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A NEW MODEL FOR THE PLANETARY RADIATION PRESSURE 
ACCELERATION FOR SOLAR SAILS 

Livio Carzana,* Pieter Visser,† and Jeannette Heiligers‡ 

Solar sailing is a propellantless propulsion method that takes advantage of solar 
radiation pressure to generate thrust. The last decades have seen the launch of 
several solar-sail missions to demonstrate the technology’s potential for space 
exploration and exploitation. Even more missions are scheduled for launch in 
the near future, including NASA’s ACS3 and NEA Scout missions and Gama’s 
Alpha sailcraft. Although most of these sailcraft have flown – or will fly – in 
LEO, where the planetary radiation pressure is strong (up to approximately 20% 
of the solar radiation pressure), studies on the perturbing accelerations produced 
by the Earth’s albedo and blackbody radiation have been conducted only to a 
very limited first-order extent. This paper therefore provides a novel, detailed 
analytical model for these perturbing accelerations, valid for double-sided per-
fectly reflecting solar sails. The underlying assumptions of the model are pre-
sented and its full derivation is described. A thorough analysis of the blackbody 
and albedo radiation pressure accelerations is conducted for a variety of orbital 
conditions and Sun-Earth-sail configurations. In order to quantify the accuracy 
of the model, a comparison with the state of the art (the finite-disk radiation 
source model) is provided. Ultimately, a variety of analyses to quantify the ef-
fect of Earth’s albedo and blackbody radiation on the maneuvering capabilities 
of solar sails are provided, using the orbit of the ACS3 mission as reference sce-
nario. These analyses show that, for an orbit-raising steering law, losses in the 
altitude gain of 19.6% of the total gain are incurred over a 10-day orbit-raising 
period. Similarly, losses in the inclination gain of up to 25% of the total gain are 
observed when implementing an inclination-changing steering law. These re-
sults highlight the non-negligible effect of uncontrolled planetary radiation pres-
sure acceleration on the maneuvering capabilities of solar sails in LEO. 

INTRODUCTION 

Solar sailing is a low-thrust propulsion method that has raised increasing amounts of interest 
over the last few decades, mainly because of its propellantless nature1. In light of its enabling po-
tential for a wide variety of mission scenarios2,3, extensive research has been conducted on its 
dynamics and trajectory optimization, while several solar-sail missions have flown to increase its 
technology readiness level and mission applicability. Although most of the studies on the topic 
have been conducted for heliocentric flight regimes, the majority of solar-sail missions to date 
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remained Earth-bound, as will those scheduled for launch in the near-future, e.g., NASA’s Ad-
vanced Composite Solar Sail System (ACS3)4 and NEA Scout5 missions and Gama’s Alpha mis-
sion. In close proximity of the Earth, the dynamics are much more complex than in interplanetary 
space because of the presence of eclipses, atmospheric drag, and planetary radiation pressure 
(PRP). While multiple studies on the effect of aerodynamic drag in Low Earth Orbit (LEO) have 
been conducted and showed the enabling capabilities of solar sails for deorbiting purposes6,7,8,9, 
optimal orbit raising10,11, and optimal inclination changing10,12, the accurate derivation of the PRP 
acceleration and the perturbing effect on the solar-sail dynamics have been investigated to a much 
lesser extent. The research conducted on this topic to date has mainly focused on the first-order 
characterization of the blackbody radiation pressure (BBRP) and albedo radiation pressure (ARP) 
accelerations and the optimization of planetocentric solar-sail trajectories under these effects13,14. 
In these studies, the models considered for the BBRP and ARP accelerations are based on the one 
first devised by McInnes1 and assume the radiating body to be a uniformly bright disk irradiating 
only in the planet-to-sailcraft direction. While these assumptions correctly approximate the PRP 
acceleration experienced by solar sails at large distances from Earth, at low altitudes a more real-
istic geometry of the problem should be considered to achieve accurate results. It should be noted 
that other studies considering a more complex geometry of the Earth have also been conduct-
ed15,16,17, in which the Earth is modeled as an isotropic, spherical radiation source. However, these 
only investigated the radiative power received by a flat plate in Earth orbit, without deriving the 
corresponding radiation pressure and acceleration exerted. The need for determining an accurate 
expression for the PRP acceleration in proximity of the Earth arises from the fact that the PRP 
acceleration can reach a non-trivial magnitude in the order of 10-20% of the solar-sail characteris-
tic acceleration13 (depending on the orbital altitude and solar-sail attitude). Consequently, a realis-
tic PRP acceleration model is warranted and would also lay the basis for the accurate optimiza-
tion of Earth-bound steering strategies taking advantage of both the SRP and PRP accelerations.  

