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ABSTRACT The segmentation of ultra-high resolution images poses challenges such as loss of spatial
information or computational inefficiency. In this work, a novel approach that combines encoder-decoder
architectures with domain decomposition strategies to address these challenges is proposed. Specifically,
a domain decomposition-based U-Net (DDU-Net) architecture is introduced, which partitions input images
into non-overlapping patches that can be processed independently on separate devices. A communication
network is added to facilitate inter-patch information exchange to enhance the understanding of spatial
context. Experimental validation is performed on a synthetic dataset that is designed to measure the
effectiveness of the communication network. Then, the performance is tested on the DeepGlobe land
cover classification dataset as a real-world benchmark data set. The results demonstrate that the approach,
which includes inter-patch communication for images divided into 16 × 16 non-overlapping subimages,
achieves a 2 − 3% higher intersection over union (IoU) score compared to the same network without
inter-patch communication. The performance of the network which includes communication is equivalent
to that of a baseline U-Net trained on the full image, showing that our model provides an effective
solution for segmenting ultra-high-resolution images while preserving spatial context. The code is available
at https://github.com/corne00/DDU-Net

INDEX TERMS Convolutional neural networks, deep learning, ultra-high-resolution images, image
processing, parallel processing, semantic segmentation, U-Net, spatial context.

I. INTRODUCTION
The vast majority of deep learning models in computer
vision focuses on low-resolution 2D and 3D images, typically
256×256 pixels or smaller. However, the increased utilization
of high-resolution image datasets introduces new challenges
due to the memory constraints of a single GPU, especially
for memory-intensive tasks such as semantic segmentation
of images [1]. Semantic segmentation is the computer vision
task of classifying the pixels in the input into distinct,

0The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

non-overlapping semantic categories. Ultra-high-resolution
image segmentation holds significance in diverse fields
such as object segmentation in satellite images [2], [3],
metallic surface defect detection [4], [5], and computer-aided
medical diagnosis [6], [7]. Whereas deep convolutional
neural networks (CNNs) have achieved remarkable success in
image segmentation [8], most of these models are unsuitable
for model training and inference for high-resolution images
due to their high memory requirements.

To illustrate this, consider computed tomography (CT)
scans with sub-millimeter resolution, resulting in voxel image
data with a typical resolution of 512 × 512 × 512 voxels.
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Even with half-precision floating-point numbers and a
modest batch size of 8, processing such images with a
1-layer convolutional neural network with 64 filters demands
over 137GB of GPU/TPU memory, as highlighted in [9].
Dealing with such high-resolution inputs using conventional
strategies, like down-sampling or patch cropping, generally
leads to the loss of detailed information or spatial context,
resulting in a lower segmentation accuracy [1], [9], [10], [11].
In this paper, we propose a novel network architecture

based on the well-known U-Net [12] developed for biomed-
ical image segmentation tasks. The U-Net is a convolutional
neural network (CNN) with a bottleneck structure and skip
connections between the encoder and decoder paths. This
foundational architecture and variations of it [13], [14],
[15], [16] have demonstrated remarkable, state-of-the-art
accuracy in semantic segmentation and other image-to-image
tasks [17]. However, its substantial memory requirements
are prohibitive for application to high-resolution images
on computational devices with limited memory [18]. The
high memory demands for training stem from the required
storage of intermediate feature maps obtained during forward
propagation to be used during the subsequent backward
propagation pass. This is especially acute when dealing with
high-resolution inputs, as it leads to high-dimensional feature
maps in the first and last few layers of the network.

Our proposed model integrates the established U-Net
architecture with a divide-and-conquer strategy inspired
by domain decomposition methods (DDMs) [19] to deal
with computational device memory limitations. Previous
parallelization strategies employ a decomposition of the
image into subimages (subdomains) [9], [20], [21], with
communicated margins before each convolution or redun-
dant computations providing global contextual information
between subimages. Our approach similarly decomposes
the image. However, communication is explicitly limited
to only the bottleneck within the U-Net architecture. This
minimizes the communication overhead while preserving
essential contextual information.

We summarize our main contributions as follows:

• Wepropose a novel approach combiningU-Net architec-
tures with domain decomposition strategies to segment
ultra-high-resolution images efficiently while preserv-
ing spatial context.

• We show that the communication network, which is
an important component of our approach, can be
employed to exchange information between different
subimages. It enhances understanding spatial context
without significant computational overhead and with
minimal extra communication and memory cost.

• By evaluating our architecture on a synthetic and a
realistic image dataset, we demonstrate competitive
segmentation performance compared to baseline U-Net
models. Our approach remains scalable, even when
training is confined to the largest image portion that the
available devices can handle.

The remainder of this paper is organized as follows:
In Section II, we discuss the U-Net architecture in more
detail as well as existing memory parallelization strategies.
Furthermore, we highlight approaches using ideas from the
field of domain decomposition to speed up and parallelize
CNNs. Section III introduces our novel parallel architecture
and training methodology as well as the considered test
datasets. In Section IV, we discuss the influence of this
new architecture on memory requirements and the receptive
field. Then, we evaluate our proposed network model and the
related training strategy using these datasets in Section V.
We provide experimental results for the different datasets
in terms of the segmentation accuracy of our approach
compared to global semantic segmentation U-Net models.
Finally, in Section VI, we conclude and present possible
future research directions.

II. RELATED WORK
In this section, we discuss the U-Net, which serves as
the basis for our proposed approach, and the receptive
field, a key concept for understanding CNNs. Additionally,
we provide an overview of past efforts to tackle the memory
challenges associated with the U-Net and other CNN-based
semantic segmentationmodels; we discuss both strengths and
drawbacks of these methods. Finally, we introduce the idea
of domain decomposition as a natural way to handle memory
constraints, highlighting some previous works that adopt this
approach for both classification and segmentation.

A. THE U-NET
The new segmentation approach introduced in the this paper
is based on the U-Net architecture [12]. Since its publication,
many variants and extensions of the U-Net architecture have
been developed, for instance, 3D U-Net [13], UNet++ [14],
Attention U-Net [15], and ResUNet-a [16]. We assume
that the reader is familiar with the fundamental concepts
underlying CNNs [22] and the building blocks of suchmodels
– convolutional and pooling layers. For a detailed explanation
of these concepts, we refer to the rich literature on this topic,
for instance, [23, Chapt. 9] or [24, Chapt. 10].

The U-Net architecture [12], depicted in Fig. 1, consists
of two pathways: the contraction path or encoder path,
and the expansive path or decoder path. The contraction
path involves repeated blocks, each consisting of two
successive 3×3 convolutions, followed by a ReLU activation
and a max-pooling layer. Conversely, the expansion path
employs blocks that up-sample the feature map using
2 × 2 transposed convolutions. Subsequently, the feature
maps from the corresponding layer in the contracting
path are cropped (if the up-sampling path discards the
boundary pixels) and concatenated to the up-sampled feature
maps. This concatenation is followed by two successive
3 × 3 convolutions and a ReLU activation.

