THE ALL TRANSPARENT COLUMN

Exploring the effect of post-tensioning an all glass column of the bundled type to enhance slenderness and promote safe failure behavior

Symbiosis Architecture and Engineering

Two fields of engineering

Great feats of strength

Architect versus Engineer

Discripancies between two fields

Large uninterrupted spaces

Load bearing elements blocking the view

Glass as ultimate compromise

Transparent

Visually pleasing

Load bearing capacities

Mechanical properties of glass

Transparent

Great compressive strength

Why not commonly used?

Lacks tensile strength

Problems with all glass columns

Glass' weak properties Explosive failure and no tensile strength

Very high safety factors

No legislation

3D-oriented design with a 2D material

Possible types of glass columns

Profile type mechanically inefficient

Stacked architecturally undesirabe

Torsional rigidity

Visual quality

Bundled least explored

		Profile	Tubular	Stacked (H)	Stacked (V)	Bundled	Cast
Architectural Desirability	7				0.55		
	Transparency			-			
	Form freedom	2					
Mechanical Desirability							
	Buckling resistance						
	Torsional resistance						
	Safe failure						
Financial Desirability							
	Production time						
	Production cost						

Glass elements

Extruded borosilicate

Produced by SCHOTT, Germany

1500mm lengths

Issue 1: Eccentricities

Eccentric elements

Large deviations

Careful design and assembly required

Issue 2: Limited cross section

Extruded elements currently not bigger

Results in very slender column

Issue 3: Limited height

Elements are 1500mm Column design height is 2400mm

Split lamination Helix of weakpoints

What happens at these gaps?

2400	1500	

Split lamination gaps

Statistically impossible to prevent peak stresses

Open gap is significant weakness

Three options proposed

1 Empty

2 Adhesive

3 Aluminum

Gap options testing

Three samples per option

470mm tall samples

Aluminum expected to be the best Slightly softer material Still transfers loads

Gap options results

Results ranging between: 9000 and 27.000 kg

Aluminum disc clearly the best

85% monolithic behavior

Production of complete column

Column design respects research

Following the split lamination scheme

Aluminum discs at gaps

Expectations mechanical behavior

Previous tests show buckling as leading failure mode

Inaccurate material properties make it hard to predict

Generally exceeds expectations

Euler's critical buckling force: ~70kN

Physical test

Test conducted at Faculty of Civil Engineering

Video time!

Results mechanical behavior

Failure by buckling

Exceeded expectations, as expected

9000 kg

Reverse calculating Euler: Glass has Young's Modulus of ~80

Case study ABT office

ABT Delft

Ultimate limit state of 112 kN

Achievable in a clamped situation

Almost there?

Safety factors!

Improving the failure behavior

Issue 2: Slender column

Why? So we can lower the safety factors

Making it better possible without increasing cross section

No needlessly large and costly elements

Expected behavior

Column will fail by buckling

Introducing a tensile element can slow this down

Increased deformations

Visibility of failure increased

Implication issues

Issue 1: Eccentricities

On paper vs real-life

Proof of concept design

PVC tubing with steel tendon

Prestress of 35kN applied (30% of critical buckling force)

Physical test date

Three samples produced

Test date 12th and 14th afternoon

Design by Research results

Proposed design for 2400mm column

Significant load bearing capacities

Buckling leading cause of failure

If succesful, buckling more ductile

Reduced safety factor makes a 2400mm column possible for ABT in a clamped situation

What's next?

Proven mechanical behavior, now increase architectural value

Support condition research

Implementation

Future uses?

ALL TRANSPARENT COLUMN

Define support and load

Defined zone that can be used for optimization

Optimization analysis

Single load case

Optimized shapes are very prone to other load cases Risk = Probability * Consequence Too dangerous for this subject

Note: Best flow of forces is a straight connection between the two

Designed supports

Glass parts are main focus

No glass in connections

Draw attention to slenderness

Exploded view

Glass column

Lead protective interlayer

Steel holder

Height adjustable holder

Adjustment bolts Adjustment thread

Bottom plate

High duty concrete anchor bolts

Glass column in Faculty of Architecture

Close-up glass column in Faculty of Architecture

Social context

Not just a novel feature in contemporary architecture

Deepen the trust people have in glass

Prove the structural integrity of glass as structural material

Do so with a 100% recyclable material

But, what are other uses of this column?

General compressive members

Tensegrity art objects or structures

Sustainable renovation of gothic churches

Close-up sustainable renovation of gothic churches

