
 
 

Delft University of Technology

Addressing and reducing parameter uncertainty in quantitative microbial risk assessment
by incorporating external information via Bayesian hierarchical modeling

Seis, Wolfgang; Rouault, Pascale; Medema, Gertjan

DOI
10.1016/j.watres.2020.116202
Publication date
2020
Document Version
Final published version
Published in
Water Research

Citation (APA)
Seis, W., Rouault, P., & Medema, G. (2020). Addressing and reducing parameter uncertainty in quantitative
microbial risk assessment by incorporating external information via Bayesian hierarchical modeling. Water
Research, 185, Article 116202. https://doi.org/10.1016/j.watres.2020.116202

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.watres.2020.116202
https://doi.org/10.1016/j.watres.2020.116202


Water Research 185 (2020) 116202 

Contents lists available at ScienceDirect 

Water Research 

journal homepage: www.elsevier.com/locate/watres 

Addressing and reducing parameter uncertainty in quantitative 

microbial risk assessment by incorporating external information via 

Bayesian hierarchical modeling 

Wolfgang Seis a , b , ∗, Pascale Rouault a , Gertjan Medema 

b 

a Kompetenzzentrum Wasser Berlin gGmbH, Cicerostraße 24, 10709, Berlin, Germany 
b Delft University of Technology, The Netherlands 

a r t i c l e i n f o 

Article history: 

Received 13 November 2019 

Revised 17 July 2020 

Accepted 18 July 2020 

Available online 19 July 2020 

Keywords: 

Bayesian hierarchical modeling 

Meta-analysis 

Quantitative microbial risk assessment 

Norovirus 

Performance target 

Combining information 

a b s t r a c t 

Probabilistic quantitative microbial risk assessment (QMRA) studies define model inputs as random vari- 

ables and use Monte-Carlo simulation to generate distributions of potential risk outcomes. If local infor- 

mation on important QMRA model inputs is missing, it is widely accepted to justify assumptions about 

these model inputs by using external literature information. A question, which remains unexplored, is 

the extent to which previously published external information should influence local estimates in cases 

of nonexistent, scarce, and moderate local data. This question can be addressed by employing Bayesian 

hierarchical modeling (BHM). Thus, we study the effects and potential benefits of BHM on risk and per- 

formance target calculations at three wastewater treatment plants (WWTP) in comparison to alternative 

statistical modeling approaches (separate modeling, no-pooling, complete pooling). The treated wastew- 

ater from the WWTPs is used for restricted irrigation, potable reuse, or influences recreational waters, 

respectively. We quantify the extent to which external data affects local risk estimations in each case de- 

pending on the statistical modeling approach applied. Modeling approaches are compared by calculating 

the pointwise expected log-predictive density for each model. As reference pathogens and example data, 

we use locally collected Norovirus genogroup II data with varying sample sizes ( n = 4, n = 7, n = 27), 

and complement local information with external information from 44 other WWTPs ( n = 307). Results 

indicate that BHM shows the highest predictive accuracy and improves estimates by reducing parameter 

uncertainty when data are scarce. In such situations, it may affect risk and performance target calcu- 

lations by orders of magnitude in comparison to using local data alone. Furthermore, it allows making 

generalizable inferences about new WWTPs, while providing the necessary flexibility to adjust for differ- 

ent levels of information contained in the local data. Applying this flexible technique more widely may 

contribute to improving methods and the evidence base for decision-making in future QMRA studies. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Quantitative microbial risk assessment (QMRA) was developed

s a common framework to assess risks caused by pathogenic mi-

roorganisms. QMRA aims at supporting decision-making related

o the microbial safety of water systems. The method supports

ecision-making by quantifying health risks in local settings on a

ystem level ( Gonzales-Gustavson et al., 2019 ) as well as by deriv-

ng general statements on health risks and pathogen reduction tar-

ets as done e.g. for recreational waters and water reuse systems

 Boehm et al., 2018 ; Soller et al., 2017 ). 
∗ Corresponding author. 
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Probabilistic QMRA studies define model inputs as random vari-

bles and use Monte-Carlo simulation to generate distributions of

otential risk outcomes ( WHO, 2016 ). However, in QMRA stud-

es, local data may be limited ( McBride et al., 2013 ) or com-

letely absent ( Mok et al., 2014 ; Soller et al., 2017 ). In such sit-

ations, distribution parameters for these random variables can-

ot be estimated precisely. Appropriate parameter estimates, how-

ver, are crucial for the robustness of simulation results and thus

ffect risk-based decision-making. In QMRA studies, deriving as-

umptions about point estimates for these parameters from lit-

rature is a widely accepted approach when local data is com-

letely absent. Systematic scientific reviews and meta-analyses on

mportant model inputs for QMRA are valuable pieces of informa-

ion in these situations. For example, a recently published meta-

nalysis of the occurrence of norovirus (NoV) in wastewater by

https://doi.org/10.1016/j.watres.2020.116202
http://www.ScienceDirect.com
http://www.elsevier.com/locate/watres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2020.116202&domain=pdf
mailto:wolfgang.seis@kompetenz-wasser.de
https://doi.org/10.1016/j.watres.2020.116202
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Table 1 

Overview of locally available data. 

