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Abstract
In the NP-hard Longest Common Subsequence problem (LCS), given a set of strings, the task
is to find a string that can be obtained from every input string using as few deletions as possible.
LCS is one of the most fundamental string problems with numerous applications in various areas,
having gained a lot of attention in the algorithms and complexity research community. Significantly
improving on an algorithm by Irving and Fraser [CPM’92], featured as a research challenge in a
2014 survey paper, we show that LCS is fixed-parameter tractable (FPT) when parameterized by
the maximum number of deletions per input string. Given the relatively moderate running time
of our algorithm (linear time when the parameter is a constant) and small parameter values to be
expected in several applications, we believe that our purely theoretical analysis could finally pave
the way to a new, exact and practically useful algorithm for this notoriously hard string problem.
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6:2 LCS is FPT wrt Maximum Number of Deletions

1 Introduction

With its numerous applications including bioinformatics, data compression, and computa-
tional linguistics, the NP-hard Longest Common Subsequence (LCS) problem is among
the best studied algorithmic string problems. Suiting our subsequent parameterized analysis
purposes, we formally define the problem as follows.

Longest Common Subsequence
Input: A set of k strings S = {S1, . . . , Sk} on some alphabet Σ, each of length at most n,
an integer ℓ.
Parameter: ∆ = n − ℓ.
Question: Is there a string S of length at least ℓ that is a (not necessarily contiguous)
subsequence of each Si?

For example, for k = 3 strings abcabac, acbabc, ababcba (thus, n = 7), with ℓ = 5 we have
a yes-instance (with solution string ababc), while for ℓ = 6 this would be a no-instance.

With straightforward dynamic programming, using the number k of strings as a parameter,
LCS can be solved in O(nk) time. The problem has been shown to be W[1]-hard [16], and
even W[2]-hard for parameter k, and it has no O(nk−ϵ) algorithm assuming the Strong
Exponential Time Hypothesis (SETH) [1]. Indeed, LCS is the string problem having received
most attention in the early years of parameterized complexity analysis [10]. Unfortunately,
so far parameterized complexity analysis beyond trivial algorithmic observations mainly
contributed computational hardness results. We refer to some surveys [2, 7, 8] for an overview
on research results and open questions for LCS.

We remark that the special case of two input strings (that is, k = 2) recently attrac-
ted much attention, particularly motivated by the theoretical challenge of breaking the
straightforward time bound of O(n2) [4, 6, 11]. Notably, Bringmann and Künnemann [6]
(the corresponding arXiv paper has around 60 pages) also discuss the “maximum number
of deletions” parameter we focus on here. We note however that in the context of k = 2,
the parameter is used to improve over the classical O(n2) dynamic programming algorithm
while maintaining a polynomial running time, while our approach requires an exponential
dependency on ∆ even for k = 2. Indirectly, this parameter already appears in the work
of Irving and Fraser [13], who provided two algorithms for LCS with three or more input
strings.

Irving and Fraser [13] in their 1992 paper provided an algorithm for LCS running in
time O(kn(n − ℓ)k−1), implying fixed-parameter tractability with respect to the combined
parameter k and n − ℓ, where the latter coincides with our parameter ∆. We are not aware of
any improvement since then and this is also reflected by a corresponding challenge featured
in a 2014 survey [7, Challenge 9]. Answering positively the research challenge posed there,
we improve Irving and Fraser’s result to fixed-parameter tractability with respect to only ∆.
More specifically, our algorithm runs in time O((∆ + 1)∆+1kn), which means linear time
when ∆ is a constant. In addition, we can enumerate all longest common subsequences
within this time. Given that it seems natural to assume that in many applications the sought
common subsequence is fairly close to every input string (which would imply small values
of ∆), this promises to be of also practical relevance. The focus of our work, however, is
purely theoretical. Regarding the alphabet size, we focus on the general case where the
alphabet is unbounded (in particular, the alphabet size is not hidden in the O of the running
time). The question of whether our approach can be improved for constant-size alphabets
(typically {0, 1} or {A, T, C, G}) is left open.
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Figure 1 Our approach towards computing the LCS of three strings abcabac, acbabc, ababcba.
Left: compute maximal common subsequences of the first two strings (all three subsequences and
their alignment with input strings are depicted). Right: compute maximal common subsequences
of all three strings by comparing those obtained at the first step with the third input string (only
two strings remain after filtering non-maximal common subsequences). The longest result, ababc is
the LCS of the input strings. Filtering out strings that are shorter than a threshold prevents the
number of intermediate strings from growing too fast, yielding our FPT-algorithm.