In the final stage, the number of feature maps is reduced
to the desired number of classes by a 1 × 1 convolution,
producing the segmented image. The skip connections
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FIGURE 1. U-Net architecture for 32 × 32 pixel input images and
corresponding masks. Each blue block represents a multi-channel feature
map, with resolutions indicated at the lower left edge of each box. White
boxes show copied feature maps from the skip connections (gray arrows).
The colored arrows denote different operations. This figure is based on
the architecture described in [12]. Image is best viewed online.

between the contraction path, which captures (global) context
and features, and the expansive path, which enables precise,
fine-grained localization, distinguishes the U-Net from other
related network architectures, such as the Fully Convolutional
Network (FCN) presented in [25]. Note that the originally
proposed U-Net returns a cropped segmentation mask (due
to the loss of border pixels in every convolution). However,
more recent implementations of the U-Net often use zero
padding at the borders to obtain output dimensions equal
to the input dimensions, such that the input dimensions are
preserved and cropping is not required; cf. [26], [27], [28].

B. THE RECEPTIVE FIELD
An important concept for understanding CNNs is their
receptive field, or field of view. The receptive field of a CNN
is the area of the input image that influences the output of
a pixel in the CNN output. Unlike fully-connected neural
networks, where each input neuron is connected with each
output neuron, CNNs have outputs that depend on specific
regions of the input layer. In each layer of the CNN, the
receptive field expands as we move deeper into the network,
allowing higher-level features to be influenced by larger
portions of the input image.

The theoretical size of the receptive field can be analyzed
both experimentally and theoretically, as has been discussed
extensively in [29]. The size of the receptive field signifi-
cantly impacts the predictive performance of the CNN. If the
receptive field is too small, the network may not capture
all relevant information, leading to suboptimal predictions.
For tasks like segmentation, the receptive field should be
large enough to include all pixels in the input image that
are relevant for predicting the correct pixel class. Note that
the optimal size of the receptive field depends on both the
network architecture as well as the data on which the network
is trained.

In practice, the receptive field size of a CNN is influenced
by several factors, including the number of convolutional

layers, the size of the convolutional kernels, and the presence
of pooling layers; cf. [30]. Increasing the depth of the
network and the size of the kernels can expand the receptive
field, allowing the network to capture more context from
the input image. However, this also increases computational
complexity and the risk of overfitting.

C. OVERCOMING U-NET MEMORY LIMITS
One issue shared by most U-Net variants is the large
memory requirements due to the storage of intermediate
featuremaps during training,making themodel unsuitable for
high-resolution applications with limited-memory computing
devices [18].
Two naive methods to limit memory usage during U-Net

training are image patching and image downsizing. To show
the downsides of these approaches, we trained a ResNet18-
UNet [16] on the DeepGlobe land cover classification
dataset. For more details on the training procedure and dataset
used, we refer to Section III. Image patching involves training
the U-Net model on randomly extracted patches from the
full-resolution image. The patch size can be chosen based on
the available memory and the optimal batch size. However,
this approach does not allow the network to see the patch in
a broader spatial context, which may be important. This is
illustrated in Table 1, where a ResNet18-U-Netwas trained on
patches of varying sizes. As shown, larger patch sizes (which
include more context) lead to significantly better predictions,
both on the training and test datasets.

TABLE 1. Random patching results on the DeepGlobe dataset. All IoU
scores are obtained on the full scale images (2 048 × 2 048 pixels).
Training happened on different patch sizes. Training and methodology
details are outlined in more detail in Section III.

A second naive approach to address memory issues is
downsampling. By reducing the resolution of the images,
memory usage during training can be decreased. However,
this results in the loss of fine-grained details, as these are
discarded in the downsampling process. While this method
yields better results than using random patches of small
sizes (see Table 2), we still observe that prediction accuracy
is highest when using the largest training images, thus
preserving as much fine-grained context as possible.

A natural approach to overcome these constraints is
to partition the memory load of the feature maps over
different computational devices by using data and/or model
parallelism. Several parallelized forms of the U-Net employ
parallelism to reduce the memory per device. Both in [9] and
in [31], the authors implement a spatial partitioning technique
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TABLE 2. Downscaling results on the DeepGlobe dataset: All IoU scores
were obtained on the full-scale images (2048 × 2048 pixels), while
training was conducted on patches of varying sizes. Training and
methodology details are outlined in more detail in Section III.

that decomposes the input and output of the convolutional
layers into smaller, non-overlapping subimages. Before each
convolution operation, devices exchange patch margins of
the feature maps of half the convolution kernel size with
each other. While this approach introduces a communication
overhead, it effectively distributes memory across devices
without altering the fundamental architecture of the U-Net.
Our approach, on the other hand, involves architectural
modifications to the U-Net to further optimize performance
and limit the communication to the bottleneck of the
architecture.

The authors of [20] partition the image into overlapping
subimages, with the overlap size determined by the receptive
field size. Due to redundant computations (O(q 4ϵN ) for an
N × N pixel image partitioned into q × q subimages and a
U-Net with receptive field size ϵ×ϵ), this approach allows for
a fully parallelized execution of both forward and backward
passes. [11] adopts a similar strategy, but with an application
to image classification rather than image segmentation using
the ResNet architecture [21].

These approaches have been successful in partitioning
the U-Net in such a way that the model can be trained
and evaluated in parallel, even for ultra-high-resolution
image datasets. However, they either involve communicating
margins before each convolutional operation (this is the
case for [9], [31]), which leads to communication overhead
through the many point-to-point messages, or they entail
many redundant computations (this is the case for [11], [21]).

D. MEMORY OPTIMIZATION FOR CNNs USING DOMAIN
DECOMPOSITION APPROACHES
For improving memory efficiency, DDMs are inspiring due
to their inherent parallelization and scalability properties,
resulting from localization of the computations. DDMs are
effective iterative solvers for (discretized) partial differ-
ential equations (PDEs), exhibiting scalability through a
divide-and-conquer strategy that partitions the computational
domain into overlapping or non-overlapping subdomains;
see, for instance, [19], [32], [33], [34]). The PDE problem is
partitioned into subproblems defined on these subdomains.
This enables parallel execution of computations within
the subdomains. Whereas global convergence is ensured
by well-balanced neighbor communication at potentially

overlapping subdomain boundaries, and a limited amount
of global communication. Highly scalable state-of-the-art
DDMs are, for instance, variants of overlapping Schwarz
methods [35], [36] or balancing domain decomposition by
constraints (BDDC) [37], [38] and finite element tearing and
interconnecting - dual primal (FETI-DP) [39], [40].

