized for in Section 1.2. 

Several researchers who are not part of a research group working in collaboration with Gosse have 

also shown close correspondence between predictions and tests. For example, (Ng, Felsecker, & 

Meilunas, 2004) found the maximum difference for a number of lamina and laminate tests (including 

matrix failures) to be less than 18%. In contrast, using Tsai-Wu resulted in very good values for the 

majority of test specimens (same accuracy as SIFT), but resulted in an error of 56% for a 

[02, 9016, 02] laminate (for which SIFT was within 16% of the test data). This is an example of the 

anticipated advantage of SIFT: while phenomenological failure criteria such as Tsai-Wu can yield 
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very good results for tests similar as the ones to which the criterion is “tuned”, they can be extremely 

inaccurate outside of the scope of applicability of their “tuning parameters”. A true physical failure 

criterion should be accurate for all conditions. This topic has also been addressed in Section 1.2. 

Finally, (Tsai, Alper, & Barrett, 1999) – who were introduced to SIFT by Gosse before its official 

publication – investigated a variety of configurations of composite bolted joints, such as hot/cold 

temperatures and double lap joints with different laminates. Using the dilatational criterion for the 

adhesive (so that micromechanical enhancement as discussed in Subsection 2.1.4 is unnecessary), 

their conclusion was that the critical 𝐽1 values were almost constant. Comparing, the 𝐽1 strain at 

−65°F and 75°F for three different stacking sequences showed a difference of at most 11%. Contrary 

to that, the other criteria investigated (max. principle stress, von Mises stress, von Mises strain, 

max. principle strain, and max. peel stress) showed differences of at least 22% and up to 69%. 

1.3.2 Redundant Testing and Independence of Matrix Invariants 

As stated previously, SIFT employs redundant testing to confirm or invalidate the theory. The 

typical tests carried out to determine the critical matrix invariants are off-axis tension tests at 

angles varying from 10° to 90° (a 0° test would yield the fiber invariant). This choice is further 

discussed in Subsection 8.4.4. Besides (Pipes & Gosse, 2009), several other researchers have also 

shown that the invariants at failure are constant and independent of each other, with one or the 

other being critical. The switch of failure modes typically occurs around an angle of 20°-30°. 

Figure 1.1 shows the matrix invariants at failure for several series of tests. The data for IM7/977-3 

is taken from (Pipes & Gosse, 2009, Tables 1 and 2), the data for T300/Cycom 970 and T800s/3900-

2 stems from (Tran, 2012, Tables 5-2 and 5-3), the results for IM7/5250-4 were found in (Ng et al., 

2004, Table 5), and (Mao, 2011) contained results for E-glass/MTM57. For the critical invariant 

the average of several tests is used. (Note that this disagrees with only using the maximum result 

as done in the standard procedure (Hart-Smith, 2010). The purpose here is not to determine the 

invariant, but to show the consistency between redundant tests. There is therefore sometimes a 

minor difference between the critical invariants mentioned here and the results reported by the 

authors in literature.) Open circles indicate tests taken into account for the critical distortional 

invariant, while dots indicate tests taken into account for the critical dilatational invariant. Note 

that there are tests for which it is not clear whether the dilatational or distortional invariant caused 

failure. These tests are taken into account for both critical invariants. 

As shown in Figure 1.1, the maximum error is 18.25% (for the critical dilatational invariant of 

T800s/3900-2). Note that three of the five tests produced identical results, while the other two gave 

quite different answers. This casts some doubt on their validity. Typical errors for the dilatational 

invariant are between 5% and 6%, while errors for the distortional invariant are at most 2.87%. 

This is also due to the typically lower number of tests involved in the distortional invariant. 

Clearly, there is very little scatter in the results. Since four different authors observed this behavior 

for five different materials, the proposition made in Onset Theory that failure occurs once either the 

dilatational or distortional invariant achieves its critical value, with no interactions between the 

invariants, seems very plausible. 



1.3 Supporting Evidence 7 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

 Fi
gu

re
 1

.1
: M

at
ri

x 
in

va
ri

an
ts

 a
t 

fa
ilu

re
. S

o
u

rc
es

: (
P

ip
es

 &
 G

o
ss

e,
 2

0
0

9
) 

fo
r 

IM
7

/9
7

7
-3

, (
Tr

an
, 2

0
1

2
) 

fo
r 

T3
0

0
/C

yc
o

m
 9

7
0

 a
n

d
 T

8
0

0
s/

3
9

0
0

-2
, (

N
g 

et
 a

l.,
 2

0
0

4
) 

fo
r 

IM
7

/5
2

5
0

-4
, a

n
d

 

(M
ao

, 2
0

1
1

) 
fo

r 
E-

gl
as

s/
M

TM
5

7
. T

h
e 

d
is

to
rt

io
n

al
 in

va
ri

an
t 

u
se

s 
d

if
fe

re
n

t 
d

ef
in

it
io

n
s,

 a
s 

d
is

cu
ss

e
d

 in
 S

u
b

se
ct

io
n

 6
.2

.3
. C

yc
o

m
 9

7
0

 m
ay

 b
e 

ru
b

b
er

 t
o

u
gh

en
e

d
 (

Su
b

se
c-

ti
o

n
 6

.2
.2

).
 



8 Chapter 1: Introduction to Onset Theory 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

1.4 Purpose of Research1 

From an academic perspective, the basic principle outlined in Section 1.1 already satisfies the ques-

tion regarding the relevance of SIFT. SIFT promises to improve the understanding of composite 

failures and to help move away from “curve fitting” to physics based failure criteria. However, SIFT 

is of course also relevant to industry. Inaccurate failure criteria mean at best added mass due to 

safety factors and at worst unanticipated failure, while also requiring expensive and time consuming 

tests. As outlined in Section 1.2 Onset Theory has shown some promising results in the past. 

The purpose of the present research can be summarized as follows, with the points discussed in turn 

in the subsequent paragraphs. 

 Development of a consistent approach to Onset Theory 

 Development of failure envelope predictions 

 Automation of theory (to simplify its application and enable the subsequent goals) 

 Validation of theory and sensitivity studies regarding the input parameters 

 Further research (in particular regarding trends found in failure envelopes) 

In general, development efforts on a new composite failure criterion consist of validating the results 

and carrying out further research. However, before performing either of these tasks it has to be 

ensured that the procedure to apply the failure criterion is well-established and consistent. While 

studying the available literature, it was found that there are significant discrepancies and contra-

dictions in several key aspects of the theory. Therefore, the first main point of focus of the present 

research is the development of a consistent approach to Onset Theory. Addressing and resolving the 

existing issues (as found in Chapter 2) is covered in Chapter 3. The need for a consistent approach 

is also clear based on claims being made by researchers without support by hard evidence. Typically 

their validity is asserted for the cases investigated. Clearly, there is a need to carry out research in 

order to prove or refute these claims. In addition to that, until a fundamental proof is found, they 

should be verified for each new study case. Note that due to the complexity of some of those claims 

this is only possible if the approach is automated (see third bullet point). One example are the 

location and number of interrogation points, as explained in Subsection 2.2.7 and Section 3.4. 

Besides developing a consistent approach to Onset Theory, failure envelopes are generated auto-

matically. While some developments in this direction exist (such as the analytical prediction of the 

full state of strain, see Section 3.2), they are not covered in literature. Although Onset Theory has 

shown promising results in the past, as discussed in Section 1.3 fine-tuning of the results very likely 

occurred for many of the single, rather complex test cases involved. By predicting standard in-plane 

failure envelopes, Onset Theory can be compared to tests data such as the WWFE (to which it has 

not yet been applied), as well as to other failure theories. This topic is also covered in Chapter 3. 

A third aspect is automation of the theory. Although SIFT was developed 15 years ago it still has 

to see widespread application. Part of the issue is the number and complexity of the steps involved. 

                                              
1 A similar version of parts of this section has been handed in for AE4010 Research Methodologies. 
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Unlike commonly used failure criteria, where strength values are substituted into a simple equation, 

SIFT requires micromechanical finite element models. These models need to be fully parametrized 

for any combination of constituent properties and fiber volume fraction. In order to make SIFT 

more usable this step has to be as simple as possible. Therefore, Chapter 4 discusses the development 

of a software tool to quickly and consistently apply Onset Theory. This tool enables various research 

initiatives, both within this thesis and possibly also in the future by ATG Europe and TU Delft. 

Prediction of failure envelopes and automation together create two possibilities. First of all, as 

mentioned above the prediction of failure envelopes enables straightforward comparison of theory 

and test data. In addition to that, it provides an opportunity to conduct quantitative and qualitative 

sensitivity studies regarding the input parameters used in SIFT, far more visual and intuitive than 

any other approach. One example would be to determine cases where the predictions made by Onset 

Theory differ significantly from those made by other failure criteria. Neither of these topics has been 

discussed thoroughly in literature. They are covered in the respective sections of Chapter 6. 

Finally, the availability of a consistent, easy to apply approach to Onset Theory opens up opportu-

nities for further research. Covered in the last section of Chapter 6, these research opportunities 

concern commonalities between envelopes for different ply orientations and materials, as well as an 

investigation into random fiber arrays. 

In summary, the purpose of this thesis is to resolve the contradictions present in various sources 

regarding Onset Theory. Using the resulting consistent approach, further development is carried out 

in order to enable the prediction of failure envelopes. These are a much more suitable tool for 

validation and further research. Through the automation of the entire process, the criticism of the 

WWFE related to a lack of usable composite failure criteria is addressed. The consistent approach 

to Onset Theory, in combination with the failure envelopes generated, is then used for comparison 

to test data and research. This research includes an investigation of the sensitivity of the failure 

predictions to the input parameters, as well as possible trends found in the failure envelopes. 

1.5 Scope of Research 

Several limitations are placed on Onset Theory in general and this thesis in particular. Some of 

them are inherent to SIFT, while other promising topics had to be excluded due to time constraints. 

First of all, SIFT only predicts the onset of damage (which is why it has been renamed to Onset 

Theory). Ultimate failure may or may not, depending on the structure and the applied load, require 

a subsequent progressive failure analysis. Several approaches have been investigated in literature, 

such as the Element-Failure Method in (Tay, Tan, Tan, et al., 2005) or Maximum Energy Retention 

in (Gosse, 2004a). A rather simplistic, unverified possibility is also suggested in Subsection 8.4.3. 

However, the present research will not focus on these approaches for a number of reasons. 

In industry the point where irreversible damage occurs is defined as the ultimate load of a composite. 

This means that progressive failure analysis is relevant from an academic perspective (and certainly 

also from a damage tolerance point of view), but is less crucial for preliminary design work. The 

reason why damage beyond the onset of failure is not accepted is that a real structure experiences 

random loads. This is different from a laboratory situation where the load state is quite simple and 
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does not change after damage occurs. While progressive damage analysis might be possible in a 

laboratory, in a real structure the (unknown) load following the onset of damage may cause cata-

strophic failure. One example would be a change in load direction, resulting in fiber buckling in 

compression after (non-catastrophic) matrix cracking. Related to this are issues such as vibrational 

behavior or stiffness (deflection) limits. In an experiment, a specimen could be carrying loads beyond 

initial failure, but at the expense of large deflections. This is not acceptable in a real structure. 

In addition to that, it is implausible to investigate progressive damage before the problem of pre-

dicting initial damage has been solved satisfactorily. Progressive damage analysis can only work 

once it is credibly known when the damage starts. 

Besides excluding progressive failure analysis, determining the critical invariants is also outside the 

scope of this thesis. Modeling and conducting the tests – while most likely quite straightforward, 

using the procedure outlined in Subsection 8.4.4 – would presumably not have yielded large 

knowledge gains. This decision was made based on the large number of available critical invariants 

summarized in Section 6.2, as well as the findings regarding trends in their values. Since validation 

is not the primary focus of this thesis, the effort involved in determining the critical invariants 

would be disproportionate. 

This leads to the last major limitation on the scope of the thesis. While some validation effort is 

carried out in Section 6.3, systematic validation is deferred to further research (see the introduction 

to Section 8.4). As stated previously, the intent of this thesis is to develop a consistent, easily 

applicable approach to Onset Theory. The lack of available reliable test data in literature showcases 

the difficulty of carrying out these tests appropriately. Professional researchers with decades of 

experience and large budgets for experiments did not manage to develop a truly reliable testing 

strategy. It seems unlikely that this problem would be solved in this thesis. With the theory well-

established and automatically applicable, it is possible to specifically search for load states that 

confirm or disprove Onset Theory (i.e. where SIFT differs significantly from other failure theories). 

However, carrying out the required experiments is beyond the scope of this thesis. 
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Chapter 2  

Overview of Literature on Onset Theory 

The purpose of this chapter is to provide an overview of the literature on Onset Theory. There is 

consensus on the general steps of the theory, as presented in Section 2.1. However, for the details of 

each step the literature contains significant contradictions and gaps. This is explored in Section 2.2. 

2.1 Accepted Fundamental Principles 

Onset Theory was first proposed by (Gosse & Christensen, 2001) and further developed by 

(Buchanan, Gosse, Wollschlager, Ritchey, & Pipes, 2009) as well as (Ritchey, Dustin, Gosse, & 

Pipes, 2011) (apparently meant as an extension of the second article). (Hart-Smith, 2010) gives 

another excellent overview of SIFT, including extensive elaboration on the choices made. Since no 

contradictions were found for the topics in the present section, it is based on all of these sources. 

The fundamental proposition behind SIFT is that failure of any material occurs once the critical 

value of either the dilatational or the distortional strain is exceeded. The dilatational strain is the 

first invariant of the strain tensor; the distortional strain is the second invariant of the deviatoric 

strain tensor (i.e. the strain tensor excluding volumetric effects). Using invariants means that the 

result of the evaluation is independent of the choice of coordinate system. 

2.1.1 Strain Invariants and Failure Criteria 

Typically, the dilatational strain is taken to be given by 

 𝐽1 = 𝜖1 + 𝜖2 + 𝜖3
= 𝜖11 + 𝜖22 + 𝜖33. 

(2.1) 

𝜖11, 𝜖22 and 𝜖33 are components of any strain tensor using an orthogonal basis (i.e. not necessarily 

the principal strains 𝜖1, 𝜖2 and 𝜖3). 

Both here and in the remainder of this research, directions 11, 22 and 33 will be used interchangeably 

with 𝑥, 𝑦 and 𝑧 (respectively), whereas directions 1, 2 and 3 refer to the principal directions. 
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Note that this equation is in fact a reduced version of the dilatational strain; its full expression is 

𝐽1 + 𝐽2 + 𝐽3 = (𝜖11 + 1)(𝜖22 + 1)(𝜖33 + 1) − 1. However, because 𝐽2 is related to the square of 

strains, and 𝐽3 is related to the cube of strains, these terms are negligible for small strains. 

For the distortional strain, several versions are used in literature, all related to each other through 

a direct algebraic operation. The most common version is to use the equivalent strain (also known 

as von Mises strain due to its resemblance to the well-known von Mises yield criterion for isotropic 

materials). This version of the distortional strain, see e.g. (Hart-Smith, 2010, Eqn. 4), is given by 

 
𝜖𝑒𝑞𝑣 = √

1

2
[(𝜖1 − 𝜖2)

2 + (𝜖1 − 𝜖3)
2 + (𝜖2 − 𝜖3)

2]

= √
1

2
[(𝜖11 − 𝜖22)

2 + (𝜖11 − 𝜖33)
2 + (𝜖22 − 𝜖33)

2] +
3

4
[𝛾23
2 + 𝛾13

2 + 𝛾12
2 ]. 

(2.2) 

Note that the second equation uses engineering shear strains, e.g. 𝛾23 = 2𝜖23 (technically 𝛾2233 =

2𝜖2233 because any orthogonal coordinate system is acceptable, with directions denoted as 11, 22 

and 33). This is also why a factor 3
4
 appears in front of the shear terms, instead of a factor 3. 

As mentioned above, various formulations of the distortional strain are found in literature. One 

option would be using the invariant of the deviatoric strain tensor (𝐽2
′) directly rather than the 

equivalent strain. The relationship between the equivalent strain and the underlying invariant is 

given by 𝐽2
′ = 1

3 𝜖𝑒𝑞𝑣
2 . This fact is pointed out by (Tay, Tan, & Liu, 2006) (who do use the equivalent 

strain, but acknowledge its origin by mentioning the invariant itself as well). 

On the other hand, (Pipes & Gosse, 2009) not only mention but actually use an expression which 

already includes the square root, but does not include the factor 3 found in the equivalent strain. 

This definition – √1
6 [(𝜖1 − 𝜖2)

2 + (𝜖1 − 𝜖3)
2 + (𝜖2 − 𝜖3)

2] – is equal to √𝐽2
′ = 1√

3
𝜖𝑒𝑞𝑣. 

In summary, this means that there are at least three possible definitions of the distortional invariant. 

For the sake of completeness, there is also a fourth definition that seems plausible. This definition 

(the last one in the list below), while not stated directly in literature, still seems to be used by some 

of the sources in the list of critical invariants in Section 6.2. 

Table 2.1: Possible definitions of the distortional invariant 

Definition #1 𝜖𝑒𝑞𝑣 = √3𝐽2
′ = √

1

2
[(𝜖1 − 𝜖2)

2 + (𝜖1 − 𝜖3)
2 + (𝜖2 − 𝜖3)

2] 

Definition #2 
1
√
3
𝜖𝑒𝑞𝑣 = √𝐽2

′ 

Definition #3 𝜖𝑒𝑞𝑣
2 = 3𝐽2

′ 

Definition #4 
1

3
𝜖𝑒𝑞𝑣
2 = 𝐽2

′ 

While none of these conflicting definitions pose a serious problem because the critical values can 

easily be converted, their presence still tends to lead to confusion or incorrect results if critical values 

based on a different definition are used. This will become particularly relevant in Section 6.2. 

Using an asterisk to indicate the critical value, the failure criteria are then simply defined as 
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 𝐽1 > 𝐽1
∗ (2.3) 

 𝜖𝑒𝑞𝑣 > 𝜖𝑒𝑞𝑣
∗  (2.4) 

One aspect which should be mentioned briefly here is the type of invariants used. Some researchers 

opt to use stress invariants instead of strain invariants. However, as discussed in detail in Subsec-

tion 2.2.1, strain invariants should be used in combination with strain-based test data. 

2.1.2 Included Constituents and Failure Modes 

Simply switching to the use of strain invariants as failure criterion alone would be unlikely to create 

a large improvement over existing failure criteria. However, in SIFT an additional step takes place: 

failure is investigated at the constituent level rather than on a per-ply basis. 

For a typical composite, the constituents are fiber and matrix. The matrix can fail due to either the 

dilatational or the distortional strain exceeding their respective critical values. Regarding the fibers, 

the situation is more complicated. Carbon fibers do not appear to fail due to dilatation (Hart-Smith, 

2010). However, for glass fibers the situation is not as clear, and the same source states that dilata-

tion definitely occurs for boron fibers. In summary, this means that for typical carbon/epoxy com-

posites, three failure modes are relevant: 𝐽1-failure of the matrix, 𝜖𝑒𝑞𝑣-failure of the matrix, and 

𝜖𝑒𝑞𝑣-failure of the fiber; for other materials, all four invariants may have to be taken into account. 

One aspect that has not yet been touched upon is the failure of the interface (sizing) between fibers 

and matrix. (Hart-Smith, 2010) argues that this interface is a material aspect, rather than a struc-

tural one: “It is the responsibility of the materials and processes groups to ensure that the potential 

interface problems are not allowed to become a task for the structures engineers to deal with” (Hart-

Smith, 2010, p. 4272). In essence, his point is that no composite should ever fail in the sizing first, 

because that would mean that the matrix and fiber are unable to achieve their full strength. While 

in theory composites with such a weak interface could be produced, they would not be very useful. 

Their analysis is outside the scope of SIFT as currently investigated. 

Hart-Smith makes an additional argument related to the fact that the critical invariants are estab-

lished based on tests of a cured composite rather than the individual constituents. This means that 

the interface is inherently included in the measured critical values, assuming the production process 

results in a repeatable and durable interface. This also means that if the interface does not influence 

the failure load, then the failure prediction based on SIFT will also not change if the interface is 

changed. On the other hand, if the failure load does change with a change in interface (which should 

not be the case based on the previous paragraph, because this would indicate the interface being 

the weak link), then this will in turn be included in the critical invariants, and the failure predictions 

will change accordingly. Note that this latter case would probably limit SIFT to a certain test data 

base because whether or not interface failure occurs would depend on the type of loading, so the 

critical invariants would be different depending on the occurrence of interface failure. 

In conclusion, this means that interface (sizing) failure is not of particular interest for the scope of 

SIFT investigated at this point. 
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2.1.3 Unit Cells (Representative Volume Elements) 

As explained in Subsection 2.1.2, SIFT investigates failure separately for fiber and matrix. The 

constituent strains are obtained using micromechanical analysis. This aspect is quite unique to Onset 

Theory, although there are some other theories (e.g. multicontinuum theory (Mayes & Hansen, 

2004) or micromechanics of failure (Ha, Jin, & Huang, 2008)) which also employ micromechanics. 

Ideally, a composite would be modeled completely in terms of its constituents. In that case, one 

would simply generate a pseudo-random distribution of fibers and use it for further analysis. How-

ever, doing so is computationally infeasible. Therefore, so-called representative volume elements, 

also known as unit cells, are commonly used to characterize a composite based on the properties of 

its constituents. In general, this is quite successful (C. T. Sun & Vaidya, 1996). 

Unit cells are finite element models of a single complete fiber and its surroundings. Instead of the 

true, random microstructure, they represent one of several commonly found geometrical configura-

tions, also known as fiber array types. Typical fiber array types are the square and hexagonal unit 

cells shown in Figure 2.1. Another commonly used unit cell uses a diamond arrangement (Figure 

2.2). Note that all fibers are assumed to be circular. Based on Figure 2.1, this seems reasonable. 

 

Figure 2.1: Square and hexagonal geometrical configurations represented by unit cells. Microscopy image taken from 
(Hrstka, Kučerová, Lepš, & Zeman, 2003, fig. 4). 
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Figure 2.2: Diamond geometrical configuration represented by unit cell. Microscopy image taken from (Hrstka et al., 
2003, fig. 4) 

Both of these figures show several interesting features of unit cells quite clearly. First of all, even 

though the regular unit cells do correspond to the microstructure to some extent, they fail to do so 

accurately even for the few cells highlighted. Even with rotated unit cells, various fiber array types, 

and varying fiber volume fraction, it will still not be possible to capture the entire microstructure 

properly, besides violating the assumption (discussed below) that the entire composite is made up 

of a single repeated unit cell. These issues are addressed in Subsection 2.2.6 and Section 3.3. 

Another noteworthy point is the fact that the hexagonal and diamond unit cells do not in fact have 

hexagonal and diamond cross sections, but rectangular and square ones, encompassing a single 

complete fiber and several quarter fibers. The exact reason for this choice is unknown, but literature 

quite consistently uses this type of unit cell. Presumably this is related to the simplicity of referring 

to and applying boundary conditions on perpendicular faces at the 𝑥0, 𝑥1, 𝑦0 and 𝑦1, using a simple 

in-plane x-y coordinate system with subscripts 0 and 1 referring to the faces of the unit cell. 

Disregarding the conceptual questions arising when modeling a composite using unit cells, the fun-

damental assumption is that the entire composite is made up of a single unit cell, repeated as many 

times as necessary in all directions. This means that all unit cells experience the same stress and 

strain for any given uniform loading on the outside of the composite. Within this model, loading the 

unit cell results in the same answer as loading the composite. This is the origin of referring to the 

unit cells as “representative” volume elements. By modeling a single unit cell, which is computa-

tionally feasible, the response of the entire composite can be approximated. Similarly, the local 

strains in the constituents can be predicted given some applied load. 

Micromechanical analysis is a crucial step in the analysis and prediction of failure of composites. 

This is due to the fact that the local strain in the constituents can differ significantly from the 

applied global strain. One example of this would be simple amplification by some factor, leading to 

failure occurring earlier than anticipated if amplification was not taken into account. However, there 

are far more crucial cases. (Gosse & Christensen, 2001) found that failure of a ply in compression 

was initiated by tensile failure of the matrix, leading to loss of support for the fibers. This tensile 

failure cannot be explained except through micromechanical amplification of the global strain state. 
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2.1.4 Micromechanical Enhancement1 

In order to streamline the process from ply to constituent strains, a method called micromechanical 

enhancement is used. Instead of solving a finite element model with the actual strains as boundary 

conditions every time failure is evaluated, the response of a unit cell to applied unit strains is stored 

in forms of matrices. For this purpose so-called “amplification factors” or “influence functions” are 

used. They provide a mapping from applied global to local constituent strains. 

There are two different types of amplification factors. Due to a mismatch in stiffness coefficients of 

the two constituents, an applied mechanical strain will cause nonuniform strains in the unit cell. 

This is captured by the mechanical amplification factors contained in the matrix 𝑴 . On the other 

hand, there are strains introduced due to the different coefficients of thermal expansion of fiber and 

matrix. These are taken into account through the thermal amplification factor vector 𝑨. 

The resulting principle can thus be formulated in form the following equation (based on e.g. (Tran, 

2012, Eqn. 3-7) with a change from tensor component notation to matrix/vector notation): 

 𝝐𝑙𝑜𝑐𝑎𝑙 =𝑴𝝐𝑔𝑙𝑜𝑏𝑎𝑙 +𝑨Δ𝑇  (2.5) 

In this equation, 𝝐𝑙𝑜𝑐𝑎𝑙 is the strain at a certain point in one of the constituents, used in the failure 

criteria presented in Subsection 2.1.1. Similarly, 𝝐𝑔𝑙𝑜𝑏𝑎𝑙 is the global strain applied to the ply. The 

contributions taken into account are discussed in Section 2.2.2, while Section 3.2 explains how to 

actually determine this parameter. Finally, Δ𝑇  is the applied temperature difference. Typically the 

difference between curing and application temperatures is used. However, since temperature effects 

typically relax over time, a sensitivity study is carried out regarding this parameter. More infor-

mation can be found in Section 7.4. 

In order to determine the amplification factors, unit cells are employed. In total, there are seven 

possible independent states of strain which can be applied to a unit cell. This includes normal loads 

in three directions, shear loads in three directions, and a temperature difference. Each of these causes 

a different state of strain in the unit cell. Note that each type of load case requires a specific set of 

boundary conditions. Subsections 2.2.3 to 2.2.5 contain a more detailed discussion of this aspect. 

To determine the amplification factors, one of the seven independent global states of strain is ap-

plied, and the local strain at certain points in the unit cell (known as “interrogation points”) is 

evaluated. Note that the amplification factors differ for each point in the unit cell, as discussed in 

Subsection 2.2.7. Since linear behavior is assumed (see Subsection 2.1.6), the results can be stored 

as a simple scaling factor for applying a strain of that particular type. The response to a combined 

strain state is then the combined response to all individual components. Based on the six mechanical 

amplification factor vectors, the matrix 𝑴  is assembled, while the thermal amplification factor 

vector yields the vector 𝑨. The purpose of this vector is discussed in more detail in Subsection 3.2.4. 

Using regular matrix math, it is clear that the strains in the unit cell for e.g. an applied strain vector 

of [0 0 1 0 0 0]𝑇  determine the third column of 𝑴 . Similarly, a temperature difference of 

                                              
1 A similar version of parts of this section has been handed in for AE4010 Research Methodologies. 
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Δ𝑇 = 1 (in the appropriate units) determines 𝑨. The strain response used to extract the amplifi-

cation factors should be the mechanical strain. Section 2.2.2 contains details on this topic. A tem-

perature difference will cause both residual strains and free thermal contraction. This contraction 

has to be removed in order to obtain the correct strain amplification factors (Buchanan et al., 2009). 

In this context it is crucial to ensure that the order of strain components is consistent. For example, 

(Buchanan et al., 2009) follow the standard convention of using [𝜖𝑥 𝜖𝑦 𝜖𝑧 𝛾𝑦𝑧 𝛾𝑥𝑧 𝛾𝑥𝑦]𝑇 , 

whereas (Tran, Kelly, Prusty, Pearce, & Gosse, 2013) use [𝜖𝑥 𝜖𝑦 𝜖𝑧 𝛾𝑥𝑦 𝛾𝑦𝑧 𝛾𝑥𝑧]𝑇 . While this 

is no issue as long as all definitions are consistent, it can lead to confusion when comparing results. 

Most importantly, it has to be avoided to apply a strain amplification factor matrix to a strain 

vector that follows a different convention. This would lead to incorrect results because for example 

𝛾𝑥𝑦 is amplified as if it were 𝛾𝑦𝑧. The order of components is also relevant when rotating the laminate 

strains to the localized ply strains to draw the failure envelopes (Subsection 3.2.3), as well as when 

rotating the unit cells (Section 3.3). In this thesis the standard convention will be used everywhere. 

The result of the finite element analysis is thus a set of amplification factor matrices and vectors 

for each interrogation point. Note that the analysis does not have to be rerun for every interrogation 

point; based on one analysis, the state of strain at each interrogation point can be determined. 

Finally, failure is assumed to occur if one of the failure criteria predicts failure at any interrogation 

point. This defines the onset of failure. For damage tolerance or progressive damage analysis, it 

seems worthwhile to investigate how the results change if damage is assumed to occur once e.g. 10% 

of the interrogation points predict failure. However, this is beyond the scope of the present research. 

2.1.5 Clarifying Examples and General Trends 

In order to clarify some of the principles outlined previously, this section contains some example 

failure envelopes. Note that they are purely intended to show some of the trends seen. They are 

simple in-plane 𝜖11 vs 𝜖22 envelopes, completely disregarding out-of-plane effects, Poisson’s ratios, 

curing strains, and other aspects involved in drawing actual failure envelopes (see Section 3.2). Only 

a single set of amplification factors (i.e. only one interrogation point) is used, instead of determining 

the – usually piecewise – minimum of several failure envelopes (one for each interrogation point). 

The failure envelopes also ignore any coupling effects, both between normal strains and between 

normal and shear strains, and only use amplification for a single term. Typically there would be 

coupling effects between 𝜖11, 𝜖22 and 𝜖33 (applied global to local) because of the amplification factors. 

Coupling between normal and shear strains is less common, but does occur. This is relevant, as 

discussed in Section 3.4. For the “standard” interrogation points as outlined in Subsection 2.2.7 

(such as the interfiber and interstitial locations), the following terms are typically nonzero: 

𝑴 =

[

 
 
 
 
 
1 0 0 0 0 0
𝑥 𝑥 𝑥 0 0 0
𝑥 𝑥 𝑥 0 0 0
0 0 0 𝑥 0 0
0 0 0 0 𝑥 0
0 0 0 0 0 𝑥]

 
 
 
 
 

 𝑨 =

[

 
 
 
 
 

𝑥
𝑥
𝑥
0
0
0]
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This means that the mechanical amplification factor from an applied strain in fiber direction to the 

resulting strain in fiber direction is 1 (which is self-evident because there is no change in the unit 

cell in depth direction, meaning that the strains are by definition identical to the applied strains). 

Similarly, applied strains in the two transverse directions do not cause a strain along the fiber. 

Beyond that, there are significant cross-couplings between the strains in the three normal directions. 

On the other hand, the shear strains do not typically influence each other or the normal strains. 

Note again that this behavior is limited to certain “special” points. For the general case this is not 

true. Finally, an applied thermal load causes normal strains in all directions, but no shear strains. 

Including the coupling terms, as well as not making any of the other assumptions stated above, 

means that the trends seen in actual failure envelopes will be far more involved and can only be 

addressed numerically (see Section 4.3). Using the stated assumptions, the failure criteria reduce to 

𝜖11,𝑙𝑜𝑐𝑎𝑙 + 𝜖22,𝑙𝑜𝑐𝑎𝑙 > 𝐽1
∗ → 𝜖22,𝑙𝑜𝑐𝑎𝑙 = 𝐽1

∗ − 𝜖11,𝑙𝑜𝑐𝑎𝑙 

√
1

2
[(𝜖11,𝑙𝑜𝑐𝑎𝑙 − 𝜖22,𝑙𝑜𝑐𝑎𝑙)

2 + 𝜖11,𝑙𝑜𝑐𝑎𝑙
2 + 𝜖22,𝑙𝑜𝑐𝑎𝑙

2] > 𝜖𝑒𝑞𝑣
∗  

→ 𝜖22,𝑙𝑜𝑐𝑎𝑙 =
1

3
(𝜖11,𝑙𝑜𝑐𝑎𝑙 ±√6𝜖𝑒𝑞𝑣

∗ 2 − 8𝜖11,𝑙𝑜𝑐𝑎𝑙
2 ) 

Note the use of subscripts “local” for every strain component. The strains used in the failure criteria 

are not the same as the global applied strains plotted. No subscript refers to global applied strains. 

Figure 2.3 shows the effect of micromechanical amplification, as well as changing critical invariants 

and temperatures, on 𝐽1-failure. The blue line represents a trivial envelope with 𝐽1
∗ = 1, 𝑴 = 𝑰 

(the identity matrix), and Δ𝑇 = 0. For that Δ𝑇  the thermal amplification factors 𝑨 are irrelevant. 

 

Figure 2.3: Effect of amplification factors and critical invariants on 𝐽1-failure (pseudo-values) 

If everything else is the same, but 𝑴  is changed such that an applied strain 𝜖11 is amplified twofold, 

the failure envelope changes to the green line (the equation becomes 𝜖22,𝑙𝑜𝑐𝑎𝑙 = 𝐽1
∗ − 𝜖11,𝑙𝑜𝑐𝑎𝑙 = 𝐽1

∗ −

2𝜖11, and, since there is no amplification of 𝜖22, the failure envelope can be plotted as 𝜖22 = 𝐽1
∗ −

2𝜖11). The 𝑦-intercept remains the same, but the slope of the line changes. This corresponds to 
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𝑴 =

[

 
 
 
 
 
2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

. 

Finally, the red line represents one of several options. Compared to the blue line, the critical invar-

iant could have been changed to 𝐽1
∗ = 0.5. Alternatively, a temperature difference of Δ𝑇 = −0.5 

might have been applied, with 𝑨 = [1 0 0 0 0 0]𝑇  (i.e. an applied temperature difference of 

1 leads to a strain 𝜖11,𝑙𝑜𝑐𝑎𝑙 = 1, corresponding to 𝜖22 = 𝜖22,𝑙𝑜𝑐𝑎𝑙 = 𝐽1
∗ − 𝜖11,𝑙𝑜𝑐𝑎𝑙 = 𝐽1

∗ − 𝜖11 −Δ𝑇 ). 

Obviously, there are many other possible combinations of 𝑴 , 𝑨, Δ𝑇  and 𝐽1
∗. 

 

Figure 2.4: Effect of amplification factors and critical invariants on 𝜖𝑒𝑞𝑣-failure (pseudo-values) 

For the closed 𝜖𝑒𝑞𝑣-failure envelope, the effects are mostly the same as for the 𝐽1-cutoff, as shown 

in Figure 2.4. The blue line shows the envelope without any amplification, using 𝜖𝑒𝑞𝑣
∗ = 1. In that 

case, 𝜖11,𝑙𝑜𝑐𝑎𝑙 = 𝜖11 and 𝜖22,𝑙𝑜𝑐𝑎𝑙 = 𝜖22, and the 𝑦-intercept is located at 𝜖22 ≈ ±0.8165. An amplifi-

cation of 𝜖11 by a factor of 2 (green line) does not change the 𝑦-intercept but compresses the failure 

envelope in 𝑥-direction. For the red line, reducing the invariant by a factor of 2 shrinks the entire 

envelope by that same factor. (This gives the same 𝑥-intercept as amplifying 𝜖11 by a factor of 2.) 

Unlike for 𝐽1-failure, thermal effects will now be different from changing the invariant. Changing 

the invariant changes the size of the failure envelope while keeping it centered at the origin. On the 

other hand, a change in thermal effects will now shift the envelope. This is shown in the cyan line, 

where a temperature difference of Δ𝑇 = 1 is assumed to cause a local strain 𝜖11,𝑙𝑜𝑐𝑎𝑙 = 1. At an 

applied temperature difference of Δ𝑇 = −0.1, this means the line is shifted to the right by 0.1 

compared to the original blue line. Because the material is in compression already (in 𝜖11,𝑙𝑜𝑐𝑎𝑙), it 

can take less applied compression and more applied tension (in 𝜖11) before failing. 
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For the complete failure envelope of a composite, all three envelopes (𝜖𝑒𝑞𝑣-failure of fiber and matrix, 

and 𝐽1-failure of the matrix, see Subsection 2.1.2) have to be taken into account. For typical values 

of the invariants and amplification factors, the result is that (for the 𝜖11 vs 𝜖22 envelope) 𝜖𝑒𝑞𝑣-failure 

of the matrix does not occur. The result is thus a truncation of the elliptical fiber failure envelope 

in the tension-tension quadrant due to matrix dilatational failure. On the other hand, for envelopes 

involving 𝛾12 terms, matrix distortional failure is one of the dominant failure modes. As stated in 

the introduction, the sum of the various effects influencing actual failure modes is tremendous and 

cannot be taken into account analytically. Further details can be found in Section 4.3. 

Finally, for a homogeneous isotropic material (e.g. a metal – see also Section 3.1) the trivial case of 

𝑴  being identity and 𝑨 being zero occurs. Since there is only one constituent, and considering that 

metals do not fail due to a change in volume alone – that is, 𝐽1 failure does not occur – SIFT reduces 

to the von Mises yield criterion, although formulated in strain space. For metals, strain and stress 

based formulations are identical (unlike for polymers, as discussed in Subsection 2.2.1). This means 

that Onset Theory is consistent with well-established knowledge for metals. 

2.1.6 Assumptions and Limitations 

In addition to the limitations discussed in Section 1.5, a number of other assumptions should also 

be discussed. First of all, the fundamental assumption when modeling a composite using unit cells 

is that the strain in a unit cell is the same as the applied (average lamina) strain (Subsection 2.1.3). 

Relaxing this assumption would mean investigating a model involving multiple different unit cells. 

This quickly approaches modeling the entire composite in terms of fibers and matrix, which has 

been discarded as computationally infeasible. Analyzing multi-cell models, although very interesting, 

is not really part of SIFT as implemented here. It is discussed to some extent in Section 7.5. 

Another limitation is the use of linear-static finite element analysis only. This is based on for exam-

ple (Tran, Kelly, Prusty, Gosse, & Christensen, 2012, p. 749), who state that “when constrained by 

the fibers in unidirectional laminates, the matrix has been observed to deform elastically in strain 

space but anelastically in stress space”. They elaborate further in (Tran et al., 2013, p. 4), stating 

that “anelastic behaviour is reversible provided the critical strain invariants have not been realized”. 

Note that this also points to the use of strains rather than stresses, as discussed in Subsection 2.2.1. 

Using nonlinear analysis would render using matrix algebra for the micromechanical enhancement 

impossible. The superposition of responses to independent states of strain would not be valid any-

more. Therefore, the present research is limited to linear analyses. 

One final point that has to be stressed here is that Onset Theory as implemented in this thesis does 

not predict ply interface failures, such as delaminations. This is also discussed by (Ritchey et al., 

2011). Using unit cells that contain only a single fiber direction, and assuming that the entire 

structure consists of those unit cells repeated indefinitely in all directions (with the strain being 

identical everywhere), means an inherent inability to investigate locations where the strains are not 

uniform. In particular, this is the case at the interface of one ply to the next. To investigate those 

locations, unit cells containing multiple fiber orientations should be analyzed to determine the ap-

propriate strain amplification factors. This is discussed in Subsection 8.4.1. Onset Theory as inves-

tigated here is purely intended as an improved ply failure criterion. 
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2.2 Contested Details 

As stated in the introduction to this chapter, only the general steps of the theory are well-known 

and widely accepted. Due to different assumptions and direct contradictions discrepancies are found 

in literature regarding the details of each step. The following subsections present these contradicting 

opinions. Corresponding investigations to determine the correct approach, where deemed necessary 

based on the literature review, are carried out in Chapter 3. 

2.2.1 Using Stresses or Strains 

One of the central aspects of SIFT is the use of strain invariants. There are several very important 

reasons to also use strain-based test data. An overview is found in (Tran, 2012, pp. 59–61). 

To paraphrase, the stress at yield of a polymer is shown to be strongly affected by the amount of 

dilatation versus distortion applied. On the other hand, the strains are affected to a much smaller 

extent. This is related to the independence of the matrix invariants, as discussed in Subsection 1.3.2. 

As shown by various researchers, the dilatational and distortional strain invariants are independent 

of each other. This is not the case for stress invariants, which will become relevant in the second 

half of this subsection where the use of stress invariants instead of strain invariants is discussed. 

Note that in their original article (Gosse & Christensen, 2001) do mention that the equivalent strain 

excludes the effects of pressure on yield. However, this has not been mentioned or raised as an issue 

anywhere else. It seems likely that this was an initial thought before a thorough investigation took 

place. Investigating the influence of hydrostatic pressure on yield in polymers (in other words, the 

coupling between dilatational and distortional failure modes under triaxial loads) is not considered 

to be of particular importance for this thesis since the focus is on biaxial laminate failure. 

 

Figure 2.5: Stress-strain curves of polycarbonate at 𝑇 = 300𝐾  and 𝜖 ̇= 0.01 1
𝑠
. Adapted from (Tran, 2012, fig. (3-6)). 
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Another aspect that points towards the use of strains rather than stresses is the claim made by 

(Tran, 2012, p. 60) based on Figure 2.5. He claims that “for polymeric resins the strain for the onset 

of irreversible behavior is the same in tension and compression whereas the stress is different in 

these two load cases”. Note that this applies to pure resins, not to composites. As for the coupling 

of dilatational and distortional behavior, the difference in yield stresses in tension and compression 

is discussed in the second half of this subsection. 

Finally, according to Tran there is little dependency of the failure strain on the strain rate, whereas 

the stress is once again strongly dependent. (Caruthers & Medvedev, 2009) – the original source on 

which Tran’s overview is based – also mention a dependency of the stress at yield on temperature. 

The strain rate influence can be confirmed using the data by (Koerber, Xavier, & Camanho, 2010). 

Comparing the ultimate stresses and strains for various off-axis tension coupons at quasi-static and 

dynamic loads ((Koerber et al., 2010, Tables 3 and 4), the average ratio of stresses is 1.4, while the 

average ratio of strains is 1.16 (calculating the ratio such that it is always larger than 1).  

The inaccuracy of using stress-based data has also been confirmed in the experimental work by (Ng 

et al., 2004). Using the failure stress, the maximum difference between test and prediction was 58%. 

Using the failure strain, this value decreased to 18%. The authors therefore also concluded that 

failure strains rather than failure stresses should be used in SIFT. 

A final argument that can be made based on literature is that the matrix behavior is linear in strain 

space up until failure, but anelastic in stress space. This was discussed in Subsection 2.1.6. 

Based on this discussion, it is clear that failure strain data is to be preferred over failure stress data. 

Any validation based on failure stress data would suffer from large uncertainties and inaccuracies. 

Note that is somewhat problematic given the fact that most test data is given in terms of stresses. 

The available test data is discussed in Section 6.1. 

Some researchers (Ha et al., 2008; C. H. Wang, 2005; J. Wang & Chiu, 2011) opted for the use of 

stress invariants in place of strain invariants. One of the reason seems to be that they consider a 

stress-based failure criterion to be easier to use; however, in general they do not seem to state a 

specific reason for their choice (beyond the fact that they consider the two formulations equivalent). 

There are two options when using stress invariants. First of all, one could use strain-based test data 

to avoid the issues involved with stress-based test data, and subsequently convert the data to stress 

space. However, this causes issues related to the uncertainty in lamina-level stiffness properties. In 

order to convert a strain-based failure prediction to stress space, the stiffness matrix for the partic-

ular unit cell that is most critical in the failure prediction should be used. Using measured lamina-

level stiffness properties introduces an additional level of inaccuracy. Although their use is not fully 

avoided in this thesis (see Subsections 3.2.1 and 3.2.2), their effect should be kept to a minimum. I 

should be noted here that the conversion between strain and stress space does offer some interesting 

possibilities for progressive failure analysis, as investigated in Subsection 8.4.3. 

What seems more likely is that these researchers elect to use stress-based test data. This causes an 

issue commonly raised which seems worth addressing here as well. Because of the use of stresses 

instead of strains, there is an influence of the hydrostatic component of the stress on yield (in other 

words, there is a coupling between dilatational and distortional behavior, and the yield stresses in 
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tension and compression are different, as discussed previously in this subsection). This effect, which 

is only present in stress space, is not captured by the von Mises yield criterion. Therefore, all of 

these researchers found it necessary to replace the von Mises criterion by a criterion that includes 

an interaction effect between the distortional and dilatational behavior. Using this type of criterion 

(typically a Drucker-Prager type failure criterion) shifts the stress space failure envelope towards 

the compression/compression quadrant. This is visualized in Figure 2.6. (The “failure regions of 

interest” are indicated as such because the tension quadrant will be truncated by the 𝐽1 matrix 

failure criterion (Eqn. (2.1)) and is thus not active for the most part.) 

 

Figure 2.6: Visualization of shifted stress space failure envelope (Chowdhury, Wang, Chiu, & Yan, 2016, fig. 8) 

It seems as if the main reason why researchers used a Drucker-Prager type criterion is that they 

tried to employ SIFT in stress space. Presumably, using the Drucker-Prager yield criterion mitigates 

some of the problematic effects of doing so. However, the use of stress-based data – even if a Drucker-

Prager type criterion is used – still shows a lack of awareness of the other issues involved with stress-

based data, such as nonlinearity or dependency on strain rate and temperature. 

In summary, it is more straightforward and less error prone to use SIFT in strain space. This means 

that strain invariants should be used, in combination with strain-based test data. 

2.2.2 Contributions to Applied Strain 

So far, the contributions taken into account for the applied strain have not yet been specified 

properly. The present section provides an overview of the reasoning and choices made for this thesis. 

The first topic that should be addressed is the type of strains used in the failure criteria. Both the 

article by (Buchanan et al., 2009) and the one by (Ritchey et al., 2011) stress that mechanical 
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strains rather than total strains should be used, meaning that the effect of free thermal contraction 

has to be removed. For mechanical loads total and mechanical strains are identical because there is 

no free thermal contraction. However, for example for a cube of homogeneous material experiencing 

heating without any restrictions on its expansion, the dilatational failure criterion in Eqn. (2.3) 

based on the total strain (defined as Δ𝐿/𝐿) would predict failure. This is clearly not the case. The 

use of the mechanical strain is also clear from the verification calculations in Subsection 5.2.1. 

The local strain 𝝐𝑙𝑜𝑐𝑎𝑙, as discussed in Subsection 2.1.4, contains several contributions. First among 

these are of course the direct mechanical strains due to an external load, taken into account through 

𝝐𝑔𝑙𝑜𝑏𝑎𝑙. However, there are additional contributions due to thermal and chemical shrinkage during 

curing, as well as hygroscopic (i.e. moisture ingression) effects (Hart-Smith, 2010). 

