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ABSTRACT This paper elaborates on an extensive security framework specifically designed for energy
management systems (EMSs), which effectively tackles the dynamic environment of cybersecurity
vulnerabilities and/or system problems (SPs), accomplished through the incorporation of novel method-
ologies. A comprehensive multi-point attack/error model is initially proposed to systematically identify
vulnerabilities throughout the entire EMS data processing pipeline, including post state estimation (SE)
stealth attacks, EMS database manipulation, and human-machine interface (HMI) display corruption
according to the real-time database (RTDB) storage. This framework acknowledges the interconnected nature
of modern attack vectors, which utilize various phases of supervisory control and data acquisition (SCADA)
data flow. Then, generative artificial intelligence (GenAI)-based anomaly detection systems (ADSs) for
EMSs are proposed for the first time in the power system domain to handle the scenarios. Further, a set-
of-mark generative intelligence (SoM-GI) framework, which leverages multimodal analysis by integrating
visual markers with rules considering the GenAI capabilities, is suggested to overcome inherent spatial
reasoning limitations. The SoM-GI methodology employs systematic visual indicators to enable accurate
interpretation of segmented HMI displays and detect visual anomalies that numerical methods fail to identify.
Validation on the IEEE 14-Bus system shows the framework’s effectiveness across scenarios, while visual
analysis identifies inconsistencies. This integrated approach combines numerical analysis with visual pattern
recognition and linguistic rules to protect against cyber threats and system errors.

INDEX TERMS Anomaly detection, attack, EMS, GenAI, multi-modal analysis, SoM-GI.

I. INTRODUCTION
The accelerated digitization of power systems has revolu-
tionized EMSs into complex cyber-physical architectures

The associate editor coordinating the review of this manuscript and

approving it for publication was Bang L. H. Nguyen .

capable of coordinating electricity delivery across expansive
grids. Modern EMS frameworks integrate SCADA systems
with cutting-edge computational algorithms, promoting a
complex network in which field equipment such as remote
terminal units (RTUs) and phasor measurement units (PMUs)
transmit synchronized, real-time data that enables enhanced
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monitoring and control of grid performance [1], [2], [3].
While this integration brings substantial operational effi-
ciencies and enhanced operational visibility, it also expands
the system’s vulnerability footprint, exposing multiple
attack vectors within the data acquisition and processing
sequence. The convergence of operational technology (OT)
and information technology (IT) domains necessitates a
reconsideration of traditional cybersecurity approaches. SE is
crucial in power systems, offering operators a real-time
overview of the system’s condition to maintain reliability
and control [4]. However, the coupling of power systems
with cyber infrastructure increases their exposure to complex
cyber-attacks. Among these, false data injection (FDI) attacks
present a particularly serious threat bymanipulatingmeasure-
ment data to lead system operators toward incorrect control
actions while evading traditional bad data detection (BDD)
methods [5]. Also, stealth attacks represent a sophisticated
subset of FDI attacks. These attacks are mathematically
designed to bypass traditional BDD mechanisms by ensuring
that the measurement residuals remain practically unchanged
from normal conditions [6]. Hence, BDD techniques such
as χ2-test, primarily based on SE residuals, are increasingly
insufficient, particularly against sophisticated stealth attacks
and FDI strategies. These stealthy attacks can manipulate
PMU and SCADA data while maintaining consistency with
system models, evading conventional BDD filters [7], [8].
In parallel, attackers might manipulate data within HMIs to
introduce misleading display changes that mislead operators,
all the while not necessitating the modification of actual
physical measurements. Given the critical infrastructure,
modern power grids necessitate robust mechanisms capable
of identifying both mathematically stealthy manipulations
and operator-level display tampering. Recent literature
emphasizes hybrid detection approaches that synthesize
physical-model awareness, data-driven analytics, and tem-
poral behavioral models to detect anomalies across multi-
layered attack vectors [9]. In accordance with this, testbed-
based experiments and co-simulation studies emphasize the
importance of AI and multi-modal detection approaches to
limit false positives (FPs) while improving sensitivity to
complex attacks [10], [11], [12].

A. PROBLEM STATEMENT
The evolving cybersecurity threats targeting EMSs represent
a new class of challenges that exceed the capabilities of
traditional defenses originally designed for isolated OT
domains [10]. As EMS architectures increasingly integrate
both cyber and physical layers, malicious actors are now
capable of executing coordinated attacks that span the
entire data processing pipeline, from the collection of
measurements through the SE stage and finally to the
HMI screen. An alarming feature of such breaches is their
ability to maintain statistical validity, enabling them to evade
conventional BDD techniques such as those relying on
χ2 hypothesis testing. These attack pathways are diverse

and sophisticated, such that some are stealth attacks or may
involve tampering with SE outputs after validation but before
storage in historical databases, effectively corrupting trusted
data storage systems. Others may directly target the EMS
databases, compromising both operational and historical data
integrity. Also, some attacks on HMIs can occur, which
can subtly manipulate visual representations such as circuit
breaker (CB) statuses or voltage levels without modify-
ing the core numerical calculations, thereby misleading
operators and delaying response times despite accurate SE
outputs [10]. The complexity of power systems, intensified
by the integration of distributed energy resources (DERs),
further increases these vulnerabilities. Within such dynamic
conditions, malicious data injections can be designed to
imitate normal operations, potentially leading the system
into inefficient or unstable operating states without timely
identification.

Also, traditional anomaly detection (AD) mechanisms,
such as the SE process, focus on numerical inconsistencies
and threshold-based alarms, which are often insufficient
when attackers manipulate the visual elements of SCADA
displays. For instance, falsified visual indicators may not
breach statistical thresholds but can still mislead human
operators, especially during high-stress operational condi-
tions. Although recent advances in GenAI offer promising
opportunities for pattern recognition and AD processes,
they present distinctive challenges. Many generative models
still lack robust spatial reasoning capabilities and often
require explicit guidance or structured prompts to accurately
interpret the content of segmented or context-rich HMI
displays. The absence of integrated detection frameworks that
simultaneously assess numerical validity, visual consistency,
and semantic rule coherence creates substantial gaps in
current EMS cybersecurity strategies. These gaps provide
opportunities for sophisticated attackers to exploit the
interfaces between detection layers and human perception,
particularly in scenarios requiring rapid and confident
operator decision-making. Addressing these vulnerabilities
requires a framework shift toward multi-modal, intelligent
security solutions capable of bridging these aspects of grid
operations [13].

B. RESEARCH OBJECTIVES
This section proposes the design of a multi-layered AD
framework tailored for EMSs, aiming to address a broad
range of security vulnerabilities by combining advanced
computational techniques with domain-specific operational
insights. The central goal is to construct and evaluate a multi-
point detection strategy that continuously observes critical
stages across the EMS data flow, focusing in particular on
post-SE validation based on stealth attacks, database integrity
verification, and the validation ofHMI outputs while ensuring
the efficiency necessary for grid stability and operational
continuity. A key innovation of this research lies in the
development of a SoM-GI approach that is designed to
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overcome spatial reasoning constraints often encountered
in models. By embedding structured visual indicators,
directional symbols, and connection point (CP) annotations
within screen segments, the proposed method enhances the
interpretability of complex HMI layouts and facilitates the
identification of hidden anomalies. The effectiveness of the
proposed framework will be assessed through testing on
an IEEE 14-bus system that meets the North American
Electric Reliability Corporation (NERC) regulations in terms
of voltage violations. Validation efforts will include detection
scenarios involving manipulated state vectors, fabricated
topology information, and HMI RE-based deception.

C. RELATED WORK
Generative pre-trained transformers (GPTs) can enhance
the system diagnosis (SD) accuracy beyond traditional
machine learning (ML) and deep learning (DL) models
and BDDs through contextual processing and adaptability.
UnlikeMLmodels requiring extensive pattern training, GPTs
can simultaneously analyze data, historical patterns, and
operator inputs. Their NLP capabilities enable the integration
of operator logs with numerical data, leading to more
accurate SD processes in EMSs. They can also adapt to new
system configurations without complete retraining, making
them more efficient for evolving power network topologies
while maintaining high diagnostic accuracy during critical
situations [14], [15], [16], [17]. Furthermore, it is challenging
for BDDs to detect stealth attacks as they evade detectors
as well as unexpected scenarios. Thus, Table 1 provides a
concise review of relevant studies. Ashrafuzzaman et al. [20]
introduced a data-driven ensemble ML framework aimed at
the detection of stealthy FDI attacks within smart grids by
employing classification algorithms. Although this approach
enhances the AD process by mitigating the complexities
associated with high-dimensional data, it faces significant
challenges, particularly the requirement for extensive labeled
datasets and the frequency of high FP rates in unsuper-
vised scenarios. An approach addressing stealth sensor
and actuator attacks under resource constraints on discrete
event systems using supervisory control was developed by
He et al. [24]. They introduced combined and efficient
vulnerability and algorithmic techniques. However, their
approach is constrained by the computational complexity
of modeling extensive discrete event system scenarios.
Guo et al. [21] introduced an event-driven stealthy FDI
attack strategy against remote SE systems. Their method
dynamically initiates attacks based on real-time residuals
to deteriorate system performance optimally. Despite its
effectiveness in resource-limited contexts, it depends on
accurate real-time residual computations, which could be
challenging in noisy environments.

