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Abstract. Wind farm flow control (WFFC) is the discipline of manipulating the flow between wind turbines
to achieve a farm-wide goal, like power maximization, power tracking or load mitigation. Specifically, steady-
state control approaches have shown promising results in both theory and practice for power maximization. But
how are they expected to perform in a dynamically changing environment? This paper presents an open-source
wake modeling framework called OFF (abbreviated from the models OnWARDS, FLORIDyn and FLORIS).
It allows the approximation of the performance of WFFC strategies in response to environmental changes at a
low computational cost. It is rooted in previously published dynamic parametric engineering models and offers
a flexible and adaptable platform to explore these models further. The presented study tests the modeling frame-
work by investigating the performance of different wake steering controllers in a 10-turbine wind farm case
study based on a subset of the Dutch wind farm Hollandse Kust Noord (HKN). The case study uses a 24 h wind
direction time series based on field data and verifies subsets of the time series in a large-eddy simulation (LES).
The results highlight how dependent yaw travel is on the controller settings and suggest where users can strike
a balance between power gains and actuator usage. They also show the structural differences and similarities
between steady-state and dynamic engineering models. The comparison to LES shows what timescales the sur-
rogate models cover and how accurately. While steady-state models capture turbine power signal dynamics up
to ~ 1/570 Hz, the dynamic wake description can predict dynamics up to &~ 1/360 Hz with a better correlation
and normalized root-mean-square error. Further results show that the dynamic wake description is mainly advan-
tageous over steady-state wake models for shorter periods (< 20 min). The paper also opens up discussion about
the effectiveness of wind farm flow control in a time-marching manner as opposed to a steady-state viewpoint.
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1 Introduction

Wind energy is an essential part of the modern renewable
energy mix and, therefore, part of the increasing share of
energy that is covered by renewables. With this increasing
share comes a higher responsibility. Where previously only
individual turbines would contribute to the electrical grid,
numerous wind farms provided 19 % of the electricity de-
mand in the EU in 2023 (Costanzo and Brindley, 2024). With
this increased relevancy, the question arises of whether wind
farms are used to their full extent. Their efficiency could be
limited, among other reasons, by unintended turbine down-
time, maintenance or non-ideal operation. Wake losses are
included in the latter, as front-row turbines extract kinetic en-
ergy from the wind, and they inevitably slow down the flow
behind them. The turbines downstream thereby experience a
lower wind speed and generate less power in response. To
combat this effect, wind farm flow control (WFFC) meth-
ods focus on lessening the losses induced by wakes. This is
achieved by modifying the behavior of the turbines from a
greedy control approach to a collaborative one.

Multiple control approaches exist to address this issue.
They can be sorted by the degrees of freedom they use: (i) the
blade pitch (e.g., Frederik et al., 2020; Coquelet et al., 2022)
(i1) the generator torque (e.g., Munters and Meyers, 2017)
and (iii) the (mis-)alignment of the turbine with the flow (e.g.,
Fleming et al., 2020, or Doekemeijer et al., 2021). Broadly
speaking, (i) and (ii) change how much energy is extracted
from the flow field. Applied dynamically, the blade pitch can
also increase wake mixing behind the turbine, which leads to
a faster wake recovery. In contrast, using (iii), the alignment
of the rotor allows the controller to deflect the wake in the
lateral direction. This control strategy can be used to direct
the wake away from downstream turbines and is referred to
as wake steering. The remainder of the paper focuses on this
effect and methods to determine the effectiveness of control
strategies using wake steering.

To research, test and optimize control strategies for wind
farms, surrogates of the real plant are needed. This mit-
igates risks, lowers costs, increases flexibility and makes
the problem more accessible. Alongside wind tunnel exper-
iments (e.g., Bastankhah and Porté-Agel, 2016; Hulsman
et al., 2024), simulations are the predominant way to approx-
imate wind farm behavior. Within the world of simulations,
three groups can be distinguished: high-, medium- and low-
fidelity simulations. High-fidelity models, such as large-eddy
simulation (LES), provide the most accurate approximation
of the flow field (e.g., Chatelain et al., 2013; Churchfield
et al., 2012). This does come at an increased computational
cost, which has confined their application to the verification
or exploration of new phenomena not yet captured by lower-
fidelity models. At the other end of the spectrum, low-fidelity
simulations reduce the wake behavior to a set of simple an-
alytical equations that are efficient to solve. This, however,
means that they can only describe what they have been de-
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signed for, typically a single time-averaged snapshot of the
flow field (e.g., Jensen, 1983; Bastankhah and Porté-Agel,
2016). Low-fidelity models are therefore routinely used to,
for instance, optimize the orientation of all turbines in a wind
farm for the entire wind rose, to make estimates of the annual
energy produced (AEP) or to optimize the wind farm layout.

Growing concerns about fatigue effects on wind turbine
integrity, along with the rising need for ancillary service pro-
vision, have driven recent research toward a new generation
of dynamic medium-fidelity models. These models are de-
signed to address more immediate and transient phenom-
ena, effectively bridging the gap between high- and low-
fidelity approaches. By capturing the critical dynamics of
high-fidelity simulations at a fraction of the computational
cost, they move beyond steady-state assumptions, unlocking
new possibilities for wind farm operations. Key applications
include, for example, intra-hour power production predic-
tions for grid regulation (e.g., Moens et al., 2024), as well
as multi-objective wake steering strategies that optimize the
power output while simultaneously mitigating the turbine’s
loads (e.g., Quick et al., 2022).

Medium-fidelity wake models are primarily categorized
by the equations they use to model flow physics, balanc-
ing computational cost with accuracy. While 2D linearized
Reynolds-averaged Navier—Stokes (RANS) methods have
demonstrated some initial success at estimating simple wake
states, they have been shown to improperly account for wake
deflection (van den Broek et al., 2022). In contrast, free-
vortex methods (e.g., Marichal et al., 2017; Marten, 2020; or
van den Broek et al., 2023) explicitly resolve vortex dynam-
ics, providing deeper insights into large-scale wake behavior.
This capacity, to account for phenomena such as wake de-
flection and wake curling, makes free-vortex methods ideal
candidates to investigate wake steering. However, the com-
putational burden associated with these methods makes them
unsuitable for large parameter spaces, such as those encoun-
tered in offshore wind farms involving dozens of turbines.
Additionally, they tend to become numerically unstable for
large distances and are, therefore, limited in terms of the
wake length they can describe accurately.

The dynamic wake meandering (DWM) model, initially
proposed by Larsen et al. (2007), also opts for a Lagrangian
parametrization of the wake, describing it as a cascade of
velocity deficits without explicitly solving vortex dynam-
ics. Since its introduction, the DWM approach has been fur-
ther calibrated and validated by numerous studies compar-
ing it against both numerical and field data (Madsen et al.,
2010; Larsen et al., 2017; Jonkman et al., 2018). Building
on these early successes, it has been integrated into simu-
lation software such as FAST-Farm (Jonkman et al., 2017)
and HAWC2FARM (Liew et al., 2023). More recently, the
DWM model has been reinterpreted into a series of lighter,
control-oriented wake modeling frameworks that include
FLORIDyn (Gebraad and van Wingerden, 2014; Becker
et al., 2022c, b; Braunbehrens et al., 2022), OnWARDS

https://doi.org/10.5194/wes-10-1055-2025



M. Becker et al.: An open-source model to investigate wake dynamics

(Lejeune et al., 2022), UFloris (Foloppe et al., 2022) and
SWiPLab-WFM (Kipke and Sourkounis, 2024). A common
feature of these models is that they all adopt a Lagrangian
description of the flow while relying on engineering wake
models to capture the wake’s influence. However, though
similar, these models take different paths, notably regarding
how they handle the ambient flow field and wake deflection.
They also differ in terms of the steady-state surrogate wake
model, which is generally fixed for the presented designs.
And, while steady-state models have been summarized in
unified toolboxes (FLORIS, NREL, 2023; PyWake, Peder-
sen et al., 2023; or FOXES Schmidt et al., 2023), dynamic
engineering models have not.