Regarding thermal effects, Section 3.2 established the correct procedure to include thermal strains, 

including curing strains (as verified in Subsections 5.2.1 and 5.2.2). As discussed in Subsection 3.2.4, 

there are two types of strains due to the temperature difference: a macro-level one (𝝐𝑐𝑢𝑟𝑖𝑛𝑔) and a 

micro-level one (𝑨Δ𝑇 ). Both effects need to be taken into account for both invariants. 

It is worth mentioning that thermal stresses are commonly assumed to relax over time. However, 

according to (Hart-Smith, 2014) this does not mean they can be ignored, because every rapid change 

in temperature will reintroduce thermal stresses. This means that the real thermal effects will be in 

between the extremes of no thermal effects and theoretical thermal effects based on the difference 

between curing and application temperatures. For a further investigation see Section 7.4. 

Regarding moisture absorption, a similar derivation as in Subsection 3.2.2 is possible, using coeffi-

cients of expansion due to moisture absorption in place of the thermal expansion coefficients. How-

ever, (Hart-Smith, 2010) argues that the strains due to moisture absorption would be benign because 

they relieve some of the strains due to thermal shrinkage. Since they cannot be quantified accurately, 

he neglects them, arguing that the resulting failure prediction will, if anything, be conservative. 

(Hart-Smith, 2010) also briefly discusses chemical shrinkage, but only in the context of 𝐽1. For this 

case, he argues that it can be omitted because it is present in both the critical and any calculated 

value. His choice to limit the discussion to the dilatational invariant is based on the fact that the 

matrix typically fails in dilatation, while the fiber does not undergo chemical shrinkage during 

curing. For the distortional matrix invariant chemical shrinkage could not simply be removed from 

both sides of the equation because the expression is far more complex than the summation used for 

the dilatational invariant. It is not clear how to include this effect for distortional matrix failure. 

In summary, moisture absorption and chemical shrinkage do not appear to be extremely relevant. 

Previous researchers obtained good results without taking these factors into account, as discussed 

in Section 1.3. In addition to that, moisture absorption has is presumably beneficial since it reduces 

residual thermal strains, leading to conservative predictions. Chemical shrinkage, on the other hand, 

will not influence the dilatational matrix invariant or the distortional fiber invariant, as argued 

above. The distortional matrix invariant is typically not relevant for failure predictions, since for 

laminates fiber failure usually occurs before the matrix reaches its distortional limit. This is also 

seen in Section 6.3. Therefore, in the context of this thesis these two effects are neglected. 
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2.2.3 Boundary Conditions for Normal Load Cases 

In order to apply unit strains to the representative volume elements, as discussed in Subsection 2.1.4, 

boundary conditions for the faces of the unit cell need to be chosen. Three categories of loads are 

applied: normal loads, shear loads, and a thermal load. They are discussed in turn in this subsection, 

Subsection 2.2.4, and Subsection 2.2.5. 

For the normal load cases, there is a significant contradiction between different sources. In general, 

there are two options. Given an applied load (say along the fiber), the remaining faces can be forced 

to remain in place (from here on called “fixed boundary conditions”), or they can be allowed to 

freely, uniformly translate normal to their original position (“movable boundary conditions”). 

The former of these approaches is used by one of the original authors of SIFT, namely Gosse (see 

e.g. (Ritchey et al., 2011, p. 612) or any other article published in collaboration with Gosse): for an 

applied strain in the “1” direction, the displacement in 𝑦- and 𝑧-directions is forced to be 0 at the 

𝑦- and 𝑧-faces, respectively. On the other hand, the other original author (Hart-Smith) seems to 

indicate that the other faces be allowed to float freely (Hart-Smith, 2010). This behavior is also 

evident in (Jin, Huang, Lee, & Ha, 2008, fig. 5 (a)), where the initial and final 𝑧-boundaries of the 

unit cell are clearly not at the same location for tensile loading in 𝑦-direction (see Figure 2.7). 

 

Figure 2.7: Indication of boundaries discussed for the normal load cases. Adapted from (Jin et al., 2008, fig. 5 (a)) 
(modifications in red and blue). 

The same figure also shows the boundaries being discussed. Marked in blue is the boundary on 

which the load is applied (in this case a transverse tensile strain). The red region is the boundary 

of interest for the boundary conditions. Indicated in the figure is a movable boundary condition: the 

boundary is moving from the initial to the final state, with the only requirement being that it remain 

straight in z-direction. If fixed boundary conditions were implemented, this boundary would be fixed 

in place (i.e. the initial and final state would coincide at the location of the current initial state). 

In summary, there are thus two possible sets of boundary conditions. The fixed boundary conditions 

would mean fixing all faces of the unit cell in normal direction, with the exception of one of the 
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faces in the direction of the applied unit strain. As an example, for an applied strain of 𝜖11 the 

boundary conditions would be 𝑢 = 0 at 𝑥0, 𝑢 = 1 at 𝑥1, 𝑣 = 0 at 𝑦0 and 𝑦1, 𝑤 = 0 at 𝑧0 and 𝑧1, 

where the faces of the unit cell are located at 𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑧0 and 𝑧1, and 𝑢, 𝑣 and 𝑤 are displace-

ments in the 𝑥-, 𝑦- and 𝑧-directions, respectively. The fiber is running along the 𝑥-direction. 

On the other hand, for the movable boundary conditions the situation would be more complex. For 

an applied strain of 𝜖11 the only displacement boundary conditions would be 𝑢 = 0 at 𝑥0 and 𝑢1 at 

𝑥1. The other faces should be forced to remain flat, but are allowed to translate normal to their 

original location. For the practical implementation in Abaqus, see Subsection 4.2.2. 

All of these boundary conditions assume a basic unit cell size of 1, such that an applied displacement 

of 𝑢 = 1 results in a strain 𝜖11 = 1. In practical applications measures need to be taken to avoid 

numerical inaccuracies. This is discussed in Subsection 4.2.6. 

The discrepancy in possible boundary conditions needs to be resolved in order to obtain a consistent 

approach regarding the application of SIFT. Section 3.5 contains a full list of boundary conditions 

for the normal load cases, based on the results of the discussion in Section 3.1. 

2.2.4 Boundary Conditions for Shear Load Cases 

Regarding the shear load cases, there is essentially agreement in literature. The only point of atten-

tion is the difference between pure shear and simple shear, see for example (Buchanan et al., 2009). 

The applied strain should be e.g. 𝛾𝑦𝑧 = 1. However, this is not achieved by applying a displacement 

of 𝑣 = 1 on 𝑧1. The result would be simple shear, whereas the desired deformation is pure shear 

(which does not involve any dilatational deformation of the unit cell). Therefore, the set of boundary 

conditions to apply 𝛾𝑦𝑧 = 1 is 𝑣 = 0.5 at 𝑧1 and 𝑤 = 0.5 at 𝑦1 (assuming a unit strain applied to a 

unit cell of size 1, as for the normal load cases). All other movement should be constrained, using 

𝑢 = 0 at every face, 𝑤 = 0 at 𝑦0, and 𝑣 = 0 at 𝑧0. The same definitions as for the normal load cases 

are used. Figure 2.8 shows the nonzero displacement boundary conditions used to apply 𝛾𝑦𝑧 = 1, as 

well as the loaded and unloaded states (represented by dashed and solid lines, respectively). 

No constraints on warping of the faces due to the loading 

are required. This can be deduced from the deformed shape 

seen in (Jin et al., 2008, fig. 5b) or the lack of a constraint 

in 𝑦-direction on the 𝑦-faces in (Ritchey et al., 2011, Eqn. 

11d).  In fact, though this took place before the development 

of SIFT, (C. T. Sun & Vaidya, 1996) investigated unit cells 

under shear and concluded that straight edges are overly 

restrictive. 

Based on the preceding discussion there is agreement on the 

details of applying shear loading, including letting the faces 

warp. Therefore, a detailed investigation of this point does 

not seem relevant. As for the normal load cases, Section 3.5 

contains a full list of the required boundary conditions. 

 
 

  

Figure 2.8: Applied displacement and de-

formed shape for 𝛾𝑦𝑧 shear loading 

(exact shapes taken from finite el-
ement results) 
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2.2.5 Boundary Conditions for Thermal Load Case1 

For the boundary conditions for the thermal load case an inconsistency was found in literature. The 

issue is similar to the one encountered for the normal load cases. (R. Li et al., 2003) and (Tay, Tan, 

& Tan, 2005) use fixed boundary conditions, which are also used by (Yudhanto, 2005) and 

(McNaught, 2009). On the other hand, (Buchanan et al., 2009), (X. S. Sun, Tan, & Tay, 2011) and 

(Ritchey et al., 2011) use movable boundary conditions. This choice is also in (Tran, 2012). Finally, 

(Xia, Zhang, & Ellyin, 2003) propose periodic boundary conditions for the unit cells. 

Comparing these three options, it is clear that the more recent literature allows free uniform trans-

lation to the surfaces. In addition to that, Tan and Tay, who used fixed boundary conditions pre-

viously (Tay, Tan, & Tan, 2005), switched to using movable boundary conditions (X. S. Sun et al., 

2011). Finally, the original authors of SIFT (Buchanan et al., 2009) also uses this approach, while 

acknowledging and discarding the periodic boundary conditions suggested by (Xia et al., 2003). 

In conclusion, this means that an investigation of the thermal load case would serve to increase 

confidence in the choice of using movable boundary conditions. This is addressed in Subsection 3.1.1. 

2.2.6 Fiber Array Types and Representativeness of Unit Cells 

As discussed in Subsection 2.1.3 micromechanical analysis relies on unit cells. Several issues were 

raised, related to the geometrical configurations (fiber array types) that should be taken into account 

as well as whether the unit cells are in fact representative of the true random microstructure. 

One of the strongest claims made regarding the fiber array types used is found in (Hart-Smith, 2010, 

p. 4305). He states that “four standard fiber arrays can provide bounds on all of the possible random 

arrays […]; the square array, the diamond array, and the two hexagonal arrays”. (By “two hexagonal 

arrays”, hexagonal unit cells with long edges in horizontal and vertical orientation are meant). While 

this point is not directly found in (Buchanan et al., 2009) (or (Ritchey et al., 2011), which can be 

regarded as a follow up article), the authors only mention square and hexagonal fiber arrays, which 

is even more limiting than square, diamond and hexagonal, as investigated by Hart-Smith. They 

also do not mention random arrays. Similarly, (Tran, Kelly, Prusty, & Pearce, 2011, p. 1) assert 

that “the square and hexagonal arrangements […] have been shown to give bounding magnification 

factors and are assumed to exist somewhere in the random distribution of fibers in the laminate”. 

Note that whether or not a certain regular unit cell gives bounding amplification factors is only one 

part of the story. Even if this was the case, it does not mean that the strain in each unit cell is the 

same. If the amplification factors for a certain cell are very large, but at the same time the cell is 

extremely stiff and (in the real microstructure) surrounded by very compliant cells with lower am-

plification factors, then these other cells would experience the majority of the strain, resulting in 

larger overall local strains. The problematic assumption that the strains in a unit cell are the same 

as the average lamina strains was discussed previously in Subsection 2.1.3. However, there does not 

seem to be a computationally feasible way to avoid using unit cells. 

                                              
1 A similar version of parts of this section has been handed in for AE4010 Research Methodologies. 
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Some investigation of the differences between various (regular) unit cells has been carried out in the 

master thesis by (Yudhanto, 2005), However, this research took place before the procedure was fully 

established, meaning that the results are not really applicable. For example, only the diagonal terms 

of the amplification factor matrix are used, so there is no coupling between strain components. 

The only thorough investigation of other fiber array types, as well as random fiber arrays, has been 

carried out by a research group around Prof. Ha of Hanyang University, Korea. In a series of articles, 

they compare the local strains obtained from regular arrays to those originating from random arrays. 

Worth mentioning in this context is that they extend the regular arrays to cover all rotated versions 

of the square and hexagonal arrays (the diamond array being a rotated square array), see for example 

(Ha et al., 2008). Note also that most of the results are based on local stresses rather than strains. 

Unfortunately, there does not seem to be a consistent answer. In (Hobbiebrunken, Hojo, Jin, & Ha, 

2008, p. 3112), the conclusion is that “periodic unit-cells are not suitable in a microscopic failure 

analysis where the magnitude and distribution of microscopic stresses is important”. Similarly, (Oh, 

Jin, & Ha, 2006, p. 777), state that “the analysis with the periodic fiber array […] could not predict 

the real microscopic behavior accurately due to the random arrangement of fibers in real composite 

materials”. On the other hand, according to (Jin, Oh, & Ha, 2007, p. 609), “the regular array can 

provide a convenient way to investigate the residual stresses of a real unidirectional composite under 

thermal loading”, and according to (Huang, Jin, & Ha, 2008, p. 1870), “the cumulative frequency 

distributions of stress invariants in random and regular arrays due to various loading types and 

various loading angles show good agreement, which validates the effectiveness of regular arrays”. 

Clearly, this is not truly conclusive. Based on the research presented above, it can be ventured that 

there is a difference between the engineering and numerical points of view. SIFT is concerned with 

noticeable failure. If the majority of the random distribution fails when the regular arrays fail, then 

local failure of a single point in a random array is irrelevant, provided the failure does not progress 

catastrophically. This is hinted at by (Huang et al., 2008), mentioning good agreement of the cu-

mulative frequency distributions. It could be an explanation for the contradiction between the re-

sults obtained by Prof. Ha and the use of unit cells in SIFT for convenience in terms of modeling 

effort and computing time. In an article published after Prof. Ha’s research (Buchanan et al., 2009), 

his work is cited without mentioning unit cells not being sufficiently accurate. 

Rotating the arrays seems advisable, and an investigation of random fiber arrays (focusing on the 

contrast between local numerical differences and global behavior) would be very valuable. The as-

pect of rotating the fiber arrays is covered in Section 3.3. As stated before, random fiber array 

(multi-cell) models are outside of the scope of this thesis. Section 7.5 contains some discussion. 

2.2.7 Location of Interrogation Points 

As stated in Section 2.1.4, the failure criteria are evaluated at several points in the unit cell. Two 

sets of interrogation points can be distinguished: those in the matrix phase, and those in the fiber 

phase. For the matrix phase, (Buchanan et al., 2009) and all other articles involving Gosse (the 

original author of SIFT) state that the most critical points are the interstitial (where fibers are 

furthest apart) and interfiber (where they are closest) locations. Figure 2.9 indicates those points. 
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This choice of three points (two interfiber, one interstitial, regardless of fiber array) is based on a 

series of finite element calculations which showed these points to cause the maximum values of the 

invariants for the cases investigated. However, (Buchanan et al., 2009) do state that increasing the 

number of interrogation points may improve the accuracy of the results. In addition to that, there 

is no guarantee that the chosen locations will be the most critical ones for every single case. 

 

Figure 2.9: Interrogation points in the matrix phase (Buchanan et al., 2009, fig. 3). Interstitial = IS, interfiber = IF. 

Regarding the interrogation points in the fiber, very little information is available. (Yudhanto, Tay, 

& Tan, 2006) use the center of the fiber, as well as points on the fiber boundary at 0°, 45°, and 90° 

(as measured from the horizontal), for the square array. This is in agreement with (X. Li, Guan, Li, 

& Liu, 2014) (see Figure 2.10) and (Tay et al., 2006) (Figure 2.11). 

 

Figure 2.10: Interrogation points used by (X. Li et al., 
2014, fig. 2 (a)) for the square array 

 

Figure 2.11: Interrogation points used by (Tay et al., 
2006, fig. 2 (a)) for the square array 

(X. Li et al., 2014) use points at 0°, 30°, 60° and 90° on the fiber edge for the hexagonal array (see 

Figure 2.12). Note that they do not use the standard points in the matrix (they use two interstitial 
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and one interfiber points). On the other hand, Figure 2.13 shows that (Tay et al., 2006) use points 

at 0°, 45°, and 90° on the fiber edge for the hexagonal array, just like for the square array. 

 

Figure 2.12: Interrogation points used by (X. Li et al., 
2014, fig. 2 (b)) for the hexagonal array 

 

Figure 2.13: Interrogation points used by (Tay et al., 
2006, fig. 2 (b)) for the hexagonal array 

Another aspect that should be considered is symmetry of the unit cell. (Buchanan et al., 2009) use 

interrogation points in a single quarter of the unit cell only, as seen in Figure 2.9. (X. Li et al., 

2014), however, use points in one half of the unit cell (Figure 2.10 and Figure 2.12). Finally, Figure 

2.11 shows that (Tay et al., 2006) use points in a single quarter for the interfiber and interstitial 

locations, but elected to investigate points around the entire circumference of the fiber (i.e. in all 

four quarters). This is also the case for the hexagonal array (Figure 2.13). 

In summary, the results above mean that both the necessity of including interrogation points in two 

quarters of the unit cell (or even the entire unit cell) and the exact location and number of points 

clearly require additional evidence. There does not seem to be any literature available which inves-

tigates this aspect in detail. Therefore, an investigation is carried out in Section 3.4. 
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Chapter 3  

Development of Consistent Approach 

In the previous chapter, a thorough literature study revealed several discrepancies regarding the 

details of the steps that need to be taken to apply Onset Theory. The present chapter focuses on 

the development of a consistent approach by investigating and resolving these contradictions. 

The contradicting statements regarding the boundary conditions (see Subsections 2.2.3 to 2.2.5) are 

investigated in Section 3.1. Based on the choices made, an analytical approach to determine the full 

state of strain is developed in Section 3.2. Sections 3.3 and 3.4 discuss rotated unit cells and the 

required locations of interrogation points, respectively. Section 3.5 summarizes the complete con-

sistent approach to Onset Theory. 

3.1 Investigation of Boundary Conditions on Unit Cell 

In Subsections 2.2.3 to 2.2.5, contradiction statements regarding the required boundary conditions 

on the unit cell were discovered. For the normal load cases, there were two distinct schools of 

thought, one fixing the faces in place (fixed boundary conditions), with the other one allowing the 

faces to translate uniformly normal to their original location (movable boundary conditions). Simi-

larly, for the thermal load case the same two schools of thought existed, although based on the more 

recent literature movable boundary conditions seem to be the correct choice. The present section 

investigates movable and fixed boundary conditions with a focus on normal load cases, while also 

seeking to increase confidence in the selection of movable boundary conditions for the thermal load 

case. Subsection 3.1.1 contains a thought experiment, resulting in the insight that in fact fixed and 

movable boundary conditions are equivalent for the normal load cases, provided appropriate adjust-

ments are made. The details of this consolidation are discussed in Subsection 3.1.2. 

3.1.1 Thought Experiment 

In Section 2.2.2 it was established that the elastic strain should be used in Onset Theory. Based on 

this, a thought experiment was carried out, assuming a unit cell containing a single homogeneous 

isotropic material (i.e. a unit cell representing a metal). For this case, the correct resulting state of 
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strain under normal and thermal loads is known and can be related back to the desired states of 

strain required for the micromechanical enhancement process (Subsection 2.1.4). 

An applied temperature difference is used to determine the thermal strain amplification vector 𝑨. 

As will be discussed in Subsection 3.2.4, 𝑨 represents the micro-level strains due to the mismatch 

between thermal expansion coefficients of fiber and matrix. In case of a metal, there is only a single 

material, meaning that there are no mismatches, and 𝑨 should be zero. If a temperature difference 

is applied to a homogeneous cube of material, it will contract according to its thermal expansion 

coefficient. The desired elastic strain free state is achieved by not restricting this movement in 

anyway. In that case, the only strains will be thermal. This means that the correct choice of bound-

ary conditions for a unit cell of a composite is also to allow the boundaries to move, although they 

should be forced to remain flat in order to ensure compatibility between neighboring unit cells. Since 

this is the definition of movable boundary conditions, it is clear that using the type of boundary 

condition found in the more recent literature is indeed the correct choice. 

Contrary to that, the micromechanical enhancement process for mechanical strains (represented 

through the mechanical amplification matrix 𝑴) relies on unit strains in a single direction being 

applied to the unit cell (as also discussed in Subsection 2.1.4). Relating this back to the postulated 

cube of metal, applying a unit strain in some direction will result in Poisson’s contractions in the 

other two directions if the movement of the faces is not restricted. These Poisson’s contractions are 

elastic strains, violating the assumption of a strain in a single direction being applied when deter-

mining the amplification factors. This means that applying the full set of global strains (including 

strains due to a Poisson’s contracting) to the movable boundary conditions takes the Poisson’s effect 

into account twice, resulting in an overconservative prediction. On the other hand, when using fixed 

boundary conditions, it is crucial to indeed use the full set of strain. Otherwise those strain compo-

nents not directly measured, but caused by Poisson’s effects, are not taken into account (meaning 

unconservative predictions). Assuming the unknown strains to be zero is incorrect. 

In other words, for the movable boundary conditions the Poisson’s effect is taken into account 

implicitly by the unit cell and has to be removed from the external applied strains. Contrary to 

that, the fixed boundary conditions do not take the Poisson’s effect into account at all, meaning 

that it has to be included explicitly in the external applied strains. These two approaches are, in 

fact, equivalent. The next subsection discusses consolidating the respective formulations, as well as 

explaining the selection of boundary chosen for this thesis. 

3.1.2 Consolidation of Boundary Conditions for Normal Load Cases 

To formalize the principle stated in the previous section, suppose only a strain 𝜖𝑥 is applied to the 

same cube of metal. The resulting state of strain for this case is [𝜖𝑥 −𝜈12𝜖𝑥 −𝜈13𝜖𝑥 0 0 0]𝑇 . 

For the movable boundary conditions, applying only 𝜖𝑥 will result in the correct state of strain 

because the Poisson’s strains are taken into account implicitly by the unit cell. On the other hand, 

for the unit cell using fixed boundary conditions, the Poisson’s effect needs to be taken into account 

in the applied strain vector. This means that for a metal using fixed boundary conditions the me-

chanical amplification factor matrix 𝑴  is equal to the identity matrix. 
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In terms of equations, this means that for the fixed boundary conditions 

 

[

 
 
 
 
 

𝜖𝑥
−𝜈12𝜖𝑥
−𝜈13𝜖𝑥
0
0
0 ]

 
 
 
 
 

=
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]
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, (3.1) 

whereas for the movable boundary conditions 
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−𝜈12 1 −𝜈32 0 0 0

−𝜈13 −𝜈23 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
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0
0
0
0
0 ]

 
 
 
 
 

 (3.2) 

(where principle discussed for an applied strain of 𝜖𝑥 is applied to the other normal strains as well). 

This concept can be extended to a composite unit cell. If the full state of strain is applied to the 

unit cell using fixed boundary conditions, the outcome should be the same as applying a strain in a 

single direction to the unit cell using movable boundary conditions. For example, for T800s/3900-2 

(see Section D.2 for the material properties) the following sets of amplification factors were deter-

mined for one interrogation point (located at (𝑥, 𝑦, 𝑧) = (0.1,0.5,0.303), i.e. a location somewhere in 

the fiber on the line of horizontal symmetry): 

[

 
 
 
 
 

1 0 0 0 0 0
−0.02745 0.6934 −0.00407 0 0 0
−0.02262 −0.01175 0.7557 0 0 0

0 0 0 0.367 0 0
0 0 0 0 0.4655 0
0 0 0 0 0 0.4168]

 
 
 
 
 

 

Matrix 3.1: Example amplification factors using fixed boundary conditions 

[

 
 
 
 
 

1 −0.01186 −0.01186 0 0 0
−0.2027 0.695 −0.2319 0 0 0
−0.2118 −0.2602 0.7599 0 0 0

0 0 0 0.367 0 0
0 0 0 0 0.4655 0
0 0 0 0 0 0.4168]

 
 
 
 
 

 

Matrix 3.2: Example amplification factors using movable boundary conditions 

Note that the shear terms are identical since the present discussion only concerns the normal load 

cases. In addition to that, the following deformations were extracted (by manually inspecting the 

finite element model) from the unit cell using movable boundary conditions: 

 For an applied strain of 𝜖𝑥 = 1, the resulting strains were 𝜖𝑦 = 𝜖𝑧 = −0.2543 

 For an applied strain of 𝜖𝑦 = 1, the resulting strains were 𝜖𝑥 = −0.1186 and 𝜖𝑧 = −0.3291 

 For an applied strain of 𝜖𝑧 = 1, the resulting strains were 𝜖𝑥 = −0.1186 and 𝜖𝑦 = −0.3291 



34 Chapter 3: Development of Consistent Approach 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

If now, for example, a strain vector of [1 −0.2543 −0.2543 0 0 0]𝑇  – which is the full exter-

nal state of strain – is passed through the mechanical amplification factors based on fixed boundary 

conditions (Matrix 3.1), the resulting state of strain is 

[

 
 
 
 
 

1 0 0 0 0 0
−0.02745 0.6934 −0.00407 0 0 0
−0.02262 −0.01175 0.7557 0 0 0

0 0 0 0.367 0 0
0 0 0 0 0.4655 0
0 0 0 0 0 0.4168]
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1
−0.2543
−0.2543

0
0
0 ]

 
 
 
 
 

=

[

 
 
 
 
 

1
−0.2027
−0.2118

0
0
0 ]

 
 
 
 
 

. 

This is identical to the result obtained from the movable boundary conditions if a strain vector of 

[1 0 0 0 0 0]𝑇  is applied (i.e. the first column of Matrix 3.2). Carrying out the same calcu-

lation for applied strains of 𝜖𝑦 and 𝜖𝑧 yields the second and third columns of Matrix 3.2. Clearly, at 

least for this case fixed and movable boundary conditions are indeed equivalent. 

In order to increase confidence, the amplification factors for all interrogation points were compared. 

Note that only a single set of adjustment factors (the resulting strains outlined above) were required. 

Terms that were zero in one case and very small, but nonzero, in the other (due to the numerical 

cutoff described in Subsection 4.2.6) and other similar numerical issues were excluded. For the 

square array the maximum difference in any term was 1.1%, with an average of 0.022% across all 

terms for all interrogation points (excluding cases with zero difference to avoid skewing the statis-

tics). Similarly, for the hexagonal array the maximum difference was 7.3%, with an average of 0.08%. 

This means that fixed and movable boundary conditions for the normal load cases are, in fact, 

identical. The only difference is related to the way in which Poisson’s strains are taken into account. 

As stated previously, for the movable boundary conditions the Poisson’s effect has to be removed 

from the external applied strain, whereas for the fixed boundary conditions it has to be added 

manually to all strains that are not measured directly (instead of assuming those strains to be zero). 

For an applied strain in a single direction, it is simpler to use movable boundary conditions. All 

other strains will automatically be included by the unit cell. However, once biaxial strains are known 

(e.g. the typical case of measuring 𝜖𝑥 and 𝜖𝑦 for a laminate), the situation becomes much more 

complex because the Poisson’s strains due to 𝜖𝑦 have to be removed from 𝜖𝑥 and vice versa. For the 

case of the full state of strain being known (for example from a finite element analysis), coupling 

effects between all three normal strain components would have to be removed. This would become 

quite challenging and also very difficult to understand conceptually. 

For the fixed boundary conditions the approach is much more intuitive. The full set of applied 

strains needs to be used, obtained either through measurement or otherwise through approximation 

using analytical calculations. Therefore, it was chosen to use fixed boundary conditions for the 

micromechanical enhancement, and to establish unknown strains using the process developed in 

Section 3.2. This is also in agreement with the majority of literature, including the articles by Gosse. 
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3.2 Full State of Strain for Failure Envelope Generation 

With the decision made to use fixed boundary conditions, evaluating failure for a known full state 

of strain is straightforward. Most investigations in literature employ a detailed finite element model, 

loaded both mechanically and thermally, to determine the full state of strain. However, for research 

purposes, comparison to laminate test data, or sensitivity studies, failure envelopes are more useful. 

Using finite elements for all strain combinations would be far too time consuming. Therefore, this 

section focuses on analytical evaluation of the full state of strain. 

As discussed in Subsection 2.1.5 real failure envelopes involve various factors, including out-of-plane 

effects, Poisson’s ratios, and curing strains. These topics are covered in Subsections 3.2.1 and 3.2.2. 

Subsection 3.2.3 reviews classical lamination theory regarding strain rotations from the laminate to 

the ply coordinate system, followed by Subsection 3.2.4 presenting a summary of the full state of 

strain. 

Other challenges mentioned are coupling effects between strain components, as well as amplification 

factors differing between interrogation points. These are covered in Section 4.3 because they only 

influence the practical implementation, with no additional theoretical investigation required. 

The generation of failure envelopes in this section assumes thin, flat, orthotropic plies and laminates, 

without changes in thickness direction (i.e. a state of plane stress without bending loads). Typically, 

symmetric balanced laminates are assumed, although the expressions are not limited to those cases. 

3.2.1 Poisson’s Effects 

An important aspect of the full state of strain is the out-of-plane strain due to the Poisson’s effect. 

Neglecting this component and using only the direct strains (e.g. 𝜖11 and 𝜖22 for the common case 

of in-plane normal strain envelopes) would be unconservative, as discussed in Subsection 3.1.2. Parts 

of the following derivation are based on classical lamination theory. The corresponding equations 

can be found in any standard textbook and will only be briefly summarized here. 

The relationship between stresses and strains is given by Matrix 3.3 and its inverse (Matrix 3.4). 

𝝈 = 𝑪𝝐 →

[

 
 
 
 
 

𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦]

 
 
 
 
 

=

[

 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0

𝐶12 𝐶22 𝐶23 0 0 0

𝐶13 𝐶23 𝐶33 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶55 0

0 0 0 0 0 𝐶66]

 
 
 
 
 
 

[

 
 
 
 
 

𝜖𝑥
𝜖𝑦
𝜖𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦]

 
 
 
 
 

 

Matrix 3.3: Definition of stiffness matrix for an orthotropic material (e.g. (Kassapoglou, 2013, Eqn. 3.4)) 

𝝐 = 𝑺𝝈 →

[

 
 
 
 
 

𝜖𝑥
𝜖𝑦
𝜖𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦]

 
 
 
 
 

=

[

 
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0

𝑆12 𝑆22 𝑆23 0 0 0

𝑆13 𝑆23 𝑆33 0 0 0

0 0 0 𝑆44 0 0

0 0 0 0 𝑆55 0

0 0 0 0 0 𝑆66]

 
 
 
 
 
 

[

 
 
 
 
 

𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦]

 
 
 
 
 

 

Matrix 3.4: Definition of compliance matrix for an orthotropic material 
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The stiffness matrix is obtained by inverting the compliance matrix, i.e. 𝑪 = 𝑺−𝟏. The compliance 

matrix (for an individual ply), in turn, is determined from the basic material properties using 

𝑺 =

[

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸1
−
𝜈12
𝐸1

−
𝜈13
𝐸1

0 0 0

−
𝜈12
𝐸1

1

𝐸2
−
𝜈23
𝐸2

0 0 0

−
𝜈13
𝐸1

−
𝜈23
𝐸2

1

𝐸3
0 0 0

0 0 0
1

𝐺23

0 0

0 0 0 0
1

𝐺13

0

0 0 0 0 0
1

𝐺12]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Matrix 3.5: Content of compliance matrix based on ply material properties (e.g. (Kassapoglou, 2013, Eqn. 3.10)) 

For a state of plane stress, as assumed in the ply of a thin laminate, the third row of Matrix 3.3 

leads to 0 = 𝐶13𝜖𝑥 + 𝐶23𝜖𝑦 + 𝐶33𝜖𝑧. From this, the out-of-plane Poisson’s effect is calculated as 

 
𝜖𝑧 = −

𝐶13𝜖𝑥 + 𝐶23𝜖𝑦
𝐶33

. (3.3) 

Note that calculating the Poisson’s effect as 𝜖𝑧 = −𝜈13𝜖𝑥 − 𝜈23𝜖𝑦 (which seems correct at first 

glance) does not work because of the coupling between loads in 𝑥- and 𝑦-directions. 

Similarly, for uniaxial loading (e.g. in 𝑥-direction), the standard equations 

 𝜖𝑧 =
𝑆13
𝑆11

= −𝜈13𝜖𝑥 (3.4) 

and 

 𝜖𝑦 =
𝑆12
𝑆11

= −𝜈12𝜖𝑦 (3.5) 

hold (following from the first three rows of Matrix 3.4). This is relevant for envelopes involving one 

normal strain component and one shear component. Similarly, if 𝜖𝑦 is applied uniaxially and the 

other two boundaries are stress free, the relations become 

 𝜖𝑥 =
𝑆12
𝑆22𝜖𝑦

= −𝜈12
𝐸2
𝐸1

 (3.6) 

and 

 𝜖𝑧 =
𝑆23
𝑆22

𝜖𝑦 = −𝜈23𝜖𝑦 (3.7) 

Out-of-plane loads are rather uncommon and thus not included here. The derivation would be 

equivalent. This type of calculation is only an approximation (similar to the curing strains in Sub-

section 3.2.2) because the laminate being tested may not actually be flat. Many biaxial test facilities 

employ cylindrical laminates, with the two strain components being the hoop and axial strains. 

It is important to understand the use of ply and laminate properties. For the out-of-plane direction, 

the ply Poisson’s ratio (in the ply coordinate system) should be used. This is due to the fact that 

in that direction the stress is assumed to be zero (plane stress conditions), meaning that each ply 
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experiences a strain according to its own Poisson’s ratios (it is not restricted in its movement by 

the other plies). On the other hand, for cases where in-plane Poisson’s effects need to be taken into 

account (for example for failure envelopes involving only one of 𝜖𝑥 and 𝜖𝑦, or for uniaxial tests with 

an unknown nonzero transverse strain), laminate properties (in the laminate coordinate system) 

should be used because of the assumption of in-plane strain compatibility made in classical lamina-

tion theory. The relevant parameters can be determined using once again classical lamination theory: 

 
𝐸1,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑄11,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 −

𝑄12,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒
2

𝑄22,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

 (3.8) 

 
𝐸2,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑄22,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 −

𝑄12,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒
2

𝑄11,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

 (3.9) 

 𝜈12,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 =
𝑄12,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

𝑄22,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

 (3.10) 

where 𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 is given by Eqn. (3.11). 

In the following sections, the Poisson’s effects are usually included in form of a matrix multiplication, 

using the Poisson’s effect matrices shown below. The full relationship is shown in Eqn. (3.19). 

𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 =

[

 
 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0

−
𝐶13
𝐶33

−
𝐶23
𝐶33

0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 

 

Matrix 3.6: Out-of-plane Poisson's effect matrix for biaxial known strains 

𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 =

[

 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

= 𝑰 

Matrix 3.7: In-plane Poisson's effect matrix for biaxial known strains 

𝚷𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 =

[

 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0

−𝜈13 0 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

Matrix 3.8: Out-of-plane Poisson's effect matrix for uniaxial longitudinal strain known 

𝚷𝜖𝑥,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
=

[

 
 
 
 
 

1 0 0 0 0 0
−𝜈12 0 0 0 0 0

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

Matrix 3.9: In-plane Poisson's effect matrix for uniaxial 𝜖𝑥 known 
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𝚷𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 =

[

 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 −𝜈23 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

Matrix 3.10: Out-of-plane Poisson's effect matrix for uniaxial transverse strain known 

𝚷𝜖𝑦,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
=

[

 
 
 
 
 
 0 −𝜈12

𝐸2
𝐸1

0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 

 

Matrix 3.11: In-plane Poisson's effect matrix for uniaxial 𝜖𝑦 known 

It should be stressed here that the out-of-plane matrix depends on the resulting state of strain in 

the ply coordinate system. This means that a 90° ply, loaded in uniaxial 𝜖𝑥, should be using 

𝚷𝜖𝑥,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
 for in-plane effects, but 𝚷𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 for out-of-plane loads. Contrary to 

that, if a 90° ply is loaded in uniaxial 𝜖𝑦, 𝚷𝜖𝑦,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
 and 𝚷𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 should be used. 

For angles other than 0° or 90°, 𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 should be used. 

One additional topic that needs to be addressed is the type of material properties used. In Subsec-

tion 3.1.2, the transverse displacements of the unit cell for an applied unit strain were extracted 

manually from the finite element model. Since the size of the unit cell is 1, a displacement directly 

translates into a strain of the same magnitude. The Poisson’s ratio is equal to the ratio of measured 

to applied strain, which means that it is just the measured strain (which, in turn, is equal to the 

measured displacement) because the applied strain is a unit strain. 

However, at the present state of development of the theory all ply material properties (including 

those used in Matrix 3.5, as well as all out-of-plane Poisson’s effect matrices) need to be determined 

using experimental methods. This means that regardless of the fiber array type, the same (measured) 

Poisson’s ratio is used. The in-plane Poisson’s effect matrices are based on laminate properties, 

which are in turn calculated based on measured ply properties. 

It may be beneficial to extract the stiffness properties from the micromechanical models. On one 

hand, using calculated ply stiffness properties based on a certain fiber array type holds the advantage 

of reducing the required experimental input data. It also adheres to the assumption of the particular 

type of unit cell repeating indefinitely in all directions, as discussed in Subsection 2.1.3. On the 

other hand, if experimental data is used an additional degree of realism is introduced compared to 

using theoretical calculations. This is also similar to the discrepancy between model and reality that 

is accepted when assuming the measured ply strains to be identical to the unit cell strains (Subsec-

tion 2.1.6). Making the same assumption for the Poisson’s effects is more consistent. 

It is also not clear how the process of extracting properties from the finite element model would 

work for the rotated unit cells investigated in Subsection 3.3. In this thesis, measured properties 

will be used because they are typically readily available in literature for most common composites. 
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3.2.2 Curing Strains 

Similarly to the derivation of the Poisson’s effects, parts of the derivation of the mechanical strains 

due to the temperature difference between curing and application temperatures (subsequently re-

ferred to as “curing strains”) is based on classical lamination theory. These parts will only be covered 

briefly. First, the thermal expansion coefficients of the laminate are calculated. Then, the curing 

strains are determined as the strains required to overcome the mismatch between laminate and ply 

thermal expansion coefficients. 

The approach of using the difference between the free thermal expansion of a ply and the thermal 

expansion of the laminate to determine the curing strains is based on the article by (Ritchey et al., 

2011), which – together with (Buchanan et al., 2009) – seems to be the only source addressing this 

topic in detail. However, neither of these two articles discuss generating failure envelopes. 

The derivation of the thermal expansion coefficients consists of two steps. First, the laminate stiff-

ness matrix needs to be calculated. Subsequently, the thermal expansion coefficients can be derived. 

Calculating the stiffness matrix starts by once again assuming plane stress. Based on that, the 

stiffness matrix (Matrix 3.3) can be simplified by setting 𝜎𝑧, 𝜏𝑦𝑧 and 𝜏𝑥𝑧 to zero. From this a direct 

result is that 𝛾𝑦𝑧 and 𝛾𝑥𝑧 are also zero. Additionally, the expression for 𝜖𝑧 in terms of 𝜖𝑥 and 𝜖𝑧 

derived in Eqn. (3.3) can be substituted. Three equations remain: 𝜎𝑥 = 𝐶11𝜖𝑥 +𝐶12𝜖𝑦 +

𝐶13 (−
𝐶13𝜖𝑥+𝐶23𝜖𝑦

𝐶33
), 𝜎𝑦 = 𝐶12𝜖𝑥 +𝐶22𝜖𝑦 +𝐶23 (−

𝐶13𝜖𝑥+𝐶23𝜖𝑦
𝐶33

), and 𝜏𝑥𝑦 = 𝐶66𝛾𝑥𝑦. 

The reduced stiffness matrix in the ply coordinate system (denoted “𝑸𝑝𝑙𝑦”) is therefore given by 

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = 𝑸𝑝𝑙𝑦 [

𝜖𝑥
𝜖𝑦
𝛾𝑥𝑦

] → 𝑸𝑝𝑙𝑦 =

[

 
 
 
 
 𝐶11 −

𝐶13
2

𝐶33
𝐶12 −

𝐶13𝐶23
𝐶33

0

𝐶12 −
𝐶13𝐶23
𝐶33

𝐶22 −
𝐶23
2

𝐶33
0

0 0 𝐶66]

 
 
 
 
 

. 

Matrix 3.12: Definition and content of reduced stiffness matrix (e.g. (Kassapoglou, 2013, Eqns. 3.16 and 3.17)) 

In the laminate coordinate system, the ply stiffness matrix can be determined using the in-plane 

rotation matrix according to 𝑸𝑝𝑙𝑦,𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑻 𝑇𝑸𝑝𝑙𝑦𝑻 , where 𝑻  is the in-plane part of Matrix 3.14: 

𝑻 = [
𝑐2 𝑠2 𝑐𝑠
𝑠2 𝑐2 −𝑐𝑠
−2𝑐𝑠 2𝑐𝑠 𝑐2 − 𝑠2

] 

Matrix 3.13: In-plane rotation matrix. 𝑐 = cos 𝜃 and 𝑠 = sin 𝜃, where 𝜃 is the angle be-
tween ply and laminate coordinate systems (e.g. (Ritchey et al., 2011, Eqn. 17). 

Due to the assumption of strain compatibility, the laminate in-plane stiffness matrix can be calcu-

lated as the weighted average of the ply stiffness matrices. In other words, since the width cancels, 

 
𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 =

∑𝑸𝑝𝑙𝑦,𝑟𝑜𝑡𝑎𝑡𝑒𝑑𝑡𝑝𝑙𝑦
∑𝑡𝑝𝑙𝑦

=
∑𝑻 𝑇𝑸𝑝𝑙𝑦𝑻 𝑡𝑝𝑙𝑦

∑𝑡𝑝𝑙𝑦
. (3.11) 

It should be noted that, provided the ply thickness is the same for all plies, its actual value does 

not matter for the calculation of the reduced stiffness matrix. 
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Similar steps are taken to arrive at the thermal expansion coefficients. First of all, the in-plane 

thermal expansion coefficients of the ply in terms of the basic material properties are given by 

 
𝜶𝑝𝑙𝑦 = [

𝛼1
𝛼2
0
] (3.12) 

(where the third component refers to shear, which – due to the orthogonality of a ply – is zero). 

Note that these coefficients are assumed to be constant with temperature, similar to the assumption 

of linear analysis made in Subsection 2.1.6. In the laminate coordinate system, the properties are 

 𝜶𝑝𝑙𝑦,𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑻 −1𝜶𝑝𝑙𝑦. (3.13) 

Finally, in order to determine the laminate thermal expansion coefficients, once more strain com-

patibility is enforced. Since this means that the net force needs to be equal to the sum of forces, the 

following equation holds: 𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝝐𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑡𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 = ∑𝑸𝑝𝑙𝑦,𝑟𝑜𝑡𝑎𝑡𝑒𝑑𝝐𝑝𝑙𝑦,𝑟𝑜𝑡𝑎𝑡𝑒𝑑𝑡𝑝𝑙𝑦 (where the 

width is again canceled). Substituting 𝜖 = 𝛼Δ𝑇  for both laminate and ply, and rearranging, yields 

𝜶𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 =
𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒
−1

𝑡𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

∑𝑸𝑝𝑙𝑦,𝑟𝑜𝑡𝑎𝑡𝑒𝑑𝜶𝑝𝑙𝑦,𝑟𝑜𝑡𝑎𝑡𝑒𝑑𝑡𝑝𝑙𝑦 

which can be substituted to yield 

 
𝜶𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 =

𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒
−1

𝑡𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

∑𝑻 𝑇𝑸𝑝𝑙𝑦𝜶𝑝𝑙𝑦𝑡𝑝𝑙𝑦. (3.14) 

Note that for balanced laminates, the shear term of the thermal expansion factors should be zero. 

With the thermal expansion coefficients of the laminate known, the in-plane curing strains are 

calculated as the strains required to remove the discrepancy between the thermal expansion of the 

laminate and the free thermal expansion of a ply, in other words (in the ply coordinate system) 

 
𝝐𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 = [

𝜖𝑥,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
𝜖𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
𝜖𝑥𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒

] = (𝑻𝜶𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 − 𝜶𝑝𝑙𝑦)Δ𝑇 . (3.15) 

Note that there are no direct curing strains in out-of-plane direction, because each ply is free to 

deform according to its own coefficient of thermal expansion. However, the in-plane mechanical 

strains will still cause an out-of-plane mechanical strain due to the Poisson’s effect according to 

Eqn. (3.3) and have to be added separately. This means that the final vector of curing strains is 

found to be 

 

𝝐𝑐𝑢𝑟𝑖𝑛𝑔 =

[

 
 
 
 
 
 
 

𝜖𝑥,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
𝜖𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒

−
𝐶13𝜖𝑥,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 +𝐶23𝜖𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒

𝐶33
0
0

𝜖𝑥𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 ]

 
 
 
 
 
 
 

. (3.16) 

This can be more easily expressed using the biaxial Poisson’s effect matrix 𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒 (the 

multiplication by 𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 can be omitted for the reason that 𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 = 𝑰): 
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𝝐𝑐𝑢𝑟𝑖𝑛𝑔 = 𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒

[

 
 
 
 
 

𝜖𝑥,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
𝜖𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒

0
0
0

𝜖𝑥𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 ]

 
 
 
 
 

. (3.17) 

Similar to the fact that the actual value of 𝑡𝑝𝑙𝑦 does not matter provided all layers have the same 

thickness, changing the layup also does not have any effect as long as the ply percentages stay the 

same. This means that [0,90,90,0], [0,0,90,90,0,0] and [90,0,0,90] all give the same results because 

from an in-plane thermal point of view they are identical. 

The same comments as in Subsection 3.2.1 hold for the curing strains. These expressions are only 

an approximation assuming flat laminates, adhering to the assumptions of classical lamination the-

ory. Additionally, as for the Poisson’s effects the thermal expansion coefficients are experimentally 

determined values rather than being extracted from the micromechanical models. The suggestion to 

research the drawbacks and benefits of doing so also holds for this case. 

In addition to that, curing strains – similar to the direct temperature effects taken into account 

through 𝑨Δ𝑇  in Eqn. (2.5) – may relax over time. This is addressed in Section 7.4. 

3.2.3 Rotation from Laminate to Ply Coordinate System 

If a finite element software is used, typically the rotation from laminate to ply coordinate system is 

carried out automatically, using the material orientation defined for the ply. However, in order to 

determine failure envelopes this process has to be carried out manually. Matrix 3.14 shows the full 

3D strain rotation matrix, using the standard convention for the order of strain components 

([𝜖𝑥 𝜖𝑦 𝜖𝑧 𝛾𝑦𝑧 𝛾𝑥𝑧 𝛾𝑥𝑦]𝑇 , as discussed in Subsection 2.1.4). 𝝐𝑝𝑙𝑦 = 𝛀𝝐𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒, where 

𝛀 =

[

 
 
 
 
 
𝑐2 𝑠2 0 0 0 𝑐𝑠
𝑠2 𝑐2 0 0 0 −𝑐𝑠
0 0 1 0 0 0
0 0 0 𝑐 −𝑠 0
0 0 0 −𝑠 𝑐 0

−2𝑐𝑠 2𝑐𝑠 0 0 0 𝑐2 − 𝑠2]

 
 
 
 
 

 

Matrix 3.14: Strain rotation matrix from laminate to ply coordinate system. 