Figure 1, at a very high level, presents an example for LCS for three input strings together
with the main idea behind our recursive approach towards achieving our result, the FPT-
algorithm for parameter ∆. More specifically, our algorithm builds and refines an exhaustive
list of maximal common subsequences after reading each input string. Maximal common
subsequences have been used before in LCS-related questions, see e. g. recent advances by
Sakai [17] and Conte et al. [9], but not, to the best of our knowledge, towards exactly solving
LCS on multiple input strings.

2 An LCS Algorithm Using Maximal Common Subsequences

In this section, we present a linear-time algorithm for LCS when the number of deletions is a
constant. Note that this does not contradict the quadratic lower bound for this problem,
since this lower bound only applies to the general case where the number of deletions is
unbounded. In particular, the O(δn) algorithm by Nakatsu et al. [14] (with δ = min{|Si|}−ℓ)
remains better than our algorithm for the two-string case. Furthermore, it is not clear if a
smaller (typically constant) alphabet could be exploited in our algorithm or its analysis in
order to obtain a better running time.

2.1 Definitions

Strings. The set of strings on an alphabet Σ is denoted Σ∗. The empty string is denoted ϵ,
the length of a string S ∈ Σ∗ is denoted |S|. We write · for the concatenation and u · T := S

as a short-hand for “let u ∈ Σ be the first character of S and T be the suffix of S starting
from the second character (or u = T = ϵ if S is empty)”. We write S[i, . . . , j] for the substring
of S of all symbols between positions i and j inclusively.

Given two strings S1, S2, we write S1 ⪯ S2 (resp. S1 ≺ S2) if S1 is a (strict) subsequence
of S2. Formally, ϵ ⪯ S for any S and, if S ⪯ S′, then for any u we have S ⪯ u · S ⪯ u · S′.

CPM 2022



6:4 LCS is FPT wrt Maximum Number of Deletions

Longest and Maximal Common Subsequences. Given a set S of strings and a nonnegative
integer ℓ, let CSℓ(S) denote the set of all common subsequences of S that have length at
least ℓ. Let L be the largest integer such that CSL(S) is not empty, and let LCS(S) denote
an arbitrary string in CSL(S), i. e. a longest common subsequence of S.

Let MCSℓ(S) denote the set of all maximal common subsequences of S with length at
least ℓ; that is, S ∈ MCSℓ(S) iff S ∈ CSℓ(S) and there is no S′ ∈ CSℓ(S) such that S ≺ S′.
Note that, if ℓ is small enough (ℓ ≤ L), then LCS(S) ∈ MCSℓ(S), otherwise MCSℓ(S) is
empty. A set of strings M is an extended MCS of (S, ℓ) if MCSℓ(S) ⊆ M ⊆ CSℓ(S).

String Parameters. Let S = {S1, . . . , Sk} be a set of strings. We write n(S) := maxS∈S |S|,
m(S) := minS∈S |S|. Given an integer ℓ, we write ∆(S, ℓ) = n(S)− ℓ and δ(S, ℓ) := m(S)− ℓ.
We omit dependencies on S and ℓ when the context is clear (e. g., they are given in the
lemma statement). Note that δ ≤ ∆.

2.2 Main Results
▶ Theorem 1. Let S = {S1, . . . , Sk} be a set of strings and ℓ be an integer. Then an extended
MCS of (S, ℓ) with size at most (∆ + 1)δ can be computed in time O(2δ+∆(∆ + 1)δkn).