The purpose of OFF (abbreviation based on OnWARDS,
FLORIDyn and FLORIS), the dynamic wake modeling
framework presented in this paper, is to provide a unified,
open-source toolbox that allows for easy comparison be-
tween different implementations. Specifically, the framework
aims to

— design and implement an interface with established
steady-state models, such as FLORIS (NREL, 2023) or
PyWake (Pedersen et al., 2023);

— provide a framework for prototyping Lagrangian dy-
namic wake models through standardized input—output
structures, facilitating the replicability of results;

— offer accessibility through open-source code written in
Python.

Such a tool shall eventually allow for benchmarking and
comparisons of dynamic and steady-state wake model de-
signs and for further exploration and development of dy-
namic WFFC strategies at a low computational cost (as al-
ready utilized by, e.g., Sterle et al., 2024, and Miao et al.,
2024). Further scientific contributions of this paper are

— an investigation into the timescales captured by steady-
state wake models versus those captured by dynamic
wake models, providing insights to help users make in-
formed choices based on their specific needs;

— a verification of the presented code using LES in a
neutral atmospheric boundary layer (ABL) with a 10-
turbine wind farm;

— a dataset based on a total of 54h of LES with varying
controller settings and changing wind directions to use
for further wake model analysis and synthesis.

The following paper is split into five sections. While
Sect. 1 introduces the context of the work, Sect. 2 describes
the presented model and its architecture, as well as details
of the implementation used to generate the results from this
paper. Section 3 then presents a case study where a selection
of yaw steering controllers are investigated in the presented
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model, followed by Sect. 4, where a selected range of con-
trollers are implemented in the LES. The section goes on to
compare the LES results to the results predicted by the dy-
namic model as well as by the steady-state model. Lastly,
Sect. 5 concludes the paper and suggests pointers for future
work.

2 Model description

The framework called OFF is designed to run generic
particle-based dynamic wind farm flow simulations using
three sets of states: (i) turbine states xT, (ii) ambient states
Xamb and (iii) observation point (OP) states xop. Turbine
states x1 consist of all states necessary to describe the tur-
bine’s impact on the wake, e.g., the turbine yaw angle and
its axial induction. The ambient states x ,,, characterize the
flow field, with information about wind speed, direction and
ambient turbulence intensity. The observation point states
xop finally map the world (i.e., inertial) coordinate system to
the wake one, thereby allowing the reconstruction of a snap-
shot of the flow field across the wind farm. The states are then
updated through three consecutive steps — prediction (Eq. 1),
correction (Eq. 2) and control (Eq. 3):

[x1(k),Xamb(k), x0p(k)] = fprediction(xT(k —D,

Xamb(k — 1), xop(k — 1), ¢), (L
[xT(k),Xamb(k), X0opP(k)] = feorrection(XT(k), Xampb(k),
xop(k), m(k), c), 2

x1(k) = feontrol(XT(k), Xamp(k), xop(k), m(k), ¢), 3)

where ¢ denotes a set of parameters, k the time step and m a
set of measurements. The prediction step advances the model
by itself: it propagates and updates the information gathered
at the previous time steps. The correction step then uses the
current measurements to alter the predicted states, partially
reconciling them with the real-flow field. The last step finally
determines the control actions the turbine takes based on the
current state and measurements.

Summarizing, the OFF framework offers a prototyping en-
vironment for the development and assessment of new dy-
namic flow modeling strategies. The update steps are kept
generic, thereby allowing the user to specify its own up-
date strategy, for instance by switching the dynamic solver
or wake model used. Figure 1 depicts the version of the code
used here that follows the FLORIDyn framework and uses
FLORIS v4 as a surrogate model. The implemented update
steps are further detailed in the following sections: Sect. 2.1
further specifies the FLORIS and FLORIDyn models used,
and Sect. 2.2 explains how external data are fed into the sim-
ulation. Lastly, Sect. 2.3 introduces the control law used in
this paper.

Wind Energ. Sci., 10, 1055-1075, 2025
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State dynamics
ambient, wake, and turbine states

Interface
Data I/O
Controller
Correction
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FLORIS
Wake model

Wake superposition
Power calculation
etc.

Figure 1. Nested software architecture used for the results presented in this paper: the OFF framework provides the interface to the wake
solvers, as well as the controller. In this paper, the FLORIDyn framework is used to model the state dynamics, like the wake advection. The
framework approximates the flow field at the location of each turbine and uses FLORIS to calculate measurements like effective wind speeds

and power generated.

2.1 Prediction: wake and turbine modeling

The prediction step is segmented into three parts: (i) propa-
gate the states, (ii) run the steady-state surrogate model to get
turbine measurement predictions and OP advection speeds
for the next time step, and (iii) retrieve information relevant
to the controller. The states related to a single turbine 7 at
the x, y, z location I, ITy, IT,, are propagated as follows:
x1(k) =Ajxp(k—1), 4)
Xamb(k) = Ay Xamp(k — 1), ®)]
xopx(k) = Az [xopx(k — 1) + At Xampu(k — 1)]

+[I1x,0,..., 01", xopy(k) = Az [xopy (k — 1)

+ At Xampy(k = DI+ [1,0,...,01"

xopz(k) = Agxopz(k — 1)+ [I1,,0,...,01",  (6)
1 0 0 0O 0 0
1 0 1 0

A= N , A= N )]
0 1 0 0 1 0

where the matrices A and A handle the state propagation.
With A, all states besides the first one are propagated one
entry further, and the last one is disregarded. The state clos-
est to the turbine is effectively doubled. With A; the first state
is not doubled but overwritten by a new input. States prop-
agated with A; do not have a new input yet; e.g., there is
no new wind speed value available at this time in the simu-
lation cycle. Therefore, the current wind speed is kept as a
prediction. The OP position states, however, do have a new
input, the rotor center location, which is why they are prop-
agated with A;. Equation (6) updates them with the turbine
location Ity, Iy, IT,,, referring to the rotor center, as a new
state. In a floating-turbine scenario, this could be used to in-
duce a changing turbine and wake location due to reposi-
tioning. Note that similar, more detailed state-space descrip-
tions can be found in Gebraad and van Wingerden (2014),
Becker et al. (2022a), and Foloppe et al. (2022). A differ-
ence between these formulations and the one employed in
OFF is that OFF’s formulation does not include vertical or
horizontal OP deflection based on the yaw and tilt angle of
the turbine. Rather, the impact of yaw and tilt turbine mis-
alignment on the wake shape is solely simulated in the wake

Wind Energ. Sci., 10, 1055-1075, 2025

model. The code internally decomposes the wind speed and
direction into its # and v components to avoid unexpected be-
havior when switching between 360 and 0°. These are then
used along with the time step At to advance the location of
the OPs through a Lagrangian update; see Eq. (6). The w
component is ignored for simplicity. Accounting for the ver-
tical deflection of the wake center might become necessary in
some contexts, e.g., for simulations including terrain. How-
ever, it was not deemed necessary for the application pre-
sented here, i.e., an offshore wind farm. Note that this imple-
mentation also assumes that the OP advection speed is equal
to the freestream wind speed. Alternatives are the introduc-
tion of a constant fraction of the wind speed (see for instance
Ciri et al., 2017) or the use of the effective wind speed pre-
dicted by the wake model (see for instance Zong and Porté-
Agel, 2020). One may also decide to decouple ambient par-
ticle advection from the OP advection, thereby allowing the
capture of additional wake dynamics such as wake meander-
ing (Lejeune et al., 2022). These approaches, however, in-
crease the computational cost of the model, as it requires the
evaluation of the wake equations for every OP at every time
step. Equation (5) does not include inputs as new ambient
state information is introduced via the correction step; see
Sect. 2.2. Similarly, new turbine states may be introduced in
the correction or in the control step; see Sect. 2.3.