Wastewater 

treatment plant 

Health context N sample 

size 

Laboratory Sampling period Sample preparation WWTP 

ID 

Germany Wastewater is used for 

restricted agricultural 

irrigation 

7 University of Barcelona October-December 

2014 

Skimmed milk 

flocculation, as in 

Calgua et al. (2013) 

100 

Spain Indirect potable reuse 

via managed aquifer 

recharge 

4 University of Barcelona February, April and 

June 2016 

Skimmed milk flocculation 

as in Calgua et al. (2013) 

101 

Germany Wastewater impacts 

recreational water 

under rain weather 

conditions 

27 German Federal 

environment agency 

November 2015- 

October 2018 

Glass wool filtration as in 

( Wyn-Jones et al., 2011 ) 

102 
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Eftim et al. (2017) was used to inform QMRA studies on the risk

of illness due to exposure to recreational waters contaminated

with aged sewage ( Boehm et al., 2018 ), and to assess the suit-

ability of different wastewater treatment schemes to be used for

direct potable reuse ( Soller et al., 2017 ). However, the extent to

which such external information influences local estimates against

the background of nonexistent, scarce, and moderate local data

is rarely explicitly addressed. This question can be addressed by

employing Bayesian hierarchical modeling (BHM). While this tech-

nique has been applied e.g. to derive a generalized dose-repose re-

lation for Adenovirus ( Teunis et al., 2016 ), the evaluation of micro-

bial recovery rates ( Petterson et al., 2009 ), and the evaluation of

treatment performances of ultrafiltration ( Carvajal et al., 2017 ), the

relation between locally available data on pathogen concentrations

in water that is supported by information from external sources

has not been addressed in the water-related QMRA literature so

far. 

Therefore, the objective of the present study is to investigate

the effects of incorporating external pathogen data via BHM to

support estimates of local pathogen concentrations in source wa-

ters and its effect on resulting health risks calculations. Results

are compared to more commonly used estimation approaches (cf.

Section 2.2 ). 

2. Methods 

In the present study, we investigate the effect of how differ-

ent statistical approaches to including external information from

the scientific literature may affect local risk and log-reduction cal-

culations. We use Norovirus genogroup II (NoVII) data collected

at three local municipal wastewater treatment plants (WWTP)

as reference pathogens because NoV is among the most relevant

causes of infection risk and dominated risk calculations in cases

where multiple pathogens have been assessed ( Boehm et al., 2018 ;

Soller et al., 2017 ). While there are comparable estimation tech-

niques available from classical statistics, we use Bayesian estima-

tion methods based on Markov Chain Monte Carlo (MCMC) for all

statistical analyses. At all locations, we estimate the required log-

reductions of water treatment based on WWTP inflow concentra-

tions for achieving predefined health targets (cf. 2.5). 

2.1. Local data and external information 

Local data: Local data were made available from three differ-

ent wastewater treatment plants located in Europe. At all locations,

there is a direct health relevance because the treated wastewater is

either reused for irrigation or drinking water supply or directly in-

fluences nearby bathing waters ( Table 1 ). The amount of local data

varies between 4 data points at the WWTP for indirect potable

reuse and 27 data points at the WWTP, which impacts recreational

waters. Due to the different local sample sizes, large differences in
arameter uncertainty can be expected. Samples were analyzed by

aboratories in Germany or Spain using qPCR ( Table 1 ). 

.2. External information 

As external information, we use a systematic review and

eta-analysis on NoV WWTP influent concentrations by

ftim et al. (2017) . The authors analyzed the collected NoV

ata for geographical (Asia, Europe, North America, Oceania) as

ell as seasonal differences. Data were provided either directly

rom authors, collected from tables, or digitalized from graphs. For

stimating the mean (μ) and the standard deviation ( σ ) of the

opulation distribution of NoV observations of genogroups I and II,

he authors grouped the data by continent and season and applied

 bootstrapping approach on the grouped data. Based on this

valuation the authors reported a statistically significant difference

etween data from Europe and North America. For Europe, the

uthors collected 305 observations. We followed the procedure

f Eftim et al. (2017) , collecting NoVII data for European WWTPs

ither from reported tables or digitalizing them using the same

oftware (GetData Graph Digitalizer). As our study focuses on

stimates on the level of local WWTPs, we additionally grouped

he data by WWTP (see SI). This is a major difference between our

pproach and the one published by Eftim et al. (2017) , who stayed

t a continent-level for data evaluation. 

.3. Statistical approaches and assumptions for local estimates 

In statistical inference, observations, i.e. data, are used to esti-

ate the unknown parameters of a statistical model; in the sim-

lest form the parameters of an assumed probability distribution.

herefore, the degree to which external information influences lo-

al estimates inherently involves specific statistical assumptions

bout the relationship between these parameters at a local and

eneral level. In previous meta-analyses and QMRA studies, vari-

us methods have been used to derive generalized estimates of the

arameters of interest, including complete pooling ( Boehm et al.,

018 ; Eftim et al., 2017 ), no-pooling ( Boehm et al., 2019 ) and hier-

rchical modeling ( Pouillot et al., 2015 ). If local, site-specific data

re available, generally separate modeling is applied ( Gonzales-

ustavson et al., 2019 ; McBride et al., 2013 ). To evaluate the in-

uence of different modeling assumptions, we used the modeling

pproaches described below. We use the indices “i” for individ-

al observations, “j” for individual WWTPs, and “NoV” for cases in

hich data are pooled across WWTPs, respectively. Concentrations

re assumed to be lognormally distributed, which is a common as-

umption ( Amoueyan et al., 2019 ; Pouillot et al., 2015 ; Soller et al.,

018 ) especially in situations were data a too scarce to decide be-

ween other potential candidate distributions ( Boehm et al., 2018 ). 