Theorem 1 directly yields an algorithm for LCS, since it suffices to test if an extended
MCS of (S, ℓ) is non-empty. Note that the algorithm can be adapted for the optimization
formulation of LCS, i. e., when ℓ is not part of the input, with a constant factor in the time
complexity (taking δ and ∆ with respect to ℓ = |LCS(S)|). Indeed, apply Theorem 1 for
decreasing values of ℓ starting with ℓ = m, until a non-empty set is obtained. Then, the
resulting set contains the common subsequences of S of size LCS(S) (indeed, MCSℓ(S) =
CSℓ(S) for this value of ℓ), so it contains all longest common subsequences of S. The time
complexity of the i-th call, 1 ≤ i ≤ δ, is upper-bounded by O(2i+∆(∆ + 1)δkn). Using∑δ

i=1 2i = O(2δ), we get the following corollary.

▶ Corollary 2. All longest common subsequcences of S (and a fortiori the value LCS(S))
can be computed in time O(2δ+∆(∆ + 1)δkn).

The remainder of the section is dedicated to proving Theorem 1. We first compute the
number of strings and their size distribution in the MCS of two strings, then build up on
this result to bound the size of the MCS of k strings.

2.3 Extended MCS for Two Strings
Algorithm 1 allows us to compute an extended MCS of two strings. Its correctness is proven
using the main recursive relation for MCS given in Lemma 3, while its time complexity is
analyzed in Lemmas 6 and 8.

▶ Lemma 3. For any two non-empty strings S, S′ ∈ Σ∗ and any ℓ, let u · T := S and
u′ · T ′ := S′ for u, u′ ∈ Σ.

If u = u′, then MCSℓ({S, S′}) ⊆ {u · X | X ∈ MCSℓ−1({T, T ′})}.

If u ̸= u′, then MCSℓ({S, S′}) ⊆ MCSℓ({S, T ′}) ∪ MCSℓ({T, S′}).

Proof. Let R ∈ MCSℓ({S, S′}), and r · X := R.
For the first case (u = u′), we show that r = u and X is a maximal common subsequence

of {T, T ′} of length at least ℓ − 1. Indeed, r = u, as otherwise the concatenation u · r · X

would also be a common subsequence of {S, S′}, with R ≺ u · r · X (contradicting the
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Algorithm 1 Compute a bounded-size extended MCS of two strings.

1 algorithm xMCS2(ℓ, S, S′)
2 if ℓ > |S| or ℓ > |S′| then return ∅
3 if S ⪯ S′ then return {S}
4 if S′ ⪯ S then return {S′}
5 u · T := S

6 u′ · T ′ := S′

7 if u = u′ then
8 return {u ·X | X ∈ xMCS2(ℓ− 1, T, T ′)}
9 else

10 return xMCS2(ℓ, S, T ′) ∪ xMCS2(ℓ, T, S′)

maximality of R). Note that X is a subsequence both of T and T ′. Moreover X is maximal,
as otherwise, if X ≺ X ′ with X ′ a common subsequence of T , T ′, then u · X ′ would be a
common subsequence of S, S′ with R ≺ u · X ′ (again, contradicting the maximality of R).

For the second case (u ̸= u′), we show that R is either in MCSℓ({T, S′}), or in
MCSℓ({S, T ′}) (or both). Indeed, if r ̸= u, then R ≺ S implies R ≺ T , and R is a
common subsequence of {T, S′}. Otherwise, r = u ̸= u′, and R is a common subsequence of
{S, T ′}. In both cases, R is maximal, since for any R′, if R′ is a common subsequence of (say)
{T, S′} with R ≺ R′, then R′ is also a common subsequence of {S, S′} which contradicts the
maximality of R for {S, S′}. ◀

Algorithm 1 follows the recursive relation of Lemma 3, along with trivial base cases
(ℓ > min{|S|, |S′|} or one of S or S′ being a subsequence of the other). It also clearly returns
only common subsequences of S and S′ of length at least ℓ, so it is correct.

▶ Corollary 4. Let S, S′ ∈ Σ∗ and ℓ be an integer. Then xMCS2(ℓ, S, S′) from Algorithm 1
returns an extended MCS of ({S, S′}, ℓ).

▶ Remark 5. The first inclusion in Lemma 3 (case u = u′) is actually an equality, but we
only need this direction for the algorithm to be correct. The second inclusion, however, may
be strict: for example with S = abcd and S′ = dabc, the string R = bc is a maximal common
subsequence of T = bcd and S′, but not of S and S′ since R ≺ abc. Such “extra” strings are
actually returned by our algorithm, motivating the naming of extended MCS (although they
could be filtered out, see Remark 7).

