GitFL: Automated fault localization for

environments where code-changes by multiple
developers are tested simultaneously

J.E. van Dorth tot Medler
Student Number: 4453344
April 26th 2023

Master of Science Robotics
Delft University of Technology
Adyen N.V.

Robotics Master Thesis Project (RO57035)
Department of Mechanical, Maritime and Material Engineering
March 2022 - January 2023

Supervisors:
Prof. dr. ir. J.C.F. (Joost) de Winter (Delft University of Technology)
Kelvin Elsendoorn (Adyen N.V.)

Defense commitee:

Prof. Dr. Ir. J.C.F. (Joost) de Winter (Delft University of Technology)
Prof. Dr. A.E. (Andy) Zaidman (Delft University of Technology)
Dr. Ir. Y.B. (Yke Bauke) Eisma (Delft University of Technology)

Kelvin Elsendoorn (Adyen N.V.)

CONTENTS

[Tntroduction|

[IT Background]

v Implementation|
V-A Environment] L L e

[VIED ™ Analysis]o o ot e e e

X~ Threats to validity|

nclusi

[XI__References

IXII-A Examples of code mutations|

GitFL: Automated fault localization for
environments where code-changes by multiple
developers are tested simultaneously

Jan van Dorth tot Medler
Delft University of Technology
Adyen N.V.
Delft, The Netherlands
j-e.vandorthtotmedler @student.tudelft.nl

Abstract—

Background: For rigorous software testing, integration and end-
to-end tests are essential to ensure the expected behavior of multiple
interacting components of the system. When software is subjected
to integration or end-to-end tests, it is often unfeasible to test every
code change individually, as the runtime of these tests is usually sig-
nificantly larger compared to unit tests. For this reason, batches of
code changes from multiple authors are often tested simultaneously.
Problem: An issue with testing multiple changes simultaneously is
that it can be unclear which change form which author caused the
failure when tests fail, as all changes from all authors included in
the test can be at fault. Design: To solve this, a new automatic
fault localization algorithm called GitFL is introduced, which
combines state-of-the-art fault localization with version control
history information for enhanced performance. GitFL was evaluated
on a C++ repository at Adyen where tests are considered to
be end-to-end. Findings: It showed that the addition of version
control history information significantly increases the performance
of fault localization for systems where multiple changes are tested
simultaneously. Societal implications: This work provides insights
on improved fault localization for these systems, which could
enable organizations which develop these systems to speed up
their testing and development processes. Originality: This work
contributes by focusing on fault localization specifically for systems
where multiple changes are tested simultaneously, which was not
researched before.

Index Terms—software fault localization, software testing,
EXAM score, software debugging, survey

I. INTRODUCTION

Software testing is an essential element of building and
maintaining software systems. It ensures that software
meets its requirements and does not crash. Usually, three
types of test can be distinguished, being unit-, integration-,
and end- to-end tests. A single unit test tests a small part
of code in isolation, for example by ensuring that a method
returns the right output or by asserting that a variable attains
the right value. Integration tests test the combination of
multiple modules working together and end-to-end tests (or
systems tests) test the software by simulating real-life use
cases, requiring the entire system to operate and interact
without failure [[1]].

End-to-end tests can attain many forms, depending
on the type of system that is under tests. Systems that
contain embedded systems through which user interaction
is expected, cannot be fully automated end-to-end tested by
using software-only testing solutions, as physical interaction
is required. To still provide automated end-to-end testing
for these scenarios while refraining from manual testing,
robotic testing can be deployed. In the previous years,
robots became more enhanced and easily accessible, partly
by innovations in additive manufacturing (3D printing)
[2]. These developments lowered the barriers of using
robotics for automation within many applications within
many different industries, including hardware testing. With
these robots, user interaction with embedded systems can
be simulated, enabling automated end-to-end testing. For
example, for systems which require interaction through
a touch-screen, a robot-arm can mimic a human arm to
provide the required input.

Unit tests are usually executed by the developer (author)
after making a change in the code. For integration tests and
especially end-to-end tests, testing after every code change
is unfeasible due to these tests often being slow. An entire
system with all of its components takes more time to be built
and run, compared to the often dependency-less unit-testing
[3]], which causes its testing to be more time-consuming.
For example, for robotic end-to-end tests, pressing multiple
buttons as input takes a significantly larger amount of time
compared to almost instantly providing the button values in
a software-only test. For these time-consuming scenarios,
code changes of multiple authors are tested simultaneously.

When a batch of code changes from multiple authors is
tested and tests fail, it can be unclear which change (and
thus which author) caused the failure, as opposed to unit
testing, where inherently only one author can be at fault.
When it is unclear which author caused the failure, either
more developers have to search for bugs or developers
have to search outside of their own domain, increasing

the time required for debugging. Increased debugging
time is expensive. Namely, when bugs (also referred to
as faults) are not located early in the development cycle,
locating them becomes more time-consuming [4]. Next to
that, developers do not like debugging, especially when
debugging takes a large amount of time [5].

A widely-used approach for shortening debugging-time
is automatic fault localization (FL). Automatic FL uses
coverage information (e.g. data indicating which statements
are executed) combined with test outcomes as input [6 (7]
8L 9, [10] and outputs a ranked list of statements suspicious
of containing bugs. This output, inspected by the developer,
can contain many statements with a similar or even equal
suspiciousness [11[], making it difficult to localize the bug.
Additionally, with low coverage test suites, which often
tests more modules simultaneously, code is usually not
tested finely-grained. As FL performs better with tests that
test more fine-grained parts of the code, it performs worse
for lower coverage test suites [|12].

Version control has been essential for software develop-
ment in the last decades and is used throughout most orga-
nizations [|13]]. These version control systems hold extensive
data on when, how, and by who the code-base has been
altered. When searching for bugs, every bit of information
about the code-base history could be valuable. Thus, the data
from version control systems could hold untapped potential
when combined with automatic fault localization, especially
for low coverage test suites, with the goal of narrowing down
the number of statements for the developer to inspect. In this
paper:

o« We present a novel method to automatically localize
faults using version control data for systems where
batches of code changes are tested simultaneously,

o We evaluate the performance of this method on both
artificial and real-life test suites.

II. BACKGROUND
A. Fault localization

Automated FL is the practice of localizing software faults
(e.g. bugs) automatically. Instead of requiring a developer
to manually search for bugs, execution coverage and test
results are combined and fed to an algorithm that predicts
which statements are most likely to contain bugs. More
precisely, the execution coverage resembles the specific
statements that are executed during the tests. The test
outcome indicates if a test has passed or failed. To illustrate
the concept, suppose that a simple program is the subject
of several tests, of which some passed and some failed. If
a specific statement appears to be executed during every
failed test and never during passed tests, logically, this
statement has a high probability of containing the bug.

This concept is further explained by introducing a
characteristic fault localization method named Tarantula
[14], which belongs to the family of methods called
Spectrum-Based Fault Localization (SBFL). This seminal
paper, which introduced this type of method, is cited over
1400 times. The Tarantula formula is shown in figure [I| with
its parameters in table [[} For every statement (indicated with
’e’), the number of times it is executed during passed test
and failed tests is used, as well as the total number of both
passed and failed tests. This results in the suspiciousness
number, ranging from zero to one, indicating the probability
of the statement containing a bug.

TABLE I: Parameters in spectrum-based formulae [15]

efr Number of failed tests that execute the program element.
ep | Number of passed tests that execute the program element.

es
L. erte
suspiciousness(e) = epf—pef (D
eftep eftep

Fig. 1: Formula of the Tarantula method [|6] (edited).

Next to executed statements, many types of execution
information can be used, such as paths (the order in which
statements are executed) [16, |17]], branches/predicates
(statements that return either true or false, for example
the condition that is checked in an if-statement) [9} [18]],
in-variants (program states that should hold during the
entire life of the program) [19]], program traces (logs about
program execution), data-dependencies (when statements
refer to data of preceding statements), outputs (values
returned by the program) [20] and combinations of them
[21].

SBFL can be extended with other information sources to
obtain better performance. For example, the novel method
Histrum-based Spectrum Fault Localization (HSFL) [22]
combines spectrum-based fault localization (SBFL) with the
version control history (VCH) of the code repository (the
VCH contains all changes to the code with their timestamp
and author), to increase FL performance. This method is
based on the following principle: if a changed statement
belongs to a set of changes which cause tests to fail, it
is assumed that this statement should have an increased
suspiciousness.

The equation belonging to HSFL is shown in equations
and [3} The suspiciousness (here called HSFL) is obtained
by combining standard spectrum-based FL and the histrum.
The histrum is calculated in the following way. First, it
is determined which commits are so-called ’bug-inducing’
(also called ’inducing’), e.g. commits before which tests
passed and after which failed. Then, for each statement (s), it

is determined by how many inducing and non — inducing
commits it is changed. Then, SBFL and the histrum are
combined using a weighted combination with weighting
factor a.

Histrum(s,c;) = induce(s) 2)
V/Ni1 * (induce(s) + noninduce(s))

(1 —) * SBFL(s)
(1 — a)* SBFL(s) + o * Histrum(s)
0

s€ANs¢ESe
s€ANsE Se (3)
otherwise

HSFL(s) = {

where:

e = weight factor determining the ratio of SBFL versus Histrum
Histrum = the histrum

B. Version control

Version control (also known as revision control and
source control) is used by developers to keep track of
code changes. Every change that is recorded in the version
history, can be retrieved. Therefore, developers gain the
possibility to roll back to previous versions at any time. All
changes of all files, together with the project structure are
stored in the so-called repository. With version control, it is
possible to branch, e.g. to split off at a certain point in the
version history to for example work on a new feature that
is not ready to be included in the main project yet [23].
Several existing version control tools are Git [24], CVS
[25]], and Bitkeeper [26].

