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Abstract. The Variational Germano Identity [1, 2] is used to optimize the coefficients
of residual-based subgrid-scale models that arise from the application of a Variational
Multiscale Method [3, 4]. It is demonstrated that numerical iterative methods can be
used to solve the Germano relations to obtain values for the parameters of subgrid-scale
models that are nonlinear in their coefficients. Specifically, the Newton-Raphson method is
employed. A least-squares minimization formulation of the Germano Identity is developed
to resolve issues that occur when the residual is positive and negative over different regions
of the domain. In this case a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is
used to solve the minimization problem.

The developed method is applied to the one-dimensional unsteady forced Burgers’
equation and the two-dimensional steady Stokes’ equations. It is shown that the Newton-
Raphson method and BFGS algorithm generally solve, or minimize the residual of, the
Germano relations in a relatively small number of iterations. The optimized subgrid-
scale models are shown to outperform standard SGS models with respect to a L2 error.
Additionally, the nonlinear SGS models tend to achieve lower L2 errors than the linear
models.
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1 INTRODUCTION

The numerical solution of multiscale Partial Differential Equations (PDEs), i.e. PDEs
where the solution contains a large range of different scales that are dynamically important
for predicting quantities of interest, can be a challenging task. This is due to the fact
that the computational effort to compute all the necessary scales may be intractable. In
order to deal with multiscales PDEs, Hughes et al introduced a Variational Multiscale
Method (VMM) in [3, 4]. In the VMM, the solution of the PDE u, is sum-decomposed
as u = uh + u′, where uh denote the numerically resolved scales and u′ the unresolved
scales. Since the effect of u′ is non-negligible, by not computing u′, uh is not accurately
computed. Therefore the influence of u′ on uh must be represented.

One approach for accounting for the influence of u′ is to model u′ using a subgrid-
scale (SGS) model. In most cases only approximate models are available for u′ which
depend on a number of parameters. Often optimal values for the model parameters
cannot be exactly determined. As a solution to this problem, Oberai et al showed that
the variational Germano method (VGM) [5, 1] could be used to dynamically calibrate
parameters in numerical methods. However the VGM has only seen limited application
in combination with the VMM [2] and in most cases only SGS models are used for which
the relations appearing in the VGM can be solved analytically.

There is evidence that improved SGS models for use with the VMM can be obtained by
including nonlinear dependencies and spatial variations, as shown by Gravemeier [6] and
Calo [7]. In doing so, it may no longer be possible to solve the VGM relations analytically
for the SGS Model parameters. This motivates the need for a framework in which the
VGM can be applied to more general SGS models. Therefore, in this paper two methods
are proposed and tested which can numerically solve the VGM relations for arbitrary
SGS Models. The combination of VGM and VMM is then investigated by considering the
unsteady forced Burgers’ equation and Stokes equations.

2 VARIATIONAL MULTISCALE METHOD

The following problem is considered:

find u ∈ V :

Lu = f , on Ω (1)

with appropriate boundary and initial conditions. L represents a potentially non-linear
differential operator, V is the function space that contains the solution, Ω is the domain
and f is a specified forcing function. The Galerkin variational form of (1) is shown in
(2).

find u ∈ V :

B(w,u) = (w,f), ∀w ∈ V (2)

In this case (·, ·) is the standard L2 inner-product on Ω and B(w,u) := (w,Lu).
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In the VMM as proposed by Hughes et al [3, 4], a numerical solution to (2) is sought in
the finite dimensional function space Vh ⊂ V , where h represents a characteristic length
of the discretization. This defines the projector Ph : V → Vh. The resolved scales are
the part of u that can be represented in Vh and are given by uh = Phu. The unresolved
scales denote the part of u that is not contained in Vh and are given by:

u′ := u− Phu = (I− Ph)u ∈ V ′ := V\Vh (3)

A similar decomposition into resolved and unresolved scales can be made for w.
For linear PDEs it can be shown that u′ is governed by an unresolved scale Green’s

function [3]. For nonlinear PDEs this represents a first order perturbation approximation
for u′ as shown by Scovazzi [8]. In both cases the following expression can be used:

u′ ≈ −τR

R := Luh − f (4)

where R is the resolved scale residual and τ is an approximate unresolved scale Green’s
function. Substituting u = uh + u′ = uh − τR in (2) allows uh to be determined by
solving the variational problem in (5).

find uh ∈ Vh :

B(wh,uh) +M(wh,uh;�c,f , h) = (wh,f), ∀wh ∈ Vh (5)

�c is a vector of constants that τ depends on and M(wh,uh;�c,f , h) represents the addi-
tional terms that occur due to the substitution.