In light of the above, this paper presents a novel and detailed analytical model for the BBRP 
and ARP accelerations. Unlike any other analytical PRP acceleration model available in the lit-
erature, the model presented in this paper accounts for the complex geometry of the problem in its 
entirety. Indeed, it considers the spherical shape of the emitting body (i.e., the Earth), accounts 
for the limited area of the radiating surface as seen from the sailcraft, the illumination conditions 
of the radiating surface, and the possibility that both sides of the sail are exposed to the planetary 
radiation. This model – hereinafter referred to as “spherical” model – is an extension of the finite-
disk (FD) radiation pressure acceleration model devised by McInnes1, is valid at any altitude, and 
can be used for flat-shaped, two-sided reflective solar sails, i.e., solar sails with perfectly reflect-
ing front and back sides. The assumptions and full derivation of the model are presented and 
thoroughly described. Analyses are performed to quantify the magnitude of the BBRP and ARP 
accelerations for different altitudes, sail attitudes, and Sun-planet-sailcraft angles. In order to 
quantify the accuracy of the model, a comparison with the FD model is provided. Ultimately, a 
variety of analyses are conducted to assess the effect of the PRP accelerations on the maneuver-
ing capabilities of solar sails in Earth orbit. To that end, the solar-sail orbital dynamics are propa-
gated under the influence of SRP, atmospheric drag, and PRP. During the propagation, locally 
optimal orbit-raising and inclination-changing steering laws are employed, which are computed 
using an algorithm accounting for both SRP and atmospheric drag in the optimization process10. 
By analyzing the results achieved with and without PRP acceleration in the dynamics, the impact 
of the uncontrolled PRP acceleration on the maximum achievable altitude and inclination changes 
is quantified. The analyses are performed considering NASA's ACS3 mission as reference scenar-
io4,10. This solar-sail mission is scheduled for launch in early 2023 and is used in this paper to 
demonstrate the effect of the PRP perturbation on the solar-sail orbital dynamics, particularly in 
LEO. 
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DYNAMICAL MODEL 

The equations of motion describing the dynamics of a solar sail in Earth-bound orbit are ex-
pressed in an inertial Earth-centered reference frame, I(x, y, z), with the x-axis pointing towards 
the vernal equinox, the z-axis perpendicular to the equatorial plane and pointing towards the north 
pole, and the y-axis completing the right-handed frame. Within this frame the equations of motion 
of a flat, perfectly reflecting solar sail under the influence of SRP, atmospheric drag, BBRP, and 
ARP can be expressed in vectorial form as: 

3 SRP aero BBRP ARPr


    r r a a a a (1) 

where the dot notation indicates differentiation with respect to time, r = [x, y, z]T is the sailcraft 
position vector, r = ||r||, μ = 398600.4415 km3s-2 is the Earth gravitational parameter18, and SRPa , 

aeroa , BBRPa , and ARPa are the SRP, aerodynamic, BBRP, and ARP accelerations, respectively. 
These accelerations will be described in more detail in the following sections. 

It should be noted that the gravitational acceleration due to the Earth’s J2 spherical harmonics 
coefficient – as well as other gravitational perturbations of smaller magnitude – are not consid-
ered in this paper. This choice is justified by the fact that, in the analyses presented, only steering 
laws to increase the semi-major axis and inclination are considered. The J2 perturbation has no 
secular effect on these Keplerian elements, only a short-term periodic effect18. Therefore, even 
though the J2 acceleration can become as large as 460 times the ACS3’s characteristic accelera-
tion*, including this acceleration in the dynamics would only add significant noise to the results. 
Gravitational perturbations of smaller magnitude with a secular effect on the inclination exist, 
such as the gravitational accelerations of the Moon and the Sun. However, these have also not 
been considered in the right-hand side of Eq. (1) for the same reason. They add noise that ham-
pers a clear investigation into the effects of the BBRP and ARP accelerations on the solar-sail 
orbital dynamics. 

Solar Radiation Pressure Acceleration 

The SRP acceleration is defined as1: 
2 ˆcos ( )SRP ca  a n (2) 

where  ∈ [0, 1] is the shadow factor and α ∈ [0, π/2] is the solar-sail cone angle measured be-

tween the direction of sunlight, l̂ , and the sail normal direction with no component pointing to-
wards the Sun, n̂ , see Figure 1a. The shadow factor   accounts for the effect of eclipses and its 
value ranges from 0 (no sunlight reaches the sail) to 1 (sail completely illuminated). In this paper, 
eclipses are modeled with a conical shadow model similar to the one presented in References 19 
and 20, with the only difference that   = 0 both when in umbra and penumbra. ac represents the 
SRP characteristic acceleration, i.e., the maximum SRP acceleration (achieved for α = 0) at a dis-
tance of 1 AU from the Sun1: 

2
ca

c



(3) 

* The characteristic acceleration is the maximum SRP acceleration achievable by a perfectly-reflecting solar sail at 1
AU from the Sun.
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Figure 1. Solar-sail cone angle, α, and complementary angle to the angle of attack, ζ. 

In Eq. (3),   = 1367 Wm-2 represents the solar flux at Earth18, c = 299792.458 km s-1 is the 
speed of light in vacuum21, and σ is the sailcraft mass-to-sail area ratio. 

Aerodynamic Acceleration 

The aerodynamic acceleration is modeled based on the aerodynamics of a flat plate10,11,12 as: 

 
2

ˆ ˆ( )
2aero D L

v
C C




 D La  (4) 

where CD and CL are the drag and lift coefficients of the sail, D̂  and L̂  are the drag and lift direc-
tions (see Figure 1b), v is the sailcraft inertial velocity, and ρ is the atmospheric density, which is 
modeled using an averaging technique based on the NRLMSISE-00 atmospheric model10. The 
expressions for CD and CL are given by10,11,12: 

   22 cos 2 cos cosD T N R N TC V              (5) 

  2 2 cos cos sinL N R N TC V            (6) 

where  [0, π/2] is the complementary angle to the solar sail’s angle of attack (again, see Figure 
1b), σN and σT represent the normal and tangential momentum accommodation coefficients, re-
spectively, and VR is the ratio of the atmospheric particle average thermal velocity to the sailcraft 
inertial velocity. Based on References 10 and 22, σN = σT = 0.8, VR = 0.05. 