III. RELATED WORKS

The first FL methods were introduced in 1982, with
slice-based methods [27]. Slice-based FL isolates all
statements that could affect a specific variable chosen by
the developer [28]], limiting the number of statements a
developer has to examine to find the bug. The developer
could, for example, choose this variable to be a certain
program output variable that returns an irregular value,
isolating all statements of the program that can affect this
output variable. These isolated statements grouped together
are called a slice. This method, introduced by Weiser [27,
29|, is called static slicing. It produces slices that contain
all statements that could affect a variable, regardless of
the program input and test outcome. Korel and Laski [30]
introduce dynamic slicing, which uses slices that exist
of only those statements that are executed for a specific
input. The number of statements in a dynamic slice is
always less than or equal to the size of the static slice, as
the static slice includes the statements for all possible inputs.

Another slice-based method, called execution slicing,
creates a slice that holds all executed statements of a
program, disregarding input and test results and without

the need for the developer to specify a specific variable
to inspect [31]]. Static- and dynamic slicing require the
specification of a variable for which to create slices,
in contrast to execution slices. All types of slicing are
language-independent, as they do not depend on language-
specific properties, but only on which lines of code are
executed. Slicing does not leverage test outcomes and only
isolate statements for inspection as opposed to providing
a ranking of statements to inspect first. Because of this,
it can be argued that this family of methods is not fully
automatic.

Execution slices are often used as the input for a family of
automated FL methods, called spectrum-based FL. (SBFL).
SBFL uses execution slices (e.g. execution information) of
the program combined with test outcomes to localize bugs.
One of the first introduced spectrum-based methods is Set
Union [6]]. The formula of Set Union is shown in figure
2l Set Union works as follows: the statements executed
(F) by a single failed test (f) are considered. From those
statements, the union of the statements executed by all
passed tests (E'p for all p in P) is subtracted. The remaining
statements are thus only executed by failed tests and never
by passed tests. These remaining statements should be
examined first by the developer. Next to Set Union, similar
basic methods exist [|6, 32].

Einitial = Ef - U Ep
peP

“

Fig. 2: Set union formula [6].

For more detailed results, the execution information of
the program combined with test outcomes can also be
combined with formulae that compute the suspiciousness of
parts of the program (e.g. how likely is it for the statement
to contain the bug). Most spectrum-based methods use
execution information consisting of which statements
were executed [33]]. There exists many methods similar to
Tarantula, all with varying formulae [8} |34} |7, 35]. Where
execution slices are program-independent, other execution
information, such as predicates, can be language-dependent,
making data collection potentially a more complex effort.
A widely acknowledged shortcoming of spectrum-based
methods is the problem of ties. When multiple statements
have the same suspiciousness score, they have the same
rank. In other words, they are tied. It is then unclear which
of these tied statements should be examined first [36].

Execution slices are also used as input for Machine
Learning-based FL methods (MLFL). MLFL treats
execution slices as features and test results (either passed
or failed) as labels, with which a model can be trained, as
shown by Zheng et al. [37]]. There exist several methods,

all based on different machine learning models. BPNN [37]
uses a (shallow) neural network, DNN [38] uses a deep
neural network and CNN-FL [39] uses a convolutional
neural network. Other methods focus on using clustering,
such as RBF [40]], which makes use of a radial basis
function. LingXiao [41] also makes use of clustering, to
find bug-related predicates.

Next to execution slices, other inputs for FL methods
exists. One of those is code mutations, which entails
the modification of statements. Mutation-based methods
(MBFL) leverage the mutation of statements to localize
bugs. MUSE, introduced by Moon et al. [42], is based on
the concept of trying to make failed tests pass by mutating
statements. For example, a mutant of the statement var = z
can be var = —z. If this mutant causes previously failing
tests to pass, the suspiciousness of the original statement
containing a bug will be high. Papadakis and Le Traon [43]
introduce Metallaxis, which is similar to MUSE. However,
Metallaxis works by observing if mutants change the
program output compared to the original program version,
instead of only observing if a mutant switches a test result
from failed to passed.

Another input for another FL family is changed program
states. State-based FL methods make use of observing
and changing program states. Program states refer to
the contents of memory locations at any time during
the execution of the program. Relative Debugging [44]
assumes that there are several known reference program
states linked to correct program behavior. The program
states of the version of the program that is being tested
are then compared to the reference program states and
when they do not match up, it should be investigated. Delta
Debugging [45]] replaces program states of failed tests with
the corresponding program states of passed tests and reruns
the test. If the test passes, these program states are no
longer suspicious of holding the bug. Cause Transitions
[46] aims to locate moments in time where variables end
being failures and transition to another variable. Predicate
Switching [47] switches the outcome of a predicate value
during the execution of the program, trying to cause a
successful program execution. If a switched predicate
caused the program to succeed instead of fail, this could
hint at the location of the bug. A disadvantage is that,
for state-based methods to work properly, program states
need to be able to be changed during runtime, which is
not always possible, for example with secured embedded
systems. The memory of these systems is either executable
or writable, which means that executable code cannot be
altered during runtime, inhibiting the change of program
states.

Next to the families of methods listed above, more
families of methods exists, such as statistical debugging [9,

18], |48, 49] and model-based FL [50, |51} 52, |53]].

IV. DESIGN

Combining FL with version history control information
can be done by using HSFL. For environments were
batches of code changes from multiple authors are tested
simultaneously, this poses a challenge. For HSFL, it is
required to know which changes are inducing and non-
inducing, e.g. which changed statements belong to a set
of changes which cause tests to fail and which do not. To
determine which changes are inducing and non-inducing,
the execution of tests after every change is required.
For environments where batches of changes are tested
simultaneously, this is impossible. For these environments,
a different approach is required.

To improve existing fault localization for environments
where batches of changes are tested simultaneously, we
introduce GitFL. GitFL is a fault localization method that
combines traditional fault localization (F'L) with the version
control history (VCH).

sus(e) = { (1—a)*FL(e) + a*x VCH(e) if FL(e) #0
0 if FL(e) = 0(5)

In formula sus(e) is the suspiciousness for the
executed statement e. F'L(e) is the suspiciousness for a
statement returned by an arbitrary standard FL algorithm
using coverage information and test outcomes. VCH (e)
is the suspiciousness for a statement based on the version
control history. The weighted combination of F'L(e) and
VCH (e) is determined by the weighting factor o. When a
statement is never executed during failing tests, it has no
reason to be suspicious and thus should not be considered
suspicious. Accordingly, when FL(e) is equal to zero,
sus(e) is set to zero, to prevent a non-zero sus(e) caused by
VCH. To calculate VCH (e), several assumptions are made.

For calculating VCH, one could include all changes
ever made in the repository with equal weights. With this
approach, all code-changes (now referred to as ’changes’)
are treated as potentially failure-inducing changes. Failure-
inducing changes are changes that cause test(s) to fail by
introducing bugs. This would add the same suspiciousness
value for every line of code, as every line of code was
changed (adding statements are also changes) at some point,
not strengthening the standard fault localization method.

An improvement can be made with the assumption
that bugs are fixed shortly after they are discovered. This
assumption is expected to hold, as fixing bugs in an early
stage of development is crucial for effective software
development [4]]. It can be deducted that a bug in an older

failure-inducing change is more likely to have already been
fixed, compared to a bug in a newer failure-inducing change.
Thus, newer failure-inducing changes should increase the
suspiciousness more than older ones. This relationship
can for example be linear or exponential. VCH(e) is
calculated using a decaying exponential relation, meaning
that new changes will result in an exponentially higher
suspiciousness, resembled by the exponential function in
equation [6] and visualized by the plot in figure 3] in the
range DBIT to cy. A disadvantage of this approach is
that the entire change history of the repository needs to be
evaluated, which can be a time-consuming task when the
repository is large.

This disadvantage can be mitigated with the assumption
that there is recent point in time that is free of failing
tests (e.g. all tests passed), which limits the evaluated
change history to a more recent, smaller time range,
likely significantly reducing the number of changes. This
assumption can be tricky to make, since it is not necessarily
required for all tests to pass before the next release can
be delivered. Not all tests are as important for realizing
a sufficiently functioning system, possibly resulting in
unsolved failing tests before a release. These tests could
be neglected due to development prioritization. However,
as releasing a non-functioning system would be unwise, it
can be assumed that most tests pass with only the critical
tests in the worst case. Additionally, all tests passing does
not necessarily mean that no bugs are present, as adding
more tests cases will not ensure the localization of all bugs
[3]. A more realistic approach is to pick a point in time
where the majority of tests passes (including all critical
tests). From this point in time, all changes are considered
potentially failure-inducing, up until the last change made.
All changes before that point in time, are considered as
non failure-inducing changes. This is resembled by the
otherwise case in equation [6] and the range before DBIT
in figure If, for a specific repository, assumption two
cannot hold, then assumption three also cannot hold, as
there will be old unfixed bugs present.

e~ BT if ¢f — DBIT > ¢ > ¢
0 otherwise

VCH(e) = {
(6)

Here, ¢y is the date of the final change, e.g. the last
change made in the current release. ¢;, is the date of the last
change that changed the statement. DBIT stands for days
back in time and determines up until which date changes
should still be considered to be potentially failure-inducing.
dy is the decay factor. When the value of dj is high, the

T T
1 |- |
0.8 i
2 06[8
=3
2
2
& 04f .
Z
0.2 i
0 - |
| | |
DBIT cf now
date

Fig. 3: Decaying exponential relation between change date
and suspiciousness with a decay factor of 5. The final com-
mit date ¢y is 7 days ago relative from now. DBIT is 37
days ago. In between DBIT and cy, newer changes receive
an exponentially higher suspiciousness compared to older
changes. For changes outside this range, the suspiciousness
is zero.

suspiciousness of new changes will be high compared to
old changes. ds can be adjusted to the environment. For
example, when it is known that bugs are usually fixed later
after they are discovered, the value of d; should be lowered,
to allow older changes to still significantly influence the
suspiciousness.

TABLE II: Sample program for finding the n-th number in
the Fibonacci sequence.

Line Code

1 unsigned int fib (unsigned int n) {
2 if (n == 0) {

3 return 0;

4 }

5 else if (n ==1 || n == 2) {

6 return 1;

7 }

8 else {

9 return fib(n - 1) + fib(n - 2);
10 }

11 }

TABLE III: Unit tests for testing the Fibonacci sample
program.