Separate models: Each WWTP j is regarded as being completely

ndependent and results from one location do not influence the ex-
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ectation of the other. Results are neither generalizable nor trans-

erable. 

Model: 

g (No V i ) ∼ N( μ j [ i ] , σ
2 
j [ i ] ) i = 1 .... n , j = 1 ... J (1)

Complete pooling: The WWTPs and the applied analytical pro-

edures are assumed to be completely comparable and observa-

ions from different WWTPs are assumed to come from a common

opulation. They are assumed to be exchangeable with a common

ean and variance. 

g (No V i ) ∼ N( μNoV , σ
2 
NoV ) i = 1 .... n (2)

No pooling: For every WWTP j a separate mean μj is fitted, but

he residual standard deviation is constant across WWTPs. 

Model: 

g (No V i ) ∼ N( μ j [ i ] , σ
2 
NoV ) i = 1 .... n (3)

Partial pooling μ via classical hierarchical modeling: Within the

lassical Bayesian hierarchical (multilevel) framework, a separate

ean μj is estimated for every WWTP j. The main additional as-

umption is that the local means μj come from a common distri-

ution, which in turn is described by a normal distribution. The

arameters of this common distribution η and τ ² are referred to as

yperparameters. This population distribution can be regarded as a

rior distribution for the local means μj . It is estimated from the

ata and does not depend on subjective choices of the analyst. The

ariance τ 2 represents the estimated between-WWTP-variability 

nd can be used to estimate expectations of new WWTPs. By esti-

ating all parameters on a data-level and WWTP-level simultane-

usly, information is shared across studies, which is referred to as

partial pooling”. The within-WWTP-variability, i.e. the data vari-

nce σ ²NoV is considered constant across groups. 

Model: 

g (No V i ) ∼ N( μ j [ i ] , σ
2 
NoV ) i = 1 .... n 

j ∼ N(η, τ 2 ) j = 1 , ....J 
(4) 

Partial pooling μ and σ ² via extended hierarchical modeling: 

The classical hierarchical modeling approach can easily be ex-

ended by letting the individual within WWTP variances σ j vary

y WWTP. This leads to a further extension of the model by an ad-

itional distribution (estimated on a log-scale since variances are

estricted to be positive) and additional hyperparameters ( α, γ )

hich represent the average population variance and the between-

WTP-variability of variances. 

Model: 

g (No V i ) ∼ N( μ j [ i ] , σ
2 
j [ i ] 

) i = 1 , .... n 

J ∼ N(η, τ 2 ) j = 1 , ...J 
2 
j 

∼ lognormal(α, γ 2 ) j = 1 , ....J 

(5) 

Separate point estimates 

To investigate the effect of parameter uncertainty in general,

e additionally included the point estimates estimated with max-

mum likelihood derived from the local data, without accounting

or parameter uncertainty. 

Treatment of censored data 

In the local data, no data points below the LOD were mea-

ured. However, in the literature, a small number of observa-

ions were below the LOD (see SI). For Bayesian inference, left-

ensored data were handled by replacing the normal likelihood

f these observations with the complementary cumulative nor-

al distribution function. A similar approach has been applied by

ouillot et al. (2015) . 

Model fitting 

We use Bayesian estimation methods based on Markov Chain

onte Carlo (MCMC) for all statistical analyses. To run MCMC

imulations, we use the programming languages “R”, “Stan”
 StanDevelopmentTeam, 2017 ) via the interface between “R” and

Stan”, “brms” ( Bürkner, 2017 ). “Stan” implements Hamiltonian

onte Carlo for MCMC. We used the same weakly informative

rior distributions for the location and scale parameters (see SI).

ue to the large number of WWTP with small sample sizes a small

tep size ( < 0.99) was chosen. For every model, we ran four in-

ependent Markov Chains, with 20,0 0 0 iterations and a warm-up

hase of 10,0 0 0. Thereby, 40,0 0 0 independent posterior samples

ere created for further evaluation. We chose this high number of

amples as the posterior samples are not only used for estimation

ut also for subsequent risk simulation (cf. Section 2.5 ). Conver-

ence of the Markov Chains were checked by inspecting whether

he trace-plots of the four chains were well-mixed and by checking

hether the Gelman-Rubin diagnostic statistic ( ̂  R ) has converged to

. 

.3. Calculating quantities of interest 

As quantities of interest, we consider the marginal distributions

f μ and σ of NoVII concentrations and the posterior predictive

istribution (PPD), which represents the uncertainty about new ob-

ervations, given the observed data and included external infor-

ation. The average inflow concentration is of particular interest

o determine the required log-credits at a local setting, as these

re calculated from the difference between the average inflow and

utflow concentrations. The PPD is used for subsequent forward

onte Carlo risk simulation. 

.4. Model comparison and generalized estimates for a new 

unknown) WWTP 

To compare the effects of the different statistical approaches

n estimates for new, i.e. unknown WWTPs, the marginal distri-

utions of the mean as well as the posterior predictive distribu-

ion for new data are simulated from the estimates for η, α, γ
nd τ for the hierarchical approaches and μNov and σ NoV for the

omplete pooling approach. For the “separate modeling” and “no

ooling“ approaches such estimations are not possible as these ap-

roaches assume independence of WWTPs. To assess the predic-

ive performance of the different modeling approaches we calcu-

ate the expected pointwise leave-one-out (loo) log predictive den-

ity (elpd) using pareto-smooth importance sampling according to

ehtari et al. (2017) . The higher a model’s elpd, the more accu-

ate the model’s predictions are to be expected. Consequently, the

odel with the highest elpd is preferred. The loo-elpd values are

alculated by applying the “loo” function from the brms-package

o the fitted model objects. Models are refitted if k-values are >

.7. Model comparison is conducted by applying the function loo-

ompare, which calculates the difference in the elpd between mod-

ls. 