3 VARIATIONAL GERMANO METHOD AND NUMERICAL SOLUTION

PROCEDURES

Application of the VMM leads to a subgrid-scale model for u′ that depends on a vector
of parameters �c. The definition of u′ depends on the definition of Vh. Therefore �c will have
values that depend on the numerical discretization used. In many cases optimal values
for �c are not known. The problem of determining �c can be solved by using the variational
Germano method as proposed by Oberai et al [5, 1, 2]. The VGM does not require the
exact solution of the PDE problem to be known, making it a suitable procedure for general
nonlinear problems.

In the VGM a series of coarse nested function spaces, VhN ⊂ VhN−1 ⊂ ... ⊂ Vh1 ⊂ Vh

are defined. On each Vhi a coarse space solution uhi can be defined. The optimal uhi will
be given by Phiu, where Phi : V → Vhi is a projector onto the coarse function space Vhi .
As u is generally not known, uhi can instead be obtained via uhi = Phiuh. If uh = Phu
then uhi = PhiPhu. Therefore the uhi will still be optimal provided PhiPh = Phi [1].
There are a number of projectors with this property. In this paper the L2 projector is
used.
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Optimal values for �c can then be found by solving the variational inverse problem:

find �c :

B(whi ,uhi) +M(whi ,uhi ;�c,f , hi)− (whi ,f) = 0, ∀whi ∈ Vhi , i = 1, ..., N (6)

(6) is known as the Germano identity and generally has more equations than there are
coefficients �c. The amount of equations can be reduced by interpreting (6) in a global
sense, i.e. taking all inner products over the entire domain Ω [5, 1]. In this way (6)
reduces to one system of equations per Vhi . The equations in each system can further
be summed to produce one equation. Then as many Vhi must be defined as there are
components of �c.

Once �c has been obtained from the VGM it can be used to compute a new uh, which
can then be used to repeat the VGM. This produces an iterative procedure for optimizing
�c [5]. In this paper the Germano procedure was only performed once per time step for
unsteady equations. For steady equations the procedure was repeated until �c no longer
changed per iteration, or 100 iterations were exceeded.

3.1 Least-squares Germano identity

In the case where whi =
∑

j φ
hi
j , where φhi

j ∈ Vhi are local basis functions, (6) can be
split into local components as in (7).

ri
j := B(φhi

j ,uhi) +M(φhi
j ,uhi ;�c,f , hi)− (φhi

j ,f) (7)

For each Vhi in (6) the residual of the Germano identity can then be assembled as
∑

j r
i
j.

However, it is possible for the ri
j to be individually large while their sum may be small due

to differing signs. This would make it seem that the chosen �c satisfies (6) when it does not.
The solution of (6) can then result in no further change for �c. Furthermore, numerical
floating point errors may occur if the rj

i have differing signs and very different magnitudes.
These issues can be resolved by using the least-squares form of the Germano identity as
proposed by Oberai and Wang in [1]. Instead of assembling individual equations per Vhi ,
a least-squares residual, RG, is constructed from all the ri

j:

RG :=
N∑
i=1

∑
j

(ri
j · ri

j) (8)

�c is found by determining values that minimize RG.
In this paper a further modification of the least-squares Germano identity is proposed.

When the PDE problem being solved consists of a system of PDEs, ri
j will be a vector

with one component per equation, i.e. ri
j := [ri1,j, r

i
2,j, ..., r

i
Neq ,j

] where Neq is the number
of equations. In this case a separate least-squares residual can be assembled per equation:

Rk,G :=
N∑
i=1

∑
j

(rik,j)
2 (9)
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�c is then found by determining values that minimize all, or some of the Rk,G.

3.2 Newton-Raphson algorithm

When τ , and hence M(whi ,uhi ;�c,f , hi), depends nonlinearly on �c, it may not be
possible to derive an analytical expression for �c from (6). However, a numerical procedure
can then be used to solve the system of equations. In this paper the Newton-Raphson
algorithm is proposed.

The global Germano identity on Vhi is now denoted byGhi := B(whi ,uhi)+M(whi ,uhi ;�c,f , hi)−
(whi ,f). The system of Germano identities in (6) can then be represented as the vector
G := [Gh1 , ..., GhN ]T . (6) is then equivalent to solving G = 0. Taking a first order Taylor
expansion of G = 0 produces:

G(�c) ≈ G(�c0) + J(�c0)(�c− �c0) = 0, J =

⎛
⎜⎝

∂Gh1

∂c1
· · · ∂Gh1

∂cN
...