Recently, there has been an increasing interest in inte-
grating DDMs with machine learning (ML) algorithms,
combining the strengths of both fields [41], [42]. Up to now,
the majority of works focuses on combining DDMs and ML
for solving PDEs. The present paper, however, pursues the
combination of CNN with DDM techniques for semantic
image segmentation. Notably, to the best of the authors’
knowledge, no prior studies have tackled image segmentation
tasks using ML explicitly based on domain decomposition
strategies, although some methods have been proposed
that have similarities with domain decomposition strategies.
Existing research mainly focuses on image classification,
which is closely related to semantic segmentation; however,
due to the different model output, network architectures are
somewhat different. Here, we provide a concise overview
of methods combining DDM strategies with ML for image
classification and semantic image segmentation tasks.

In [43], the authors propose a image partitioning approach
for image segmentation, reducing network complexity and
enhancing parallelizability. They partition input images into
non-overlapping subimages and subsequently train smaller
local CNNs on these subimages instead of a large global
CNN. This enhances model specialization to specific image
regions and reduces overall complexity without a significant
impact on test errors compared to a global CNN. Importantly,
the authors process the subimages completely independently,
with no coupling between them. In [44], DDM strategies are
applied to train a CNN-DNN (convolutional neural network
- deep neural network) architecture for image classification.
The authors partition the input image into subimages, each
used to train an individual CNN for predicting the class
locally. A DNN then aggregates these local predictions into
one global prediction. The authors interpret the DNN as
a coarse problem solver that combines the finer-grained
information from the local networks. In [45], the authors
decompose a global CNN for image classification into a finite
number of smaller, independent local subnetworks along
its width. The weights obtained from training these local
subnetworks serve as an initialization for the subsequent
training of the global network, employing a transfer learning
strategy. In [46], the authors propose a physically-motivated
neural network topology for estimating extensive parameters
such as energy or entropy. They decompose the domain
into subdomains with focus and context regions, over-
lapping based on the locality of the extensive parameter
estimated. The same subnetwork weights are used on the
different subdomains (we employ this strategy as well in
our approach), leading to a reduction of the number of
parameters, enhanced parallelizability, and faster inference.
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FIGURE 2. Schematic of the proposed network architecture. Input images are partitioned into subimages that are processed independently in the
encoder paths. After encoding, a number of encoded feature maps is communicated to the device containing the communication network and then
processed via the communication network. The output of this network replaces the input feature maps. The decoding is also done in parallel without
communication between the computational devices. Dashed arrows indicate skip connections. Detailed architectures of the encoder-decoder network
and communication network are shown in Fig. 3 and 4, respectively.

Finally, in [47], a DDM-inspired segmentation algorithm is
proposed that divides the input image into several overlapping
subimages and trains one segmentation network on these
subimages, allowing for parallel inference. The authors
conclude that this approach leads to better segmentation
accuracy of small objects.

III. METHODOLOGY
In this section, we introduce our domain decomposition-
based U-Net (DDU-Net) architecture, along with our training
approach. We also describe the datasets used for testing the
model and outline the model training procedure.

A. NETWORK ARCHITECTURE
1) DECOMPOSITION OF THE IMAGES AND MASKS
Fig. 2 shows a schematic representation of our proposed
network architecture. Starting with a dataset of (high-
resolution) images and corresponding segmentation masks,
themodel processes a 2D pixel imagewith dimensionsH×W
(left) and outputs a probability distribution for K ∈ N classes
for each pixel of the image (right).

Following DDM strategies, we decompose the input data
into N × M non-overlapping subimages, with N ,M ∈ N.
In particular, each image is divided into N × M subimages
with heights Hi and widths Wj, i = 1, . . . ,N and j =

1, . . . ,M , such that
∑N

i=1Hi = H and
∑M

j=1Wi = W . The
corresponding segmentation masks are partitioned similarly.
The subimages and sub-masks are distributed across the
computational devices (e.g., GPUs/TPUs) to balance the
workload evenly.

After partitioning, the subimages are processed inde-
pendently, in parallel, by the encoders on the separate
computational devices. For more details on the architectures
of encoders and decoders, we refer to Section III-A2. A cho-
sen number of feature maps from the last layer of the encoder
is sent to the communication network (see Section III-A3),
allowing for the exchange of relevant context between
subimages. The communication network concatenates the
encoded feature maps from all subimages corresponding
to the arrangement of the subimages in the original full
resolution image and processes them. Each output feature
map of the communication network is again partitioned into
N × M sub-feature maps, that are then sent back to the
devices. The decoders then produce sub-predictions for each
subimage, which are concatenated to form a global predicted
mask for the entire high-resolution image.

2) ENCODER-DECODER NETWORKS
Fig. 3 shows the encoder-decoder architecture used in
this work, which closely aligns with the classical U-Net
architecture [12]; cf. Fig. 1. The primary difference is a
modification in the deepest layer of the encoder path to
facilitate communication between the local encoder-decoder
clones, which will be discussed below.

As discussed in Section III-A1, each computational device
contains a separate encoder-decoder network, allowing for
parallel processing of the subimages. However, these net-
works share their weights to ensure consistent segmentation
across subimages, making them local clones of a global
encoder-decoder network. This implies that during training,
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FIGURE 3. The proposed encoder-decoder architecture. The architecture
of the encoder-decoder is nearly identical to the architecture of
U-Net [12]. The only difference is located in the latent space vector, where
a number of the feature maps are modified by the communication
network. For optimal detail resolution, view this figure on a digital device.

the weights and gradients need to be synchronized after each
backward propagation step.

Each local encoder network processes its corresponding
input subimage with several blocks of 3 × 3 convolutions,
each followed by a batch normalization layer and a ReLU
activation. During training, a dropout layer is also applied
to prevent over-fitting. After two convolution blocks, max-
pooling is performed to reduce the spatial dimension of
the feature maps. The deepest encoder layer produces
256 spatially coarse feature maps (this number can vary with
changes in the network architecture), some of which are
employed for communication between the encoder-decoder
networks. The output of each encoder network are 256 feature
maps, with small spatial dimensions. The last F of these
256 feature maps are directed to the communication network,
which processes them and returns modified feature maps with
the same dimensions that replace the original input feature
maps; see Section III-A3. After communicating, the feature
maps then progress through the expansive path, resulting
in a final segmented sub-mask for each subimage. These
sub-masks are concatenated to form a full mask covering the
entire full-resolution image.

3) COMMUNICATION NETWORK
The communication network, depicted in Fig. 4, transfers
contextual features, captured by the encoders operating on
subimages, between the encoded subimage feature maps.

For this paper, the communication network consists of
three layers of 5×5 convolutions. The DDU-Net architecture
is not restricted to this specific network configuration.
Adjustments such as altering the number of layers, dilation,
and kernel size may enhance the model’s receptive field
size for specific applications. We choose our communication
network to be fully convolutional to ensure adaptability
to arbitrary input sizes as well as scaling the number of
subimages.

