

Sustainable primary school

Intervention to enhance value for disappearing green in peri-urban Bandung by Elmar van Cleynenbreugel

Context Problems Objective Relevance Research Design

Context

Indonesia

Problems

Disappearing Green

Waterpollution

Dependency on textile industry

Lack of schools and environmental ignorance

Disappearing Green

Ricefields

Remaining green

- has little value for the community
- is polluted and dangerous for children
- is declining further with a loss of cultural identity, food security and biodiversity, and increased stress on watermanagement

Landscape of factories

Overall lack of safe and public green areas

Waterpollution

Irrigation

Municipal water

Well and washing area

Recreation

Open sewage

Irrigation with polluted water

Dependency on textile industry

Will the *new generation* also be dependent on textiles?

Lack of schools and environmental ignorance

Will disconnection with nature increase?

Future

37% population by 2031

Will the build houses, factories or keep the ricefields?

Objective

To create a valuable green space for the community with an educational function (primary school)

Research Question

How can plants play a role as building material, water management and spatial component in the peri-urban region of Bandung?

Relevance

Impact trend	Impact on ecosystems	Illustrative actions driving the trend	Impact on poor or vulnerable
Rising waste	Toxic waste, open-site dumping degrades soil, contaminating livestock and land	 Mining and extractive activities for construction Slaughterhouses 	 Limit food production for incomes and consumption Declining air/health quality Declining resource access
Rising natural resource consumption	 Ecosystem degradation and collapse upon over- extraction 	 Deforestation Increased demand for meat and water 	 Decline in air/health quality Rising prices for resources Increased pressure on land from outside parties
Disruption of ecosystem functioning	 Cessation of essential ecological functions; recycling of nutrients and aquifers recharge 	 Conversion of soil/ vegetation to impermeable land; rerouting rainwater 	 Limit food production for incomes and consumption Strain water access
Decline in prevalence of natural ecosystems	Elimination of arable, productive land, full destruction of ecosystems	 Conversion of open horticulture fields for residential development 	Force livelihood transition Eliminate food supply

Distance to Peri-urban Area

- Global population, not living in cities with peri-urban expansion, but affected by the degradation of ecosystem services at a global scale.
- 2. Population living in cities with growing peri-urban areas, including non-poor population potentially vulnerable to ecosystem degradation.
- **3. Poor populations living in urban areas** who are affected by ecosystem service degradation and who transact with populations in peri-urban areas.
- **4. Poor populations that live in peri-urban areas** and depend on ecosystem services in those areas, but not for their livelihood.
- 5. Poor populations that live in and depend on periurban ecosystems for a living, particularly through subsistence agriculture. They are the direct stewards of the land and resources that provide ecosystem services.

Methodology

Research

How can plants play a role as building material, water management and spatial component in the peri-urban region of Bandung?

- Plants as waterpurification
- Plants as a resource
 - Plants as spatial element

Plants as waterpurification

HFCW

Rice

FWCW

Reduces BOD, COD, phosphates.

wetland plants (macrophytes) air pipe gravel liner slope 1% drainage pipe outlet

Reed

VFCW HFCW

Accumulates
Lead(Pb) Copper(Cu)
Zinc(Zn), Arsenic(As),
and Tin(Sn)

water surface inlet sludge outlet rhizome network

Bamboo

VFCW HFCW

Reduces BOD, COD, phosphates.

Plants as waterpurification

Primary school and community building

Water treatment with constructed wetlands
Education
Community facility
Gardens

Bamboo

Fishpond

Water treatment
Bamboo shoot productio
Biomass
Public bamboo park

4500m²

Agroforestry

Fruit production
Timber production
Biomass
Public Park

Reed filters

Watertreatment: Helophyte filters with subsurface flow

Thatching material Biomass

Rice fields

Watertreatment: Free surfacewater flow 3000kg rice/ year (1500\$/ year net.)
Biomass from husks

Community gardens

Use of cleaned water
Vegetable and fruit production
for educational and communa
food security
Riomass

Kampung community

Workforce Teachers Volunteers Partners

Fd Food

KG Biomass (compost etc.)