Line Code

1 TEST_METHOD (T1) {

2 Assert::AreEqual (0, fib(0));
3 }

4 TEST_METHOD (T2) {

5 Assert::AreEqual (6, fib(8));
6 }

TABLE IV: Changes made to the sample program by a developer. They refactored the code to make it more compact and
added a logging statement. By refactoring, they introduced a bug, namely the if statement always returns 1 but should

return O for n=0.

unsigned int fib (unsigned int n) {

if (n == 0) {
return 0; L
} 1
else if (n == 1 || n == 2) { 2
return 1; 3
} 4
else { 5
return fib(n - 1) + fib(n - 2); 6
} 7
} 8
9

ine Code
unsigned int fib (unsigned int n) {
if (n == 0 || n==1 || n == 2) {

return 1;

}

else {

std::cout << logging statement
return fib(n - 1) + fib(n - 2);

}

TABLE V: Overview of the concept of GitFL, indicating which statements are changed, which statements are executed by
the failed test case T1 and which statements are executed by the passed test case T2. In the last column, the suspiciousness
is shown, indicated by —, -, 0, + or ++. When a statement is changed or executed by a failed test case, the suspiciousness
raises. When a statement is executed by a passed test case it lowers.

Line Code Changed T1 T2 Suspiciousness
1 unsigned int fib(unsigned int n) { v v 0

2 if (n == [] n == || n == 2) { v v v +

3 return 1; v v ++

4 } v o/ 4+

5 else { v -

6 std::cout << logging statement v v 0

7 return fib(n - 1) + fib(n - 2); v -

8 } J -

9 } -

TABLE VI: Output of GitFL consisting of a list of statements ranked on their suspiciousness. Statement 3, the buggy
statement, is ranked as the first statement that the developer should examine.

}

The tables V] and [V] illustrate the concept of
GitFL. Table [[I] shows a sample program for calculating
the n-th number from the Fibonacci sequence. Two test
cases exist for the program and are described in table
one asserting that the Oth Fibonacci number returns 0 and
one asserting that the 6th Fibonacci number returns 8. A
developer refactors the program with the goal of making
the code more compact. These changes are shown in table
They merge the two if-statements and accidentally
introduce a bug. Namely, returning 1 for both the Oth, Ist
and 2nd Fibonacci number, while the Oth number should
return 0. The developer did not notice they introduced a
bug and runs the two tests T1 and T2 described in table
They notice that test T1 fails but do not know the reason
for it to fail.

Line Code Suspiciousness
3 return 1; ++

2 if (n == [| n == [l n==2) { +

4 } +

1 unsigned int fib (unsigned int n) { 0

6 std::cout << logging statement 0

5 else { -

7 return fib(n - 1) + fib(n - 2); -

8

9

To locate the buggy statement, they use GitFL. The
combination of traditional fault localization and the version
control history is visualized in table [V] The traditional
fault localization F'L is resembled by the columns 'T1’
and *T2’, indicating if the statements are executed during
these failing and passing tests. The version control history
VCH is resembled by the column ’changed’, indicating
if the statements are changed by the developer. When a
statement is changed or executed by a failed test case, the
suspiciousness raises. When a statement is executed by a
passed test case it lowers. The suspiciousness is described
by a -, -, 0, +, ++, resembling its value.

After calculating the suspiciousness of each statement,

TABLE VII: Visualization of placeholder for deleted lines.

Line
1
2
3
4
else if (n == [| n == 2) { 5
return 1; 6
} 7
8
9

all statements are ranked according to their suspiciousness,
starting with the statement with the highest suspiciousness.
Now, the developer examines the output of GitFL, being
the ranked list of statements. They start with the statement
with the highest suspiciousness and find the bug. Note that
this example was made purely with the goal of explaining
the concept of GitFL.

The term ’change’ refers to the addition, modification or
deletion of statements. For both addition and modification,
GitFL operates as expected, as the affected statements are
still present after addition or modification. For including
deletions in GitFL, we chose to use placeholders. A
placeholder consists of a statement which does not affect
the program logic but is always executed when the delete
lines of code would be executed, to ensure detection by
GitFL. This can for example be a statement that generates
a log message, which is visualized in table Here,
statements 5-7 of the original program are deleted and
replaced by statement 5 in the new program, which outputs
the text ’executing deleted lines’ to the console. For every
consecutive block of deleted statements, one placeholder is
required.

V. IMPLEMENTATION
A. Environment

Adyen is a financial service provider which, among
other others, implements solutions for in-store payments.
Customers can pay in the stores of merchants by using
payment terminals. One of the available terminal models
used in many stores, the Verifone P400Plus, is shown in
figure [4] Customers can, for example, pay by inserting or
tapping their card or phone and enter their pin-code on
the numeric pad, if required. To enable these payments,
software needs to run on the terminal, which handles
user interaction and payment processing. This software is
developed and maintained by Adyen.

The terminal software is continuously maintained and
improved upon through updates. However, before deploying
updates to terminals, it is essential to ensure that the new
software behaves as expected. If bugs are present, which
potentially cause terminals to crash or to not properly

Code
unsigned int fib (unsigned int n) {

if (n == 0) {
return 0;

}
std::cout << executing deleted lines
else {

return fib(n - 1) + fib(n - 2);

}

Fig. 4: Verifone P400Plus terminal, provided by Adyen to
merchants for in-store payments. This specific model is used
for the evaluation of GitFL.

being able to process transactions, the situation could occur
wherein customers are not able to pay at merchants. To
prevent this, the terminal software is extensively tested. Next
to unit-tests which test individual components, end-to-end
tests are used to ensure that the whole system operates as
expected. To end-to-end test the terminal, real-life scenarios
are tested, simulating a paying customer. For example, by
mocking a merchant by initiating a payment request for
an arbitrary amount, after which a card is presented, a
pin-code is entered and the transaction is processed. Such
an end-to-end test implicitly tests many parts of the code.
However, presenting a card and entering a pin-code on the
numeric pad are physical actions which cannot be mocked
by only using software. The solution for this is using
robots to simulate real-life user interaction by physically
testing the terminals and thus implicitly testing the terminal
software.

The robot testing setup at Adyen is shown in figure [3]
[6] and [7] The robots are primarily made out of additive
manufactured parts and servo motors. Each robot has a
terminal mounted on the base, a robotic arm with a finger
for pressing buttons and interacting with a touch-screen,
and they have modules for three payment methods installed,

Fig. 5: Robot test setup at Adyen for the end-to-end testing
of terminals by simulating real-life user interaction. The
robot has the ability to insert, swipe or tap cards and provide
input on the numeric pad and screen.

namely, inserting a card in the terminal, swiping card
though the side of the terminal and tapping the top of the
terminal. A camera is mounted on the top bracket to enable
remote surveillance of the robot.

During these robotic end-to-end tests, batches of code-
changes from multiple authors are tested simultaneously, as
running many robot tests after each change is unfeasible
due to robot capacity and time. To illustrate, consider a test
suite with hundreds of robot tests. If all these robot tests
need to be executed after every code change, the tests are
probably not finished before the next change is introduced,
which results in an ever-growing testing queue. However,
because multiple changes from multiple authors are tested
simultaneously, it can be unclear which change (and thus
which author) caused a robot test to fail. To combat this,
GitFL was implemented at Adyen to locate these buggy
changes.

B. Data collection

To localize faults in this particular environment, a tailored
testing and data collection pipeline was required. The reason
for this was that implementing FL for an embedded system
was more complex compared to software-only systems.

Fig. 6: Front view of the robot test setup at Adyen.

Fig. 7: Close-up view of the robot interacting with the
terminal during a test.

10

For software-only systems, coverage information collection
tools are often already integrated in the IDE. However, for
these embedded systems, coverage information collection
tools had to be integrated manually.

The routine is shortly described here and is written as
pseudo-code in algorithm [I] First, an individual test from
the collection of tests is executed. When that individual
test is finished running, the next test in the list is not
immediately executed. Before doing so, the coverage
information related to the just-executed test, stored in the
memory of the target (which, within this environment,
resembles the terminal), is written to the flash memory
of the target. Then, the coverage files are downloaded
from the target to the local machine (which, within this
environment, resembles a laptop) for storage. These files
will be processed after finishing executing all tests.

Algorithm 1 Pseudocode of the data collection pipeline.

for each test in test case list do

Schedule test

Start robot

if test is not completed yet then

Wait on test to finish

end if

Save coverage information on target

Extract coverage information from target to local
machine
end for

For obtaining the coverage information, tools are
available. For example, there is Gcov [54], for C++ code,
gcovr [55] for Python and Jcov [56] for Java. There are no
restrictions for most other popular programming languages,
for which tools are available too [57, |58, 159].

For the setup at Adyen, coverage information was
obtained with Gcov. Geov was enabled by setting specific
flags before compiling the source code for the target. To
log the coverage information, Gcov generates two type of
files, being .gcda files and .gcno files. The .gcno files are
generated at compile time and placed in the same directory
as the program source code (on the machine used for
compiling the code). These .gcno files hold the instructions
for logging the coverage information at runtime. During
runtime, Geov logs the coverage information to the target’s
memory, specifying which statements are executed and how
often they are executed. When the method gcov_dump
is called (which is automatically called at a restart), the
coverage information on memory is written to a .gcda
file on the target’s storage. After every test, the .gcda
files need to be downloaded from the target to the local
machine, to avoid replacing the data in the file with the
data from the next test. Then, the .gdca and .gcno files

11

need to be combined into a .gcov file. The .gcov file
holds human-readable coverage information logs, indicating
which statements are executed and how often.

To ensure obtaining complete coverage information,
compiler optimizations needed to be turned off. For
example, if a code change causes an if-statement to always
evaluate to true, it would be unnecessary to evaluate it and
the compiler optimizations would generate instructions that
result in never evaluating the if-statement. However, if this
buggy if-statement is never executed, it cannot be detected
by GitFL.