We now focus on the time complexity of Algorithm 1.

▶ Lemma 6. Let S, S′ ∈ Σ∗ have lengths ℓ+δ and ℓ+∆ = n, respectively. Then xMCS2(ℓ, S, S′)
terminates in time O(2δ+∆n).

Proof. To achieve the claimed time complexity, we first need to perform the subsequence
tests in lines 3 and 4 quickly. For this, we use a precomputed subsequence table: For every
pair (i, i′) with 1 ∈ {1, . . . , |S|} and i′ ∈ {1, . . . , |S′|} and |i − i′| ≤ ∆, let sub[i, i′] contain
True if S[i, . . . , |S|] is a subsequence of S′[i′, . . . , |S′|]. In other words, sub[i, i′] is True iff
the ith suffix of S is a subsequence of the i′th suffix of S′. The entries of this table can
be computed in time O(n∆) by straightforward dynamic programming using the following
relations:

sub[i, i′] = sub[i + 1, i′ + 1] if S[i] = S[i′],
sub[i, i′] = sub[i + 1, i′] ∨ sub[i, i′ + 1] otherwise.

CPM 2022



6:6 LCS is FPT wrt Maximum Number of Deletions

Note that during recursive calls, the values of ∆ and δ are non-increasing, and ∆ + δ

decreases by 1 in the case where two recursive calls are performed. In particular, if ℓ ≤
min{|S|, |S′|} in a recursive call, then

∣∣|S|−|S′|
∣∣ ≤ ∆, which enables us to use the precomputed

table for the subsequence test. So the total number of leaves in the tree of recursive calls
is at most 2δ+∆, each call taking constant time, and the height of this tree is at most
ℓ + δ + ∆ ≤ 2n. Thus the algorithm takes overall time O(2δ+∆n). ◀

▶ Remark 7. Algorithm 1 can be adapted to output only the set of maximal common
subsequences, rather than an extended version of it, by simply removing non-maximal strings
(which can be done in quadratic time in the size of the output set). However, this does not
improve the theoretical size of the returned set since in the worst case it does not filter out
any string, but adds a quadratic running time to the complexity. It should be an important
step in an implementation of the algorithm, though, since an additive quadratic computation
time would probably be quickly compensated by pruning a possibly exponential search tree.

The proof of Lemma 6 gives a first bound on the number of strings returned by xMCS2
(namely, at most 2δ+∆). We know that all strings have lengths between ℓ and m. However,
we will need an additional ingredient for a more precise analysis of our algorithm for k rather
then just two strings: There cannot be many strings of length almost m. Intuitively, a long
string in the returned set corresponds to a leaf in the search tree with few branching nodes
among its ancestors, which actually helps reducing the size of the search tree. On the other
hand, a short string in the returned set will cause less branchings in our next algorithm.
Thus, the following lemma describes the repartition of the number of maximal common
subsequences of two strings based on their lengths. Note that we would obtain the same
bound if we used the filtering step from Remark 7 (i. e., the same formula applies to the set
MCSℓ({S, S′})).

▶ Lemma 8. Let ℓ, d, and d′ be integers. Let S, S′ ∈ Σ∗ be strings of lengths ℓ + d and
ℓ + d′, respectively, so {δ, ∆} = {d, d′}. Let Ni be the number of strings in xMCS2(ℓ, S, S′) of
length exactly ℓ + d′ − i. Then

d′∑
i=0

Ni

(d + 1)i
≤ 1.

Proof. We prove this property by induction on |S| + |S′|.
If ℓ > min{|S|, |S′|}, then xMCS2(ℓ, {S, S′}) is empty, and the inequality is valid. If S or

S′ is a subsequence of the other, then |xMCS2(ℓ, S, S′)| = 1, so we have Ni = 1 for some i and
Nj = 0 for j ̸= i. The above inequality is true in this case as well. Note that this includes
the cases where S or S′ are empty. In the remaining cases, S and S′ are not subsequences of
each other, so in particular they are not empty. Let u · T := S and u′ · T ′ := S′.