Lee et al. [25] proposed a unified industrial large knowl-
edge model framework, emphasizing how domain-specific
knowledge can be integrated with large language models

(LLMs) to address complex industrial challenges. Their
framework introduces the concept of combining human-
interpretable data with structured machine-generated data
through LLM-based semantic understanding. The authors
demonstrated that LLMs can serve as domain experts by
processing diverse industrial data and generating actionable
insights, though they noted challenges in reliability and
privacy that require specialized training approaches. Building
on industrial LLM applications, Aberbach et al. [26] inves-
tigated how LLMs can enhance smart grid resilience and
efficiency by processing unstructured text-based information
alongside traditional grid data. Their work highlighted that
LLMs excel at handling diverse data types including operator
queries, maintenance logs, and regulatory documents. They
emphasized the importance of combining LLMswith special-
ized algorithms for grid-specific tasks, suggesting a hybrid
approach similar to the integration of prompt engineering
with meta-learning techniques, without multimodal analysis
considering the analysis of HMI screen and visual interpre-
tation of power system components. Further, Li et al. [27]
introduced a graph transformer-based vision-language model
for industrial AD processes. Their research demonstrated
that aligning visual features with textual descriptions through
prompt engineering significantly improves AD accuracy
across different product categories. The study showed that
multi-level domain adaptation enables models to capture
semantic consistency of anomalous features at various
scales, achieving strong performance even with limited
training data. However, their approach focused primarily
on visual anomalies in manufacturing rather than cyber-
physical attacks in smart grids. More directly related to grid
security, Shen et al. [28] developed an LLM-based security
situation awareness framework specifically for smart grids.
Their approach transformed diverse grid data into structured
text prompts and utilized LLM reasoning capabilities to
detect threats and forecast security states. The research
demonstrated that LLMs could process electrical parameters,
meteorological data, and social factors in a unified semantic
space, achieving improved prediction accuracy through
multimodal fusion. Nevertheless, their work concentrated on
general security awareness rather than addressing the specific
challenge of zero-day attack detection in federated envi-
ronments. Addressing privacy concerns in distributed grid
systems, Dasgupta and Mitra [29] proposed a federated zero-
shot learning framework that leverages LLMs to generate
client-specific semantic embeddings for intrusion detection.
Their approach demonstrated how LLMs could create varied
textual descriptions of attacks for each client, reducing
the risk of inference attacks while maintaining detection
accuracy. By combining federated learning with zero-shot
capabilities, they showed that models could detect unknown
attacks without sharing sensitive grid data. However, their
methodology differs from the proposed approach in that
they focused specifically on intrusion detection for network-
based attacks rather than the broader operational AD and
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TABLE 1. A literature survey on the AD process in EMSs.

forecasting tasks considering the visual interpretation and
power flow modeling. A perturbation strategy for defending
against FDI attacks in IoT-based smart grids was presented
by Zhang et al. [22]. They demonstrated theoretically and
numerically that inappropriate selection of branches for reac-
tance perturbation could compromise defense effectiveness.
However, their enhanced strategy requires detailed prior
topology analysis, potentially limiting its scalability to larger
systems. Guo et al. [23] introduced a residual-based stealthy
FDI attack for multi-sensor estimation systems, highlighting
the critical selection of sensors under resource constraints
to optimize degradation. Their approach leverages historical
and current residuals to enhance attack impact but demands
significant computational resources to solve optimization
problems at each step. Zhou et al. [30] investigated optimal
FDI attacks against partially secured remote SE systems
by formulating optimization problems to maximize SE
errors. They developed strong detection and estimation
strategies, but real-world complexity and the need for
secure communication may impact practicality. A framework
utilizing ML algorithms to approximate the PF analysis was
developed by Falconer et al. [18]. This approach supported
the resolution of complex PF problems that incorporated
unit commitment and security restrictions. However, their
model faces challenges stemming from scalability issues
associated with fully connected networks as the system size
increases. Additionally, CNN models demonstrate restricted
predictive accuracy due to their dependence on convolutions
if there are anomalies. Hu et al. [31] introduced the
state deviation index for the diagnosis of FDI attacks and

sudden load changes, demonstrating its effectiveness in
IEEE 14-bus and 30-bus systems. However, the algorithm
exhibited limited adaptability when faced with different
errors. This suggests the need for an approach in which
indicators are carefully designed to reflect unique properties
of specific anomalies. The absence of such tailoring risks
compromising the accuracy of evaluation metrics, presenting
significant FP and false negative (FN) results. A multi-
variable long short-term memory autoencoder (LSTM-AE)
had been formulated for an SD process by Sarker et al. [32].
Their model successfully diagnosed SPs associated with
errors, validated through a 123-bus unbalanced distribution
network. However, according to sophisticated mathematical
modeling of the PF analysis considering the SD process,
developing the model with different abnormal scenarios in
ML algorithms is challenging. Since they jeopardize the
accuracy of the proposed algorithm, which can be time-
consuming, they need more effort. Furthermore, a graphical
user interface (GUI) of an EMS could show abnormal
information due to system errors or bugs. These errors are
not easy for SCADA control room engineers to diagnose
due to the huge volume of information. These issues
cannot be managed by the SE process and need adaptive
solutions. A novel FDI diagnostic method using LSTM-
AE and CNN-AE with an unsupervised learning approach
was introduced in [33], avoiding the need for anomalous
data during training. It also proposed an LSTM variational
AE-based reconstruction method to maintain stability by
closely replicating the original data from anomalous data.
Despite this, the reliance on unsupervised learning presents
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challenges in certain scenarios. Hence, zero-day attacks need
retraining of ML algorithms, which is time-intensive. Also,
collecting all unknown errors can take much effort [34],
[35]. Mukherjee [19] introduced an approach to identify
FDI attacks using a multi-label classification framework.
This method leveraged conventional bad-data detectors to
enhance measurement accuracy and diagnose unstructured
attacks. Accordingly, this model-free strategy required no
prior knowledge of grid or attack vectors, making it a
highly effective solution for the FDI diagnosis. Nevertheless,
a consideration of an FDI attack cannot merely show the
comprehensiveness of this algorithm. Also, there are some
malfunctions that cannot be properly diagnosed by ML
models. A retraining on new attacks and the diagnosis of
other malfunctions (e.g., a CB can be opened during a fault
in the normal operation; however, this could be because of
inaccurate communication that sends the status of the CB to
the SCADA room) are challenging for ML techniques [36],
[37], [38]. Although recent studies have achieved notable
advancements in utilizing LLMs for smart grids, there are still
numerous areas that have not been fully addressed. Current
methodologies either emphasize broad industrial frameworks
that neglect grid-specific enhancements, concentrate solely
on AD without predictive functions, or manage privacy
with federated learning yet fail to achieve the necessary
multimodal integration for robust smart grid security.

D. CONTRIBUTIONS
The integration of GenAI tools with AD techniques holds
significant promise for revolutionizing the SE process and
PF analysis. By leveraging the capabilities of GPT tools (e.g.
Anthropic Claude Pro [39]) to understand and interpret the
natural language processing (NLP) of snapshots and network
displays in addition to data analysis and understanding of
the mathematical modeling, this approach enables a more
robust diagnosis of anomalies/errors within the SE process
and PF information. The combination of NLP and visual
analytic techniques leads to advancements in the SD process,
the development of user-friendly interfaces for power system
monitoring, and a simplification of diagnostic processes
within the energy sector, particularly in cases of unknown
errors/attacks in the visual information. To tackle these gaps,
two significant contributions are presented, advancing the
state-of-the-art in the AD process for EMSs, according to the
literature surveys presented in the previous section as follows:

• Multi-Point Attack Detection Framework along with
GenAI-based AD Processes: A GenAI-driven ADS
model has been innovatively designed to transform the
detection and resolution of vulnerabilities in the EMS
data processing pipeline, targeting multi-point attacks
and errors. In contrast to conventional approaches
that focus on isolated detection points, this frame-
work recognizes that sophisticated cyber-attacks exploit
multiple stages of the SCADA data flow. The model
specifically targets three critical vulnerability points
including stealth attacks which can evade the BDDs,

EMS database manipulation incidents (particularly FDI
attacks following the SE process), and the HMI display
corruption by manipulating the RTDB.

• Generative Intelligence-EnhancedMultimodal Anal-
ysis Framework:Addressing the integration challenges
and anomaly identification requirements, an innovative
SoM-GI framework is proposed. This contribution
bridges the gap between traditional numerical SE
techniques and optimal PF results and emerging visual
AD capabilities. The framework exploits GenAI’s
capabilities, augmented by visual markers and indicators
alongside rules, to facilitate concurrent analysis of
image and text data in the EMS environment. The SoM-
GI methodology overcomes inherent spatial reasoning
limitations in current GenAI systems by implement-
ing systematic visual indicators, including CB status
markers, directional transmission line indicators, and CP
identifiers. These markers guide the AI’s interpretation
of segmented HMI displays, enabling accurate detection
of visual anomalies inconsistencies and falsifications
that often bypass numerical detection methods. Valida-
tion results confirm the framework’s ability to identify
sophisticated attacks that manipulate display segments
while maintaining consistency in core data structures.
This novel approach establishes a new paradigm for
comprehensive security monitoring in power systems,
integrating visual pattern recognition with linguistic rule
processing. By standardizing the fusion of multimodal
analysis techniques, the framework ensures that visual-
based ADSs can be incorporated into existing EMS
architectures without disrupting critical operational
processes, thereby providing a practical solution.