After executing all tests, the .gcda files were combined
with their accompanying .gcno files to generate the readable
.gcov files. However, the .gcda files were located on the
local machine, while the .gcno files were located on the
machine used for compilation, where they were generated.
Normally, this would be the same location, being the local
machine. However, in this specific case, the code could
not be compiled on the local machine due to the local
compiler not supporting the Gcov tool. For this reason,
the code was compiled on a cloud-based server. The Gcov
tool can only successfully merge the .gcda and .gcno files
when both files are located in the original source directory
used for compilation. This required moving the .gcda files
to the server. Furthermore, it was required that the .gcda
and .gcno of the same file were placed in the exact same
directory, for the Geov tool to be able to merge them. This
is described in algorithm

Algorithm 2 Pseudocode of the algorithm that finds,
matches and moves .gcno and .gcda files.

find all .gcda files on local machine
find all .gcno files on buildserver
for each .gcda file do
path < get path to file
path < removeparto fpathbelongingtobuildserver
.geno path < path
copy .gcda file to path of .gcno file path
end for

An example of a .gcov file is shown in It starts
with the version number of Gocv. On the next line,
the path to the source file is listed, indicated by the
“file’ keyword. Below, the executed functions are listed,
indicated by the ’function’ keyword. The first two numbers
resemble the start and end statements of the function.
The third number indicates how many times the function
has been executed, followed by the name of the function.
Continuing, the ’lcount’ keywords indicates the individual
statements. The first number represents the line number of
the statement, the second number is the number of times the
statement has been executed and the third number indicates

TABLE VIII: Example of .gcov file contents.

version:8.3.1 20190311 (Red Hat 8.3.1-3)
file:path/to/source/file
function:37,41,3, functionl
function:45,47,6, function2
lcount:37,3,0

lcount:38,3,0

lcount:39,3,0

lcount:40,3,1

lcount:43,2,0

lcount:44,6,0

lcount:45,6,0

lcount:47,6,0
file:path/to/first/header/file
function:2,4,1, functionl lcount:2,1,0
lcount:4,1,0

lcount:5,0,0

lcount:6,0,0

lcount:83,0,0

lcount:87,0,0
file:path/to/second/header/file
function:46,50,2, functionl lcount:46,2,0
lcount:47,2,0

lcount:48,2,0

lcount:50,2,0

lcount:83,1,0

lcount:87,1,0

if there is a not-executed block present within the statement.

Consequently, executed header files linked to the source
file are listed. For simplicity, it was assumed that the header
files were free of bugs, thereby ignoring their coverage
information. Additionally, only the ’lcount’ rows are
required to be parsed, as GitFL works with statement-level
coverage (meaning GitFL requires data describing the
coverage information of all statements), therefore it is
not necessary to include the ’function’ rows for parsing.
The parser described in algorithm [3] parses the coverage
information in .gcov file format to usable data saved in a
database. It does this by iterating over all lines in the .gcov
file. To ensure that only the first file is processed, it checks
if the keyword ’file’ appeared before. If that is the case, it
continues to the next .gcov file. The executed statements
are added to the ’Coverage’ table in figure [§]

The GitFL algorithm needs access to the change history
in order to work properly. More specifically, it requires
the exact statements which are changed within the date
range of interest. In other words, if the date range of
interest is 30 days, GitFL requires all statements that
have been changed in the last 30 days together with their
change date. Within the Adyen environment, Git is used
for version control history. Because of this, Git blame [60],
a command belonging to Git, can be used to fetch the
changed statements.

Git blame takes a filename as input and outputs all
statements of that file, accompanied by the latest changes
of those statements. This indicates when and by who a
statement is last changed. However, for GitFL, only the

Algorithm 3

for each .gcov file do
for each line in file do
if line contains ’file’ then
if *file’ is already seen before then
continue to next .gcov file
end if
save path to database
end if
if line contains ’Icount’ then
save line to database
end if
end for
end for

changes within the date range of interest are required.
These changes are used as input for GitFL while the
changes outside of the date range are excluded. Algorithm
[] describes the data collection routine with Git blame. For
each file that is executed at least once (present in the 'Files’
table in figure [§), the version control history is fetched
using Git blame. Then, it loops over the lines of the Git
blame output, which resemble the statements of the file
with their last change date. If a statement is changed within
the date range of interest, it is added to the list of changed
statements. These statements, together with their change
date, were added to the ’ChangedLines’ table in figure [§]

Algorithm 4 Pseudocode of the version control history data
collection.
Initialize list of changed statements
for each file executed by any test do
Retrieve changes of the file with Git Blame
for each statement in the Git Blame output do
if statement is changed within the determined date
range then
Add statement to list
end if
end for
end for
return list

Next to coverage information and changed statements,
GitFL required the test outcomes. With the test outcomes,
GitFL can determine if a statement is executed by either a
passed or a failed test. The framework used for executing
the robot tests was already in place. Next to executing tests,
the framework also kept track of the test outcomes. After
executing all tests, the test outcomes were extracted using
the API of the testing framework. The API response was
not in the correct format used in the database in figure [8]
which required the response to be parsed. The parsed test
outcome data was added to the *Tests’ table in figure

12

C. Data structuring

All relevant coverage information and test data was stored
in a relational database with multiple tables, visualized in
figure [8] The ’Files’ table holds the names and paths of
all source files that contain at least one statement which is
executed during testing. The *Tests’ table hold the names
and outcomes of all tests that were executed. The test
outcome can attain either ’passed’ or ’failed’, which is
represented by a one or a zero, respectively. The ’Coverage’
table holds all statements which were executed, linked to
the corresponding test by which they were executed and
which file they belong to. The ’ChangedLines’ table holds
all statements that were recently changed within the date
range of interest, accompanied by the exact date and time
indicating when the statement was last changed. Finally,
the "Sus’ table holds the suspiciousness returned by GitFL
for all executed statements.

GitFL requires a specific format as input, visualized in
table [X] For the input, each row represents data for an
individual executed statement. This includes the file id and
the line number of the statement, by how many passed and
failed tests the statement was executed and if the statement
was changed and, if so, on which date. This data format is
obtained from the database in figure [§] with the following
pseudo-query:

for each executed statement in every
test in the coverage table, count how
many times it is executed by failed and
passed tests by referencing to the tests
table. Determine if the statement was
recently changed and if so, when, by
referencing to the changedlines table.

TABLE IX: Data structure of the input of GitFL.

FileID LineNumber Passed Failed Changed Change date
1 1 14 2 0 Null

1 36 12 6 1 4 days ago
2 15 3 20 1 1 day ago

3 2 15 2 0 Null

3 3 15 2 0 Null

3 143 3 24 1 4 days ago

D. GitFL

The GitFL algorithm is described by algorithm [5 It
resembles an implementation of formula [3] It loops over
all executed statements and first computes its partial
suspiciousness for traditional FL. with the Tarantula formula
shown in equation E} If this value is zero, the final
suspiciousness of this statement becomes zero, as it is
never executed by a failed test and thus has no reason
to be suspicious. Otherwise, the partial suspiciousness

13

Algorithm 5 Pseudocode of the GitFL algorithm, which
returns a list of statements, ranked on their suspiciousness.

Initialize empty list SusList to store suspiciousness of
statements
for each statement in executed statements list do
Sus <0
FL < compute F'L
if F'L is zero then
Sus < 0
SusList < Sus
skip to next iteration
end if
VCH < compute VCH
Sus +— (1—a)* FL+axVCH
SusList < Sus
end for
Sort SusList on suspiciousness, descending
Return SusList

for VCH is computed with equation [6] Finally, both
partial suspiciousness values are combined in a weighted
combination to obtain the final suspiciousness value for
the statement. The resulting list of statements with their
suspiciousness is then sorted in a descending order to
ensure the most suspicious statements being at the top of
the list, which is the output of GitFL.

VI. EVALUATION

The research question posed in the introduction was
”What is the effectiveness of GitFL for environments where
batches of changes are tested simultaneously?”. To answer
this research question, an empirical study was conducted to
evaluate the effectiveness of the newly introduced method
GitFL. Specifically, this evaluation was done on the Adyen
case.

As GitFL combines existing FL with the version control
history, an existing FL. method needed to be selected for
evaluation. The performance of the method had to be good
enough to produce usable results but did not necessarily
have to be the best available, as the main goal was to pro-
duce insights on the contribution of version control history
information. This requirement resulted in the selection of
Tarantula [6]], a popular and simple to implement FL method.

A. Artificial cases

The artificial test suite used for evaluation was manually
generated. A recent build, for which all end-to-end tests
passed, was chosen. With this build, multiple faulty versions
were generated by introducing mutations in the code. A
faulty version is a unique build with a unique bug or
mutation. These mutations had the objective to cause test
failures, which classifies them as bugs. A selection of
mutation operators from the Java mutation testing tool PIT

Fig. 8: Relational database for storing coverage and test data, to be used as GitFL input, later on.

Files Tests Bug
PK ID Integer PK ID Integer bugFile Integer

Name Text Name Text bugLine Integer

Path Text Passed Integer

Y

PK_ID PK_ID PK_ID PK_ID
N
FK1_FilelD FK1_FilelD FK1_FilelD FK2_TestiD
Sus ChangedLines Coverage

PK FileID, LineNumber
FK1 FileID Integer
LineNumber Integer

Sus Double

PK FileID, LineNumber
FK1 FileID Integer

LineNumber Integer
Date Integer

FK1 TestsID Integer

FK2 FileID Integer
LineNumber Integer
LineCount Integer

from Coles et al. [61] was used. The selection was made
with the objective of causing test failures in mind. For
example, the probability of the negate condition operator
(== to ! =) to cause failures is expected to be significantly
greater than the condition boundary operator (< to <), as
boundaries are usually tested in unit tests instead of end-
to-end tests. PIT’s mutations were extended by additional
mutant operators, such as null replacement and switch case.
The selected mutation operators are shown in table [X] To
illustrate how mutations can affect test outcomes, example
code is provided in the appendix and walked through.