Income from sales

Plants as a resource

Bamboo

- reliable structural material
- broad application possibilties
- readily available
- ecological benefits
- 'poor men's timber' image

Reed

Rice

KG

culms
branches
leaves
As biofuels, fodder or compost

Cuttings or surplus can be used as biofuels, fodder or compost

Husks can be used as biofuels, fodder or compost

Plants as building material

Primary school and community building

Bamboo

4500m²

Agroforestry

1400m²

Reed filters

Rice fields

Community gardens

Kampung community

Food

Spatial element

Income from sales

Primary school and community building

Water treatment with constructe wetlands
Education
Community facility
Gardens
Fishpond

Bamboo

Water treatment
Bamboo production 430 culms/ yea
Bamboo shoot production
Biomass production
Public hamboo park

Agroforestry

Fruit production
Timber production
Public Park

1400m²

Reed filters

Watertreatment: Helophyte filters with subsurface flow Thatching materials Biomass

Rice fields

Watertreatment: Free surfacewater flow 3000kg rice/ year (1500\$/ year net.) Biomass

Community gardens

Water treatment Vegetable and fruit production for educational and communal food security

Kampung community

Workforce Teachers Volunteers

Plants as biomass

Primary school and community building

Bamboo

Biomass

4500m²

Agroforestry

Biomass

Reed filters

Biomass

Rice fields

Biomass from husks

Community gardens

Biomass

Kampung community

Food

Spatial element

Income from sales

Plants as spatial element

Bamboo

- Wind barrier
- Prevents erosion
- Block or frame visually
- Spatial point
- Patch as bamboo park

Gigantochloa Apus 12-14m Clump Specie

Dendrocalamus As 20-30m Clump Specie

Reed & Rice

- patchlike structure for reed (high efficiency)
- patchlike structure for rice (higher yields)

HFCW/ VFCW

FSCW

Plants for the community

Primary school and community building

Water treatment with constructed wetlands Education

Community facility

Communal urban agriculture Fishpond

Bamboo

Water treatment
Bamboo shoot production
Biomass
Public bamboo park
Bamboo park management

4500m²

Agroforestry

Fruit production
Timber production
Biomass
Public Park
Park management

Reed filters

subsurface flow
Thatching materials
Biomass
Visual fields of reed

System management and harvesting

Rice fields

Watertreatment: Free surfacewater flow 3000kg rice/ year (1500\$/ year net.) Biomass from husks Cultural landscape

Rice farmers

Community gardens

Use of cleaned water Vegetable and fruit production Biomass Urban gardens

Kampung community

Workforce Teachers Volunteers Partners

Architectural Design

Landscape
Domes and the in-between
Function and interior

Overall design question

How can I design a primary school/ community center that integrates locally grown materials and local watermanagement into its design?

Landscape Concept

Plants as waterpurification Urban scale

Landscape Concept

Plants as waterpurification Urban scale

Phytoremediation with bamboo

Vertical subsurface flow wetlands

Permeable pavement

Bioswales

Septic tank for toilets

Fishpond

Domes and the in-between

One volume

Optimal surface space ratio Longer spans required

Easier to expand
Intermediate space
Function seperation
Sound insulation by distance

Physical connection

Visual connection to landscape

Cut openings

Public routes

Playground and public space

Architectural expression

New architectural expression in the Kampung Show intricate structures partly from the outside

Openings that cut away structure cause Asymmetrical deformations

1. 2.

Layering of dome

Thatching

Substructure

Diagrid CCW

Diagrid CW

Ribs and RIngs

Benefits
Easy construction
light construction
rope connections
built layer by layer

Can be built by any layman

Construction of diagrid

Heat the nodes

Segmented curved beam

Connect the segments

Construction of top element

Functions and interior

Protective Shell against sun and rain

Modular wall system
Diverse options
Flexible
Multifunctional

Multifunctional modular wall system

Acoustic absorption wall

Windows

Standing table (adult)

Sitting table (child)

Sitting/ standing/ climbing

Standing table (child)

Wall-system benefits for interior acoustics

Unwanted focus of reflections

Rotunda effect

Sabine Formula

$$T_r = 0.161(V/A)$$

 $A = \alpha_1^* A_1 + \alpha_2^* A_2^* \dots \text{ etc}$
 $200^* 0.7 = 140$
 $100^* 0.4 = 40$

0.161(466/180) = 0.42s @ 500Hz

Coconut-fibre Batts

Absorption coefficient: avg. 0.6 @ speech frequencies

Reeds

Absorption coefficient: avg. 0.75 @ speech frequencies

*F. Asdrubali 2012 - A Review of Sustainable Materials for Acoustic Applications

Modular assembly

Layout typologies