E. GENAI VS. TRADITIONAL ML/DL APPROACHES FOR
ANOMALY DETECTION IN EMSS
The literature on the AD process in EMS domains has
extensively explored classical ML and DL techniques. For
example, unsupervised autoencoder frameworks reconstruct
normal behavior and flag deviations via reconstruction
error which in one recent industrial-substation case, the
authors leveraged an LSTM-autoencoder and demonstrated
that anomalies in remote-terminal sensing can be identified
via elevated reconstruction losses [40]. In another study,
graph neural network (GNN)-based methods contextualize
measurement correlation across network nodes and show
improved localization of cyber-injections compared to flat
autoencoders [41]. Moreover, as reviewed in [42], many
smart grid AD methods still rely on large volumes of labeled
anomalies, assume stationary behavior, and are less capable
of rapidly adapting to new attack modes.

In contrast, the proposed GenAI framework introduces
several key differentiators. First, whereas conventional DL
approaches often learn fixed mappings from feature space to
latent representations (e.g., encoder–decoder), this generative
model utilizes LLM-style embeddings and interactions to
capture dynamic anomaly signatures and subtle deviations
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from normal. Second, by integrating a human-in-the-loop
(HITL) feedback pathway, the system can incrementally
refine its prompt embeddings in response to newly observed
patterns, reducing the need for extensive labeled anomaly
datasets. Third, this framework addresses zero-day or novel
attack vectors using the generative synthesis of anomalous
scenarios and continuous adaptation of the model’s under-
standing of normal versus abnormal behavior. Together, these
capabilities position the GenAI approach as more flexible
and future-proof for EMS/SCADA AD processes than
traditional ML/DL baselines. Table 2 provides a systematic
comparison of these approaches across key dimensions
relevant to the EMS AD process, illustrating why GenAI
represents a fundamental transformation rather than merely
an incremental improvement over existing methodologies.

It is important to emphasize that GenAI does not neces-
sarily replace traditional ML/DL approaches but rather com-
plements them in a layered defense strategy. Conventional
MLmethods remain valuable for high-frequency, low-latency
detection tasks where millisecond response times are critical.
However, for complex reasoning tasks that require integration
of multiple information sources, validation against physical
constraints, interpretation of visual displays, and explanation
of findings to human operators, GenAI offers capabilities
that traditional approaches cannot match. This comparative
analysis establishes the distinctive value proposition of
the proposed GenAI-based framework and clarifies why it
represents a significant advancement in EMSAD capabilities
beyond what traditional ML/DL approaches can provide.

F. PAPER STRUCTURE
The rest of this paper is organized as follows: Section II
presents a multi-point attack model considering the EMS
workflow, before and after the SE process. Section III
demonstrates the comprehensive description of different
attack points, their modeling, miscellaneous scenarios, and
theGPT implementationwith some direct responses using the
trained GPT model within the power system domain. Finally,
conclusions and directions for future work are outlined in
Section IV.

II. A PROPOSED MULTI-POINT ATTACK MODEL IN
ENERGY MANAGEMENT SYSTEMS
Different attack points based on stealth attacks (i.e., attack
point #1) and intentional/unintentional attacks (i.e., attack
points #2 and #3) including cyberattacks, system errors, and
FDI attacks, are represented in Fig. 1. It is evident that
a variety of attacks/errors can appear at different points
ranging from field devices to the HMI Display section
within an EMS. The field devices represent the sensory
layer of the SCADA architecture, functioning as the principal
interface between the physical infrastructure and the digital
control system. RTUs serve as industrial computer systems
interfacing directly with physical equipment, conducting
the critical role of converting analog signals from field
devices into digital data while concurrently executing

FIGURE 1. A general proposed framework for different attack points in
EMSs.

control commands transmitted from the SCADA system.
These units are deployed in industrial settings and are
required to maintain dependable operation under extreme
conditions [43], [44]. PMUs are advanced field devices that
provide precise electrical waveform measurements. They
deliver synchronized, real-time voltage and current phasor
data for extensive regional monitoring and dynamic grid
system analysis. The sensor network comprises a wide range
of sensors that constantly monitor essential parameters such
as flow rates and voltage levels, alongside the operational
status of components. Additionally, intelligent electronic
devices (IEDs), microprocessor-driven controllers, execute
complex functions for protection, control, and monitoring
of power equipment, often making autonomous decisions to
improve system resilience [45]. The SCADA system serves
as the central hub for data coordination and initial processing
in industrial operations. It continuously collects real-time
operational data from field devices using protocols such as
DNP3, IEC61850, and Modbus, with sampling frequencies
varying by data criticality. Key functions include alarm
processing, which generates alerts based on predefined limits,
and initial validation through range checks, rate-of-change
assessments, and communication error detection to ensure
data accuracy and integrity [46].

Prior to delving into the detailed analysis of individual
attack vectors, it is essential to clarify that GenAI assumes
a comprehensive, integrated role within the architecture
of the framework. This functionality stands in contrast to
the simplistic notion of GenAI operating as a tool with
a singular purpose. First, it operates as a language model
that interprets natural language descriptions of system states,
operational rules, and component relationships, enabling
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TABLE 2. Comparison of GenAI vs. Traditional ML/DL Approaches for EMS Anomaly Detection [42].

operators and engineers to interact with the detection
system using familiar terminology rather than requiring
specialized query languages. Second, it functions as a
multimodal reasoning engine that synthesizes information
from diverse sources including numerical measurements
from state estimators, visual representations in HMI displays,
and textual operational logs, to identify inconsistencies that
span multiple data modalities. Third, it acts as an anomaly
classifier that evaluates whether observed conditions violate
physical laws, operational constraints, or expected behavioral
patterns, subsequently categorizing detected anomalies into
specific threat classes such as stealth attacks, database manip-
ulations, or display corruptions. These roles are not imple-
mented as separate modules but rather emerge inherently
from GenAI’s capabilities when properly guided through
structured prompts and domain-specific knowledge. This
integrated approach distinguishes the suggested framework
from conventional AD systems that typically address either
numerical analysis or visual inspection, but rarely within a
unified reasoning process.

The following step involves the application of weighted
least-squares (WLS) SE, which constitutes the mathematical
foundation of EMSs. This technique converts raw measure-
ments into a coherent and dependable depiction of system
voltage magnitudes and angles. To maintain data quality,
the BDD is conducted employing a statistical χ2 test. The
objective function of the WLS, presumed to adhere to the
χ2 distribution, is evaluated against a predefined thresh-
old. Exceeding the threshold indicates significant errors.
An identification of faulty measurements is then carried out
through normalized residual analysis, typically involving the
exclusion of the data point with the highest residual value
and recalculating the state until the function remains below

the threshold. Such a methodology is imperative due to the
presence of noise or malicious data corruption. Concurrently,
the topology processing module examines the statuses of
CBs and switches to develop an accurate representation
of the network model. It verifies the actual configuration
of energized components, which is crucial for large-scale
systems where switching is a frequent occurrence. Finally,
measurement filtering enhances the quality of the incoming
data by reducing noise while maintaining system responsive-
ness, ensuring that only validated measurements contribute to
subsequent monitoring or control algorithms [43]. Then, this
data is stored in the EMS Database that serves as a repository
for validated electrical network information, including bus
voltages, flows of power, and generator outputs. It reflects
the best estimate of actual system conditions, using the SE
and BDD. Then, the results from analytical applications
such as contingency analysis for system security, optimal PF
solutions for economic efficiency, and historical trending for
long-term analysis and regulatory compliance are stored in
the RTDB that acts as the high-performance data hub for all
operational applications, maintaining the current state of the
system with minimal latency [10], [47]. It stores application
results that provide the validated system state, optimal PF
calculations that determine electrical quantities throughout
the network, and contingency analysis results that assess
system security [48]. Each data point comprises quality flags,
timestamps, and source information, thereby facilitating
the appropriate use by subsequent processes. The RTDB
is required to handle rapid updates from various sources
while delivering consistent data views to a variety of client
applications, necessitating advanced synchronization control
and data consistency mechanisms. Finally, the HMI display
portion provides the critical link between the automated
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TABLE 3. Different attack points and their proposed ADSs.

systems and human operators who fundamentally remain
responsible for system operation. Operator screens present
graphical representations of the power system through
various visualization modes including single line diagrams
(SLDs) that show the electrical connectivity and current
state, geographic displays that map the physical location
of equipment and current conditions, and trending charts
that reveal temporal patterns and help operators forecast
future conditions. The alarm presentation system must help
operators quickly identify the root cause among possibly
hundreds of cascading alerts. Control action interfaces enable
operators to issue commands such as opening or closing
CBs, adjusting generator setpoints to modify power output,
or changing control parameters to influence automatic control
behavior. These interfaces include protective mechanisms
and confirmation dialogues to prevent accidental actions that
could jeopardize system stability.

The modern EMS faces sophisticated cyber threats that
exploit vulnerabilities at different stages of the data process-
ing pipeline. Understanding these attack vectors is crucial for
developing comprehensive defense mechanisms that protect
the integrity of power system operations [47]. To recap,
Table 3 demonstrates these attack vectors with their proposed
AD solutions. The next section shows these attack models
as well as the proposed AD solutions on the GenAI concept
and their results and discussion based on the implementations
in GenAI tools in detail. Further, the test system is an IEEE
14-bus system which is considered for all attack points and
scenarios included in different steps.