. . .
...

∂GhN

∂c1
· · · ∂GhN

∂cN

⎞
⎟⎠ (10)

where J is the Jacobian of G with respect to �c. In this paper exact algebraic expressions
for the entires of J are used. Replacing �c by �cn+1 and �c0 by �cn, where n indicates the nth
iteration, allows an iterative procedure for solving G = 0 to be derived:

�cn+1 = �cn − J−1(�cn)G(�cn) (11)

Here (11) is stopped when ||G||L2 < 1 · 10−10.

3.3 BFGS Algorithm

The least-squares formulation of the Germano identity requires the minimization of
RG, or Rk,G to solve for �c. If a general least-squares residual R is considered, then R
is minimized when ∇R = 0. An efficient procedure for solving ∇R = 0 is the BFGS
algorithm. In this procedure, ∇R is approximated with a first order Taylor expansion:

∇R(�c) ≈ ∇R(�c0) + B(�c0)(�c− �c0) = 0 (12)

where B is the hessian of R with respect to �c. Again replacing �c by �cn+1 and �c0 by �cn,
the following iterative procedure is produced:

�cn+1 = �cn − αnB
−1
n ∇R(�cn) (13)

αn is a parameter that controls the step length and is obtained in this paper from an
inexact line search. Bn is an approximation to the Hessian at step n. Bn is obtained by
first setting B0 = I, the identity matrix, and then updated to Bn+1 according to:

Bn+1 = Bn +
yny

T
n

yTn sn
− Bnsns

T
nBn

sTnBnsn

sn = αn(�cn+1 − �cn)

yn = ∇R(�cn+1)−∇R(�cn) (14)

5
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To complete the algorithm it is noted that∇R is evaluated using forward finite differences:

∂R

∂ci
≈ R(ci + �)−R(ci)

�
(15)

with � = 1 · 10−5. The algorithm is stopped when ||∇R||L2 < 1 · 10−7.

4 APPLICATION 1: BURGERS’ EQUATION

In this section the VGM, as defined by (6), will be used to optimize subgrid-scale models
for the one-dimensional unsteady forced Burgers’ equation. The problem is defined as:

find u(x, t) ∈ V :

∂u

∂t
+ u

∂u

∂x
− 1

Re

∂2u

∂x2
= f, on Ω×]0, T [

u = 0, on δΩ

u(x, 0) = 0 (16)

where Ω :=]0, 1[ is the unit line, δΩ is the boundary of Ω, T is the final time and Re is
a dimensionless parameter. T = 25 and Re = 512 are used here. The forcing function f
is defined to be a spatially and temporally varying sine wave with an additional constant
term:

f := 10 sin(t) sin(2πx) + 11 (17)

this ensures that u will form a sharp layer near the right boundary of the domain.
Defining Ch as the partition of Ω into a grid of elements with size h, Vh can then be

defined as the space of standard linear finite element functions on Ch. Application of the
VMM, as described in Section 2, to (16) then results in the following variational problem:

find uh ∈ Vh :

B(wh, uh) +M(wh, uh;�c, f, h) = (wh, f), ∀wh ∈ Vh

uh = 0, on δΩ

uh(x, 0) = 0

B(wh, uh) :=

(
wh,

∂uh

∂t

)
− 1

2

(
∂wh

∂x
, (uh)2

)
+

1

Re

(
∂wh

∂x
,
∂uh

∂x

)

M(wh, uh;�c, f, h) :=

(
∂wh

∂x
, uhτR

)

R :=
∂uh

∂t
+ uh∂u

h

∂x
− f (18)

where second order products of u� have been neglected and all second order spatial deriva-
tives vanish due to the use of linear elements. Once τ is defined, (18) is integrated in

6
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time using the generalized-α method as proposed by Jansen et al in [9]. In this paper the
time-step Δt = 0.25 is used.

The definition of τ has a large influence on the quality of the results obtained from
(18). For nonlinear advective-diffusive equations such as Burgers’ equation, it is known
that τ must be a function of h [10, 11, 12]. Therefore the following definitions for τ are
proposed, with coefficients cn to be optimized with the VGM:

τquadratic := c1h+ c2h
2 (19)

τcubic := c1h+ c2h
2 + c3h

3 (20)

τshakibV GM :=

(
4

Δt2
+ c1

(u
h

)2

+ 9

(
4

Reh2

)2
)− 1

2

(21)

For the VGM the coarse functions spaces Vhi are defined as the standard linear finite
element functions on Chi , where Chi denotes the partition of Ω into a grid with elements
of size 2ih. The VGM optimization is started after five time steps have been performed
with the initial coefficient values. As a benchmark, the definition of τ as proposed by
Shakib in [10] is used.