If u = u′, then Ni is upper-bounded by the number of strings of length (ℓ − 1) + d′ − i in
xMCS2(ℓ−1, T, T ′), so we can directly apply the property by induction to get

∑d′

i=0
Ni

(d+1)i ≤ 1.
Otherwise (u ̸= u′), let Na

i (resp. N b
i ) be the number of strings of length ℓ + d′ − i in

xMCS2(ℓ, S, T ′) (resp. xMCS2(ℓ, T, S′)). We have Ni ≤ Na
i + N b

i ≤ 2Ni (accounting for the
fact that a string counted in Ni must be counted once in one of Na

i , N b
i , and at most twice

in total). Note that N0 = 0 (otherwise, S and S′ have a common subsequence of length
ℓ + d′ = |S′|, which implies that S′ is a subsequence of S). Thus Na

0 = N b
0 = 0.
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Figure 2 Examples of pairs of strings {S, S′} with large |MCSℓ(S, S′)|. Left: A pair with δ = 1,
∆ = 4, and |MCSℓ(S, S′)| = 5 = 1 + ∆

δ
, showing that a dependency on ∆ is unavoidable. Right: A

pair with 2δ maximal common subsequences, with δ = ∆ = 2. Proposition 9 is a generalization of
both examples that yields strings with |MCSℓ(S, S′)| = ( ∆

δ
+ 1)δ.

We apply the induction hypothesis first on the pair {S, T ′}. Note that d′ decreases by 1
and indices of Ni are shifted by 1, which gives

∑d′−1
i=0 Na

i+1/(d + 1)i ≤ 1, so

d′∑
i=0

Na
i

(d + 1)i
= Na

0 + 1
d + 1

d′∑
i=1

Na
i

(d + 1)i−1 ≤ 1
d + 1 .

Then the induction hypothesis on {T, S′} (where d decreases by 1) gives
∑d′

i=0 N b
i /di ≤ 1,

so

d′∑
i=0

N b
i

(d + 1)i
= N b

0 +
d′∑

i=1

N b
i

(d + 1)i

= d

d + 1

d′∑
i=1

di−1

(d + 1)i−1
N b

i

di

≤ d

d + 1

d′∑
i=1

N b
i

di
≤ d

d + 1 .

Combining both inequalities yields:

d′∑
i=0

Ni

(d + 1)i
≤

d′∑
i=0

Na
i

(d + 1)i
+

d′∑
i=0

N b
i

(d + 1)i

≤ d

d + 1 + 1
d + 1 = 1. ◀

Lemma 8 yields an upper bound of (∆ + 1)δ on the size of MCSℓ(S, S′) (indeed, using
d = ∆ and d′ = δ, we have |MCSℓ(S,S′)|

(∆+1)δ ≤
∑δ

i=0
Ni

(∆+1)δ ≤ 1). Examples (see Figure 2 and
Proposition 9) indicate that this bound is close to being tight, since there exist instances
where |MCSℓ(S, S′)| = ( ∆

δ + 1)δ.

▶ Proposition 9. For any integers u and v, there exist an ℓ, an alphabet Σ, and strings
S, S′ ∈ Σ∗ of lengths ℓ + v and ℓ + uv, respectively, such that |MCSℓ(S, S′)| ≥ (u + 1)v =
( ∆

δ + 1)δ.

CPM 2022



6:8 LCS is FPT wrt Maximum Number of Deletions

Proof. Let ℓ = uv, and Σ =
{

xi,j

∣∣ i ∈ {1, . . . , v}, j ∈ {1, . . . , u + 1}
}

be an alphabet of size
(u + 1)v. Using

∏
as the concatenation operator, let S =

∏v
i=1 Si and S′ =

∏v
i=1 S′

i with

Si =
u+1∏
j=1

xi,j and

S′
i =

u∏
j=1

xi,j+1 xi,j .

Note that the length of S is indeed |Σ| = ℓ + v = uv + v = (u + 1)v and the length of
S′ is 2uv = ℓ + uv. Since Si and S′

i′ only have common characters for i = i′, a common
subsequence T of S and S′ is of the form T =

∏v
i=1 Ti, where Ti is a common subsequence of

Si and S′
i. Each Ti has length at most u (since Si is not a subsequence of S′

i, any common
subsequence has length at most |Si| − 1 = u). If T has length at least ℓ = uv, then each
Ti has length exactly u. There are precisely u + 1 such common subsequences for each i

(all proper subsequences of Si are also subsequences of S′
i). Counting all combinations of

strings Ti, there are a total of (u + 1)v common subsequences of S and S′ of length ℓ, and
they are all maximal. So |MCSℓ(S, S′)| = (u + 1)v. ◀

2.4 Extended MCS of k Strings
We now present our algorithm computing an extended MCS for any number k of strings,
using xMCS2 as a subroutine, see Algorithm 2. We first give the recurrence relation on MCS
on which the algorithm is based.