𝑐 = cos 𝜃 and 𝑠 = sin 𝜃, where 𝜃 is the angle between ply and lam-
inate coordinate systems. 

This matrix can be found in any textbook covering classical lamination theory. The rotation between 

𝜖𝑥, 𝜖𝑦 and 𝛾𝑥𝑦 is defined by the standard in-plane rotation matrix, found for example in 

(Kassapoglou, 2013, Eqn. 3.36). 𝜖𝑧 is not affected by a rotation about the 𝑧-axis. Finally, the out-

of-plane shear strains 𝛾𝑦𝑧 and 𝛾𝑥𝑧 only experience a rotation for one of their components (𝑥 or 𝑦, 

but not 𝑧), meaning that the regular cosine and sine rotation terms (readily derived from a simple 

sketch) are sufficient. Since the 𝑧-direction is not affected, there is no coupling between normal and 

shear components, unlike for the in-plane strains. 
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3.2.4 Summary of Full State of Strain 

The full procedure to analyze a laminate, experiencing a temperature difference and mechanical 

strains, can be summarized using Eqn. (2.5) (𝝐𝑙𝑜𝑐𝑎𝑙 =𝑴𝝐𝑔𝑙𝑜𝑏𝑎𝑙 +𝑨Δ𝑇 ) as a starting point. 

𝝐𝑔𝑙𝑜𝑏𝑎𝑙 consists of the summation of applied mechanical strains and curing strains, in other words 

 𝝐𝑔𝑙𝑜𝑏𝑎𝑙 = 𝝐𝑎𝑝𝑝𝑙𝑖𝑒𝑑 + 𝝐𝑐𝑢𝑟𝑖𝑛𝑔. (3.18) 

All strains are in the ply coordinate system. 𝝐𝑐𝑢𝑟𝑖𝑛𝑔 is determined from Eqn. (3.17), and 

 𝝐𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 𝚷𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒𝛀𝚷𝑖𝑛−𝑝𝑙𝑎𝑛𝑒𝝐𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒. (3.19) 

In this equation, the in-plane Poisson’s effects are added using the appropriate in-plane Poisson’s 

effect matrix (Matrix 3.7, Matrix 3.9, or Matrix 3.11). Subsequently, the laminate strains are rotated 

to the ply coordinate system using Matrix 3.14, followed by adding the Poisson’s effects according 

to the appropriate choice of Matrices 3.6, 3.8, or 3.10. 

Note that the effect of the curing strains is simply to shift the failure envelope. They can be deter-

mined by any means (including a finite element analysis, if desired), and added afterwards. 

It seems worth mentioning that there are two distinct types of strains due to temperature differences: 

macro-level strains due to the mismatch in thermal expansion coefficients of laminate and ply, and 

(as discussed in Subsection 2.1.4) micro-level strains due to the mismatch between fiber and matrix, 

which are taken into account through the thermal amplification vector. 

3.3 Investigation of Fiber Array Types and Rotated Unit Cells 

In Subsection 2.2.6, several contradicting claims were found regarding the types of unit cells that 

should be taken into account in the micromechanical enhancement process. (Hart-Smith, 2010) in 

particular asserted that square, diamond, and two hexagonal unit cells (vertical and horizontal) are 

sufficient. Contrary to that, (Ha et al., 2008) suggest using a square and hexagonal fiber arrays, 

rotated by in between 0° and 180°. The purpose of the present section is to investigate those points. 

The first question is whether square, diamond, and both hexagonal unit cells can indeed be obtained 

by rotating square and hexagonal fiber arrays. Secondly, the required rotation angles for the unit 

cells need to be established. Based on this, a conclusion can be drawn on whether the fiber arrays 

Hart-Smith claims to be sufficient indeed give the most conservative results. 

Hart-Smith’s argumentation is mostly based on the severity of strain amplification factors. Since 

the development efforts in this thesis resulted in a software tool capable of automatically generating 

failure envelopes, a more visual means of determining the most critical fiber array is available. This 

approach will be employed in the subsequent sections. With the exception of the aspect being in-

vestigated (required fiber array types and rotation angles), the full procedure outlined in Section 3.5 

will be used. 
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3.3.1 Equivalence of Vertical and Horizontal Hexagonal Unit Cells 

The first investigation concerns the equivalence of vertical and horizontal hexagonal unit cells. It 

also explains the basic principle behind using rotated unit cells. 

For vertical and horizontal hexagonal unit cells, it is self-evident that a strain applied in the direc-

tion of the long side of the vertical unit cell should cause the same response of the unit cell as a 

strain applied in the direction of the long side of the horizontal unit cell, with the only difference 

being the coordinate systems used. In other words, assuming that the long side of the vertical unit 

cell is located in 𝑦-direction and the long side of the horizontal unit cell is located in 𝑧-direction, a 

strain of 𝜖𝑦 = 1 applied to the vertical cell should be identical to a strain of 𝜖𝑧 = 1 applied to the 

horizontal cell. This indeed noticeable since the strain amplification factors for equivalent points in 

the vertical and horizontal hexagonal unit cells contain the same terms in different arrangements. 

Based on this, it should be possible to obtain the response of the horizontal unit cell by rotating the 

applied strain (in the horizontal coordinate system) such that 𝜖𝑧 becomes 𝜖𝑦 (in other words, rotating 

to the vertical coordinate system), applying the result to the vertical cell, and rotating the result 

back to the horizontal coordinate system. This principle can be formalized as follows: 

 𝝐𝑙𝑜𝑐𝑎𝑙,ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 =𝑴ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝝐𝑔𝑙𝑜𝑏𝑎𝑙 = 𝚯90°
−𝟏𝑴𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝚯90°𝝐𝑔𝑙𝑜𝑏𝑎𝑙 (3.20) 

where 

𝚯90° =

[

 
 
 
 
 
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0 ]

 
 
 
 
 

. 

This matrix is a mathematical way of expressing a switch of 𝑦- and 𝑧-components due to a rotation 

of 90°. It is a specific version (using a rotation angle of 90°) of the more general rotation matrix 

𝚯 =

[

 
 
 
 
 
1 0 0 0 0 0
0 𝑐2 𝑠2 𝑐𝑠 0 0
0 𝑠2 𝑐2 −𝑐𝑠 0 0
0 −2𝑐𝑠 2𝑐𝑠 𝑐2 − 𝑠2 0 0
0 0 0 0 𝑐 −𝑠
0 0 0 0 𝑠 𝑐 ]

 
 
 
 
 

, 

Matrix 3.15: Unit cell rotation matrix. 𝑐 = cos 𝜃 and 𝑠 =

sin 𝜃, where 𝜃 is the unit cell rotation angle. 

obtained similarly to Matrix 3.14, albeit for a rotation about the 𝑥-axis (along the fiber) rather than 

the 𝑧-axis. 

Performing the calculation is straightforward. For example, for a point corresponding to M13 of 

Figure 2.12 and using the material properties from Section B.2, the vertical unit cell returns 
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[

 
 
 
 
 

1 0 0 0 0 0
−0.1503 0.9514 −0.5344 0 0 0
0.5983 0.5277 2.793 0 0 0
0 0 0 1.404 0 0
0 0 0 0 4.684 0
0 0 0 0 0 0.3125]

 
 
 
 
 

, 

while the horizontal unit cell returns 

[

 
 
 
 
 

1 0 0 0 0 0
0.5983 2.793 0.5277 0 0 0
−0.1503 −0.5344 0.9514 0 0 0

0 0 0 1.404 0 0
0 0 0 0 0.3125 0
0 0 0 0 0 4.684]

 
 
 
 
 

. 

Evidently these are the same matrices, except for a switch in 𝑦- and 𝑧-components. 

Instead of comparing responses for some applied strain vector, 𝝐𝑔𝑙𝑜𝑏𝑎𝑙 is dropped on both sides of 

Eqn. (3.20), resulting in 𝑴ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 = 𝚯90°
−𝟏𝑴𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝚯90°. Performing this calculation for the 

amplification factors shown above is trivial and indeed produces identical results. 

Since this expression will be used for square and diamond unit cells as well (see Subsection 3.3.2), 

it is written in more general form as 

 𝑴 = 𝚯−𝟏𝑴 ′𝚯. (3.21) 

In this expression, 𝑴′ refers to the mechanical amplification factor matrix of the “base” unit cell 

(in this case vertical hexagonal), while 𝑴  is the same property for the “derived” unit cell (in this 

case horizontal). This equation means that the mechanical strain amplification factors for the hori-

zontal hexagonal unit cell can be obtained from the vertical one without any additional finite ele-

ment analyses. (Of course, this relationship could also be inverted. In this thesis the vertical hexag-

onal unit cell was chosen as the “standard”. Whenever a hexagonal unit cell is referred to in subse-

quent sections, the vertical one is meant, although it is in fact not important which one is used.) 

For the thermal amplification factors, a similar equation can be derived. Since the thermal amplifi-

cation factors are already a vector in the vertical coordinate system (Δ𝑇  is a scalar), only a single 

rotation is required (from the vertical back to the horizontal coordinate system). This is given by 

 𝑨 = 𝚯−𝟏𝑨′. (3.22) 

It should be mentioned here that the properties of interest for the application of Onset Theory are 

invariants. Therefore, the inverse rotation (𝚯−𝟏) in Eqns. (3.21) and (3.22) is technically not 

needed. However, it is still included in case the actual strain amplification factors for a rotated unit 

cell are of interest. In this thesis the inverse rotation is irrelevant since only invariants are used. 

3.3.2 Equivalence of Square and Diamond Unit Cells 

A similar comparison can be carried out for the square and diamond unit cells. Using once again 

the material properties from Section B.2, amplification factors for the square array were extracted 

at a point corresponding to IF1 in Figure 2.9 and an equivalent point in the diamond unit cell. 
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Unlike for the hexagonal unit cells in the previous section, it is not immediately obvious that one 

set of amplification factors can be obtained from the other since on first glance the terms are com-

pletely different. Therefore, the calculations are discussed in detail below. 

Matrices 3.16 to 3.19 show the strain amplification factors obtained from the square and diamond 

unit cells, while Matrices 3.20 and 3.21 show the results of Eqns. (3.21) and (3.22) (with 𝜃 = 45°). 

[

 
 
 
 
 

1 0 0 0 0 0
−0.2731 0.4741 −0.5336 0 0 0
0.8041 1.036 3.083 0 0 0
0 0 0 1.94 0 0
0 0 0 0 6.816 0
0 0 0 0 0 0.1201]

 
 
 
 
 

 

Matrix 3.16: Mechanical amplification factors for the square array 

[

 
 
 
 
 
−6439
−8295
12560
0
0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix 3.17: Thermal amplification fac-
tors for the square array 

 

[

 
 
 
 
 

1 0 0 0 0 0
0.2655 1.985 0.04513 −0.2599 0 0
0.2655 0.04513 1.985 −0.2599 0 0
−1.077 −2.089 −2.089 1.528 0 0
0 0 0 0 3.468 −3.348
0 0 0 0 −3.348 3.468 ]

 
 
 
 
 

 

Matrix 3.18: Mechanical amplification factors for the diamond array 

[

 
 
 
 
 
−6439
2132
2132
−20850

0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix 3.19: Thermal amplification fac-
tors for the diamond array 

[

 
 
 
 
 

1 0 0 0 0 0
0.2655 1.985 0.04487 −0.2598 0 0
0.2655 0.04487 1.985 −0.2598 0 0
−1.077 −2.089 −2.089 1.527 0 0
0 0 0 0 3.468 −3.348
0 0 0 0 −3.348 3.468 ]

 
 
 
 
 

 

Matrix 3.20: Mechanical amplification factors for the square array, ro-

tated by 45° using Eqn. (3.21) 

[

 
 
 
 
 
−6439
2132.5
2132.5
−20855

0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix 3.21: Thermal amplification fac-
tor for the square array, ro-

tated by 45° using Eqn. (3.22) 

Clearly, the results from rotated square and diamond unit cell are essentially identical. The small 

differences (the maximum is 0.57% in terms (3,2) and (2,3) of Matrix 3.20) can be traced back to 

the rounding procedure described in Subsection 4.2.6. Used there to avoid numerical inaccuracies 

during the convergence study, it does introduce some minor inaccuracies in this context. 

Multiple points in the square and diamond unit cells show this behavior. For further confirmation, 

failure envelopes are generated as well. Figure 3.1 shows that the two envelopes are indeed identical. 
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Figure 3.1: Comparison of failure envelopes based on diamond and rotated square fiber arrays. The invariants are 

𝐽1
∗𝑚 = 0.0225, 𝜖𝑒𝑞𝑣

∗ 𝑚 = 0.204 and 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02, combined with the material properties from Section B.2. 

3.3.3 Required Rotation Angles 

Based on the preceding two sections, it is clear that the diamond and horizontal hexagonal unit 

cells are rotated versions of the square and vertical hexagonal unit cells, respectively. This means 

that all unit cells mentioned by for example Hart-Smith (square, diamond, and vertical and hori-

zontal hexagonal) can be obtained by using a square unit cell rotated by 0° and 45° and a horizontal 

unit cell rotated by 0° and 90°. The question is thus whether other rotation angles prove to be more 

critical than these four possibilities. If that is the case, using only those four unit cells is insufficient. 

(Ha et al., 2008) use rotation angles between 0° and 180°. However, due to the rotational symmetry 

of the unit cell values of up to 90° for the square unit cell and up to 60° for the hexagonal unit cell 

should be sufficient. In addition to that, since interrogation points in one half of the unit cell are 

taken into account (see Section 3.4), these ranges are further reduced by a factor of 2. In other 

words, the required ranges of rotation angles are 0° to 45° for the square unit cell and 0° to 30° for 

the hexagonal unit cell. 

During the development process, this behavior was confirmed, with rotation angles of 0°, 90°, 180°,… 

for the square unit cell yielding identical results. Increasing the angle, 15°, 75°, 105°,… gave identical 

results. Further increments of 15° yielded the patterns 30°, 60°, 120°,… and 45°, 135°, 225°,…. At 

this point another increment of 15° would end up in the pattern based on 30°, showing that indeed 

a range of 0° to 45° is sufficient for the square unit cell. For the hexagonal unit cell, equivalent 

patterns were established for base angles of 0°, 15° and 30°. 

The question thus is which of the rotation angles between 0° to 45° for the square unit cell and 0° 

to 30° for the hexagonal unit cell are most critical. This was investigated by directly comparing the 

failure envelopes for multiple rotation angles. The material used was T800s/3900-2 (see Section D.2 
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for the material properties), with the critical invariants 𝐽1
∗𝑚 = 0.024, 𝜖𝑒𝑞𝑣

∗ 𝑚 = 0.2 and 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02 

(i.e. the default values from Subsection 6.2.5). 

Figure 3.2 shows an example for the hexagonal unit cell. Rotation angles of 0°, 15° and 30° are used 

for an 𝜖𝑥 vs 𝜖𝑦 failure envelope. The fiber failure envelope is entirely defined by 0° and 30° rotations 

(corresponding to the vertical and horizontal hexagonal unit cells), with relatively small differences 

between the two except for dilatational matrix failure. This failure mode is purely defined by the 

30° rotation. However, the distortional matrix failure is defined by the 15° rotation for the part of 

the envelope shown (the present view is an enlarged version of the entire envelope in order to show 

the relevant details; in other parts of the envelope, 0° and 30° rotations are critical). 

This means that technically using only vertical and horizontal hexagonal unit cells would be uncon-

servative for distortional matrix failure. However, for the envelope shown this failure mode is always 

preceded by fiber or dilatational matrix failure, which will both be catastrophic for a single ply. The 

same result was obtained for other ply angles and strain combinations (for example 𝜖𝑦 vs 𝛾𝑥𝑦). 

Although the intermediate angles did not seem to be particularly critical, another analysis was 

carried out using more refined angles. This meant steps of 7.5° instead of 15°, in other words rotation 

angles of 0°, 7.5°, 15°, 22.5°, 30°, 37.5° and 45° for the square array and 0°, 7.5°, 15°, 22.5° and 30° 

for the hexagonal array. The purpose was in particular to establish whether one of those finer 

intermediate angles resulted in a more critical fiber or dilatational matrix failures.  

 

Figure 3.2: Comparison of various rotation angles for the hexagonal unit cell 
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Figure 3.3 shows the 𝜖𝑦 vs 𝛾𝑥𝑦 envelopes resulting from smaller increments in rotation angles for 

the square unit cell. The results are similar to the ones discussed previously for the hexagonal fiber 

array. The overall critical failure prediction is fully defined by a rotation angle of 0°, with a rotation 

angle of 7.5° being very similar. For distortional matrix failure, the finer intermediate angles (e.g. 

22.5°) did indeed lead to even slightly more conservative predictions than the intermediate angles 

of 15° and 30°. These differences may very well be within the accuracy of the numerical approach 

to determine the failure envelopes (Subsection 4.3.1), as well as numerical cutoffs used in the mi-

cromechanical enhancement process (Subsection 4.2.6). In addition to that, in all cases these failures 

are preceded by catastrophic fiber failures. 

In general, during the analysis of various combinations of ply angles, strain components on the 𝑥- 

and 𝑦-axes of the envelope, and rotation angles, no cases were found where angles other than 0° for 

the square fiber array and 0° and 90° for the hexagonal fiber array were critical for the overall failure 

prediction. This means that based on this analysis not even the diamond array is relevant. On the 

other hand, increments of 7.5° did result in more critical failure envelopes for distortional matrix 

value, although these were preceded by other failure modes. In order to ensure that the most con-

servative envelope is included even for other materials, critical invariants, or combinations of the 

parameters investigated here (ply angles and strain components on the 𝑥- and 𝑦-axes), 7.5° will be 

used as increments in this thesis. 

 

Figure 3.3: Comparison of various rotation angles for the square unit cell 

In this context it should be mentioned that (Hart-Smith, 2007, Slide 63) shows the diamond array 

being more critical than the square array. However, this result was obtained in stress space. Hart-

Smith is using the stiffness matrix based on the particular unit cell to convert between strain and 

stress spaces. Since according to him the transverse stiffness of the diamond array is about 20% 

lower than the one for the square array, the diamond array becomes more critical. In the present 

thesis, as discussed at the end of Subsection 3.2.1, the same stiffness matrix is used (based on 
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measured ply properties) regardless of the unit cell. Additionally, with the exception of the suggested 

progressive failure analysis (Subsection 8.4.3), only strain-based envelopes will be used based on the 

reasoning found in Subsection 2.2.1. In order to ensure conservatism, the diamond unit cell (in form 

of a square unit cell rotated by 45°) will be included for all analyses in this thesis. However, at this 

point it does not seem to be the critical unit cell for any combination of parameters investigated. 

3.3.4 Summary of Required Fiber Array Types and Rotation Angles 

In summary, this means two things. First of all, only a square and a hexagonal array need to be 

used, rotated by 0°, 7.5°, 15°, 22.5°, 30°, 37.5° and 45° for the square array and 0°, 7.5°, 15°, 22.5° 

and 30° for the hexagonal array. Based on the analysis in the preceding subsections, no rotation is 

necessary for the square array, and only 0° and 30° are needed for the hexagonal array. The addi-

tional rotation angles are included in order to provide confidence for corner cases not investigated 

here. The resulting computational time is still reasonable (see also Subsection 4.3.2). Note that the 

diamond unit cell is identical to the square unit cell, rotated by 45°, while the horizontal hexagonal 

unit cell is identical to the vertical one, rotated by 30°. 

The second conclusion regards the claim by (Hart-Smith, 2010) that square, diamond, and both 

hexagonal unit cells are sufficient for conservative failure predictions. Based on Subsection 3.3.3, 

these claims are mostly correct. Although some rotated unit cells result in more conservative failure 

envelopes for distortional matrix failure, this type of failure is preceded by distortional matrix failure 

in all cases investigated. In fact, the diamond unit cell is also not critical, at least in strain space. 

(Buchanan et al., 2009) and (Ritchey et al., 2011) (both involving Gosse, the original author of 

Onset Theory) imply that only a square and one hexagonal unit cell is sufficient. This is not the 

case because both hexagonal unit cells define parts of the envelope. It does stand to reason that 

Gosse is aware of this fact, given that he also collaborated with Prof. Ha, who used rotated unit 

cells with rotation angles between 0° and 180° (see e.g. (Ha et al., 2008)). Regarding this approach, 

it was found that this range contains duplicate angles and can be reduced. 

3.4 Investigation of Required Interrogation Points 

As examined in Subsection 2.2.7, different researchers sample their strain amplification factors at 

different locations in fiber and matrix. In order to determine the correct choices, Subsection 3.4.1 

examines which points contribute to the most conservative failure envelope for a variety of cases. 

The failure envelopes are determined using the full procedure outlined in Section 3.5, with the ex-

ceptions specified in the following subsection. Subsequently, the symmetry of the unit cell is consid-

ered in Subsection 3.4.2. This is particularly relevant for the rotated failure envelopes (Section 3.3). 

3.4.1 Critical Interrogation Points 

The example used is once again T800s/3900-2 (see Section D.2 for the material properties), with 

the critical invariants 𝐽1
∗𝑚 = 0.024, 𝜖𝑒𝑞𝑣

∗ 𝑚 = 0.2 and 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02 (i.e. the default values from Sub-

section 6.2.5). In this subsection, a dense grid of interrogation points in one half of the unit cell is 
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taken into account (see e.g. Figure 4.1). Both square and hexagonal cells are investigated. The 

purpose is to determine whether the “standard” interrogation points discussed in Subsection 2.2.7 

are sufficient, or whether other points need to be taken into account. The reason for selecting points 

in one half of the unit is discussed in detail in Subsection 3.4.2. In order to reduce the amount of 

information at least somewhat, only unit cell rotation angles of 0° are taken into account. As dis-

cussed in Subsection 3.3.3 these cover the majority of critical cases (although a hexagonal unit cell, 

rotated by 30°, will also be critical for some parts of the envelope). The purpose is not to obtain the 

true conservative failure envelope, but to determine which points are critical in general. During the 

investigation of rotated unit cells, it was found that the fiber failure envelope is entirely dominated 

by the 0° rotations, while for the matrix cutoffs the 30° rotation of the hexagonal unit cell is most 

critical in some locations. 

Figure 3.4 shows the contributions to the fiber failure envelope. Clearly, the envelope is almost 

entirely determined by IP13Fiber, IP57Fiber, and IP170Fiber of the square array. All other contri-

butions are quite minor. Although there are some pieces of the envelope that where other interro-

gation points appear to be more critical, this is most likely due to the numerical accuracy of the 

process described in Section 4.3. Note that this numerical accuracy is also the cause of the gaps in 

the contributions. For the pieces in between, it is not clear which interrogation point is most critical. 

They are filled in with straight lines for the final envelope. 

 

Figure 3.4: Contributions to fiber failure envelope 

Based on Figure 3.5, these three interrogation points correspond to the center of the fiber, as well 

as points at 90° and 270° (measured from a horizontal line, originating at the center of the unit cell 

and pointing to the right) on the fiber/matrix boundary. It should be mentioned that the envelope 

for IP85Fiber (at 0° on the fiber/matrix boundary) exactly overlaps with the one for IP170Fiber (at 

270°). This overlap is not visible in the plot because the lines coincide. Symmetry of the unit cell is 

discussed further in Subsection 3.4.2.  
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Figure 3.5: Location of critical interrogation points for fiber failure envelope 

Similar results are found for an envelope involving a shear strain. In that case, the envelope is almost 

exclusively defined by IP13Fiber and IP57Fiber, with only a very minor numerical inaccuracy. 

The same investigation is carried out for the distortional matrix failure envelope (Figure 3.6). In 

that case, the envelope is mostly defined by IP37Matrix of the hexagonal array and IP93Matrix of 

the square array. Minor contributions are IP181Matrix of the square array, as well as IP423Matrix 

and IP437Matrix of the hexagonal array. The remaining contributions are either two small to discern 

or coincide with the points mentioned already. 

 

Figure 3.6: Contributions to distortional matrix failure envelope 

Using Figure 3.7, it is found that the critical locations correspond to the interfiber locations, as 

defined in for example Figure 2.9. In addition to that, some points on the fiber/matrix interface also 

appear to play a role. However, these are the minor contributions mentioned above. 
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Figure 3.7: Location of critical interrogation points for distortional matrix failure envelope 

For the dilatational matrix cutoff, the only relevant point is IP57Matrix of the square array. This 

corresponds to point M1 in Figure 2.11 (i.e. a point at 90° on the fiber/matrix boundary). All other 

parts of the cutoff are also defined by points on the fiber/matrix boundary. 

As for the fiber envelope, the matrix envelopes for strain combinations involving shear do not yield 

significantly different results. Once again the same points are relevant, although their relative im-

portance changes somewhat. In particular, the points on the fiber/matrix boundary of the hexagonal 

array (IP423Matrix etc.) become slightly more important for distortional matrix failure. 

The preceding investigation does seem to indicate that only the interfiber points of the square and 

hexagonal arrays are relevant for distortional matrix failure, if minor contributions possibly related 

to numerical inaccuracies are excluded. On the other hand, the interstitial location (see e.g. Figure 

2.9) – claimed to be relevant by all researchers – does not seem to play a role. 

Regarding the fiber failure envelope, the fiber center and points at 0° and 90° on the fiber/matrix 

boundary are most important. 

3.4.2 Symmetry of the Unit Cell 

One question that can be raised is how symmetry of the unit cell influences the required interroga-

tion points. As mentioned in the previous subsection, the failure envelopes for some points overlap. 

Since both square and hexagonal unit cells are doubly symmetric (in horizontal and vertical direc-

tions), intuitively using interrogation points in a single quarter of the unit cell should be sufficient. 

This approach is also chosen by many other researchers, as discussed in Subsection 2.2.7. However, 

there are two reasons why using a single quarter is insufficient. 

The first argument is based on the response of the unit cell to shear strains. Figure 3.8 shows the 

strain component 𝜖33 in the matrix of a square unit cell for an applied shear strain of 𝛾23. In the 
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top right and top left quarter of the unit cell, the magnitude of the values is identical, but the sign 

of the strain is different. This means that in equation Eqn. (2.2) (the equivalent strain), for terms 

such as (𝜖11 − 𝜖33)
2 the value will be either added or subtracted, resulting in different failure pre-

dictions. Similar results are obtained for other strain combinations, as well as for the fiber phase. 

(Note that this switch in sign also occurs for the shear strains; however, these terms are squared 

individually in the equation for the equivalent strain, meaning that their sign does not matter.) 

 

Figure 3.8: Resulting 𝜖33  in the matrix for applied 𝛾23. Only the upper half of the 
unit cell is shown. The fiber has been removed for the visualization.1 

It should be mentioned that this argument only holds for the additional interrogation points used 

in Subsection 3.4.1. The “standard” interrogation points found in literature (points at the fiber 

center, 0°, 45° or 90° on the fiber boundary, or the interfiber and interstitial locations defined in 

Figure 2.9) are not affected by this behavior because there are no coupling terms between shear and 

normal strains. This was also discussed in Subsection 2.1.5. 

The second argument is related to the rotation of unit cells, as examined in Subsection 3.3. If a 

square array is rotated with interrogation points in a single quarter only, it fails to reproduce the 

diamond unit cell. This is shown in Figure 3.9. 

Finally, note that the lower half of the unit cell is an antisymmetric copy of the upper half. Since 

resulting strains of both signs are already present in the upper half, the lower half could be replaced 

with symmetry boundary conditions. However, runtime of the micromechanical models is not critical 

at this point (see Subsection 4.2.7). Therefore, the symmetry approach was not pursued further in 

this thesis. Note that for the interrogation points, indeed only half of the unit cell is used, as also 

shown in Figure 4.1. 

                                              
1 The small white triangles visible on some screens / print outs are caused by a rendering problem 

in the Abaqus vector graphics export and do not carry any meaning 
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Figure 3.9: Comparison of failure envelopes based on diamond and rotated square fiber arrays (interrogation points 
in a single quarter). Material properties and invariants as indicated in Figure 3.1. 

3.4.3 Summary of Required Interrogation Points 

Based on Subsection 3.4.1, the interfiber locations (see e.g. Figure 2.9 for definitions of the standard 

locations) define distortional matrix failure, while points at 0° and 90° on the fiber boundary deter-

mine dilatational matrix failure and fiber failure. For fiber failure, the center of the fiber is also 

important. This result mostly supports the claims in literature regarding the critical points, although 

the interstitial location was not found to play a role. 

This conclusion is also supported by the comparison between failure envelopes in Subsections 5.2.3 

to 5.2.5, where envelopes generated using all interrogation points do not differ significantly from 

Hart-Smith’s envelopes, although according to (Hart-Smith, 2010) he only seems to be taking inter-

fiber and interstitial locations into account for the matrix (see also Subsection 2.2.7 for a definition 

of those locations). It is not clear which point(s) he is using for the fiber, but since he is performing 

the calculations analytically, it is very likely that only very few points are taken into account. 

For this thesis the decision was made to use a dense grid of interrogation points (see e.g. Figure 4.1) 

in order to ensure that the most conservative behavior is captured regardless of the combination of 

input parameters (e.g. constituent material properties, ply rotation angle, and so on), and to include 

corner cases missed in the present investigation. In that case, interrogation points in one half of the 

unit cell need to be taken into account, rather than just one quarter as done by most researchers. 

This is relevant in order to capture the different sign of the shear terms. In addition to that, the 

interrogation points in a second quarter of the unit cell are also relevant for rotated unit cells, as 

examined in Section 3.3. Although it was concluded there that most likely rotation is not necessary, 

for this thesis it was decided to include rotations to ensure conservative predictions. 
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3.5 Summary of Consistent Approach 

This section summarizes all relevant assumptions, processes, equations, and input data required to 

apply Onset Theory. It is meant as a quick guide for implementation, without containing any ex-

planations or derivations. References to the (sub)sections discussing the various aspects are included. 

3.5.1 Assumptions and Limitations 

The following assumptions are made during the application of Onset Theory as used in this thesis: 

 only onset of damage is considered (i.e. no progressive failure analysis) (Section 1.5); 

 Onset Theory is only used as a ply failure criterion, with no prediction of ply interface 

failures such as delaminations (Subsection 2.1.6); 

 only strain-based data is used (Subsection 2.2.1); 

 measured ply properties are used, rather than ply properties extracted from the unit cell 

(Subsection 3.2.1); 

 all analyses are linear static (Subsection 2.1.6); 

 material properties (in particular thermal expansion factors) are constant with temperature 

(Subsection 3.2.2); 

 the strain in a unit cell is the same as the strain in the ply, implying that the entire lamina 

consists of a single type of unit cell, repeated in all directions (Subsection 2.1.6); 

 the fibers are assumed to be circular (Subsection 2.1.3); 

 moisture absorption and chemical shrinkage are neglected (Subsection 2.2.2); 

 failure of the fiber/matrix interface is not taken into account (Subsection 2.1.2); 

 the fiber only failure in distortion, not in dilatation (Subsection 2.1.2); 

 the order of strain components is [𝜖11 𝜖22 𝜖33 𝛾23 𝛾13 𝛾12]𝑇  (Subsection 2.1.4); 

 plies and laminates are thin, flat, and orthotropic, placing them in a state of plane stress 

(introduction to Section 3.2); 

 there are no changes in thickness direction of the laminate, meaning no bending loads (in-

troduction to Section 3.2); 

 and finally, typically symmetric balanced laminates are considered, although the expressions 

should not be limited to this class of laminates (introduction to Section 3.2). 

3.5.2 Micromechanical Enhancement 

In order to obtain the strain amplification factors required to convert between global and local 

strains (used in Subsection 3.5.3), micromechanical analyses are carried out. Two fiber array are 

investigated: a square array and a hexagonal one (typically with the long side in vertical, i.e. 𝑦-
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direction, although this is not relevant). Each interrogation point in the fiber arrays yields a me-

chanical amplification factor matrix 𝑴′ and a thermal amplification factor vector 𝑨′. 

Based on these base values, values for rotated unit cells are calculated using Eqns. (3.21) and (3.22): 

𝑴 = 𝚯−𝟏𝑴′𝚯 

𝑨 = 𝚯−𝟏𝑨′. 

Based on Matrix 3.15, 

𝚯 =

[

 
 
 
 
 
1 0 0 0 0 0
0 𝑐2 𝑠2 𝑐𝑠 0 0
0 𝑠2 𝑐2 −𝑐𝑠 0 0
0 −2𝑐𝑠 2𝑐𝑠 𝑐2 − 𝑠2 0 0
0 0 0 0 𝑐 −𝑠
0 0 0 0 𝑠 𝑐 ]

 
 
 
 
 

, 

where 𝑐 = cos 𝜃 and 𝑠 = sin 𝜃, with 𝜃 being each one of the values 0°, 7.5°, 15°, 22.5°, 30°, 37.5° and 

45° for the square array and 0°, 7.5°, 15°, 22.5° and 30° for the hexagonal array (Subsection 3.3.4). 

This means that for each interrogation point in the square array, seven sets of amplification factors 

are obtained, while for the hexagonal array, there are five sets per interrogation point. 

Regarding the interrogation points, every point in the unit cell returns different strain amplification 

factors. In order to ensure sufficient coverage, a large number of interrogation points is taken into 

account (see for example Figure 4.1). As discussed in Subsection 3.4.3, interrogation points in one 

half of the unit cell need to be included. 

During the micromechanical analyses, three different types of external loads are considered, resulting 

in seven load cases in total: normal strains (𝜖11, 𝜖22 and 𝜖33), shear strains (𝛾23, 𝛾13 and 𝛾12), and 

a thermal load (Δ𝑇 ). For the normal strains, fixed boundary conditions will be used (Subsec-

tion 3.1.2), while for the thermal load, movable boundary conditions are used (Subsection 3.1.1). 

“Fixed” in this context means fixing the faces of the unit cell in place (with the exception of the 

applied displacement), while “movable” refers to allowing uniform translation of the face normal to 

its original position (see also Subsection 2.2.3 for a discussion of these two types of boundary con-

ditions). For the shear cases, pure shear needs to be applied. During this type of loading the faces 

of the unit cell are allowed to warp (Subsection 2.2.4). 

The basic dimension of the unit cell (both sides of the square cell, and the short side of the hexagonal 

cell) is 1, although the depth of the unit cell (length in 𝑥-direction) is irrelevant (Subsection 4.2.3). 

Based on geometrical considerations, the long side of the hexagonal unit cell (assumed to align with 

the 𝑦-direction, in accordance with Subsection 3.3.1) has a length of 
√
3 (Subsection 4.2.6). 

Using this basic dimension, the locations of the faces for the square unit cell are 𝑥0 = 𝑦0 = 𝑧0 = 0 

and 𝑥1 = 𝑦1 = 𝑧1 = 1. For the hexagonal unit cell, 𝑥0, 𝑦0, 𝑧0, 𝑥1 and 𝑧1 are in the same location, 

but 𝑦1 =
√
3. In Subsection 4.2.4, the fiber radius and maximum volume fraction were derived to 

be 𝑟 = √𝑉𝑓
𝜋  and 𝑉𝑓,𝑚𝑎𝑥 =

𝜋
4 for the square unit cell, and 𝑟 = √

√
3𝑉𝑓
2𝜋  and 𝑉𝑓,𝑚𝑎𝑥 =

𝜋
2
√
3
 for the hex-

agonal unit cell. 

For the displacements in 𝑥-, 𝑦- and 𝑧- directions, 𝑢, 𝑣 and 𝑤 are used, respectively. The fiber is 

running along the 𝑥-direction. 
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In terms of equations, the boundary conditions for the seven load cases are thus 

 𝜖11 = 1: 𝑢 = 0 at 𝑥0, 𝑢 = 1 at 𝑥1, 𝑣 = 0 at 𝑦0 and 𝑦1, 𝑤 = 0 at 𝑧0 and 𝑧1 

 𝜖22 = 1: 𝑢 = 0 at 𝑥0 and 𝑥1, 𝑣 = 0 at 𝑦0, 𝑣 = 1 at 𝑦1, 𝑤 = 0 at 𝑧0 and 𝑧1 

 𝜖33 = 1: 𝑢 = 0 at 𝑥0 and 𝑥1, 𝑣 = 0 at 𝑦0 and 𝑦1, 𝑤 = 0 at 𝑧0, 𝑤 = 1 at 𝑧1 

 𝛾23 = 1: 𝑢 = 0 at all faces, 𝑤 = 0 at 𝑦0, 𝑤 = 0.5 ⋅ 𝑦1 at 𝑦1 (meaning 𝑤 = 0.5 for the square 

unit cell and 𝑤 = 0.5
√
3 for the hexagonal unit cell), 𝑣 = 0 at 𝑧0, 𝑣 = 0.5 at 𝑧1 (technically 

𝑣 = 0.5 ⋅ 𝑧1, but 𝑧1 = 1 for both unit cells) 

 𝛾13 = 1: 𝑣 = 0 at all faces, 𝑤 = 0 at 𝑥0, 𝑤 = 0.5 ⋅ 𝑥1 at 𝑥1 (taking into account the fact 

that the depth of the unit cell may not be 1), 𝑢 = 0 at 𝑧0, 𝑢 = 0.5 at 𝑧1 

 𝛾12 = 1: 𝑤 = 0 at all faces, 𝑣 = 0 at 𝑥1, 𝑣 = 0.5 ⋅ 𝑥1 at 𝑥1, 𝑢 = 0 at 𝑦0, 𝑢 = 0.5 ⋅ 𝑦1 at 𝑦1 

 Δ𝑇 = 1: 𝑢 = 0 at 𝑥0, 𝑣 = 0 at 𝑦0, 𝑧 = 0 at 𝑧0. The faces at 𝑥1, 𝑦1 and 𝑧1 are forced to 

remain flat, but may translate normal to their original location. See Subsection 4.2.2 for an 

example of how to implement this in Abaqus. 

For each of these load cases, the strain response of the unit cell at one of the interrogation points is 

extracted. The mechanical load cases determine the columns of 𝑴′ (e.g. the response for 𝜖11 = 1 is 

the first column), while the thermal load case determines 𝑨′. During this step, it is important to 

ensure that the strain amplification factors, the columns of 𝑴′, and the rows of 𝑴′ and 𝑨′ all 

follow the standard convention for the order of strain components (described in Subsection 3.5.1). 

Since the basic dimension of the unit cell is unity, an applied unit displacement results in a unit 

strain. Therefore, the strain responses for the stated boundary conditions can be used directly as 

the columns of 𝑴′ and 𝑨′, with the exception of the mechanical amplification factors for 𝜖22 in 

case of the hexagonal unit cell. These factors need to be multiplied by 
√
3, see Subsection 4.2.6). 

Similar adjustments need to be made if the depth of the unit cell is reduced (Subsection 4.2.3). For 

the shear load cases the dimensions of the unit cell are included in the boundary conditions. In 

addition to that, typically smaller displacements and larger temperatures are applied in order to 

avoid numerical issues, meaning that the strain amplification factors need to be scaled accordingly 

(see again Subsection 4.2.6).  

3.5.3 Full State of Strain for Failure Envelope Generation 

Failure is evaluated for fiber and matrix separately (depending on whether fiber or matrix amplifi-

cation factors are used) according to Eqns. (2.1) to (2.4): 

𝜖11 + 𝜖22 + 𝜖33 > 𝐽1
∗ 

√
1

2
[(𝜖11 − 𝜖22)

2 + (𝜖11 − 𝜖33)
2 + (𝜖22 − 𝜖33)

2] +
3

4
[𝛾23
2 + 𝛾13

2 + 𝛾12
2 ] > 𝜖𝑒𝑞𝑣

∗  

where the strains are the components of 𝝐𝑙𝑜𝑐𝑎𝑙 (the order was defined in Subsection 3.5.1), given by 

Eqn. (2.5): 

𝝐𝑙𝑜𝑐𝑎𝑙 =𝑴𝝐𝑔𝑙𝑜𝑏𝑎𝑙 +𝑨Δ𝑇 . 
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𝑴  and 𝑨 were defined in Subsection 3.5.2. Every combination of interrogation point, fiber array 

and unit cell rotation angle needs to be used, with failure assumed to occur if predicted by at least 

one combination. 

Based on Eqn. (3.18), 

𝝐𝑔𝑙𝑜𝑏𝑎𝑙 = 𝝐𝑎𝑝𝑝𝑙𝑖𝑒𝑑 + 𝝐𝑐𝑢𝑟𝑖𝑛𝑔. 

Using Eqn. (3.19), 

𝝐𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 𝚷𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒𝛀𝚷𝑖𝑛−𝑝𝑙𝑎𝑛𝑒𝝐𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 

where 𝚷𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 and 𝚷𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 are the appropriate choices of Matrices 3.6 to 3.11 based on the 

applied loads. Note that the use of the out-of-plane Poisson’s ratio will differ for each ply, depending 

on the state of strain in that particular ply’s coordinate system. For cases other than 0° and 90° 

plies, 𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 should be used. 

Measured ply properties in the ply coordinate system are used for the out-of-plane matrices, while 

laminate properties (derived from measured ply properties) in the laminate coordinate system are 

used for the in-plane matrices. 

𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 =

[

 
 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0

−
𝐶13
𝐶33

−
𝐶23
𝐶33

0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 

 𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 =

[

 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

𝚷𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 =

[

 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0

−𝜈13 0 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 𝚷𝜖𝑥,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
=

[

 
 
 
 
 

1 0 0 0 0 0
−𝜈12 0 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

𝚷𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 =

[

 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 −𝜈23 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 𝚷𝜖𝑦,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
=

[

 
 
 
 
 
 0 −𝜈12

𝐸2
𝐸1

0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 

 

𝐸1, 𝐸2 and 𝜈12 for the laminate are given by Eqns. (3.8) to (3.10) (with 𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 defined below): 

𝐸1,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑄11,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 −
𝑄12,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒
2

𝑄22,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

, 

𝐸2,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑄22,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 −
𝑄12,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒
2

𝑄11,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

, and 

𝜈12,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 =
𝑄12,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

𝑄22,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

. 

For rare triaxial states of load, 𝚷 should be omitted. 𝛀 is given by Matrix 3.14: 
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𝛀 =

[

 
 
 
 
 
𝑐2 𝑠2 0 0 0 𝑐𝑠
𝑠2 𝑐2 0 0 0 −𝑐𝑠
0 0 1 0 0 0
0 0 0 𝑐 −𝑠 0
0 0 0 −𝑠 𝑐 0

−2𝑐𝑠 2𝑐𝑠 0 0 0 𝑐2 − 𝑠2]

 
 
 
 
 

 

where 𝑐 = cos 𝜃 and 𝑠 = sin 𝜃, with 𝜃 being the ply angle. 

The components of 𝝐𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 are mechanical strains (not total strains), following the same 

convention as the components of 𝝐𝑙𝑜𝑐𝑎𝑙. Typically four of the six components are zero, while the 

remaining two are mapped to the two axes of the failure envelope to be plotted. 

The other contribution to 𝝐𝑔𝑙𝑜𝑏𝑎𝑙 is determined from Eqn. (3.17): 

𝝐𝑐𝑢𝑟𝑖𝑛𝑔 = 𝚷𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒

[

 
 
 
 
 

𝜖𝑥,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
𝜖𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒

0
0
0

𝜖𝑥𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 ]

 
 
 
 
 

 

where according to Eqn. (3.15) 

[

𝜖𝑥,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
𝜖𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒
𝜖𝑥𝑦,𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒

] = 𝝐𝑐𝑢𝑟𝑖𝑛𝑔,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 = (𝑻𝜶𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 − 𝜶𝑝𝑙𝑦)Δ𝑇 . 

The rotation matrix is Matrix 3.13: 

𝑻 = [
𝑐2 𝑠2 𝑐𝑠
𝑠2 𝑐2 −𝑐𝑠
−2𝑐𝑠 2𝑐𝑠 𝑐2 − 𝑠2

]. 

𝜶𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 is determined using Eqn. (3.14), stating that 

𝜶𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 =
𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒
−1

𝑡𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒

∑𝑻 𝑇𝑸𝑝𝑙𝑦𝜶𝑝𝑙𝑦𝑡𝑝𝑙𝑦. 

The ply thermal expansion factors are 

𝜶𝑝𝑙𝑦 = [

𝛼1
𝛼2
0
] 

(Eqn. (3.12)). 𝑻  was stated previously. 𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 was derived in Eqn. (3.11) to be 

𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 =
∑𝑻 𝑇𝑸𝑝𝑙𝑦𝑻 𝑡𝑝𝑙𝑦

∑𝑡𝑝𝑙𝑦
, 

while according to Matrix 3.12 

𝑸𝑝𝑙𝑦 =

[

 
 
 
 
 𝐶11 −

𝐶13
2

𝐶33
𝐶12 −

𝐶13𝐶23
𝐶33

0

𝐶12 −
𝐶13𝐶23
𝐶33

𝐶22 −
𝐶23
2

𝐶33
0

0 0 𝐶66]

 
 
 
 
 

. 

The 𝐶𝑖𝑗 terms are found from Matrix 3.3: 
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𝑪 =

[

 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0

𝐶12 𝐶22 𝐶23 0 0 0

𝐶13 𝐶23 𝐶33 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶55 0

0 0 0 0 0 𝐶66]

 
 
 
 
 
 

 

which results from Matrix 3.4 

𝑺 =

[

 
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0

𝑆12 𝑆22 𝑆23 0 0 0

𝑆13 𝑆23 𝑆33 0 0 0

0 0 0 𝑆44 0 0

0 0 0 0 𝑆55 0

0 0 0 0 0 𝑆66]

 
 
 
 
 
 

 

according to 𝑪 = 𝑺−1. Finally, the content of the compliance matrix is determined from the basic 

material properties as follows (Matrix 3.5): 

𝑺 =

[

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸1
−
𝜈12
𝐸1

−
𝜈13
𝐸1

0 0 0

−
𝜈12
𝐸1

1

𝐸2
−
𝜈23
𝐸2

0 0 0

−
𝜈13
𝐸1

−
𝜈23
𝐸2

1

𝐸3
0 0 0

0 0 0
1

𝐺23

0 0

0 0 0 0
1

𝐺13

0

0 0 0 0 0
1

𝐺12]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

3.5.4 Required Input Data 

The required input data to plot a failure envelope for an arbitrary laminate is therefore 

 𝐸1, 𝐸2, 𝐸3, 𝜈12, 𝜈13, 𝜈23, 𝐺12, 𝐺13, 𝐺23, 𝛼1, 𝛼2 and 𝛼3 of the fiber material, the matrix 

material, and the ply; 

 the volume fraction 𝑉𝑓 ; 

 the applied temperature difference Δ𝑇 ; 

 the stacking sequence; 

 the ply thickness 𝑡𝑝𝑙𝑦 (in case it differs between plies, otherwise it is not needed); 

 the critical invariants 𝐽1
∗ for the matrix and 𝜖𝑒𝑞𝑣

∗  for fiber and matrix (typical values are  

𝐽1
∗𝑚 = 0.024 ± 15%, 𝜖𝑒𝑞𝑣

∗ 𝑚 = 0.2 ± 10%, and 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02 ± 10%, as found in Subsec-

tion 6.2.5); 

 and the choice of strain components for the 𝑥- and 𝑦-components of the failure envelope. 
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Chapter 4  

Automation and Practical Aspects 

The purpose of this chapter is to investigate the practical aspects involved in implementing the 

consistent approach to Onset Theory developed in the previous chapter and summarized in Sec-

tion 3.5 in an automated manner. In particular, this consists of a description of the two main soft-

ware tools developed: the micromechanical enhancement software (Section 4.2) and the failure en-

velope prediction software (Section 4.3). 