All mutations in table [X| were applied to several source
files, belonging to the collection of code for a specific
transaction protocol. Most mutations were applied multiple
times on different locations in the source code. Only files
affecting this transaction protocol were considered, to
reduce the scope of the test suite. The mutations were
chosen in such a way, that they primarily affected the
business logic of the programs. For example, by omitting
a certain response field for a transaction. Affecting only
business logic was done to ensure the programs did not
cause the embedded system to crash, which would result in
the inability to further log coverage information and prevent
GitFL to perform as expected. Although these mutations,
which cause the system to crash, are also considered to be
bugs, they fall out of the scope of this project, as coverage
information is essential to GitFL.

When a mutation was made, it was added to the version
control history, similar to a developer making a change.
Every change in the version control history has a date. This

14

TABLE X: Mutation operators selected from Coles et al.
[61] (edited)

Name Transformation Example
Negate Negates one relational operator | ==~~! =
Condi- (single negation).
tion
Return Transforms the return value of | return 0 ~» return 1
Values a function (single replacement).
Method | Deletes a call to a non-void | int m() ~
Call method.
AOD Replaces an arithmetic expres- | a+b ~ a
sion by one of the operand.
ROR Replaces the relational opera- | <~»>
tors with another one. It applies
every replacement.
Remove | Replaces a cond. branch with | if(...) ~ if(true)
Condi- true or false.
tion
Null Replace variable by null a=>5~ a=null
replace-
ment
Switch Add, swap or delete a switch
case case

gave rise to the following question: which date should the
artificial change get? The change date should by all means
be in the DBIT range, as changes outside this range are
not recognized by GitFL. With the assumption that bugs are
usually fixed shortly after they are discovered, changes that
induce not-yet-fixed bugs are more likely to appear closer
to the date of the final change. Based on this reasoning, the
date of an artificial change was sampled from a exponential
decay distribution with a decay factor similar to the decay

factor in the GitFL parameters. This distribution aims
to increase the realism of bug-inducing change dates by
favoring dates closer to the final change date.

To research the influence of the decay factor parameter
of the GitFL algorithm, the decay factor was varied. At
this point, the influence of the weighting factor oz was not
known yet. For this reason, both the decay factor d; and
the weighting factor o were varied simultaneously. For
each combination of « in the range of zero to one with a
step size of 0.1 and dy with the values 0.1, 0.3, 0.5, 0.7, 1,
2, 4, 8, 15, the performance of GitFL was evaluated. The
performance was determined by inspecting the rank of the
buggy statement returned by GitFL for each combination
of values. For each value of «, the best performing value
of dy was listed. Inspecting this value for all values of
o gave insight in the relation between dy and «. It often
occurred that the rank was equal for multiple values of
dy for a specific value of o. When this occurred, the
suspiciousness value was inspected to differentiate between
the tied statements.

B. Real-life cases

Although the amount of real-life test data was too limited
for proper evaluation, it was not discarded. Several cases
using real-life data were used for additional evaluation to
test the generalization of GitFL. Compared to the artificial
cases, the scope of the collection of the real-life cases
was significantly broader, meaning that a larger part of the
system was involved.

C. Finding the GitFL parameters that lead to optimal per-
formance

The GitFL algorithm has several parameters that can
be varied, resulting in a varying output and performance.
Determining analytically which set of properties results in
the best performance is difficult (what this best performance
entails is defined in section [VI-D). Each environment
(e.g. code-base) requires different parameters for the best
possible performance. In addition, the set of all possible
parameters variations is large, which means solving for
optimal parameters is expected to be time-consuming. For
this reason, it was empirically determined which set of
properties resulted in the best performance.

Combination weight («): « determines the weighted
combination of standard FL (FL) and the version control
history (VCH). This property is arguably the most
interesting, because varying it has the potential to show
how both FL and VCH perform stand-alone (o = 0 and
a = 1, respectively) and what the contribution of VCH to
FL looks like in terms of performance. It is therefore varied
within the range of zero to one.

15

Days back in time (DBIT): the value of DBIT determines
how far back in time the algorithm will search for changes.
For example, if DBIT is set to seven, GitFL will include
all changes made up to seven days ago. DBIT is often
implicitly linked to the number of changes that the
algorithm considers. Only when no changes are made in a
time range, the number of changes stays the same with a
varying value for DBIT. The influence of this property is
difficult to determine analytically. When DBIT is increased,
often more changes are included. Those additional changes
could potentially increase the suspiciousness of non-buggy
lines, causing them to rank higher than the buggy line,
influencing the performance of GitFL. The value of DBIT
was kept constant, equal to the point in time were no tests
were failing.

Decay factor (dy): the exponential decay relationship
between the change date and the suspiciousness is
determined by the decay factor dy. A higher decay factor
results in a stronger exponential relation, meaning older
changes will contribute less influence on the suspiciousness.
Apart from varying the decay factor, it was investigated
if other relations performed better, such as a constant- or
linear relation.

D. Analysis

In the FL literature, new methods are often evaluated
using the EXAM score [7]. The EXAM score consists of
the percentage of code to examine vs the percentage of
bugs in faulty versions located. The percentage of code
to examine refers to the number of ranked statements,
outputted by the FL method, which the developer has to
examine before finding the bug. For example, suppose that
a certain program contains 100 statements and one of those
statements contains a bug. This program is tested with
several tests and the executed statements are logged for
each test. An arbitrary FL. method is used to locate the
bug and the output of the algorithm is a ranked list of all
statements. The higher the rank, the higher the probability
that the statement contains the bug. If the buggy statement
is ranked twelfth, the developer first has to examine the
eleven higher ranked statements (which do not contain the
bug) before finding the bug in the twelfth ranked statement.
The developer has to examine twelve percent of the code
to locate the bug.

For every faulty version of both the artificial and real-life
cases, the GitFL algorithm was applied several times,
each time with varied algorithm properties, to empirically
determine which properties resulted in the best performing
algorithm. The percentage of code to examine (equal to as
the rank of the buggy statement) is visualized in a table for
each GitFL variation for each build.

With a large number of faulty versions and algorithm
variations, the table with the ranks of buggy statements
becomes difficult to interpret. A solution that comes to
mind would be to take the average of the percentage of
code to examine. However, this would result in a loss
of information. This is where the EXAM score comes
in, which visualizes which percentage of code needs to
be examined for multiple faulty versions. The result is
an accumulative plot, where it is shown which minimum
percentage of code needs to be examined for which number
of faulty versions. If the percentage to examine is smaller
for a larger number of faulty versions, the performance
is considered to be better. The x-axis is logarithmic and
indicates the percentage of code examined and the y-axis
indicates the number of faulty versions where the fault is
successfully located.

Algorithm 6 Pseudocode for finding the rank of buggy
statement.
SusList
BugList
initialize rank
counter < 0
for each statement in SusList do
for each bug in BugList do
if statement location is equal to bug location then
rank < counter
break
end if
end for
counter increments 1
end for

For the analysis of GitFL, the rank of the buggy
statements in the output of GitFL needed to be determined.
Due to knowing beforehand which statements are buggy
(saved in the ’bug’ table in figure , their rank can be
determined. The output of GitFL consists of a list of
statements, sorted descending on their suspiciousness. To
obtain the rank of the buggy statement in this list, algorithm
[6] is used. The algorithm iterates over the sorted suspicious
statements and checks if the current statement is a buggy
statement. If this is the case, the rank is equal to the iterator
number plus one, because the iterator starts at zero while
the rank starts at one. When a build has multiple buggy
statements, the rank will be the rank of the first buggy
statement encountered. The list of statements is always
sorted on suspiciousness, which results in the rank always
being the highest rank of all buggy statements.

VII. RESULTS
The evaluation resulted in table [XI] and for artificial

and real-life builds, respectively. Figure Da]shows the EXAM
scores of the multiple variations of the GitFL algorithm,

16

which was constructed with the data from table [XII For the
real-life results from table XTI} no EXAM score was plotted.
As these consisted of a couple of builds, they interpret
without the need for visualization.

A. Artificial test suite

For all values of «, the best performing value of d; was
0.1. This indicates that o and dy were not related. E.g.
adjusting « did not require adjusting dy for constant results.

It can be observed in figure Da] that for eight evaluated
GitFL variations (excluding o 0.0 and « 1.0),
the EXAM score plot shows a steep ramp from zero to
approximately half to two thirds of the number of faulty
versions, approximately at 0.005 percent of code examined.
From that point on, the EXAM score starts to diverge for
the different GitFL variations.

GitFL with « 0.0 was under-performing relatively

to the other variations. Here, only FL was activated by
setting VCH to zero. In other words, GitFL was equal to
the traditional FL of choice, being Tarantula, ignoring any
version control history information. In figure [9a] the plot
of oo = 0.0 is significantly shifted to the right compared to
the other variations. Especially when compared to oo = 0.4
to « = 0.9, where the rank of the buggy statement is
often within the top-5 statements. This shows the additional
performance to traditional FL. when the version control
history is included, for this specific evaluation.
GitFL with @ = 1.0, meaning only VCH is enabled
by ignoring traditional FL, performs significantly better
than a = 0.0. Compared to the other variation, at first it
seems to perform worse. However, at 0.1 percent of the
code examined, it found the bug for all faulty versions,
outperforming o = 0.1, 0.2, 0.3. 0.1 percent of the code
examined is roughly equal to 25 statements to examine
before finding the bug.

The best performing variation is o = 0.7, outperforming
all variation at any point in the graph. o = 0.7 resembles
a combination of FL and VCH with a slight inclination
to VCH, meaning the suspiciousness of the version control
history is favored above traditional FL. More detailed per-
formance in a small range of percent of code examined can
be found in

B. Real-life test suite

The first real-life case consistently returned a rank of two,
except for a« = 0.0. In other words, when VCH is enabled,
the developer has to examine two statements to locate the
buggy statement. The second real-life case showed a rank
of five, for all variations except o = 0.0 and 0.1, meaning
that the developer found the bug after inspecting the first
five statements suggested by GitFL.