A. GENAI IMPLEMENTATION METHODOLOGY AND
PROMPT ENGINEERING
This subsection provides a detailed explanation of how
GenAI technology is implemented within the AD framework,
addressing the fundamental question of whether LLMs are
fine-tuned on power system data or employed through
structured prompting methodologies.

1) MODEL SELECTION AND DEPLOYMENT STRATEGY
This proposed framework utilizes Anthropic Claude Pro [39],
a state-of-the-art LLM, in its pre-trained configuration
without domain-specific fine-tuning. This design choice
reflects several strategic considerations that distinguish the
approach from traditional ML methodologies commonly
applied to power system security. Rather than fine-tuning the
model on extensive EMS-specific datasets, an approach that

would require collecting, labeling, and curating thousands of
operational scenarios and attack patterns, themodel’s existing
knowledge leverages a base that already encompasses fun-
damental physics principles, electrical engineering concepts,
mathematical reasoning capabilities, and visual seman-
tic understanding. This pre-trained knowledge provides a
robust foundation for understanding power system behavior
without the time-intensive and resource-demanding process
of model fine-tuning. The decision to avoid fine-tuning
offers several practical advantages for EMS applications.
First, it significantly reduces the deployment timeline from
months to weeks, as organizations do not need to collect
extensive training datasets before implementation. Second,
it maintains the model’s general reasoning capabilities and
broad knowledge base, preventing the overfitting issues that
can occur when models are narrowly trained on specific
datasets. Third, it enables rapid updates to operational
rules and constraints by simply modifying prompts rather
than retraining models, a critical advantage for adapting to
evolving grid configurations and emerging threat landscapes.

2) STRUCTURED PROMPT ENGINEERING FRAMEWORK
The core of this methodology lies in systematic prompt
engineering that transforms the general-purpose language
model into a specialized EMS AD system. These prompts
are carefully structured to provide the model with four
complementary types of information that collectively enable
sophisticated reasoning about power system states and
potential anomalies including numerical data integration
(i.e., SE, power flow results), power system rules and con-
straints (e.g., Kirchhoff’s Current Law (KCL)), component
descriptions for HMI analysis (e.g., red square markers
indicate closed CBs at transmission line terminals), and
reference scenarios and in-context learning (ICL) which
can be generated using the contingency analysis based
on the power flow processes in PowerWorld Simulator.
These reference cases serve as benchmark scenarios that
guide the model’s interpretation of subsequent test scenarios,
effectively creating a learned context without modifying
the underlying model parameters. Hence, the prompt-based
methodology offers several distinct advantages compared to
fine-tuning LLMs on power system-specific datasets, includ-
ing rapid deployment, transparency and interpretability, easy
adaptation, preservation of general knowledge, and reduced
data requirements.

To clarify the implementation methodology, this study
employs Anthropic Claude Pro as the primary GenAI tool,
as referenced in [39]. The simulation process consists of
several key steps. Initially, the Claude Pro model was
trained using PF results, SE rules, and normal operational
scenarios from the IEEE 14-bus system. Then, Excel files
containing both normal and attacked data scenarios are
given as inputs. Further, domain-specific prompts incorpo-
rating power system knowledge and detection rules were
developed. The analysis was executed where the trained
model examines uploaded data to detect anomalies based
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on learned patterns and physical constraints. Finally, the
framework validated against multiple attack scenarios to
verify detection performance. Throughout this paper, the
‘‘Implementation in GenAI Tool’’ subsections serve multiple
critical purposes. They provide transparency by demonstrat-
ing actual interactions between researchers and the AI system
with exact prompts and responses and enable reproducibility
by offering sufficient methodological detail, then validate
the approach by showing real GenAI outputs rather than
theoretical capabilities. Hence, it can bridge the gap between
theoretical framework and practical implementation, making
the methodology accessible to other researchers in this
domain.

III. ATTACK VECTORS AND EXPERIMENTAL VALIDATION
A. ATTACK POINT #1: STEALTH ATTACKS (GRAY DASHED
LINE)
Stealth attacks represent a particularly malicious threat to the
security of EMSs, as they are meticulously engineered to
bypass conventional BDD mechanisms on which operators
depend to preserve the integrity of the system. These attacks
are characterized by their ability to remain undetected by
standard monitoring protocols, thus presenting a significant
challenge to the protective measures employed within EMS
frameworks. By leveraging vulnerabilities in AD method-
ologies, they weaken the robustness of systems to preserve
operational stability and security [49]. These attacks utilize
the mathematical foundations of SE algorithms by injecting
carefully crafted false measurements that maintain consis-
tency with the power system’s physical laws and network
topology.When executed successfully, a stealth attackmanip-
ulates the estimated system state while satisfying all residual
tests and WLS criteria, making the corrupted data appear
legitimate to conventional BDD systems. The complexity
of these attacks lies in their ability to manipulate critical
operational parameters (e.g., bus voltages and PFs), without
triggering alarms, potentially leading operators to make
incorrect decisions based on falsified system conditions.
This misleading essence makes stealth attacks particularly
dangerous, as they can persist undetected for extended
periods while progressively degrading system reliability or
creating opportunities for more severe disruptions. Also,
these stealth attacks can make major gradual impacts on
power systems including economic dispatch inefficiencies,
deterioration of operator confidence, compromised grid
resilience, degraded system reliability over time, cascading
failure and blackouts, and compromised system simulations
and estimates [20], [23], [30].

a: A MATHEMATICAL CONSTRUCTION OF SE AND STEALTH
ATTACKS
Following the collection of PF measurements, power input
data, and voltage magnitude information gathered from the
system’s buses by SCADA units, the initiation of the static
SE process takes place. The SE algorithm aims to determine

TABLE 4. A part of attack points applied to Bus 2 to find the stealth
attack range.

the state vector x ∈ Rn, which includes both phase angles
and voltage magnitudes across different buses, where n =

2k − 1 with k representing the total number of buses. In the
context of AC static SE, the relationship between the state
vector x and measurements follows the nonlinear model as
Eq. (1) [20]:

z = Hx + e (1)

Here, the measurement vector z ∈ Rm comprises readings
gathered by SCADA units, with m denoting the quantity
of measurements. The nonlinear mapping function H(·)
is derived from the grid’s topological structure and char-
acteristics of transmission lines, transformers, and related
grid components. The error term e ∈ Rm follows a
Gaussian distribution characterized by the covariance matrix
R. To estimate the state vector x, an iterative WLS algorithm
is employed as Eq. (2):

x̂k = x̂k−1 + H†
k (zk − H(xk−1)) (2)

where H†
k = (HT

k R
−1Hk )−1HT

k R
−1 and Hk represent the

Jacobian matrix ofH evaluated at iteration k . Under Gaussian
noise assumptions, this WLS approach yields optimal results.
Upon convergence, achieved when ∥x̂k − x̂k−1∥ < δ

for a predefined small threshold δ > 0, the analysis of
resulting residuals detects potential measurement anomalies
by verifying Gaussian properties. Such anomalies in data
might stem from natural failures (e.g., sensor malfunctions
or communication disruptions, or potentially from deliberate
FDI attacks). Standard detection methods typically employ
χ2 testing for identifying anomalous data. Additionally,
a DC SE variant exists where only phase angles require
estimation, with voltages assumed to be at unity (1 p.u.). This
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TABLE 5. Stealth attack ranges results for an IEEE 14-bus system based on start/end points of attacks along with the original voltage before applying the
NERC regulation.

simplified model neglects line resistances and assumes small
phase angle differences between buses, resulting in a linear
regression framework as Eq. (3) [22]:

z = Hx + e (3)

where z ∈ Rm represents the measurement vector,H ∈ Rm×n

is the measurement Jacobian matrix, x ∈ Rn is the state
vector, and e ∼ N (0,R) is the measurement error vector
with covariance matrix R. The SE, x̂, is typically obtained
through the WLS through Eq. (4):

x̂ = (HTR−1H)−1HTR−1z (4)

After SE, the measurement residual vector r is calculated as
Eq. (5):

r = z − Hx̂ (5)

Traditional BDDmechanisms typically use the χ2-test on the
residual as shown in Eq. (6):

J (x) = rTR−1r ≤ τ (6)

where τ is a threshold value derived from the χ2 distribution
with appropriate degrees of freedom.A stealth attack involves
the addition of an attack vector a to the measurement vector
which is given in Eq. (7):

za = z + a (7)

The essential concept for stealth attacks is to construct a in
the column space of H (Eq. (8)):

a = Hc (8)

where c is an arbitrary vector in the state space.When such an
attack is applied, the new state estimate becomes as follows:

x̂a = x̂ + c (9)

Which the residual crucially remains unchanged as shown in
Eq. (10):

ra = za − Hx̂a = z + Hc − H(x̂ + c) = z − Hx̂ = r (10)