.5. Implications on risk calculation and performance targets 

To estimate the effect of different statistical estimation ap-

roaches on risk simulation and thus performance target deriva-

ion, we run the following simulation: 

• Simulation of the PPD of NoV influent concentrations for each

local WWTP and each estimation approach (40,0 0 0 draws) 
• Application of assumed log-reductions from source water to the

point of exposure ( Table 2 ) 
• Application of use-specific exposure scenarios in terms of the

volume ingested per event and number of exposure events per

year ( Table 2 ) 
• Risk simulation and comparison of results to existing risk-based

health targets ( Table 2 ) 
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Table 2 

Overview of site-specific exposure scenarios, health targets, and risk endpoints. 

Application Potable reuse Restricted irrigation Recreational water Source 

Endpoint risk 

assessment 

Infection pppy Disability-adjusted life 

years (DALYs) pppy 

Single exposure risk of 

illness 

Dutch drinking water 

regulation, 

( WHO, 2006 ) 

US EPA ( US-EPA, 2012 ) 

Health target 10 −4 pppy 10 −4 - 10 −6 pppy 3% 

N 365 50 1 ( Boehm et al., 2018 ; 

NRMMC-EPHC- 

AHMC, 2006 ) 

Volume ingested per 

exposure event 

1L 1mL 100mL ( NRMMC-EPHC- 

AHMC, 2006 ) 

( Boehm et al., 2018 ) 

P (illness|infection) 0.7 0.7 ( WHO, 2011 ) 

DALYs per case of 

disease 

1.3 × 10 −3 ( Mara and 

Sleigh, 2010 )~

Log reduction 12–16 5–10 5–9 Assumption 
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• Repetition of the procedure to account for stochastic Monte-

Carlo uncertainty 

To isolate the effect of different statistical estimation ap-

proaches, we assume that the remaining model inputs are perfectly

known without variation ( Table 2 ). No specific treatment train is

assumed but log-reductions include both technical barriers, and

natural die-off from the WWTP inflow to the point of exposure.

From the predicted inflow concentrations (PPD), the population

distribution of the expected doses per exposure event is calculated

by: 

d = 10 

c in f luent −
n ∑ 

T=1 

LR V T ∗ V ingested (6)

where d is the dose per exposure event, c influent is the PPD of NoVII

in lg GC/L, LRV is the log-removal value for treatment step T, n is

the number of treatment steps, and V ingested is the ingested vol-

ume in L. From the population distribution of d, we calculate the

population distribution of risk outcomes per exposure event, using

the dose-response relation published by Teunis et al. (2008) for

disaggregated viruses ( Eq. (7) ) (see SI). Note, the dose-response

relationship of norovirus is subject to ongoing discussion and al-

ternative relationships have been proposed ( Messner et al., 2014 ;

Schmidt, 2015 ; Van Abel et al., 2017 ). 

P inf | exposure = 1 − 1 F 1 ( a, a + b, − d ) (7)

Subsequently, we estimate the sampling distribution of the av-

erage annual infection risk (P annual ) by randomly (“rand” in Eq. (8) )

resampling N (number of exposure events) times from the popu-

lation distribution of event probabilities for 10,0 0 0 times. To ac-

count for uncertainties caused by stochastic Monte Carlo sam-

pling we repeat the full process, starting from sampling from the

PPD for 100 times for the irrigation and swimming scenario, and

10 0 0 times for the drinking water scenario. This leads to 100

and 10 0 0 distributions of the average annual risk for each as-

sumed LRV consisting of 10,0 0 0 calculations. For every distribution,

the proportion of samples below the health targets is calculated

(cf. Section 3.2 ). 

P annual = 1 −
N ∏ 

i =1 

(
1 − rand( P inf | exposure [ i ] 

)
(8)

3. Results 

Fig. 1 shows all available data, which originate from 44 dif-

ferent WWTPs across Europe. The empirical geometric mean of

the different WWTP varies between approximately 4.1 and 7.6 lg

GC/L, while the variation of individual observations within a sin-

gle WWTP varies by up to 6 orders of magnitude (WWTP 44). The

three local WWTPs (100, 101, 102) have empirical means of 5.8 lg
C/L, 4.95 lg GC/L, and 5.98 lg GC/L, respectively. These values dif-

er from the mean calculated from all data (5.42 lg GC/L) by ap-

roximately 0.5 log in both directions. The number of data points

er WWTP varies between 2 and 49. With 27 data points, the local

WTP 102 is one of the largest data sets on a WWTP level, while

ith 4 data points WWTP 101 only provides little local informa-

ion. 

.1. Marginal parameter distributions and PPD for new observations 

Figs. 2 and 3 summarize the estimates and corresponding un-

ertainty of the parameters μ and σ for the local WWTPs. Fig. 4

hows the resulting PPD for new observations. Since in Bayesian

nference probability is used to express uncertainty, all parameters

ave probability distribution themselves, referred to as marginal

istributions. 

Fig. 2 shows the marginal distributions of the mean NoVII con-

entrations. The estimates of the different approaches differ both

egarding the location of the mean (μ) and the scale of the distri-

ution, which reflects the uncertainty of the estimated mean. 