Planetary Radiation Pressure Acceleration 

In order to determine the PRP acceleration exerted on a solar sail, it is essential to first estab-
lish the amount of planetary radiation received by the sail, define its flux and finally the radiation 
pressure. If an elementary piece of Earth’s surface dA is considered, see Figure 2a, the amount of 
power irradiated in a generic direction ŝ  and enclosed within an infinitesimal solid angle d  is 
represented by the second differential 2d P  as23: 

 2 cos( )d P I d dA   (7) 

In Eq. (7), I represents the planetary radiation intensity (across the entire electromagnetic spec-

trum) along the normal direction to dA, N̂ , and [0, π/2] is the angle between N̂ and ŝ , see 
again Figure 2a. When only the radiation received by the solar sail is considered, d  represents 
the solid angle subtended by an infinitesimal piece of illuminated sail surface, dS. In this case, 
d  is defined as15: 

 
2

cos( )dS
d

s


   (8) 
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where  [0, π/2] is the angle between ŝ  and the sail normal direction pointing away from the 
Earth, ˆoutn , and s is the magnitude of the vector s pointing from dA to dS, see Figure 2a and 2b. 
Since this paper considers a flat-shaped solar sail whose dimensions are significantly smaller than 
s,   and s can be assumed to be constant across the entire sail surface. This assumption allows to 
substitute Eq. (8) into Eq. (7) and integrate the latter with respect to dS over the entire sail sur-
face, S. Performing the integration yields the radiation power dP received by the entire sail due to 
the radiation emitted by dA: 

 
2

cos( )
cos( )

S
dP I dA

s

  (9) 

 

 
Figure 2. Geometry of the problem to determine the BBRP and ARP accelerations 

exerted on a solar sail. 
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The power flux at the sail’s location due to the radiation emitted by dA, d , is then found as: 

 
2

cos( )

cos( )

dP
d I dA

S s




   (10) 

The corresponding radiation pressure d  is given by1:  

 
2

cos( )d I
d dA

c c s


 

  (11) 

and the acceleration of the sail is1:  

 
2

2
2

2 cos( )cos ( )
ˆ ˆ2 cos ( )PRP out out

d I
d dA

c s

 
 

 a n n


 (12) 

Ultimately, in order to find the total acceleration exerted on the sailcraft, Eq. (12) needs to be in-
tegrated over the entire visible surface of the Earth as seen from the sailcraft, *A , yielding: 

 
2

2
*

2 cos( )cos ( )
ˆPRP out

A

I dA
c s

 


 a n  (13) 

The solution to the surface integral of Eq. (13) depends on the Earth-sail geometrical configura-
tion and, most importantly, on the definition of the planetary radiation intensity, I. Indeed, the 
planetary radiation intensity quantifies the amount of radiation emitted by the surface elements 
dA across *A  and its definition depends on whether the blackbody or albedo radiation is consid-
ered. For the sake of clarity, hereinafter the symbols IBBRP and IARP will be used when referring 
specifically to the blackbody and albedo radiation intensities, respectively. When the radiation 
intensity I does not vary across the visible surface *A , an analytical solution to the surface inte-
gral of Eq. (13) can be found. In this case, the following expression for the PRP acceleration is 
obtained: 

 , ˆPRP c PRP F outa Ga n  (14) 

where ac,PRP is the PRP characteristic acceleration and FG [0,1] is a so-called geometrical fac-
tor. The PRP characteristic acceleration is given by: 

 ,

4

3c PRP

I
a

c


  (15) 

and similar to the “traditional” SRP characteristic acceleration, ac, it represents the maximum 
achievable PRP acceleration. Note that hereinafter the symbols BBRPa  and ARPa  will be used in-

stead of PRPa  – and, similarly, ,c BBRPa  and ,c ARPa will be used instead ,c PRPa  – when the BBRP 

and ARP accelerations are considered, respectively. The geometrical factor correlates the Earth-
sail geometrical configuration to the PRP acceleration and is defined as: 

 
*

2

2

3 cos( )cos ( )

2F

A

G dA
s

 


   (16) 

The solution to the surface integral on the right-hand side of Eq. (16) depends on the geometrical 
configuration of the sail with respect to the Earth, which is uniquely identified by the planetary 
cone angle (PCA),   [0, π/2], and maximum view angle, [0, π/2], see Figure 2b. The for-

mer is defined as the angle between ˆoutn  and the radial direction, r̂ , while the latter is the angle 

between the direction pointing to the Earth’s tangent as seen from the sailcraft and ˆ-r . Two pos-
sible configurations can then be defined:  
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Figure 3. Geometrical factor as a function of altitude for different PCAs. The PCA increases in the 
direction of the arrow from 0 to 90 deg with a step size of 10 deg. 

a) If α⊕ + φ ≤ π/2, the incoming radiation from the visible surface A* illuminates only one side 
of the sail. In this case, the geometrical factor is found as: 

  
2 2

2
2 2

3
, 1 1 1 1 sin ( )

2F

R R
G r

r r
  

        
  

 (17) 

where R = 6378.1363 km is the Earth radius18. 