This characteristic of the mathematical model enables the
attack approach to evade conventional mechanisms designed
for detecting erroneous data, as J (xa) = J (x) ≤ τ [20].
According to a case study for an IEEE 14-bus system,
300 attack points are applied to the system at each bus
to find the range of stealth attacks for different buses,
forced by the NERC regulation in terms of bus voltage
magnitude violation, which states that the bus voltages
should fall within the range of 0.95–1.05 p.u. to meet the
requirements [50]. According to this process, a sample of
the stealth attack range for Bus 2 is illustrated in Table 4.
All these attack points are also injected to all other buses
to find the range of stealth attack as illustrated in Fig. 2.
The presented visualization reveals the feasible ranges across
the IEEE 14-bus system that successfully evade the χ2 as a
BDD systemwhilemaintaining system observability. Further,
a numerical representation of stealth attack ranges including
the start point, end point, width of the range, and original
bus voltages based on the numerical representation is given
in Table 5. According to these findings, Bus 3 exhibits
the most extensive stealth range, spanning approximately
0.004 to 0.012 p.u. around its nominal value, indicating its
elevated vulnerability to stealth attacks due to its network
position and measurement redundancy characteristics. Buses
2 and 14 demonstrate similarly broad attack boundaries,
with voltage deviations permissible within ± 0.025 p.u. from
their baseline values while remaining undetected. In contrast,
bus 5 displays notably constrained attack ranges, suggesting
its measurements are more tightly coupled to the system’s
observable state through the measurement Jacobian matrix.
Buses 6, 7, and 8 show no stealth attack ranges within
the defined voltage magnitude as well as no range for the
slack bus (i.e., Bus 1). While satisfying the stealth constraint
χ2 < 89.5, these diverse exploitable boundaries across the
network topology demonstrate that successful stealth attacks
must account for bus-specific constraints, measurement
configurations, and their contributions to the overall WLS
residual, finally exposing the diverse susceptibility profile
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FIGURE 2. The ranges of stealth attacks for different buses according to
the bus voltage magnitudes for an IEEE 14-bus system.

FIGURE 3. A visualization of the attack vector in Scenario #1A, (a) system
voltage profile under attack (b) attack magnitude distribution (%).

of the power system to sophisticated network breaches.
Now, according to the given information, two scenarios
are presented to make a comparison of the traditional
BDDs and the GenAI-based ADS according to the stealth
attacks. The definition of these attacks is described, then the
implementation of GenAI is explained to show the results of
the detection process.

FIGURE 4. A visualization of the attack vector in Scenario #1B, (a) system
voltage profile under attack (b) attack magnitude distribution (%).

1) SCENARIO #1A: 5-POINT DISTRIBUTED STEALTH ATTACK
This scenario represents a 5-point distributed stealth attack
(i.e. Eq. (11)) designed to evade the χ2 test based on the BDD
while maintaining all PF constraints. The attack strategically
targets five measurement points across the IEEE 14-bus
systemwith coordinated changes as given in the attack vector.

a =


1V3
1P3
1V6
1P9
1V11

 =


+0.08
+0.15
−0.06
+0.10
+0.05

 p.u. (11)

Further, a visual representation of the attack vector for voltage
and active power changes is demonstrated in Fig. 3. As
shown, the voltage at bus 3 increases by 7.9% (from 1.0100 to
1.0900 p.u.), active power at bus 3 increases by 16.0%
(from 0.9399 to 1.0899 p.u.), voltage at bus 6 decreases by
5.6% (from 1.0711 to 1.0111 p.u.), active power at bus 9
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increases by 34.0% (from 0.2937 to 0.3936 p.u.), and voltage
at bus 11 increases by 4.7% (from 1.0552 to 1.1052 p.u.)
with a base active power of 100 MW. To maintain the
stealth property and satisfy power balance constraints, the
total power injection increase of 0.25 p.u. (from P3 and
P9 changes) is strategically distributed as compensation
across seven non-attacked buses (buses 2, 4, 5, 10, 12, 13,
and 14), with each receiving a reduction of 0.0357 p.u.
This distributed compensation mechanism, combined with
the opposing voltage changes (V6 decreasing while V3 and
V11 increase), ensures the attack’s χ2 statistic remains below
the detection threshold of 89.5.

2) SCENARIO #1B: 8-POINT MASSIVE COORDINATED
ATTACK
This scenario demonstrates an even more complex 8-point
massive coordinated attack (i.e. Eq. (12)) that exploits
the fundamental limitations of statistical BDD through
measurement manipulation.

a =



1V2
1P2
1V4
1P4
1V6
1P9
1V11
1P13


=



+0.09
+0.15
−0.07
−0.13
+0.08
+0.12
−0.06
−0.10


p.u. (12)

This attack simultaneously modifies eight critical measure-
ments across the IEEE 14-bus system as represented in the
attack vector.

Also, Fig. 4 illustrates a visual representation of the
attack vector for this scenario according to these concurrent
attacks at 8 points with changes in voltage magnitudes
and active power values. As demonstrated based on the
similar attack description with Scenario #1A, the voltage
at bus 2 increases by 8.6% (from 1.0466 to 1.1366 p.u.)
with its active power increasing by 69.3% (from 0.2163 to
0.3663 p.u.); voltage at bus 4 decreases by 6.9% (from
1.0176 to 0.9476 p.u.) with power decreasing by 27.0%
(from 0.4809 to 0.3509 p.u.); voltage at bus 6 increases by
7.5% (from 1.0719 to 1.1519 p.u.); active power at bus 9
increases by 40.5% (from 0.2960 to 0.4160 p.u.); voltage at
bus 11 decreases by 5.7% (from 1.0594 to 0.9994 p.u.); and
active power at bus 13 experiences a dramatic 76.0% decrease
(from 0.1316 to 0.0316 p.u.). The attack’s sophistication lies
in its perfect coordination of opposing changes—positive
power changes (+0.15 atP2,+0.12 atP9) are nearly balanced
by negative changes (−0.13 at P4, −0.10 at P13), resulting in
a minimal net power change of only 0.04 p.u. Additionally,
random noise is injected at non-attacked buses (1, 5, 7,
8, 10, 12, and 14) to further conceal the attack pattern,
achieving a χ2 test statistic of 67.3, still comfortably below
the 89.5 detection threshold while creating a highly abnormal
but mathematically valid system state.

Implementation in GenAI Tool
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As can be seen, the GenAI can detect these scenarios
as stealth attacks based on their semantic understanding
features in addition to rules and power system domain
recommendations that were provided in the GPT model to
train it.

B. ATTACK POINT 2: POST-STATE ESTIMATION ATTACK IN
EMS DATABASE (RED DASHED LINE)
Following the SE process, the EMS database becomes
a critical vulnerability point where attackers can execute

FDI attacks or directly manipulate stored operational data.
At this stage, even if the SE process correctly identifies and
filters bad data, attackers/intruders can corrupt the validated
information before it reaches operators or automated control
systems. Database manipulation attacks target the intermedi-
ate storage layer where processed measurements, estimated
states, and calculated parameters reside, allowing malicious
actors to modify historical trends or inject false operational
constraints. These attacks are particularly concerning because
they can affect multiple downstream applications that rely
on the database for decision-making, including economic
dispatch, unit commitment, and security assessment modules.
The temporal persistence of database attacks amplifies their
impact, as corrupted data may influence operational decisions
over extended periods and corrupt backup systems or data
repositories used for system recovery and cybersecurity anal-
ysis. According to this information, the following scenarios
are proposed to show the applicability of the proposed
GenAI-based AD in detecting those types of attacks. The
case study system is an IEEE 14-bus system based on the
PF analysis that results are extracted from the PowerWorld
Simulator [52].

1) SCENARIO #2A: STATE VECTOR MANIPULATION ATTACK
Attack Description: After the SE process validates the
system state, attackers intercept and modify the validated
state vector in the EMS Database.

Post-SE Output: x̂

= [V1, θ1,P1,Q1,V2, θ2,P2,Q2, . . . ,Vn, θn,Pn,Qn]T

(13)

Residual test passed: r

= z − h(x̂), ||r|| < threshold ✓ (14)

x̂corrupted
= x̂ + 1x Where

1x = [1V1, 1θ1, 1P1, 1Q1, 1V2 . . .]T (15)

P′
ij = |Vi + 1Vi||Vj + 1Vj||Yij| sin(θi − θj + 1θi − 1θj)

(16)

a: IMPLEMENTATION ON GPT
Please note that this response box is a result of GPT
based on an AD report of the post-SE PF results and data
with manipulated attacks on different parameters based on
Eqs. (13)–(16). Two Excel files were generated, including
the post-SE PF and manipulated PF results, and uploaded as
inputs in the GPT; then, a user asked a prompt from the GPT
if it could detect any anomalies based on these inputs.

The GenAI-powered AD framework in Scenario #2A
effectively identified fundamental operational discrepancies,
particularly the transformation of three buses (buses 4, 9, and
13) from consumption points to generation sources, creating a
substantial 90.8 MW systemic imbalance. This methodology
excels through its capacity to concurrently evaluate inter-
connected system variables including active power transfers,
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voltage levels, phase angles, and reactive power components,
exposing attack signatures that conventional limit-checking
algorithmsmight miss. The system’s detection of a 36% surge
in aggregate generation alongside a 38% reduction in total
demand, combined with notable voltage variations at four
distinct buses, validates the GenAI framework’s efficacy in
recognizing manipulations.

2) SCENARIO #2B: TOPOLOGY CORRUPTION ATTACK
Attack Description:Modify the validated topology informa-
tion after the SE process but before EMS Database storage.
The SE output is a validated topology matrix T, Eq. (17), and
state x̂.