Regarding the location, the “complete pooling” approach deliv-

rs the same estimate for all WWTPs (μ = 5.4 lg GC/L). The sce-

arios “separate point estimate” (dashed line), “separate model-

ng”, and “no pooling” estimate identical means for the individ-

al WWTPs, which correspond to the empirical means of the lo-

al data, as the three approaches estimate mean concentrations,

eparately. It can be observed, that the individual local point es-

imates differ from the “complete pooling” estimate by approxi-

ately 0.5 log units for WWTPs 101 and 102, while the differ-

nce is smaller (approximately 0.35 log units) for WWTP 100. This

ifference shows that by applying a “complete pooling” approach,

hich assumes that all data come from a common WWTP, the 305

ata points from literature outweigh the local data even with a

ample size of N = 27. 

The two hierarchical modeling approaches, in turn, lead to point

stimates (location) which lie between the “complete pooling” and

he “separate estimates”. The exact location of the estimate de-

ends on the amount of local information, i.e. data per WWTP,

nd the variance ratio of the local data variances σ 2 
j[ i ] 

and the be-

ween WWTP variance τ 2 . For WWTP 102 the estimated modes

rom hierarchical modeling are virtually identical to the separate

stimates. For WWTPs 101 and 102 with 4 and 7 local data points,

stimates are closer to the “separate” estimates than to the “com-

lete pooling” estimate. This indicates that for the case of NoVII

oncentrations, already a small number of local data points may

uffice to provide valuable additional information, against the back-

round of the large variation of reported concentrations in the sci-

ntific literature. 

Differences between approaches become more obvious when

he corresponding uncertainty intervals are examined. Their widths
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Fig. 1. Overview of local data and external data collected from literature. The numbers on the left represent the WWTP ID. The numbers on the right refer to the sample 

size at each wastewater treatment plant. White triangles represent the empirical means, black diamonds the individual observations. 

Fig. 2. Overview of calculated marginal distributions for the posterior mean NoVII concentrations using different estimation approaches. Numbers indicate the 95% uncer- 

tainty range. 
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Fig. 3. Overview of the marginal distributions of the individual standard deviations using different modeling approaches. Numbers indicate the 95% uncertainty range. 

Fig. 4. Posterior predictive distribution plotted as the complementary cumulative probability density function. Horizontal dashed lines indicate the upper limit of the 95% 

uncertainty interval. 
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depend on the estimates of the standard deviation ( Fig. 3 ) and the

sample size at each location. By definition, “separate point estima-

tion” does not account for parameter uncertainty at all (dashed

line). Thus, no distinction is made whether the estimate derives

from a WWTP with only 4 data points or one with 27. The “com-

plete pooling” approach leads to the most precise estimate, as the

standard error is calculated assuming that all 345 data points come

from a common WWTP. For “no pooling” and “classical hierarchi-

cal” modeling the commonly estimated residual standard devia-

tion is reduced in comparison to the “complete pooling” approach.

However, since local standard errors are derived from local sample
izes the resulting uncertainty intervals become wider compared

o the “complete pooling” approach. 

Fig. 3 shows the marginal distribution of the residual stan-

ard deviation of the different estimation approaches. As for the

arginal distributions of the means, the standard deviations of

he different approaches differ in their location and the width of

he uncertainty intervals. Regarding the location, “complete pool-

ng” leads to the highest residual standard deviation, followed by

no pooling” and the “classical hierarchical” model. While these

hree approaches differ in the location (mode of the distribution),

he uncertainty intervals of these three approaches are similar, be-
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ause all three approaches estimate the residual standard devi-

tion from all data points as they assume a constant σ across

WTPs. In contrast, “separate modeling”, “separate point estima-

ion” and the “extended hierarchical” model show residual stan- 

ard deviations, which are considerably lower (mode of the distri-

ution) than the estimates from the named three approaches, as

hey estimate a separate σ for each WWTP along with the estima-

ion of μ. However, these estimation approaches differ mainly re-

arding the width of the uncertainty intervals. “Separate point es-

imation” ignores parameter uncertainty completely (dashed line), 

hile for “separate modeling” the width of the uncertainty inter-

al is only influenced by the locally available data. For the “ex-

ended hierarchical” model, uncertainty intervals are the result of

he information contained in the local data and the information

rovided by the meta-analysis from the remaining 46 WWTP. For

WTP 102, there is little difference between the estimate inferred

y “separate modeling” and the “extended hierarchical model”. For

WTPs 100 and 101 differences are more visible. While the modes

f the distributions correspond to each other, “separate model-

ng” with 7 and 4 data points leads to marginal posterior dis- 

ributions with heavy tails, that still include values of up to 4.2

n the 95% uncertainty intervals. For extended hierarchical model-

ng, the upper confidence limits are reduced to values of approxi-

ately 1.6. Thereby, “extended hierarchical modeling” substantially

educes parameter uncertainty and thus predictive uncertainty on

 local level in comparison to “separate modeling” ( Fig. 4 ). 

Fig. 4 shows the full PPD plotted as the complementary cumu-

ative density function, thus the y-axis shows the probability of a

ingle new observation exceeding the corresponding value on the

-axis. This visualization emphasizes the behavior of the distribu-

ion at its tails ( Smeets et al., 2008 ), which is important for under-

tanding the results of risk simulation (cf. Section 3.2 ). The PPD,

oreover, incorporates complete parameter uncertainty regarding

and σ , except from “separate point estimation” for which this 

s ignored by definition. As expected, "separate point estimation"

eads to the narrowest PPD for all scenarios. For “separate model-

ng”, the resulting PPD corresponds to “separate point estimation”

n the case of WWTP 102 with 27 data points. For WWTPs 101 and

02 with 7 and 4 data points, on the other hand, the inclusion of

arameter uncertainty leads to completely different behavior, espe-

ially at the upper tails of the distribution, which reflects the large

ncertainty of both μ and σ , caused by small sample size. 