After the states are propagated, the wake model is evalu-
ated to retrieve predicted measurements. This process uses
the so-called temporary wind farm (TWF), which provides
a localized approximation of the ambient and wake condi-
tions at a specific turbine location. More specifically, the
TWEF maps the current dynamic state of the simulation to the
corresponding steady-state configuration at any desired posi-
tion, making it interpretable by the underlying wake model,
i.e., FLORIS. For more details, we refer to Becker et al.
(2022b). A block diagram example is given in Fig. 2. The
graph shows the equivalent of a three-turbine wind farm
where turbines T1 and T2 wake turbine T3. Turbines T1
and T2 both receive input from the wind field; add their own
states; and pass them on to the first OP, which adds its own
states. The set of the three state vectors is then propagated
downstream. Downstream, T3 is subject to the wakes of T1
and T2. To calculate the wind speed reduction, one ghost

https://doi.org/10.5194/wes-10-1055-2025
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Figure 2. Schematic of the state transportation of turbine states, ambient states and observation point states in a three turbine example. T1
and T2 wake T3. The OPs closest to T3 in the wakes of T1 and T2 are used to create a temporary wind farm (TWF) to simulate the resulting
conditions for T3 in the wake model. The colored cubes indicate the states that are passed between the different elements of the software.

OP is interpolated for each impacting wake. The ghost OP
is based on the two closest OPs in the wake and minimizes
the distance between the chain of OPs and the turbine T3. Its
state is a distance-based interpolation of the two parent OPs.
The state information of the ghost OPs subsequently approx-
imates the ambient conditions and wind farm surrounding
turbine T3. The TWF is then passed on to the steady-state
surrogate model for evaluation. This returns predicted mea-
surements like the effective wind speed and power generated.
At each time step, a new individual TWF is generated for
each of the nt turbines. This leads to nT TWF simulations,
where each of them contains nt turbines. The resulting com-
putational cost is discussed in Sect. 4.6. This work interfaces
with the FLORIS toolbox and uses the Gauss Curl Hybrid

https://doi.org/10.5194/wes-10-1055-2025

model (Bay et al., 2023) with default settings and param-
eters. No parameter tuning was performed to represent the
performance achievable with the default settings. The turbine
model within FLORIS is based on the cp(u) and c¢(u) tables
(u being the wind speed ahead) of the DTU 10 MW (Bak
et al., 2013), corrected with the blade element momentum
theory-based cosine loss law for yaw misalignment (Rank-
ine, 1865; Froude, 1889). Specifically, the classical value of
1.88 is retained for the cosine power-loss law exponent. We
nonetheless acknowledge that this constant power-loss model
does not account for the variability in operating conditions
and will therefore likely affect the optimal steering angles
computed, as noted by Tamaro et al. (2024).

Wind Energ. Sci., 10, 1055-1075, 2025
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2.2 Correction: linking measurements and states

In this work, only ambient states are corrected. Schemes to
correct the wake location exist (Braunbehrens et al., 2023;
Di Cave et al., 2024) but are outside of the scope of this
paper. Three ambient states are considered in the presented
version of the model: wind direction, wind speed and am-
bient turbulence intensity. Out of these three, only the wind
direction varies in the presented simulations. By design, OFF
assumes that measurements are taken at the locations of the
turbines. The correction step has to alter the simulation states
Xamb to incorporate the new information provided. The ba-
sic assumption is made that the wind direction changes uni-
formly for the entire wind farm. As a result, all wind direc-
tion states are overwritten with the new measurement, which
is assumed to be noise-free. Practically, this is due to the fact
that the measurements used for the wind direction in the ex-
periments stem from a single location; more details are given
in Sect. 3.1. In an alternative setup with more measurement
locations available, a sensor fusion strategy is necessary. Pos-
sible approaches to use turbine measurements to correct am-
bient states in the field exist, like a weighted map, as done by
Farrell et al. (2021); a Kalman filter, as done by Gebraad et al.
(2015); or an ensemble Kalman filter, as applied by Becker
et al. (2022a).

2.3 Control: state-based decision making

The employed controller is based on Kanev (2020) and im-
plements a yaw steering dead-band controller that relies on a
look-up table (LuT) aggregated using FLORIS. Specifically,
this LuT associates each wind direction with a set of opti-
mal steering angles. In a dynamic environment, the controller
now has to apply the optimized angles based on the current
(estimated) ambient conditions. To this end, the controller
has an estimate of the wind direction ¢, which is updated
based on its own value in comparison with the measured
wind direction. The estimated wind direction is then used to
evaluate the LuT and provide new set points. More precisely,
the yaw steering control law is formulated as follows:

@) = fhi(m(k), om(k —1), ..., ¢n(0)) @

o0 = { k) i lpp0 = Ul > giim o ki [ 11 07(0) — G(K)| > giim
ok —1) otherwise

)]

y (k) = fLur(9(k)), (10)

where  marks the time step of the last update of ¢(k) to a
new value. The measured wind direction at the time step k
and its filtered version are denoted by ¢, (k) and ¢ r(k), re-
spectively. The control law has four elements that need to be
supplied: the low-pass filter, fi;; the dead-band width, ¢jim;
the integration coefficient, k;; and the LuT, fi,r. These el-
ements determine the behavior of the wind farm, and their
adequate tuning is a prerequisite to efficient wake steering.
The selection of the parameters ¢y and k; is the subject

Wind Energ. Sci., 10, 1055-1075, 2025

of the case study presented in Sect. 3. The fgy function is
omitted for simplicity; instead we assume an ideal noise-free
measurement of the wind direction. The LuT is first pop-
ulated using the serial-refine yaw optimizer integrated into
FLORIS (Fleming et al., 2022). While the presented control
law focuses on wind direction changes, for completeness, the
provided LuT also includes inputs for other freestream atmo-
spheric conditions, such as hub-height turbulence intensity
(TD) and free wind speed. These parameters are kept con-
stant in the case study discussed in Sect. 3. During the LuT
creation, TI is kept constant at 6 %, the wind direction is
discretized into 1° bins, and the wind speed varied from 6
to 10ms~! in 1ms~! steps. The baseline (BL) controller
follows the same update law, with the difference that it en-
forces turbine alignment with ¢(k). The controllers are con-
tinuously updated with every 5 s time step of the simulation;
the limits of the intentional misalignment with the main wind
direction are set to £30°.

3 Case study

The “Case study” section is split into two parts: Sect. 3.1 dis-
cusses the selection and processing of the field data and the
resulting simulation conditions. Section 3.2 then showcases
the use of the OFF model to predict the performance of con-
trollers and how a pre-selection can be made from a large
number of controllers.