T = [tij] where tij

=

{
1 if transmission element (i, j) is in service
0 if transmission element (i, j) is disconnected

(17)

Attack Mechanism: The attacker implements a topology
corruption through the transformation as Eq. (18):

T′
= T ⊕ 1T (18)

TABLE 6. Power system test scenarios implemented in PowerWorld
Simulator for the GenAI tool training.

where 1T represents a malicious modification matrix that
inverts the operational status of strategically selected CBs,
effectively misrepresenting the actual network configuration.
System Impact: The corrupted topology transmits through
the EMS, resulting in Eq. (19):

B′
= f (T′) ̸= B = f (T) (19)

where B′ denotes the erroneous bus admittance matrix
derived from the falsified topology, while B represents the
actual system admittance matrix.
Operational Consequences: The OPF module subsequently
operates on this corrupted network model as Eq. (20):

min
P
C(P) subject to: B′θ = P − D (20)

where the power balance equations employ the incorrect
admittance matrix B′, considering the generation (P) and
demand (D) vectors as well as the bus voltage phase angle
(θ ) leading to inefficient or destabilizing dispatch decisions
based on a misrepresented network topology.

a: IMPLEMENTATION ON GPT
Please note that this response box is a result of GPT based
on an AD report of the post-SE PF results and data with
manipulated topology attacks, based on Eqs. (17)–(19). Two
Excel files were generated including the post-SE PF and
manipulated topology and uploaded as inputs in the GPT.
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3) COMPLEX SCENARIOS FOR ATTACK POINT 2
In order to show the better capability of the GenAI-
based AD in detecting and distinguishing normal and
abnormal scenarios, a contingency analysis was performed
in PowerWorld Simulator for an IEEE 14-Bus system to
generate normal scenarios. These generated normal scenarios
show the different statuses of normal PF datasets that help
the GenAI to learn about the contingency analysis as well
as training the GenAI with SE and PF rules. Hence, a series
of 30 scenarios according to the contingency analysis were
generated as shown in Table 6. These scenarios are defined
based on a combination of CB statuses, transformer tap
changes, load changes, and power limits to include different
types of cases. Please note that the GPT can be trained
with these 30 generated normal datasets based on different
scenarios, SE and PF rules, in addition to the semantic
understanding feature of this tool. Hence, two additional test
cases are considered in this part to check the capability of the
trained GenAI tool as follows:

• Scenario #2C: Normal operation – Open CB between
Bus 9 and Bus 10.

• Scenario #2D: Abnormal operation (FDI) – change of
CB status between Bus 2 and Bus 4 from ‘‘Closed’’ to
‘‘Opened’’.

These scenarios (i.e., Scenarios #2C & #2D) are different
and unique from trained datasets in the GenAI tool to show
the applicability of the GenAI-based AD not only based on
numerical changes on datasets, but also a consideration of SE
and PF rules and pattern recognition and correlation between
different parameters for each part of datasets according to the
bus and branch data.

The following ‘‘Response’’ boxes show the capability of
the GenAI tool considering the trained datasets and other
rules.

As can be seen, the open CB between Bus 9 and Bus 10 is
correctly detected as a normal condition in an islanding mode
with other relevant information according to the data pattern
and SE rules.

This following ‘‘Response’’ box demonstrates the results
of Scenario #2D based on the FDI attack. It is noteworthy to
mention that the SE results are based on the normal condition,
applying a change of ‘‘Closed’’ to ‘‘Opened’’ in the generated
data in the Excel file. For this scenario, a visualized response
is requested from the GenAI tool in addition to the general
response to better clarify the in-depth analysis.
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According to the response to the GenAI-based AD process
for Scenario #2D, it can be seen that the trained GenAI
tool can comprehensively analyze the scenario with all
details along with all technical rules. This GenAI-powered
AD process represents a significant advancement for power
grid operators requiring rapid and precise identification of
erroneous data. Consider it as a highly intelligent assistant
that understands the inviolability of the principles of physics;
when it detects an anomalous situation, such as electrical
power appearing to flow through an open CB, it promptly
signals an alert. In this particular case, it caught a major
error where 56.1 MW was erroneously recorded as passing
through the CB between Bus 2 and Bus 4 that was opened.
What makes this system really practical is how it thinks in
the manner of an experienced engineer but works at computer
speed, catching both the obvious mistakes and the subtle ones

that might bypass human operators during busy shifts. The
visual dashboards and explicit alerts eliminate the need for
operators to analyze spreadsheets extensively; they enable
rapid identification and correction of issues prior to making
decisions with the potential to influence the power supply to
thousands of customers.

C. ATTACK POINT 3: ATTACK/ERROR IN HMI SCREEN
BASED ON RTDB (PURPLE DASHED LINE)
This attack vector targets the HMI by manipulating the
RTDB that feeds visual displays in control rooms. This
advanced attack methodology acknowledges that operators
make critical decisions based primarily on the visual
information presented on their screens, regardless of the core
data integrity. By corrupting the RTDB, attackers can create
inconsistencies between the actual system state and what
operators observe, effectively deceiving the human decision-
makers who serve as the last line of defense in power system
operations [47], [53]. Display corruption attacks can present
in various forms, from subtle manipulations of numerical
values to complete misrepresentation of network topology
through manipulated CB statuses or false connection indi-
cators. The psychological impact of these attacks extends
beyond simple data falsification; they weaken operator con-
fidence in the system’s reliability and could lead to decision
paralysis during critical situations. Moreover, these attacks
can be designed to display mathematically consistent but
operationally dangerous configurations, leading experienced
operators to take actions that compromise system stability
while believing they are following correct procedures. The
challenge in detecting such attacks lies in distinguishing
between legitimate display updates reflecting actual system
changes and malicious modifications intended to mislead
operators.

a: DISPLAY REPLAY ATTACK WITH SEGMENT
REARRANGEMENT
Modern power system control rooms rely heavily on HMI
displays showing SLDs. Display RE attacks, where attackers
rearrange segments of the display by manipulating the
database of HMI (i.e., RTDB), can cause operators to
take incorrect control actions. While GenAI can effectively
analyze PF results, it has inherent limitations in spatial
reasoning and correct visual segment arrangement. This part
proposes a novel AD method that combines GenAI with
SoM methodology termed ‘‘SoM-GI’’ to overcome these
limitations [54], [55]. The proposed framework helps to
improve the capability of attacks/errors detection considering
different visual informationwithin the HMI screen alongwith
SE and PF rules. This novel framework combines GenAI
for textual and semantic understanding and SoM for guiding
the texts and different connections based on markers and
indicators that are a fusion mechanism for the robust AD
process. The following section shows the application of
GenAI without/with SoM in the rearrangement process of
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FIGURE 5. An illustration of a standard IEEE 14-bus system.

different segments in an HMI screen based on principles.
An SLD of the IEEE 14-bus system according to different
components is illustrated in Fig. 5. More information
regarding the interconnections and other rules within the PF
analysis is given in the next part. Initially, Scenario #3A is
proposed to show the application of GenAI without the SoM
technique to rearrange different segments of a screenshot of
an IEEE 14-bus system in PowerWorld Simulator as an HMI
screen. In this section, a 9-segment arrangement process is
considered to check the efficiency of the GenAI-based AD
and SoM-GI-based AD. However, the number of segments
can be increased based on the different rules and principles
to handle the proposed methodology.

1) A NORMAL HMI SCREEN WITH POWER FLOW ANALYSIS
USING ONLY GENAI WITHOUT SOM TECHNIQUE
The following ‘‘Prompt’’-‘‘Response’’ boxes show a normal
HMI screen without any attack/error in segmented parts.

Then, a prompt requested the GPT to arrange the segments
based on its understanding. The process is that the 9 segments
are given as inputs along with the following prompt, without
any additional rules or principles to train the GPT model.
As can be seen, the response demonstrates the incapability of
the GPT model to arrange and make a connection between
different segments of an HMI screen based on the 14-bus
system in PowerWorld Simulator.

According to the GPT model’s response, it can be
observed that it cannot arrange different segments in the
correct positions considering its semantic understanding,
as illustrated in Fig. 6. The Image # is replaced with Segment
# for better clarification of this incorrect rearrangement
implemented by the GPT model in this figure. Hence,
according to this issue, an additional technique is required
to improve the accuracy of this rearrangement process. Thus,
an SoM-GI technique is proposed based on training the
GPT model with rules, power system principles, and visual
indicators to enhance the capability of positioning different
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FIGURE 6. GenAI inability to arrange HMI segments correctly without the SoM capability.

segments, assisting the GenAI to handle SLD segments
(based on the connection, position of shapes, and PF rules,
etc.) simultaneously. The next part shows the principles of the
SoM technique along with the relevant information according
to this application.

a: PROPOSED SET-OF-MARK GENERATIVE INTELLIGENCE
(SOM-GI) TECHNIQUE
The arrangement of power system segments into structured
grid layouts presents significant challenges in visualization
and analysis in terms of different unexpected scenarios that
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can happen in the SCADA room. In this section, adapting
the SoM prompting methodology proposed, combined with
the GenAI (named as SoM-GI) to systematically arrange
different segments based on visual markers and linguistic
rules, including CBs, directional indicators, and CPs, and the
semantic understanding of the GPT model.