.2. Effects on risk and performance target calculations 

Figs. 5 –7 illustrate the calculated risk against the set health

argets and assumed log-reductions. For the swimming scenario

 Fig. 5 ) the “complete pooling” scenario leads to the lowest re-

uired log-reduction if the median risk (white line) is used for de-

ision making since the average derived from all data lies below

he average derived from the locally collected ones. However, if the

ncertainty is taken into account, meaning that the complete 95%

ncertainty interval (upper grey boundary) has to fall below the

hreshold level, then “separate modeling” and the “extended hier-

rchical” model lead to a required log-reduction of 7.4. This lies 

bout 0.7 log below the reduction derived from “complete pool-

ng” (8.1 log). “Separate modeling” and the “extended hierarchical”

odel have in common that both, the mean and the standard de-

iation are estimated individually for each WWTP. In contrast, the

no pooling” and “classical hierarchical” models estimate a com-

on residual standard deviation after accounting for differences in

he WWTP-specific means. Since the standard deviation of the lo-

ally collected data is lower than the one derived from all data,

he estimation approaches which estimate the standard deviation

eparately lead to narrower uncertainty intervals. 
The drinking water and irrigation scenario differ from the

wimming scenario since risk calculations are based on multiple

xposure events per year in contrast to the single exposure risk for

wimming. Thus, a direct comparison between prediction intervals

nd risk calculations is less intuitive. 

For the drinking water scenario, the lowest required log-

eduction is derived from “separate point estimation” ( < 12 log).

he required log-reduction derived from the remaining approaches

epends on whether the median or the full uncertainty interval

s used for decision-making. For the median, the “extended hierar-

hical” modeling approach leads to a required log-reduction of 12.8

og, followed by 13.2 - 13.3 log for the “classical hierarchical” and

no-pooling” approaches, 14 log for “complete pooling”, and > 16

og for the “separate modeling” approach. If decisions are based

n the complete uncertainty, differences are reduced to 0.5 - 1 log

etween approximately 14 log for the “no-pooling” and the two

ierarchical models in comparison to 14.8 log for “complete pool-

ng”, and “separate modeling” ( > 16). This order generally corre-

ponds to the width of the posterior predictive distribution shown

n Fig. 4 . A striking feature is that even a reduction by 15 log does

ot suffice to reduce to the median risk below the applied thresh-

ld risk of infection of 10 −4 per person per year for the “separate

odeling” approach. Moreover, the increase of the assumed log-

eduction reduces the median calculated risk quite linearly for all

stimation approaches, except from “separate modeling” (see Fig.

2 in the SI). For “separate modeling” only the uncertainty interval

ncreases but the calculated median risk stays between 10 −1 and

 per person per year ( Fig. 6 ). While this behavior seems coun-

erintuitive at first, it can be explained by investigating Fig. 4 in

ombination with the applied dose-response relationship and the

orresponding exposure scenarios (see SI). From Fig. 4 it can be

educed that the probability of simulating a single observation,

hich is larger than 10 15 GC/L is as low as 10 −2.75 (0.00178) for

he separate modeling approach. With an assumed log-reduction

f 15, these probabilities correspond to the event of ingesting at

east 1 virus in a single event. While these probabilities seem very

ow it has to be considered that for the annual average risk 365

amples are taken, which increases the probability of ingesting at

east 1 virus particle per year to 0.48. As the probability of infec-

ion by ingesting a single virus particle is already 0.27 and rapidly

ncreases to 0.5 with increasing dose, the calculated median risk

tays between 10 −1 and 1, even for a log-reduction of 15. The large

ifference between the result from “separate point estimation” (12

og) and “separate modeling” ( > 15 log) underlines the high impor-

ance of explicitly addressing parameter uncertainty in microbial

isk simulation. A further interesting observation is that the Monte

arlo error is largest for the drinking water scenario. This is not

elated to the small sample size but to the narrower confidence

ntervals of the annual risk distribution caused by 365 samples per

ear in comparison to 50 and 1, respectively. 

Risk calculations of the median annual risk for the irrigation

cenario show similar behavior as the drinking water scenario. Un-

ertainty intervals are generally wider (Fig. A3 in SI) due to the

ower number of exposure events per year, which lead to a less

tep curve in Fig. 7 and a smaller Monte Carlo error. If the median

s used for decision-making differences between approaches lie be-

ween 0.5 and 1 log, with “separate point estimation” leading to

he lowest required log-reduction, followed by the two hierarchical

pproaches, “complete pooling”, “no pooling”, and finally “separate

odeling”. However, if the 95% uncertainty boundary is used, the

ifference between “separate modeling” and the “extended hierar-

hical” modeling approach increases to up to 2.8 log. The extended

ierarchical model lies in turn 0.8 log below the “complete pool-

ng” approach. This underlines the benefits of applying a flexible

pproach like BHM which integrates both literature and local in-

ormation. 
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Fig. 5. Proportion of illness risk calculation below the recreational water target of 3% per swimming event. The white center line indicates whether the median of risk 

distribution is below the health-target. The upper bound of the grey area indicates whether the 95% uncertainty interval falls below the health target. Vertical bars represent 

the 95% uncertainty of the 100 repetitions. Interactive plots are provided in the SI. 