3.1 Simulation setup

The case study is based on the southwestern corner of the
Hollandse Kust Noord (HKN) wind farm, which consists of
10 turbines, here modeled as DTU 10 MW reference tur-
bines with a diameter of D = 178.3 m (Bak et al., 2013).
The layout has been scaled to preserve the same relative dis-
tances between the turbines compared to the original ones.
It features three critical wind directions for which three or
more turbines stand in line, namely for ¢ ~ 175, 201 and
265°. To effectively challenge the controllers, a wind di-
rection time series that is both realistic and includes vari-
ations across all three directions (along with smooth tran-
sitions between them) is desirable. Accordingly, to drive
the simulation, we use 23h and 45 min of data recorded
by a vertical ZephIR 300M wind lidar at the HKN site on
28 March 2023, as shown in Fig 3 (Knoop, 2019). This
date is before the wind farm went online, which happened
in December 2023 (https://www.crosswindhkn.nl/, last ac-
cess: 28 October 2024). The lidar provides horizontal and
vertical wind speeds, along with wind directions, at vari-
ous heights. For this study, measurements at 108 and 133 m
were used to interpolate the wind direction at a hub height
of 119m. In order to recover the underlying wind direction
changes, the ensuing signal was then zero-phase low-pass-
filtered using a fourth-order Butterworth filter with a cut-off
frequency of 1/600 Hz, equivalent to van den Broek et al.

https://doi.org/10.5194/wes-10-1055-2025
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(2024). The filtered output, as well as the wind direction in-
put for the precursor, was eventually fed to the yaw steer-
ing controllers. For the controller, this results in an unreal-
istic noise-free signal, which would otherwise be a function
of a filter or distributed estimation algorithm, e.g., Annoni
et al. (2019), van der Hoek et al. (2021) and Howland et al.
(2022). Since this work aims to demonstrate the surrogate
model capabilities and not necessarily the effectiveness of
an integrated wake steering controller, the added complex-
ity of a wind direction estimator has been left out. Figure 4
depicts the lidar location in the context of the HKN wind
farm site and its closest neighboring wind farms (adapted
from https://map.4coffshore.com/offshorewind/, last access:
28 October 2024). The figure shows that the used wind di-
rection range overlaps with the direction in which the Prinses
Amalia Windpark is located, which may have an impact on
the measurements. Therefore, for the purposes of this paper,
changes in wind speed are neglected, and a constant mean
wind speed of 8ms~! is imposed for all simulations. This
wind speed corresponds to the turbine’s underrated operation
region, where the impact of wake losses is most significant,
thereby offering the greatest potential for power maximiza-
tion using wake steering. The OFF simulations ran with a
shear coefficient of 0.12, a turbulence intensity of 6 % and no
veer. Each turbine uses 200 OPs to describe the wake. With a
time step of 5s and a freestream wind speed of 8ms™!, this
results in 8 km of simulated wake, or 44.9 D, which reaches
beyond the boundaries of the simulated farm (approximately
5 x 5km region).

3.2 Predicted controller performance

The controller (Eq. 9) updates the wind direction estimate
based on one of two conditions: (i) the difference between the
current wind direction and the measured direction is larger
than @i, or (ii) the integrated error exceeds the threshold. To
ensure a sensible range of parameters, we investigate the bal-
ance between these two conditions: Fig. 5 compares which
of the two triggers dominates and causes a LuT reevalua-
tion. The results show that the chosen range of i, € [2, 10]
and k; € [0.01, 0.09] leads to both edge cases: a predominant
role of the threshold and a predominant role of the integration
constant.

The selected ranges of ¢jiy and k; with a 1° and 0.01
discretization, respectively, lead to 81 possible combinations
of dead-band settings for two types of controllers, LuT and
baseline. All 162 controllers are evaluated using OFF, with
the results reported in Fig. 6. The figure displays the con-
troller performance in three dimensions: (i) energy gener-
ated, (ii) number of yaw actuator activations and (iii) ac-
cumulated yaw travel. Figure 6a compares the activations
with the energy generated, (b) the energy with the yaw travel
and (c) the yaw travel with the activations. All three fig-
ures are colored based on their ¢jiy, setting. Looking at the
baseline controllers in Fig. 6a, it becomes apparent that a
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smaller ¢, results in many more activations but not in an
increase in energy. This is a result of a power curve that has
little sensitivity to small yaw angle misalignment, possibly
highlighting the need for more adequate power-loss exponent
parametrization (Tamaro et al., 2024). On the other hand, the
LuT-controlled cases still benefit from the increased number
of activations, but with diminishing returns. Notably, there is
little difference in the number of activations between base-
line and LuT controllers. This is due to the fact that Eq. (9)
updates the wind direction estimates for baseline and LuT
controllers alike. In contrast, the LuT controllers accumu-
late a much larger amount of yaw travel than the baseline
cases, as depicted in Fig. 6b. This is to be expected as the
baseline controllers only drive the turbines to full alignment,
while the LuT may vary between large positive and negative
misalignment angles. Figure 6¢ shows the relation between
activations and yaw travel. The plot completes the picture
drawn by (a) and (b): while the number of actuator activa-
tions may be similar between baseline and LuT controllers,
the yaw travel is not. From these results, one could start to
deduce which controllers fall within a reasonable range for
set turbine limitations. For instance, if there is an average
yaw activation budget of 10 times per hour per turbine, the
number of relevant controllers can be reduced. In this case,
23.75 h x 10 turbines x 10 activations per hour per turbine
leads to a maximum of = 2375 activations, which limits the
dead-band width at ¢}, > 5°. The results show that if yaw
travel and turbine misalignment are not of concern, a LuT
controller may result in a significant improvement in energy
generated.

In this work, we select the controllers for verification
based on the performance difference due to the switch from
baseline to LuT control. Figure 7 shows how the addition of
wake steering increases the amount of yaw steering in com-
parison to the increase in farm energy while maintaining the
same ¢}, and k;. The minimize-yaw-travel and maximize-
energy approximated Pareto front indicates several candi-
dates that offer a trade-off between the increase in energy
and the resulting increase in yaw travel. Three combinations
of ¢iim and k; along the front are selected for LES verifica-
tion: one that yields a steep increase in energy for a relatively
low increase in yaw travel (¢m = 10° and k; = 0.05), one
that tries to achieve the maximum energy possible (¢}im = 2°
and k; = 0.09) and one intermediate configuration (@i, = 5°
and k; = 0.02).

Next to the results presented in Figs. 6 and 7, which sum-
marize the overall performance, a wind-direction-resolved
investigation of the results can also be useful. Figure 8a
shows the energy generated by the baseline and LuT con-
trollers with @i, = 5° and k; = 0.02 versus the wind direc-
tion. More specifically, a sliding time window of 600 s is used
to calculate the energy, as well as the mean wind direction
and wind direction change. The result is a smooth transition
between multiple 10 min average bins. The energy data are
plotted over the mean wind direction and, therefore, go back

Wind Energ. Sci., 10, 1055-1075, 2025



https://map.4coffshore.com/offshorewind/

1062

M. Becker et al.: An open-source model to investigate wake dynamics

Time Time
2 frame 2 frame 3 (b) b
z 265 deg & i
§ &
s
5
B 200 [Apia 201 deg I N i
= W i 175 deg W
1 1 1 1
160 5 10 15 20

Timein h

Figure 3. (a) The full 23 h and 45 min wind direction time series investigated in this work. The series is based on field data recorded by a
vertical lidar at the HKN site on 28 March 2023 (Knoop, 2019), depicted in gray. The low-pass-filtered data are given in black. Three marked
subsets of the time series have undergone LES for verification purposes. Each LES time frame (TF) has a length of 3 h, along with a 20 min
initialization period. Critical wind directions are marked in (a) and depicted relative to the farm layout in (b).
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Figure 4. Lidar location within the HKN wind farm site with re-
spect to the neighboring wind farms, Prinses Amalia Windpark
(PAW) and Egmond aan Zee (EaZ), as well as its distance to the
closest considered turbine. The measurements used in this study
range from 172 to 304°, part of which, 190 to 211°, may be influ-
enced by PAW. Note that the data used were recorded before HKN
went online.

and forth along the x axis (compare Fig. 3). In direct com-
parison, it is evident that the LuT manages to outperform the
baseline controller as expected for large parts of the wind
direction, though not for all of them. Figure 8b depicts the
wind farm efficiency as the ratio of the energy generated by
the LuT divided by the baseline energy. The data show that
the LuT-driven controller shows advantageous behavior for
wind directions between 160 and 220° but struggles to con-
sistently outperform the baseline in the wind direction transi-
tions between 220 and 300°. Figure 8b also depicts the wind
farm efficiency as predicted by FLORIS during the LuT cre-
ation, so under ideal steady-state conditions. The difference
between the achieved wind farm efficiency and the predicted
one shows that the changing turbine states and wind direc-
tion state can lead to suboptimal performance and that the
wind farm efficiency predicted by the LuT is, in most cases,
an upper limit, only achievable under steady-state conditions