Problem Formulation Following the SoM-GI framework,
the power system arrangement task is defined as a visual
grounding problem. Given a set of power system segments
S = {S1, S2, . . . , S9} to be arranged in a 3 × 3 grid, each
segment contains visual markers that guide proper placement.
Let G ∈ R3×3 represent the target grid arrangement, where
each cellGi,j contains one segment fromS . The arrangement
function is defined as Eq. (21) [54]:

G = f (S , M ) (21)

whereM represents the set of visual markers, including CBs,
directional indicators, and CPs. Power Flow Principles PF
analysis constitutes a fundamental component of SCADA
systems, encompassing tasks of monitoring, planning, and
operational control. In the context of PF analysis, an SCADA
system is typically employed to determine the electrical
network’s structure, where buses serve as pivotal nodes
within the diagram. An SLD illustrates the interconnections
between different buses through transmission lines that
quantify the power being transferred from one bus to another.
Additionally, the SLD may highlight which generators are
integrated into the automatic generation control (AGC)
system, a mechanism that balances power supply and demand
by regulating the output of generators [56], [57]. Different
CBs, current flows, impedances, and transmission lines are
other components of SLDs. A visual assessment is essential
in SCADA rooms of utilities to monitor system operations,
identify potential errors, and implement corrective measures
during outages or interruptions [58], [59]. These SLDs
consist of multiple buses, interconnected by CBs (e.g., CBi
and CBij) such that each bus may have associated loads or
distributed generation units. Also, they include other com-
ponents such as generators, transmission lines, impedances,
and current flows. As an example, CBij illustrates the CB
between buses i and j, near bus i, and all CBs operate in
their normal conditions (black color), as demonstrated in
Fig. 7. The abnormal scenario is based on the CBji failure due
to communication errors, which prevent the fault isolation
in the transmission line between buses i and j. According
to this condition, the rest of the network can work with
other DERs. Additionally, these anomalous behaviors can
be observed: CBji remains closed, visualized with a black
square. A communication/SCADA error prevents the open
command from reaching CBji; hence, the fault persists,
causing a power outage in the downstream network. The
formulations and rules to train the GPT model are defined
in a comprehensive way suitable for the PF analysis that a
part of these principles are given as Eqs. (22)–(41) [60], [61].
These principles are specifically defined in this application to

FIGURE 7. A representation of different normal and abnormal scenarios
in EMS-based SCADA.

analyze the SCADA information by training the GPT model.

I (t)Bij + I (t)Bji = 0, I (t)Bjk + I (t)Bkj = 0, I (t)Bkm + I (t)Bmk = 0 (22)

I (t)Bij = I (t)Bi , IL1 = I (t)Bjk − I (t)Bkm (23)

According to Fig. 7, Eqs. (22)–(23) show the KCL in different
buses considering the sample load current, IL1. As defined,
I (t)Bij denotes the current flow between buses i and j. This
definition can be extensible to other parameters in this set
of equations. Eqs. (24)–(28) demonstrate the KVL in this
distribution system for different sections. Accordingly, V (t)

Bi ,
V (t)
G , and Z (t)

ij denote the voltage at bus i, the voltage of
the generator, and the impedance of the transmission line
between buses i and j, respectively.

V (t)
Bi − V (t)

Bj = I (t)BijZ
(t)
ij , V (t)

Bj − V (t)
Bi = I (t)BjiZ

(t)
ji (24)

V (t)
Bj − V (t)

Bk = I (t)BjkZ
(t)
jk , V (t)

Bk − V (t)
Bj = I (t)BkjZ

(t)
kj (25)

V (t)
Bk − V (t)

Bm = I (t)BkmZ
(t)
km, V (t)

Bm − V (t)
Bk = I (t)BmkZ

(t)
mk (26)

V (t)
G − V (t)

Bi = I (t)Bi Z
(t)
Gi , V (t)

Bi − V (t)
Bj = I (t)BijZ

(t)
ij , (27)

V (t)
Bj − V (t)

Bk = I (t)BjkZ
(t)
jk , V (t)

Bk − V (t)
Bm = I (t)BkmZ

(t)
km (28)

The formulations of active power (P) and reactive power (Q)
are given in Eq. (29)–(37), in which P(t)Bij shows the active
power between buses i and j, and other parameters follow the
similar definitions in this set. The active and reactive powers
of the load are illustrated as ‘‘PL1’’ and ‘‘QL1,’’ respectively.

P(t)Bjk = P(t)Bkm + PL1, Q(t)
Bjk = Q(t)

Bkm + QL1 (29)
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P(t)Bij =
|VBi|2Rij−|VBi||VBj| cos(θi−θj)Rij+|VBi||VBj| sin(θi−θj)Xij

R2ij+X
2
ij

(30)

Q(t)
Bij =

|VBi|2Xij−|VBi||VBj| cos(θi−θj)Xij−|VBi||VBj| sin(θi−θj)Rij
R2ij+X

2
ij

(31)

P(t)Bji =
|VBj|2Rij−|VBj||VBi| cos(θj−θi)Rij+|VBj||VBi| sin(θj−θi)Xij

R2ij+X
2
ij

(32)

Q(t)
Bji =

|VBj|2Xij−|VBj||VBi| cos(θj−θi)Xij−|VBj||VBi| sin(θj−θi)Rij
R2ij+X

2
ij

(33)

P(t)Bjk =
|VBj|2Rjk−|VBj||VBk | cos(θj−θk )Rjk+|VBj||VBk | sin(θj−θk )Xjk

R2jk+X
2
jk

(34)

Q(t)
Bjk =

|VBj|2Xjk−|VBj||VBk | cos(θj−θk )Xjk−|VBj||VBk | sin(θj−θk )Rjk
R2jk+X

2
jk

(35)

P(t)Bkj =
|VBk |2Rjk−|VBk ||VBj| cos(θk−θj)Rjk+|VBk ||VBj| sin(θk−θj)Xjk

R2jk+X
2
jk

(36)

Q(t)
Bkj =

|VBk |2Xjk−|VBk ||VBj| cos(θk−θj)Xjk−|VBk ||VBj| sin(θk−θj)Rjk
R2jk+X

2
jk

(37)

The various CB statuses are shown in Eqs. (38)–(41), where
the principles of CBs are evaluated under both open and
closed conditions. CB(t)ij depicts the CB between buses i and

j, near to bus i. If at least one of the CBs (e.g., CB(t)ij or CB(t)ji )
is opened according to Eq. (38), there is no electric current
and PFs between buses, which show a normal condition.

I (t)Bij = I (t)Bji = 0 & P(t)Bij = P(t)Bji = Q(t)
Bij = Q(t)

Bji = 0 (38)

This similar analysis can be expanded to Eq. (39) that at least
one of the CBs between buses j and k is opened, and this part
experiences an open circuit status.

I (t)Bjk = I (t)Bkj = 0 & P(t)Bjk = P(t)Bkj = Q(t)
Bjk = Q(t)

Bkj = 0

(39)

Further, Eqs. (40) and (41) illustrate the closed status of CBs
between buses i − j and j − k , respectively, in which there
should be the same currents with different active and reactive
powers because of the differences between voltage levels of
buses.

I (t)Bij = I (t)Bji & P(t)Bij ̸= P(t)Bji ̸= 0 & Q(t)
Bij ̸= Q(t)

Bji ̸= 0

(40)

I (t)Bjk = I (t)Bkj & P(t)Bjk ̸= P(t)Bkj ̸= 0 & Q(t)
Bjk ̸= Q(t)

Bkj ̸= 0

(41)

Please note that there are more principles according to the
PF analysis which are formulated and trained according
to the proposed framework during the implementation

process, considering the different normal and abnormal
scenarios which can happen for components such as other
CB statuses during a fault in different transmission lines,
voltage violations, and the presence of loads in different
buses. Circuit Breaker Markers: CBs serve as primary
connection indicators between buses at the terminals of
transmission lines. For buses i and j, the CB markers follow
the notation CBij ↔ CBji, indicating terminal connections
of transmission lines. These CBs (i.e., red square markers)
establish bidirectional connectivity constraints. Directional
Indicators: Each transmission line includes directional
markers Li_j_d where d ∈ {N , S,E,W ,NE,NW , SE, SW }

represents the different directions. The directional constraint
is:

Li_j_d_1(Sk ) ↔ Li_j_d_2(Sl) (42)

where d1 and d2 are complementary directions
(e.g., N ↔ S).
Connection Point Matching: CPs follow a pairing scheme

as CPi_j_A ↔ CPi_j_B and CPi_j_C ↔ CPi_j_D that these
blue boundary markers ensure proper alignment of adjacent
segments.

Segment Arrangement Algorithm The arrangement
process follows a constraint satisfaction approach:

1) Marker Extraction: For each segment Sk , extract the
set of markersMk = {CBs,Dirs,CPs}.

2) Constraint Generation: Generate adjacency con-
straints based on CB terminal pairs, directional com-
plementarity, and CP matching rules.

Implementation Approach The SoM-GI methodology
enhances visual grounding by making implicit connections
explicit through markers. For power system segments:
Marker Visibility: Each type of marker employs unique

visual encoding as follows:
• Red squares: Circuit breakers (active connections)
• Text labels: Directional indicators (L_i_j_direction)
• Blue markers: CPs (boundary alignment)
Spatial Reasoning: The arrangement leverages spatial

relationships encoded in directional markers. For instance,
L1_2_S indicates bus 1 connects to bus 2 via the southern
boundary, requiring the segment containing bus 2 to be placed
south of the segment containing bus 1. A sample of an HMI
screen segment with and without the SoM-GI method is
represented in Fig. 8. As can be seen, there are different
indicators to enhance the understanding of the PF analysis
in an HMI screen according to the transmission lines, CPs
at edges/boundaries, CB markers, and load markers. The
analogous SoM-GI methodology is applicable and can be
extended to be utilized across a diverse range of sectors and
segments, allowing for a comprehensive and interdisciplinary
approach within various fields of study.