TABLE XI: Performance evaluation of GitFL, evaluated on an artificial test suite consisting of 15 builds each with a unique
fault-inducing mutation, for eleven values of « ranging from 0.0 to 1.0. For each build and value of «, the rank of the
buggy statement is displayed. The rank resembles how many statements a developer has to examine before examining the
buggy statement.

value of « total number
Build 0.0 0.1 0.2 0.3 04 05 06 07 08 09 1.0 oflines
1 3105 1 1 1 1 1 1 1 1 1 1 22304
2 190 1 1 1 1 1 1 1 1 3 25 25641
3 162 1 1 1 1 1 1 1 1 1 3 24198
4 31 2 2 2 2 2 2 2 2 2 4 24947
5 1011 643 473 1 1 1 1 1 1 1 3 22798
6 8843 2112 1388 740 6 6 6 3 3 3 3 25867
7 3760 2753 1737 2 2 2 2 2 4 4 23 25418
8 703 1 1 1 1 1 1 1 1 3 16 25667
9 68 1 1 1 1 1 1 1 1 1 3 25370
10 60 1 1 1 1 1 1 1 1 1 3 25766
11 533 1 1 1 1 1 1 1 1 1 14 25650
12 20368 14608 7062 6044 16 16 15 9 9 7 3 25547
13 7250 2139 1862 7 7 7 7 7 9 7 23 25755
14 298 1 1 1 1 1 1 1 1 9 25 26134
15 195 1 1 1 1 1 1 1 1 1 25 25228

TABLE XII: Performance evaluation of GitFL, evaluated on a real-life test suite, for eleven values of « ranging from 0.0 to
1.0. For each build and value of «, the rank of the buggy statement is displayed. The rank resembles how many statements
a developer has to examine before examining the buggy statement.

value of « total number
Build 0.0 01 02 03 04 05 06 07 08 09 1.0 oflines
1 1707 2 2 2 2 2 2 2 2 2 2 23023
2 631 5 5 5 5 5 5 5 5 5 16 24271

= =
N &
-
o

—
N

.
o

[
o

®
®

Number of faulty versions where fault is located
Number of faulty versions where fault is located

2 alpha
0.8 —— 0.0

—— 0.9 0.7

0 ¥ —4— 1.0 0 —+— 1.0

10- 10 10 100 10t 102 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Percentage of code examined Percentage of code examined

(a) 0 to 100 percent of code examined with logarithmic scaling. (b) 0 to 0.04 percent of code examined with linear scaling.

Fig. 9: Performance evaluation of GitFL, evaluated on an artificial test suite consisting of 15 builds each with a unique
fault-inducing mutation, for eleven values of a ranging from 0.0 to 1.0, with DBIT = 30 and dy = 0.1. The
performance is visualized using the EXAM score, resulting in an accumulative plot, where it is shown which minimum
percentage of code needs to be examined for which number of faulty versions. If the percentage to examine is smaller for
a larger number of faulty versions, the performance is considered to be better.

17

VIII. DISCUSSION
A. Discussion of results

The EXAM scores obtained through the evaluation of
GitFL are significantly higher compared to state-of-the-art
fault localization methods, such as D-star [7]], Ochiai [8]],
and DNN [38]]. An explanation for this could be that GitFL
makes use of version control history, as opposed to D-star,
Ochiai, DNN, and most other FL methods. Logically,
combining a state-of-the-art FL method with information
from the version control history of the code-base at hand
should narrow down the possible bug-inducing statements
immensely.

Within the Adyen case, the evaluation showed a clear
difference in performance between only using FL and
combining it with the version control history. Namely,
the addition of the version control history significantly
outperforms standard FL, which was Tarantula. It can be
argued that the GitFL output for standard FL-only was
unusable by developers, according to the reasoning that
developers will discard the tool when they have to inspect at
least 30+ statements before discovering the buggy statement
[62, |63]]. While this observation shows the contribution
of GitFL, it raises the question why the Tarantula-only
variation performed sub-par. A potential explanation has to
do with the inner workings of Tarantula and the test suite
coverage. End-to-end tests are focused on testing higher-
level functionality and are usually more time consuming.
This results in less-granular testing, and the number of
tests that can be executed within the same timeframe is
likely to be lower compared to unit tests. Because of this,
their test coverage is likely to be lower compared to the
test coverage of unit tests. Lei et al. showed that more
passing tests executing non-faulty statements, which is a
result of high coverage, increase FL performance [12]]. This
highlights the value of the addition of version control history
information for environments where test coverage is limited.

The second real-life case was wrongly selected, as the test
failure was not related to the specific terminal being tested
in this scenario. However, the change holding the fix also
hold a change specific to the terminal in this scenario. This
showed that, although the failure had nothing to do with the
terminal, the influence of the version control history part in
GitFL was strong enough to present this statement as the
most suspicious one.

Instead of manually generating bugs and evaluating on
an artificial test suite, future work could evaluate GitFL
on a substantially larger real-life data-set, by considering
a more suitable code base or test environment for the
objective in mind. Multiple solutions come to mind. Firstly,
integration tests could be used instead of end-to-end tests.
The integration tests should only test one system, being
the terminal, with no varying external factors, such as
a live back-end or a separate database. This way, failed

18

tests will always be caused by the terminal, providing
an ideal evaluation environment for GitFL. Secondly, the
environment could be changed, moving away from the
robot testing setup. For example, by applying GitFL to the
integration tests of a back-end repository. This code runs
on servers, removing the factor of the software running
on embedded systems, which is arguably a more complex
system and is thus more time-consuming to test due to
longer build and run times [3|].

B. Algorithm assumptions

The version control history part of GitFL only considers
changes inside the DBIT range and discounts changes
based on age. These characteristics lead to the possibility
of several unwanted scenarios. For example, suppose a bug
is not fixed shortly after it is discovered, which can occur
when fixing it takes a significant amount of time. The
longer it is left unfixed, the lower its suspiciousness will
be. The worst case is when the bug is left unfixed while
advancing to the next release, the bug will be out of scope
and receives a suspiciousness of zero for the VCH part of
GitFL. While this bug could be the root cause of many test
failures, it is not deemed as highly suspicious by GitFL
because of its age, potentially resulting in bad performance
of GitFL. A potential solution could be to mark these
long-lasting bugs as highly suspicious, without the need
to immediately fix them. When running GitFl the next
time, these marked bugs are included in the calculation,
preserving the high suspiciousness of those bugs.

The results showed that a lower value of dy resulted in
better performance. It can be reasoned that this result was
expected, as a lower decay factor always raises the y-values
of an exponential decay function. With this observation, it
can be argued that a constant function for VCH performs
similar to an exponential function with a low decay factor,
eliminating the need for an exponential decay function.
However, the exponential decay function was introduced in
the design with a specific situation in mind, namely, when
there are multiple changes within the time window which
have received the same FL suspiciousness score. Usage of
an exponential decay function prevents these statements
to be tied, as the suspiciousness values are affected by
the date. This is under the assumption that bugs are fixed
shortly after discovery, meaning that the most recent change
is more likely to hold the buggy statement. This specific
situation did not occur in the evaluation, which potentially
implies that it does not occur often, eliminating the need
for an exponential decay function.

Suppose that a hidden bug (e.g. a bug which does not
cause failure at the moment) was introduced in the previous
release and was revealed by another change in the current
release. GitFL will assign a high suspiciousness to the
change revealing the bug, but not to the bug itself. Since the

change revealing the bug can impact the execution of many
other non-buggy statements, the bug cannot necessarily be
easily deducted from the revealing change. The bug could
also be non-hidden, causing tests to fail, indicating that the
previous release was not necessarily free of test failures.
Increasing the days-back-in-time parameter (DBIT) for
GitFL can result in better performance for hidden bugs and
scenarios where the assumption that the previous release is
free of failing tests does not hold. This way, the influence
of significantly older bugs on the suspiciousness is very low
but never zero. However, the consequence of this increase
is that more changes are included, potentially drowning out
other bug-inducing changes.

Within the evaluation, it became apparent that the
lowest value of the decay factor always resulted in the
best performance. It can be reasoned that this result was
obvious, as a smaller decay factor inherently raises the
suspiciousness value of changes, due to the working of
the exponential decay function. When they decay factor is
lowered infinitely, the function attains the constant value of
one. This renders the use of an exponential decay function
obsolete, as it can be replaced by an equal suspiciousness
value for all changes within the range. One could argue that
this result can be generalized to all environments, instead
of just the specific evaluation scope of this paper. However,
an edge case exists. When multiple statements obtain the
same suspiciousness value by FL and are both changed
recently, it can be unclear which statement is at fault.
With an exponential decay function, the statements can be
differentiated, with the most recent change attaining a higher
final suspiciousness. This assumes that the assumption that
bugs are fixed shortly after discovery still holds. The
exception to this, is when multiple statements obtain the
same suspiciousness value by FL and are both changed
at the exact same time. In this scenario, differentiation is
impossible, resulting in a tied suspiciousness value.

C. Tooling

During the evaluation of GitFL, it became apparent
that the selected coverage information collecting setup
had a significant shortcoming. Namely, it did not log
which lines were executed in lambda functions. If a
lambda function was executed, only the first and last line
were logged. Whether this was caused by the coverage
information tool Gcov, the compiler or another factor was
unclear. It is important to realize that the combination of
FL with version control history is flawed with lambda
functions. If a developer changes statements in a lambda
function but leaves the first and last line of the function
intact, the traditional FL and version control history for
this change can never be combined, as FL only registers
the execution of the first and last line of the lambda function.

19

The requirement of using placeholders for deleted state-
ments was essential for the evaluation of GitFL. Without
placeholders, even though it was known beforehand which
statements were deleted, these could never be located by
GitFL because they were never executed, making it impossi-
ble to determine the performance. However, outside of evalu-
ation, GitFL does not necessarily require to locate the exact
deleted statements. With deleted statements, GitFL should
locate suspicious statements which are closely connected to
the deleted statements. For example, if the input of a method
was originally provided by now deleted statements, the call
to this method will be marked as highly suspicious by GitFL.
The developer can use this method as starting point and
investigate to which statements it is closely connected. A
disadvantage of this approach is that it increases developer
effort. Another disadvantage of not being able to exactly
locate deleted statements is that the statements returned by
GitFL, closely connected to the deletion, is not expected to
be changed in the same change as the deletion. Thereby, it is
not possible to automatically determine which author caused
the bug.