Both software tools are written in Python, using version 3.5 or higher (with the exception of com-

mands executed in Abaqus, as described in Subsection 4.2.1). Besides the limitation on the minimum 

Python version (various features of the 3.x release line are used, so Python 2.7.x will not suffice to 

run the software), there are no particular operating system or hardware requirements. Python is 

free software, available via https://www.python.org/. 

During this thesis, a relatively powerful (by 2016 standards) desktop computer was used, offering a 

quad-core Intel Xeon processor and 16GB of memory. Together with the typical file size generated 

by Abaqus, this implies a 64-bit operating system (in this case Windows 7). Any reported runtimes 

refer to this computer. ATG Europe’s providing of this system is gratefully acknowledged. 

As a final note, verification of the software is not part of this chapter. For a comparison of the 

results obtained using the developed tools with results found in literature, please see Chapter 5. 

4.1 Purpose of Automation 

One aspect separate from the topics addressed so far is automation. Clearly, Onset Theory is quite 

complex and involves a series of computational steps to arrive at a failure prediction. Some of these 

steps are rather tedious. It therefore seems plausible that automation would be employed on a large 

scale. Another benefit of this would be that the approach used could be standardized, eliminating 

the uncertainties and discrepancies involved (see Section 2.2). 

About a decade ago, some researchers were simply relying on amplification factors provided by 

Gosse, regardless of whether these had been derived for the material combination they were inves-

tigating (Tan, 2005). There is some indication that more recently, automation is available for parts 

https://www.python.org/
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of the process. For example, (R. Li, Kelly, & Mikulik, 2007) modify an existing micromechanical 

model of a square unit cell to obtain strain amplification factors. However, these approaches are not 

documented or publicly available. Having an in-house software capable of automatically carrying 

out all required tasks is crucial for application and further research by TU Delft and ATG Europe. 

In addition to that, none of the published literature contains information on a fully automated 

process capable of investigating the issues listed in Sections 3.3 to 3.1, or of rapidly generating 

failure envelopes based on classical lamination theory as done in Section 3.2. All approaches found 

in literature rely on extensive (and expensive in terms of time) finite element simulations of a 

laminate, with many elements per ply. An automated approach would be far preferable, facilitating 

for example the investigation of the sensitivity to input parameters. 

One additional aspect that should also be addressed by the automated software tools is the criticism 

raised by the authors of the WWFE that failure theories are too time-consuming and difficult to 

apply for everyday use, as discussed in Chapter 1. Therefore, the developed software should be 

“simple” to use. Defining “simple” in this context is somewhat difficult. Most likely, Onset Theory 

will never be as straightforward to use as failure criteria that do not involve micromechanics. “Sim-

ple” will therefore be understood to mean that no expert level dedicated knowledge of SIFT should 

be needed to apply the failure criterion. 

4.2 Micromechanical Enhancement Software 

One of the most important steps of Onset Theory is to amplify the average ply strain to obtain the 

individual constituent strains. In order to do so, micromechanical models of unit cells have to be 

generated, the correct boundary conditions applied, and the strain response extracted. This proce-

dure has been discussed in detail in Chapter 2. The present section investigates some of the practical 

details encountered during automation of the method of micromechanical enhancement, while Sec-

tion A.1 contains an overview of the final software layout and a sample input file. 

4.2.1 Software Choice and Related Practical Matters 

The first step to take is to select an appropriate finite element software. For this thesis, Dassault 

Systemes’ Abaqus (http://www.3ds.com/products-services/simulia/products/abaqus/) was se-

lected. The main reason is its very powerful, Python-based scripting interface. Virtually all tasks 

possible in the graphical user interface can also be performed through Python commands. 

Running Abaqus requires a very expensive software license. As with the computer mentioned in the 

introduction to this chapter, thanks is due to ATG Europe for providing the license. 

At the time of writing of this thesis, Abaqus 2016 is being used. Previously Abaqus 6.14-2 was used. 

The software tool developed should be compatible with any version of Abaqus that provides the 

required API commands. Since the ones used are fairly common, this should usually be the case. 

Migrating from Abaqus 6.14-2 to Abaqus 2016 did not require any changes in the software tool. 

There is one difficulty associated with the choice of Abaqus. While the scripting interface is Python 

based, it uses an Abaqus-internal implementation of Python. This implementation is using the 2.7.x 

http://www.3ds.com/products-services/simulia/products/abaqus/
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release line. It is also quite difficult to install additional modules. Therefore, some additional steps 

had to be taken to communicate between “outside” Python 3.5 and “inside” Abaqus Python 2.7. 

Abaqus Python scripts are invoked by invoking the “inside” Python interpreter with the required 

arguments, using a subprocess spawned from “outside” Python. Data is transferred from “outside” 

to “inside” Python using the “pickle” module also used for storing results (see Subsection 4.2.7). 

These steps are implemented in a dispatch layer, as indicated in the flowcharts in Section A.1. 

One other practical matter is that in order to use the mechanical strain (see Section 2.2.2), the 

elastic strain output “EE” should be used. According to the Abaqus Analysis User’s Guide, subsec-

tion “strain output”, the total strain (“E”) comprises the elastic strain “EE” and the thermal strain 

“THE” (amongst other components). Since the thermal strain should not be included, “EE” remains. 

For the mechanical load cases, there is no difference between total and elastic strains. However, for 

the thermal load case it is important to ensure that the correct strain measure is used. 

4.2.2 Application of Boundary Conditions 

There are three different types of boundary conditions, as outlined in Section 3.5. First of all, there 

are displacement boundary conditions (both to fix faces in place and to apply the displacements 

required to cause the desired state of strain). Applying these in Abaqus is straightforward. 

The second type of boundary condition is the applied temperature difference required to determine 

the thermal amplification factor vectors. In Abaqus, this is handled by applying a so-called prede-

fined field, taking care to apply the same temperature difference to the entire unit cell. 

Finally, for the thermal amplification factors the faces need to be kept planar, but allowed to trans-

late uniformly normal to their original position. A number of different modeling approaches was 

attempted before the successful strategy was found. Coupling of faces failed because it resulted in 

overconstrained edges. Excluding the edges meant that the faces behaved correctly, but the edges 

themselves warped. A second attempt was made using the planar constraint tool offered by Abaqus, 

creating an analytical rigid surface placed in frictionless contact with the face. However, the com-

plexity of this approach was too high. Eventually the choice was made to use equation constraints. 

A reference node is created for each face to be constrained. Once the reference nodes are available, 

an equation can be written that sets the movement of all nodes of a face equal to the movement of 

the reference node. This is easy to implement and results in the desired uniform movement. 

There is a minor disadvantage to using equation constraints in Abaqus. Unlike other types of con-

straints, they apply to all solution steps. It is therefore not possible to have the step for the thermal 

load case in the same model as the mechanical load cases. This meant that separate models had to 

be created. In order to reduce the performance loss due to model generation, a base model containing 

the geometry, interrogation points, and mesh was created and copied to apply the different types of 

loads. As for the other tasks described in this section this entire process is automated. 

As a side note, although in Subsection 2.2.4 it was found that there is no need to keep the faces of 

the unit cell planar for the shear load cases, if this does turn out to be required the suggestion is to 

create a local coordinate system on the faces and specify the equation constraint in that coordinate 

system. This still allows the faces to tilt, while forcing them to remain flat. 
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4.2.3 Meshing Strategy and Unit Cell Size 

Before analyzing the finite element model, the unit cell has to be meshed. Initially a number of 

unsuccessful attempts were made. These will be briefly outlined below, followed by a description of 

the chosen appropriate meshing strategy chosen. 

As a starting point, two meshing strategies were investigated. One followed a relatively structured 

approach, creating radial partitions from the center of the fiber. This was similar to typical meshes 

found in literature. The other approach was selected because of its ease of implementation in Abaqus 

and consisted of simply specifying the global element size, resulting in an unstructured mesh. 

Based on convergence studies (see Subsection 4.2.5) it became clear that using an unstructured 

mesh was unacceptable due to multiple factors, including irregularity of the elements and movement 

of the interrogation points (using the closest available node) from mesh to mesh. 

However, there were also issues related to the structured approach. Convergence of the mesh was 

not achieved before the runtime grew unacceptably large. Therefore, another means to improve the 

mesh refinement was required. This means increasing the number of nodes in the region of interest 

without a corresponding increase in the overall number of nodes. 

Based on the nature of the applied load and the uniformity of the unit cell, there is no variation in 

results along the fiber. For axial loads in all directions and shear loads in the 𝑦-𝑧-plane this is self-

evident, and shear loads in the 𝑥-𝑧- and 𝑥-𝑦-plane also show this behavior (as can be easily verified 

by running the appropriate simulation). (C. T. Sun & Vaidya, 1996) in fact suggested using two-

dimensional plane strain analysis for the investigation of transverse shear loading in the 𝑦-𝑧-plane. 

For reasons of simplicity it was decided to retain a single element in the depth direction. That way 

only a single model is required, rather than three-dimensional models for most of the analyses and 

two-dimensional ones for the others. In order to prevent excessively high aspect ratios the unit cell 

size in depth direction is reduced to one tenth of its basic dimension. Verification studies showed 

that varying either the depth or the number of elements in depth direction does not influence the 

results (which can be expected given that there is no change in depth direction). Therefore, using a 

reduced depth unit cell is in fact not required, but is thought to make this simplification even safer. 

This modeling approach is similar to the one chosen by (Ritchey, 2012, fig. 1.1). 

Reducing the unit cell to a single element in depth direction causes a massive decrease in the number 

of nodes. For example, during the verification studies a full depth unit cell containing 169 619 nodes 

was replaced by a reduced depth consisting of 9 963 nodes with an identical mesh on the 𝑥0- and 

𝑥1-faces, causing a 60-fold decrease in runtime. This reduction was in fact more than expected, 

presumably due to the fact that each element had fewer elements attached (two of its faces were 

free). All resulting amplification factors were identical. 

An issue that was only briefly mentioned above in the discussion of the unstructured mesh is move-

ment of the interrogation points. Initially the location of the interrogation points was specified, and 

the closest node was chosen to sample the resulting strains. However, this means that the actual 

interrogation point location varies slightly from mesh to mesh unless it is ensured that there is a 

fixed node at each interrogation point. Typically, this movement is irrelevant. However, there are 
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some points (in particular on the fiber/matrix interface) where the gradient zone is rather signifi-

cant, meaning that the movement of the interrogation point can prevent convergence. The solution 

is to partition the unit cell such that each interrogation point is located at the corner of a partition, 

which will necessarily have a node. 

In order to maintain some flexibility in the number of interrogation points it was decided to keep 

the software tool parametric in the sense of the number of interrogation points along certain paths 

(e.g. radially in the fiber or the matrix, or along the edge of the unit cell) being variable. The 

software contains default settings based on a number of verification studies. 

Regarding the element type, it was decided to use quadratic brick elements (C3D20 in Abaqus). 

This enhances the analysis accuracy without imposing further restrictions on the meshing strategy 

and interrogation point partitions, as discussed above. An investigation of full and reduced integra-

tion revealed the difference between these two element types to be negligible. Since quadratic ele-

ments are used, shear locking is not considered an issue, and full integration elements were chosen. 

The final meshing strategy therefore consists of creating a full cross section, reduced depth unit cell, 

containing partitions such that each interrogation point coincides with a corner of a partition. 

This ensures that the interrogation points do not 

move regardless of the mesh chosen. Subse-

quently, the mesh is generated by specifying the 

global element size, with the exception of the 

depth direction (where a single element is en-

forced). Provided a reasonable number and distri-

bution of interrogation points is used, this will 

generate a structured mesh based on the parti-

tions created previously. 

Figure 4.1 shows the partitions created in the final 

meshing strategy for the hexagonal fiber array. 

Whenever a number of nodes is mentioned in this 

thesis (e.g. in Subsection 4.2.5), this type of mesh 

is referred to, comprising quadratic full integra-

tion elements. Note that in theory it would be suf-

ficient to model only half of the unit cell due to 

symmetry (see Section 3.4). However, because the 

runtime is sufficiently low to not be an issue, it 

was decided to retain the full cross section. 

 

         

Figure 4.1: Partitions in final meshing strategy for 
a hexagonal fiber array. The mesh it-
self is not shown. Yellow circles refer 
to interrogation points.1 

                                              
1 The thin white lines visible on some screens / print outs are caused by a rendering problem in the 

Abaqus vector graphics export and do not carry any meaning. 
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4.2.4 Fiber Radius and Maximum Volume Fraction 

One aspect that has not been addressed yet is the size of the fiber as a function of the volume 

fraction. Since there are no changes in thickness direction, the volume fraction is identical to the 

cross-sectional area fraction. Using a base dimension of unity, the square unit cell has a total cross-

sectional area of 1. The fiber has an area of 𝜋𝑟2 (where 𝑟 is the radius of the fiber). Equating this 

to the volume (area) fraction results in 𝑟 = √𝑉𝑓
𝜋 . Since the unit cell is regular, the fiber will be 

centered at (𝑦, 𝑧) = (0.5,05). The maximum volume fraction is reached once the diameter of the 

fiber is equal to the size of the unit cell (i.e. 𝑟 = 1
2). This corresponds to a volume fraction of 

𝑉𝑓,𝑚𝑎𝑥 =
𝜋
4
≈ 0.785. 

Similarly, for the hexagonal unit cell the cross-sectional area is 
√
3. Since there are in total two 

fibers in the unit cell (a complete center one and four quarter fibers in the corners), the expression 

becomes 2𝜋𝑟2 =
√
3𝑉𝑓 . This can be solved to yield 𝑟 = √

√
3𝑉𝑓
2𝜋 . The maximum value in this case is 

achieved once two fibers touch each other. This is the case once the diameter of the fiber is equal 

to the diagonal length of the unit cell, given by √0.52 + (
√
3
2 )

2
= 1 (i.e. once again 𝑟 = 1

2). In other 

words, the maximum value is given by a volume fraction of 12 =
√

√
3𝑉𝑓,𝑚𝑎𝑥

2𝜋 → 𝑉𝑓,𝑚𝑎𝑥 =
𝜋
2
√
3
≈ 0.907. 

For the hexagonal unit cell, the fiber is centered at (𝑦, 𝑧) = (
√
3
2 , 05), assuming a vertical unit cell 

(see Subsection 3.3.1). 

4.2.5 Convergence Study 

In order to ensure that the meshes used are converged for all amplification factors, a convergence 

study is carried out based on each individual value of the mechanical amplification factor matrix 

and thermal amplification factor vector for each interrogation point. The chosen convergence meas-

ure is the normalized difference of the values for subsequent mesh refinement levels, defined as 

 
Δ𝑖𝑗 =

|𝑀𝑖𝑗 −𝑁𝑖𝑗|

max(|𝑀𝑖𝑗|, |𝑁𝑖𝑗|)
 (4.1) 

where 𝑀𝑖𝑗 and 𝑁𝑖𝑗 are values of the amplification factor matrix or vector for the previous and 

current refinement levels, respectively. This definition returns similar error measures for each set of 

values, even though the mechanical amplification factors are orders of magnitude larger than the 

thermal ones. It also works consistently regardless of the order or sign of the values, as well as when 

one of the two values is zero. For the special case of 𝑀𝑖𝑗 = 𝑁𝑖𝑗 = 0, by definition Δ𝑖𝑗 = 0. 

However, one word of caution is necessary. If two meshes are relatively similar, then the change will 

be (close to) 0% regardless of convergence. At first this seems to be the same behavior as during a 

convergence study where the actual values are used. However, in that case a much finer mesh will 

cause the two points to more or less coincide and lie on a common convergence curve of all meshes 

investigated. The chosen measure, on the other hand, would not have a smooth convergence curve; 

instead, the curve would suddenly drop to 0% and then increase again. This can cause confusion. 

Therefore, in this thesis the number of nodes is approximately doubled for each subsequent mesh. 
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In addition to ensuring convergence between two different mesh sizes, element result averaging for 

an individual mesh is also taken into account. At a node, results are available based on each of the 

adjacent elements. The results from the attached elements are averaged. Note that for nodes at the 

interface, only elements with the material of interest for the amplification factors should be taken 

into account. That means that for each node at the interface, there will be two sets of amplification 

factors, one for the fiber and one for the matrix. One set will be included in the determination of 

the fiber failure envelope, while the other is considered for the matrix failures.  

In the present work, the meshes are considered converged once no value of any of the amplification 

factor matrices or vectors changes by more than 5% when increasing the mesh size by a factor of 2. 

Both of the meshes in this comparison should be acceptable in terms of element result averaging, 

meaning that the maximum averaging error at a node for any value of any amplification factor 

should be below 5%. These settings can be adjusted as desired. The convergence study is run auto-

matically in the background every time and will not be explicitly mentioned elsewhere in this thesis. 

Appendix C contains an example convergence study for the verification case from Subsection 5.1.1. 

Mesh convergence was typically achieved at a mesh size of at most approximately 500 000 nodes. 

Sometimes even such a fine mesh was supposedly not converged or acceptable. It is advisable to 

manually investigate those cases. Typically the cause is the numerical cutoff (see Subsection 4.2.6). 

For example, if a node has attached elements with values just above and below the cutoff, the 

averaging error will be very large. Similarly, if the result for two subsequent mesh sizes are just 

above and below the cutoff, the averaging error will be 100%. Those and other cases are still ac-

ceptable provided the values are indeed sufficiently small to have no influence on the results. 

4.2.6 Avoiding Numerical Issues 

There are two separate steps taken to avoid numerical issues in the finite element calculations and 

subsequent postprocessing. First of all, Onset Theory calls for the application of unit strains to the 

unit cell. However, applying a displacement of 1 to a unit cell of size 1 would result in massively 

distorted elements. In order to avoid any possible issues the actual applied displacement is of mag-

nitude 1e-3. This means that the resulting amplification factors have to be scaled appropriately. 

This is only possible because all simulations are linear, as discussed in Subsection 2.1.6. 

The scaling factors need to be determined depending on the corresponding dimension of the unit 

cell. For a square unit cell, the appropriate scaling factor is 1000 in 𝑥- and 𝑦-directions, but modified 

by a factor of 10 in 𝑥-direction to take the reduced depth of the unit cell into account (see Subsec-

tion 4.2.3). For the hexagonal unit cell it is important to note that the scaling factor for the long 

side of the unit cell is 
√
3 ⋅ 1000. Assuming a length of 1 for the short side, the long side has a length 

of 
√
3 as determined from simple trigonometry. If a displacement of 1e-3 is applied, this means an 

applied strain of 0.001√
3

. To scale this to back to an applied unit strain the factor 
√
3 is required. 

A similar approach is taken for the thermal amplification factors, where for a temperature difference 

of 1° the resulting strains would be extremely small and might suffer from precision errors. Therefore, 

a difference of 100° is used and the thermal amplification factors are divided accordingly afterwards. 
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In postprocessing, a second measure is taken to avoid numerical issues in the convergence calcula-

tions (Subsection 4.2.5). For small results close to 0 the percentage difference could potentially be 

extremely large, even though the actual values are negligible. As an example, results for two subse-

quent mesh sizes of 1e-13 and 1e-16 would mean a calculated error of 99.9%. Therefore, the choice 

was made to remove values with a magnitude smaller than 0.1% of the largest magnitude value in 

the matrix. In addition to that, every value is rounded to four significant digits to avoid excessively 

long output. Both the numerical cutoff and the number of significant digits were determined based 

on a series of convergence studies. They are set to default values in the software. 

4.2.7 Storage Module 

While the runtime of the micromechanical enhancement software is quite short (a typical conver-

gence study takes about ten minutes, using four-core parallelization on the system described at the 

beginning of this chapter), it is still advisable to devise a storage module to avoid rerunning analyses. 

The Python module “pickle” is used because it is available in any standard Python distribution 

(including the Abaqus-internal one). It is also cross-compatible between Python versions and simple 

to use. Intermediate results are stored for each mesh size for each fiber array type. Additionally the 

converged results for each fiber array type are stored. This holds the dual advantage of facilitating 

rerunning the convergence study with adjusted convergence criteria without having to rerun the 

actual finite element analysis (unless finer meshes are required), while also providing quick access 

to the final results once convergence is established. 

For the converged results for each fiber array type, the same structure as for the failure envelope 

prediction software (see Section 4.3) is used, providing easy data exchange between the two tools. 

4.3 Failure Envelope Prediction Software 

The second software tool automatically generates failure envelopes. With the theoretical aspects 

having been discussed in Section 3.2, this section focuses on the practical details of the implemen-

tation. Subsection 4.3.1 addresses failure envelopes based on a single interrogation point, while Sub-

section 4.3.2 explains how to combine individual envelopes into a common one. As for the microme-

chanical enhancement software, software flowcharts as well as a sample input file are presented in 

Section A.2, also containing visualizations of the approaches described in the following subsections. 

4.3.1 Approach for Single Interrogation Point 

For a single interrogation point, there is a single set of amplification factors (mechanical and ther-

mal). This means that for a given state of ply strain, the invariants can be calculated and compared 

to their respective critical values. However, this is only useful for the evaluation of failure for a 

single state of strain and does not immediately lead to the ability to predict entire failure envelopes. 

Initially, an attempt was made to solve for the failure envelopes analytically. For the equivalent 

strain, this meant deriving for example the equation for 𝜖22 in terms of 𝜖11 (ply strains) where the 

resulting local constituent strains – depending on the values of the amplification factors – caused 
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the strain invariant to be equal to its critical value. This process was successful initially and served 

as confirmation for the first steps of the numerical approaches outlined below, but quickly became 

prohibitively complex algebraically. In particular, this investigation took place before the full details 

of determining the full state of strain (see Section 3.2) were understood properly. Therefore, it did 

not include thermal strains, curing strains, or Poisson’s effects. Taking those effects into account for 

the full envelope would not be feasible analytically, as discussed in Subsection 2.1.5 as well. 

Since the analytical procedure failed, another approach had to be chosen. It was quickly realized 

that attempting to solve the failure envelope analytically was inherently flawed. Onset Theory is 

not an analytical failure criterion that returns a simple expression for the failure envelope, such as 

criteria like Tsai-Wu. Consequently it should not be treated as such. Instead, SIFT is based on 

evaluating a single set of strains and determine whether or not failure occurs. This means that the 

derivation of failure envelopes should be based on evaluating failure on a large number of points 

and choosing the set of points on the boundary between failure and no failure. The advantage of 

this process is that for a single point it is relatively straightforward to calculate the full state of 

strain in a ply, using the approach described in Section 3.2. 

Initially, an algorithm was implemented that started at a single point on the failure envelope (i.e. 

points where the state switched from “not failed” to “failed”) and then searched its vicinity for other 

points where the state switched, until returning to its starting point. However, this approach was 

too slow for reasonable levels of accuracy. Since it became apparent that evaluating many points at 

once using Python’s built-in matrix libraries was significantly faster than evaluating points individ-

ually, the second attempt was to evaluate failure on a large grid of points and determine the convex 

hull (i.e. the outer bound) of all points where failure was predicted. In this case, the failure evalua-

tions were much faster, but calculating the convex hull turned out to be inadmissibly slow. There-

fore, the final choice was to evaluate failure on radial lines from the origin, and to use the points 

where the state switched from “not failed” to “failed”. This is visualized in Figure A.8. 

In that case, many points are still evaluated at once, unlike the first attempted algorithm that 

investigated point by point individually. At the same time, once a point is determined for a radial 

line, that point is known to be part of the envelope without a need to compute the convex hull. 

Analytical and numerical solutions were identical for all cases within the scope of applicability of 

the analytical solution (e.g. no Poisson’s effects, only 0° plies, and so on). For the correct procedure 

using the correct full state of strain derived in Section 3.2, the numerical solution could not be 

verified as easily since no analytical solution was available. However, the failure envelope prediction 

software as a whole is verified in Section 5.2. 

The discussions so far were all related to closed failure envelopes (in other words, 𝜖𝑒𝑞𝑣-failure). For 

the matrix, 𝐽1-failure has to be taken into account as well. In this case the situation is somewhat 

simpler because this cutoff is known to be a straight line. Therefore, determining two points on the 

cutoff is sufficient. Evaluating failure on a horizontal and a vertical line is usually sufficient to obtain 

these two points, except for cases where the cutoff is horizontal or vertical (such as envelopes in-

volving 𝛾𝑥𝑦). These exceptions are addressed by evaluating failure on two horizontal or two vertical 

lines if the initial approach fails. Note also that there are cases (again for envelopes involving 𝛾𝑥𝑦) 
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where the 𝐽1-cutoff consists of two lines, one for positive shear and one for negative shear. Again 

provisions are made accordingly. Figure A.9 shows the approach to determine 𝐽1-failure numerically. 

Regarding the 𝐽1-cutoff, it should be noted that having two points is only sufficient for a single 

envelope. Given the procedure described in the next section to determine the combined cutoff for 

multiple interrogation points, additional points are generated in between the two points. 

4.3.2 Approach for Multiple Interrogation Points 

So far, the discussion was limited to a single interrogation point. If multiple interrogation points are 

taken into account, the failure envelope has to be generated for each one of them. The complete 

failure envelope then consists of the piecewise most conservative set of all individual envelopes. 

Regardless of the type of failure (𝜖𝑒𝑞𝑣-envelope or 𝐽1-cutoff), the combined failure envelope is deter-

mined by merging the data points of all individual envelopes. Subsequently, failure is evaluated 

based on every interrogation points once more. However, in this case the dataset is the merged data 

of all individual envelopes, rather than a line from the origin. By filtering out all data points where 

any interrogation point causes failure, the most conservative failure envelope is left over. This can 

be explained as follows: the data points on an individual failure envelope represent the location 

where that particular interrogation point is on the verge of causing failure. If another interrogation 

point is more critical, these data points will be removed. Left over are therefore the points where 

one particular interrogation point is on the verge of causing failure, while all other interrogation 

points do not yet cause failure. This is by definition the inner (most conservative) failure envelope. 

Once again the approach is depicted for a pseudo-case in the appendix (Figure A.10). 

For a real case, the process of selecting the final failure envelope from the contributions of the 

individual interrogation points is shown in Subsection 3.4.1. Similar to the convergence study for 

the strain amplification factors (Subsection 4.2.5), this process is carried out automatically in the 

background for every failure envelope shown in this thesis. 

Combining all fiber array types and unit cell rotation angles (Section 3.3) with all interrogation 

points (Section 3.4) results in several thousands of combinations. Determining the individual enve-

lopes for all of these combinations is quite slow. Therefore, Python’s built-in multiprocessing toolbox 

is used to employ parallelization to improve the runtime. On the system described in the introduc-

tion to this chapter, generating a typical laminate failure envelope (excluding sensitivities) with four 

distinct ply angles takes approximately three minutes. 
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Chapter 5  

Verification of Approach and Software 

Chapter 4 contained a description of the two software tools developed to implement the consistent 

approach to Onset Theory. Before working on validation and research tasks, it is important to 

ensure that software and approach work correctly. For the micromechanical enhancement, this is a 

straightforward task because several quite reliable sources exist which report strain amplification 

factors. This is discussed in Section 5.1. On the other hand, verifying the failure envelope predictions 

proves more involved because only very few failure envelopes are found in literature, and there are 

significant doubts about their validity. Section 5.2 investigates the details of this topic. 

5.1 Verification of Micromechanical Enhancement 

The purpose of this section is to provide thorough verification of the micromechanical enhancement 

software. This is achieved by comparing results returned by the software tool to literature results. 

Several sources are used, both to have data for all four categories of amplification factors (fiber and 

matrix for square and hexagonal fiber arrays) and to provide confidence that there are no unidenti-

fied errors common to both literature and software. In general, it is noticeable that there is more 

(and more reliable) data available for the amplification factors in the matrix than for the ones in 

the fiber, and similarly for square fiber arrays as opposed to hexagonal ones. The reason is probably 

that SIFT was initially developed as a matrix failure criterion. However, there are several less 

reliable sources available, such as student theses. These will also be used for verification. While they 

are not published in peer reviewed journals, and there is a significant chance that the authors 

misunderstood or misapplied the theory, they do contain far more details than a scientific article. 

It should be noted here that the Master thesis by (Yudhanto, 2005) contains various sets of ampli-

fication factors, covering all four categories described previously. However, these were derived before 

the proper procedure as outlined in (Buchanan et al., 2009) was established. For example, Yudhanto 

only uses the diagonal terms of the amplification factor matrices, and uses fixed boundary conditions 

for the thermal amplification factors (see Subsection 2.2.5). Therefore, his results are only used as 

the main source for verification if no other results are available (i.e. in Subsection 5.1.4). 
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5.1.1 Matrix Amplification Factors for Square Fiber Array 

The first category of strain amplification factors to be verified are the matrix amplification factors 

for the square fiber array. (Buchanan et al., 2009) is used for this purpose, both because it was the 

first article by Gosse (SIFT’s original author) describing the process of micromechanical enhance-

ment and also because it showcases some typical problems encountered during this process. 

Section B.1 contains the full data required to reproduce the results of this verification effort, includ-

ing the input data for the micromechanical models (Table B.1), the literature results (Matrices B.1 

to B.6), and the results obtained using the software tool developed during this thesis (Matrices B.7 

to B.12). The locations – IF1, IS and IF2 – follow the choice of interrogation points by (Buchanan 

et al., 2009), as shown in Figure 2.9. Note that this example is also used for the example convergence 

study shown in Appendix C. 

Comparing literature and software results yields the differences shown in Matrices 5.1 to 5.6. The 

method of calculating these difference is the same as described in Subsection 4.2.5. All values are in 

percent and rounded to two decimals. 

[

 
 
 
 
 
0 0 0 0 0 0
2.64 0.52 37.79 0 0 0
1.85 3.1 0.59 0 0 0
0 0 0 2.78 0 0
0 0 0 0 1.07 0
0 0 0 0 0 1.01]

 
 
 
 
 

 

Matrix 5.1: Difference [%] in square array matrix mechanical 
strain amplification factors at IF1 

[

 
 
 
 
 
0.28
0.05
0.84
0
0
0 ]

 
 
 
 
 

 

Matrix 5.2: Difference [%] in square array matrix 
thermal strain amplification factors at IF1 

[

 
 
 
 
 
0 0 0 0 0 0
0.74 0.83 2.09 0 0 0
2.9 3.7 0.09 0 0 0
0 0 0 1.85 0 0
0 0 0 0 0.44 0
0 0 0 0 0 0.44]

 
 
 
 
 

 

Matrix 5.3: Difference [%] in square array matrix mechanical 
strain amplification factors at IS 

[

 
 
 
 
 
0.38
3.66
23.91
0
0
0 ]

 
 
 
 
 

 

Matrix 5.4: Difference [%] in square array matrix 
thermal strain amplification factors at IS 

[

 
 
 
 
 
0 0 0 0 0 0
1.85 0.59 3.1 0 0 0
2.64 37.79 0.52 0 0 0
0 0 0 2.78 0 0
0 0 0 0 1.01 0
0 0 0 0 0 1.07]

 
 
 
 
 

 

Matrix 5.5: Difference [%] in square array matrix mechanical 
strain amplification factors at IF2 

[

 
 
 
 
 
0.28
0.84
0.05
0
0
0 ]

 
 
 
 
 

 

Matrix 5.6: Difference [%] in square array matrix 
thermal strain amplification factors at IF2 

Comparing results, it is clear that the overall agreement is excellent. The maximum difference is 

3.7%, with the exception of two terms. First of all, term (2,3) of the mechanical amplification factors 

at IF1 (Matrix 5.1) differs by 37.79%. Note that this is identical to term (3,2) of Matrix 5.5 due to 

symmetry. Secondly, term 3 of the thermal amplification factors at IS (Matrix 5.4) differs by 23.91%. 
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Regarding the latter one, as discussed in Section B.1 the likelihood of a print error is rather high. 

Terms 2 and 3 should be identical. Since the agreement with term 2 is quite good, the disagreement 

for term 3 is discarded as a point of concern. 

Regarding term (2,3) of Matrix 5.1 (and term (3,2) of Matrix 5.5), the issue is probably caused by 

the lack of convergence of the literature results, as pointed out in Section B.1. One of the driving 

factors during the development of the meshing strategy, including reducing the depth of the unit 

cell (see Subsection 4.2.3 for a description of the final choice), was in fact convergence problems 

with those two particular terms. 

An investigation was carried out of this individual interrogation point on a very coarse mesh of a 

full cube unit cell, containing 20 489 nodes (corresponding to a single element deep unit cell with 

4 960 nodes – note that the 252 003 nodes were required for full convergence of all terms at all 

interrogation points according to the criteria used in this thesis). The meshing strategy was similar 

to the one shown in (Buchanan et al., 2009, fig. 2). In that case, all terms were within 6.4% of the 

converged values, with the exception of the problematic one. With a value of 0.05854 (instead of 

the 0.07776 resulting from full convergence), it was off by 24.72%. Although the result by Buchanan 

(0.125) exceeds the converged value rather than being too low, it is obvious that this particular 

term is problematic, with all other terms at this interrogation point being converged already for a 

very coarse mesh. 

Unfortunately, (Buchanan et al., 2009) do not discuss how they ensured convergence of their mesh. 

It seems plausible that the results are not converged for every single value individually, but only for 

the equivalent strain of a column (see e.g. (Tran, 2012, fig. 3-13), who coauthored articles on SIFT 

with Gosse, such as (Tran, Kelly, et al., 2012)). The reason why this will lead to different results is 

that small unconverged values can be masked by larger values in the same column. In literature, 

the nonzero terms of the third column of the amplification factors at IF1 (Matrix B.1) are 𝜖22 =

0.125 and 𝜖33 = 0.61. Using the software the values are 𝜖22 = 0.07776 and 𝜖33 = 0.6064 (Matrix 

B.7). Looking at the individual terms, this means differences of 37.79% and 0.59%, as reported in 

Matrix 5.1. On the other hand, if the equivalent strain is calculated based on Eqn. (2.2), the results 

are 𝜖𝑒𝑞𝑣 = √1
2
[𝜖22

2 + 𝜖33
2 + (𝜖22 − 𝜖33)

2] = √1
2
[0.1252 + 0.612 + (0.125 − 0.61)2] = 0.558 based on 

the literature values and 0.572 based on the software results. The resulting difference is much 

smaller, namely only 2.45%. A similar calculation for the 𝐽1-strain reveals a difference of 6.94%. 

This means that the mesh will be (almost) converged when judging by the strain invariants, whereas 

the individual terms still show very large differences. 

Of course, the value which will be used in failure calculations are in fact the strain invariants. That 

means that likely the lack of convergence of a single term will not influence the results much, unless 

it somehow becomes the only active amplification factor. The safest way is to ensure convergence 

of every term individually, as discussed in Subsection 4.2.5, although this does carry a penalty in 

terms of runtime because much finer meshes are required to converge each individual value. 

In summary, this means that the few existing significant differences between software and literature 

results can be explained plausibly by a lack of convergence of the literature results. This is also 

supported by other comparisons, using the results reported in (Ritchey et al., 2011, Table 4) for 

IM7/8552, (Tran, 2012, Eqns. 3-17 to 3-19) for T800s/3900-2, and (Tran, 2012, Eqns. 3-20 to 3-22) 
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for T300/Cycom 970. While the terms that were problematic in the comparison with (Buchanan et 

al., 2009) still showed the lowest level of agreement, the difference to literature reduced to less than 

15%. In general, the magnitude of deviations was very similar to the case presented in detail here. 

These other comparisons serve to increase confidence in the validity of the results, but otherwise do 

not show any distinct interesting feature and are thus not covered in detail. 

As a side note, if comparison is attempted with the results by (Tran, 2012), it appears that a 

temperature difference of about −160° is used when reporting the thermal amplification factors 

(rather than the −140° stated). A consistent difference in results of between 10% and 15% was 

found for all interrogation points and both materials, which can be explained by an incorrect value 

of Δ𝑇 . The curing temperature of Cycoml 970 according to the manufacturer’s data sheets is 177° 

Celsius, resulting in a temperature difference of 157° to room temperature. 

5.1.2 Matrix Amplification Factors for Hexagonal Fiber Array 

The second category of strain amplification factors to be verified are the matrix amplification factors 

for the hexagonal fiber array. (Ritchey et al., 2011) is used because it was coauthored by Gosse and 

is thus deemed the most reliable source available. As for the matrix amplification factors for the 

square array, the full data required to reproduce the results is found in the appendix in Section B.2, 

presenting and discussing the input data (Table B.2), literature results (Matrices B.13 and B.14), 

and own results (Matrices B.17 and B.18). 

Comparing literature and software tool results for the thermal amplification vector yields a vector 

of differences [0.61 1.65 3.32 0 0 0]𝑇  (all values in percent), meaning that the literature 

results are reproduced very closely. 

For the mechanical amplification factors, all terms are identical with the exception of the second 

column (𝑦-direction, referring to the long side of the hexagonal unit cell). For this column, the 

nonzero values in literature are 𝜖22 = 0.6 and 𝜖33 = 0.3, while the software tool returns values of 

𝜖22 = 1 and 𝜖33 = 0.5. Both of these correspond to a difference of 40%. 

This issue due to the way displacements are applied to the unit cell. As discussed in Subsection 4.2.6, 

for the long side of the hexagonal unit cell an additional factor of 
√
3 is required to obtain an applied 

unit strain. Since 
√
3 ⋅ 0.6 = 1.04 ≈ 1 and 

√
3 ⋅ 0.3 = 0.52 ≈ 0.5 (which are the values obtained using 

the software tool), it seems very likely that this step was omitted in the literature results. The 

faultiness of this approach is also clear from the corresponding failure envelopes, where omitting the 

factor 
√
3 for the hexagonal unit cell results in a completely different failure envelope than the 

square unit cell (scaled in 𝑦-direction by a factor of 
√
3, as per the general trends discussed in 

Subsection 2.1.5). A final piece of evidence is the match in fiber strain amplification factors for the 

hexagonal fiber array, as shown in Subsection 5.1.4. 

In summary, this means that just like for the matrix amplification factors for the square array the 

agreement with literature results is excellent with the exception of plausibly explainable cases. 
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5.1.3 Fiber Amplification Factors for Square Fiber Array 

For the fiber amplification factors for the square fiber array, no complete or fully reliable results are 

available. The best source of results are the theses by (Mao, 2011) and (McNaught, 2009). 

Of these two, the results by Mao could not be reproduced. During the investigation, it was found 

that the results reported do not seem plausible. For example, at location IS (all locations are again 

in correspondence with e.g. Figure 2.9), the three shear terms of the amplification factor matrix are 

1.3659, 1.8438, and 1.1096 (Mao, 2011, Table 5-4). Due to symmetry of the unit cell and loading, 

at least two of these terms (corresponding to 𝛾𝑥𝑧 and 𝛾𝑥𝑦) should be identical. However, this is not 

the case. Similarly, the matrices on the fiber boundary at 0° and 90° (assuming a horizontal line 

through the fiber center, corresponding to e.g. points F3 and F5 of Figure 2.10) should be identical 

except for the arrangement of terms, whereas the reported matrices have different shear terms. 

Together with other similar problems, this means the results by Mao are not used for verification. 

Therefore, the results by McNaught are used for verification purposes. Unfortunately, only the 

mechanical amplification factors are found in literature. A verification of the thermal amplification 

factors is not possible due to a lack of reference data. 

For the three points chosen – McNaught made the same choice as Mao (i.e. center of the fiber, and 

points at 0° and 90° on the fiber/matrix boundary) – the comparison to literature yields the results 

shown in Matrices 5.7 to 5.9. 

[

 
 
 
 
 
0 0 0 0 0 0
0.45 2.34 1.52 0 0 0
0.45 1.52 0.82 0 0 0
0 0 0 26.14 0 0
0 0 0 0 1.57 0
0 0 0 0 0 1.57]

 
 
 
 
 

 

Matrix 5.7: Difference [%] in square array fiber mechan-
ical strain amplification factors at the center 
of the fiber 

[

 
 
 
 
 
0 0 0 0 0 0
5.22 0.76 14.86 0 0 0
2.51 2.64 0.16 0 0 0
0 0 0 20.8 0 0
0 0 0 0 1.32 0
0 0 0 0 0 4.11]

 
 
 
 
 

 

Matrix 5.8: Difference [%] in square array fiber mechan-

ical strain amplification factors at 0° on the fi-
ber/matrix boundary 

 

[

 
 
 
 
 
0 0 0 0 0 0
2.51 0.16 2.64 0 0 0
5.22 14.86 0.76 0 0 0
0 0 0 20.8 0 0
0 0 0 0 4.11 0
0 0 0 0 0 1.32]

 
 
 
 
 

 

Matrix 5.9: Difference [%] in square array fiber 
mechanical strain amplification fac-

tors at 90° on the fiber/matrix bound-
ary 

 

Not much is to be said about this comparison. Clearly, the overall agreement is quite good, with 

the exception of the (2,3) and (3,2) terms of the matrices at 0° and 90° on the fiber/matrix boundary, 

as well as the 𝛾𝑦𝑧 terms at all points. The former of these is presumably due to the same convergence 

issues discussed in Subsection 5.1.1. For the latter, the explanation is that (as stated in Section B.3) 

the 𝐺23-term of the fiber is unknown and was assumed to be equal to 𝐺12. Apparently McNaught 

used some other, unknown value. 
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Although not discussed in detail here because verification of the matrix amplification factors for the 

square array took place in Subsection 5.1.1 already, the mechanical matrix amplification factors 

reported by McNaught were also compared to results obtained from the software tool. There were 

no particular discrepancies. In case a comparison is attempted, the issues found were a sign error in 

literature (term (3,2) of point 5 as defined by McNaught), the terms typically problematic in terms 

of convergence (also discussed previously in Subsection 5.1.1), and term (3,2) of point 4, which was 

off by 140% with no plausible explanation found. 

In summary, this means that the fiber amplification factors for the square array were also success-

fully verified, albeit using a literature source that cannot be considered fully reliable due to its being 

a student thesis rather than a peer reviewed journal article. 

5.1.4 Fiber Amplification Factors for Hexagonal Fiber Array 

The last category of amplification factors are the fiber amplification factors for the hexagonal fiber 

array. Only (C. H. Wang, 2005) contains a full amplification factor matrix. However, the results 

could not be verified because both the input data and the location of the interrogation point are 

unclear. Since no other literature data could be found, the last resort was to use the results by  

(Yudhanto, 2005), acknowledging the issues stated in the introduction to Section 5.1 (namely that 

only the diagonal terms of the mechanical amplification factors are available for verification). 

Yudhanto reports values for four locations: points F1, F2, F3, and F9 in Figure 2.13, corresponding 

to points at 90°, 45° and 0° on the fiber boundary and the fiber center, respectively. Three volume 

fractions are included (𝑉𝑓 = 0.5, 𝑉𝑓 = 0.6 and 𝑉𝑓 = 0.7). Only 𝑉𝑓 = 0.5 is used for the detailed 

comparison here. For the other volume fractions good agreement was reached as well (typically 

within about 15% of all values), with a slight trend towards larger differences at higher volume 

fractions. It seems questionable whether Yudhanto’s results for those volume fractions are con-

verged, given for example the different amplification factors in 𝑦- and 𝑧-directions at the fiber center. 

[

 
 
 
 
 
0

1.47 ?

1.17

3.53

? 1.07

0.49]

 
 
 
 
 

 

Matrix 5.10: Difference [%] in square array matrix me-
chanical strain amplification factors at the 
center of the fiber 
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Matrix 5.11: Difference [%] in square array matrix me-

chanical strain amplification factors at 0° on 
the fiber/matrix boundary 

[
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4.27

? 0.08
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Matrix 5.12: Difference [%] in square array matrix me-

chanical strain amplification factors at 45° on 
the fiber/matrix boundary 
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0

0.27 ?

0.11

0.19

? 0.11

0.16]

 
 
 
 
 

 

Matrix 5.13: Difference [%] in square array matrix me-

chanical strain amplification factors at 90° on 
the fiber/matrix boundary 
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Comparing literature (Matrices B.28 to B.31) with software tool results (Matrices B.32 to B.38) 

yields the differences shown in Matrices 5.10 to 5.13. Clearly, the agreement is excellent. 

As a side note, amplification factors for the square fiber array and a volume fraction of 𝑉𝑓 = 0.6 

were also compared with software tool results. For points in the matrix, there was good agreement; 

in the fiber, all interrogation points showed excellent agreement except for those at 45° on the 

fiber/matrix boundary, which were completely different and contained significant off-axis terms. 

Matrix amplification factors for the hexagonal array were also compared for all three volume frac-

tions. Yudhanto’s results seemed somewhat questionable, with for example terms (2,2) and (3,3) at 

IS (as defined in Figure 2.9) not being identical, and IF1 and IF2 containing different terms rather 

than being permutations of each other. Both of these indicate a lack of convergence. All in all, the 

agreement ranged from decent (within 20% or so) to very good (within 1%), depending from term 

to term. At a volume fraction of 𝑉𝑓 = 0.7, there were significant differences with Yudhanto, and 

the software tool indicated a lack of convergence. The same argumentation as in Section B.2 can be 

followed, meaning that this should not be the cause for the differences. It however indicates that 

this volume fraction is particularly problematic, meaning that the literature results may also have 

had trouble with convergence. 

5.1.5 Summary of Verification Efforts 

Summarizing Subsections 5.1.1 to 5.1.4, it is clear that the software tool is working as expected. All 

four categories of amplification factors used in this thesis (fiber and matrix for square and hexagonal 

array) were verified by comparing results with published values from literature. For the most part 

there was excellent agreement, with plausible explanations found for the remaining values. In fact, 

the verification efforts led to the discovery of definite errors in literature, such as incorrect scaling 

of strains corresponding to the long side of the hexagonal unit cell in (Ritchey et al., 2011). While 

ensuring convergence can be difficult for all interrogation points according to the strict rules imposed 

by the automatic procedure (see Subsection 4.2.5), there do not seem to be any convergence issues 

of sufficient severity to impact the results. This means that the micromechanical enhancement soft-

ware is safe to use for further research, in particular the generation of failure envelopes. 