▶ Lemma 10. Let S = {S1, . . . , Sk} be a set of at least two strings and let ℓ be an integer.
Let M ′ = MCSℓ({S1, . . . , Sk−1}), then

MCSℓ(S) ⊆
⋃

S′∈M ′

MCSℓ({S′, Sk}).

Proof. Consider some string S ∈ MCSℓ(S). Then S is, in particular, a common subsequence
of {S1, . . . , Sk−1} of length at least ℓ, and so S ∈ CSℓ({S1, . . . , Sk−1}). By definition of MCS,
there exists a string S′ in MCSℓ({S1, . . . , Sk−1}) such that S ⪯ S′

Since S is a subsequence of both S′ and Sk, we have that S ∈ CSℓ({S′, Sk}). To see that
S is also in MCSℓ({S′, Sk}), assume that S′′ ∈ CSℓ({S′, Sk}) and S ⪯ S′′. Then S′′ is in
CSℓ(S) as S′ ∈ CSℓ({S1, . . . , Sk−1}); and since S is maximal in CSℓ(S), we have S = S′′.

Thus, S is in MCSℓ({S′, Sk}) for some S′ ∈ MCSℓ({S1, . . . , Sk−1}), which gives the
desired inclusion. ◀

▶ Remark 11. We note that the containment in Lemma 10 may sometimes be strict, as
can be seen in the following example with ℓ = 1. Take S1 = abc and S2 = acb. Then
MCSℓ({S1, S2}) = {ab, ac}. Combining strings ab and ac with S3 = aab yields respectively
MCSℓ({S3, ab}) = {ab} and MCSℓ({S3, ac}) = {a}. However, only ab (and not a) is part
of MCSℓ({S1, S2, S3}). As for xMCS2, xMCSk outputs these extra strings to avoid a costly
filtering step without any gain in the worst case.

▶ Corollary 12. Given S and ℓ, Algorithm 2 correctly computes an extended MCS of (S, ℓ).

We now upper-bound the number of strings at any point in the set M of the algorithm.
The key point here is that this bound does not depend on k or n. This may seem counter-
intuitive, compared to the following upper bound: the algorithm starts with a single string,
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Algorithm 2 Compute a bounded-size extended MCS of k strings.

1 algorithm xMCSk(ℓ, S1, . . . , Sk)
2 assert ∀i : |Si| ≥ |S1|
3 if k = 1 then
4 if |S1| ≥ ℓ then return {S1} else return ∅
5 else
6 M ′ ← xMCSk(ℓ, S1, . . . , Sk−1)
7 M ← ∅
8 for S′ in M ′ do
9 M ←M ∪ xMCS2(ℓ, Sk, S′)

10 return M

and each recursive call may replace any string by up to 2δ+∆ strings (cf. the complexity of
xMCS2). There are k recursive calls, so this would give a bound of 2k(δ+∆) strings in total.
The key argument here is that whenever a string is replaced, new strings are strictly shorter
than the former. Since we only allow for at most δ deletions (starting from a minimal length
input string), this gives a bound depending on δ and ∆ only. Our more precise analysis in
Lemma 13 allows us to shrink this quantity from 2O(∆δ) to 2O(log(∆)δ).

▶ Lemma 13. Let S = {S1, . . . , Sk} be a set of strings with S1 of minimal length (i. e.
|S1| = m), and ℓ be an integer. Then

|xMCSk(ℓ, S)| ≤ (∆ + 1)δ.

Proof. We prove the following claim by induction on k: Let d ≥ ∆ and let Ni be the number
of length-(ℓ + δ − i) strings in xMCSk(ℓ, S). Then

δ∑
i=0

Ni

(d + 1)i
≤ 1.