Fig. 6. Proportion of infection risk calculations below drinking water target of 10 −4 pppy. The white center line indicates whether the median of risk distribution is below 

the health target. The upper bound of the gray area indicates whether the 95% uncertainty interval falls below the health target. Vertical bars represent the 95% uncertainty 

of the 10 0 0 repetitions.Interactive plots are provided in the SI. 
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Interestingly, the location of the median risk derived from “sep-

arate point estimation”, and the two hierarchical modeling ap-

proaches fall below the median risk of the “complete pooling” ap-

proach, even though their inferred means (cf. Fig. 2 ) are above the

mean derived from “complete pooling”. This can be explained by

the larger standard deviation of the “complete pooling” approach

in combination with the effect of multiple annual exposures (50
 t  
xposure events per year), i.e. resampling, as already described for

he drinking water scenario. 

.3. Model comparison and generalized estimates for new WWTPs 

Fig. 8 shows the generalized estimates for new data (predic-

ion interval) and the uncertainty about the mean of a new, un-
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Fig. 7. Proportion of risk calculation below irrigation target of 10 −4 DALYs pppy. The white center line indicates whether the median of risk distribution is below the health 

target. The upper bound of the grey area indicates whether the 95% uncertainty interval falls below the health target. Vertical bars represent the 95% uncertainty of the 100 

repetitions.Interactive plots are provided in the SI. 

Fig. 8. Comparison of the posterior predictive distribution and the prediction of the mean for a new WWTP inferred from different estimation approaches. Empirical data 

and empirical means are shown in rows 1 and 2 (values have been “jittered” to reduce over-plotting). The point size of the empirical means is proportional to the sample 

size of at each WWTP. 
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b  
bserved WWTP, simulated from the estimates for η and τ for the

ierarchical approaches and μNov and σ NoV for the complete pool-

ng approach. An interesting observation is the width of the uncer-

ainty intervals regarding the prediction of a new mean NoVII con-

entration at an unknown WWTP. As the “complete pooling” ap-

roach assumes that all data come from a comparable WWTP, the

etween-WWTP variability is not specifically addressed. The loca-

ion of the mean and the standard error are estimated from all
ata. This leads to an elevated mean value and narrow confidence v  
ntervals in comparison to the hierarchical modeling approaches.

he narrow confidence interval, however, is not consistent with

he high between-WWTP-variability present in the empirical

ata. 

In contrast, the 95% uncertainty intervals derived from hi-

rarchical modeling cover 96% (45/47) of the observed empiri-

al means. Thus, the two approaches provide a more uncertain,

ut also more realistic estimate of the existing between WWTP-

ariability. The calculated expected log-predictive density also sup-
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Fig. 9. Model comparison based on the expected log predictive density. The plot shows the differences in the calculated ELPD with the best model (extended hierarchical) 

set to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W  

c  

o

 

t  

s  

a  

s  

w  

s  

s  

f  

m  

s  

t  

Q  

d  

r  

o  

c  

w  

s  

t

 

e  

m  

t  

r  

p  

r  

c  

q  

p  

t  

a  

c

 

l  

o  

t  

o  

i  

fl  
ports the advantage of the two hierarchical modeling approaches

over the “complete pooling” approach ( Fig. 9 ). Results show that

in the presented case the extended hierarchical model is expected

to produce the most accurate predictions of NoVII concentrations.

The “classical hierarchical” model and the ”no-pooling” approach

lead to similar results, whereas the “complete pooling” approach is

expected to deliver the worst predictive accuracy in comparison to

the other estimation approaches. 

4. Discussion 

In the present study, we investigated the effect of including ex-

ternal information from the scientific literature on local estimates

using BHM based on the case of NoVII concentrations in the influ-

ent of municipal WWTPs. To the best of our knowledge, such an

approach to quantitatively combine local and external information

to reduce parameter uncertainty on a local level has not been con-

ducted so far in the QMRA literature. In the literature two major

meta-analyses were identified that address concentrations of NoVII

( Eftim et al., 2017 ; Pouillot et al., 2015 ) in WWTPs, using different

statistical approaches (bootstrapping, hierarchical modeling). How-

ever, in both studies, the focus was put on the derivation of gener-

alizable estimates of NoVII concentrations instead of investigating

the effect on a local scale. 

Our results showed that the benefit of incorporating external

information is largest in situations where local data are sparse

( N = 4, N = 7). In such situations, parameter uncertainty would

be so large that no reliable estimate of concentrations and log-

reductions would be possible, without the use of external infor-

mation. Our results also showed that even a small sample size in

combination with external information might contribute valuable

information to reduce the estimate of the required log-reduction

to reasonable values. The fact that even small sample sizes af-

fect estimates in hierarchical modeling, is an indication that the

between-WWTP-variability is high and only little pooling occurs.

Reasons for the high between-WWTP-variability may include dif-

ferences in population size, season, climate, incidence in the popu-

lation, and analytical methods and protocols. This shows that NoV

concentrations from a single WWTP should not directly be used

to inform assumptions about NoV concentration at other locations.

However, since the degree of pooling that occurs in Bayesian hier-

archical modeling depends on the between-WWTP-variability, this

fact is accounted for and only little information is shared between
WTPs. Thus, employing this technique reduces the risk of not ac-

ounting for these variations by imposing too strong assumptions

r pooling over interesting features in the dataset. 