5.2 Verification of Failure Envelope Prediction 

The second aspect involved in the consistent approach to Onset Theory is the prediction of failure 

envelopes using analytical means to establish the full set of strain. Several steps are carried out in 

order to verify whether theory and implementation work as expected. First of all, the calculations 

themselves are verified by comparing to literature results in Subsection 5.2.1. Secondly, Subsec-

tion 5.2.2 describes a finite element analysis carried out to further increase confidence in the ana-

lytical calculations. With the calculations verified, the entire approach to predict failure envelopes 

is put to the test. This is done for a ply under normal strains, a laminate under normal strains, and 

a ply under shear strain, in Subsections 5.2.3 to 5.2.5. 
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5.2.1 Analytical Calculation of Curing Strains and Poisson’s Effects 

In order to verify the calculation of Poisson’s effects and curing strains – in other words the calcu-

lation of the full state of strain – as outlined in Section 3.2, the example calculations for the hexag-

onal fiber array from (Ritchey et al., 2011) are used (this is the same case as listed in Section B.2). 

However, in this case the micromechanical amplification factors (and thus the constituent proper-

ties) are not relevant. Curing strains and Poisson’s effects are a ply-level structure effect. Table 5.1 

contains the required ply material properties. 

Table 5.1: Ply material properties used for analytical verification 
of the full state of strain (Ritchey et al., 2011, Table 1) 

𝐸1 [Pa] 167.5e9 

𝐸2 [Pa] 10.7e9 

𝐸3 [Pa] 10.7e9 

𝐺12 [Pa] 6.3e9 

𝐺13 [Pa] 6.3e9 

𝐺23 [Pa] 3.34e9 

𝜈12 [−] 0.31 

𝜈13 [−] 0.31 

𝜈23 [−] 0.6 

𝛼1 [°𝐶
−1] 0.41e-6 

𝛼2 [°𝐶
−1] 35.1e-6 

𝑡 [𝑚] 0.2e-3 

Based on this, the first step is to calculate the ply compliance matrix. Its values are found to be 

𝑺 =

[

 
 
 
 
 
5.97 −1.85 −1.85 0 0 0
−1.85 93.46 −56.07 0 0 0
−1.85 −56.07 93.46 0 0 0
0 0 0 299.4 0 0
0 0 0 0 158.73 0
0 0 0 0 0 158.73]

 
 
 
 
 

⋅ 1e-12 [
1

𝑃𝑎
]. 

Matrix 5.14: Compliance matrix for analytical verification of full state of strain 

Through inversion, the ply stiffness matrix is then 

𝑪 =

[

 
 
 
 
 
172.8 8.6 8.6 0 0 0
8.6 17.1 10.5 0 0 0
8.6 10.5 17.1 0 0 0
0 0 0 3.3 0 0
0 0 0 0 6.3 0
0 0 0 0 0 6.3]

 
 
 
 
 

⋅ 1𝑒9 [𝑃𝑎] 

Matrix 5.15: Stiffness matrix for analytical verification of full state of strain 

The next step is to calculate the laminate reduced stiffness matrix, resulting in 

[
89.7 3.3 0
3.3 89.7 0
0 0 6.3

] ⋅ 1𝑒9 [𝑃𝑎] 

(for a [0/90/90/0] laminate) 

and 
[
52.8 40.2 0
40.2 52.8 0
0 0 6.3

] ⋅ 1𝑒9 [𝑃𝑎] 

(for a [45/-45/-45/45] laminate). 
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Subsequently, the laminate thermal expansion coefficients are calculated. Since the two laminates 

are identical in terms of a thermal load because of symmetry, the expansion coefficients for both of 

them are [3.04 3.04 0]𝑇 ⋅ 1e-6 [−]. 

Based on this, the in-plane curing strains (in the ply coordinate system) for a temperature difference 

of Δ𝑇 = −100°𝐶 are then found to be [−263 3206 0]𝑇 ⋅ 1e-6 [– ] (note that the last component 

is the shear component). These values are identical for all plies for the two laminates, again because 

of the thermal symmetry. 

Finally, the out-of-plane curing strains, caused by the Poisson’s ratio, are calculated. This leads to 

the final mechanical strain vector due to curing, [−263 3206 −1824 0 0 0]𝑇 ⋅ 1e-6 [– ]. 

The micro-level strains would then be calculated according to Eqn. (2.5): 𝝐𝑙𝑜𝑐𝑎𝑙 =𝑴𝝐𝑐𝑢𝑟𝑖𝑛𝑔 +

𝑨Δ𝑇 . All results are essentially identical to the ones found in literature, with the exception of minor 

differences due to rounding. Therefore, the literature values are not repeated. 

In summary, it is clear that the calculations for the full state of strain are indeed implemented 

correctly according to the theory outlined in (Ritchey et al., 2011). The next step is to verify whether 

these analytical calculations are also supported by finite element results. This is in particular rele-

vant because of the large magnitude of the curing strains (more than 3000 microstrain in transverse 

direction for a relatively small temperature difference of Δ𝑇 = −100°𝐶). 

5.2.2 Finite Element Analysis of Curing Strains and Poisson’s Effects 

Finite element analysis was used for two distinct verification efforts. The main focus were square 

plates with layups of [0/90/90/0] and [45/-45/-45/45], analyzed under a thermal load and applied 

edge strains. 

During all finite element analyses in this subsection it was made sure to use a sufficiently large plate 

to adhere to the assumption of a thin laminate. For the [0/90/90/0] laminate, this was ten times 

the thickness, while during the verification efforts for the [45/-45/-45/45] laminate plates up to 50 

times the thickness were analyzed in order to exclude edge effects. Ultimately these efforts were 

only partially successful, as discussed below. Values are sampled close to the center of the plate. A 

relatively fine mesh was used, containing up to 50 000 quadratic brick elements (corresponding to 

213 741 nodes) in the largest plate. The 𝑥- and 𝑦-faces of the laminate were kept planar in order to 

enforce strain compatibility. This was done using equation constrains, similar to the ones discussed 

in Subsection 4.2.2. 

The first verification effort concerned the larger curing strains determined analytically in the previ-

ous section. In order to increase confidence in the results, a finite element analysis was carried out. 

This was also used to confirm whether there are indeed out-of-plane mechanical strains due to 

curing, based on the Poisson’s effect. The finite element models confirmed the analytical predictions, 

both regarding the in-plane mechanical strains and also the resulting out-of-plane Poisson’s strains. 

The mechanical strains were 𝝐𝑐𝑢𝑟𝑖𝑛𝑔 = [−263 3206 −1824 0 0 0]𝑇 ⋅ 1e-6 [−] in all plies of 

the [0/90/90/0] laminate, identical to the analytical results. 
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For the [45/-45/-45/45] laminate, some minor problems were encountered. Regardless of the size of 

the plate and the refinement of the mesh, the state of strain was not completely uniform, resulting 

in small deviations in the mechanical curing strains (in the order of a few tens of microstrains). For 

example, at the center of the plate the result for 𝜖𝑥 varied between −266e-6 and −293e-6, which is 

first of all clearly not a uniform result and secondly differs from the analytical predictions and the 

results for a [0/90/90/0] plate. However, these issues could be traced back to the edges of the plate 

not being lined up with the stiff and compliant directions of a ply. This was confirmed by modeling 

a circular plate with a [0/90/90/0] layup, which showed similar problematic behavior as a square 

[45/-45/-45/45] plate (for example, 𝜖𝑥 varied between −265e-6 and −270e-6). Increasing the size of 

the plate to obtain a higher size to thickness ratio, or refining the mesh, failed to remove this issue. 

The purpose of the finite element model was to confirm the theory, which was successful given the 

exact match for the [0/90/90/0] laminate and the relatively small magnitude of the deviations for 

the [45/-45/-45/45] laminate. Investigating modeling issues involving edge effects was not the focus 

of this verification effort. Therefore, no further investigation was carried out. 

A second finite element model was used to verify the ply by ply formulation of Poisson’s effects 

based on a state of plane stress, as opposed to the discarded intuitive formulation (see Subsec-

tion 3.2.1). The thermal model is unsuited for this because the effects in 𝑥- and 𝑦-directions are 

identical, meaning that the coupling effects present in the ply by ply model and lacking in the 

intuitive formulation do not play a role. Therefore, mechanical strains of 𝜖𝑥 = 0.01 and 𝜖𝑦 = 0.001 

are applied to the [0/90/90/0] laminate. For these in-plane strains, the intuitive formulation would 

predict an out-of-plane strain of 𝜖𝑧 = −0.31 ⋅ 0.01 − 0.6 ⋅ 0.001 = −3700e-6 for the 0° plies, and of 

𝜖𝑧 = −0.31 ⋅ 0.001 − 0.6 ⋅ 0.01 = −6310e-6 in the 90° plies. On the other hand, the formulation 

based on plane stress would yield 𝜖𝑧 = − 8.6
17.1 ⋅ 0.01 −

10.5
17.1 ⋅ 0.001 = (−5601e-6) for the 0° plies and 

𝜖𝑥 = (−6598e-6) for the 90° plies. The final strain results are put into brackets because they are 

based on the exact values rather than the rounded values shown in Matrix 5.15. 

The finite element model showed out-of-plane strains of −5601e-6 in the 0° ply and −6598e-6 in the 

90° ply, confirming the approach of calculating the Poisson’s strains on a ply by ply basis using the 

formulation based on the assumption of plane stress. 

In summary, the result of the finite element based verification efforts was that the analytical proce-

dure indeed correctly predicts curing and out-of-plane Poisson’s strains. 

5.2.3 Ply Envelopes Involving Normal Strains 

Very few failure envelopes are available in literature. The only source is (Hart-Smith, 2007). How-

ever, the envelopes he presents are incorrect (as will be discussed below). 

The input data used can be found in Section B.5. Based on this, the micromechanical enhancement 

process is carried out and failure envelopes are generated. Hart-Smith’s failure envelope has been 

sampled from (Hart-Smith, 2007, Slide 63). 

Figure 5.1 shows the comparison of the correct failure envelope (established using the procedure 

outlined in Section 3.5) with Hart-Smith’s envelope. There are significant discrepancies both in the 

fiber failure envelope and in particular also in the dilatational matrix cutoff. Hart-Smith does not 



5.2 Verification of Failure Envelope Prediction 81 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

give the distortional matrix failure envelope. Note that the envelope plotted here only uses the 

square fiber array without any rotation of unit cells. It does, however, include the full set of inter-

rogation points. 

 

Figure 5.1: Comparison of correct normal strain ply failure envelope with Hart-
Smith's envelope (Hart-Smith, 2007, Slide 63) 

Since Hart-Smith uses movable boundary conditions (Subsection 2.2.3), the applied strains have to 

be adjusted (Subsection 3.1.2). Based on Eqn. (3.2) the unit cell will cause Poisson’s effects accord-

ing to Matrix 5.16. Therefore, the Poisson’s effects in the applied strains have to be removed. 

𝚷𝑚𝑜𝑣𝑎𝑏𝑙𝑒 =

[

 
 
 
 
 
 
 
 1 −

𝐸2
𝐸1

𝜈12 −
𝐸3
𝐸1

𝜈13 0 0 0

−𝜈12 1 −
𝐸3
𝐸1

𝜈23 0 0 0

−𝜈13 −𝜈23 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 
 
 

. 

Matrix 5.16: Equivalent Poisson's effect matrix for movable boundary conditions 

Figure 5.2 compares an envelope generated using 𝚷𝑚𝑜𝑣𝑎𝑏𝑙𝑒 as the out of plane Poisson’s effect matrix 

in Eqn. (3.19) (without any other changes to the procedure, in other words without adjusting the 

applied strains) with Hart-Smith’s results. Clearly, the agreement has improved. 

Note that as discussed in Subsection 3.1.2 measured ply properties rather than properties extracted 

from the unit cell were used to approximate the movable boundary conditions, resulting in an 

additional source of discrepancy. However, during the development process, the actual movable 

boundary conditions were used, resulting in a similar elongation. 
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Figure 5.2: Comparison of normal strain ply failure envelope (using artificially in-
troduced incorrect Poisson's effect) with Hart-Smith's envelope (Hart-
Smith, 2007, Slide 63) 

 

Figure 5.3: Comparison of normal strain ply failure envelope (using artificially in-

troduced incorrect Poisson's effect and Δ𝑇 = 0) for the fiber with Hart-
Smith's envelope (Hart-Smith, 2007, Slide 63) 
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The final adjustment is due to the fact that for simplicity Hart-Smith assumes that the temperature 

difference experienced by the fiber is Δ𝑇 = 0. The resulting failure envelope is shown in Figure 5.3. 

With the exception of the elongation of the fiber envelope along its major axis, the agreement is 

perfect. No explanation was found for this elongation. It is presumed that either slightly different 

input data is used, or one of the amplification factors used by Hart-Smith during his manual calcu-

lations was incorrect. The latter explanation seems more likely, because an incorrect amplification 

factor term would exactly result in scaling in a certain direction (see also Subsection 2.1.5). 

Hart-Smith also shows envelopes for a diamond unit cell. The agreement between envelopes is es-

sentially the same as here, using a square unit cell rotated by 45°. Additional errors are introduced 

because rotating the unit cell amplifies the impact of the difference between ply and unit cell prop-

erties when approximating the movable boundary conditions using the incorrect Poisson’s mapping. 

In summary, the approach to generate ply failure envelopes involving normal loads can be considered 

verified. At the same time, it has been discovered that Hart-Smith’s application of SIFT is incorrect 

due to the use of movable boundary conditions without adequate adjustment of the applied strains. 

Taking the correct Poisson’s strains into account, as discussed in Section 3.5, would be quite tedious 

manually. This shows the major advantage of the consistent, automated approach developed in this 

thesis over Hart-Smith’s manual calculations. It also facilitates including the temperature difference 

for the fiber (although the results indicate his assumption to be reasonable). 

5.2.4 Laminate Envelopes Involving Normal Strains 

The second comparison concerns a laminate failure envelope. Once again the only available source 

is Hart-Smith. The input data is the same as the one used in Subsection 5.2.3 (found in Section B.5), 

while the resulting envelope was sampled from (Hart-Smith, 2010, fig. 23). 

In this section, the two issues with Hart-Smith’s envelopes discovered in Subsection 5.2.3 (namely 

using incorrect boundary conditions for the micromechanical enhancement, and using Δ𝑇 = 0 for 

the fiber) are already included. Figure B.1 shows the correct envelope. 

Taking those errors into account results in Figure 5.4. Since there are still significant discrepancies, 

a further investigation was carried out. This revealed that Hart-Smith is neglecting the constraining 

environment of the other ply, causing the curing strains discussed in Subsection 3.2.2. The compar-

ison resulting from excluding curing strains can be found in Figure 5.5. As discussed in Subsec-

tion 3.2.4, the effect of the curing strains is simply to shift the envelope. This shift occurs mostly in 

the transverse direction (of the ply) because of the respective stiffnesses of fiber and matrix. 

Clearly, besides the elongation of the fiber envelope already discovered in Subsection 5.2.3, the two 

envelopes nearly coincide. This means that although an envelope involving curing strains could not 

be verified, the procedure of obtaining failure envelopes for rotated plies clearly works as well. 

Unlike for the ply envelope in Subsection 5.2.3, Hart-Smith only provides a laminate envelope for 

the square array. The reason is that for each individual ply, the square array is more conservative 

than the diamond array. Therefore, the ply envelope (and thus also the laminate envelope) will be 

completely defined by the square array. 
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Figure 5.4: Comparison of normal strain [0/90/90/0] laminate failure envelope (using artificially 

introduced incorrect Poisson's effect and Δ𝑇 = 0) for the fiber with Hart-Smith's enve-
lope (Hart-Smith, 2010, fig. 23). Note that Hart-Smith calls the parts of the fiber failure 
envelope preceded by fiber failures in other directions “unattainable fiber failure”. 

 

Figure 5.5: Comparison of normal strain [0/90/90/0] laminate failure envelope (using artificially 

introduced incorrect Poisson's effect and Δ𝑇 = 0, as well as disregarding curing strains) 
for the fiber with Hart-Smith's envelope (Hart-Smith, 2010, fig. 23) 
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5.2.5 Ply Envelopes Involving Shear Strain 

In order to also verify envelopes other than those containing purely normal strains, (Hart-Smith, 

2007, Slide 69) is used, showing an 𝜖𝑦 vs 𝛾𝑥𝑦 envelope for a 0° ply. Figure 5.6 contains the compar-

ison. The same input data as in the previous subsections is used. 

 

Figure 5.6: Comparison of shear strain ply failure envelope with Hart-Smith's envelope (Hart-Smith, 2007, Slide 69) 

A couple of important points should be mentioned regarding this comparison. First of all, although 

there is clearly very good agreement between failure envelopes, this comparison suffers from inaccu-

racies due to the conversion between fixed and movable boundary conditions. This is related to the 

use of the ply Poisson’s ratio instead of the Poisson’s ratio computed from the unit cell (see also 

Subsection 3.1.2). A previous comparison carried out during the development process, using actual 

movable boundary conditions, showed even better agreement, with all lines essentially coinciding.  

Secondly, note that unlike for the previous cases Hart-Smith is now taking the temperature differ-

ence into account for the fiber failure envelope. This is visible from the fact that the fiber failure 

envelope is not symmetric about 𝜖𝑦 = 0 (which it should be because Eqn. (2.2) is quadratic in 

𝜖𝑦,𝑙𝑜𝑐𝑎𝑙, and for Δ𝑇 = 0 Eqn. (2.5) linearly relates 𝜖𝑦,𝑔𝑙𝑜𝑏𝑎𝑙 and 𝜖𝑦,𝑙𝑜𝑐𝑎𝑙 without any offset). 

Finally, for this envelope there is no difference between the correct approach (fixed boundary con-

ditions, using the full state of strain as discussed in Subsection 3.5.3), and approximating the mov-

able boundary conditions (using the incorrect Poisson’s mapping from Subsection 5.2.3). This is the 

case because for a single 0° ply, the rotation matrix between laminate and ply coordinate systems 

can be omitted from Eqn. (3.19). In addition to that, only the second column of the Poisson’s 

mapping is active. The second column of the multiplication of Matrices 3.10 and 3.11 

(𝚷𝜖𝑦,𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒
𝚷𝜖𝑦,𝑖𝑛−𝑝𝑙𝑎𝑛𝑒

) contains the same components as the second column of the Poisson’s 

mapping used to approximate the movable boundary conditions (Matrix 5.16), namely 

[−
𝐸2

𝐸1
𝜈12 1 −𝜈23 0 0 0]

𝑇
. Since, finally, ply and laminate properties are identical, both ap-

proaches lead to the same result. The only differences between the literature failure envelope and 

the failure envelope plotted using this strategy are related to using the measured Poisson’s ratio 

rather than the Poisson’s ratio of the unit cell, as discussed previously. 
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Results for a diamond unit cell were also available. As for the ply envelope involving normal strains 

presented in Subsection 5.2.3, the agreement for the diamond unit cell is worse than for the square 

unit cell because rotating the unit cell (while not causing any error by itself) amplifies the impact 

of using ply properties rather than unit cell properties for the approximation of the movable bound-

ary conditions. During the development process, a comparison between amplification factors using 

the actual movable boundary conditions for a diamond unit cell gave results essentially identical to 

those presented by Hart-Smith. 

Finally, (Hart-Smith, 2007, Slide 70) also gives results for a 90° ply envelope involving 𝜖𝑦 and 𝛾𝑥𝑦, 

both for a square and for a diamond unit cell. These envelopes can be reproduced in the same 

manner discussed in this section and did not lead to additional findings. The same comments re-

garding the inaccuracy (introduced by using ply properties rather than unit cell properties to ap-

proximate the movable boundary conditions and amplified by rotating the unit cell to obtain the 

diamond fiber array) hold for the 90° envelope as well. 

In addition to that, in the failure envelope for the 90° ply Hart-Smith also includes the results for a 

0° ply envelope, as well as “failures in possible ±45° plies”. As for the laminate envelope in Subsec-

tion 5.2.4, he does so by superimposing the individual envelopes without including curing strains. 

5.2.6 Summary of Verification Efforts 

Verification of the failure envelope predictions resulted in two core results. Most importantly, the 

approach of generating failure envelopes is working correctly. The discrepancies compared to the 

literature results could either be explained or were insignificant. This means that the entire approach 

towards Onset Theory, involving micromechanical enhancement and failure envelope prediction, can 

be considered verified. The next step will be to validate the theory and to carry out further research. 

Secondly, the failure envelopes Hart-Smith shows are incorrect. There are three errors associated 

with them. Of minor importance is the fact that he is using Δ𝑇 = 0 for the fiber envelopes for 

normal strain envelopes (Subsections 5.2.3 and 5.2.4). However, he is also making the crucial error 

of using movable boundary conditions without compensating for the added Poisson’s effect appro-

priately (also Subsections 5.2.3 and 5.2.4), and he fails to include curing strains (Subsection 5.2.4). 

Both of these mean that the results he published regarding trends he found in SIFT – in particular 

in (Hart-Smith, 2010) – are suspect. It stands to reason that his results were based on analyses that 

contained the same flaws. Therefore, his claims should be investigated further. Efforts related to 

this are contained in Chapter 7. 
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Chapter 6  

Validation of Onset Theory 

In previous chapters a consistent procedure to apply Onset Theory was established, followed by 

automating the approach and verifying theory and implementation. The present chapter focuses on 

validation and research efforts. First of all, available test data is discussed in Section 6.1. Subse-

quently, the main input data not commonly available in literature (namely critical invariants) is 

listed in Section 6.2. During this process, certain trends are tentatively established which aid in the 

application of Onset Theory without requiring tests to be carried out to determine the critical 

invariants. Based on this, theory and test data are compared in Section 6.3. Finally, Section 6.4 

compares Onset Theory and other failure theories to analyze advantages and disadvantages. 

6.1 Test Data 

One of the most extensive and presumably reliable sources for test data is the World Wide Failure 

Exercise (WWFE), carried out by (Soden, Hinton, & Kaddour, 2002). It is specifically meant for 

the benchmarking of failure criteria and contains a wealth of information. In fact, the application 

of Onset Theory to the WWFE benchmark problems has specifically been mentioned as a knowledge 

gap by (Hart-Smith, 2014). Evaluating SIFT in this way would provide significant additional cred-

ibility to the theory. Unfortunately, the vast majority of data used in the WWFE exercise is only 

available in stress space. Given the discussion in Subsection 2.2.1, this is inadmissible. 

The only source that contains WWFE data is the article by (Swanson & Christoforou, 1986), who 

carried out tests on a quasi-isotropic (QI) laminate made of AS4/3501-6 in strain space. Additional 

data is contained in (Swanson & Nelson, 1986). This data is also contained in (Hart-Smith, 1989), 

who references (Swanson & Nelson, 1986). 

Besides data for materials used in the WWFE, (Swanson & Qian, 1992) contains data for three 

laminates with various numbers of 0°, ±45° and 90° layers, made of T800/3900-2. 

Finally, (Colvin & Swanson, 1990) have longitudinal vs transverse failure data for three different 

laminates consisting of IM7/8551-7, as well as transverse vs shear failure data for a single lamina. 
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For reference purposes, the full datasets are tabulated in Appendix D. In general, it can be stated 

that there is very little reliable strain-based failure data available. Note in particular that all test 

data has presumably been generated using the same facilities (all sources stem from the group 

around Swanson). This means that any flaws in their test facilities will instantaneously render 

almost all test data invalid. All in all, the lack of reliable data from multiple research facilities will 

make any validation tasks quite challenging. 

6.2 Critical Invariants 

Due to the relative novelty of Onset Theory, critical invariants for the material under investigation 

can be difficult to find. Therefore, a list of critical invariants found in literature has been compiled. 

It is meant as a starting point for other researchers to quickly identify realistic ranges of the values, 

as well as potential sources for critical invariants. Where possible, a critical review of the data is 

included. However, for many cases it proved difficult to verify whether the correct methodology 

(both experimental and in terms of modeling) has been used. In particular, some of the papers were 

only available in Korean or Chinese. This means that the only available information is the data 

found in equations, tables, and figures. Therefore, the list should not be trusted implicitly. 

Appendix E contains all critical invariants found in literature, ordered essentially chronologically. 

This data is visualized in Figures 6.1 to 6.3. Results for the same materials from the same main 

author have been grouped together, such as the various articles involving Tran, or articles who cite 

(personal communication with) Gosse as their source. Note also that all references to “entries” in 

this section refer to Table E.2. 

Some critical invariants are not included in this list, for a multitude of reasons. (Tsai et al., 1999) 

report invariants for various types of adhesives. This is not relevant for the topic of interest (failure 

of fiber/matrix composites). (Harman, Risborg, & Wang, 2008) omitted the essential step of micro-

mechanically enhancing the applied strains, rendering the critical invariants they report for 

IM7/5250-4 meaningless. Finally, as discussed in Subsection 2.2.1, stress invariants are not consid-

ered in the present formulation of SIFT. This means the critical invariants reported particularly by 

(Ha et al., 2008), but also the matrix invariants given by (C. H. Wang, 2005), are also not included. 

Acknowledging the lack of certainty regarding the information, as outlined in the first paragraph, 

it is still possible to draw a number of conclusions. They are related both to a confirmation of the 

theory (Subsection 6.2.1) and to trends of the critical invariants (Subsections 6.2.2 to 6.2.4). 

6.2.1 General Observations 

In Subsection 1.3.2, redundant testing for the matrix invariants was discussed as a means of verify-

ing the validity of Onset Theory. For the most part, there is indeed very low spread of results for 

authors who report critical invariants for multiple specimens. Entries [1], [2], [5], 13], [17] and [18] 

of Figure 6.1 show this behavior (although it should be noted that entry [24,27,28,30] of the same 

figure shows very large spread, see annotation 4). The same observation can made regarding entries 

[17], [23,25,26], and [24,27,28,30] of Figure 6.2. 
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In addition to that, as mentioned in Section 1.3 one of the fundamental propositions of Onset Theory 

is that the critical invariants are independent of each other, both considering a single material (i.e. 

first and second matrix invariants) and the material combination (i.e. matrix and fiber invariants). 

The former of these claims was already discussed in Subsection 1.3.2, while the latter is based on 

(Z. Li et al., 2011, Table 3) (entries [20], [21] and [22]). Two fibers and two resins were investigated 

in all three possible combinations. For CCF300/5428, the matrix invariants were found to be 𝐽1
∗𝑚 =

0.0319 and 𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.195, while for T700/5428 the results were 𝐽1

∗𝑚 = 0.0313 and 𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.202. 

Similarly, for CCF300/5428 the fiber invariant was 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.018, whereas for CCF300/4228 the 

result was 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.017. This is very strong evidence in favor of the claim that the critical invariants 

are independent of the other material in the composite. 

IM7/977-3 from [5] and IM7/K3B from [11] also yield almost identical fiber invariants. It would be 

very interesting to compare other cases as well (combinations of the same matrix with different 

fibers, or vice versa). Unfortunately no additional obvious cases are available in literature.  

6.2.2 Observations Regarding Critical Dilatational Matrix Invariant 

Figure 6.1 contains all values of the critical dilatational matrix invariant found in literature. A 

number of observations can be made, some of which are also included in Table E.2. 

First of all, annotation 1 shows that the values for CCF300/5428 (entry [21]) and T700/5428 (entry 

[22]) are very similar, as discussed in the previous section. 

For two cases, it is questionable whether the correct material is reported. As shown in annotation 2, 

the values in [19] for Cycom 970 are quite different from the ones for Cycom 970 in [23] and [26], 

but very similar to the ones for 3900-2 in [24]. All of this data was reported by the research group 

around Tran, leading to the belief that information has gotten mixed up in one publication. Exactly 

the same holds for the value in [6] for 977-3, being identical to the values for K3B in [13] but very 

different from the values for 977-3 in [14] (annotation 3). All of these sources cite Gosse. 

As stated previously, redundant testing seems to result in consistent values for most cases. However, 

annotation 4 shows a very large spread of results. Values between 0.02 (for a 67° off-axis tension 

test) and 0.027 (35% of the smaller value; based on a 30° test) were determined (Tran, 2012). 

Finally, there is some uncertainty regarding the values for T300/Cycom 970 in [23] and [26]. High-

lighted in annotation 5, they are clear outliers compared to all other values. In (Tran et al., 2013) 

the authors discuss the fact that the material used was a rubber toughened resin. This could lead 

to progressive failure (failure strains beyond the onset of failure), which – as discussed in Section 1.5 

– is not part of Onset Theory. Based on load/unload tests, they determined a critical invariant of 

0.025, which is much closer to the other values. 

It is difficult to make claims regarding the reproducibility of results across different researchers. A 

possible candidate would be 3900-2 by [24,27,28,30] and [31], but the spread of the former is too 

large to obtain any certainty. 
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In general, the dilatational invariant seems to be rather difficult to determine given the large spread 

of results even for the same material. This could be related to the fact that typically a 90° tension 

test is used to determine this invariant. These coupons tend to fail prematurely (see e.g. (Hart-

Smith, 2010, p. 33) for an in-depth discussion), explaining part of the scatter visible in Figure 6.1. 

On the other hand, if actual laminates are used, then dilatational matrix failure may not be cata-

strophic. Detection via acoustic emissions or changes in slope of the stress/strain curve are most 

likely not accurate enough to determine the true onset of failure. 

Either way there seems to be some consistency in the critical values obtained from various material 

combinations. This is highlighted by the blue band in Figure 6.1, representing a value of the critical 

invariant between 0.0204 and 0.0276 (in other words 0.024 ± 15%). If the rubber toughened epoxy 

of [23,26] is moved to 0.025 as discussed above, then a significant part of the data is captured. Using 

the stated limits, 9 of 19 (groups of) entries are within bounds, 3 are somewhat outside (within 

0.0191 and 0.0301) and 7 are at a larger distance. This means that the suggested range can only be 

considered a tentative suggestion. For the critical distortional invariants in Subsections 6.2.3 and 

6.2.4 the results are more consistent. 

6.2.3 Observations Regarding Critical Distortional Matrix Invariant 

As for the previous section, the critical invariants from Table E.2 are presented visually in Figure 

6.2. However, in this case four different colored bands are shown. This is related to the four possible 

definitions of the distortional invariant discussed in Subsection 2.1.1. Four definitions were found: 

Table 6.1: Possible definitions of the distortional invariant (repeated from Table 2.1) 

Definition #1 𝜖𝑒𝑞𝑣 

Definition #2 
1
√
3
𝜖𝑒𝑞𝑣 

Definition #3 𝜖𝑒𝑞𝑣
2  

Definition #4 
1

3
𝜖𝑒𝑞𝑣
2  

For a value of 𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.2 with a range between 0.18 and 0.22 (i.e. 0.2 ± 10%), the values in the 

resulting definitions become 

Table 6.2: Suggested critical distortional matrix invariants using various definitions 

Definition #1 0.2 (range between 0.18 and 0.22) 

Definition #2 0.115 (range between 0.104 and 0.127)  

Definition #3 0.04 (range between 0.0324 and 0.0484) 

Definition #4 0.0133 (range between 0.0108 and 0.016) 

Note how changing 𝜖𝑒𝑞𝑣
∗ 𝑚 by 10% results in different percentage changes depending on the definition. 
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The suggested value of 𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.2 ± 10% is determined based on the fact that there are serious 

doubts about whether the definitions stated in the articles are correct. As seen in Figure 6.2 a 

number of results (e.g. entries [3] or [15]), amongst others) are close to the suggested common value, 

but using a different definition than the one stated in the article. An incorrect definition seems far 

more likely than orders of magnitude of difference in the critical values. A particular example is 

highlighted in annotation 2. Entries [6], [12] and [14] all cite Gosse on the same material, but report 

different values of the critical invariant (0.103 and 0.179). These two values are almost exactly a 

factor 
√
3 apart, which corresponds to the difference between definitions 1 and 2. 

A number of minor observations can be made. First of all, as stated before and highlighted in 

annotation 1, CCF300/5428 (entry [21]) and T700/5428 (entry [22]) give almost identical results. 

Secondly, it is again rather difficult to make claims regarding the reproducibility of results by dif-

ferent researchers (beyond the fact that there seems to be significant similarity between invariants 

in general, regardless of the material). [4] and [6,12,4] return very similar results, but the definition 

used in [4] is unknown and [6,12,14] use two different definitions. [24,27,28,30] and [31] also return 

very similar results, provided it is accepted that the definition stated in [31] is incorrect and should 

in fact be definition 3. 

More importantly, using the suggested range of 𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.2 ± 10%, 7 of 16 entries are close to the 

definition stated in the article, 1 entry is close to the common value without any definition given in 

the article, 4 entries are close to a different definition than the one stated in the article, and 4 entries 

are far away from all definitions. As for the critical dilatational matrix invariant, this points to some 

consistency between the critical distortional matrix invariants for a variety of materials. 

6.2.4 Observations Regarding Critical Distortional Fiber Invariant 

The final set of invariants are the critical distortional fiber invariants, taken once again from Table 

E.2 and visualized in Figure 6.3. As in Figure 6.2 all four definitions are shown in form of colored 

bands. For a value of 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02 with a range between 0.018 and 0.022 (i.e. 0.02 ± 10%), the 

values in the resulting definitions become 

Table 6.3: Suggested critical distortional fiber invariants using various definitions 

Definition #1 0.02 (range between 0.018 and 0.022) 

Definition #2 0.0115 (range between 0.0104 and 0.0127)  

Definition #3 0.0004 (range between 0.000324 and 0.000484) 

Definition #4 0.000133 (range between 0.000108 and 0.00016) 

Since the suggested critical distortional fiber invariant is an order of magnitude smaller than the 

equivalent value for the matrix, definitions 3 and 4 effectively become meaningless because the 

resulting values are extremely small. 
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A number of observations can be made. First of all, as discussed in Subsection 6.2.1 the results for 

CCF300/5228 and CCF300/5428 are almost identical (annotation 1). 

Secondly, almost all values are close to the suggested common value using definition 1. This means 

that there are cases where there is a disconnect between the definition believed to have been used 

for 𝜖𝑒𝑞𝑣
𝑚  and 𝜖𝑒𝑞𝑣

𝑓 . Particular examples include [6,12,14] and [15], where the fiber invariant is close to 

the common value using definition 1, while the matrix invariant appears to be using definitions 2 

and 3, respectively. This disconnect can also be shown in the raw data. In [11] and [12], the critical 

values are 𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.179 and 𝜖𝑒𝑞𝑣

∗ 𝑓 = 0.0195. For the same material combinations, citing the same 

source (Gosse), [14] reports 𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.103 and 𝜖𝑒𝑞𝑣

∗ 𝑓 = 0.0182. This means the fiber invariant has 

only changed slightly, while the matrix invariant changed by a factor of 
√
3, corresponding to the 

difference between definitions 1 and 2 (as discussed previously in Subsection 6.2.3, regarding anno-

tation 2 of Figure 6.2). It appears that indeed the matrix and fiber definitions are not consistent. 

Finally, regarding reproducibility, the values returned for IM7 in [4], [5] and [11] are almost identical. 

However, this is evidently part of a larger trend of consistency, since for example [6,14] reports a 

slightly different value for IM7 (which still falls into the suggested range of values). 

Using 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02 ± 10%, 9 of 16 entries are captured, while an additional 3 are only slightly outside 

the colored band. The remaining 4 entries are far away from the common value. It should be noted 

that entries [8], [9] and [10] were all determined by the same author, who is using strength test data 

(see Subsection 2.2.1 for a discussion of the necessity to use strain test data). In addition to that, 

during the verification efforts in Subsection 5.1.4 the micromechanical amplification factors could 

not be reproduced. As for the critical matrix invariants, this means that there appears to be some 

consistency between the critical values for a variety of materials. 

6.2.5 Summary and Discussion 

To summarize, based on the discussion in the preceding sections the following tentative values are 

suggested for the critical invariants of composites, regardless of the constituents: 

𝐽1
∗𝑚 = 0.024 ± 15% 

𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.2 ± 10% 

𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02 ± 10% 

Clearly, the consistency of in particular the critical invariant is a highly interesting result. Although 

this can at most be a tentative conclusion, it appears as if commonly used constituents all have very 

similar critical strain invariants. Since composites containing fibers ranging from IM7 or AS4 to E-

glass will certainly have vastly different strengths (see for example (Soden et al., 1998) for some 

typical strength values), the similarity in critical strain invariants has to be due to stiffness effects. 

Either the same (global) failure strain results in different failure strengths, or due to the microme-

chanical enhancement process identical local failure strains correspond to different global failure 

strains. The former of these would be related to differences in the stiffness of the composite, while 

the latter would mean the individual constituent stiffnesses are the relevant factor (together with 

other factors such as the fiber volume fraction). 
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For the sake of completeness, the difference in tested strength could also be related to interface 

failure. However, as discussed in Subsection 2.1.2, this should not occur for useful composites. Even 

if it did it would most likely be reflected in the critical invariants, albeit at the cost of removing one 

of the main strengths of SIFT, namely its independence of the loading and boundary conditions. 

In summary, it appears as if a first order failure approximation can be made without requiring 

strength tests of either the constituents or the ply. The only required input parameters are the 

stiffness properties of the constituents and the ply (using the current implementation; as discussed 

in Subsection 8.4.1 it is suggested to remove the necessity of including ply properties), as well as 

typical values for the critical invariants. 

The suggested procedure to determine failure using Onset Theory would thus be to use the “gener-

ally applicable” invariants to obtain an approximation of the failure envelope, assuming that no test 

data is available. Subsequently, once test data is available, the invariants can be modified based on 

either dedicated tests to determine the critical invariants or by scaling the envelope through modi-

fications of the critical invariant. Note that this scaling is not the same as the “fine-tuning” com-

monly done for many failure criteria, in particular Tsai-Wu. Unlike for those cases only the scale of 

the envelope is modified, while the shape of the failure envelope is the same. This means that once 

the envelope is fit to one point, the theory will be confirmed by the match with all other data points. 

This latter strategy is also discussed further in Subsection 8.4.4. 

6.3 Comparison to Test Data 

As discussed in Section 6.1, there are four sets of validation data available: failure strains in the 

normal strain plane for a QI laminate of AS4/3501-6, three different laminates of T800s/3900-2, and 

a QI laminate of IM7/8551-7, and a transverse load vs shear envelope for a uniaxial 90° specimen 

of IM7/8551-7. These four cases are presented in the following subsections, with the required input 

data summarized in the respective sections of Appendix D. The results are discussed in Subsec-

tion 6.3.5. 

6.3.1 AS4/3501-6 Biaxial Strain Laminate Envelope 

Typically, matrix cracking (𝐽1-failure) is not catastrophic for quasi-isotropic laminate under in-

plane normal strains. Therefore, ultimate failure occurs once the fibers of some ply fail. Although 

this means there is another failure mode preceding ultimate failure, this is not a case of progressive 

failure analysis, as discussed below. 

Two different values of 𝐽1
∗𝑚 for AS4/3501-6 seem possible: 0.0301, and the default value of 0.024. 

Some tentative data is available for possible matrix cracking, although it is not clear how reliable 

this data is. See the discussion in Section D.1 for more details. 

Figure 6.4 shows the comparison between prediction and test, using 𝐽1
∗𝑚 = 0.024. Suspected matrix 

cracking occurs essentially exactly when dilatational matrix failure is predicted for the 90° ply, 

meaning that the value of 0.0301 is most likely incorrect (although given the uncertainty in the test 

data there is not enough evidence to discard the literature value with certainty). 



6.3 Comparison to Test Data 97 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

 

Figure 6.4: Comparison between prediction and biaxial strain test data for an AS4/3501-6 [90/±45/0]s laminate. 

Clearly, the predictions of ultimate failure were not entirely accurate. In particular for strongly 

compression-dominated states of strain, the predictions were unconservative compared to the test 

data. The general trend was that the failure predictions formed an outer bound on the test data, 

with very few data points outside of the predicted envelope. 

A perfect failure criterion, using the exact material properties from the test specimen, should predict 

the result achieved by a perfect test. In reality, some tests may even overachieve the perfect test 

results due to scatter in material properties. However, typically factors decreasing the test result (in 

particular for compression-dominated states of strain) will outweigh factors increasing the test re-

sult. One possibility that might be causing premature failures in compression are failure modes not 

included in Onset Theory at the present state of development, such as fiber kinking. This is one of 

the suggestions in Subsection 8.4.2. Other options include manufacturing flaws, test setup, instru-

mentation and measurement errors. In general, this means that an outer bound on the test data (as 

observed here) is only to be expected of a criterion predicting failure of a pristine structure. 

Given the large scatter of the AS4/3501-6 test data, in particular for compression-dominated states 

of strain (on the same radial line – i.e. for the same strain ratio – in Figure 6.4, values between 

𝜖𝑦 = −0.0061 and −0.0094 are obtained, a difference of almost 55%, for very similar, small tensile 

values of 𝜖𝑥), imperfect tests indeed seem like a plausible explanation. 

For a small number of specimen, falling short of or exceeding the predictions does not hold statistical 

significance. Therefore, more test data is needed to support or refute these hypotheses. This is 
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partially achieved through the comparison with test data for other materials in the following sub-

sections. The results are discussed in Subsection 6.3.5. 

In general, premature failures will certainly also occur in a production environment. However, the 

first step in creating accurate predictions for those cases would be to obtain perfect test data and a 

perfect failure criterion (or as nearly so as possible). Once this is available, effects such as premature 

failure can be added. Otherwise, the danger is that flaws in the criterion are compensated for by 

flaws in the test data for one case, but not for the next, leading to erratic predictions which are 

sometimes correct and sometimes not. 

Besides possible issues with the test data, no sensitivities of any kind were taken into account for 

the failure predictions, and default values of the invariants were used. The predictions were also not 

tuned to the test data in any way. By reducing the critical fiber invariant, the envelope could be 

scaled down (without any change in shape, see also Subsection 2.1.5), providing a better match with 

test data. However, as stated above it is questionable whether this would result in more accurate 

predictions for the general case, or would simply mean including flaws of this particular set of test 

data in the critical invariant. 

What is very interesting about this comparison is the near-perfect match between predicted matrix 

cracking and suspected matrix cracking. It should be stressed that no progressive failure analysis of 

any kind has been carried out. Since Onset Theory – unlike most other failure criteria – actually 

predicts the specific failure mode and constituent, it is not necessary to reduce ply properties in 

order to include a “first ply failure”, based on which the remaining predictions are updated. 

In strain space, with the exception of the curing strains a given ply’s failure strain does not depend 

on the state of damage in (or, in fact, the existence of) another ply. This assumes that there are no 

strain concentrations or other effects due to failure in some ply. The analysis in this thesis is only a 

first order model which assumes identical strains in ply and laminate strains at all times. Related 

to this is the limitation that ply interface failure (such as delaminations) are not included in the 

theory as currently implemented. This was addressed in Subsection 2.1.6. Similar behavior would 

also occur due to interlaminar stresses at the edges of the specimens. Taking any of those effects 

into account would, first of all, require some way to determine those strains, and secondly appro-

priate unit cells to analyze the microstructural behavior at those locations. 

Independence of the ply strains is another reason for the preference of strain-based over stress-based 

test data, as discussed in Subsection 2.2.1. For AS4/3501-6, matrix cracking in the 90° ply is pre-

dicted at a strain far below the ultimate strain of the laminate. This prediction matches the meas-

ured matrix cracking almost exactly. However, the fact that there are matrix cracks in the 90° ply 

does not influence fiber failure in the 0° ply. 

Therefore, although there definitely is failure occurring before ultimate failure, this is not a case of 

progressive failure. Progressive failure would mean that a certain failure mode occurs, and that same 

failure mode continues to grow until final failure is reached in the same failure mode (or because of 

the initial failure, another failure starts, eventually cumulating in ultimate failure). An example 

would be growing delaminations, which are not included in Onset Theory as implemented in this 

thesis (see Subsection 2.1.6). In this case, the first failure mode is “ultimate failure” of one ply in 

that particular failure mode, but the laminate as a whole is still capable of carrying load. Ultimate 
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failure of the laminate then occurs once another, unrelated failure mode is triggered in another ply. 

This does not mean there was any progression of the first failure mode (which was already ultimate 

failure in that failure mode in that ply the moment it occurred). 

Note that it can be argued that matrix cracking in the 90° ply will relieve the curing strains expe-

rienced by the 0° ply. This should definitely be investigated, as discussed in Subsection 8.4.3. 

Finally, it should be mentioned that accepting matrix cracking as non-catastrophic is only possible 

for laboratory specimens. In a real-life structure experiencing various different states of load, the 

occurrence of matrix cracking would most likely lead to catastrophic failure the moment the struc-

ture is loaded in some other way (e.g. a simple reverse of sign of the load, leading to a tensile strain 

in the cracked matrix). 

6.3.2 T800s/3900-2 Biaxial Strain Laminate Envelope 

Test data for three different laminates is available for T800s/3900-2: a QI laminate, a laminate 

containing additional 0° plies, and a laminate containing additional ±45° plies. The comparison 

with failure predictions is shown in turn in the subsequent figures. Note that the only difference in 

predictions is due to the different curing strains developed in the laminates. In fact, for the 

[0/±45/90]s and [0/(±45)2/90]s laminates, the curing strains and thus the failure predictions are 

identical because the effect of additional ±45° plies is equal in longitudinal and transverse directions. 

The agreement is quite good for all three laminates, with the failure predictions essentially passing 

through the center of the scattered test data for the [0/±45/90]s and [0/(±45)2/90]s laminates. 

Since the differences are rather small, they can easily be taken into account by allowing a small 

range of critical fiber invariants (which will scale the envelope up or down accordingly, with no 

change in shape). Although the default critical invariants appear to provide good predictions for 

different materials, and no sensitivity for any other parameter was taken into account either, this 

does not mean that (small) variations of the critical invariants can or should not be used as a simple 

means of including variations for example in the material properties. 

For the laminate containing additional 0° plies (Figure 6.6), the agreement is not quite as good, 

with slightly unconservative predictions for most data points and a vastly overconservative predic-

tion for another data point (at 𝜖𝑥 = 0.01498 / 𝜖𝑦 = 0.01094). Note that as for the AS4/3501-6 

envelope no sensitivity is taken into account for any parameters, default critical invariants are used, 

and the prediction is not tuned to the test data in any way. For example, for Figure 6.5 a minor 

variation of the critical invariant by about 10% or so would already include almost all data points 

(the envelope simply increases or decreases by exactly the same amount as the critical invariant). 