D. Evaluation hurdles

While the input data for GitFL was assumed to be
available within this paper, obtaining it was a lengthy process
which took around three to four months. To obtain the data,
a robust pipeline needed to be built to ensure continuous
data collection during testing. All exceptions needed to
be handled correctly to prevent the process of crashing,
potentially resulting in invalid input data, thereby influencing
the evaluation. At the start of the project, the evaluation
environment, being Adyen terminal testing, was considered
a good fit. However, as described earlier, this introduced
several hurdles. The most significant one being to build
a robust pipeline to gather coverage information from the
terminal, which posed a great amount of challenges, as
this process appeared to be more complex for embedded
systems compared to server-like systems. Additionally, the
pipeline was required to be integrated with the robot testing
framework in place to enable the collection of coverage
information during testing.

Furthermore, the Adyen environment turned out to
provide very limited input data. In theory, there should be
many occasions of real-life bugs causing robot tests to fail,
over the course of months. However, a large percentage of
failed robot tests was not caused by the terminal software
itself, but by external systems interacting with the terminal.
As those test failures were not caused by the terminal
software, they could not be used for evaluating GitFL.
This made it difficult to obtain a real-life test suite of a
reasonable size. To overcome this problem and to still be
able to evaluate GitFL, bugs were manually introduced in
the terminal software. This was done by mutating code
to create bugs, with the purpose of making tests fail.
While still evaluating on a limited amount of real-life data,
this larger artificial test suite provided more data for a

substantiated evaluation.

IX. THREATS TO VALIDITY

The validity of the evaluation of GitFL is limited by
several threats. These, together with a potential solution, are
listed below.

o GitFL was evaluated on the Adyen case, where only
a subsystem was tested. Arguably, this is a specific
environment. Because of this, it is difficult to determine
how GitFL will generalize to other environments. To
determine its generalizability, it is recommended that
GitFL is tested on multiple varying (open source)
environments.

Both the artificial and real-life test suites were
single-fault test suites, meaning they contain exactly
one bug. This means that GitFL is not evaluated
on multiple-bug scenarios (where multiple bugs are
present in the test suite) and that it is unclear how the
performance of GitFL will generalize to multiple-bug
scenarios. In the fault localization literature, several
authors indicate that single-bug evaluations can be
generalized to multiple-bug scenarios [34} 22| 64, 65,
although it is unclear what the exact performance
difference is. To determine multiple-bug performance,
it is recommended that GitFL is tested on multiple-bug
scenarios.

Compared to the test suites used in the FL literature,
the test suite for the Adyen case is limited in size.
Logically, it could be reasoned that a larger test suite
should be likely to provide more accurate results, as
with a larger number of tests, more bug-free statements
can be labeled as not-suspicious, drawing a contrast
to the suspicious statements. However, Lei et al. [12]
argue with their study that there is no strong correlation
between test suite size and the effectiveness of fault
localization. Testing GitFL on a larger test suite could
clarify this.

The limited time of this project influenced the extent
to which GitFL parameters were found that lead to
optimal performance. Because of this, a limited set of
parameter values was chosen. A more extensive study
with a larger set of parameter values could result in
finding parameters that cause better performance.

In the evaluation, Tarantula was used as the standard
fault localization technique. Yet, GitFL accepts all
fault localization techniques. Although Tarantula was
considered to be a fitting representation of most
used FL methods, it is unclear how GitFL performs
with other FL methods. To determine this, it is
recommended that GitFL is tested on several other FL

20

methods.

When a test suite caused the system to crash,
coverage information could not be retrieved. Coverage
information is required for GitFL, rendering GitFL,
in this environment, unable to produce results when
crashes happen.

For the artificial test suite, the change date of changes
introducing bugs was sampled from an exponential
decaying distribution, with the goal of simulating the
assumption that bugs are fixed shortly after they are
discovered. This means that the likelihood of older
bugs existing would be smaller. It remains unclear
whether this assumption resembles reality. To clarify
this matter, research can be conducted (i.e. on open
source projects) to obtain a more substantiated change
date distribution.

X. CONCLUSION

When batches of code changes from multiple authors
are tested at once, it can be unclear which changes from
which authors cause test failures. To solve this problem, we
introduced GitFL, an Algorithm that combines state-of-the-
art FL with version control history information. GitFL was
implemented and evaluated at Adyen, where both real-life
and artificial test suites were used. We found that GitFL
performed significantly better compared to state-of-the-art
FL methods within the specific low-coverage test suite
GitFL was evaluated on. Frequent end-to-end robot testing
can belong to this low-coverage scenario, with its often-
limited testing capacity. This means that GitFL can aid in
FL for end-to-end robot testing environments.

A deployed FL system outputs suspicious lines. To be of
any use, these suspicious lines need to be communicated
to developers in such a way that they are probable to
consider them during debugging. Additionally, they need
to trust the algorithm to provide helpful insights. Possible
implementations could, for example, consist of an IDE
plugin, where suspicious lines automatically highlighted,
enabling developers to observe them with a quick glance.
Another implementation could be an integration in the
version control system. Here, the top-N suspicious lines for
a particular code-change could be automatically commented.
This does not require downloading a plugin and therefore
has an arguably lower boundary for usage for developers, for
which using the version control system is standard practice.
This aspect of the design of GitFL is not in the scope of this
project. To design an effective method of communicating
algorithm results with developers, substantiated by literature
from the human computer interaction field, further research
on this topic is required.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

XI. REFERENCES

Kshirasagar Naik and Priyadarshi Tripathy. Software
testing and quality assurance: theory and practice.
John Wiley & Sons, 2011.

Ray Noel Medina Delda et al. “3D Printing Polymeric
Materials for Robots with Embedded Systems”. In:
Technologies 9.4 (2021), p. 82.

Mauricio Aniche. Effective Software Testing: A De-
veloper’s Guide. Simon and Schuster, 2022.

Zeba Khanam and Mohammed Najeeb Ahsan. “Eval-
uating the effectiveness of test driven development:
advantages and pitfalls”. In: International Jour-
nal of Applied Engineering Research 12.18 (2017),
pp. 7705-7716.

Jim Shore. “Fail fast [software debugging]”. In: IEEE
Software 21.5 (2004), pp. 21-25.

James A Jones and Mary Jean Harrold. “Empirical
evaluation of the tarantula automatic fault-localization
technique”. In: Proceedings of the 20th IEEE/ACM
international Conference on Automated software en-
gineering. 2005, pp. 273-282.

W Eric Wong et al. “The DStar method for effective
software fault localization”. In: I[EEE Transactions on
Reliability 63.1 (2013), pp. 290-308.

Rui Abreu, Peter Zoeteweij, and Arjan JC Van
Gemund. “An evaluation of similarity coefficients for
software fault localization”. In: 2006 12th Pacific Rim
International Symposium on Dependable Computing
(PRDC’06). IEEE. 2006, pp. 39-46.

Ben Liblit et al. “Scalable statistical bug isolation”.
In: Acm Sigplan Notices 40.6 (2005), pp. 15-26.

W Eric Wong et al. “A survey on software fault
localization”. In: IEEE Transactions on Software En-
gineering 42.8 (2016), pp. 707-740.

Sangharatna Godboley and Arpita Dutta. “PRFL:
Predicate Rank based Fault Localization”. In: 2021
IEEE 18th India Council International Conference
(INDICON). IEEE. 2021, pp. 1-6.

Yan Lei et al. “How test suites impact fault locali-
sation starting from the size”. In: IET software 12.3
(2018), pp. 190-205.

Ali Koc and Abdullah Uz Tansel. “A survey of version
control systems”. In: ICEME 2011 (2011).

James A Jones, Mary Jean Harrold, and John T
Stasko. “Visualization for fault localization”. In: in
Proceedings of ICSE 2001 Workshop on Software
Visualization. Citeseer. 2001.

Daming Zou et al. “An empirical study of fault lo-
calization families and their combinations”. In: IEEE
Transactions on Software Engineering 47.2 (2019),
pp. 332-347.

Thomas Reps et al. “The use of program profil-
ing for software maintenance with applications to
the year 2000 problem”. In: Software Engineer-
ing—Esec/Fse’97. Springer, 1997, pp. 432—-449.

21

[17]

[21]

Trishul M Chilimbi et al. “Holmes: Effective sta-
tistical debugging via efficient path profiling”. In:
2009 IEEE 31st International Conference on Software
Engineering. IEEE. 2009, pp. 34-44.

Chao Liu et al. “Statistical debugging: A hypothesis
testing-based approach”. In: IEEE Transactions on
software engineering 32.10 (2006), pp. 831-848.
Brock Pytlik et al. “Automated fault localization using
potential invariants”. In: arXiv preprint cs/0310040
(2003).

Mary Jean Harrold et al. “An empirical investigation
of program spectra”. In: Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering. 1998, pp. 83-90.
Raul Santelices et al. “Lightweight fault-localization
using multiple coverage types”. In: 2009 IEEE 31st
International Conference on Software Engineering.
IEEE. 2009, pp. 56-66.

Ming Wen et al. “Historical spectrum based fault
localization”. In: IEEE Transactions on Software En-
gineering 47.11 (2019), pp. 2348-2368.

Nayan B Ruparelia. “The history of version control”.
In: ACM SIGSOFT Software Engineering Notes 35.1
(2010), pp. 5-9.

Git. URL: https://git-scm.com/.

CVS - Open Source Version Control. URL: https://
www.nongnu.org/cvs/.

BitKeeper. URL: https://www.bitkeeper.org/.

Mark Weiser. “Programmers use slices when debug-
ging”. In: Communications of the ACM 25.7 (1982),
pp. 446-452.

Frank Tip et al. Generation of program analysis
tools. Universiteit van Amsterdam, Inst. for Logic,
Language and Computation, 1995.

Mark Weiser. “Program slicing”. In: IEEE Transac-
tions on software engineering 4 (1984), pp. 352-357.
Bogdan Korel and Janusz Laski. “Dynamic pro-
gram slicing”. In: Information processing letters 29.3
(1988), pp. 155-163.