FIGURE 4. The proposed communication network for four subimages.

The communication network receives as input F feature
maps from the deepest encoder layers for each of the
N×M subimages; cf. Section III-A2. These feature maps are
concatenated along the height andwidth dimensions, aligning
with the subimages’ positions in the full-resolution input
image; cf. Fig. 2. The communication network processes this
concatenated input and produces output feature maps with the
same spatial dimensions as the inputs. These feature maps
are partitioned back along height and width into N ×M sub-
feature maps, which are then sent back to the corresponding
encoder-decoder network for further processing; they replace
the original feature maps generated by the encoder and used
as inputs to the communication network.

B. NOTATION
In the remainder of this paper, we compare various model
configurations using a naming convention for our domain
decomposition-based U-Net that encapsulates key parame-
ters. Each model is denoted as DDU-Net(D,F,C), where:

• D (∈ N>0) indicates the number of up- and
down-sampling blocks in the encoder-decoder network.

• F (∈ N≥0) specifies the number of feature maps
processed by the communication network.

• C (Y or N) denotes whether communication between
communication feature maps is enabled (C = Y ) or
disabled (C = N )).

Note that, if communication is disabled (C = N) but the
number F of feature maps processed by the communication
network is non-zero, this means that F feature maps are sent
through the communication network independently, without
concatenation. This effectively results in a baseline U-Net
architecture with extra convolutions in the bottleneck layer.

For instance, DDU-Net(4, 64,Y) refers to a model where
the encoder-decoder network has a depth of 4, 64 feature
maps are sent to the communication network, and commu-
nication is enabled. The case DDU-Net(D, 0,N) operating
on 1 × 1 subimages is equivalent to the baseline U-Net
architecture. DDU-Net(D,F,N), with F > 0 refers to a
baseline U-Net with extra convolutions in the bottleneck
layer. Additionally, for the case where F = 0, it does not
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matter whether communication is enabled (Y) or not (N),
as the communication network uses 0 feature maps.

C. MODEL TRAINING
1) LOSS FUNCTION
For the network training, we employ the dice loss function,
as this function addresses the issue of class imbalance for
semantic segmentation of images; cf. [48], [49]. The dice loss
is defined as

DL = 1 − 2

∑P
p=1

∑K
k=1 yk,pŷk,p + ϵ∑P

p=1
∑K

k=1 yk +
∑P

p=1
∑K

k=1 ŷk + ϵ
. (1)

Here, K represents the number of classes, P is the total
number of pixels in a batch, and ŷk,p is the predicted
probability of pixel p for class k , obtained by applying a
softmax function to the model’s output so that all the output
logits are in the range [0, 1]. Furthermore, yk,p denotes the
true probability of pixel p for class k , with values restricted
to {0, 1} as the true mask is known, and ϵ serves as a small
numerical stability constant (to avoid division by zero), set to
ϵ = 10−7 in this paper.

2) PARAMETER OPTIMIZATION
The weights of the network are initialized using the
method proposed by He et al. [50]. We employ the Adam
optimizer [51], with momentum parameters β1 = 0.9, β2 =

0.999, and a plateau learning rate decay strategy, where the
learning rate decays with a factor of 2 when the validation
loss does not decrease, maintaining a patience of a chosen
number of epochs. The initial learning rate, batch size, and
early stopping criterion were chosen depending on the task
and available memory and will be provided in the results
section.

3) TRAINING PROCEDURE
For training the DDU-Net architecture, we first initialize the
encoder-decoder network with shared weights and distribute
clones of this network across all M × N devices. The coarse
network for communication is initialized on a selected device
and, due to the small size of the communicated feature
maps, may optionally reside on the same device as one of
the encoder-decoder networks. During forward propagation,
each device independently computes the encoded feature
maps. After processing a selected number F of those feature
maps using the communication network, the decoding of the
feature maps again takes place fully in parallel. Backward
propagation through the encoders and decoders can, again,
be done in parallel without dependencies between the local
encoder-decoder networks. However, after backward propa-
gation through the decoders, communication is necessary for
backward propagating through the communication network.
After backward propagation, gradients are accumulated cen-
trally on a main device and used to update weights, ensuring
uniform updates across all devices. The updated weights are
broadcasted to the other devices for synchronization.

4) IMPLEMENTATION
The implementation was done using PyTorch [52] (ver-
sion 1.12.0), an open-source machine learning library.
We carried out the training and testing on the DelftBlue
supercomputer [53] at the Delft University of Technology,
and we employed NVIDIA Tesla V100S GPUs, with a
memory of 32 GB, for the training.

D. DATASETS
For testing our model, we use two different image datasets:
1) a synthetically generated dataset designed to test the
capabilities of the communication network and 2) a realistic
image semantic segmentation dataset for multi-class land
cover segmentation to assess the effectiveness of the proposed
model both in terms of segmentation quality and memory
efficiency.

1) SYNTHETIC DATASET
In our approach, only deep feature maps, with low spa-
tial resolution, are exchanged between encoder-decoder
networks. This differs significantly from previous U-Net
parallelizationmethods that involve the exchange of a number
of feature maps at each U-Net layer. To assess the level
of spatial context that these low-resolution feature maps
can capture, we designed a synthetic dataset. This dataset
comprises one-channel gray-scale images with dimensions
(k · 32) × 32 pixels, where k ∈ {2, 3, 4, 6, 8, 16}. For
each k , we generate 4 000 training, 1 000 testing and
1 000 validation images, resulting in a total synthetic dataset
size of 36 000 images. This design allows the decomposition
of images into k subimages of 32 × 32 pixels; see Fig. 5 for
examples with k = 4 subimages.

FIGURE 5. Two example images (left) and masks (right) from the
synthetic dataset. The subimage boundaries used for these images are
shown by the red vertical lines.

Each image in this gray-scale dataset displays a black
background with two randomly placed white circles, each
with a 4-pixel radius, placed completely within a subimage
such that the subimage boundaries do not intersect the circles.
The corresponding mask resembles the image, except for
the addition of a third class of pixels: a line segment drawn
between the centers of the two circles. Two examples of
images and corresponding masks are shown in Fig. 5.
When processing an image in this dataset with the DDU-

Net, the segmentation of the line segment connecting the
two circles relies entirely on the communication network.
As the two subimages are processed independently and only
linked by the communication network, the effectiveness of
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the segmentation is a direct reflection of the communication
network’s capability to transfer global information accu-
rately.