This happens to coincide with the range of critical invariants suggested in Subsection 6.2.5 (although 

there, the range was based on multiple materials rather than just a single one). 
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Figure 6.5: Comparison between prediction and biaxial strain test data for a T800s/3900-2 [0/±45/90]s laminate 

 

Figure 6.6: Comparison between prediction and biaxial strain test data for a T800s/3900-2 [03/±45/90]s laminate 
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Figure 6.7: Comparison between prediction and biaxial strain test data for a T800s/3900-2 [0/(±45)2/90]s laminate 

6.3.3 IM7/8551-7 Biaxial Strain Laminate Envelope 

For IM7/8551-7, test data is available for a [90/±45/0]s laminate under biaxial strain. Predictions 

were made using the input data in Section D.3, resulting in the comparison shown in Figure 6.8. 

The envelope shows similar behavior as the other envelopes, although it resembles an outer bound 

on the test data (argued above to be a reasonable expectation) more closely than the T800s/3900-

2 predictions. It is not as unconservative as the envelope for AS4/3501-6 in some locations, although 

the measured predominantly uniaxial compressive strain (containing large scatter) does fail to reach 

the predicted values. Reasons for possible problems with severely compression-dominated loads were 

already discussed in Subsection 6.3.1. 
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Figure 6.8: Comparison between prediction and biaxial strain test data for an IM7/8551-7 [90/±45/0]s laminate 

6.3.4 IM7/8551-7 Shear Strain Uniaxial Specimen Envelope 

The final validation case consists of a transverse vs shear strain failure envelope for a 90° IM7/8551-

7 specimen. Figure 6.9 shows prediction and test data. This case is a noticeable diversion from the 

previous laminate specimens under biaxial strains. It is quite noticeable that Onset Theory com-

pletely fails to predict the test data in any way. With the exception of one data point (which seems 

to be a premature failure), the predictions of failure are conservative by almost a factor 2 compared 

to the test data. In addition to that, (Colvin & Swanson, 1990) state the failure modes observed 

during the test. All specimens failed in the matrix. For the transverse compression load states (it is 

not specified in the article, but assumed, that this includes the data points at nonzero shear strains, 

around transverse strains of 𝜖𝑦 = −3.1% to −3.2%), the fracture plane showed 45° shear failure, 

indicating distortional matrix failure. The transverse tension and in-plane shear failures (the states 

of strain where 𝜖𝑦 = −0.71% and −0.18% were caused by pure shear stresses) had a perpendicular 

fracture plane, pointing to 𝐽1-failure. Clearly, this is unrelated to the failure modes predicted by 

Onset Theory, with fiber failure occurring under predominantly transverse tensile or compressive 

strains (note that the specimen has an orientation of 90°, meaning that these translate into strains 

in fiber direction) and distortional matrix failure occurring under shear-dominated strains. 
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Figure 6.9: Comparison between prediction and transverse vs shear strain test data for an IM7/8551-7 90° specimen. 
The dilatational cutoff is not shown because matrix cracking under pure longitudinal loads occurs beyond 
the range shown in this plot. 

This being said, there are several points casting some doubt on the test data. First of all, as men-

tioned above the states of strain where 𝜖𝑦 = −0.71% and −0.18% were created by applying pure 

shear stress (𝜎𝑦 = 0). For a 90° ply, there should not be any coupling between normal and shear 

strains. Some minor coupling strains could be expected (for example, for the pure compression cases 

with 𝜏𝑥𝑦 = 0, there is a shear strain on the order of a few hundreds of percent). However, the 

significant values seen for pure shear stress point to some problem with the test setup. One possi-

bility could be a misalignment of specimens. Another possibility is related to the relatively large 

magnitude of applied shear. The specimen used is cylindrical, placed under axial loads in combina-

tion with torsion. If the torsion caused some form of torsional buckling (such that the cylinder 

simply crumbles, although there is no axial stress applied), the compressive strains for pure applied 

shear could be explained. This would also provide an explanation for the factor 2 difference between 

prediction and test for other data points at significant amounts of shear. It does, however, not 

provide any additional insight into why the pure axial compression specimens (where 𝜏𝑥𝑦 and 𝛾𝑥𝑦 

are both –nearly – zero) also exceed the predictions by almost a factor of 2. 

In addition to that, (Kaddour & Hinton, 2012, Table 1) give values of the ultimate longitudinal 

compressive failure strain (note that the ply envelope in Figure 6.9 is for a 90° ply, meaning that 𝜖𝑦 

refers to longitudinal strain) of 1.1% and of the shear failure strain of 5%. This is significantly closer 
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to the predictions than the values measured by (Colvin & Swanson, 1990) of around −3.15% and 

7.29%, respectively, although the match would still not be very good. 

Tentatively, a 0° envelope was also generated in case there was a reporting error on the ply orien-

tation or strain component. However, this did not improve the agreement. There is some improve-

ment if 𝜖𝑦 and 𝛾𝑥𝑦 are swapped in the test data, which could theoretically happen due to a reporting 

error. However, this can hardly be considered a serious argument, and the agreement remains quite 

bad. 

Two final considerations regarding this envelope are that, first, based on load/unload tests (Colvin 

& Swanson, 1990) did notice damage before ultimate failure. However, it seems unlikely that there 

was fiber failure which remained undetected. This is therefore not a plausible explanation for the 

differences. The other point is that (Gosse & Christensen, 2001) mentioned 𝐽1-failure under in-plane 

compression (although for a laminate rather than a ply). While some of the envelopes generated 

during the development process did indeed show this behavior, it always occurred at strains far 

beyond the point where failure was predicted based on other failure modes. However, these authors 

created finite element models of their laminates. It could therefore be that this failure mode was 

triggered by some aspect not captured in the present analytical process (e.g. free edge effects, or 

possibly even ply interface failures, which were excluded from the present analysis in Subsec-

tion 2.1.6). 

In Subsection 6.4.1, additional problems with this set of test data are outlined. Due to this unrelia-

bility, it is not possible to draw any conclusions regarding the validity of Onset Theory for this case. 

6.3.5 Discussion of Results 

In the preceding subsections, six sets of data were compared with predictions. AS4/3501-6 included 

matrix cracking, T800s/3900-2 contained non-quasi-isotropic laminates, and IM7/8551-7 presented 

an envelope under strains other than biaxial in-plane ones. 

Based on the observations made, some conclusions can be drawn. First of all, the agreement between 

predictions and test data is better for IM7/8551-7 than for AS4/3501-6, and yet again better for 

T800s/3900-2. This is partly due to less scatter in the data and partly due to the fact that the 

better matches do not include severely compression-dominated states of strain, which are problem-

atic as discussed in Subsection 6.3.1. For example, for IM7/8551-7 under compression-dominated 

loads, the spread was less (between −0.00935 and −0.01295, as shown in Figure 6.8, compared to a 

range of −0.0061 and −0.0094 for AS4/3501-6 in Figure 6.4), and the achieved compression strain 

was significantly higher (and thus closer to predictions). For T800s/3900-2, the match is even better 

since strongly compression-dominated states of load are not included in the test data. 

All three sets were generated by the same research group, but in different years (1986 for AS4/3501-

6, 1990 for IM7/8551-7, 1992 for T800s/3900-2). Clearly, the agreement between predictions (using 

the same procedure for all three cases) and test data improves in chronological order. It does stand 

to reason that the test facilities and procedure has improved over the years, meaning that the full 

potential of the material is now being realized, rather than measuring incorrect premature failures. 
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Carrying out more tests on all three materials now (i.e. 25 years later) would potentially yield even 

better results. Of course this argument is only based on indications rather than hard evidence. 

In general, part of the reason for the existing discrepancies between prediction and test data (besides 

errors in the test data or manufacturing flaws) is certainly rooted in the assumptions summarized 

in Subsection 3.5.1. This includes in particular those pertaining to thin, flat laminates and the use 

of laminate and ply properties for the Poisson’s calculations (rather than properties determined from 

the unit cells). The curing strain and Poisson’s ratio calculations used for the predictions are based 

on this assumption, whereas the actual specimens were cylindrical. 

Summarizing the results of this section, Onset Theory appears to be working well for laminate 

failure. It more or less correctly predicts ultimate failure for a variety of different materials and 

laminates, and also predicts matrix failure occurring before ultimate failure. 

For uniaxial specimen failure in the transverse strain vs shear plane, there is no correlation between 

prediction and test. Since there are significant doubts associated with the test data used for com-

parison, no conclusions can be drawn at the present stage. 

6.4 Comparison with Other Failure Theories 

In order to examine the accuracy of Onset Theory in comparison with other failure theories, other 

failure criteria should also be applied to the data. Two of the most well-known ones are the Tsai-

Wu polynomial and maximum strain failure criteria. Both of them will be used in this section. 

6.4.1 Shear Strain Uniaxial Specimen Envelope 

The main purpose of this subsection is to investigate the validity of Tsai-Wu’s failure theory. In 

Subsection 6.4.2, the agreement between predictions and test results laminates tested under biaxial 

normal strains is found to be very poor. On the other hand, the same research group (Colvin & 

Swanson, 1990) which carried out that investigation did conclude that Tsai-Wu is working quite 

well for the unidirectional 90° specimen under transverse loading and shear used in Subsection 6.3.4 

(for which significant doubts were expressed regarding the validity of the test data).   

In this case, the stress-based version is used. Therefore, a closer discussion is relevant not only from 

the point of determining whether Tsai-Wu indeed gives accurate results for the case of a unidirec-

tional specimen, but also to provide additional evidence regarding the conclusion that this dataset 

is simply not reliable. Figure 6.10 presents the plot given in the article, enhanced with additional 

information to highlight some of the problems found.  

First of all, for compression and shear (which should be decoupled), the plots in stress and strain 

space should have essentially the same shape, with the exception of different axes. However, the 

data here shows completely different trends than the data in Figure 6.9. 
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Figure 6.10: Comparison of Tsai-Wu failure envelope with lamina test data. Adapted from (Colvin & Swanson, 1990, 
fig. 9), also using the data in (Colvin & Swanson, 1990, Table 1) 

In addition to that, the data in the plot does not match the data tabulated in the same article. Most 

importantly, the point at a transverse stress of 60.4 MPa is plotted at a transverse stress of 

−60.4 MPa. This causes the data point to be very close to the envelope, whereas the other point 

would be a significant outlier. For this data point, the measured strain is positive. In addition to 

that, the article mentions a transverse tension measurement, and this is the only point in the table 

where the stress is positive. Both of these support a plotting error. 

Finally, additional data appears to be used at positive transverse stresses and zero shear stress. It 

is unclear where it stems from, since this data is not included in the tabulated values. There seems 

to be a disagreement with the data point at 60.4 MPa. Either way, it is clearly used as one of the 

anchor points for the Tsai-Wu criterion and therefore neither supports nor refutes its accuracy. 

Based on the preceding discussion, it is clear that there are indeed significant issues with the stress-

based test data, similar to the problems with the strain-based version discussed in Subsection 6.3.4. 

This means that no conclusions can be drawn regarding the validity of either Onset Theory or Tsai-

Wu for unidirectional specimen failure under combinations of transverse and shear loads. 

As a side note, the maximum strain criterion would not yield good results for the strain-based data 

(shown in Figure 6.9). As discussed in Subsection 6.3.4, the failure strains found in other literature 

differ significantly from the results obtained by (Colvin & Swanson, 1990). In addition to that, a 

vertical compressive strain limit could successfully match the failures around 𝜖𝑦 = −3.15%. How-

ever, any horizontal shear strain limit could pass through at most one of the three data points 

available close to 𝜖𝑦 = 0. Once again this points to the data being suspect. 
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6.4.2 Biaxial Strain Laminate Envelope 

For AS4/3501-6, the researchers who generated the test data carried out the comparison of both 

Tsai-Wu and maximum strain with the test data. Figure 6.11 shows the results they obtained. This 

plot is based on their original figure (Swanson & Nelson, 1986, fig. 7) and therefore only includes 

Tsai-Wu and maximum strain. Including Onset Theory would not be possible since their comparison 

took place in stress space. However, the data in this figure is the stress space version of the data 

used for the comparison to Onset Theory in Subsection 6.3.1. Note that the figure has been adapted 

by adding the suspected matrix cracking data from Table D.3. 

 

Figure 6.11: Comparison of Tsai-Wu and maximum fiber strain failure criteria with AS4/3501-6 test data. The original 
figure is (Swanson & Nelson, 1986, fig. 7). It has been modified by adding data points for suspected matrix 
cracking from Table D.3. Onset Theory is not included because this figure is shown in stress space. However, 
the dataset is the same as in Figure 6.4 (although there, the strain-based version was used). 

Clearly, Tsai-Wu does not give useful results for the laminate envelope under biaxial strains, as the 

original researchers (Swanson & Nelson, 1986) also concluded. This is also discussed in (Swanson & 

Christoforou, 1986), reaching the same conclusion after unsuccessfully attempting a progressive fail-

ure analysis (see also Subsection 6.3.1) by setting stiffness terms to zero following “first ply failure”. 

On the other hand, the maximum fiber strain criterion shows very good agreement with the ultimate 

failure data. For example (Hart-Smith, 2010) has argued that the maximum strain criterion (whether 

in its original form or the truncated version proposed by him) in fact very closely approximates the 

fiber failure envelope generated using Onset Theory. 

Note that the agreement between maximum strain criterion and test data is, in fact, better than for 

Onset Theory. This is the case because the strain cutoffs have simply been selected such as to match 

the test data. In Subsection 6.3.1, the compression-dominated failures were argued to potentially be 
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examples of premature failure. This would be taken into account by a maximum strain criterion 

applied in this manner, but not by Onset Theory. In fact, the critical invariants used in the valida-

tion section relied on the “default” invariants found in Subsection 6.2.5, with no relation to the test 

data or even the material used. The following subsection discusses the reason why fine-tuning the 

failure cutoff is, in fact, a fatal flaw of the maximum strain criterion. 

6.4.3 Differences between Uniaxial Lamina and Biaxial Laminate Tests 

Based on the results for AS4/3501-6 in the previous subsection, it seems as if a simple maximum 

strain criterion (when fitted to the test data) is quite successful in predicting composite failure. 

Similarly, (Swanson & Qian, 1992) and (Colvin & Swanson, 1990) show good agreement between 

maximum fiber strain criterion and test data for T800s/3900-2 and IM7/8551-7, respectively. 

However, in all cases the maximum strain is based on the test data. The authors note that there 

are significant differences to the ultimate strains obtained from unidirectional coupon tests. For 

IM7/8551-7, the values were 1.32% for laminates as opposed to 1.6% for coupons (Colvin & Swanson, 

1990), while for T800s/3900-2 1.24% were found for laminates and 1.7% for coupons (Swanson & 

Qian, 1992). They mention this effect, acknowledging that they have no explanation for its presence. 

On the other hand, for AS4/3501-6, they found in essence the same failure strains for both laminates 

and coupons, equal to 1.46% (Swanson & Christoforou, 1986, fig. 9). 

Note that due to the scatter in laminate test data in Section 6.3, it is inconclusive whether the 

failure occurs on a straight vertical line (truncated by a straight horizontal line once the compressive 

limit is exceeded), or on a curved boundary as predicted by Onset Theory (since it takes transverse 

strains into account). It seems more feasible to have an interaction between longitudinal and trans-

verse strains, since failure of a composite should be related to the underlying failure modes, not to 

the state of strain that triggers them. In addition to that, Hart-Smith found it necessary to use a 

truncated maximum strain criterion (see e.g. (Hart-Smith, 2005, fig. 111). This truncation approx-

imates the curved shape predicted by Onset Theory, as pointed out in (Hart-Smith, 2010, fig. 23). 

In either case, there is apparently a difference between failure for a longitudinal laminate strain 

(with no applied transverse strain) and failure for a longitudinal coupon strain. Based on the devel-

opment of expressions for the full state of strain in Section 3.2, this difference can be explained. 

A coupon loaded uniaxially will have an additional transverse strain based on the Poisson’s effects. 

On the other hand, loading a laminate biaxially with a pure longitudinal strain will mean that the 

transverse strain is forced to be zero. Since Onset Theory takes both strains into account, this results 

in a different failure prediction than a nonzero transverse strain. 

The predicted longitudinal failure strain for the IM7/8551-7 laminate is determined by magnifying 

Figure 6.8. Similarly, for a uniaxial coupon the failure strain can be found using Figure 6.9 (for a 

90° specimen, 𝜖𝑦-strains are in fact longitudinal strains; in addition to that, there is no coupling 

between normal and shear strains, meaning that for 𝛾𝑦𝑧 = 0, the prediction is indeed identical to 

the one for a uniaxial coupon test). The results are 1.54% for a uniaxial coupon and 1.46% for a 

laminate (compared to 1.6% for coupons and 1.32% for laminates found from test data). Although 

the effect is smaller, the predictions clearly contain a similar trend as the test data. 
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Similar results are obtained for the other materials. For T800s, the 1.24% for the laminates and 

1.7% for a coupon based on test data compare to between 1.38% and 1.39% for the three laminates 

(the difference is very small) and 1.5% for a coupon based on Onset Theory, found using the same 

procedure as for IM7/8551-7. Once again, the effect is smaller than in the test (in particular, it falls 

significantly short of the coupon test data), but a similar trend is seen. 

Even more interestingly, for AS4/3501-6 (where (Swanson & Christoforou, 1986) found nearly iden-

tical values of 1.46% for laminate and coupon), Onset Theory predicts 1.54% for the laminate and 

1.56% for the coupon – slightly higher than the values found in test, but indeed very similar. 

This means that the full state of strain in combination with Onset Theory indeed replicates the 

effect of different strain allowables for laminates and uniaxial coupons, although the magnitude is 

smaller than found in the test data. There are three causes for this. First of all, (Colvin & Swanson, 

1990) included all tests they believed to lie on a straight vertical line in the average laminate failure 

strain. Based on Onset Theory, this is incorrect (the envelope is predicted to be curved, meaning 

that failures away from 𝜖𝑦 = 0 occur earlier; taking them into account lowers the average strain to 

failure). Another reason is the fact that measured ply properties are used, which possibly do not 

represent the true behavior of the composite accurately (in particular in out-of-plane direction) (see 

also Subsection 3.2.1). Finally, it is quite likely that improved results are obtained if the assumptions 

made in the derivation of the full state of strain in Section 3.2 (in particular the one of the laminate 

being a flat plate, whereas the real specimen is cylindrical) are discarded and the true specimen 

geometry (or a finite element model) is used for both laminates and coupons. 

In summary, using different strain allowables for coupons and laminates (and possibly truncating 

the envelope generated by horizontal and vertical cutoffs) results in a good match between maximum 

strain criterion and data. However, this means that the strain limits depend on the specific loading 

condition. Uniaxial loading in place of biaxial loading invalidates the allowable, and other laminates 

(which differ more significantly from a quasi-isotropic laminate than having two additional 0° plies) 

may do so as well. This means that new tests have to be carried out for every new type of loading 

or laminate stacking sequence in order to generate appropriate cutoffs. 

On the other hand, the full state of strain from Section 3.2, combined with the fact that Onset 

Theory is based on the actual physical cause of failure rather than one of many states of load that 

can cause failure (in other words, that it combines longitudinal and transverse strains to evaluate 

the distortional cutoff), means that only a single test – the critical invariant – is required to capture 

all loading conditions and stacking sequences, as claimed already in Section 1.2. 

Note that there is an additional factor that has not been addressed yet. In the determination of the 

full state of strain, curing strains are calculated as well. These are included automatically if the 

maximum strain cutoff is based on the laminate test data, but are not present for unidirectional 

coupon tests. However, at least in longitudinal direction the curing strains are quite minor (for 

example 0.04% for the AS4/3501-6 laminate – see also Subsection 7.4.1). Therefore, even if they 

were taken into account in the coupon allowable for the maximum strain criterion, they would not 

cause a difference comparable to the difference between longitudinal lamina and coupon allowables. 
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Chapter 7  

Research and Sensitivity Studies 

In this chapter, various research and development efforts are carried out. Most of these are based 

on trends observed in Onset Theory, which (assuming Onset Theory is correct) are related to trends 

in composite failure in general. In addition to that, the literature contains very little information on 

the robustness of Onset Theory. A failure theory which is capable of generating extremely accurate 

predictions if the exact input data is used, but diverges completely if the input data is varied slightly, 

would not be very useful. This is due to both the uncertainty involved in measuring physical prop-

erties, and also due to the natural spread of the actual properties. 

Section 7.1 examines the influence of the ply orientations on the resulting failure envelopes, both in 

strain space and also in stress space. The purpose of this investigation is to determine whether better 

designs are possible based on ply angles other than the 0°, ±45° and 90° plies commonly chosen, as 

well as investigating to what extent ply angle manufacturing inaccuracies will influence results. 

In Section 7.2, the sensitivity of Onset Theory to the constituent material properties is addressed. 

A real life composite does not only contain a single volume fraction, but rather a smaller or larger 

range, depending on the quality and consistency of the manufacturing process. The effects of this 

are analyzed in Section 7.3. In addition to that, (Hart-Smith, 2010) states that Onset Theory is 

strongly sensitive to the volume fraction, while (R. Li et al., 2003) found essentially the same strain 

amplification factors for volume fractions of 0.5 and 0.55. Therefore, these claims are also examined. 

Section 7.4 discusses sensitivities of the failure predictions with respect to effects related to temper-

ature. This includes the curing strains (due to a thermal expansion factor mismatch between differ-

ent plies in a laminate) as well as the thermal amplification factor vector (due to a mismatch 

between fiber and matrix). 

Finally, Section 7.5 provides an outlook into the topic of multi-cell (random fiber array) models. 

While these are not a core topic for this thesis, some investigation has still been carried out. 



112 Chapter 7: Research and Sensitivity Studies 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

7.1 Effect of Ply Orientations 

The purpose of this section is to show some trends in the failure envelopes related to ply orientation 

(in other words, to carry out a sensitivity study on ply angle). This is related to the concept of an 

“omni-ply” envelope, meaning an envelope valid for all laminates regardless of the exact stacking 

sequence or plies contained. In addition to that, it is determined whether there is room for improve-

ment by using ply orientations other than 0°, ±45°, and 90°. This investigation also inherently 

addresses the topic of the sensitivity of predictions with respect to ply orientation. 

7.1.1 Omni-Ply Envelope in Strain Space 

Figure 7.1 shows the strain space envelopes for ply orientations ranging from 0° to 90°. Showing one 

half of the envelopes is sufficient since the effects are essentially mirrored over a line at a 45° angle 

passing through the origin. On the other side of this line, 0° and 90° switch place, as do 15° and 

75°. The remaining couple is 30° and 60°; the 45° envelope is exactly symmetric. Note that beyond 

90° the envelopes start repeating (e.g. 105° is equal to 75°, and so on). 

 

Figure 7.1: Strain space envelopes for ply orientations between 0° and 90°. Material properties as in Section D.3. No 
curing strains included (envelopes are for individual plies). 

Based on this, several conclusions can be drawn. First of all, in strain space, fiber and dilatational 

matrix failure in 0° and 90° plies define the entire envelope (in other words, an omni-ply envelope 

can be generated based on just these two ply orientations). 
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It should be mentioned that curing strains are not included in these envelopes. This is due to the 

fact that the purpose of an omni-ply envelope is to be independent of the stacking sequence (which 

determines the curing strains). The curing strains only shift the failure envelope (see Subsec-

tion 3.2.4), and can be added later on. They are simply another applied global strain. 

For the maximum envelope in strain space, there is no unique solution. 30°, 45° and 60° plies give 

maximum envelopes, depending on the state of strain. A closer investigation containing additional 

ply angles in this range revealed that there is no global optimum. The trend is that distortional 

matrix failure becomes more critical, while the fiber envelope expands. The rate of expansion is 

larger, meaning that the benefits associated with the larger fiber envelope probably outweigh the 

less significant decrease in matrix envelope. 

The sensitivity of in particular the fiber envelope in strain space to varying ply orientations strongly 

depends on the reference angle. Deviating from a 0° or 90° ply by 15° does not cause large changes. 

On the other hand, deviating from the 45° ply will cause very large changes. This means that during 

manufacturing it is important to align plies properly with the desired directions. 

7.1.2 Omni-Ply Envelope in Stress Space 

So far, the investigation was limited to strain space. This does not provide any information about 

ply strength. Using this omni-ply envelope it would be possible to select a laminate based on desired 

stiffness properties, and to then check the resulting strains for applied loads to ensure the design 

does not fail. However, the same investigation should also be carried out in terms of stresses. 

For this purpose, the failure envelope is converted to stress space, using the in-plane stiffness matrix 

derived in Eqn. (3.11). The reservations regarding this conversion (formulated in Subsection 2.2.1) 

related to the uncertainty in material properties still apply. However, in this context different ply 

orientations are compared, all using the same material properties. Even if there is some inaccuracy 

which would make a comparison to test data difficult, the relative results should still be valid. 

Figure 7.2 shows the resulting envelopes. As for the strain-based envelopes in Figure 7.1, curing 

strains are excluded. Once again there is a certain correspondence between 0° and 90° envelopes 

(and similarly for the other pairs mentioned above). However, in this case the stiffness matrix causes 

the additional effect of vastly different scales in longitudinal and transverse directions. This means 

that for a 0° ply 𝜎𝑥 should have a much larger scale than 𝜎𝑦 (factor 10 in Figure 7.2), with the 

opposite effect for a 90° ply. A plot including both plies would therefore essentially show a horizontal 

and vertical line. Therefore, the stress-based envelopes are limited to the range of 0° to 45°. Even 

with this limitation the larger part of the envelopes for 30° and 45° has to be truncated. 

A minor conclusion that can be drawn based on these envelopes is that distortional matrix failure 

is clearly relevant for the 45° ply, unlike for the other envelopes. What is more relevant is that the 

result of the rotation is to have much less load bearing capability in 𝜎𝑥-direction, but increasing 

capability in 𝜎𝑦-direction. There is no ply that has more capability in (laminate) 𝜎𝑥-direction than 

a 0° ply, so it is not possible to obtain a better design for loads in that direction by removing the 

0° ply. This corresponds to the standard wisdom of aligning ply orientations with the applied loads. 
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Figure 7.2: Stress space envelopes for ply orientations between 0° and 45°. Material properties as in Section D.3. No 
curing strains included (envelopes are for individual plies). 

7.1.3 Optimum Quasi-Isotropic Laminate 

In many structural applications, quasi-isotropic laminates are used. The reason is it that for known 

load paths, the fibers should be exactly aligned with the applied loads. However, for typical appli-

cations the exact states of load are not known or too numerous to take into account individually. 

Therefore, laminates are used which have the same properties regardless of direction. There are two 

“simple” quasi-isotropic laminates: [0/90/±45]s (or any shuffled version thereof; since in this thesis, 

only in-plane effects are considered, this is identical to for example the more common [±45/0/90]s) 

and [0/60/−60]s. Both of these are quasi-isotropic in terms of stiffness, but their strength behavior 

is different. 

Figure 7.3 shows the envelope for a [0/90/±45]s laminate (in stress space, though the results in 

strain space are identical since the stiffness matrices of the two laminates are the same), while Figure 

7.4 presents the [0/60/−60]s laminate. This is a comparison of actual laminates, so curing strains 

are included. The exact number of plies or their order is irrelevant, as discussed in Subsection 3.2.2. 
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Figure 7.3: Stress-based failure envelope for a [0/90/±45]s laminate. Material properties as in Section D.3. 

 

Figure 7.4: Stress-based failure envelope for a [0/60/−60]s laminate. Material properties as in Section D.3. 
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It should be mentioned that it appears as if removing e.g. the 0° ply would increase the envelope. 

However, this would invalidate the other envelopes since the laminate stiffness would change. 

The [0/90/±45]s laminate is symmetric, whereas the [0/60/−60]s one is missing the “counter-ply” 

for the 0° ply. As shown in the envelopes, the result is that the [0/60/−60]s laminate offers more 

stress capability for compressive 𝜎𝑦 over almost the entire range of 𝜎𝑥. 

In terms of actual load bearing capability, the stress in the three-ply laminate would be higher than 

the one in the four-ply laminate given the reduced thickness. However, the load bearing capability 

per unit weight would be the same because the [0/60/−60]s is also lighter. 

Based on this, the design can be optimized further. There are many other quasi-isotropic laminates. 

However, all of them will involve more different ply angles. The benefit of the [0/60/−60]s laminate 

over the [0/±45/90]s laminate is achieved by removing the necessity of having a 90° ply. In general, 

the fewer plies there are the fewer strain limits have to be complied with. Evidently, this means any 

more complicated formulation of a quasi-isotropic laminate will not perform as well as one consisting 

of only 0°, 60° and −60° plies. 

Another way of looking at this is that failure envelope of the [0/60/−60]s laminate is almost entirely 

defined by the 0° ply. The region truncated by the envelopes of other plies is very small (whereas it 

is significantly larger for the [0/±45/90]s laminate). 

One other option would be rotating the [0/60/−60]s laminate. Since strain and stress based enve-

lopes are identical for quasi-isotropic laminates, Figure 7.1 can be used for this purpose. For example, 

a [−15/45/−75]s laminate (or the same laminate with the signs reversed, or any shuffled version – 

note that positive and negative angles result in the same envelope) would result in some benefits in 

longitudinal compression. This is due to the fact that the combined envelope of 15° and 75° plies is 

less restrictive in that region than the 0° envelope. On the other hand, in transverse tension, the 

75° envelope is more restrictive than the 0° envelope. Therefore, there would not be a significant 

net gain in the size of the failure envelope. Its shape would change, with its overall size remaining 

essentially the same. 

In summary, this means that a [0/60/−60]s (or a rotated version thereof) would theoretically be 

the optimum design for unknown normal loads on a laminate. However, this is a rather theoretical 

solution since there are other factors which are in favor of the [0/±45/90]s laminate. To name just 

two of them, shear cases are beneficial because of the ±45° plies aligned with the shear directions; 

similarly, these plies also provide better buckling stability. Depending on the relative importance of 

these different types of loads, one type of quasi-isotropic laminate should be chosen over the other. 

7.2 Effect of Constituent Properties 

A topic of concern for Onset Theory is the use of constituent material properties. Many properties 

(in particular those of the fiber) cannot be measured directly. According to for example (Soden et 

al., 1998), this means that tests are carried out on the composite material, followed by the use of 

micromechanics to determine the fiber properties. 
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Clearly, this means that the fiber properties cannot be considered to be reliable. Similarly, the 

matrix properties will also differ depending on the source used due to measurement inaccuracies, 

test errors, and simple variations in material properties. It is therefore important to investigate how 

sensitive failure predictions are with respect to the constituent material properties. 

A straightforward approach of doing so would be to run various analyses, using a range of values 

commonly found in literature. However, doing so for every single input parameter would scale too 

quickly to be feasible. If only three values were used for every parameter in the micromechanical 

analysis, the twelve fiber material properties, three matrix material properties, and the fiber volume 

fraction (see e.g. Subsection 3.5.4 for a list of input data) would mean 312+3+1 ≈ 43 million analyses. 

This does not include any investigation of the lamina properties used in generating failure envelopes. 

For this reason, a different approach is chosen. Comparing the materials used in Section 6.3, it is 

clear that for several parameters a significant range is covered, as shown in Table 7.1. Although 

some of the other ranges are relatively small, these are properties for different materials. It seems 

unlikely that values for a single material would vary more than values for different materials. Note 

that there is no variation on the fiber Poisson’s ratios 𝜈12 (and the identical 𝜈13). However, for all 

fibers used in all rounds of the WWFE (e.g. IM7, T300, AS, S2-glass, E-glass (Kaddour & Hinton, 

2012)) the reported value was 0.2. This also held true for most other sources in literature. 

Table 7.1: Ranges of parameters for AS4/3501-6, IM7/8551-7, and T800s/3900-2 (see Appendix D) 

Property Matrix material Fiber material 

𝐸1 [Pa] 3.3e9 … 4.2e9 225e9 … 303e9 

𝐸2 [Pa]  15e9 … 19e9 

𝐸3 [Pa]  15e9 … 19e9 

𝐺12 [Pa] 1.22e9 … 1.567e9 9.65e9 … 27e9 

𝐺13 [Pa]  9.65e9 … 27e9 

𝐺23 [Pa]  6.32e9 … 7e9 

𝜈12 [−] 0.34 … 0.38 0.2 

𝜈13 [−]  0.2 

𝜈23 [−]  0.071 … 0.357 

𝛼1 [°𝐶
−1] 45e-6 … 57.6e-6 0 … −0.4e-6 

𝛼2 [°𝐶
−1]  5.6e-6 … 15e-6 

𝛼3 [°𝐶
−1]  5.6e-6 … 15e-6 

Comparing the envelopes for these three materials will then allow some conclusions to be drawn 

regarding the sensitivity of Onset Theory to the individual parameters. Note that the sensitivity of 

predictions with respect to the volume fraction has intentionally been excluded here, since it is 

covered in Section 7.3. 

Figure 7.5 shows the biaxial strain envelopes for plies of all three materials, while the transverse vs 

shear strain envelopes are contained in Figure 7.6. Note that, as mentioned in the figure caption, 

all envelopes use the critical invariants from Subsection 6.2.5, meaning that any differences in en-

velopes are due to the micromechanical enhancement factors. 
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Figure 7.5: Comparison of biaxial strain ply failure envelopes for IM7/8551-7, T800s/3900-2, and AS4/3501-6. See 

Appendix D for input data, with the exception of Δ𝑇  for AS4/3501-6 (given as −155°𝐶 , but using −157°𝐶  
for all three materials). Invariants identical to default values from Subsection 6.2.5. 

 

Figure 7.6: Comparison of transverse vs shear strain ply failure envelopes for IM7/8551-7, T800s/3900-2, and 
AS4/3501-6. Material properties and other information as in Figure 7.5. 
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Comparing envelopes, several rather interesting conclusions can be drawn. First of all, the biaxial 

strain envelopes for all three materials are very similar. The largest difference occurs in the location 

of the matrix cutoff, which varies between 𝜖𝑥 = 0.0097 for T800s and 𝜖𝑥 = 0.012 for IM7 (both for 

𝜖𝑦 = 0). This is a change of approximately 20%, quite comparable to the difference of transverse 

fiber stiffnesses (15GPa to 19GPa) and matrix stiffnesses (3.3GPa to 4.08GPa). 

On the other hand, the fiber envelope for biaxial strains is not affected much. In particular, the 𝑥-

intercepts (i.e. where there is no applied transverse strain) in strain space are very similar. This will 

always be the case if the same critical invariant is used, since the dominating amplification factor 

in longitudinal direction is 1 (see Subsection 2.1.5). 

For loadings including shear, the sensitivity is much larger, in particular for the fiber failure enve-

lope. This is most likely related to the much larger shear stiffness of the IM7 fiber (almost twice as 

much as for the other two fibers). A larger fiber stiffness means that for a given ply strain, the 

matrix will take up a larger part. Therefore, the distortional matrix envelope becomes more critical, 

while the fiber envelope expands. For dilatational matrix failure, the shear stiffness of the fiber does 

not seem to play a significant role. 

In summary, this means that (with the exception of the fiber failure envelope under shear strains), 

the failure envelopes and cutoffs for three different carbon-epoxy composites are quite similar. Most 

importantly, the longitudinal stiffness of the fiber – typically one of the most distinguishing factors 

– does not play a significant role in longitudinal direction. 

Although this does not replace a proper sensitivity study where individual parameters are varied to 

investigate their true influence, it seems unlikely that the sensitivity to different versions of the 

material properties for the same material would be excessively large.   

Note that the magnitude of differences considered small in this section is similar to the magnitude 

considered significant in Subsection 6.4.3. There, predicted failure strains of e.g. 1.54% for coupons 

and 1.46% for laminates (for IM7/8551-7) were used to highlight a crucial difference between Onset 

Theory and the maximum strain failure criterion, namely that Onset Theory correctly captures the 

trend of varying failure strains. The purpose of the present section is not to discuss this type of 

effect, but to investigate whether Onset Theory behaves erratically if the input data is varied. This 

is not the case since there are no massive changes in results despite for example the fiber stiffness 

changing from 225GPa to 303GPa (a 35% increase). In other words, Onset Theory appears to be 

sufficiently robust with respect to varying constituent properties. 

It should also be mentioned that only individual ply envelopes in strain space are similar. The 

conversion to stress space will result in vastly different envelopes since the stiffness matrices are 

very different. Similarly, laminate envelopes can be quite different because the curing strains and 

Poisson’s effects are not the same for different materials. 

7.3 Effect of Fiber Volume Fraction 

Another topic of interest is the effect of the fiber volume fraction. Typical volume fractions are 

around 60%, but vary due to manufacturing inaccuracies. In the present section, two topics will be 



120 Chapter 7: Research and Sensitivity Studies 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

investigated. First of all, an attempt is made to determine the optimum volume fraction a composite 

should have in order to achieve the highest possible strength (Subsections 7.3.1 and 7.3.2). Secondly, 

various references in literature such as (Hart-Smith, 2010, p. 4306) state that Onset Theory is quite 

sensitive to the fiber volume fraction, and, in particular, much more so than to the fiber array type 

(see also Subsection 2.2.6). This claim is examined in Subsection 7.3.3. 

7.3.1 Approximate Relations for Lamina Properties 

In order to examine the effects of the fiber volume fraction, it will be necessary to use stress-based 

envelopes, as also done in Subsection 7.1.2. The reason for this is that a “ply” made of pure matrix 

would have much larger strains to failure than a ply containing fibers (which is indeed the case, as 

verified during the development process). However, this of course does not mean that the pure 

matrix “ply” would be beneficial in terms of load bearing capability. 

Lamina properties, which depend on the volume fraction, are needed for both the Poisson’s effects 

(already present in strain space) and also for the stiffness matrix used to convert the envelope to 

stress space. Determining the lamina properties is a research topic of itself. In this thesis, measured 

ply properties are used (see Subsection 3.2.1). However, for a change in volume fraction these will 

not be accurate anymore. Therefore, a simple rule of mixture approach (summarized in Table 7.2) 

is used to determine lamina properties from the constituent material data. It can be found in most 

standard textbooks on composite materials. 

Table 7.2: Summary of equations for lamina properties (Mallick, 2007, Eqns. 3.33-3.40 and 3.58-3.59) 

𝐸1 = 𝑉𝑓𝐸1
𝑓 + (1 − 𝑉𝑓)𝐸1

𝑚 𝐸2 =
𝐸2
𝑓𝐸2

𝑚

𝐸
2
𝑓(1 − 𝑉𝑓) + 𝐸2

𝑚𝑉𝑓
 𝐸3 = 𝐸2 

𝜈12 = 𝜈12
𝑓 𝑉𝑓 + 𝜈12

𝑚(1 − 𝑉𝑓) 𝜈13 = 𝜈12 𝜈23 = 𝜈12

1 −
𝐸2
𝐸1

𝜈12

1 − 𝜈12
 

𝐺12 =
𝐺12
𝑓 𝐺12

𝑚

𝐺
12
𝑓 (1 − 𝑉𝑓) + 𝐺12

𝑚𝑉𝑓
 𝐺13 = 𝐺12 𝐺23 =

𝐸2
2(1 + 𝜈23)

 

𝛼1 =
𝛼1
𝑓𝐸1

𝑓𝑉𝑓 + 𝛼1
𝑚𝐸1

𝑚(1 − 𝑉𝑓)

𝐸
1
𝑓𝑉𝑓 +𝐸1

𝑚(1 − 𝑉𝑓)
 𝛼2 = (1 + 𝜈12

𝑓 )
𝛼1
𝑓 + 𝛼2

𝑓

2
𝑉𝑓 + (1 − 𝜈12

𝑚)𝛼1
𝑚(1 − 𝑉𝑓 ) − 𝛼1𝜈12 

It should be mentioned that this approach is quite inaccurate, as easily verified using any of the 

sets of input data found in for example Appendix D. More advanced formulations such as the 

Halpin-Tsai equations might yield better results. However, as for the stiffness matrix used in the 

conversion to stress space, inaccuracies are accepted since the purpose is not to obtain good results 

in comparison to test data, but to investigate relative trends. Assuming that the simple equations 

outlined above capture the trends in stiffness with sufficient accuracy, qualitative conclusions re-

garding the optimum volume fraction can still be drawn, although the exact value can at most be 

an indication. 

One additional aspect related to this is the density of the composite. It is given by e.g. (Mallick, 

2007, Eqn. 2.7) as 𝜌 = 𝑉𝑓𝜌
𝑓 + (1 − 𝑉𝑓)𝜌

𝑚. Since the weight of the composite will also change with 
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the fiber volume fraction, the desired optimum volume fraction is the one that yields the highest 

strength to weight ratio. 

7.3.2 Optimum Volume Fraction 

The constituent properties used for this investigation are the ones for IM7/8551-7 found in Sec-

tion D.3, while the lamina properties are determined using the equations presented in the previous 

subsection. In addition to that, the densities are 1.78 𝑔
𝑐𝑚3 for IM71 and 1.272 𝑔

𝑐𝑚3 for 8551-72. 

For a volume fraction of 0.573 (the value in Section D.3), the theoretical density is 𝜌𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

1.563 𝑔
𝑐𝑚3. In order to take into account the weight of the composite, all stresses will be divided by 

𝜌𝑟𝑎𝑡𝑖𝑜 =
𝜌𝑎𝑐𝑡𝑢𝑎𝑙

𝜌𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
, meaning that a larger weight will result in a penalty on the envelope. For a 

volume fraction of 0.573, the scaling factor is 1. 

Figure 7.7 shows the failure envelopes for volume fractions of 0.4, 0.5, 0.573, 0.65, and 0.75. 

 

Figure 7.7: Comparison of failure envelopes (in stress space) for various volume fractions 

The trends seen are essentially as expected. A larger volume fraction increases the longitudinal 

strength. At the same time, the transverse strength decreases, presumably because more and more 

of the strain is actually taken up by the fiber rather than the matrix. 

                                              
1 http://www.hexcel.com/resources/datasheets/carbon-fiber-data-sheets/im7.pdf 

2 http://www.hexcel.com/Resources/DataSheets/Prepreg-Data-Sheets/85517_us.pdf 

http://www.hexcel.com/resources/datasheets/carbon-fiber-data-sheets/im7.pdf
http://www.hexcel.com/Resources/DataSheets/Prepreg-Data-Sheets/85517_us.pdf


122 Chapter 7: Research and Sensitivity Studies 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

In strain space, the opposite behavior would occur (as discussed in Subsection 7.3.1). For increasing 

volume fractions, the failure envelope reduces more and more. Section 7.2 already addressed the fact 

that the 𝑥-intercept in strain space remains more or less the same regardless of the amplification 

factors (provided the critical invariant is the same). Therefore, the difference between these points 

in the stress-based envelope is due to the increase in longitudinal stiffness with volume fraction. 

Another comment that should be made regards the influence of the density. For the given volume 

fractions, the minimum and maximum densities are 1.4752 𝑔
𝑐𝑚3 and 1.653 𝑔

𝑐𝑚3, respectively. Compared 

to the reference density of 1.563 𝑔
𝑐𝑚3, this constitutes an increase or decrease of slightly less than 

6%. In longitudinal direction, this results in some slight scaling of the envelopes, but does not change 

the trends seen in Figure 7.7. On the other hand, in transverse direction the envelopes are sufficiently 

close to change their order. Without the weight penalty, 𝑉𝑓 = 0.75 also performs best in transverse 

tension, and in transverse compression there is very little difference between envelopes. 

Dilatational matrix failure becomes worse with increasing volume fraction. However, somewhat sur-

prisingly this effect appears to be arrested beyond a volume fraction of 0.5. Presumably, this is due 

to the increase in ply stiffness, which offsets the increased strain concentrations in the matrix. 

Although this is not shown in the plot because it is far outside the axes ranges, distortional matrix 

failure is becoming much more critical for higher volume fractions. However, a volume fraction of 

0.75 is already close to the maximum one possible for the square array (see Subsection 4.2.4). It is 

therefore unlikely that distortional matrix failure will ever become the first failure mode for biaxial 

states of strain. 

This means that the optimum volume fraction for the majority of the envelope is simply the maxi-

mum one achievable, with the exception of cases where transverse stresses are very important. In 

Section 7.2, the strain-space envelope for intermediate modulus, high strength carbon fibers was 

found to not vary much with the material combination. In order to increase the strength of such a 

composite, its longitudinal stiffness should be increased. This section showed that one feasible way 

of doing so is to increase the fiber volume fraction. 

7.3.3 Sensitivities to Volume Fraction and Fiber Array Type 

Comparing the envelopes for volume fractions of 0.5, 0.573 and 0.65 in Figure 7.7, there are no 

unexpected changes. The differences between envelopes seem to behave rather linearly in the sense 

of equally large changes for equally large differences in volume fraction. In particular, there is no 

asymptotic behavior that would invalidate the use of Onset Theory if there are minor uncertainties 

in the volume fraction. The largest changes occur in longitudinal direction. This is directly related 

to stiffness differences, as discussed above. Using the material properties from Section D.3, the lon-

gitudinal stiffnesses for these three volume fractions are 140GPa, 160GPa and 181GPa, which cause 

the common intercept in strain space of about 1.5% to result in the different intercepts in stress 

space shown in Figure 7.7. These correspond to slightly more than 10% strength changes. 

The sensitivity of the strength of a composite to the fiber volume fraction is therefore essentially 

the same as the sensitivity to the stiffness. Since this effect is not unrealistically large even for the 
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simplistic equations in Subsection 7.3.1, Onset Theory seems to be sufficiently stable within the 

range of typical volume fractions encountered due to for example manufacturing inaccuracies. 

Regarding the claim by (Hart-Smith, 2010) that the strength is very sensitive to the volume fraction, 

it is not possible to provide a definite verdict since this depends on the definition of “very sensitive”. 

However, a relative comparison can be carried out regarding the statement that the sensitivity with 

respect to the fiber volume fraction is larger than the sensitivity with respect to the fiber array. 

According to Hart-Smith, this increases confidence in the method. If there were drastic changes in 

the results for a different assumed fiber array, then the process of using unit cells would be very 

questionable (see also the discussion in Subsection 2.2.6), and the method would not be reliable. 

Figure 7.8 shows the failure envelopes for square and hexagonal arrays at a volume fraction of 0.573, 

as well as complete failure envelopes for volume fractions of 0.5, 0.573 and 0.65. “Complete” in this 

context means that all rotation angles (see Subsection 3.3.4) and both fiber array types are taken 

into account, while the envelopes for square and hexagonal only contain one fiber array without any 

rotations. For all envelopes, the full set of interrogation points (Subsection 3.4.3) is used. 

 

Figure 7.8: Comparison of sensitivities to fiber array type and volume fraction. The envelope for the square array at 

𝑉𝑓 = 0.573 overlaps with full envelope at that volume fraction. 

Note that the envelope for the square array for a volume fraction of 0.573 is identical to the full 

conservative envelope. This once again supports the findings in Subsection 3.3.4 that a square array 

(and sometimes also hexagonal arrays) typically provide conservative envelopes.  