Hiralal Agrawal et al. “Fault localization using exe-
cution slices and dataflow tests”. In: Proceedings of
Sixth International Symposium on Software Reliability
Engineering. ISSRE’95. IEEE. 1995, pp. 143-151.
Manos Renieres and Steven P Reiss. “Fault localiza-
tion with nearest neighbor queries”. In: /8th IEEE
International Conference on Automated Software En-
gineering, 2003. Proceedings. IEEE. 2003, pp. 30-39.
Xiaoyuan Xie et al. “Metamorphic slice: An ap-
plication in spectrum-based fault localization”. In:
Information and Software Technology 55.5 (2013),
pp. 866-879.

Lee Naish, Hua Jie Lee, and Kotagiri Ramamoha-
narao. “A model for spectra-based software diagno-
sis”. In: ACM Transactions on software engineering
and methodology (TOSEM) 20.3 (2011), pp. 1-32.

https://git-scm.com/
https://www.nongnu.org/cvs/
https://www.nongnu.org/cvs/
https://www.bitkeeper.org/

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

W Eric Wong, Vidroha Debroy, and Byoungju Choi.
“A family of code coverage-based heuristics for ef-
fective fault localization”. In: Journal of Systems and
Software 83.2 (2010), pp. 188-208.

Qusay Idrees Sarhan and Arpad Beszédes. “A Survey
of Challenges in Spectrum-Based Software Fault Lo-
calization”. In: IEEE Access 10 (2022), pp. 10618—
10639.

W Eric Wong and Yu Qi. “BP neural network-based
effective fault localization”. In: International Journal
of Software Engineering and Knowledge Engineering
19.04 (2009), pp. 573-597.

Wei Zheng, Desheng Hu, and Jing Wang. “Fault lo-
calization analysis based on deep neural network™. In:
Mathematical Problems in Engineering 2016 (2016).
Zhuo Zhang et al. “A study of effectiveness of deep
learning in locating real faults”. In: Information and
Software Technology 131 (2021), p. 106486.

W Eric Wong et al. “Effective software fault lo-
calization using an RBF neural network”. In: IEEE
Transactions on Reliability 61.1 (2011), pp. 149-169.
Lingxiao Jiang and Zhendong Su. Automatic isolation
of cause-effect chains with machine learning. Tech.
rep. Citeseer, 2005.

Seokhyeon Moon et al. “Ask the mutants: Mutating
faulty programs for fault localization”. In: 2014 IEEE
Seventh International Conference on Software Testing,
Verification and Validation. IEEE. 2014, pp. 153-162.
Mike Papadakis and Yves Le Traon. ‘“Metallaxis-
FL: mutation-based fault localization”. In: Software
Testing, Verification and Reliability 25.5-7 (2015),
pp. 605-628.

David Abramson et al. “Relative debugging and its ap-
plication to the development of large numerical mod-
els”. In: Supercomputing’95: Proceedings of the 1995
ACM/IEEE Conference on Supercomputing. 1EEE.
1995, pp. 51-51.

Andreas Zeller and Ralf Hildebrandt. “Simplify-
ing and isolating failure-inducing input”. In: IEEE
Transactions on Software Engineering 28.2 (2002),
pp- 183-200.

Holger Cleve and Andreas Zeller. “Locating causes of
program failures”. In: Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE
2005. 1IEEE. 2005, pp. 342-351.

Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta.
“Locating faults through automated predicate switch-
ing”. In: Proceedings of the 28th international con-
ference on Software engineering. 2006, pp. 272-281.
W Eric Wong, Vidroha Debroy, and Dianxiang Xu.
“Towards better fault localization: A crosstab-based
statistical approach”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and
Reviews) 42.3 (2011), pp. 378-396.

22

[49]

[62]

Jiajun Jiang et al. “Combining spectrum-based fault
localization and statistical debugging: An empirical
study”. In: 2019 34th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE).
IEEE. 2019, pp. 502-514.

Wolfgang Mayer and Markus Stumptner. “Evaluating
models for model-based debugging”. In: 2008 23rd
IEEE/ACM International Conference on Automated
Software Engineering. IEEE. 2008, pp. 128-137.
Wolfgang Mayer et al. “Prioritising model-based de-
bugging diagnostic reports”. In: Proceedings of the
19th International Workshop on Principles of Diag-
nosis. Citeseer. 2008, pp. 127-134.

Rui Abreu, Peter Zoeteweij, and Arjan JC Van
Gemund. “Spectrum-based multiple fault localiza-
tion”. In: 2009 IEEE/ACM International Conference
on Automated Software Engineering. IEEE. 2009,
pp. 88-99.

Tom Janssen, Rui Abreu, and Arjan JC Van Gemund.
“Zoltar: A toolset for automatic fault localization”.
In: 2009 IEEE/ACM International Conference on Au-
tomated Software Engineering. IEEE. 2009, pp. 662—
664.

Free Software Foundation, Inc. Geov (Using the GNU
Compiler Collection (GCC)). URL: https://gcc.gnu.
org/onlinedocs/gcc/Geov.htmll

Sandia Corporation. gcovr. URL: https://gcovr.coml
Jcov. URL: https://github.com/openjdk/jcov.

cov - Rust. URL: |https://docs.rs/cov/latest/cov/.

cover command - cmd/cover - Go Packages. URL:
https://pkg.go.dev/cmd/cover.

Istanbul, a JavaScript test coverage tool. URL: https:
/fistanbul.js.org/.

Git blame. URL: https://git-scm.com/docs/git-blame.
Henry Coles et al. “Pit: a practical mutation testing
tool for java”. In: Proceedings of the 25th interna-
tional symposium on software testing and analysis.
2016, pp. 449-452.

Pavneet Singh Kochhar et al. “Practitioners’ expecta-
tions on automated fault localization”. In: Proceedings
of the 25th International Symposium on Software
Testing and Analysis. 2016, pp. 165-176.

Xin Xia et al. ““Automated debugging considered
harmful” considered harmful: a user study revisiting
the usefulness of spectra-based fault localization tech-
niques with professionals using real bugs from large
systems”. In: 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 1IEEE.
2016, pp. 267-278.

Nicholas DiGiuseppe and James A Jones. “On the
influence of multiple faults on coverage-based fault
localization”. In: Proceedings of the 2011 interna-
tional symposium on software testing and analysis.
2011, pp. 210-220.

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcovr.com
https://github.com/openjdk/jcov
https://docs.rs/cov/latest/cov/
https://pkg.go.dev/cmd/cover
https://istanbul.js.org/
https://istanbul.js.org/
https://git-scm.com/docs/git-blame

[65] Spencer Pearson et al. “Evaluating & improving fault
localization techniques”. In: University of Washing-
ton Department of Computer Science and Engineer-
ing, Seattle, WA, USA, Tech. Rep. UW-CSE-16-08-03
(2016).

XII. APPENDIX
A. Examples of code mutations

To illustrate how mutations can cause tests to fail,
an example is provided. Consider the code in table

IIIl which resembles several methods from a very
basic financial API for processing transactions. The
first method, check if zero_ amount, checks if a
transaction amount is zero and returns true if that is the
case. Otherwise, it returns false. The second method,
assign_amount_to_json_field, assigns an amount
value to a json field to be used later on. The third and final
method, add_amount_to_response, adds the json
object amount to the json object response, which is later on
used as a response for a specific API call.

To purposely make the code fail, mutations are introduced.
In the example, the first three mutations from table [X| are
applied. Negate Condition is applied to the first method,
check_if_zero_amount. The comparison operator ==
from line 2 in table is switched to !=, resulting in
the code in table When an amount is actually zero,
the method will now return false when checking for a zero
amount. Other methods depending on this check will fail.
For example, a method that stops the transaction if the
amount is zero will not be executed correctly, resulting
in the wrong behavior later on, resulting in tests to fail.
The second mutation operator, Return Values, replaces
return true with return false from line 3 in table
resulting in the code in table This leads to the
same behavior described for the first mutation operator.

The third mutation operator, Method Call, is applied
to assign_amount_to_json_field. This operator
completely deletes that method, line 8 to 10 from table
resulting in the code in table In the resulting
code, the double amount is never converted to a json object.
The method dd_amount_to_response does not work
properly, because it expects a non-existent json object.
When called, the method will fail and tests will fail.

23

TABLE XIII: Several methods from a sample financial API, for showing mutation examples.

Line Code
1 bool check_if zero_amount (double amount) {
if (amount == 0) {
3 return true;
4 }
5 return false;
6 }
7
8 json_object assign_amount_to_Jjson_field(double amount) {
9 return new json_object amount_json = to_Jjson_object (amount)
10 }
11
12 bool add_amount_to_response (json_object amount_json) {
13 response.add (amount_json)
14 }

TABLE XIV: Resulting code after the Negate Condition mutation from table E is applied

Line Code

1 bool check_if_ zero_amount (double amount) {
2 if (amount == 0) {

3 return true;

4 }

5 return false;

6 }

7

8 bool add_amount_to_response (json_object amount_json) {
9 response.add (amount_json)

10 }

TABLE XV: Resulting code after the Return Values mutation
from table [X] is applied

Line Code

1 bool check_if zero_amount (double amount) {
2 if (amount != 0) {

3 return true;

4 }

5 return false;

TABLE XVI: Resulting code after the Method Call mutation
from table [X]is applied

Line Code

1 bool check_if zero_amount (double amount) {
2 if (amount == 0) {

3 return false;

4 }

5 return false;

24

	Introduction
	Background
	Fault localization
	Version control

	Related works
	Design
	Implementation
	Environment
	Data collection
	Data structuring
	GitFL

	Evaluation
	Artificial cases
	Real-life cases
	Finding the GitFL parameters that lead to optimal performance
	Analysis

	Results
	Artificial test suite
	Real-life test suite

	Discussion
	Discussion of results
	Algorithm assumptions
	Tooling
	Evaluation hurdles

	Threats to validity
	Conclusion
	References
	Appendix
	Examples of code mutations