τshakib :=

(
4

Δt2
+ 4

(u
h

)2

+ 9

(
4

Reh2

)2
)− 1

2

(22)

4.1 Numerical results

Now numerical results are presented for the forced Burgers’ equation. For each defi-
nition of τ used, results are computed on uniform grids with size h = 1/32, 1/64, 1/128
and h = 1/256. For comparison a simulation with τ = 0 on a grid with size h = 1/1024
is also performed and is referred to as the Direct Numerical Simulation (DNS) solution.
The instantaneous DNS solution and the solutions with h = 1/32, at the final time T are
shown in Figure 1. It is evident that the main differences between the solutions obtained
with the different definitions of τ , occur near the right boundary x = 1. The solutions
where τ has been optimized using the VGM appear to be slightly more oscillatory than
that obtained with τshakib. A graph of the space-time L2 error, with respect to the DNS
solution, is shown for each τ definition in Figure 2a. The errors produced with each τ
are close together, indicating the ability of the VGM to identify suitable subgrid-scale
model parameters. In particular the error obtained when using τshakibV GM is lower than
when using the other τs including τshakib. This demonstrates the potential for improved
performance by optimizing nonlinear τs with the VGM. In Figure 2b the values of the
coefficient vector �c are shown for each time step, for results with h = 1/32. In updating
the coefficients each time step the Newton Algorithm converged within two iterations for
τquadratic and τcubic and three to four iterations for τshakibV GM . Note that the value of c1 for

7
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Figure 1: Instantaneous DNS solution and solutions with grid size h = 1/32 for the forced
Burgers’ equation at final time T = 25.

τshakibV GM is more than twice the standard value used in τShakib. Finally the ratio of time
taken for each simulation with and without the VGM is presented in Figure 2c. As can
be seen the extra computation time increases as more coefficients need to be optimized.
The computation time ratio also increases as the number of elements increases. However,
for the simulations conducted in Figure 2c, the proposed numerical method for the VGM
does not result in a substantial increase in required computation time.

5 APPLICATION 2: STOKES EQUATIONS

In this section the steady two-dimensional Stokes equations are considered:

−∇ · (2ν∇su) +∇p = f , on Ω

∇ · u = 0, on Ω

u = 0, on δΩ,

∫

Ω

p dΩ = 0 (23)

where Ω :=]0, 1[×]0, 1[ is the unit-square and ν ∈ R is the viscosity parameter. ∇su :=
1/2(∇u+∇uT ) denotes the symmetric velocity gradient.

The VMM is applied to (23), where both u and p contain resolved and unresolved
scales such that u = uh + u′ and p = ph + p′. The unresolved scales are then defined as:

u′ := −τMRm, Rm := ∇ph − f

p′ := −τCRc, Rc := ∇ · u (24)

Defining Vh and Qh as spaces of standard bilinear finite element basis functions with
v ∈ Vh : v = 0 on δΩ and v ∈ Qh :

∫
Ω
v dΩ = 0, results in the following variational

8
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Figure 2: Further results for Burgers’ equation: L2 error with respect to DNS solution.
Time history of VGM optimized coefficients on grids with h = 1/32. Ratio of time taken
per simulation when using VGM compared to without

problem formulation:

find uh ∈ Vh × Vh, ph ∈ Qh :

(∇swh, 2ν∇suh)− (∇ ·wh, ph) + (qh,∇ · uh) + (∇ ·wh, τC∇ · uh)

+ (∇qh, τM(∇ph − f)) = (wh,f), ∀ wh ∈ Vh × Vh, qh ∈ Qh (25)

For the VGM optimization of τM and τC the coarse spaces are defined in a manner similar
to the procedure used for the forced Burgers’ equation, where each coarse space Ω is
partitioned by Chi into elements with edge length 2ih. The least-squares version of the
Germano identity is used. In this case the Germano residuals are split into residuals of the
momentum and continuity equations. If the x-momentum, y-momentum and continuity
equations are given the indexes 1, 2 and 3 respectively, then τM is optimized by minimizing
R3,G and τC is optimized by minimizing R1,G +R2,G, where Rk,G is defined by (9).