Regarding Hart-Smith’s claim, at least for this case the sensitivity with respect to the fiber array 

type is of similar magnitude as the sensitivity with respect to fiber volume fraction. The difference 
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between green and blue (overlapped by cyan) lines in Figure 7.8 is quite similar to the difference 

between red and magenta lines. In other words, changing the fiber array is comparable to an increase 

or reduction of the fiber volume fraction by about 7.5 percent points. 

In stress space, the situation is not completely clear. If the relations in Subsection 7.3.1 are used, 

the trends become a little more involved since the volume fraction now plays an additional role in 

the stiffness matrix, but the overall conclusion remains the same (changing the fiber array results 

in similar differences as changing the volume fraction). However, at the current state of development 

the stiffness matrices for square and hexagonal array are the same (see also Subsection 3.2.1). If the 

stiffness properties for the actual fiber arrays are used, this conclusion may change. 

Summarizing the preceding discussion, at this stage Hart-Smith’s claim (that the sensitivity to the 

fiber volume fraction is larger than the sensitivity to the fiber array) has been refuted in strain 

space. In stress space, it cannot be fully investigated, although results point towards it being incor-

rect. Regarding the sensitivity of predictions to the volume fraction in general, Onset Theory seems 

to be sufficiently robust. 

7.4 Effect of Temperature 

A very important topic in the analysis of composites are residual strains due to temperature effects. 

As discussed in Subsection 3.2.4, there is both a mismatch between ply and laminate thermal ex-

pansion factors (the curing strains) and a mismatch between fiber and matrix thermal expansion 

factors (captured by the thermal amplification factor vector 𝑨). 

As discussed at various occasions throughout this thesis, residual strains are commonly assumed to 

relax over time. The following subsections will cover the magnitude of the two temperature depend-

ent effects in order to determine how this relaxation will influence failure predictions. 

7.4.1 Curing Strains 

Using the procedure in Subsection 3.2.2, significant curing strains are developed in the laminate. 

For example, for the quasi-isotropic AS4/3501-6 laminate in Subsection 6.3.1, the strains are 

(𝜖𝑥, 𝜖𝑦) ≈ (−0.00041, 0.0038) (in the ply coordinate system). Since the laminate is identical in lon-

gitudinal and transverse direction, the same values are found for all plies. Since the curing strains 

are pre-strains on the plies, they simply shift the envelope, as discussed in Subsection 3.2.4. 

Note that the magnitude of in particular the transverse strain is quite significant. In Figure 6.4, 

fiber failure on the horizontal axis occurs at a strain of about 𝜖𝑥 = 0.015 in the 0° ply. Not including 

the curing strains would mean that the envelope moves to the left by 0.00041. This is hardly a 

relevant change. However, for the 90° ply, the horizontal axis is the longitudinal direction. This 

means that the envelopes – including the matrix failure cutoff – would shift by 0.0038. Currently, 

matrix failure is predicted to occur exactly when observed in the test, namely at approximately 

𝜖𝑥 = 0.007. Excluding the curing strains, the prediction would be 0.0108, which is vastly uncon-

servative. The influence of the curing strains is thus to take up more than half of the dilatational 

capability of the matrix. This was also found by (Hart-Smith, 2010, p. 4324). 



7.4 Effect of Temperature 125 

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

As discussed above, typically the curing strains in transverse direction are much larger than those 

in longitudinal direction (of the individual ply – not of the envelope; note that the envelope is 

actually elongated in transverse direction of the ply, which can lead to some confusion at first). To 

explain the impact of this result, Figure 6.4 is used. If there were no curing strains, the main effect 

(neglecting the longitudinal curing strains altogether) would be that the envelope for the 0° ply 

shifts up, while the envelope for the 90° ply shifts to the right. Therefore, the fiber failure envelope 

will not change significantly, since that part of the laminate envelope is defined by longitudinal 

compression. On the other hand, the part of the laminate envelope defined by matrix failure is due 

to transverse strains (in the ply coordinate system). Since the transverse curing strains are very 

large, there will be significant changes for this type of failure. Therefore, for laminates with plies in 

multiple directions, the fiber failure envelope will typically not change much if curing strains are 

included. On the other hand, dilatational matrix failure will be affected significantly. Note that 

there are some changes for biaxial strains due to a change in location at which failure in one ply 

switches to failure in another ply. However, this effect is still relatively small. 

Regarding curing strains relaxing over time, the overall effect will most likely be beneficial, since it 

increases the dilatational strain the matrix is capable of withstanding. One explanation for the 

relaxation is moisture ingression, which is not investigated in this thesis (see Subsection 2.2.2). Since 

this would lead to swelling of the matrix, it is very plausible that it is possible to apply larger tensile 

strains. The correct predictions will be somewhere between the extremes of having no curing strains 

and having full curing strains for the application temperature. At least for the laminate in Subsec-

tion 6.3.1, the tests seem to have occurred before there was any significant relaxation of curing 

strains. 

The curing strains are related to the difference between the thermal expansion coefficient of the ply 

and that of the laminate (which, in turn, depends on stacking sequence and ply stiffness matrix). 

This means that a brief investigation of these three parameters should be carried out as well. 

Regarding the stacking sequence, it was already mentioned in Subsection 6.3.2 that adding or re-

moving ±45° plies does not change the curing strains since the effect in longitudinal and transverse 

directions is identical. Adding plies with other orientations reduces the curing strains in plies of the 

same orientation, at the cost of increased strains in all other plies. 

The magnitude of the ply thermal expansion coefficients is directly related to the resulting curing 

strains. In general, the closer to zero the thermal expansion coefficients are, the lower the resulting 

curing strains. The only exception are quasi-isotropic laminates, where identical nonzero thermal 

expansion coefficients also do not cause any curing strains. 

Finally, differences in the ply longitudinal and transverse stiffness related to similar differences in 

resulting curing strains. For increased stiffness in a certain direction, the curing strains in that 

direction will reduce, while the curing strains in the other direction increase (due to the increased 

stiffness in that direction of other ply orientations). 
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7.4.2 Thermal Amplification Factors 

For the curing strains discussed in the previous subsection, there is clearly a significant influence of 

temperature, since according to Eqn. (3.15) they scale linearly with temperature. This means that 

the temperature will certainly be very relevant for the failure predictions. The other temperature 

dependent term is the thermal amplification factor vector 𝑨. In order to investigate its effect, the 

failure envelope for the AS4/3501-6 laminate from Subsection 6.3.1 has been generated including 

curing strains, but without the thermal amplification vector. 

The results are very similar to those shown in Subsection 5.2.3. Figure 5.2 contains the thermal 

amplification factor vector, whereas in Figure 5.3 this effect has been removed (from the fiber failure 

envelope only). This results in minor changes for the fiber failure envelope: the shape changes some-

what (in particular, the envelope obtains an axis of symmetry), but there is no significant influence 

on failure predictions. 

For the dilatational matrix cutoff, the effect is comparable to the curing strains. The thermal am-

plification factors result in a shift in transverse direction such that the achievable strains are re-

duced. However, the magnitude of the effect is smaller (removing the thermal amplification factors 

results in a 15% increase, compared to the more than 50% found when removing the curing strains 

in the previous subsection). 

The same conclusions can be drawn as for the curing strains. Temperature effects are usually as-

sumed to reduce over time. Once again this can be explained as being due to swelling of the matrix 

due to moisture ingression, since the trend of the effect is the same (larger dilatational strains are 

possible). In this case, the difference between predictions with and without temperature effects is 

smaller, but the true behavior will still be somewhere in between. 

7.5 Random Arrays 

So far in this thesis, regular unit cells have been used, assumed to repeat indefinitely throughout 

the composite. However, the real microstructure of a composite is of course far from this idealized 

arrangement, as visible for example in Figure 2.1. 

In general, it should be mentioned that a significant amount of randomness is included already 

because of the use of interrogation points throughout the unit cell (Subsection 3.4.3), for various 

rotation angles of both square and hexagonal arrays (Subsection 3.3.4). Several thousand combina-

tions of these parameters are taken into account. In addition to that, the sensitivity with respect to 

the fiber volume fraction seemed to be quite modest and mostly related to the stiffness of the 

composite, as discussed in Subsection 7.3.2. Together, these points will already cover a large part of 

the possible arrangements found in a real, random microstructure. 

Another argument for the usability of regular unit cells is that based on the investigation in Sec-

tion 3.3 the square fiber array is typically most conservative for fiber failure (this was also indicated 

in Subsection 7.3.3). Therefore, the fiber failure envelope will be defined by the square fiber array. 

In a real composite, other, less critical fiber array types and rotation angles will be present. There-

fore, the square array does form a conservative lower limit for the composite behavior, as also 
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claimed by (Hart-Smith, 2010). In reality, if there are few square arrays, failures originating from 

this fiber array type may even be arrested by other fiber arrays, leading to overconservative predic-

tions (although this was not typically the case in Section 6.3). 

However, two important questions remain. First of all, the regular unit cells assume every fiber to 

be surrounded by a significant amount of matrix. However, in reality this will not always be the 

case. Quite often, fibers are (almost) touching. The question is whether there is a minimum distance 

of fibers below which the behavior suddenly turns asymptotic, with severe strain concentrations 

leading to failure much earlier than otherwise predicted. If this is the case, then premature failures 

could occur if there is a significant amount of fibers in close proximity. 

Secondly, one of the main assumptions in the use of unit cells is that the strain in a unit cell is the 

same as the strain in the lamina, as discussed in Subsection 2.1.6. For a random fiber array, this 

assumption does not hold anymore. The second focus of research will therefore be to what extent a 

random array deviates from this assumption. 

7.5.1 Fibers in Close Proximity 

In Figure 7.7, a sensitivity study regarding the fiber volume fraction was carried out. The largest 

value investigated was 0.75. Based on Subsection 4.2.4, this is very close to the maximum possible 

volume fraction of the square fiber array (0.785) at which the fibers would be touching each other. 

Nevertheless, no sudden asymptotic behavior of any kind was observed. 

Figure 7.9 shows a square unit cell at 𝑉𝑓 = 0.75. Clearly, the fiber is nearly touching the edge of 

the unit cell. Note that the number of elements in the critical region is very large already for 

approximately 256 000 nodes. At 512 000 nodes, meshing failed. 

 
 

Figure 7.9: Square unit cell at a volume fraction of 0.75. Left: overview of entire unit cell (original dimensions); 
right: close up of mesh at of location where fibers are closest together (approximately 256 000 nodes).1 

                                              
1 Right part of the figure: the thin white lines visible on some screens / print outs are caused by a 

rendering problem in the Abaqus vector graphics export and do not carry any meaning. 
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According to the criteria put forth in Subsection 4.2.5, the mesh at approximately 256 000 nodes 

was not converged. However, a closer look revealed that the maximum difference in any amplifica-

tion factor, when compared to the mesh at about 128 000 nodes, was 2.42% (which would in fact 

be converged even according to the strict criteria used in this thesis). Element averaging resulted in 

a maximum error of 7.75%, just outside of the 5% maximum limit selected in Subsection 4.2.5. 

While this means that technically the mesh is not converged, it is highly unlikely that for a fully 

converged mesh the behavior would suddenly become asymptotic. In addition to that, the conver-

gence issues do (interestingly enough) not occur at the location where fibers are almost touching, 

but at locations close to the interstitial location (see e.g. Figure 2.9), where they are furthest apart.  

In summary, this means that close proximity does not result in sudden asymptotic behavior. Alt-

hough the strain-space failure envelope shrinks with increasing fiber volume fraction, this will be a 

local effect in a random microstructure. As discussed in Subsection 7.3.2, the additional stiffness 

provided by the higher volume fraction will in fact result in a larger stress-space failure envelope. 

7.5.2 Equivalence of Ply and Unit Cell Strains 

The other issue is related to the assumption of identical unit cell and ply strains (as discussed in 

Subsection 2.1.6). For a true composite, this will not be the case because the stiffness changes 

continuously, meaning that there will be regions with larger and smaller strains. In order to carry 

out a preliminary investigation into this topic, the multi-cell model shown in Figure 7.10 was used. 

 

Figure 7.10: Multi-cell model used in preliminary investigation of random fiber arrays1 

 

Figure 7.11: Deformed shape for unit cell extracted from 
multi-cell model1 

 

Figure 7.12: Deformed shape for single unit cell 

 

                                              
1 The thin white lines visible on some screens / print outs are caused by a rendering problem in the 

Abaqus vector graphics export and do not carry any meaning. 
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During this investigation, it was found that the main problem with random arrays will be that the 

boundaries of the center cell are not fixed anymore. This means that they do not remain straight 

during loading; in addition to that, they move (which invalidates the fixed boundary conditions 

discussed in Section 3.1). 

In order to quantify the impact, using the material properties for AS4/3501-6 and applied transverse 

strain of 0.001 was applied. The resulting strains in Figure 7.11 range from 5.938e-4 to 1.884e-3. On 

the other hand, for the single unit cell model in Figure 7.12, the range is 5.811e-4 to 2.202e-3. 

Apparently, for this particular region in the multi-cell model, the single unit cell is in fact more 

conservative. In order to determine whether this is a general trend, the strains in the entire multi-

cell model are investigated. The resulting range of strains was 4.109e-4 to 2.441e-3. In other words, 

the minimum strain in the single unit cell is higher than the minimum strain in the multi-cell model; 

however, the single unit cell does fall approximately 10% short of the true maximum strain. 

Obviously, this is only a very preliminary investigation. Much more work on this topic is needed. 

Only a single amplification factor is compared; only one random array is investigated; and it was 

not ensured that the mesh used in the multi-cell model was properly converged. Most importantly, 

only a non-rotated square fiber array is taken into account (rather than multiple rotations of square 

and hexagonal arrays). However, this investigation does provide an indication that unit cells should 

not give vastly different results than larger, multi-cell models. Based also on the validation results 

in Section 6.3, it seems as if using representative volume elements is a reasonable solution for the 

current state of development. 
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Chapter 8  

Conclusions and Recommendations 

The basic motivation for the development of Onset Theory was the lack of reliable composite failure 

criteria, as evident for example during the first WWFE. This results in the necessity to carry out 

very extensive and expensive test programs for every new composite design. 

First and foremost, the conclusion of this thesis is that there are indeed major benefits associated 

with Onset Theory, which is able to generate quite accurate predictions of composite laminate 

failure, including predicting non-catastrophic matrix failure prior to ultimate failure without requir-

ing a complex (and sometimes rather arbitrary) progressive failure analysis. It also reproduces other 

trends seen in composite tests, using a single set of strength data for all cases. The benefits of Onset 

Theory are summarized in more detail in Section 8.1. 

In order to apply Onset Theory correctly, a consistent approach to Onset Theory had to be devel-

oped. This included deriving a method to generate failure envelopes using analytical expressions for 

the full state of strain. Both of these goals were reached successfully, with the complete approach 

having been summarized already in Section 3.5. 

The reason for the necessity to develop a consistent approach was the fact that different research 

groups presented contradicting opinions on the steps required to apply the theory correctly. Sec-

tion 8.2 summarizes the results regarding those contradictions, obtained during the development of 

the consistent approach. 

Following automation of the entire approach, additional research activities and sensitivity studies 

were carried out. Their results are contained in Section 8.3. A very important conclusion is that the 

critical invariants used in Onset Theory seem to be identical for various materials. In addition to 

that, Onset Theory was found to be sufficiently robust with respect to the various input parameters. 

Finally, Section 8.4 presents an overview of and some preliminary thoughts on the various topics 

which could not be addressed properly during this thesis. 
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8.1 Conclusions Regarding Onset Theory 

Based on Sections 6.3 and 6.4, there are two main benefits associated with Onset Theory in combi-

nation with the full state of strain derived in Section 3.2. First of all, it provides quite accurate 

predictions of composite laminate failure under biaxial strains, unlike commonly used criteria such 

as Tsai-Wu (see Subsection 6.4.2). In addition to that, although the magnitude of the effect was 

somewhat underpredicted, there is a clear difference between lamina and laminate failure strains for 

those materials where this is also found in the test data, while nearly identical values are predicted 

for a material where this is not the case (Subsection 6.4.3). 

Secondly, in order to do so, only a single critical value is required for each of the three failure modes 

used in Onset Theory. This is a significant benefit compared to criteria such as maximum strain, 

which also showed good agreement with failure under biaxial loads, but requires new allowables for 

every new set of loading conditions and stacking sequence. In fact, at least for the cases in this 

thesis, no strength tests whatsoever were necessary for the application of Onset Theory. Using the 

same default critical invariants (summarized in Subsection 6.2.5) for all materials gave both good 

predictions for laminate failure and captures the trends regarding the differences between lamina 

and laminate failure. The focus for the validation cases in Section 6.3 was on intermediate modulus 

carbon fibers in combination with thermoset untoughened resins. However, the default critical in-

variants also included glass fibers with no indication of any significant differences. 

Regarding the value of the failure criterion, the fact that it matches the best tests means that Onset 

Theory appears to indeed be the correct failure criterion for composites. Although a variety of 

further research is suggested (as discussed in Section 8.4), it will mostly be concerned with extending 

the scope of applicability of the theory. This will in particular be related to properly determining 

the full state of strain in a ply, as well as improving the process of determining the local constituent 

strains. The foundation of Onset Theory – using the dilatational and distortional strain invariants 

as independent indicators for failure – is clearly supported using the results of this thesis. 

For the cases for which Onset Theory is already applicable, the primary focus should be an im-

provement of the way tests are carried out, rather than making more or less arbitrary adjustments 

to the theory as done by other failure criteria. The result would be erratic behavior with predictions 

which are sometimes correct and sometimes incorrect. Instead, the tests have to be improved as 

much as possible (which would also lead to a better understanding of how to prepare specimens and 

structures such as to achieve optimum performance). Only then can flaws be included in the theory 

in a well-defined manner. 

8.2 Findings Related to Literature Claims 

In Section 3.5 the consistent approach to Onset Theory was summarized. During its development 

during this thesis, a variety of contradicting claims found in literature had to be resolved. This 

section contains details on the results obtained. 

First of all, contrary to the choice made by Hart-Smith (see Subsection 5.2.6) fixed boundary con-

ditions need to be used (Section 3.1), unless significant modifications are made to the applied strains. 
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Secondly, the various fiber array types can indeed be obtained through rotation; however, the dia-

mond array used by many researchers does not appear to be relevant. For this thesis, it was decided 

to employ several rotation angles in order to ensure conservative predictions. 

Regarding the required interrogation points, the interstitial location claimed to be very important 

by many researchers, including Gosse (the original author of SIFT), does not appear to be relevant. 

However, as for the rotation angles a large number of interrogation points is taken into account to 

ensure conservatism. 

In terms of the sensitivity to the input parameters, Hart-Smith’s claim that the sensitivity with 

respect to the volume fraction is far more relevant than the sensitivity with respect to the fiber 

array type could not be confirmed (Subsection 7.3.3). However, it can be confirmed that there is 

indeed a very strong influence of temperature on failure predictions, in particular regarding the 

dilatational matrix cutoff. This topic was addressed in Section 7.4. 

Finally, some outright errors were found in literature. In particular, Gosse appears to be using an 

incorrect scaling factor for the long direction of the hexagonal array according to the verification of 

the strain amplification factors (Subsection 5.1.2). As stated above, Hart-Smith is using incorrect 

boundary conditions, and at least in the verification of the failure envelopes (Subsection 5.2.4) is 

neglecting curing strains. 

8.3 Results of Research and Sensitivity Studies 

One of the most important conclusions of this thesis is the fact that the critical invariants for a 

variety of different materials appear to be identical (see Subsection 6.2.5). Although this may not 

hold for example for thermoplastic resins, it did enable successful failure predictions for a variety of 

different cases, as discussed in the introduction to this section. 

Regarding ply angles, it was found that the common wisdom of aligning plies with applied loads is 

also predicted by Onset Theory. While a [0/60/−60]s laminate (or a rotated version) would be a 

theoretical optimum for pure longitudinal and transverse loads, for most cases a [0/90/±45]s (or 

any shuffled version thereof) laminate is preferable (Section 7.1). 

For intermediate modulus / high strength fiber carbon-epoxy composites, the ply failure envelopes 

were found to be quite similar, as discussed in Section 7.2. However, given the different stiffnesses 

of those composites, stress-space or laminate envelopes will vary significantly. A similar investigation 

should be carried out for composites involving other fiber and matrix material types, such as high 

modulus fibers, glass fibers, or thermoplastic resins. In Subsection 6.2.5, it was found that for all 

materials investigated (including glass fibers) the critical invariants were quite similar. It would be 

very interesting to determine whether this also translates into comparable strain-space failure enve-

lopes. Since glass fibers fail at much higher strains than carbon fibers (see e.g. (Soden et al., 1998)), 

this will most likely not be the case. 

Although the strain to failure decreases, based on a simple rule of mixture approach the highest 

strength of a composite will be obtained by increasing the volume fraction (Section 7.3). This means 

that the stiffness increase outweighs the decrease in strain space envelope. However, since the effects 
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in general are kind of minor, based on the purely straightforward strength/stiffness approach in this 

theses maintaining a constant volume fraction should not necessarily be a priority for manufacturers 

(a larger volume fraction with more variation will be better than a smaller volume fraction with less 

variation). Of course this disregards all other effects at play requiring more stringent constant vol-

ume fractions. 

In general, it was found that the strength of carbon/epoxy composites seems to be more strongly 

related to the ply stiffness than to any other parameter. This result was found both for different 

materials (Section 7.2) and for different fiber volume fractions (7.3). The stiffness is far more im-

portant than the very similar or even decreasing ply strain envelopes. In addition to that, it also 

has a strong influence on the curing strains, as discussed in Subsection 7.4.1. 

The combined effect of curing strains and thermal amplification factors is relatively minor for the 

fiber. For the dilatational matrix cutoff, it is very important to take this effect into account, with 

the curing strains amounting to almost half of the dilatational capability of the matrix (while the 

thermal amplification factors have a similar effect, but of smaller magnitude). Both of these effects 

were discussed in Section 7.4. In general, low curing strains are beneficial for matrix failure. For 

manufacturers, this means that an effort should be made to obtain low thermal expansion coeffi-

cients. Similarly, for designers this means that laminates should be selected where the curing strains 

are low for the plies loaded in transverse tension. 

In summary, this means that based on the various sensitivity studies in Chapter 7, Onset Theory 

seems to be sufficiently robust with respect to ply orientations, constituent material properties, fiber 

volume fraction, and temperature effects. 

In addition to that, the assumptions involved in using unit cells (already summarized in Subsec-

tion 3.5.1) do not seem to have an overly large detrimental effect, as examined briefly in Section 7.5. 

Particularly, fibers in close proximity do not result in asymptotic behavior of the matrix failure 

envelopes. Including different orientations of both square and hexagonal array (as done in this 

thesis) should mean that unit cells provide a reasonable approximation of the behavior of the random 

array microstructure. However, much more work is required on this topic, as also discussed in 

Subsection 8.4.1. 

Given the fact that Onset Theory is quite successful in predicting laminate failure and also manages 

to capture the trends regarding the differences between lamina and laminate failures, it is already 

more accurate and robust than other composite failure criteria. The further research suggested in 

the following subsection will only make this comparison more favorable. 

8.4 Suggested Further Research 

Throughout this thesis, a variety of topics were discovered which went beyond the scope of research 

as outlined in Section 1.5 or were otherwise infeasible in terms of time and effort required. Although 

Onset Theory showed very promising results in this thesis, as stated in Section 1.4 the present work 

is at most a starting point for further research by both ATG Europe and TU Delft. 
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The present section provides a summary, and, where available, some preliminary thoughts and 

discussion on some of the topics that were not investigated and are believed to be important next 

steps in the development of Onset Theory. 

8.4.1 Removing Assumptions and Limitations 

Based on the list of assumptions and limitations in Subsection 3.5.1, various tasks can be defined. 

First of all, a progressive failure analysis should be carried out. This is discussed in detail in Sub-

section 8.4.3. 

Secondly, ply interface failures such as delaminations (or other failure modes starting at the interface 

between plies) should be investigated. This will require analyzing unit cells containing multiple fiber 

directions. Unit cells for all combinations of ply orientations that are present in the laminate need 

to be analyzed. Then, the local strains at the interface need to be obtained by following a procedure 

equivalent to the one used in this thesis, but based on global interface strains and strain amplifica-

tion factors for the particular interface under investigation. Note also that in this case the strain 

amplification factors are not constant through the thickness anymore. This topic has been addressed 

partly by (Hart-Smith, 2010), although his results are questionable (see e.g. Subsection 5.2.6). 

The stiffness properties of the ply should be determined using analyses of the unit cell, rather than 

measured properties. However, as discussed in Subsection 3.2.1, it should be investigated whether 

this is indeed beneficial. 

Some authors claim that nonlinear analyses are required, despite the claims found in other literature 

(see Subsection 2.1.6). One of these sources is (Mishra & El-Hajjar, 2012). (Jiazhen, 2014) also 

carried out significant research on this topic. In the future, these approaches should be investigated 

to determine whether nonlinear analysis results in improved predictions compared to linear analysis. 

This nonlinear analysis is somewhat related to the variation of input parameters with temperature. 

Currently, all material properties are assumed to be independent of this factor. A full analysis would 

involve some form of nonlinear curing simulation of the unit cell with changing material properties 

to determine the correct residual strains (i.e. thermal amplification vector). In addition to that, the 

mechanical amplification factors would also change if the material properties change. Technically, 

for every application temperature a set of strain amplification factors based on a micromechanical 

model with the appropriate constituent properties should be used, although the variation of some 

properties can probably be safely neglected given the relatively small difference between curing and 

application temperatures. Finally, the question is whether the critical invariants themselves also 

change with temperature. For 𝐽1
∗ of adhesives, this was investigated by (Tsai et al., 1999), who 

concluded that the critical invariant was independent of temperature. This is also related to Sub-

section 8.4.4. 

Further research should be carried out on the topic of multi-cells random fiber array) models in 

order to investigate the equivalence of strains in a unit cell and the ply. This has only briefly been 

examined in Section 7.5. Some examples include stochastic analysis of various random fiber arrays 

(see for example the work by (Mendoza-Jasso, 2012)), or introducing various modifications to the 

unit cells, such as moving the center fiber or changing its size (for the hexagonal array). 
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Related to this is an analysis of non-circular fibers. In a real composite, the fibers may for example 

by elliptical. This should be taken into account in form of another sensitivity study related to the 

deviation of the fiber cross section from the idealized circular shape. 

As discussed in Subsection 2.2.2, moisture absorption and chemical shrinkage were neglected, alt-

hough the evidence in favor of this was somewhat sparse. Therefore, the effects of possibly beneficial 

swelling should be investigated to determine whether the current predictions are overconservative. 

On the other hand, the effect of chemical shrinkage on the distortional invariant needs to be taken 

into account to avoid possible unconservatism. 

The possible dilatational failure mode of the fiber should be investigated further by examining 

fracture planes of composites. Although (Hart-Smith, 2010) states that for glass fibers it is not clear 

whether this failure mode occurs or not, there was no source in literature that examined 𝐽1-failure 

for this case. 

Finally, although for more complex cases very quickly finite element models will be required, an 

effort should be made to derive analytical expressions for the full state of strain in plies and lami-

nates that are loaded in bending or do not adhere to the infinitely large, flat plate assumption used 

in Section 3.2. 

8.4.2 Extending the Field of Applicability of Onset Theory 

In this thesis, only quasi-static loads applied to laminates made of unidirectional tape material were 

considered. Typically, the resins considered were untoughened thermosets (with the exception of 

Cycom 970, as discussed in Subsection 6.2.2). However, this is only a limited subset of the possible 

types of loads and materials. 

Dynamic loads should not be problematic as long as the strain-based test data is used, as discussed 

in Subsection 2.2.1. On the other hand, fatigue loads would be a very interesting research topic. 

Fatigue of composites is not very well understood. Given the fact that Onset Theory appears to be 

one of the few failure criteria able to actually predict matrix failure, a further investigation into this 

topic could lead to new insights. It seems plausible that part of the problem with predicting fatigue 

failure in composites is due to actual matrix failure occurring, which is not captured by other failure 

theories. For example, (Gosse & Christensen, 2001) determined dilatational (i.e. tensile) matrix 

failure under compressive loads due to the micromechanical enhancement process. This might be a 

reason for the fact that composites fatigue far more severely in compression than can plausibly be 

explained otherwise. 

Regarding the types of materials, thermoplastic resins will presumably have very different critical 

invariants than the thermosets discussed in Section 6.2. In particular, 𝐽1
∗ would be expected to far 

exceed the values found in this thesis. However, the general process of applying Onset Theory should 

remain the same. 

Another topic are fabric materials. The research groups at the University of New South Wales and 

the National University of Singapore did quite some work on this, as found in for example (Pearce 

& Kelly, 2012) or (Jiazhen, 2014). In essence their approaches employ a second micromechanical 
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(possibly more accurately classified as mesomechanical) enhancement process, during which the ply 

strain is localized to the individual tows of the fabric before being localized to the constituent level. 

Currently, Onset Theory only includes true material failures (dilatational and distortional). Given 

the problems with compression-dominated loads (see e.g. Subsection 6.3.5), it seems useful to include 

fiber kinking and compression microbuckling. Although these are (micro)structural failure modes 

rather than material failure modes, they might remove some of the remaining discrepancies between 

prediction and test data. These additional failure modes would not be interacted with the other 

criteria, but merely create additional cutoffs in strain space. Note that (Gosse & Christensen, 2001) 

claim that fiber kinking is triggered by dilatational failure in the matrix (which is already included 

in Onset Theory), leading to a loss of support for the fiber. This topic should be investigated further. 

Finally, all analyses in this thesis assume a pristine material, excluding voids or existing damage. 

However, there may very well be cases where this assumption is simply not valid anymore. Voids 

and existing damage may or may not influence failure of the material, depending on whether they 

cause escalating failure due to local strain concentrations. If this is not the case, then the failure 

will eventually be arrested in the vicinity of the void without causing noticeable widespread failure. 

Note that clearly, the analysis of composites with preexisting damage is closely related to the inves-

tigation of composite fatigue discussed above. 

The effect of voids is partially captured because in situ properties are used to determine the critical 

values (see also Subsection 8.4.4). However, a proper investigation would require mesomechanical 

analyses comparable to the way a fabric is suggested to be analyzed (see above). This would mean 

constructing models of individual fibers, surrounded by resin, with empty spaces in the model. If 

typical void dimensions are significantly larger than individual fibers, this approach may also be 

modified to contain homogenized blocks of fiber and matrix. Either way, a mesomechanical enhance-

ment process should be carried out to determine the strains in the vicinity of the void, followed by 

a micromechanical enhancement process to determine individual constituent strains. The investiga-

tion should be preceded by in-depth literature and microscopy studies on typical void size, content, 

and distribution. 

8.4.3 Progressive Failure Analysis 

One topic that has been discussed in some detail already in Subsection 6.3.1, as well as hinted at in 

various sections throughout this thesis, is progressive failure analysis. 

Currently, no progressive failure analysis is carried out since exclusively strain-based data is used. 

With the exception of curing strains, the state of strain in a ply does not depend on the other plies 

in the laminate. Therefore, the failure prediction for a ply does not change if another ply fails. 

Some comments can be made regarding this topic. First of all, the curing strains certainly depend 

on the presence of other plies. This means that some form of post-first-ply-failure curing strain 

analysis would be needed. For example, for a [0/90]s laminate, matrix cracks in the 90° ply will 

reduce the residual compressive strains in the 0° ply. Quantifying this reduction will be extremely 

challenging. In addition to that, matrix cracking (due to a transverse strain) in a ply is predicted 

to eventually be followed by fiber failure (due to a larger transverse strain) in the same ply (see any 
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of the figures in Section 6.3). However, it seems rather questionable whether it is still possible to 

load the fibers in transverse direction after matrix cracking occurred. For an individual ply, the 

matrix cracking would constitute catastrophic failure. In a laminate, these failures will be bridged 

by the plies with different orientations. To what extent this is sufficient to still transmit transverse 

strains into the fibers is unknown. 

In summary, this means that – although the agreement with test data in Section 6.3 is quite good, 

even for portions of the failure envelope preceded by matrix cracking – the only part of the envelope 

that can be predicted with relative certainty is up to the first occurrence of failure, even if this 

failure is not catastrophic. This is in line with the standard definition of ultimate failure for compo-

sites used in aerospace. 

Moving one step further, a thought experiment can be carried out regarding the degradation of 

properties commonly used in “progressive failure analysis”. The starting point is to assume that 

(neglecting the arguments above) the strain space failure envelope for each ply and failure mode is 

indeed independent of failures in other plies or failure modes. Based on this, using strain-based test 

data a straightforward comparison is possible. However, quite commonly test data is only available 

in stress space. This information is more valuable to some extent since it provides knowledge about 

the load bearing capacity of the laminate. In strain space, a ply that has completely failed and only 

consists of air will have an extremely large failure envelope, even though it is obviously not able to 

carry any load anymore. 

Therefore, the following procedure seems like an interesting starting point. Assuming the strain-

based failure envelopes to be constant, the conversion to stress space is made using the laminate 

stiffness matrix. Once the first failure occurs, the laminate stiffness matrix is updated depending on 

the type of damage. (Gosse, 2004b, Slide 19) contains some suggestions. For 𝐽1-failure, 𝐸22 and 𝐸33 

of the ply are set to zero, while for distortional matrix failure the shear moduli are set to zero. If 

the fiber fails, 𝐸11 is zeroed out. (Obviously, this can be modified to changing them to a value of 

0.1 times their original value, or any other factor of choice. Note also that it may be interesting to 

see how predictions change if failure is only assumed to occur once a certain percentage of interro-

gation points predicts failure.) Based on this, the portion of the stress space failure envelope that 

succeeds the first failure is redrawn until the next failure is reached. The strain based envelope will 

remain the same throughout this process. However, in stress space eventually all remaining failure 

modes for all plies will collapse into a single envelope, constituting ultimate failure of the laminate. 

Note that this procedure would still not be tracking failure within a ply. It is still assumed that a 

ply completely fails the instant one of the critical invariants is exceeded. Doing a sub-ply level 

progressive failure analysis would most certainly require detailed finite element analysis and is be-

yond the scope of even this discussion. Some information can be found in (Gosse, 2004a) or (Tay, 

Tan, & Tan, 2005). 

8.4.4 Determining Critical Invariants 

The final topic that should be addressed is determining critical invariants. This is related to various 

(sometimes partially proven) hypotheses found in this thesis. First of all, the independence of critical 
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invariants (resulting in non-interactive failures modes), which is one of the central assumptions of 

Onset Theory as discussed in Subsection 1.3.2, should be investigated by carrying out tests on the 

standard set of off-axis tension coupons. This choice will be discussed in more detail below. 

Secondly, invariants for different material combinations should be compared, as done by (Z. Li et 

al., 2011). Subsection 6.2.1 presented their proof of the independence of the matrix invariants from 

the fiber material, and vice versa. 

In addition to that, invariants should be measured at different temperatures to verify the assumption 

that there is no temperature dependence (addressed in detail in Subsection 8.4.1). 

Finally, the “standard” invariants derived in Section 6.2 should be confirmed by determining the 

invariants for materials which currently form outliers. As postulated in that section, it is believed 

that this may be related to incorrect measurements or procedure. In particular, it needs to be 

ensured to avoid premature failure of 90° tension coupons, or to use accurate measurement equip-

ment to determine non-catastrophic matrix failure in laminates. Options could include acoustic 

emission sensors, changes in the slope of the stress/strain curve, load/unload tests, or loading spec-

imens to various load levels and performing tomographical measurements on each of them. In case 

compressive tests are also included, structural buckling and microstructural effects such as fiber 

kinking have to be avoided (or should be included in the theory, as discussed in Subsection 8.4.2). 

For the procedure of determining critical invariants, different options are possible. They all have in 

common that the critical invariants are measure in situ (in other words for the actual composite, 

rather than fiber or matrix in isolation). There are several reasons for this, having been discussed 

in many sources such as for example (Hart-Smith, 2010). Most importantly, individual fiber failures 

due to manufacturing flaws or microdamage are bridged by the matrix in a real composite. This 

effect also has to be present in the tests used to determine the critical invariants. Similarly, the 

constraining environment of the fibers is needed for the matrix invariants. Finally, using the com-

posite ensures that the right curing cycles is used. 

The standard way of determining the critical invariants is by testing a series of off-axis tension 

coupons, ranging from 0° to 90°. Subsequently, plots in accordance with Figure 1.1 can be generated 

to determine the critical invariants.  There are several reasons for these coupons. First of all, the 

onset of failure in a particular failure mode is the same as ultimate failure of the coupon, meaning 

that it can be detected easily. Secondly, according to (Hart-Smith, 2010, p. 4302) these coupons 

behave linear until failure, facilitating their analysis. Typically, finite element models of these cou-

pons are created to determine the critical invariants. The standard source is (Pipes & Gosse, 2009), 

who describe the process of ensuring convergence and the locations in the coupon where the critical 

invariant is sampled in detail. (Tran, 2012) discusses the use of oblique end tabs to avoid coupling 

between normal and shear loads for the unsymmetric laminates (all angles except 0° and 90°). 

As mentioned above, the 90° coupon in particular tends to fail far below the actual capability of 

the material. In order to alleviate this issue, a very specific (non-standard) coupon is used, much 

thicker than regular coupons. A description of the coupons can be found for example in (Hart-Smith, 

2010, sec. 6.1). It might be valuable to contact Gosse, the original author of Onset Theory, to 

determine whether there is an updated or improved coupon design, given the fact that Hart-Smith 
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has not been involved in the development for quite some years, and errors were found in his article 

(as discussed for example in Subsection 5.2.6). 

Based on the developments in this thesis, in particular related to the automatic generation of failure 

envelopes, there is also another possibility. Since the effect of the critical invariant is only to scale 

the failure envelopes, it can be determined simply by matching the failure envelope for any given 

laminate to the measured failure strains. This is not the same as the “fine-tuning” to the test data 

that commonly occurs for other failure theories since only a single parameter is involved. If Onset 

Theory is correct, any test (where failure occurred in the failure mode under investigation) can be 

used to determine the critical invariant, and all other tests should confirm this value. In other failure 

theories, the number of data points used to determine the failure envelope is typically much larger 

(for example longitudinal and transverse tension and compression strengths), resulting in essence in 

an interpolation of available data rather than a failure prediction. 

Note that for the off-axis specimens, this procedure is likely not feasible since finite element models 

need to be created to capture boundary effects and possible normal/shear strain couplings. 
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Appendix A  

Additional Software Description Figures1 

This appendix contains flowcharts and sample input files for the two software tools developed, 

namely the micromechanical enhancement software (Section 4.2) and the failure envelope prediction 

software (Section 4.3). In addition to that, the process used to determine failure envelopes for indi-

vidual and multiple interrogation points (Subsections 4.3.1 and 4.3.2) is visualized. 

The purposes of the flowcharts is to give an overview of the relation of various parts of the software. 

Dark blue boxes containing white text refer to individual methods. Lighter blue boxes with black 

text refer to the modules and submodules into which the software is divided. Boxes with black text 

and white background refer to the data flows between methods. Note that only the essential steps 

are contained. The flowcharts do not provide a full overview of all capabilities of the software, or of 

all interconnections between functions. For example, for the micromechanical enhancement software 

verification capabilities such as plotting convergence graphs (see Appendix C) are excluded. 

A.1 Micromechanical Enhancement Software 

For the micromechanical enhancement software, the distribution of flowcharts is as follows: Figure 

A.1 contains the main file (where the input data is set up), as well as the only task required – 

initiating the convergence study. Subsequently, Figure A.2 shows some of the details involved in 

automatically running the convergence study, as well as how a single fiber array type and mesh size 

is analyzed. This requires calling the dispatch functions that delegate tasks to the Abaqus-internal 

Python interpreter. The details of that process, as well as generating the model and extracting the 

results from the ODB, are outlined briefly in Figure A.3. 

Finally, Figure A.4 contains the relevant parts of an example input file to show the simplicity of 

performing the micromechanical enhancement using the software tool developed. 

 

                                              
1 Credit is due to Thijs Papenhuijzen for helping to develop a backronym for the initial placeholder 

for the title of this appendix (“asdf”). 
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Figure A.4: Micromechanical enhancement software sample main file (for the verification case in Subsection 5.1.2) 

A.2 Failure Envelope Prediction Software 

As for the micromechanical enhancement software, flowcharts (Figures A.5 and A.6) and a sample 

input file (Figure A.7) are given. In addition to that, the process used to determine failure envelopes 

and cutoffs numerically is shown in Figures A.8 to A.10. 

In the flowcharts, “GetCuringStrainsAndPoissonsEffects”, “GetLocalStrains” and “GenerateAmpli-

ficationFactors” are the core parts the software. The former two implement the procedure described 

in Subsection 3.5.3, while the latter applies the rotated unit cells (Section 3.5.2). 

For the visualizations of the numerical approach, pseudo-examples are used, similar to the ones 

shown in Subsection 2.1.5. It should be mentioned that in reality the resolution is much finer, 

meaning that the resulting envelope or cutoff is (almost) identical to the real one. Note also that 

for the envelope in Figure A.8 only part of the data point determination is shown. The process is 

continued for the full 360° envelope. 
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Figure A.7: Failure envelope prediction software sample main file (for the [0/45/-45/90]s laminate in Subsec-
tion 6.3.2). Note that the stacking sequence in the example is shuffled. This is not relevant, as discussed in 
Subsection 3.2.2. 
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Figure A.8: Visualization of approach to determine the failure envelope numerically 

 

Figure A.9: Visualization of approach to determine the failure cutoff numerically 



A-10 Appendix A: Additional Software Description Figures  

 CONFIDENTIAL PROPRIETARY INFORMATION. NOT FOR DISCLOSURE.  

 

 

 

 

 

 

 

 

 

Figure A.10: Visualization of approach to determine the most conservative cutoff 
for multiple interrogation points  
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Appendix B  

Data for Software Verification 

This appendix contains the full data for the software verification carried out in Chapter 5. 

B.1 Matrix Amplification Factors for Square Fiber Array 

The data used to verify the matrix amplification factors for the square fiber array is taken from 

(Buchanan et al., 2009). Table B.1 contains the material properties of fiber and matrix (the type of 

material is not given). Note that the stated shear moduli for the matrix are based on the relationship 

for isotropic materials, 𝐺 = 𝐸
2(1+𝜈). In literature, they are given to be 𝐺12 = 𝐺13 = 𝐺23 = 1.4GPa, 

in other words twice the calculated value. Presumably this is due to the usage of engineering rather 

than true shear strains. 

Table B.1: Input data for verification of the matrix amplification factors for the 
square fiber array (Buchanan et al., 2009, Table 2). Note use of rela-
tionship for isotropic materials to determine the matrix shear moduli. 

Property Matrix material Fiber material 

𝐸1 [Pa] 2e9 303e9 

𝐸2 [Pa]  15.2e9 

𝐸3 [Pa]  15.2e9 

𝐺12 [Pa] (0.74e9) 9.6e9 

𝐺13 [Pa]  9.6e9 

𝐺23 [Pa]  6.3e9 

𝜈12 [−] 0.35 0.2 

𝜈13 [−]  0.2 

𝜈23 [−]  0.2 

𝛼1 [°𝐶
−1] 58e-6 0 

𝛼2 [°𝐶
−1]  8.2e-6 

𝛼3 [°𝐶
−1]  8.2e-6 

𝑉𝑓 = 0.6 
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(Buchanan et al., 2009) obtain the data shown in Matrices B.1 to B.6. The definitions of IF1, IS 

and IF2 are the same as shown in Figure 2.9. The thermal amplification factors are scaled to the 

standard temperature difference of Δ𝑇 = 1°𝐶 (unlike the factor Δ𝑇 = −100°𝐶 chosen in litera-

ture). 

The amplification factors at IF1 and IF2 are identical (except for a different arrangement of terms), 

as expected given the symmetry of the unit cell and loading. However, based on the results reported 

for IS, it is clear that the mesh is not fully converged. At that location the behavior of the unit cell 

in 𝑦- and 𝑧-directions should be identical. However, for example terms (2,1) and (2,2) of Matrix B.3 

are not identical, and neither are terms (3,2) and (2,3) or terms (2,2) and (3,3). Even more obvious 

is the large difference between the second and third terms of Matrix B.4, which should also be 

identical. However, it seems plausible that this is an error in print given the magnitude of the 

difference and the fact that, for example, “380” could quite easily be mistyped as “308”. 

[

 
 
 
 
 

1 0 0 0 0 0
0.435 3.81 0.125 0 0 0
−0.135 −0.52 0.61 0 0 0
0 0 0 2.7 0 0
0 0 0 0 0.258 0
0 0 0 0 0 5.45]

 
 
 
 
 

 

Matrix B.1: Square array matrix mechanical strain am-
plification factors at IF1 from literature 
(Buchanan et al., 2009, Table 4) 

[

 
 
 
 
 
−5755
11444
−6871
0
0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix B.2: Square array matrix thermal strain amplifi-
cation factors at IF1 from literature 
(Buchanan et al., 2009, Table 7) 

[

 
 
 
 
 

1 0 0 0 0 0
0.09 1.07 0.537 0 0 0
0.092 0.546 1.08 0 0 0
0 0 0 2.55 0 0
0 0 0 0 1.8 0
0 0 0 0 0 1.8]

 
 
 
 
 

 

Matrix B.3: Square array matrix mechanical strain am-
plification factors at IS from literature 
(Buchanan et al., 2009, Table 5) 

[

 
 
 
 
 
−5749
390
308
0
0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix B.4: Square array matrix thermal strain amplifi-
cation factors at IS from literature  
(Buchanan et al., 2009, Table 7) 

[

 
 
 
 
 

1 0 0 0 0 0
−0.135 0.61 −0.52 0 0 0
0.435 0.125 3.81 0 0 0
0 0 0 2.7 0 0
0 0 0 0 5.45 0
0 0 0 0 0 0.258]

 
 
 
 
 

 

Matrix B.5: Square array matrix mechanical strain am-
plification factors at IF2 from literature 
(Buchanan et al., 2009, Table 6) 

[

 
 
 
 
 
−5755
−6871
11444
0
0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix B.6: Square array matrix thermal strain amplifi-
cation factors at IF2 from literature  
(Buchanan et al., 2009, Table 7) 

Using the software tool developed during this thesis, the data shown in Matrices B.7 to B.12 is 

obtained. Contrary to the literature results, these results point towards a fully converged mesh, with 

all terms that should be the same indeed being identical (including the results at IS). 
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[

 
 
 
 
 

1 0 0 0 0 0
0.4235 3.79 0.07776 0 0 0
−0.1325 −0.5039 0.6064 0 0 0

0 0 0 2.625 0 0
0 0 0 0 0.2608 0
0 0 0 0 0 5.395]

 
 
 
 
 

 

Matrix B.7: Square array matrix mechanical strain amplification 
factors at IF1 

[

 
 
 
 
 
−5711
11450
−6929
0
0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix B.8: Square array matrix thermal strain ampli-
fication factors at IF1 

[

 
 
 
 
 

1 0 0 0 0 0
0.08933 1.079 0.5258 0 0 0
0.08933 0.5258 1.079 0 0 0

0 0 0 2.598 0 0
0 0 0 0 1.808 0
0 0 0 0 0 1.808]

 
 
 
 
 

 

Matrix B.9: Square array matrix mechanical strain amplification 
factors at IS 

[

 
 
 
 
 
−5711
404.8
404.8
0
0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix B.10: Square array matrix thermal strain am-
plification factors at IS 

[

 
 
 
 
 

1 0 0 0 0 0
−0.1325 0.6064 −0.5039 0 0 0
0.4235 0.07776 3.79 0 0 0
0 0 0 2.625 0 0
0 0 0 0 5.395 0
0 0 0 0 0 0.2608]

 
 
 
 
 

 

Matrix B.11: Square array matrix mechanical strain amplification 
factors at IF2 

[

 
 
 
 
 
−5711
−6929
11450
0
0
0 ]

 
 
 
 
 

⋅ 1e-8 

Matrix B.12: Square array matrix thermal strain am-
plification factors at IF2 

B.2 Matrix Amplification Factors for Hexagonal Fiber Array 

The data used to verify the matrix amplification factors for the square fiber array is taken from 

(Ritchey et al., 2011). Table B.2 contains the material properties of fiber and matrix. 