b) If α⊕ + φ > π/2, the incoming radiation from the visible surface A* illuminates both sides of 
the sail. In this case, each of the two sides of the double-sided reflecting sail provides an ac-
celeration that points either along ˆoutn  or in opposite direction, ˆ ˆin out n n . Consequently, GF 
assumes a more complex expression, given by:  

      
2 2

2 1 1
2 2

1 3
, 1 2 1 1 1 sin ( ) sin 2 tan

2F

R R
G r A B

r r
   

 

               
 

(18) 

 3 4 2 23
3 cos ( ) 2 cos ( ) 1 sin ( )

2
B B    

     
 

 

where:  

 
2 2

2 2 2

cos( )
1 ; 1

sin( ) cos ( )

r R
A B

R r


 



 

     (19) 

In Figure 3, the geometrical factor is plotted as a function of the orbital altitude, h, for a range of 
different PCAs. This plot can be used by the reader to easily retrieve the value of GF for a wide 
range of Earth-sail geometrical configurations and directly compute the corresponding PRP ac-
celeration through Eq. (14). 

To determine the BBRP and ARP accelerations, the definitions of the blackbody and albedo 
radiation intensities, BBRPI  and ARPI , are required. These are provided in the following sub-
sections. 

α⊕ = 0 deg 

α⊕ = 0 deg 
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Blackbody Radiation Intensity. When the blackbody radiation is considered, the radiation in-
tensity, BBRPI , is constant and is given by24: 

 
4

SB
BBRP

T
I





 (20) 

where σSB = 5.670374419⋅10-8 Wm-2K-4 is the Stefan-Boltzmann constant21 and T = 249.21 K is 
the blackbody temperature of the Earth, computed by imposing the planetary energy balance. Be-
cause BBRPI  does not vary across the visible surface *A , Eq. (14) can be used directly to compute 

the BBRP acceleration, BBRPa . In particular, the geometrical factor can be found through Eq. (17)-
(19), whereas the BBRP characteristic acceleration is given by: 

 ,

4

3
BBRP

c BBRP

I
a

c


  (21) 

Although ac,BBRP represents the maximum achievable BBRP acceleration, it should be noted that 
this situation occurs only for a nadir-pointing solar sail ( ˆ ˆout n r , 0  ) at zero altitude. Indeed, 

in this case GF = 1, see Eq. (17), and ,BBRP c BBRPaa . Ultimately, it is worth noting that ac,BBRP 

can also be expressed in terms of the SRP characteristic acceleration, ac, by substituting Eq. (3) in 
Eq. (21): 

 ,

2
0.1067

3
BBRP

c BBRP c c

I
a a a




 


 (22) 

Albedo Radiation Intensity. When the albedo radiation is considered, the radiation intensity, 

ARPI , depends on the illumination conditions of the visible surface and varies across *A . Its defi-
nition is given by25: 

   max 0,cosARPI 





 (23) 

where  = 0.36 is the Earth’s albedo, i.e., the average amount of solar radiation received by the 
Earth reflected into space25, and χ is the sunlight incidence angle between the reverse sunlight 

direction, - l̂ , and N̂ , see Figure 2c. Because the incidence angle χ varies across the visible sur-
face *A , IARP is not constant around the Earth, unlike IBBRP. The varying nature of IARP significant-
ly increases the complexity of the surface integral of Eq. (13), for which the existence of an ana-
lytical solution is not guaranteed. To avoid this problem, this paper proposes a surface-averaged, 
constant value of the albedo radiation intensity. By doing so, the total amount of albedo radiation 
emitted by the visible surface A* is assumed to be irradiated isotropically, i.e., such that any ele-
mentary piece of the Earth’s visible surface, dA, emits the same amount of radiation, regardless of 
its local sunlight incidence angle. This assumption implies that IARP is constant across the visible 
surface A* and allows to compute the ARP acceleration in a similar fashion as the BBRP accelera-
tion. Based on Eq. (23), the surface-averaged albedo radiation intensity can be expressed in the 
following form:  

 ARPI 
 




 (24) 

where the term [0,1] is the surface-averaged cosine of the sunlight incidence angle with re-
spect to the surface A*, i.e.: 

 
*

*

max(0,cos( ))
A

A

dA

dA


  


 (25) 
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Figure 4. Albedo phase function as a function of altitude for different phase angles. The phase angle 

increases in the direction of the arrow from 0 to 180 deg with a step size of 10 deg. 

  is known as albedo phase function in the literature24 and will be referred to in this way in the 
following. Employing the constant radiation intensity ARPI  instead of IARP in the surface integral 

of Eq. (13) allows solving it and taking advantage of Eq. (14) to compute ARPa . Again, the geo-
metrical factor can be found through Eq. (17)-(19), while the ARP characteristic acceleration is 
given by: 

 ,

4

3
ARP

c ARP

I
a

c


  (26) 

By using Eq. (3), the value of ac,ARP can also be expressed in terms of the SRP characteristic ac-
celeration as: 

 ,

2
0.24

3c ARP c ca a a


     (27) 