Two definitions for τM and τC are selected from literature, with one additional definition

9
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Figure 3: L2 error convergence with h for VGM optimized Stokes equations

proposed in this paper:

τM := c1
h2

24
√
2ν

, τC := c2ν (26)

τM := c1
h2

24
√
2ν

, τC :=
h
√
u · u
4

(27)

τM := c1
h2

24
√
2ν

, τC := c2h
2 (28)

where (26) was proposed by Franca and Hughes in [13], (23) was proposed by Taylor et
al in [14] and (28) is the definition proposed here. (26), (27) and (28) are referred to as
the linear τs, nonlinear τs and quadratic τs from this point onwards. An additional case
is defined by setting τC = 0, which will be referred to as “τM only”.

5.1 Numerical results

Numerical results are computed for the Stokes equations on grids with sizes: h =
1/12, 1/16, 1/24, 1/32, 1/48 and h = 1/64. The forcing function f is defined by inserting a
manufactured solution of sin(4πx) sin(4πy) for each solution variable. The manufactured
solution can also be used for computing the L2 error of each result. A graph of the
L2 error for the different mesh sizes and τ definitions is shown in Figure 3. It is directly
evident that the different definitions of τ can result in very different error and convergence
properties. The linear τs have the highest error and first-order convergence, whereas
the other τs have lower errors and have approximately second-order convergence. The
nonlinear τs perform better than the linear τs, but not as well as the quadratic τs. This
indicates that including a nonlinear dependence in τ may lead to improved performance,
but that a correct parametrization of τ with h remains important. Figure 4 shows the
values of c1 and c2 obtained after each Germano iteration, for each τ definition, for the
case h = 1/24. All τ definitions converge within five iterations, except for the linear τs
which take approximately 35 iterations to converge. Additionally, the BFGS algorithm
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converged to the specified tolerance for all τs. This is evidence that the BFGS algorithm
is a suitable method for minimizing the least-squares Germano residuals.
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Figure 4: Values of c1 and c2 obtained with VGM iterations h = 1/24

6 CONCLUSION

This paper demonstrated how the Newton and BFGS algorithm could be used to solve
the standard VGM relations and least-squares formulation respectively, for arbitrary forms
of the τ parameter, including nonlinear τs, appearing in the VMM. When applied to the
forced unsteady Burgers’ and Stokes equations, both algorithms always converged within
the alloted amount of iterations. This indicates that the proposed framework for solving
the VGM relations numerically is a promising approach for determining the coefficients
of general SGS models arising from the VMM.

The numerical results further showed that the inclusion of nonlinearities in the SGS
model can lead to improved performance. However for the Stokes equations it was possible
to construct a τ that depended only linearly on its coefficients that outperformed the
proposed nonlinear τs. This indicates the strong dependence of the combined VGM and
VMM approach on the parametrization of τ .
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[4] T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J. Quincy, “The variational multiscale
method - a paradigm for computational mechanics,” Computer methods in applied
mechanics and engineering, vol. 166, pp. 3–24, 1998.

[5] A. A. Oberai and J. Wanderer, “A dynamic approach for evaluating parameters in
a numerical method,” International Journal for Numerical Methods in Engineering,
vol. 62, pp. 50–71, 2005.

[6] V. Gravemeier, The variational multiscale method for laminar and turbulent incom-
pressible flow. PhD thesis, Institut für Baustatik der Universität Stuttgart, 2003.

[7] V. M. Calo, Residual-based multiscale turbulence modeling: finite volume simulations
of bypass transition. PhD thesis, Stanford University, 2004.

[8] G. Scovazzi, Multiscale methods in science and engineering. PhD thesis, Stanford
university, 2004.

[9] K. E. Jansen, C. Whiting, and G. M. Hulbert, “A generalized-alpha method for inte-
grating the filtered Navier-Stokes equations with a stabilized finite element method,”
2000.

[10] F. Shakib, Finite element analysis of the compressible Euler and Navier-Stokes equa-
tions. PhD thesis, Stanford University, 1988.

[11] T. J. R. Hughes and G. Sangalli, “Variational multiscale analysis: the fine-scale
green’s function, projection, optimization, localization, and stabilized methods,”
SIAM Journal of numerical analysis, vol. 45, pp. 539–557, 2007.

[12] I. Akkerman, K. G. van der Zee, and S. J. Hulshoff, “A variational Germano approach
for stabilized finite element methods,” Computer methods in applied mechanics and
engineering, vol. 199, pp. 502–513, 2010.

[13] L. P. Franca and T. J. R. Hughes, “Convergence analyses of Galerking least-squares
methods for symmetric advective-diffusive forms of the Stokes and incompressible
Navier-Stokes equations,” Computer methods in applied mechanics and engineering,
vol. 105, pp. 285–298, 1993.

[14] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of blood
flow in arteries,” Computer methods in applied mechanics and engineering, vol. 158,
pp. 155–196, 1998.

12

4687