Wind Energ. Sci., 10, 1055-1075, 2025
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Figure 5. Comparison of the trigger condition that leads to an up-
dated wind direction based on Eq. (9). Red means that the controller
is updated more often based on an exceeded dead band, and blue
means that the integrated error crosses the threshold more often.
Marked squares indicate controller settings selected for verification
in Sect. 4

(Lejeune et al., 2024). The occasional localized overshoots
beyond this performance envelope can be attributed to the
dynamic nature of the simulations. For instance, in the ab-
sence of wake steering, a downstream turbine aligned with
the wind direction would always operate within the wake of
the upstream turbine. However, in a dynamic setup, transient
wind direction changes may temporarily shift the wake, al-
lowing the downstream turbine to operate under improved
conditions and produce more power than in the steady-state
scenario. Nevertheless, these overshoots are temporary, even-
tually converging back to the steady-state value or lower.
This observation highlights the need for dynamic wake mod-
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Figure 6. (a—c) Unfolded three-dimensional performance comparison of the dead-band controllers across the full simulated time frame in
OFF. Next to the energy generated by the 10-turbine wind farm, there is the accumulated yaw travel in degrees and the number of times the
yaw actuators are activated. The baseline controllers are colored in different shades of red, based on ¢jj,. The LuT controllers are colored in

blue, respectively.

els to optimize wind farm control strategies during transient
periods. Lastly, Fig. 8c shows the wind farm efficiency over
the mean wind direction, as well as the mean wind direction
change. This serves as an approximated state-space represen-
tation of the wind direction and how it influences the wind
farm performance. Since the y axis depicts the wind direction
change, the state of the wind direction moves left in the lower
half of the plot and right in the upper half. In conclusion, the
performance of a wake steering controller is not trivial to as-
sess in a time-marching simulation due to changes in the flow
field and in the turbine state. As a result, the wind farm can
exhibit very different performance for the same wind direc-
tion and wind speed.

4 HKN cases that underwent LES

This section verifies the selected controllers from Sect. 3.2
across the three subsets of the 24 h period simulated in OFF
and FLORIS. The OFF results are compared to both the LES
and FLORIS, allowing the effect of the added dynamics to
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be investigated. Section 4.1 further introduces the LES setup
and the three time frames. Sections 4.2-4.4 investigate the
power generated on a turbine, farm and statistical level, re-
spectively. This is followed by Sect. 4.5, where the energy
generated is compared between the simulations.

4.1 Large-eddy simulation

The 10-turbine wind farm is simulated as actuator discs in
a 5 x5 x 1 km simulation domain in SOWFA (Churchfield
et al., 2012). The domain is discretized in 300 x 300 x 100
cells and simulated with a time step of 0.5s. A grid res-
olution of 16.6 x 16.6 x 10 m was chosen to balance com-
putational cost and accuracy. Given the turbine rotor diam-
eter of 178.3 m, this results in a normalized cell width of
Ax = Ay =0.094 D, but since the turbines are often diag-
onally oriented in the domain during the simulation, there is
a worst-case ratio of ~/2Ax = 0.132D. The neutral turbu-
lent precursor is developed over 3 x 10*s. A surface rough-
ness of 0.0002 m enforces a horizontal turbulence intensity of
~ 6.2 % at hub height. The initial wind direction is kept con-
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Figure 7. LuT controller performance normalized by the respective
baseline controller with identical ¢j;y, and k; settings. Three marked
settings along the min—max approximated Pareto front are chosen
for verification. The coloring is based on ¢jj,.

stant at 225° during the precursor to allow changes of +45°
in the successor phase, using the same southern and western
inflow planes. Three 3 h successor phases underwent LES,
as marked in Fig. 3. A 1200 s spin-up phase with fixed wind
direction is first run in order to fully propagate the wake, af-
ter which 10800 s of the low-pass-filtered field data is used
to uniformly change the wind direction. All three time series
are offset to start with 225°, while the wind farm layout is
rotated in the LES, thereby ensuring the same precursor can
be used across all three simulations. The veer of the precur-
sor is < 2 ° across the rotor plane, and the shear exponent is
~ 0.075. Figure 9 shows the wind farm in the rotated domain
and a qualitative visualization of the wind directions during
the simulation. The latter is achieved by a pizza-shaped his-
togram with bins of 2.5° in width, translated onto the position
of each turbine. Darker bins indicate more frequent wind di-
rections, lighter ones less frequent ones, thereby visualizing
the wind turbine interactions. Next to the domain orienta-
tions, Fig. 9a—c also depict information relevant to all three
TFs; (a) the turbine indexes, (b) the simulated domain size,
and (c) the normalized distance between turbine TO and the
other turbines.

To link the dynamics back to the layout, time is also given
in convective timescales. This denotes the time taken by a
particle to travel a characteristic length within the domain.
We choose this length to be five turbine diameters, as this
is closely related to the spacing of the turbines; see Fig. 9c.
The freestream velocity is used to normalize the characteris-
tic length:

_5-1783m

te =

s =11l4s. (11)
msS
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4.2 Power generated

The power generated by SOWFA is calculated based on an
actuator disc model. Simulated on a coarse grid, these tend
to overestimate the power generated by the turbines, which
is a known issue (Martinez et al., 2012; Shapiro et al., 2019).
The resulting mean ratio between the power generated in
SOWFA and OFF is 1.34. Based on this mismatch, the power
measurements by SOWFA in the following plots are either
normalized or marked with a “c”, which denotes that the
power was divided by the correction factor. Next to the LES
data, the zero-phase-filtered power output data from the LES
are also used to analyze model and controller performance.
This filtering removes the influence of turbulence on turbine
power, isolating the underlying trends more consistently with
the wake dynamics that OFF aims to describe. To this end,
a fourth-order Butterworth filter is used with a cutoff fre-
quency of 1/370Hz. The cutoff frequency is motivated by
the results presented later in Fig. 13b. Note that the individ-
ual turbine signals are filtered. Derivatives, like farm power
or energy, then use either the filtered turbine power or the
original signal and are marked with “Ipf” if they use the fil-
tered data.

The match between OFF and SOWFA is investigated in
three ways: (i) on a selected turbine level for a selected con-
troller, (ii) on a farm level for a selected controller and (iii) on
a statistical level. Figures 10 and 11 investigate the data
collected for turbine T3. The data were recorded using the
dead-band LuT and baseline controllers with ¢}, = 5° and
ki =0.02, one of the settings selected for validation based
on the results in Fig. 7. Turbine T3 is selected as it acts as an
upstream turbine in TF 1 (see Fig. 9) and as a downstream
turbine in TFs 2 and 3. This is mirrored in Fig. 10, where
the turbine produces its maximum power during the initial
hours of the time series. The LuT-controlled case diverges
as the turbine engages in yaw steering and sacrifices power
to redirect its wake. During later periods of the simulation,
T3 becomes a downstream turbine, and its power generated
significantly decreases. Here, we can see an inverse effect,
where T3 benefits from the yaw steering of other turbines
and generates more power in the controlled case than in the
baseline case.