Finally, according to the provided information, the follow-
ing recommendations/rules are crafted to train theGPTmodel
in addition to the technical parts of PF analysis, as shown in
the following box:
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FIGURE 8. A sample of applied SoM-GI rules (i.e., blue marks) to a segment of an HMI screen.

This approach provides several advantages for power
system visualization, including:

1) Explicit Connectivity: Visual markers make implicit
connections explicit

2) Systematic Arrangement: Rule-based placement
reduces ambiguity

3) Verification: Visual inspection confirms proper
alignment

Now, the goal is to implement the SoM-GI approach
according to different segments, and check whether there is a
correct rearrangement of different segments to satisfy various
constraints, connections, and consistent visual information.

The following ‘‘Prompt’’-‘‘Response’’ box shows that the
SoM-GI approach can make a good connection between
different segments in an HMI screen based on non-arranged
parts. This framework provides a systematic approach that
scales from 3 × 3 to any N × N grid while ensuring
the integrity of electrical systems by satisfying various
constraints imposed on them. The primary determinants of
success involve prioritizing the alignment of transmission line
orientations, strategically positioning hubs based on optimal
connectivity indicators, and validating a comprehensive set of
constraints to ensure system efficacy.
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According to these results, it can be seen from Fig. 9
that the SoM-GI technique can arrange different segments
in correct positions considering its semantic understanding.
This GenAI-based methodology uses guidelines based on
markers and indicators to improve the capability of the
rearrangement process. Compared with the GenAI-based AD
without the SoM (e.g., markers, indicators, and rules), the
GPT model solely has no idea about the connections, rules,
and the power system domain.

2) SCENARIO #3B: A CB MALFUNCTION BETWEEN BUS 6
AND BUS 13
In addition, to show the capability of the proposed SoM-
GI technique, a DI is applied to a part of a segment. Then,
a prompt is given to request potential anomalies in the
uploaded segments and perform the rearrangement process
simultaneously. Hence, one of the CBs between Bus 6 and
Bus 13 (i.e., CB_6_13) is manually manipulated to an open

status (i.e., green color) - as shown in Fig. 10, to check
whether the proposed method can detect this anomaly.

The ‘‘Prompt’’ and ‘‘Response’’ of the given scenario are
mentioned regarding the reference box.

It is apparent that this SoM-GI method can detect the
abnormal scenario of manual opening of the CB between
Bus 6 and Bus 13. Also, it interpreted the reference model
alongwith all rules, indicators, andmarkers andmade a visual
comparison considering the SE and PF rules.

3) SCENARIO #3C: FALSE DATA INJECTION AT BUS 2
In this part, an FDI is applied to one of the segments
(i.e., changing the voltage magnitude of Bus 2 from 1.04 pu
to 1.02 pu) to check with the SoM-GI technique whether it
can detect this anomaly considering the rules, as presented in
the following interaction:
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The proposed method proved remarkably effective in
detecting subtle power system anomalies that could easily
be missed during operations. In this test scenario, the
system successfully identified a single but significant voltage
deviation at Bus 2, where it detected a 1.02 p.u. reading
instead of the expected 1.04 p.u. – an apparently small
2% drop that could signal serious impacts (e.g., voltage
regulation problems, overloading conditions, or measurement
errors). While correctly identifying this anomaly, it simul-
taneously verified that all other system components were
operating normally – CBs were properly closed, power
flow directions were correct, and remaining bus voltages
matched their reference values. This demonstrates the SoM-
GI approach’s ability to act similarly to an expert operator
who not only detects problems but understands their context,
providing valuable insights about potential causes ranging

from increased system loading to SE errors, finally helping
operators make informed decisions to maintain grid stability
and power quality.

D. LIMITATIONS AND CONSIDERATIONS
The GenAI-based framework proposed for enhancing cyber-
security in EMSs demonstrates significant potential, yet
it is crucial to recognize several key limitations for a
comprehensive assessment. Initially, the existing system
relies on cloud-based API interactions with Anthropic Claude
Pro, causing delays in response times. These delays are
inadequate for real-time control tasks requiring responses
within sub-second intervals. To overcome this constraint, it is
probable that edge-computing systems or locally deployed AI
models will need to be utilized to satisfy demanding temporal
constraints.

Secondly, the framework’s reliance on external cloud
services could present vulnerabilities, such as dependence
on service availability, risk of sensitive grid data exposure,
ongoing subscription expenses, and restricted authority over
model updates or retraining timelines. Thirdly, the system’s
performance is significantly dependent on the quality,
quantity, and diversity of its training data. Despite the fact
that validation was conducted utilizing different scenarios
on the IEEE 14-bus test system, additional comprehensive
evaluation is imperative to establish both scalability and
robustness of the approach, particularly when it is deployed
on larger grid systems or when encountering unforeseen
attack scenarios that were not part of the initial validation
set. Models optimized for one setup may fail to generalize
well to different configurations without re-optimization
or retraining. As systems expand, scalability becomes a
significant challenge, especially with the increasing incor-
poration of distributed energy resources (DERs). The SoM-
GI methodology may experience exponential computational
complexity with larger HMI displays, and the processing
of high-frequency PMU data streams will require addi-
tional algorithmic optimization. In addition, while GenAI
offers understandable explanations in natural language, its
somewhat ambiguous reasoning can lead to trust issues for
operators familiar with deterministic approaches. This matter
is especially crucial in safety-critical settings, where AI
tools should function as decision-support mechanisms rather
than independent decision entities. A significant challenge
lies in regulatory compliance. The existing NERC CIP
standards provide insufficient direction for the certification,
validation, and auditing processes of AI-based systems,
potentially hindering their deployment in regulated utility
contexts. The validation performed with simulated IEEE
14-bus data, though controlled and systematic, fails to
entirely encompass the complexities found in real-world
power systems. These complexities include factors such
as sensor noise, communication delays, and measurement
uncertainties. Consequently, there is a need for future field
testing under actual operational conditions. Ultimately, the
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FIGURE 9. A correct rearrangement of different segments of a corrupted HMI screen using the SoM-GI Technique.

FIGURE 10. A manual manipulation of CB between Bus 6 and Bus 13 to
an open status.

costs associated with implementation including computing
infrastructure, software licenses, staff training, and mainte-
nance must be thoroughly evaluated. These expenses could
lead to discrepancies, as only large utilities might be able
to afford sophisticated AI-based defense systems. Despite
these limitations, the proposed GenAI-based framework
marks a significant step forward in the cybersecurity
of modern power systems. When used as an additional
layer in a defense-in-depth strategy, it has the potential
to significantly enhance traditional protection systems and

human expertise, leading to more robust and adaptive grid
security.

IV. CONCLUSION AND FUTURE DIRECTIONS
This study has effectively developed an innovative security
framework designed to secure power grid control systems
from advanced threats/errors targeting multiple points of
vulnerability. By integrating state-of-the-art AI technology
with a comprehensive understanding of power system
operations, three pioneering solutions are proposed including
a GenAI-based ADS capable of identifying stealth attacks
that conventional BDD (e.g., χ2 test) miss, a GenAI-based
ADS for identifying FDIs by training the GPT model with
PF results and SE rules, and the SoM-GI approach, which
enables AI to interpret and comprehend power grid displays
comparable to the expertise of experienced operators. Empir-
ical evaluation utilizing actual power system models has
demonstrated the framework’s proficiency in identifying a
range of threats, including deceptive data manipulations that
align mathematically yet violate physical laws, and visual
manipulations on HMI screens that might mislead human
operators into making risky decisions. The distinguishing
feature of this approach is its capacity to function similarly to
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both an engineer and a detective, synthesizing evidence from
numerical data, visual inputs, and system behavior patterns to
detect anomalies escaping traditional security mechanisms,
while also conveying findings in a way that operators can
easily interpret and trust.

In future research, the enhancement of power grid security
will be achieved through a series of interconnected initiatives
designed to tackle the evolving challenges posed by technol-
ogy advancements. Firstly, it is imperative to create robust
frameworks for validation that leverage adversarial training
methodologies to verify AI-generated outputs, ensuring
alignment with a wide array of operational specifications
and physical constraints. Concurrently, the development of
sophisticated real-time analytical systems is crucial for pro-
cessing streaming data from HMI with a latency measured in
sub-seconds, all while maintaining computational efficiency
via optimal resource allocation. Furthermore, the framework
will evolve to integrate novel DERs, microgrids, and virtual
power plants, each of which fundamentally transforms
conventional grid operational dynamics. Significant attention
will be directed towards the design of advanced detection
algorithms that can recognize extensive coordinated attacks
targeting specific topological vulnerabilities within the
network, especially those affecting zero-flow transmission
segments that are not detectable by standard statistical
monitoring techniques. In addition, user interface systems
will be progressively adaptive, with the ability to modify
the presentation of information based on both the severity of
threats and the expertise level of operators. This research will
also explore the development of proactive defense strategies
against AI-led cyber threats by implementing continuous
adversarial learning processes. Finally, a groundwork will be
considered for security protocols resistant to quantum-based
attacks, ensuring the sustainable protection of infrastructure
as the industry transitions to cryptographic paradigms
designed for a post-quantum world.
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