2) DeepGlobe LAND COVER CLASSIFICATION DATASET
The DeepGlobe land cover classification dataset [54] is a
semantic segmentation dataset for land cover types. The
dataset contains 803 high-resolution (2 448 × 2 448 pixels)
annotated satellite images with 7 classes: urban, agriculture,
rangeland, forest, water, barren, and unknown. The images
have 50 cm/pixel resolution and span a total area of
1 716.9 km2. In addition to the high resolution of the images,
segmenting this dataset is challenging due to the large class
imbalance; see Table 3. In Fig. 6, we show two example
images and masks from the dataset.

FIGURE 6. Two example images (right) and their corresponding masks
(left) from the DeepGlobe land cover classification dataset [54].

Other challenges include the limited number of images,
inexact ground truth, and the presence of multi-scale relevant
contexts; cf. [55], [56]. To illustrate this, note that trees can
exist in various land types such as urban, rangeland, or forest
areas. As a result, the network needs to assimilate contextual
information from a wider region around the tree to predict the
correct class for the tree pixels accurately.

TABLE 3. Class distributions in the DeepGlobe land cover classification
dataset. Table retrieved from [54].

E. EVALUATION METRICS
After training the model, we analyze the results. Because
of the large class imbalance, we used the (mean) class-
wise intersection over union (IoU) score as a metric,
as was suggested in the paper introducing the DeepGlobe
dataset [54]. Given a dataset with n images, the IoU score
for class j is defined as:

IoUj =

∑n
i=1 TPij∑n

i=1 TPij +
∑n

i=1 FPij +
∑n

i=1 FNij
, (2)

where:
• TPij is the number of pixels in the i-th image correctly
predicted as class j,

• FPij is the number of pixels in the i-th image incorrectly
predicted as class j, and

• FNij is the number of pixels in the i-th image that belong
to class j but were predicted as another class.

The mean IoU score (mIoU ) provides a single metric by
averaging the IoU scores across all classes, and is then
defined as:

mIoU =
1
K

K∑
j=1

IoUj, (3)

where K is the number of classes.

IV. ARCHITECTURE DISCUSSION
In this section, we analyze some architectural properties of
the DDU-Net. First, we investigate the memory requirements
of our approach both experimentally and theoretically and
compare the results against a standard U-Net model. Then,
we analyze the size of the receptive field of DDU-Net models
with different architectures, that is, with varying depth of the
subnetworks and the communication network.

A. MEMORY REQUIREMENTS
We compare the memory requirements for the baseline
U-Net depicted in Fig. 1 and the proposed DDU-Net model
architecture, both with a depth of 4 up-sampling and down-
sampling blocks, operating on 2 subimages; cf. Section III,
Fig 2 to 4. We specifically present results for a configuration
with F = 64 communicated feature maps. The channel
distribution for the encoder-decoder networks in both models
follows the same scheme depicted in Fig. 1.

Table 5 presents a detailed analysis of the memory require-
ments for the encoder and decoder of the U-Net architecture,
which are identical to the encoder and decoder used in the
DDU-Net, during training on a 1 024 × 1 024 image. The
table also includes the memory requirements for the proposed
communication network with F = 64. The values in this
table were derived theoretically (see, for instance, [57]) and
validated experimentally using the torch library [52].

From the analysis, it is evident that storing the feature
maps demands significantly more memory than the storing
of model weights. The shallow layers, including the input
block, the first decoder block, and the last decoder block,
collectively contribute to nearly half of the total memory
allocation for feature maps. Conversely, the number of
weights increases for the deeper layers of the U-Net due to
the higher number of kernels and larger kernel sizes in these
blocks. The coarse feature maps used in the communicated
layer result in relatively low memory requirements for the
communication network, demonstrating the efficiency of the
proposed DDU-Net in terms of memory utilization.

Figure 7 shows the peak memory usage during inference
for the baseline U-Net architecture and for a GPU containing
both the U-Net encoder-decoder and the proposed commu-
nication network, for various image resolutions. For smaller
image resolutions, the memory allocation can be largely
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FIGURE 7. Measured peak memory of the proposed DDU-Net(4, 64, Y)
evaluated on two sub-images, compared to the baseline U-Net (with
depth 4) evaluated on a single subimage, for various subimage
resolutions during inference. The lines with markers represent the peak
total memory usage for both networks, while the two horizontal lines
only indicate the part of memory used for storing model weights. The
experimental peak memory was measured using torch. For the DDU-Net,
the GPU contains both the communication network (processing
F = 64 feature maps) and an encoder-decoder network. It is important to
note that the U-Net peak memory usage is measured on a single GPU,
while the DDU-Net peak memory usage is the maximum of the peak
memory usage across two GPUs.

attributed tomodel weights. However, as image size surpasses
a moderate size of 27 × 27 (128 × 128) pixels, the memory
required to store the feature maps begins to dominate the
total memory cost. Beyond this point, a noticeable increase
in memory requirements is observed, as illustrated in Fig. 7.
It is evident from Fig. 7 that the memory requirements
for the DDU-Net and U-Net become relatively significantly
closer at higher resolutions: for a resolution of 32 pixels,
the relative difference is 25.9%, whereas for 4 096 pixels,
this difference reduces to only 0.65%. Additionally, it is
important to note that peak memory scales quadratically with
resolution; therefore, doubling the resolution results in a
fourfold increase in memory consumption. The results show
that the proposedDDU-Net, with its communication network,
requires only a small memory overhead compared to the
baseline U-Net, despite the added cost of the communication
network. This demonstrates the DDU-Net’s efficiency in
memory utilization: it facilitates communication between
sub-images while increasing the memory requirements only
slightly.

B. RECEPTIVE FIELD ANALYSIS
The proposed communication network operates on the coarse
bottleneck layer of the encoder-decoder networks. Outputs
of those layers typically have large receptive fields, as they
are the result of numerous convolutional and downsampling
operations. Therefore, the communication network is very
effective in increasing the receptive field size of the model
architecture. In Table 4, we compare the (theoretical) recep-
tive field size of a standard U-Net with that of our proposed
model at different depths of the encoder-decoder network,
following the theoretical approach as presented in [29]. For

the DDU-Net, we calculate the theoretical receptive field
size for one infinitely large subdomain, providing an upper
boundary for the true receptive field size when the network
operates on multiple subimages. The comparison shows
that the communication network significantly enlarges the
receptive field size of the encoder-decoder network.

TABLE 4. Receptive field size for different encoder-decoder depths for
baseline U-Net (cf. Fig. 1) the DDU-Net (cf. Fig. 2 to 4). Theoretical
analysis of the receptive field was done following the approach described
in [29]. Note that the number of feature maps F sent to the coarse
network does not influence the receptive field size as long as F > 0.

V. EXPERIMENTAL RESULTS
In this section, we compare the DDU-Net approach against
the corresponding baseline U-Net model based on the
segmentation quality on the datasets introduced in Section III.
Moreover, we conduct an ablation study to examine the effec-
tiveness of the communication between encoder-decoder
networks processing subimages.