Zooming in on the TFs that underwent LES, Fig. 11 gives
a more detailed look into the match of the LES data and the
OFF data. Qualitatively, we observe an overall fitting trend
between the LES signal and the power predicted by OFF.
An immediate difference between the two is the influence of
turbulence on the LES signal. This causes noticeable varia-
tions that OFF cannot predict. The low-pass-filtered signal
removes this discrepancy partially and shows a signal that
is overall better aligned with the OFF signal. One aspect
that gets lost due to this filtering is the response of the tur-
bine power to yaw angle changes: Fig. 11b shows the effi-
ciency of the turbine during a period where turbine T3 en-
gages in yaw steering to lessen the wake interaction with a
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Figure 8. (a) Energy generated by the wind farm, calculated based on the power integrated over a sliding time window of 600 s. The energy
is plotted over the mean wind direction ¢ during the 600 s for both LuT and BL control. The resulting wind farm efficiency is given in (b)
and (c). Next to the wind farm efficiency, (b) also depicts the predicted LuT steady-state wind farm efficiency. In (c), the efficiency is given
as color, while the y axis denotes the mean wind direction change ¢ over 600 s. The controller settings are ¢};;, = 5° and k; = 0.02.
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Figure 9. Collection of the three simulated LES TFs of the 10-turbine subset of the HKN wind farm. Panels (a—c) feature pizza-shaped
histograms of the wind direction centered in the turbine locations: darker colors indicate more frequent wind directions and, therefore,
turbine interactions that happen more frequently during the TF. Additionally, (a) depicts the turbine indexes; (b) the simulated domain size;
and (c) the relative distance between turbine TO and the other turbines, normalized by turbine diameters. The domains are rotated such that
the initial wind direction is aligned with the precursor, and the remaining wind direction time series can be simulated with the same inflow

planes.

downstream turbine. In OFF, the rotor misalignment causes
sharp decreases and increases in efficiency, while the change
is either smoothed out by filtering or hidden in the noise for
the LES data. Reoccurring discrepancies between OFF and
the low-pass-filtered LES data appear in the form of a phase
shift, mainly visible with the baseline power signal: OFF dis-
plays slightly delayed reductions and recoveries compared to
SOWFA. This might be the product of a wake that advected
too slowly, which is notable as similar models specifically
slowed their advection speed down for a better match with
reference data. Another difference between OFF and the LES
data is visible in the turbine efficiency displayed in Fig. 11d
and f: OFF tends to either match or overestimate the effect
of yaw steering on the turbine efficiency, compared to the fil-
tered LES signal. This may be attributed to the fact that OFF
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describes a middle ground between an overconfident steady-
state model and a more realistic LES.

Figure 12 moves from the turbine power described previ-
ously to the farm level. As the scale increases, the differences
between the signals decrease. On a farm level OFF shows
a qualitatively better match than on a turbine scale, where
differences become much more clear. The farm power effi-
ciency is also more balanced compared to the turbine level;
both over- and underestimations are present if there is a mis-
match, which suggests a lower bias. The improved perfor-
mance on a farm scale may stem from different sources.
(1) The fact that turbines are distributed throughout the farm
makes it more likely that if one is not waked, another one
may be. As a result under- and overestimation may cancel
out. (ii) Looking at an individual turbine, small increases in
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wind speed lead to a large amplification of the power gener-
ated. As a result, mismatches create a large error. However, in
the presented farm context the power contribution of waked
turbines is small compared to the free-stream turbines. The
data presented in Fig. 12a and b also highlight TF 1 as a dif-
ficult period for wake steering to achieve consistent gains.

4.3 Power signal correlation

The results presented in Figs. 10—12 show the similarities but
also the discrepancies between OFF and the LES with respect
to power generated. In the OFF environment, fluctuations
in the power signal are due to (i) wind direction changes,
(ii) control set point changes and (iii) delayed wake dynam-
ics. By contrast, the LES environment also reflects fluctu-
ations due to turbulence and wake meandering. These latter
two factors contribute to higher-frequency effects, raising the
question: which frequency ranges does OFF effectively cap-
ture? And which frequencies could also be represented in a
steady-state model?
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To answer this question, we investigate the correlation be-
tween the power signals. Assuming that the discrepancies
between OFF and the LES are of a high-frequency nature,
one would expect that the correlation between the two mod-
els increases as high-frequency fluctuations are filtered out.
In turn, with too-aggressive filtering, the correlation should
eventually decrease as the LES signals lose components de-
scribed by OFF. Based on these assumptions, the individ-
ual turbine data of TFs 1-3 for the baseline and LuT dead-
band (¢im = 3°, k; =0.02) controllers are correlated be-
tween OFF and the LES. A total of 180 h of data, or 18 h per
turbine, are subsequently processed. Figure 13a illustrates
the influence of the cutoff frequency of the fourth-order But-
terworth filter applied to the LES on the correlation score
recorded by OFF, while Fig. 13b depicts the resulting aver-
age correlation error. The average correlation error is defined
as the mean distance of the turbines to 1 for all three TFs:

1
Corr = EZZ[I — corr(porF, pLes)], (12)

ITF IT
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where p is the power of turbine it in TF itp, and npt =
54+646=17 is the total number of downstream turbines
considered summed across all three TFs. Combining the
baseline and controlled cases, the minimum for ecoy iS
achieved for foutorf = 1/370 Hz =1/3.33 tc_l =0.0027 Hz.
In contrast to OFF, the collective minimum for FLORIS is
reached at 1/520Hz = 1/4.681;] = 0.0019Hz, so at a lower
frequency. This gap is explained by the added wake dynam-
ics in OFF, as OFF uses the same FLORIS model in its core.
This cutoff also aligns with the literature on wake meander-
ing, which is not captured by OFF: Lio et al. (2021) finds the
wake meandering frequency to be around 55%, which equals
0.0022 Hz for the presented study. Larsen et al. (2007), on
the other hand, suggest a higher frequency, which, for this
study, equals 0.022 Hz. We can conclude that OFF does de-
scribe the wake dynamics up to the wake meandering fre-
quency. Additionally, we note that OFF leads to a lower error
than FLORIS; while OFF finds its minimum at ecoy = 0.11,
FLORIS returns eqorr = 0.19. It should be noted that the fil-
tering timescale used to preprocess the wind direction signal
(1/600 Hz) may limit OFF’s performance, as it filters out rel-
evant dynamic scales. Related work by Simley et al. (2020)
suggests, for instance, that mean wind direction changes may
occur with a frequency of up to 1/270Hz. Rerunning the
LES with a higher cutoff frequency would likely increase
OFF’s effective cutoff frequency estimation; however, this
was not feasible within the scope of the present work.

Figure 14 provides more insight into the source of the cor-
relation error. Figure 14a and b show the correlation error in
OFF, split into LuT cases (a) and BL cases (b). This is ac-
companied by the results for FLORIS, depicted in (c) and
(d), also split into LuT cases and BL cases, respectively. Up-
stream turbines, like TO, T1, T3, TS and T7 for TF1, are ne-
glected in Figs. 13 and 14 as they are operating at close-to-
maximum power in OFF and FLORIS, while their LES coun-
terparts are affected by turbulence (see for instance Fig. 11a).
As a result, the turbines modeled in OFF and FLORIS expe-
rience no excitation, while the LES ones do. This leads to
effectively no correlation between the signals.

Looking at which turbines lead to the larger e for
FLORIS, the turbines in TF 1 contribute a large share, as
well as turbine T9 in TF2. Based on Fig. 9, we can see that
TF 1 features long-distance turbine-to-turbine interactions.
This fact, paired with the varying wind direction, leads to a
situation where the steady-state approximation of FLORIS
fails and where wake dynamics play a significant role in
the power generated. This also complements the observation
from Fig. 12b, where it was visible that TF 1 is a challeng-
ing case for the steady-state-based LuT controller. A notable
similarity between OFF and FLORIS is that the LuT cases
lead to a higher error than the baseline cases. One reason for
this discrepancy could be that the turbine model does not ac-
curately capture the impact of larger misalignment angles.
This would motivate turbine model corrections, as suggested
by Heck et al. (2023) and Tamaro et al. (2024). Addition-
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Figure 13. (a) Correlation of the downstream turbine power in OFF
and the LES. The LES data are zero-phase low-pass-filtered with
varying cutoff frequencies. Each line corresponds to the correlation
of one turbine, blue lines are the data from the controlled TFs, and
red lines are from the baseline ones. The dot represents the maxi-
mum correlation from a given turbine. The average error is depicted
in (b) and is minimal for f.yoff = 1/370 = 0.0027 Hz. Addition-
ally, there is the line for the correlation of the FLORIS data with the
LES. Its minimum is located at 1/520 Hz. The dead-band controller
settings are @iy, = 5° and k; = 0.02.

ally, this error may be partially rooted in the wake dynamics
triggered by LuT control. Indeed, LuT-based wake steering
tends to amplify changes in wind direction: a variation of
just a few degrees in the wind direction may, under certain
circumstances, induce a yaw-offset angle change that is 10
times greater than the original wind direction change (Leje-
une et al., 2024). This results in more frequent and larger
variations in wake states.