Unlike the BBRP characteristic acceleration, the value of ac,ARP is not constant but depends on the 
term  , which accounts for the illumination conditions of the visible surface of the Earth. In-
deed, the Earth’s visible surface, A*, can appear either completely illuminated (if the sailcraft 
“sees” only the sunlit side of the Earth), partially illuminated (if the Earth’s day-night terminator 
is visible from the sailcraft), or completely dark (if the sailcraft “sees” only the dark side of the 
Earth). These three cases can be identified through the maximum view angle, φ, and the phase 

angle, χ* ∈ [0, π], i.e., the angle between r̂  and the opposite to the sunlight direction, - l̂ , see Fig-
ure 2c. For each of these cases, analytical expressions can be found for the phase function,  , as 
shown in the following: 

a) If χ* < φ, the visible surface A* is completely illuminated by the Sun. In this case,   is equal 
to: 

  * *1
, 1 cos( )

2

R
r

r
     

 
 (28) 

b) If φ < χ* < π - φ, , the visible surface A* is partially illuminated by the Sun. In this case,   is 
given by: 

χ* = 0 deg 

χ* = 0 deg 

[ ]
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      
1 2

* 1 2 *
2*

1
, 1 cos sin

2 sin

R R R R
r

r r rr
 

 




                   
 

(29) 

    
 

*

* 1

*2 2

cos
1 cos cos

sin

R R

r r R







              
 

c) If π - φ < χ*, the visible surface A* is completely dark and 0  . 

In Figure 4,   is plotted as a function of the orbital altitude, h, for a range of different phase 
angles, χ*. This plot can be used by the reader to easily retrieve the value of   for a wide range 
of configurations, hence allowing to find ac,ARP through Eq. (26)-(27) and compute ARPa  through 
Eq. (14). 

 

 
                                           (a)                                  (b) 

Figure 5. BBRP acceleration magnitude for a nadir-pointing solar sail (left) and Sun-pointing solar 
sail (right). The contour line values range from 0.01 to 0.1 with a step of 0.01. 

ANALYSIS OF THE BLACKBODY RADIATION PRESSURE ACCELERATION 

Figure 5 shows the contour plots of the BBRP acceleration magnitude relative to the solar-sail 
characteristic acceleration, ac, in the near-Earth environment for a nadir-pointing solar sail (i.e., 
ˆ ˆout n r ) and Sun-pointing solar sail (i.e., ˆˆout  n l ), respectively. As can be seen in Figure 5a, 

for a nadir-pointing attitude, the BBRP acceleration magnitude, BBRPa , depends solely on the or-

bital altitude, h, as the PCA is constant and equal to zero. This allows correlating BBRPa  and h, as 

shown in the legend of Figure 5a. The contour plot shows the rapid decay of BBRPa  especially at 
low altitudes where, nonetheless, accelerations up to 10% of ac can be achieved, which is in 
agreement with Eq. (22) and in line with the results found in the literature13. Similar to Figure 5a, 
Figure 5b shows the iso-acceleration curves for a Sun-pointing solar sail, when the Sun is located 
along the positive y-axis direction. In this case, the acceleration varies less uniformly as the PCA 
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is not constant. In particular, aBBRP is equal to zero on the x-axis, where the sail is oriented edge-
wise with respect to the radial direction ( = π/2). This causes the BBRP accelerations exerted 
on the sail’s front and back sides to counteract each other. Also, it is worth noting that the accel-
eration profile is symmetric with respect to the x-axis, which is a consequence of the fact that a 
double-sided perfectly reflecting solar sail has been considered. Indeed, for a solar sail with dif-
ferent optical properties on the front and back sides, no symmetry would be found.  

A contour plot showing the whole range of attainable BBRPa  values for any possible PCA and a 

wide range of altitudes appears in Figure 6. The plot shows how BBRPa  decreases steeply at low 
altitudes, displaying a behavior similar to an inverse square law. Increases in the PCA also affect 
the acceleration magnitude, which drops rapidly until reaching a zero value for  = π/2, as pre-
viously discussed.  

 

Figure 6. BBRP acceleration magnitude as a function of altitude and PCA. The contour line val-
ues range from 0.01 to 0.1 with a step of 0.01. 

Comparison with Finite-disk Radiation Source Model 

In order to quantify the accuracy of the spherical BBRP acceleration model presented in this arti-
cle, a comparison against the FD radiation source model devised by McInnes1 is conducted. This 
model has been widely applied in the literature13,14 and assumes the emitting body (the Earth) to 
irradiate as a uniformly bright disk and solely in the radial direction, r̂ . As such, it does not take 
into account the curvature of the Earth and the possibility of having both sides of the sail illumi-
nated simultaneously. When using the FD model, the BBRP acceleration, ,BBRP FDa , is given 

by1,13,14: 

 , , , ˆBBRP FD c BBRP F FD outa Ga n  (30) 

where GF,FD represents the geometrical factor of the FD model: 

 
3/22

2
, 2

1 1 cos ( )F FD

R
G

r


  
    
   

 (31) 
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         (a)                                                                                    (b) 

Figure 7. Relative error (left) and absolute error (adimensionalized with respect to the solar-sail charac-
teristic acceleration, right) between the BBRP accelerations of the spherical and FD models. The PCA 

increases in the direction of the arrow. 
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Figure 8. BBRP acceleration envelope curves of the FD and spherical radiation source models. The sol-
id and dashed arrows represent the accelerations of the FD and spherical radiation source models 

(for h = 500 km), respectively. 

By comparing Eq. (14), (17), and (18) with Eq. (30) and (31) it can be noted that the only differ-
ence between the BBRP accelerations of the spherical model and FD model is given by the defi-
nition of the geometrical factors. As such, the comparison of the BBRP accelerations of these two 
models will also provide direct insights in the difference between GF and GF,FD. 