Table B.2: Input data for verification of the matrix amplification factors for the 
hexagonal fiber array (Ritchey et al., 2011, Table 1) 

Property Matrix (8552) Fiber (IM7) 

𝐸1 [Pa] 4.76e9 276e9 

𝐸2 [Pa]  19.5e9 

𝐸3 [Pa]  19.5e9 

𝐺12 [Pa] 1.74e9 70e9 

𝐺13 [Pa]  70e9 

𝐺23 [Pa]  5.74e9 

𝜈12 [−] 0.37 0.28 

𝜈13 [−]  0.28 

𝜈23 [−]  0.28 

𝛼1 [°𝐶
−1] 64.8e-6 -0.4e-6 

𝛼2 [°𝐶
−1]  5.6e-6 

𝛼3 [°𝐶
−1]  5.6e-6 

𝑉𝑓 = 0.6 
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(Ritchey et al., 2011) report the strain amplification factors at a point corresponding to IF2 for the 

hexagonal array in Figure 2.9. However, they use a hexagonal unit cell with the 𝑦-direction being 

the shorter of the two sides. Because the software tool uses a unit cell where the 𝑦-direction refers 

to the long side, the literature results have to be rotated by 90° before the comparison can take 

place. This procedure has been discussed in Section 3.3 and, given the rotation angle of 90°, only 

results in swapping several terms of the matrix (and correspondingly also of the vector). The result-

ing mechanical and thermal amplification factors are shown in Matrices B.13 and B.14. Note that 

they appear to have been rounded to one decimal. 

[

 
 
 
 
 

1 0 0 0 0 0
−0.2 0.6 −0.5 0 0 0
0.6 0.3 2.8 0 0 0
0 0 0 1.4 0 0
0 0 0 0 4.7 0
0 0 0 0 0 0.3]

 
 
 
 
 

 

Matrix B.13: Hexagonal array matrix mechanical strain 
amplification factors at IF2 from literature 
(Ritchey et al., 2011, Table 4) 

[

 
 
 
 
 
−64
-60
90
0
0
0 ]

 
 
 
 
 

⋅ 1e-6 

Matrix B.14: Hexagonal array matrix thermal strain am-
plification factors at IF2 from literature 
(Ritchey et al., 2011, Table 5) 

From the software tool, the results shown in Matrices B.15 and B.16 are obtained. It should be 

mentioned that the convergence study did not conclude, even at a mesh size of 510 985 nodes. 

However, using the command line output (see also Appendix C) this could be traced to points 

unrelated to the point of interest. This is a typical case of results oscillating around the numerical 

cutoff described in Subsection 4.2.6, both in terms of element result averaging and also in terms of 

mesh convergence from one mesh size to the next. Even though the automatic approach failed to 

converge, the results are still usable because the lack of convergence is limited to a small region of 

the unit cell, and, in fact, will not even have a large effect there because the problematic values are 

small. 

[

 
 
 
 
 

1 0 0 0 0 0
−0.1503 0.9514 −0.5344 0 0 0
0.5983 0.5277 2.793 0 0 0
0 0 0 1.404 0 0
0 0 0 0 4.684 0
0 0 0 0 0 0.3124]

 
 
 
 
 

 

Matrix B.15: Hexagonal array matrix mechanical strain amplifi-
cation factors at IF2 

[

 
 
 
 
 
−64.39
-59.01
87.01
0
0
0 ]

 
 
 
 
 

⋅ 1e-6 

Matrix B.16: Hexagonal array matrix thermal 
strain amplification factors at IF2 

Since the literature results have been rounded to one decimal, the same process was carried out for 

the results obtained from the software tool. Matrices B.17 and B.18 show the results. 

[

 
 
 
 
 

1 0 0 0 0 0
−0.2 1 −0.5 0 0 0
0.6 0.5 2.8 0 0 0
0 0 0 1.4 0 0
0 0 0 0 4.7 0
0 0 0 0 0 0.3]

 
 
 
 
 

 

Matrix B.17: Rounded hexagonal array matrix mechanical strain 
amplification factors at IF2 

[

 
 
 
 
 
−64
-59
87
0
0
0 ]

 
 
 
 
 

⋅ 1e-6 

Matrix B.18: Rounded Hexagonal array matrix 
thermal strain amplification factors at 
IF2 
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B.3 Fiber Amplification Factors for Square Fiber Array 

The data used to verify the matrix amplification factors for the square fiber array is taken from 

(McNaught, 2009). Table B.3 contains the material properties of fiber and matrix. For the fiber, 

properties such as 𝐺13 or 𝐺23 are not given. Isotropy is assumed to obtain a full set of input data. 

Table B.3: Input data for verification of the fiber amplification factors for the 
square fiber array (McNaught, 2009, Table 6-1). Note that isotropy is 
assumed for fiber material properties. 

Property Matrix (RTM6) Fiber (E-glass) 

𝐸1 [Pa] 2.8e9 45e9 

𝐸2 [Pa]  12e9 

𝐸3 [Pa]  12e9 

𝐺12 [Pa] 1e9 5.5e9 

𝐺13 [Pa]  (5.5e9) 

𝐺23 [Pa]  (5.5e9) 

𝜈12 [−] 0.38 0.28 

𝜈13 [−]  (0.28) 

𝜈23 [−]  (0.28) 

𝛼1 [°𝐶
−1] 54e-6 7.1e-6 

𝛼2 [°𝐶
−1]  (7.1e-6) 

𝛼3 [°𝐶
−1]  (7.1e-6) 

𝑉𝑓 = 0.6 

(McNaught, 2009) reports values corresponding to locations at the center of the fiber and in the 

fiber on the fiber/matrix boundary at 0° and 90° (corresponding to e.g. points F3 and F5 of Figure 

2.10). In addition to that, data for IF1, IF2 and IS (as shown in Figure 2.9) are also given. Since 

this part of the verification effort is concerned with fiber amplification factors, only the points at 

the center of the fiber and at 0° and 90° are included here (see Matrices B.19 to B.21). The order 

of shear amplification factors has been switched to adhere to the standard convention (see Subsec-

tion 2.1.4). Note that the results show the expected features. At the fiber center, 𝑦- and 𝑧-directions 

are identical, while at 0° and 90° results are identical except for a different arrangement of terms. 

The results obtained using the software tool developed in this thesis are reported in Matrices B.22 

to B.27. The thermal amplification factors are also included for reference purposes, although they 

cannot be verified due to a lack of literature data. 

[

 
 
 
 
 

1 0 0 0 0 0
−0.0487 0.771 −0.046 0 0 0
−0.0487 −0.046 0.796 0 0 0

0 0 0 0.44 0 0
0 0 0 0 0.54 0
0 0 0 0 0 0.54]

 
 
 
 
 

 

Matrix B.19: Square array fiber mechanical strain amplifi-
cation factors at the center of the fiber from lit-
erature (McNaught, 2009, Appendix A) 

[

 
 
 
 
 

1 0 0 0 0 0
−0.0688 0.55 0.085 0 0 0
−0.0235 0.042 0.834 0 0 0

0 0 0 0.61 0 0
0 0 0 0 0.73 0
0 0 0 0 0 0.44]

 
 
 
 
 

 

Matrix B.20: Square array fiber mechanical strain am-

plification factors at 0° on the fiber/matrix 
boundary from literature (McNaught, 2009, 
Appendix A) 
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[

 
 
 
 
 

1 0 0 0 0 0
−0.0235 0.834 0.042 0 0 0
−0.0688 0.085 0.55 0 0 0

0 0 0 0.61 0 0
0 0 0 0 0.44 0
0 0 0 0 0 0.73]

 
 
 
 
 

 

Matrix B.21: Square array fiber mechanical strain am-

plification factors at 90° on the fiber/matrix 
boundary from literature (McNaught, 2009, 
Appendix A) 

 

[

 
 
 
 
 

1 0 0 0 0 0
−0.04848 0.7985 −0.04671 0 0 0
−0.04848 −0.04671 0.7895 0 0 0

0 0 0 0.325 0 0
0 0 0 0 0.5486 0
0 0 0 0 0 0.5486]

 
 
 
 
 

 

Matrix B.22: Square array fiber mechanical strain amplification factors 
at the center of the fiber 

[

 
 
 
 
 
2085
2008
2008
0
0
0 ]

 
 
 
 
 

⋅ 1e-9 

Matrix B.23: Square array fiber thermal strain 
amplification factors at the center of 
the fiber 

[

 
 
 
 
 

1 0 0 0 0 0
−0.06521 0.5542 0.09984 0 0 0
−0.02291 0.04314 0.8353 0 0 0

0 0 0 0.4831 0 0
0 0 0 0 0.7204 0
0 0 0 0 0 0.4219]

 
 
 
 
 

 

Matrix B.24: Square array fiber mechanical strain amplification factors 

at 0° on the fiber/matrix boundary 

[

 
 
 
 
 
2085
−5353
13260
0
0
0 ]

 
 
 
 
 

⋅ 1e-9 

Matrix B.25: Square array fiber thermal strain 

amplification factors at 0° the on fi-
ber/matrix boundary 

[

 
 
 
 
 

1 0 0 0 0 0
−0.02291 0.8353 0.04314 0 0 0
−0.06521 0.09984 0.5542 0 0 0

0 0 0 0.4831 0 0
0 0 0 0 0.4219 0
0 0 0 0 0 0.7204]

 
 
 
 
 

 

Matrix B.26: Square array fiber mechanical strain amplification factors 

at 90° on the fiber/matrix boundary 

[

 
 
 
 
 
2085
13260
−5353
0
0
0 ]

 
 
 
 
 

⋅ 1e-9 

Matrix B.27: Square array fiber thermal strain 

amplification factors at 90° the on fi-
ber/matrix boundary 

B.4 Fiber Amplification Factors for Hexagonal Fiber Array 

Table B.4 contains the input data used by (Yudhanto, 2005). It seems noteworthy here that 

Yudhanto states the material combination as IM7/Epoxy, while Tran gives virtually identical ma-

terial properties for T800s/3900-2 (see Section D.2). 

Based on this, Yudhanto reports amplification factors for four unique locations: the center of the 

fiber, and points at 0°, 45° and 90° on the fiber boundary (points F9, F3, F2, and F1, respectively, 

in Figure 2.13). Other points are mirror images of F1, F3, and F2 and do not carry any added value. 

As stated in the introduction to Section 5.1, the only terms that can be compared are the diagonal 

terms of the mechanical amplification factors. Matrices B.28 to B.31 contain Yudhanto’s results. 
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The order of shear components has been switched to follow the standard convention (Subsec-

tion 2.1.4). 

Table B.4: Input data for verification of the fiber amplification factors for the 
hexagonal fiber array (Yudhanto, 2005, Table 4-1) 

Property Matrix (epoxy) Fiber (IM7) 

𝐸1 [Pa] 3.31e9 303e9 

𝐸2 [Pa]  15.2e9 

𝐸3 [Pa]  15.2e9 

𝐺12 [Pa] 1.23e9 9.65e9 

𝐺13 [Pa]  9.65e9 

𝐺23 [Pa]  6.32e9 

𝜈12 [−] 0.35 0.2 

𝜈13 [−]  0.2 

𝜈23 [−]  0.2 

𝛼1 [°𝐶
−1] 57.6e-6 0 

𝛼2 [°𝐶
−1]  8.28e-6 

𝛼3 [°𝐶
−1]  8.28e-6 

𝑉𝑓 = 0.5 

[

 
 
 
 
 
1

0.477 ?

0.506

0.564

? 0.394

0.348]

 
 
 
 
 

 

Matrix B.28: Hexagonal array fiber mechanical strain 
amplification factors at the center of the fiber 
from literature (Yudhanto, 2005, Appendix A) 

[

 
 
 
 
 
1

0.579 ?

0.531

0.462

? 0.343

0.396]

 
 
 
 
 

 

Matrix B.29: Hexagonal array fiber mechanical strain 

amplification factors at 0° on the fiber/matrix 
boundary from literature (Yudhanto, 2005, 
Appendix A) 

[

 
 
 
 
 
1

0.58 ?

0.638

0.332

? 0.391

0.344]

 
 
 
 
 

 

Matrix B.30: Hexagonal array matrix mechanical strain 

amplification factors at 45° on the fiber/ma-
trix boundary from literature (Yudhanto, 
2005, Appendix A) 

[

 
 
 
 
 
1

0.565 ?

0.563

0.468

? 0.368

0.369]

 
 
 
 
 

 

Matrix B.31: Hexagonal array fiber mechanical strain 

amplification factors at 90° on the fiber/ma-
trix boundary from literature (Yudhanto, 
2005, Appendix A) 

Full results for those points, including the entire amplification factor matrix (rather than just the 

diagonal terms) and the thermal amplification factors using the correct boundary conditions, are 

reported in Matrices B.32 to B.39, although they cannot be verified using literature results. It should 

be mentioned that the results at F2 are not exactly at 45° but at a slightly different location due to 

the automatic generation of interrogation point locations. This causes small deviations everywhere, 

including for example the introduction of the (6,5) and (5,6) terms of Matrix B.34. 
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[

 
 
 
 
 

1 0 0 0 0 0
−0.03117 0.4841 0.1607 0 0 0
−0.02843 0.1641 0.521 0 0 0

0 0 0 0.5441 0 0
0 0 0 0 0.3898 0
0 0 0 0 0 0.3463]

 
 
 
 
 

 

Matrix B.32: Hexagonal array fiber mechanical strain amplification factors at the 
center of the fiber 

[

 
 
 
 
 
691.2
2207
4837
0
0
0 ]

 
 
 
 
 

⋅ 1e-9 

Matrix B.33: Hexagonal ar-
ray fiber thermal 
strain amplifica-
tion factors at the 
center of the fi-
ber 

[

 
 
 
 
 

1 0 0 0 0 0
−0.028425 0.5763 0.099845 −0.05952 0 0
0.03115 0.1082 0.5369 0.049925 0 0

0 −0.09573 0.101 0.4358 0 0
0 0 0 0 0.3467 0.0038465
0 0 0 0 0.00322 0.3899 ]

 
 
 
 
 

 

Matrix B.34: Hexagonal array fiber mechanical strain amplification factors at 0° on 
the fiber/matrix boundary 

[

 
 
 
 
 
691.2
4842
2226
445.4
0
0 ]

 
 
 
 
 

⋅ 1e-9 

Matrix B.35: Hexagonal ar-
ray fiber thermal 
strain amplifica-

tion factors at 0° 
on the fiber/ma-
trix boundary 

[

 
 
 
 
 

1 0 0 0 0 0
−0.03117 0.5802 0.06462 0 0 0
−0.02836 0.03998 0.6369 0 0 0

0 0 0 0.3468 0 0
0 0 0 0 0.3907 0
0 0 0 0 0 0.3466]

 
 
 
 
 

 

Matrix B.36: Hexagonal array fiber mechanical strain amplification factors at 45° on 
the fiber/matrix boundary 

[

 
 
 
 
 
691.2
2210
4905
0
0
0 ]

 
 
 
 
 

⋅ 1e-9 

Matrix B.37: Hexagonal ar-
ray fiber thermal 
strain amplifica-
tion factors at 

45° on the fi-
ber/matrix 
boundary 

[

 
 
 
 
 

1 0 0 0 0 0
−0.02978 0.5635 0.09711 0 0 0
−0.02978 0.09706 0.5636 0 0 0

0 0 0 0.4671 0 0
0 0 0 0 0.3684 0
0 0 0 0 0 0.3684]

 
 
 
 
 

 

Matrix B.38: Hexagonal array fiber mechanical strain amplification factors at 90° on 
the fiber/matrix boundary 

[

 
 
 
 
 
691.2
3539
3539
0
0
0 ]

 
 
 
 
 

⋅ 1e-9 

Matrix B.39: Hexagonal ar-
ray fiber thermal 
strain amplifica-
tion factors at 

90° on the fi-
ber/matrix 
boundary 
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B.5 Hart-Smith’s Failure Envelopes 

Table B.5 summarizes the input data given by (Hart-Smith, 2007), used in Subsections 5.2.3 to 

5.2.5. Figure B.1 contains an additional plot referenced in Subsection 5.2.4. 

Table B.5: Input data for verification of failure envelopes (Hart-Smith, 2007, Slides 17-20). Note use of imperial units. 

As discussed in Subsection 6.2.3 𝜖𝑒𝑞𝑣
∗ 𝑚 is probably using an incorrect definition of the distortional invariant. 

Property Matrix material Fiber material Lamina 

𝐸1 [psi] 5.5e5 3.93e7 23 800 000 

𝐸2 [psi]  2.5e6 1 033 835 

𝐸3 [psi]  2.5e6 1 033 835 

𝐺12 [psi] 2.05e5 4e6 475 914 

𝐺13 [psi]  4e6 475 914 

𝐺23 [psi]  1.2e6 407 960 

𝜈12 [−] 0.34 0.32 0.328 

𝜈13 [−]  0.32 0.328 

𝜈23 [−]  0.2 0.256 

𝛼1 [°𝐹
−1] 3.2e-5 -6e-7 -2.99e-7 

𝛼2 [°𝐹
−1]  4.6e-6 1.56e-5 

𝛼3 [°𝐹
−1]  4.6e-6 1.56e-5 

𝑉𝑓 = 0.6 Δ𝑇 = −300°𝐹  

𝐽1
∗𝑚 = 0.023 𝜖𝑒𝑞𝑣

∗ 𝑚 = 0.103 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.0182 

 

Figure B.1: Comparison of correct normal strain [0/90/90/0] laminate failure envelope with Hart-Smith's envelope 
(Hart-Smith, 2010, fig. 23). See also Subsection 5.2.4. 
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Appendix C  

Example Convergence Study 

This appendix contains an example convergence study for the verification case presented in Subsec-

tion 5.1.1. As stated in Subsection 4.2.5, where the process of performing an automated convergence 

study has been introduced, this task is actually carried out in the background for every set of 

amplification factors used in this thesis. Reporting the details every time would be unfeasible. How-

ever, it is useful to provide one example to show the extent of tasks carried out automatically. 

Figure C.1 shows the convergence study for the mechanical amplification factors at IS (defined in 

accordance with Figure 2.9), while Figure C.2 contains the same information for the thermal ampli-

fication factors. Clearly, the mesh is fully converged at this point for all mesh sizes. This means that 

the interrogation point at IS are not the driving factor for the convergence study. However, a number 

of interesting features can be pointed out. 

First of all, the first mesh (on which the difference for the mesh containing 135 203 nodes is based), 

contains 66 419 nodes. The number of nodes is automatically determined to be close to the initial 

target of 64 000 nodes (and subsequent factor two increases of that number). 

The vertical scales are different for every plot. Not also that due to the use of differences, there is 

no monotonically decreasing convergence curve, as discussed in Subsection 4.2.5 

Note also that in the software a much larger number of interrogation points is used than the three 

specified by (Buchanan et al., 2009) (IF1, IS, and IF2). The interrogation point at IS is internally 

referred to as IP174Matrix: it is the 174th interrogation point defined in the software, and it refers 

to matrix elements. Typically, at each interrogation point there will be exclusively matrix or fiber 

elements. However, at points on the fiber/matrix interface, there will actually be two interrogation 

points: IP<xyz>Matrix and IP<xyz>Fiber. This was also discussed in Subsection 4.2.5. The exact 

numbering of the interrogation points is usually irrelevant, except for when looking at the results 

at an individual interrogation point. This is not usually the case except for verification activities. 

Convergence at IF1 and IF2 is similarly uneventful. In order to trace back the driving factors behind 

the increase to 252 003 nodes before convergence is achieved, the relevant parts of the command 

line output of the micromechanical amplification factor software are presented in Figure C.3. 
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Figure C.2: Convergence study for thermal amplification factors at IS (internally: IP174Matrix) 

 

Figure C.3: Relevant command line output during automatic convergence study 
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Based on the command line output in Figure C.3, two reasons for the lack of convergence at 135 203 

nodes can be identified. First of all, element result averaging at IP30Matrix and IP122Matrix fails, 

resulting in a 6% error each for the first mesh. This means that the mesh with 66 419 nodes is not 

acceptable. Since two subsequent acceptable meshes should be converged, the convergence study 

progresses to the analysis of a mesh of approximately 128 000 nodes (in this case 135 203 nodes). 

At this mesh refinement level, there are no matrix averaging problems anymore. 

Figure C.4 shows the local mesh at IP122Matrix, located at the red dot in the upper right of the 

picture. It is surrounded by elements with relatively sharp corners. This type of situation has been 

identified as a typical issue requiring rather fine meshes. The situation at IP30Matrix is identical. 

It refers to the same point as IP122Matrix, but mirrored to the upper left quarter of the unit cell. 

 

Figure C.4: Location of IP122Matrix in the unit cell.1 

 

Figure C.5: Strains at IP38Matrix.1 

Even if the first mesh had been acceptable, the convergence study would still have continued to 

252 003 nodes. This is due to the lack of convergence at IP130Matrix and IP38Matrix. The strains 

at IP38Matrix is shown in Figure C.5 (𝛾13 for applied 𝛾12). IP130Matrix refers to the same location 

in the opposite quarter of the unit cell. These points lie in a high gradient zone, meaning that the 

change in results from a mesh with 66 419 nodes to one with 135 203 nodes is too large. 

Figure C.6 contains the convergence study for the mechanical amplification factors at IP130Matrix, 

while the thermal amplification factor convergence is presented in Figure C.7. The results for 

IP38Matrix would be identical except for a change in signs. 

As seen in Figure C.3 the convergence study concluded at 252 003 nodes. The total runtime for this 

case was slightly under ten minutes on the system described in the introduction to Chapter 4. This 

is a fairly typical value, showing the strength and simplicity of obtaining fully converged strain 

amplification factors using the automated software tool. 

                                              
1 The thin white lines visible on some screens / print outs are caused by a rendering problem in the 

Abaqus vector graphics export and do not carry any meaning. 
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Figure C.7: Convergence study for thermal amplification factors at IP130Matrix 
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Appendix D  

Input Data for Validation and Research 

This appendix contains the available test data mentioned in Section 6.1 in tabulated form for ref-

erence purposes. In addition to that, it contains the input data required to determine the microme-

chanical enhancement factors and generate failure envelopes (see Subsection 3.5.4). 

D.1 AS4/3501-6 

Table D.1 the constituent and lamina material properties required for the micromechanical enhance-

ment calculations and fiber envelope generation. Properties in 2- and 3-directions are assumed to be 

identical (e.g. 𝐸3 = 𝐸2 or 𝐺13 = 𝐺12). 𝜈23 is calculated based on the relationship for isotropic 

materials (𝐺 = 𝐸
2(1+𝜈) → 𝜈 = 𝐸

2𝐺 − 1), using 𝐺23 and 𝐸2 = 𝐸3. 

Table D.1: Constituent and lamina material properties for AS4/3501-6 (Soden et al., 1998, Tables 1-3). Values in brack-
ets are assumed or calculated. 

Property Matrix material Fiber material Lamina 

𝐸1 [Pa] 4.2e9 225e9 126e9 

𝐸2 [Pa]  15e9 11e9 

𝐸3 [Pa]  (15e9) (11e9) 

𝐺12 [Pa] 1.567e9 15e9 6.6e9 

𝐺13 [Pa]  15e9 (6.6e9) 

𝐺23 [Pa]  7e9 (3.93e9) 

𝜈12 [−] 0.34 0.2 0.28 

𝜈13 [−]  0.2 0.28 

𝜈23 [−]  (0.071) 0.4 

𝛼1 [°𝐶
−1] 45e-6 −0.5e-6 −1e-6 

𝛼2 [°𝐶
−1]  15e-6 26e-6 

𝛼3 [°𝐶
−1]  (15e-6) (26e-6) 
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No volume fraction is given in either of the two sources used for test data. Therefore, the value 

found in (Soden et al., 1998, Table 1) – 𝑉𝑓 = 0.6 – is used. (Swanson & Christoforou, 1986) give a 

curing temperature of 175°𝐶 , resulting in Δ𝑇 = −155°𝐶. 

Biaxial failure strains for various versions of quasi-isotropic laminates are given. Note that some-

times multiples (e.g. [0/±45/90/0/±45/90]s) or shuffled versions of the laminates are used. How-

ever, as discussed in Subsection 3.2.2, this does not matter for the resulting curing strains. 

Part of the data has been digitized from a figure using the WebPlotDigitizer available at http://aro-

hatgi.info/WebPlotDigitizer/app/ since no tabulated data was available. 

The 0° ply is aligned with the 𝑥-direction, although this is irrelevant for quasi-isotropic laminates 

(which are rotation-symmetric for every increment of 45°). The digitized data is a superset of the 

tabulated data. Given the good agreement between tabulated and digitized data, only the digitized 

data will be used for the comparison. 

It should also be mentioned that the axial load specimens (the last four entries in the data digitized 

from the plot, where 𝜖𝑥 is between 0.21 and 0.28) appear to use a [0/90]s layup according to 

(Swanson & Nelson, 1986). However, as also mentioned in Subsection 6.3.2 adding ±45° plies does 

not change the curing strains because their effect is identical in both directions. Therefore, all data 

can be included in the same plot. 

Table D.2: Failure strains of AS4/3501-6 for a quasi-isotropic laminate 

[90/±45/0]s, tabulated data [0/±45/90]s, digitized from plot 

(Swanson & Christoforou, 1986, Table 2) (Swanson & Nelson, 1986, fig. 6) 

𝜖𝑥 [%] 𝜖𝑦 [%] 𝜖𝑥 [%] 𝜖𝑦 [%] 

1.23 −0.341 1.2 −0.34 

1.44 −0.16 1.4 −0.16 

1.455 −0.363 1.4 −0.36 

1.52 −0.225 1.5 −0.22 

1.4 −0.275 1.4 −0.27 

1.33 −0.043 1.3 −0.033 

1.34 0.31 1.3 0.31 

1.44 0.34 1.4 0.35 

1.4 0.42 1.4 0.43 

1.43 0.787 1.4 0.8 

  1.5 −0.35 

  1.7 −0.54 

  1.4 −0.46 

  1.3 −0.75 

http://arohatgi.info/WebPlotDigitizer/app/
http://arohatgi.info/WebPlotDigitizer/app/
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[90/±45/0]s, tabulated data [0/±45/90]s, digitized from plot 

(Swanson & Christoforou, 1986, Table 2) (Swanson & Nelson, 1986, fig. 6) 

𝜖𝑥 [%] 𝜖𝑦 [%] 𝜖𝑥 [%] 𝜖𝑦 [%] 

  1.4 −0.82 

  0.99 −0.77 

  0.69 −0.66 

  1 −1.1 

  0.75 −0.86 

  0.75 −0.97 

  0.21 −0.61 

  0.25 −0.8 

  0.28 −0.94 

  0.24 −0.87 

For the critical invariants of AS4/3501-6, (Lu, 2015, Table 4) reports values of 𝐽1
∗𝑚 = 0.0301, 

𝜖𝑒𝑞𝑣
∗ 𝑚 = 0.198, and 𝜖𝑒𝑞𝑣

∗ 𝑓 = 0.021. On the other hand, (C. H. Wang, 2005, Table 8.4) reports 𝜖𝑒𝑞𝑣
∗ 𝑓 =

0.021. Both values are very close to the “default” value of 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02 found in Subsection 6.2.4, 

which will be used for the initial investigation in Subsection 6.3.1. Similarly, 𝜖𝑒𝑞𝑣
∗ 𝑚 is very close to 

the “default” value of 0.02, which will be used as well. The final required input parameter is 𝐽1
∗𝑚. 

For this value, the reported value differs significantly from the range 𝐽1
∗𝑚 = 0.024 ± 15% suggested 

in Subsection 6.2.5. This topic is investigated in Subsection 6.3.1. 

In (Soden et al., 2002, fig. 10), the authors note the location of suspected matrix failure (in stress 

space). A change in slope of the stress/strain curve was used as the sole indicator, which is not 

necessarily a very accurate way of determining failure. This data is converted to strain space, not-

withstanding the issues of using stress-based data as discussed in Subsection 2.2.1. Table D.3 con-

tains the data sampled from (Soden et al., 2002, fig. 10). 

Table D.3: Suspected matrix cracking for AS4/3501-6 (in stress space) 

𝜎𝑥 [𝑃𝑎] 𝜎𝑦 [𝑃𝑎] 

401e6 227e6 

351e6 194e6 

451e6 168e6 

410e6 135e6 

401e6 108e6 

380e6 40e6 

421e6 31e6 
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Using Eqn. (3.11), the laminate in-plane stiffness matrix can be determined to be 

𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 = [
55.8 16.3 0
16.3 55.8 0
0 0 19.8

] ⋅ 1𝑒9 [𝑃𝑎]. 

By carrying out the multiplication 𝑸𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒
−1 ⋅ [𝜎𝑥 𝜎𝑦 0]𝑇  for each of these data points, the sus-

pected matrix cracking data is converted to strain space. Table D.4 shows the resulting information. 

Table D.4: Suspected matrix cracking for AS4/3501-6 (in strain space) 

𝜖𝑥 [%] 𝜖𝑦 [%] 

0.66 0.22 

0.58 0.18 

0.79 0.07 

0.73 0.03 

0.72 −0.02 

0.72 −0.14 

0.81 −0.18 

D.2 T800s/3900-2 

For T800s/3900-2, the required input data is given in Table D.5. Note that these material properties 

are almost identical to the ones given by Yudhanto for IM7/Epoxy (see Section B.4). 

Table D.5: Constituent and lamina material properties for T800s/3900-2 (Tran, 2012, Table 3-3) 

Property Matrix material Fiber material Lamina 

𝐸1 [Pa] 3.3e9 303e9 152e9 

𝐸2 [Pa]  15.2e9 8e9 

𝐸3 [Pa]  15.2e9 8e9 

𝐺12 [Pa] 1.22e9 9.65e9 4e9 

𝐺13 [Pa]  9.65e9 4e9 

𝐺23 [Pa]  6.32e9 2.75e9 

𝜈12 [−] 0.35 0.2 0.34 

𝜈13 [−]  0.2 0.34 

𝜈23 [−]  0.2 0.45 

𝛼1 [°𝐶
−1] 57.6e-6 0 3.6e-8 

𝛼2 [°𝐶
−1]  8.3e-6 37.8e-6 

𝛼3 [°𝐶
−1]  8.3e-6 37.8e-6 

(Swanson & Qian, 1992) do not state the volume fraction. Based on the manufacturer datasheet 

(http://www.toraycfa.com/pdfs/T800SDataSheet.pdf), a volume fraction of 𝑉𝑓 = 60% is used. The 

same source mentions a curing temperature of 177°𝐶, resulting in an assumed applied temperature 

difference to room temperature of Δ𝑇 = −157°𝐶 . 

http://www.toraycfa.com/pdfs/T800SDataSheet.pdf
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Biaxial failure strains for three different laminates are available, shown in Table D.6. As in Sec-

tion D.1, sometimes multiples of the laminates are used. For the two cases where the failure strain 

is given as exceeding a certain value (e.g. >0.8), that value will be used. 

The 0° ply is aligned with the 𝑥-direction. For [0/±45/90]s and [0/(±45)2/90]s, this is not relevant 

since they are symmetric with respect to a 90° rotation. However, for the laminate containing addi-

tional 0° plies, the alignment of the laminate is important. 

Table D.6: Failure strains of T800s/3900-2 for three different laminates 

[0/±45/90]s [03/±45/90]s [0/(±45)2/90]s 

(Swanson & Qian, 1992, 

Table 3) 

(Swanson & Qian, 1992, 

Table 4) 

(Swanson & Qian, 1992, 

Table 5) 

𝜖𝑥 [%] 𝜖𝑦 [%] 𝜖𝑥 [%] 𝜖𝑦 [%] 𝜖𝑥 [%] 𝜖𝑦 [%] 

1.145 −0.361 1.169 −0.314 1.175 −0.525 

1.321 −0.511 1.235 −0.358 1.294 −0.615 

1.348 −0.436 1.068 −0.324 1.237 −0.521 

1.299 0.828 1.173 0.805 1.25 0.539 

1.28 0.838 1.149 >0.75 1.032 0.507 

1.368 >0.8 1.498 1.094 1.298 0.586 

1.213 −0.755 1.052 0.838 1.277 −1.053 

1.342 −0.744 1.024 −0.812 1.218 −1.003 

1.301 −0.722 0.961 −0.831 0.983 −0.857 

1.005 −1.334 1.024 −0.863   

1.084 −1.084     

0.99 −1.101     

Regarding the critical invariants, in Subsection 6.2.2 a very large spread of values was reported for 

the critical dilatational invariant of the matrix. This spread coincided almost exactly with the de-

fault range of values suggested. Therefore, 𝐽1
∗𝑚 = 0.024 will be used. For 𝜖𝑒𝑞𝑣

∗ 𝑚, the values found in 

Subsection 6.2.3 were almost identical to the default value of 0.2. Therefore, the default value will 

be used. Finally, for 𝜖𝑒𝑞𝑣
∗ 𝑓  no data is available. Once again the default value will be used, in this 

case 0.02. 

In summary, this means that the default values suggested in Subsection 6.2.5 will be used for all 

three critical invariants. 
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D.3 IM7/8551-7 

Table D.7 shows the constituent and lamina material properties for IM7/8551-7. As for AS4/3501-

6 in Section D.1, properties in 2- and 3-directions are assumed identical, and the relationship for 

isotropic materials is used to calculate unknown properties. 

Table D.7: Constituent and lamina material properties for IM7/8551-7 (Kaddour & Hinton, 2012, Tables 1-3). Values 
in brackets are assumed or calculated. 

Property Matrix material Fiber material Lamina 

𝐸1 [Pa] 4.08e9 276e9 165e9 

𝐸2 [Pa]  19e9 8.4e9 

𝐸3 [Pa]  19e9 8.4e9 

𝐺12 [Pa] 1.478e9 27e9 5.6e9 

𝐺13 [Pa]  (27e9) 5.6e9 

𝐺23 [Pa]  7e9 2.8e9 

𝜈12 [−] 0.38 0.2 0.34 

𝜈13 [−]  0.2 0.34 

𝜈23 [−]  (0.357) 0.5 

𝛼1 [°𝐶
−1] 46.7e-6 −0.4e-6 −1e-6 

𝛼2 [°𝐶
−1]  5.6e-6 18e-6 

𝛼3 [°𝐶
−1]  5.6e-6 18e-6 

(Colvin & Swanson, 1990) give a volume fraction of 57.3%. Note that this disagrees with the volume 

fraction for which the lamina properties are given (60%). However, the differences should be minor. 

This is investigated in Section 7.3. A stress-free temperature of 177°𝐶 is used based on (Kaddour & 

Hinton, 2012), resulting in a difference to room temperature of Δ𝑇 = −157°𝐶 . 

Two sets of test data are available, as summarized in Table D.8. One set consists of biaxial (𝜖𝑥 vs 

𝜖𝑦) test data for a [90/45/-45/0]s laminate, whereas the other one contains transverse strain vs shear 

data for a 90° uniaxial test specimen. As in Section D.1, sometimes multiples of the laminate are 

used, which does not affect the failure predictions in any way. 0° is aligned with the 𝑥-direction. 

Table D.8: Failure strains of IM7/8551-7 for one laminate and one ply 

[90/±45/0]s 90° uniaxial 

(Colvin & Swanson, 1990, Table 3) (Colvin & Swanson, 1990, Table 1) 

𝜖𝑥 [%] 𝜖𝑦 [%] 𝜖𝑦 [%] 𝛾𝑥𝑦 [%] 

1.352 −0.424 −3.14 0.04 

1.316 −0.372 −3.24 0.05 

1.337 0.312 −3.13 0.05 

1.359 0.335 −3.07 4.25 

1.403 −0.735 −3.21 1.42 

1.12 −0.862 −0.71 2.69 
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[90/±45/0]s 90° uniaxial 

(Colvin & Swanson, 1990, Table 3) (Colvin & Swanson, 1990, Table 1) 

𝜖𝑥 [%] 𝜖𝑦 [%] 𝜖𝑦 [%] 𝛾𝑥𝑦 [%] 

1.336 −1.035 −0.18 5.04 

1.054 −1.118 −3.54 4.5 

1.109 −1.119 0.49 7.29 

0.275 −0.935   

0.387 −1.295   

For IM7, the critical invariant was found in Subsection 6.2.4 to be very close to the “default” value 

of 𝜖𝑒𝑞𝑣
∗ 𝑓 = 0.02. Since for 8551-7 no data is available, the default values summarized in Subsec-

tion 6.2.5 will be used for the matrix as well, meaning 𝐽1
∗𝑚 = 0.024 and 𝜖𝑒𝑞𝑣

∗ 𝑚 = 0.2.
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Appendix E  

List of Critical Invariants 

This appendix contains the list of all critical invariants found in literature, as discussed in Sec-

tion 6.2. The source(s), material combination, and potential comments are included, as well as the 

definition used for the critical distortional invariant (see Subsection 2.1.1). In addition to that, 

sources are numbered by an entry number in order to reduce the amount of text in the axis labels 

in Figures 6.1 to 6.3. Content missing for a particular entry (for example the definition number in 

case no equivalent strain results are available) is left blank. The order is essentially chronologically. 

The general structure of each entry is shown in Table E.1, while Table E.2 contains the full list of 

critical invariants. 

Table E.1: Example structure of entry in list of critical invariants 

Source(s) Entry # Material combination 

Critical dilatational matrix 

invariant 

Critical distortional matrix 

invariant 

Critical distortional fiber in-

variant 

Comments Definition used for distortional invariants 

Table E.2: List of critical invariants 

(Gosse & Christensen, 2001, Table 1) [1] IM7/5250-4 

0.016 or 0.0171   

The critical dilatational matrix invariant is given separately for tests of two 

different laminates. 

 

(Gosse & Christensen, 2001, Table 2) [2] IM7/PETI-5 or 977-3 

0.0216 or 0.0205 (twice) or 0.0194   

In the body of the text, PETI-5 is mentioned as the resin. However, the table 

heading states 977-3. 

𝐽1
∗𝑚 is given separately for tests of four different laminates. 
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(Gosse & Christensen, 2001, Table 3) [3] T300/5208 

0.0105 0.0339 or 0.0331  

The critical distortional matrix invariant is given separately for tests of a uni-

axial coupon at two different off-axis tension angles. 

Definition #1 

(Tsai & Elmore, 2003, Section 4.2) [4] IM7/977-3 

0.0244 0.11 0.02 

The equations for the invariants are not stated. Definition #? 

(Ng et al., 2004, Table 5) [5] IM7/5250-4 

0.014 or 0.0142 or 0.015 or 0.0155 0.16 0.0204 

The critical dilatational invariant is given for different off-axis tension tests. Definition #1 

(Hart-Smith, 2010, fig. 24; Tan, 2005, p. 76; Tay, 

Tan, Tan, et al., 2005, Section 5) 

[6] IM7/977-3 

0.023 0.103 0.0182 

All references cite (personal communication with) Gosse as the source for the 

critical invariant. 

There is a typo in the article by (Tay, Tan, Tan, et al., 2005); it states that 

the critical distortional matrix invariant is 0.013. 

Note that the critical distortional invariants are identical to the values in en-

try [14], while the critical dilatational invariant is different. On the other 

hand, the critical invariant is identical to the one given by Gosse in entry 

[13], although the material stated there is IM7/K3B. 

Definition #1 

(C. H. Wang, 2005, Table 8.4) [7] AS4/3501-6 

  0.019 

The critical value is determined based on strength test data. Definition #1 

(C. H. Wang, 2005, Table 8.4) [8] T300/BSL914C 

  0.0133 

See previous entry for comments. Definition #1 

(C. H. Wang, 2005, Table 8.4) [9] E-glass 21xK43/LY556 

  0.0266 

See previous entry for comments. Definition #1 

(C. H. Wang, 2005, Table 8.4) [10] E-glass 1200tex/MY750 

  0.0349 

See previous entry for comments. Definition #1 
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(Yudhanto et al., 2006, Table 1) [11] IM7/K3B 

  0.0195 

Critical invariants cited from an article by Gosse which could not be found. Definition #1 

(Yudhanto et al., 2006, Table 1) [12] IM7/977-3 

0.0272 0.179  

See comment for previous entry. 

Note also that entry [14] reports a very similar value of the critical dilatational 

invariant for the same material, while the value of the critical distortional ma-

trix invariant differs by approximately a factor of 
√
3. This corresponds to the 

difference between definitions #1 and #2. 

Definition #1 

(Gosse et al., 2007, Slide 16) [13] IM7/K3B 

0.023 or 0.0224   

The critical dilatational invariant is given separately for 0° and ±10° compres-

sion coupons. 

 

(Eng, 2007, Table 1; Liu, 2007, Table 3.1; Yudhanto, 

2005, Table 3-1) 

[14] IM7/977-3 

0.0274 0.103 0.0182 

All references cite (personal communication with) Gosse as the source for the 

critical invariant. 

Note that the critical distortional invariants are identical to the values in en-

try [6], while the critical dilatational invariant is different. 

See also comment in entry [12]. 

Definition #1 

(Holmberg, Lundmark, & Mattsson, 2008, Table 1) [15] E-glass/MY750 

0.0297 0.036 or 0.0313 0.0194 

The critical distortional matrix invariant is based on two separate tests, one 

transverse compression test and one in-plane shear test. 

An attempt is made to modify the procedure by implicitly including manufac-

turing strains in the invariants. The set of invariants reported here does not 

contain this modification. The authors also consider a separate compression 

invariant for the fiber (its value is found to be 0.0125). All in all their procedure 

seems somewhat suspect. 

Definition #1 

(McNaught, 2009, Table 6-3) [16] E-glass/RTM6 

0.011694 0.020069 0.022434 

 Definition #1 
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(Pipes & Gosse, 2009, Tables 1 and 2) [17] Carbon/glassy polymer 

0.0242 (twice) or 0.0233 or 0.0238 

or 0.0226 or 0.024 or 0.0237 

0.1144 or 0.1124 or 

0.1164 or 0.114 

 

The invariants are determined based on different off-axis tension tests. Definition #2 

(Mao, 2011, Table 5-11) [18] E-glass/MTM57 

0.0208 or 0.021 or 0.0212 or 0.0215 

or 0.0217 

0.1472 0.0189 

The strain amplification factors could not be reproduced (see Subsection 5.1.3). 

The critical distortional invariant for the fiber is estimated based on the trend 

of the data. 

The critical dilatational invariant is based on different off-axis tension tests. 

Mao’s gives nearly identical values using one definition of the critical distor-

tional matrix invariant, but then obtains vastly different values using the stand-

ard definition. Only the main value (which could be confirmed) is reported here. 

Definition #1 

(Tran et al., 2011, Table 3) [19] T300/Cycom 970 

0.0224 or 0.0233   

The two values correspond to different modeling strategies. 

The values are quite different from the ones in entry [23] for Cycom 970, but 

very similar to the ones in entry [24] for 3900-2. 

 

(Z. Li et al., 2011, Table 3) [20] CCF300/5228 

0.0191 0.144 0.017 

It seems that a factor 1√
2
 is missing in the definition for the critical distortional 

invariant. However, (X. Li, Guan, Liu, & Li, 2013) contains the same critical 

invariants and uses the correct definition. Therefore, it is assumed that the 

missing factor is simply a mistake in the article. 

This paper is in Chinese. 

Definition #1 

(Z. Li et al., 2011, Table 3) [21] CCF300/5428 

0.0319 0.195 0.018 

See previous entry for comments. Definition #1 

(Z. Li et al., 2011, Table 3) [22] T700/5428 

0.0313 0.202 0.023 

See previous entry for comments. Definition #1 

(Tran, 2012, Table 5-2) [23] T300/Cycom 970 

0.036 or 0.035 or 0.033 (twice) 0.118 (twice)  

Data is from different off-axis tension specimens. Definition #2 
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(Tran, 2012, Table 5-3) [24] T800s/3900-2 

0.023 (3 times) or 0.027 or 0.02 or 0.021 0.119 or 0.117 or 0.113 

Data is from different off-axis tension specimens. Definition #2 

(Tran, Kelly, et al., 2012, Table 4) [25] T300/Cycom 970 

           0.1125 or 0.1186 or 0.1184 

Data is from different modeling strategies for 10° and 20° off-axis tension spec-

imens. 

Definition #2 

(Tran et al., 2013, Tables 4 and 5) [26] T300/Cycom 970 

0.0335 or 0.0347 or 0.0348 0.118 or 0.121 or 0.122  

Data corresponds to different modeling strategies. Definition #2 

(Tran et al., 2013, Tables 4 and 5) [27] T800s/3900-2 

0.0229 or 0.0244 or 0.02445 0.119 or 0.117 or 0.118  

Data corresponds to different modeling strategies. Definition #2 

(Tran, Simkins, et al., 2012, Table 2) [28] T800s/3900-2 

0.0225 0.117  

 Definition #2 

(Kim, Park, Park, Lee, & Kim, 2013, Table 3) [29] T700/CU200NS 

0.00398 0.04919 0.01495 

This paper is in Korean. Definition #1 

(Lim, Pearce, Kelly, Prusty, & Crosky, 2013, Section 

3) 

[30] T800s/3900-2 

0.0225 0.119  

 Definition #2 

(Lee & Yoshioka, 2015, Section 4.1) [31] T800s/3900-2 

0.02489 0.03434  

 Definition #4 

(Lu, 2015, Table 4) [32] AS4/3501-6 

0.0301 0.198 0.021 

This paper is in Chinese. Definition #1 
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