4.4 Power error statistics

Section 4.2 first investigates the turbine power, then the farm
power, as well as the role of timescales. This discussion
is limited to one set of controller settings, ¢im = 5° and
ki = 0.02. For brevity, we denote the controller settings as
(¢1im, ki) in the following paragraph. Two more sets of set-
tings underwent LES, namely (2,0.09) and (10, 0.05). Ta-
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Figure 14. Cumulative correlation error between the turbine power
from the LES and OFF (a, b) and FLORIS (¢, d). The data are split
into the LuT cases (a, ¢) and the baseline cases (b, d). The shaded
areas indicate the contribution of each downstream turbine across
the three TFs on top of each other. With (d) it is indicated which
layer relates to the corresponding TF. The dead-band controller set-
tings are @iy, = 5° and k; = 0.02.

ble 1 summarizes characteristic error quantities for all con-
trollers. The table combines the three TFs for each controller
setting to calculate the difference between the OFF predic-
tion and FLORIS prediction. The table lists the normalized
root-mean-square error (NRMSE) for the turbine and farm
power, as well as the correlation of both signals. The nor-
malization was done with the corrected LES data. The val-
ues show that the addition of dynamics renders OFF more
robust towards the addition of yaw steering, compared to
FLORIS: while the turbine and farm NRMSE slightly de-
crease for OFF, there is a notable increase for FLORIS re-
lated to the switch from BL to LuT operation. Similarly, the
correlation of the farm and turbine power decreases for both
OFF and FLORIS, but the steady-state approximation results
in a larger decrease; e.g., for (2, 0.09), the farm power corre-
lation by OFF decreases by ~ —0.03 compared to &~ —0.11
for FLORIS. However, both OFF and FLORIS achieve sim-
ilar correlation and error results for baseline operation. An
explanation can be that the LuT creates wind farm states that
are more sensitive to environmental changes. As a result, the
modeled wake dynamics become more relevant. Also notable
is the NRMSE decrease for both models with the switch from
turbine level to farm level, from values between 0.17 and
0.27 to values between 0.04 and 0.06. Consequently, model
inaccuracies on a turbine level do not necessarily lead to
equally large errors on a farm level. This also indicates that
going forward, improved model descriptions might lead to
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less uncertainty on a turbine basis but might show diminish-
ing returns on a farm scale.

4.5 Energy generated

Section 4.2 investigates the power generated by the wind
farm at different time and turbine scales. This section com-
plements the results with a discussion about the energy gen-
erated. More specifically, the efficiency of the wind farm is
compared between the LES and the surrogate models. The
efficiency is calculated as the ratio of the farm energy gener-
ated using LuT control, normalized by BL control, integrated
over a time window AT':

ST Ay, pLar(r) dr
JIAT Ay, peL(r) dr

where p refers to the power generated by a turbine, At
is the time step, and ¢ is the time. Figure 15 compares
nLeEs(t, AT), the wind farm efficiency simulated in the LES,
with nopr(t, AT) and npLoris(¢, AT), the values OFF and
FLORIS predict, respectively. This is done for four values
of AT between 100 and 1800 s with data from all three TFs
and based on the ¢jim = 5°, k; = 0.02 controllers. A first ob-
servation is that the range of values for the farm efficiency
decreases with increasing length of AT. This shows the in-
creasing convergence towards a more consistent controller
performance over a longer time as well as a diminishing in-
fluence of effects at a small timescale. In comparison, be-
tween OFF and FLORIS, OFF generally predicts a narrower
fit for small values of AT, closer to the ideal correlation line.
With increasing AT, this difference diminishes, and the dis-
tributions of FLORIS and OFF become more equal. For large
AT, FLORIS shows a structural underestimation compared
to the LES data, where OFF still predicts values along the
ideal correlation line. This observation is also quantifiable
with the linear regression parameters: as A7 lengthens, the
linear coefficient approaches 1, and the bias decreases. This
trend is visible for both models; however, OFF consistently
presents parameters closer to the ideal values.

Figure 16 investigates the error in the approximation
of the farm efficiency to further quantify and compare
the differences. For each TF and each simulation environ-
ment n(t, AT) is calculated for AT € [100,1900]s and ¢ €
[to, 11 — T'], where ty is the start time of each TF, and #; is
the final time. Figure 16 compares how the root-mean-square
error between the (¢, T) from the LES and the n(¢, AT) of
OFF and FLORIS changes for different 7. The difference be-
tween the LES and FLORIS improves significantly for longer
averaging periods, highlighting its design meant for long-
term wind farm behavior. On the other hand, OFF benefits
from the addition of wake dynamics and shows much lower
RMSE values compared to FLORIS. However, this advan-
tage becomes smaller as AT grows larger. As a result, a user
has to decide if the added computational cost of OFF in com-
parison to FLORIS justifies the improvement in prediction.

n(t, AT)= 13)
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Table 1. Power error statistics for each controller tested in OFF, FLORIS and LES. From left: T. NRMSE, the normalized root-mean-square
error calculated with the corrected turbine power LES data; T. Corr., the correlation with the unfiltered turbine power LES signal; F. NRMSE,
the normalized root-mean-square error calculated with the corrected farm power LES data; F. Corr., the correlation with the unfiltered farm
power LES signal; foyoff, the cutoff frequency for LES filtering; and ecorr, the average correlation error.

Model  ¢im  k Mode T.NRMSE[-] T.Corr.[-] ENRMSE[-] F Corr.[-] fouoff [Hz] ecorr [-]
OFF 2 009 LuT 0.19 0.81 0.047 0.88 1/360 0.14
FLORIS 2 0.09 LuT 0.27 0.74 0.064 0.81 1/540 0.26
OFF 2 0.09 BL 0.20 0.88 0.048 0.90 1/430 0.10
FLORIS 2 009 BL 0.19 0.87 0.045 0.92 1/520 0.13
OFF 5 002 LuT 0.18 0.83 0.043 0.90 1/360 0.12
FLORIS 5 002 LuT 0.24 0.76 0.056 0.84 1/520 0.24
OFF 5 002 BL 0.20 0.88 0.047 0.91 1/390 0.10
FLORIS 5 002 BL 0.20 0.87 0.045 0.92 1/520 0.15
OFF 10 005 LuT 0.18 0.85 0.042 0.91 1/370 0.11
FLORIS 10 0.05 LuT 0.24 0.80 0.053 0.85 1/510 0.21
OFF 10 005 BL 0.20 0.88 0.048 0.91 1/370 0.09
FLORIS 10 0.05 BL 0.21 0.86 0.047 0.91 1/500 0.16
AT=100s AT =300s AT =600 s AT =1800s
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Figure 15. Wind farm efficiency as predicted by the surrogate models OFF (a—d) and FLORIS (e-h) and as simulated in the LES. The
efficiency is calculated based on the ratio of energy generated over a time window AT, which is equal for each column of the figure, e.g., (a)
and (e). The dotted white line indicates a perfect fit, which is complemented by the linear regression of the data, given as a red line and
equation. The color map is normalized by the largest bin count based on the given time window. The darkest color is reserved for the smallest
non-zero bin count; empty bins are not filled. Note that the distribution of AT is not equidistant.