The relative and absolute errors on the BBRP acceleration between the new spherical model 
and the FD model as a function of altitude and for a range of PCAs are shown in the plots of Fig-
ure 7. As can be seen, no absolute error is present when  = 0. This result is due to the expres-

α⊕ = 75 deg 

α⊕ 



 13

sion of the spherical model’s geometrical factor, given in Eq. (17). Indeed, by substituting  = 0 
into Eq. (17) the expression for the spherical model’s geometrical factor reduces to the FD mod-
el’s geometrical factor in Eq. (31). Consequently, this also yields equal expressions for the spher-
ical and FD models’ accelerations, see Eq. (14) and (30). The two plots also show that for in-
creasing altitudes the absolute and relative errors asymptotically tend to zero. This is a conse-
quence of the fact that for increasingly larger altitudes the error introduced by considering the 
planet as a uniformly irradiating disk (rather than a spherical radiation source) reduces, thus im-
plying that the spherical model converges to the FD model. Note that this result can also be found 
analytically. Indeed, by expanding GF in Eq. (17) in powers of (R/r), considering R/r0 (corre-
sponding to h∞), and ignoring the higher-order terms of the expansion, the expression for 
GF,FD in Eq. (31) is found. For larger values of the PCA, the relative error between the accelera-
tions of the two models increases rapidly, reaching values even in the order of 80% for low alti-
tudes and high PCAs. The reason for this behavior is better explained in Figure 8, where the ac-
celeration envelope curves of the two models are given. These curves represent the set of all at-
tainable BBRP accelerations achievable when changing the PCA. As can be seen, the spherical 
model’s envelope curve varies its shape depending on the altitude, unlike the FD model (shown in 
black for h∞). All curves of the spherical model coincide with the FD curve for 0  , as 
previously discussed. However, for increasing PCAs, the spherical model’s envelope curves show 
a larger transversal component of the acceleration. These discrepancies with the FD model’s en-
velope curve yield the high relative errors observed in Figure 7a. While the relative error increas-
es monotonically with the PCA, the absolute error shows a more complicated dependency on the 
PCA, see Figure 7b. As can be seen, the largest absolute errors are found for intermediate values 
of the PCA. These errors reach values up to 3.5-4% of the characteristic acceleration, for low alti-
tudes. Ultimately, in Figure 8 it is also possible to observe how the spherical model’s envelope 
curves converge to the FD model’s envelope curve as the altitude increases, in agreement with the 
error plots of Figure 7 previously discussed. 

  

                                            (a)                                              (b) 

Figure 9. ARP acceleration magnitude for a nadir-pointing solar sail (left) and Sun-pointing solar sail 
(right). Contour line values range from 0.01 to 0.23 with a step of 0.01. Eclipse regions are shown in 

white. 
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Figure 10. ARP acceleration magnitude as a function of altitude and PCA for different phase angles. 
The contour lines start at a value of 0.01 and increase with a step of 0.01. 

ANALYSIS OF THE ALBEDO RADIATION PRESSURE ACCELERATION 

Similar to Figure 5 for the BBRP acceleration, Figure 9 shows the variation of the ARP accel-
eration magnitude, aARP, relative to the characteristic acceleration, ac, for a nadir-pointing and 
Sun-pointing solar sail. While for the BBRP acceleration the Sun-sail configuration was not of 
any importance, it is for the ARP acceleration. In both plots of Figure 9, the Sun is placed along 
the positive y-axis. Compared to the BBRP acceleration, the variation of the ARP acceleration 
around the Earth for a nadir-pointing sail displays a more complex pattern, due to the additional 
dependency of aARP on the phase angle, χ*. Indeed, Figure 5a shows that large ARP accelerations 
are achieved when the sail is above the sunlit side of the Earth, reaching values up to 24% of the 
characteristic acceleration for low altitudes and χ* = 0, in agreement with Eq. (27). On the other 
hand, aARP rapidly decreases when moving towards the dark side of the Earth, eventually reaching 
the eclipse region where no ARP acceleration is generated. Similar to Figure 5b, Figure 9b dis-
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plays the variation in ARP acceleration for a Sun-pointing solar sail. In this case, the region of 
high ARP acceleration shrinks, since moving towards the dark side of the Earth yields increasing-
ly larger PCAs that negatively affect the ARP acceleration magnitude. 

In order to better appreciate the variation of the ARP acceleration with the altitude and PCA, 
Figure 10 shows the contour plots of aARP as a function of altitude and PCA for different values of 
the phase angle, χ*. The plots show that the altitude has a strong influence on aARP especially for 
low values of  χ*, in agreement with the results observed in Figure 9. The ARP acceleration also 
strongly depends on the PCA, as aARP rapidly reaches zero when approaching a PCA of 90 deg. 
By increasing the value of χ*, the correlation between aARP, h, and PCA changes significantly. In 
particular, it can be noted that for increasing values of χ*, the overall achievable aARP reduces rap-
idly, shifting its maximum value from 24% to 2% of the characteristic acceleration when varying 
χ* from 0 (sub-solar point) to 90 deg (along the terminator). Finally, it is interesting to note that 
the ARP acceleration for χ* = 90 deg does not decrease monotonically with altitude, but instead 
shows an initial increase, followed by a maximum value, and eventually a steady decrease. This 
behavior is due to two counteracting effects. Indeed, while for increasing altitudes the intensity of 
the radiation emitted by the Earth decreases, a higher altitude also allows the illuminated part of 
the Earth visible from the sailcraft to be larger, thus making the sail receive more albedo radia-
tion. Since this latter effect is predominant at low altitudes, an increase in altitude initially yields 
a larger aARP. However, for even larger altitudes, the radiation intensity decreases rapidly and its 
effect becomes predominant, hence making aARP decrease as well. This non-monotonic behavior 
of aARP is evident only when the visible part of the Earth is partially illuminated, i.e., when the 
day-night terminator is visible from the sailcraft. This is clearly shown also in Figure 9a, where 
the acceleration contour lines assume a high curvature in proximity of the terminator (which is 
aligned with the x-axis).  