While a data set of four data points at WWTP 101, for which

he effect was largest, is extremely small, small sample sizes at

ingle locations are not uncommon in the QMRA literature. For ex-

mple, McBride et al. (2013) conducted a discharge-based QMRA

tudy and measured pathogens in stormwater from catchments

ith different characteristics. Within each catchment type, the

ample size per site varied between 8 samples at 8 sites for dry

eason urban runoff (i.e. 1 sample per site) to 7 samples at 1 site

or “forested open space stormwater”. For the remaining catch-

ent types, sample sizes varied between 3 and 4 samples per

ite. Amoueyan et al. (2019) used NoVII surface water concen-

ration published by Lodder and de Roda Husman (2005) for a

MRA-based comparison of direct potable reuse and unintentional

e facto reuse. In the latter publication, 8 NoVII observations are

eported, which were collected at two rivers in the Netherlands (4

bservations at each river). Thus, the situation of relying only on a

ouple of observations can be regarded as a realistic scenario, for

hich hierarchical modeling might be a suitable and transparent

olution for addressing and potentially reducing parameter uncer-

ainty. 

Moreover, this information might also be of high practical rel-

vance for applied risk-based decision-making, because operators

ay be confronted with the decision about whether to take addi-

ional effort s to collect local dat a or to plan potentially necessary

isk reduction measures based on the available body of knowledge

rovided by the scientific literature or guideline documents. Our

esults show that even small sample sizes might be beneficial in

ombination with external information and might lead to lower re-

uired log-reduction, i.e. less resource depletion and cost, in com-

arison to e.g. a complete pooling approach. However, it is impor-

ant to underline that small sample sizes are only beneficial if they

re combined with external information, otherwise, parameter un-

ertainty is too high. 

Our results also show that Bayesian hierarchical modeling al-

ows for making generalizable estimates about new “locations” (in

ur case WWTPs) which explicitly account for the between loca-

ion variability of model parameters. As a result, the predictions

f a new mean μ becomes much wider than if a “complete pool-

ng” approach is applied. Our prediction for a unknown mean in-

uent concentration at an unknown WWTP covers a range be-
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Fig. 10. Estimates and 95% uncertainty intervals for the mean (credible) and new data (prediction) derived from first fitting the extended hierarchical model only to the 

literature data and subsequently updating the deduced informative priors for the mean (μ) and sd ( σ ). Priors: μ = N ( η = 5.04, τ = 0.92), σ = lognormal( α = 0, γ = 0.43). 
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ween 3.5 and 6.5. Interestingly, if this range, which is derived

nly from European WWTP, is compared to the estimates reported

y Eftim et al., 2017 for differences between geographic regions,

ll of the estimates reported by Eftim (North America, Europe,

sia, New Zealand) fall inside the derived prediction interval of

he present study. Therefore, the statistically significant difference

etween NoV concentrations in North America in comparison to

he ones in Asia and Europe reported in Eftim et al. (2017) has to

e regarded with caution, because it might only be an artifact of

he statistical procedure which does not account for the between-

WTP-variability. More generally, the question about appropriate

ethods for selecting one statistical model over the other for sum-

arizing information via meta-analysis deserves more attention. In

ur study, we used the pointwise expected-log-predictive-density

s a quantitative indication which statistical model might be the

ost accurate. Such or similar approaches, like the application of

nformation criteria, might be reasonable ways to make decisions

bout which modeling approach to apply more transparent. 

One additional advantage we see when using Bayesian hierar-

hical modeling is, that in contrast to complete pooling the gener-

lized estimates from μ and σ represented by the estimates for

, τ , α, and γ in Eq. (5) , may function as a prior distribution

or subsequent studies. That means, that knowledge can be trans-

erred by reporting only the parameterization of the priors for μ

nd σ , which can function as a starting point for subsequent up-

ates. This feature might be potentially interesting because col-

ecting raw data by contacting authors or digitalizing them from

raphs, is very time-consuming. Especially in comparison to meth-

ds like bootstrapping which always requires the full raw data set,

ommunicating a generalized prior for subsequent analysis might

e a promising way to ease the use of literature information by

ubsequent studies. For illustration, we fitted the extended hierar-

hical model to the literature data only and subsequently updated

he deduced informative prior using the local data Fig. 10 . Param-

ter values differ slightly from the complete analysis as the data

rom the other two local WWTP are not included in the prior. It

an be seen that as for the complete analysis parameter uncer-

ainty can be reduced substantially in low data situations (100,

01) while estimates are not affected if the local information is
 c  
trong (102). Moreover, while our study used the simple exam-

le of fitting a mean and standard deviation of a lognormal dis-

ribution, BHM can readily be extended to the estimation of other

odel parameters, like e.g. the slopes in a regression model. 

. Conclusion 

• Bayesian hierarchical modeling allows for reducing local param-

eter uncertainty in comparison to separate modeling while be-

ing flexible enough to let local data dominate local estimates in

contrast to e.g. “complete pooling”. 
• External information provided e.g. by published meta-analyses

helps to reduce local parameter estimates and should be con-

sidered to be included quantitatively into QMRA studies even

when local data is available. 
• In cases of limited sample sizes, parameter uncertainty may be

too large to make reasonable inferences based on local data

alone. Therefore, parameter uncertainty should be considered

explicitly in future QMRA studies. 
• In combination with external information, already small local

data sets may help to reduce the required log-performance

in local settings and justifies additional measurements before

planning suitable risk reduction measures. 
• Model comparison and selection methods, like e.g. information

criteria or the expected log-predictive density, should be con-

sidered in future meta-analysis to decide between candidate

statistical models. 
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