A. SYNTHETIC DATASET RESULTS
In this section, we present the results obtained using our
synthetic dataset, which is described in Section III-D1. The
dataset comprises gray-scale images of varying dimensions,
specifically (k · 32)× 32 pixels, where k ∈ {2, 3, 4, 6, 8, 16}.
For each k , we trained separate baseline U-Nets and
DDU-Nets.

For our experiments, we trained baseline U-Nets using
entire k · 32 × 32 images as inputs. In contrast, the
DDU-Net architecture received k subimages of size
32 × 32 pixels, processed by k separate encoder-decoder
clones. Both the U-Net and DDU-Net models were designed
for 1-channel grayscale input images, generating outputs
with three channels corresponding to the logits for the pixel
classes: background, line segment, and circle.

We evaluate

• the impact of varying the number of down- and
up-sampling blocks (depth D) in the encoder-decoder
networks,

• the influence of the depth of the communication
network, which is equal to the number of feature maps
sent to the communication network (denoted as F), and

• the effect of inter-feature map communication (C , with
values Y for enabled and N for disabled).

As mentioned in Section III-B, we use the notation
DDU-Net(D,F,C) to represent a DDU-Net with parameters
D ∈ N≥0, F ∈ N≥0, and C ∈ {Y ,N }. For a baseline
U-Net with depth D we use the notation U-Net(D). The
training hyperparameters used to train the networks are listed
in Table 10. The number of weights in the encoder, decoder,
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TABLE 5. Theoretical analysis of the memory requirements and number of weights of a 4-blocks deep U-Net encoder and decoder architecture
(see Section II-A) training for an RGB image of 1 024 × 1 024 pixels and a 3-class segmentation task. The table displays the size, number of input and
output channels, memory usage (in terms of number of values and megabytes), as well as weight count and size (in terms of values and megabytes) for
each block of the encoder and decoder part of the CNN architecture as well as the communication network. The communication network memory is
based on 4 subimages and communication of 64 feature maps per subimage. Note that the number of weights and their memory cost is independent of
the image size, whereas the number of values and memory of the feature maps will increase as image size increases.

and communication network for the different experiments can
be found in the appendix, specifically in Table 8.

1) QUALITATIVE RESULTS
To show the effectiveness of the coarse network with commu-
nication, we compare the qualitative segmentation masks for
three architectures: the U-Net(3), the DDU-Net(3, 32,Y) and
the DDU-Net(3, 32,N) for the 32 × 64 pixel images (k = 2)
in Fig. 8. We observe that the DDU-Net(3, 32,N) is unable
to predict the position of the line segment correctly, as it is
unaware of the circle position in the other subimage due to the
lack of communication. In contrast, the DDU-Net(3, 32,Y)
predicts the location of the line segment correctly.

FIGURE 8. Predictions for different models. The DDU-Net operates on two
subimages, whereas the U-Net is trained on the full 64 × 32 image.
We remind the reader here that the DDU-Net(3, 32, N) processes the
subdomains independently without communication (as indicated by the
‘‘N’’), whereas the DDU-Net(3, 32, Y) includes communication. The red
vertical line in the horizontal center of the image indicates the subimage
border.

Fig. 8 shows that the proposed encoder-decoder network
can capture the relevant features in theF = 32 communicated
feature maps, and that the communication network is able
to transfer this information between the encoder-decoder
networks. While we currently communicate all 32 feature
maps in the bottleneck of the DDU-Net(3, 32,Y) for this
example, we will examine the impact of varying the number
of feature maps in Section V-A2. This is particularly
noteworthy, as the communication only happens on a very
coarse level (with 4 × 4 pixel feature maps) and the line
segments are drawn on the finer grained 64 × 32 resolution.
Apparently, communication on this coarse level is sufficient

for the decoder to produce a good segmentation result on the
fine level.

2) VARYING THE NUMBER OF SUBIMAGES AND
COMMUNICATED FEATURE MAPS
In Fig. 9, the IoU score (Eq. (2)) for the line segment
class is depicted for the baseline U-Net(3) as well as the
DDU-Net(3,F,Y), with F ∈ {0, 1, 2, 4, 8, 16, 32} feature
maps communicated, for different numbers of subimages k .
Recall that the case F = 0 corresponds to a DDU-Net where
the communication network has a depth of 0, meaning it is not
used, also implying that there is no communication between
encoder-decoder clones. We observe two phenomena. First,

FIGURE 9. IoU score for the line segment class for a U-Net(3) and
DDU-Net(3, F , Y) for different numbers of feature maps F in the
communication network and different image dimensions. Note the
increase in IoU score when the number of communicated feature maps F
increases (horizontal).

there exists a clear positive correlation between the number
of communicated feature maps F and the quality of the
results. Secondly, the DDU-Net performs even better than
the baseline U-Net for larger images and numbers and
subimages, respectively. This is related to the sizes of the
receptive fields as reported in Table 4: the DDU-Net has a
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larger receptive field (188×188 pixels versus 92×92 pixels),
yielding better results when the circles are further apart.

3) IMPACT OF THE DEPTH OF THE ENCODER-DECODER
NETWORK
In the DDU-Net, the encoder-decoder network has depth
D, that is, the number of up- and down-sampling blocks.
The ideal depth is a trade-off: while shallow depths cannot
capture all relevant features due to a limited receptive field
size (cf. Table 4), overly deep encoder-decoders contain more
parameters and may produce too coarse-grained and less
informative feature maps for communication.

To see the effect of the depth of the encoder-decoder
on the predictions, we compare the segmentation masks
generated by a DDU-Net(D, 16,Y) to the segmentation
masks generated by a U-Net(D), with D ∈ {2, 3, 4}.
The resulting predictions of those predictions are shown
in Fig. 10. For encoder-decoder networks with D = 2,
we observe that the line segment is only predicted correctly
for the pixels that are in the center region between the two
circles. This can also be explained by the receptive field:
shallow networks have a limited receptive field, such that
pixels far away from one of the two circles are not affected
by this circle; this leads to the incorrect segmentation result.
It can also be seen that the DDU-Net with communication

FIGURE 10. From left to right: mask predicted by the DDU-Net(D, 16, Y),
mask predicted with baseline U-Net(D), and true mask for different
encoder-decoder depths D. The subimage borders are indicated by the
red vertical lines. Note that the baseline model is trained on the full
image, so there are no subimages present for this case. The broken lines
for the baseline U-Net are caused by the limited receptive field size of
this network.

enabled gives better results than the U-Net for D = 2 and
D = 3, as the communication network increases the receptive
field size; cf. Table 4.