The lemma’s statement follows easily from this claim for d = ∆:

|xMCSk(ℓ, S)|
(∆ + 1)δ

=
δ∑

i=0

Ni

(∆ + 1)δ
≤

δ∑
i=0

Ni

(∆ + 1)i
≤ 1

For the inductive proof of the claim, we start with k = 1. Then we have a single string
in xMCSk(ℓ, S), namely, S1, so Ni = 1 for exactly one value of i and 0 otherwise, and the
formula is satisfied.

For k ≥ 2, we have M ′ = xMCSk(ℓ, {S1, . . . , Sk−1}). Consider the for-loop in lines 8–9.
We assume that when we iterate with S′ ∈ M ′, the string S′ is immediately removed
from M ′. At any point of the loop, we write σ for the quantity

∑δ
i=0

Ni

(d+1)i where Ni

denotes the number of strings of length ℓ + δ − i in M ′ ∪ M . Note that by induction, before
the first iteration of the loop, σ ≤ 1 as δ({S1, . . . , Sk−1}, ℓ) = δ since |S1| is minimal, and
d ≥ ∆ ≥ ∆({S1, . . . , Sk−1}, ℓ).

We show that σ may only decrease after each iteration. Consider the iteration for string S′,
let d′ = |S′| − ℓ and j = δ − d′ (since S′ is a subsequence of S1, it has length at most ℓ + δ,
so d′ ≤ δ and j ≥ 0).

First, removing S′ from M ′ makes Nj decrease by one, so σ decreases by 1
(d+1)j . Then,

we add strings from xMCS2({Sk, S′}) to M . Write Di for the number of such strings of
length ℓ + d′ − i. Note that for each pair (i, j) with j ≤ i ≤ δ, Ni increases by Di−j . By

CPM 2022
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Lemma 8,
∑d′

i=0
Di

(|Sk|−ℓ+1)i ≤ 1. Since d ≥ ∆ ≥ |Sk| − ℓ,
∑d′

i=0
Di

(d+1)i ≤ 1. Then σ increases
by

∑d′

i=0
Di

(d+1)j+i = 1
(d+1)j

∑δ
i=j

Di−j

(d+1)i ≤ 1
(d+1)j . Overall, σ may not increase between two

steps, so at the end of the for-loop,
∑δ

i=0
Ni

(d+1)i ≤ 1. ◀

We can now conlude with the proof of Theorem 1.

Proof of Theorem 1. Given S and ℓ, Algorithm 2 computes an extended MCS of (S, ℓ)
(Corollary 12) of size at most (∆ + 1)δ (Lemma 13). Its running time is bounded by k times
the complexity of the for-loop, which requires at most (∆ + 1)δ calls to xMCS2, each taking
time O(2δ+∆n) (Lemma 6). This gives the overall complexity of O(2δ+∆(∆ + 1)δkn). ◀

3 Conclusion

Regarding LCS, we have proposed an FPT algorithm for the parameter ∆, i. e., the maximum
number of deletions per input string. We leave open whether the complexity can be improved,
e. g. using only parameter δ, i. e., the smallest number of deletions per input strings. In other
words, the goal is to find an LCS of size ℓ in a set of strings where one input string has size at
most ℓ + δ (and other strings might be arbitrarily long). Such an algorithm may not compute
and store explicitly each MCS, since the number of maximal common subsequences, even
with only two input strings, can grow in (1 + ∆

δ )δ. Also, it is open whether any improvement
can be obtained when the alphabet size is bounded, or when each character has a bounded
number of occurrences in each string.

A longest common subsequence can be interpreted as a string that can be obtained
with a minimal number of edits (deletions only) from all input strings. Generalizing this
notion to other edits (insertions and substitutions) yields the NP-hard Center String
problem2 [15, 12], which is highly related to the problem of Multiple Sequence Alignment
in bioinformatics. In future work, one may try to extend our approach in order to design an
FPT algorithm for Center String, parameterized by the maximum distance to the input
strings. Allowing for a small number of outliers (input strings that are discarded in order to
obtain a better solution [5]) would also yield a useful extension of our algorithm.

Finally, a more practical objective towards algorithm engineering would be to design an
efficient data structure to store all maximal common subsequences of any number of strings,
thus reducing the memory footprint of our algorithm.
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