Comparison with Finite-disk Radiation Source Model 

Similar to the analysis performed for the spherical BBRP acceleration model, in this section the 
accuracy of the spherical ARP acceleration model is quantified by comparing it against the FD 
ARP acceleration model. The ARP acceleration of the FD model can be expressed as1: 

 , , , , ˆARP FD c ARP FD F FD outa Ga n  (32) 

where , ,c ARP FDa is the albedo characteristic acceleration of the FD model: 

 , , ,

4π

3
ARP FD

c ARP FD c ARP

I
a a

c


 


 (33) 

In Eq. (33), FD  is the albedo phase function of the FD model, given by: 

   *max 0,cosFD    (34) 

The above definition of , ,c ARP FDa  is based on albedo flux models commonly used in the litera-

ture13,25 and differs from ,c ARPa  only for the use of FD  instead of  , as highlighted in Eq. (33). 

As discussed in the following, the different definitions of the phase function and geometrical fac-
tor of the spherical and FD models are at the core of the acceleration differences between the two 
models. 
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           (a)                                                                                   (b) 

Figure 11. Error (adimensionalized with respect to the solar-sail characteristic acceleration, left) and 
relative error (right) of the ARP acceleration of the FD model with respect to the ARP acceleration of the 

spherical model. 

The plots of Figure 11 show the error and relative error of the FD model’s ARP acceleration 
with respect to the spherical model’s ARP acceleration as a function of altitude, for a range of 
PCAs and phase angles. It should be noted that, contrary to Figure 7, in Figure 11 the actual er-
rors are displayed instead of their absolute values. In this way, it is possible to better highlight in 
which cases the spherical model’s acceleration, aARP, is larger than the FD model’s acceleration, 
aARP,FD, and vice versa. As shown in Figure 11a, when χ* = 90 deg (i.e., when the sailcraft is 
above the terminator) the acceleration error is positive for any altitude and PCA, meaning that 
aARP > aARP,FD. This result is due to the fact that the FD model’s phase function, FD , is equal to 
zero for χ* = 90 deg, hence yielding aARP,FD = 0. On the other hand, when the spherical model is 
employed, a small ARP acceleration, aARP, is found. As can be seen in the plot, this ARP accelera-
tion is always smaller than 3% of the SRP characteristic acceleration, ac, and rapidly approaches 
zero for altitudes below 1000 km. Figure 11a shows that also for χ* = {0,45} deg and  = 0 the 
acceleration error is bounded within 3% of ac. However, in these cases the error achieved is nega-
tive, thus implying aARP < aARP,FD. Since the geometrical factors of the spherical and FD models 
are the same for  = 0, the acceleration error found is introduced solely by the difference in 
phase function of the two models. For the remaining cases given in Figure 11a, i.e., for χ* = 
{0,45} deg and  = {30,60} deg, the acceleration errors vary more strongly with the altitude, 
assuming both positive and negative values. In particular, at low altitudes the main source of error 
is given by the difference in the geometrical factors of the two models, which corresponds to aARP 
being larger than aARP,FD by up to 8% of ac. For increasing altitudes, the error rapidly drops and 
even assumes negative values, implying that aARP,FD > aARP. This happens because for increasing 
distances from the Earth the error introduced by using different phase functions becomes domi-
nant and causes the FD model to overestimate the acceleration. Finally, it is interesting to note 
that all error curves asymptotically tend to zero for increasing altitudes, meaning that the FD and 
spherical models behave similarly at large distances from the Earth. Figure 11b also provides the 
relative error on the acceleration between the two models. As can be seen, this varies in the range 
[-50%, 60%] for most cases and even assumes a value of 1 for χ* = 90 deg, since aARP,FD = 0. This 
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result highlights the different assumptions underlying the two models and the limitations of the 
FD model to accurately determine the ARP acceleration. 