4) GENERALIZATION TO DIFFERENT NUMBERS OF
SUBIMAGES
The baseline U-Net and the DDU-Net are both size-agnostic,
as both are fully convolutional neural networks. This allows
them to process images with sizes different from the training
images. In case of the DDU-Net, this means that we can vary
both the size of subimages and the number of subimages.
In order to test the generalization of the DDU-Net with
respect to the number of subimages for different amounts of
communication, we train for each k ∈ {2, 3, 4, 6, 8, 16} a

DDU-Net(3,F,Y) on input images with spatial dimensions
of (k · 32)× 32 pixels, as described in section Section III-D1,
with F ∈ {0, 1, 2, 4, 8, 16, 32}. Each of these models is then
evaluated on a dataset with 6 subimages. The results are
shown in Fig. 11.

FIGURE 11. IoU score for the line segment class for a 3-deep
encoder-decoder network in the DDU-Net for models trained on varying
numbers of subimages with varying numbers and numbers of
communicated feature maps. All models are evaluated on the same test
dataset of (6 · 32) × 32 subimages.

We can make the following observations:

1) Models trained on 3, 4, and 6 subimages perform the
best on the 6 subimage test dataset. This is likely
because the images in these datasets are small enough
to be (almost) fully covered by the 188 × 188 pixels
receptive field of the DDU-Net with D = 3; cf. 4.

2) The more inaccurate results for the 8 and 16 subimages
can be explained by the limited receptive field size,
188 × 188 pixels, of the DDU-Net with D = 3;
cf. Table 4.

3) The IoU score deteriorates when the model is trained
on only two subimages and then evaluated on a larger
number of subimages. This is likely due to the fact that
every subimage in the training data set contains one
circle and a part of the line segment; however, there are
no samples with subimages that do not contain circles
or line segments.

These findings suggest that the DDU-Net can be trained on
a different number of subimages than onwhich it is evaluated.

5) SUMMARY OF RESULTS ON THE SYNTHETIC DATASET
We summarize our findings for the synthetic dataset as
follows:

• The communication network is able to transfer con-
textual information across subimages, which becomes
clear both from qualitative comparison in Fig. 8 and
quantitative results in Fig. 9.

• The segmentation quality increases when the number of
feature maps involved in communication increases.

• The larger receptive field size of the DDU-Net with
communication leads to better results compared to the
baseline U-Net; cf. Fig. 9 and 10.
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• The DDU-Net can be trained successfully on a fixed
number of subimages and evaluated on different number
of subimages.

B. DEEPGLOBE DATASET
Now, we assess the effectiveness of the DDU-Net for a real-
world dataset with high-resolution images: the DeepGlobe
dataset; cf. Section III-D2.

FIGURE 12. Architecture of the encoder-decoder ResNet-UNet achitecture
for image segmentation. The pre-trained blocks of the ResNet-18 are
shown as R1, R2, R3, R4. Note that the inner architecture of these blocks
is not shown completely, but is largely simplified here.

Given the small number of 803 images in the DeepGlobe
dataset relative to the segmentation task’s complexity,
wemade several adjustments to the encoder-decoder architec-
ture, including batch normalization, random dropout layers,
and data augmentation (horizontal and vertical flipping,
random rotation of R radians, with R ∈ {0, π/2, π, 3π/4}),
and we incorporated a pre-trained image encoder model, the
ResNet-18 [21]. This model, trained on over 1 000 classes on
the ImageNet data set [58], offers a rich feature representation
for diverse images. The ResNet-18 model consists of residual
blocks with skip connections allowing an effective gradient
flow. We used the first four residual blocks of the ResNet-
18 to initialize our encoder. This strategy leverages the
pre-existing knowledge within the pre-trained model to
enhance the network’s ability to generalize patterns from
the limited dataset. A visualization of the employed model
architecture is given in Fig. 12. For a detailed overview of the
distribution of model parameters within each component of
the network, we refer to Table 9.

During training, we kept the ResNet-18 model’s weights
fixed, only adjusting the weights of the decoder and the
communication network. Additionally, we inserted two extra
3 × 3 convolutional layers in the bottleneck layer. These
layers allow the network to restructure and refine the feature
maps produced by the ResNet encoder generate relevant
information for the communication network.

To ensure a fair comparison between the segmentation
quality of the baseline U-Net and the DDU-Net, we trained
both models on equally large images. Due to the baseline
U-Net architecture’s inherent inability to parallelize across
different GPUs and the limited training device memory

(32 GB), we cropped 1 024× 1 024 non-overlapping patches
from the DeepGlobe dataset, resulting in a training dataset
consisting of 2 412 images. It is crucial to distinguish between
these large ‘‘global patches’’ and the subimages in the DDU-
Net architecture. During training of the DDU-Net, the global
1 024 × 1 024 patches are further partitioned into smaller
subimages, which then are distributed across the encoder-
decoder networks. Using mixed precision training [59], this
approach allowed us to train with a mini-batch size of
12 images on a single GPU. This and other hyperparameters
used for training are shown in Table 6. Furthermore, to take
into account random initialization of the network parameters,
we trained every network repeatedly for three times with the
same settings and training dataset. For each configuration,
the best performing model (in terms of IoU score on the test
dataset) was selected.

TABLE 6. Hyperparameters used for training the model on the
DeepGlobe land cover classification Dataset.

We want to investigate if the DDU-Net can perform
equivalently to the baseline U-Net. However, when we
include communication in the DDU-Net architecture the
additional trainable parameters imply a potential ability to
learn more complex patterns. To isolate the effects of (1) the
extra parameters in the communication network and (2) the
communication itself, we vary the number of feature maps
F for both DDU-Net(4,F,Y) and DDU-Net(4,F,N). The
DDU-Net(4,F,N) scenario represents an encoder-decoder
network with an extra coarse network at the bottleneck layer
(with coarse network chosen the same as the communication
network), but without information exchange between sub-
domains. In this case, the coarse network operates solely
on the local bottleneck feature maps, rather than on the
concatenated feature maps of all subimages. Notably, F =

0 corresponds to the baseline U-Net(4). The difference
between the cases with communication enabled (Y ) and
disabled (N ) shows the impact of communication across
subimages.

1) QUANTITATIVE RESULTS
Fig. 13 shows the mean IoU scores for different DDU-Net
configurations and image partitions, trained on 1 024 ×

1 024 images and evaluated on the 2 048 × 2 048 test dataset
with fixed subimage size, using the approach discussed
in Section V-A4.