We conclude that, based on this case study, it is advantageous
to use OFF for quantities of interest shorter than &~ 20 min.
However, for longer timescales the benefit of the added dy-
namics diminishes.

4.6 Computational cost

One of the main motivations for dynamic parametric wake
models like OFF, or by extension for FLORIDyn or On-

Wind Energ. Sci., 10, 1055-1075, 2025

WaRDS, is the low computational cost compared to high-
fidelity numerical methods such as LES, for instance. On the
other hand, it is evident that the computational cost has to
be higher than the cost of the underlying steady-state wake
model. Simplified, the computational cost of both OFF and
time-marching FLORIS can be expressed as a function of the
number of time steps ny, the number of turbines nt and the
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Figure 16. Root-mean-square error in the wind farm efficiency in
LES compared to OFF or FLORIS. The wind farm efficiency is de-
fined as the ratio of the energy generated with LuT control divided
by the baseline energy integrated over a given time window.

number of observation points nop:

Ostate prop. (nT.n0p)+OTWE(nT,n0P)+ +

Oorr = nk[ nT-[OF run(m1)+OF reinit. (7)]

Oprediction
.. Ocor.(n1, OP) + Ocon.(”T)]

+ OF init. + OOFF init » (14)
OrLoris = 1k - OF run(n1) + OF init + Ocon.(nT) (15)

where Ostate prop. refers to the cost of the state propagation,
Otwer to the creation of the TWFs, Og ry, to the cost of
one FLORIS evaluation, OF reinit. and OF init. to the FLORIS
reinitialization and initialization, Qo to the state correc-
tion, and lastly Ocon. to the derivation of the control set
points. This is accompanied by other costs, such as visual-
ization, data storage and memory limitations, which are ex-
cluded here.

Performance analysis during the code development has
shown that the reoccurring computational costs of OF reinit.
can be substantial depending on the implementation.
FLORIS was developed with other simulation goals in mind.
This leads to costs associated with the reinitialization that are
mandatory for some FLORIS applications but could be ne-
glected for purposes of the OFF simulations. Consequently,
existing codes similar to OFF have mainly chosen to imple-
ment their own wake model. This, in return, limits the capa-
bilities and flexibility of the wake model, which was one of
the main motivations for the development of OFF. Another
consideration to reduce computational costs is to only run
relevant turbines in the steady-state simulation and thereby
decrease the cost of O run(n1). This could be done by ex-
cluding turbines that do not contribute to the wake losses
experienced by the turbine the TWF is dedicated to. The
validity of this approach also depends on the steady-state
model capabilities. For instance, if there is a blockage model
based on nt, this simplification would introduce a systematic
model error. Lastly, parallelization is a natural approach to
improving computational complexity. The nt TWF evalua-
tions done in one time step can be done independently of one
another, which would lead to a performance improvement for
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up to nt cores. In this work, we investigate a large number
of control settings and, therefore, use OFF as a single-core
code and split the task at hand over multiple simulations. To
give an estimate, in our 10-turbine simulations, OFF ran with
a real-time factor of 2.2 x 10~ in single-core performance,
resulting in 5h 20 min CPU time for 23 h 45 min simulated
time. The SOWFA simulations, recalculated from 80 cores
to 1 core, ran with a real-time factor of 2 x 103, resulting in
60:30 h CPU time for 3 h simulated time. Lastly, FLORIS ran
with a real-time factor of 5.2 x 107> , resulting in 4.43 s wall
time for 23 h 45 min simulated time. Previous work showed
that the real-time factor of a model like OFF can be reduced
to the order of 10~ for a similar-sized wind farm with a ded-
icated implementation of the Gaussian wake model (Lejeune
et al., 2022; Becker et al., 2022b).

5 Conclusions

This paper introduces OFF, a dynamic open-source wake
model designed for wind farm flow control and wake model
development and as a unified interface for various similar
models. In this context, a generic description of a passive
Lagrangian particle wake model is provided, along with de-
tails on the specific version used to achieve the results dis-
cussed here. In an example case, the model is used to make
an informed parameter choice for a wake steering controller
before verifying the selected settings in LES. The controller
applies a wake steering look-up table dynamically for a 10-
turbine wind farm. The wind farm layout is based on the Hol-
landse Kust Noord wind farm, and the approximately 24 h
long period of wind direction time series used to test the con-
trollers is based on field data from the same location.

The results from the study show that the wind farm con-
troller can lead to suboptimal performance in the presence of
wind direction changes compared to what was predicted dur-
ing the generation of the LuT based on a steady-state assump-
tion. The study also shows that the wake steering controller’s
performance can vary widely for the same wind direction
based on the prior state of wind direction, wakes and con-
troller used. Six selected sets of controller settings are then
verified in LES in three 3 h long subsets of the wind direction
change time series. The results show overall good agreement
between the LES and OFF in both predicted power gener-
ated and wake steering controller efficiency. The LES, for
instance, confirms that one of the selected time frames cre-
ates a challenging environment for the wake steering con-
troller to return consistent gains over the baseline operation.
The results further highlight the timescales described by both
FLORIS and OFF. A conclusion drawn from the comparison
is that a dynamic wake description leads to a better correla-
tion with the LES power signal, as well as a lower root-mean-
square error compared to a steady-state prediction.

In conclusion, OFF provides a unified interface to a dy-
namic wake description that is advantageous over steady-
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state wake models for shorter time periods (< 20 min). The
model is open-source and designed to interface with steady-
state wake model toolboxes. This has been demonstrated
with the FLORIS toolbox. As a result, users of OFF can also
benefit from the ongoing development done for the underly-
ing wake models.

Future work should further investigate the use and effect
of various steady-state wake models in a dynamic context.
This starts with further validation of the approach and the
generation of more realistic test and reference cases. One
shortcoming of the presented case study is its limitation to
wind direction variations. Future work should investigate the
model and control performance with realistic wind speed
variations, similar to the works of, for example, Doekemei-
jer et al. (2020) and van den Broek et al. (2024). It may
also involve investigating the selection of wake parameters.
Since OFF describes wakes at higher frequencies, the result-
ing wake shape may appear more slender than a steady-state
wake, which must account for small-scale wind direction
changes and wake meandering. The OFF code is further built
in a modular way to be expanded by other dynamic elements
and to further explore their effectiveness for the description
of dynamic flows. This includes, for instance, wake advec-
tion descriptions (e.g., Zong and Porté-Agel, 2020; Lejeune
et al., 2022; Starke et al., 2023), shear and veer parametriza-
tions (e.g., Abkar et al., 2018), or floating-turbine dynamics
(e.g., Kheirabadi and Nagamune, 2021). Another direction of
interest can be the employment of single-wake dynamic sur-
rogate models in a wind farm, e.g., Bastine et al. (2015) and
Gutknecht et al. (2023).

In the long term OFF should lead towards a new dynamic
wake model that replaces modularity with reduced computa-
tional cost and a dedicated, informed selection of the compo-
nents previously explored.

Code and data availability. The OFF framework is available on
GitHub at https://github.com/TUDelft-DataDrivenControl/OFF,
last access: 6 June 2025. The code used for this publication
can be found with the DOI https://doi.org/10.4121/331{86fe-
Sacb-4a60-99cd-7{8f0135¢200 (Becker and Lejeune,
2024b) or on the GitHub repository with the com-
mit 7910dd2e960821bc85e1468efe24f3cf8b5602cf. The
data generated and wused in this paper are available
at https://doi.org/10.4121/29C209FA-F2A4-456D-9353-
67CF81BE1AAA (Becker and Lejeune, 2024a). Plotting and
post-processing scripts are also included to give examples how the
data can be used.
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