From this figure, two main observations emerge. First,
the segmentation quality improves with increased number
of feature maps F in the coarse network. This is expected
since a higher number of feature maps leads to an increase
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in the number of parameters and a larger receptive field,
enabling the model to capture more complex and distant
patterns. Another trend in Fig. 13 is that the quality of the

FIGURE 13. Mean IoU scores for various configurations of the DDU-Net
architectures on a 2 048 × 2 048 test dataset. The left section presents
results for a baseline DDU-Net(4, F , N) model evaluated on entire images
(P = 1). The middle and right sections show the performance of the
DDU-Net(4, F , N) and DDU-Net(4, F , Y) models, respectively, trained on
P × P subimages that form a non-overlapping partition of the full training
image, with P ∈ {4, 8, 16}. The experiments vary the partitioning P × P of
the subimages and the number of feature maps F in the coarse network.
Note that the baseline U-Net is the same model as the DDU-Net(4, 0, N)
evaluated on 1 × 1 subimages.

predictions decreases as the number P × P of subimages
increases, or, equivalently, as the subimage size decreases.
However, for the DDU-Net(4,F,Y), this decrease in quality
is much less pronounced compared to the DDU-Net(4,F,N).
This indicates that the communication combined with the
coarse network effectively transfers contextual information
between subimages, also for this realistic dataset.

2) QUALITATIVE RESULTS
In Fig. 14, example predictions are shown for different
training and model configurations. We observe that the
DDU-Net trained on 1 × 1 and the DDU-Net trained on
8 × 8 subimages with communication enabled both produce
good segmentation results, although there are differences
compared to the true mask. Conversely, the DDU-Net trained
on 8 × 8 subimages without communication shows poorer
predictions.To better illustrate prediction errors, we include
Fig. 15 in the Appendix, where black indicates correct
predictions and white indicates incorrect predictions. The
key distinction lies in the consistency across neighboring
subimages: when communication is enabled, predictions
for neighboring subimages exhibit smoother boundaries
instead of patchy patterns. This highlights the effectiveness
of communication between subimages in the DDU-Net
architecture.

C. COMPARISON TO OTHER METHODS
We compared the DDU-Net with two high-resolution seg-
mentation methods: GL-Net [10] and the

FIGURE 14. From left to right: original image, true mask, predictions by
the DDU-Net(4, 256, N) evaluated on the full image, predictions by the
DDU-Net(4, 256, Y) evaluated on 8 × 8 subimages, and predictions by the
DDU-Net(4, 256, N) also evaluated on 8 × 8 subimages. The borders of the
8 × 8 subimages are indicated by black lines. Prediction errors for these
images are visualized in Fig. 15. Note that the DDU-Net(4, 256, N)
evaluated on the full image (P × P = 1 × 1) is equivalent to a 5-deep
baseline U-Net.

FIGURE 15. Visualization of prediction errors for various network
configurations of the DDU-Net. Black indicates correct predictions, white
indicates incorrect predictions. From left to right: original image, true
mask, error by the DDU-Net(4, 256, N) evaluated on the full image, error
by the DDU-Net(4, 256, Y) evaluated on 8 × 8 subimages, and error by the
DDU-Net(4, 256, N) also evaluated on 8 × 8 subimages. The borders of the
8 × 8 subimages are indicated by red lines. Note that these predictions
correspond to the ones shown in Fig. 14.

From-Contexts-to-Locality (FCtL) network [60]. Unlike
these methods, the DDU-Net adopts a fundamentally
different approach. Existing methods focus on minimizing
computational workload to fit tasks onto a single GPU,
often sacrificing critical high-resolution details. In contrast,
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TABLE 7. Comparison results with other high-resolution segmenation network architectures FCtL [60] and GL-Net [10]. Note that the DDU-NetResNet on
1 × 1 subdomain is similar to a baseline ResNet-UNet and the implementation for other network architectures is only suitable for 1 GPU by design,
in contrast to the DDU-Net. The depth of the used encoder-decoder networks is D = 4 blocks. F = 256 feature maps were communicated through the
(coarse) communication network.

TABLE 8. Properties of the encoder-decoder network and coarse network used in the synthetic datset experiments.

TABLE 9. Properties of the encoder-decoder network and coarse networks used for the DeepGlobe land cover classification segmentation Dataset.

TABLE 10. Hyperparameters used for synthetic data experiments.

the DDU-Net distributes the workload across multiple
GPUs, enabling efficient processing of large-scale, high-
resolution data without losing detail. Future research

could explore integrating the strengths of both approaches,
balancing efficient workload distribution with single-GPU
compatibility.

We trained a DDU-Net with ResNet50 and ResNet18
encoder backbones, the FCtL network, and GL-Net on the
same DeepGlobe dataset of 2 048 × 2 048 images. DDU-
Net training followed the settings in Table 6, while FCtL and
GL-Net adhered to their respective papers’ configurations.

The results, summarized in Table 7, compare accuracy,
peak memory usage, and inference time on the DelftBlue
supercomputer [53]. The DDU-Net is uniquely capable
of parallelizing tasks across multiple GPUs. For instance,
the DDU-NetResNet18 with 2 × 2 subdomains achieves
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a mean IoU of 0.684, requiring just 601 MB of memory
and 0.0463 ± 0.0011 seconds per 2 048 × 2 048 image.
In contrast, state-of-the-art methods like GL-Net and FCtL
require over 2 GB of memory and inference times exceeding
3 seconds. A significant part of this performance gap stems
from fundamental differences in approach. Unlike FCtL and
GL-Net, which is designed to process parts of the image
sequentially on a single GPU, the DDU-Net distributes the
entire image workload across multiple GPUs, which enables
more efficient parallelization. While the DDU-Net with a
ResNet50 backbone uses more memory than FCtL and GL-
Net, its memory usage scales almost linearly with the number
of GPUs while maintaining a consistent mean IoU, which is
exactly the aim of the DDU-Net.

VI. CONCLUSION
This paper develops a new domain decomposition-based
U-Net (DDU-Net) architecture for semantic segmentation
tasks. Our results show that by including communication
between subimages, the DDU-Net can handle high-resolution
image segmentation efficiently without sacrificing accuracy
or memory efficiency. Our approach improves segmenta-
tion accuracy by leveraging inter-subimage communication.
Future research will focus on refining communication
strategies, applying DDU-Net to more complex datasets,
and further evaluating the benefits of parallelization on
computing times and memory usage. Another direction is
extending the parallelization strategy developed in this paper
to other encoder-decoder architectures.
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APPENDIX
The properties of the encoder-decoder and coarse networks
used for the synthetic dataset experiments are detailed
in Table 8. The properties are shown for different configu-
rations in terms of encoder-decoder depth D. The numbers
of weights for the encoder-decoder and coarse network
architectures used for the DeepGlobe land cover classifica-
tion dataset are detailed in Table 9. The encoder-decoder
network consists of multiple ResNet18 blocks followed by
an inter-convolutional and up-sampling path. We show the
number of weights in the coarse network for various choices
of its architecture, corresponding to the different experiments
as shown, for instance, in Fig. 13. Table 10 summarizes
the hyperparameters employed during training for synthetic
data experiments. Fig. 15 visualizes the difference between
predicted and true masks for different configurations of the
DDU-Net.
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