RESULTS AND ANALYSIS 

In this section, the effect of the BBRP and ARP accelerations on the orbit-raising and inclina-
tion-changing capabilities of different Earth-bound solar-sail orbits is analyzed and discussed. All 
analyses make use of the ACS3 mission as baseline scenario, with a solar-sail characteristic ac-
celeration of ac = 0.045 mm/s2, a simulation start time of April 1st, 2023 (i.e., the expected de-
ployment date of the solar sail), and the following vector of initial Keplerian elements defined in 
frame I(x, y, z): 

 0 0 0 0 0 0

280.5833 deg
, , , , , 7093.1363 km, 0, 98.2490 deg, , 0 deg, 0 deg

10.5833 deg

T

T
a e i f

  
    

  
 (35) 

where a is the semi-major axis, e the eccentricity, i the inclination, Ω the right ascension of the 
ascending node, ω the argument of perigee, f the true anomaly, and the subscript “0” denotes the 
initial value of these variables*. These Keplerian elements represent a circular, Sun-synchronous 
orbit with initial altitude 0 0 715h a R    km. As shown in Eq. (35), two different values for the 
initial right ascension of the ascending node are used: the first corresponds to a local time of the 
ascending node (LTAN) at 6AM (dawn-dusk orbit) and the second to an LTAN at 12AM (noon-
midnight orbit). For each initial orbit, the solar-sail dynamics are propagated and locally optimal 
orbit-raising and inclination-changing steering laws are employed. These steering laws are com-
puted using an algorithm accounting for both SRP and atmospheric drag in the optimization pro-
cess10, but not for the PRP. Therefore, in the following analyses the BBRP and ARP accelerations 
are considered as uncontrolled perturbing accelerations affecting the orbit. To quantify the effect 
of these accelerations on the orbit-raising and inclination-changing capabilities of the ACS3 mis-
sion, the equations of motion presented in Eq. (1) are propagated with and without PRP accelera-
tion on the right-hand side. In this way, the final increases in altitude and inclination for PRP-
perturbed and PRP-unperturbed orbits can be compared and their difference is assessed. For each 
scenario, the equations of motion are propagated for 10 days using Matlab®’s ode45 integrator, 
with absolute and relative tolerances of 10−12. More details on the optimization scheme as well as 
the settings used for the optimizer are provided in Reference 10. 

Figure 12 shows the variation of the SRP, aerodynamic, BBRP, ARP, and total accelerations 
over one orbital period, for the two steering laws (indicated by “SL” in the figure) and initial 
LTANs. The large differences in the acceleration profiles for the four cases are due to the differ-
ent sail attitude control profiles adopted. Indeed, the solar-sail attitude control is computed 
through the optimization process and strongly depends on the steering law and LTAN considered. 
For more details on the sail attitude angles profiles, see Reference 10. As shown in the plots, most 
of the time the SRP acceleration is the dominant acceleration. However, the BBRP and ARP ac-
celerations can get as large as 10-20% of the solar-sail characteristic acceleration and, for some 
cases and in some particular sections of the orbit, attain values even larger than the SRP accelera-
tion. These large values of the BBRP and ARP accelerations are achieved only when an initial 
LTAN at 12 AM is considered. Indeed, for an initial LTAN at 6AM, the maximum BBRP and 
ARP accelerations attain values in the order of 1% of the characteristic acceleration, thus affect-

                                                      
* ACS3 mission data taken from personal communication with W.K. Wilkie, Principal Investigator of the ACS3 mis-
sion, NASA Langley Research Center, July 2022. 
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ing the dynamics only slightly. The reason for this lies in the relative orientation of the orbital 
plane and the optimal sail normal direction, for which the sail is constantly oriented almost edge-
wise with respect to the Earth’s radial direction. This causes the accelerations of the sail’s front 
and back sides to counteract each other, thus yielding an almost null net PRP acceleration. It is 
interesting to note that when an LTAN at 12AM and an orbit-raising steering law are considered, 
a similar effect is achieved also during eclipses. Indeed, in this case the normal vector of the sail 
is oriented perpendicular to the orbital plane. This translates into the sail being oriented parallel to 
the wind flow (to prevent atmospheric drag) and, once again, the BBRPs on the sail front and 
back sides counteracting each other to produce a null net acceleration. In addition, because the 
sail is in eclipse, no solar radiation or albedo is present, thus making the total acceleration exerted 
on the sail equal to zero.  

         SL: a – LTAN: 6AM      SL: a – LTAN: 12AM       SL: i – LTAN: 6AM      SL: i – LTAN: 12AM 

a
 / 

a
c
 [

-]

 
 

Figure 12. ACS3 acceleration profiles over one orbital period for the orbit-raising steering law 
(SL: a) and inclination-changing steering law (SL: i) and for LTANs at 6AM and 12AM. 

Table 1 displays the maximum BBRP and ARP accelerations achieved and the altitude and in-
clination increases obtained after 10 days, for all orbit scenarios, with and without PRP in the dy-
namics. In the table, Δœ0→f is the achieved increase in the steering law’s target parameter (i.e., h 
or i) after 10 days, ϵf,abs represents the absolute error in the final value of the target parameter 
when no PRP is considered in the dynamics, and ϵf,rel is the corresponding relative error (comput-
ed with respect to the value of Δœ0→f  with PRP). As observed also in Figure 12, the maximum 
BBRP and ARP accelerations are considerably smaller for an LTAN at 6AM than an LTAN at 
12AM. Therefore, for an LTAN at 6AM the effect of the PRP on the orbit-raising/inclination-
changing capabilities of the sail is only minor. This translates into relative errors in the alti-
tude/inclination change smaller than 1% with respect to the case in which the PRP is not account-
ed for. On the other hand, for an LTAN at 12 AM, large BBRP and ARP accelerations are found, 
yielding absolute errors with respect to the case without PRP of 2.53 km (orbit-raising steering 
law) and 9.61⋅10-3 deg (inclination-changing steering law). These correspond to large relative er-
rors, equal to 19.63% and 25.02%, respectively. Finally, it is interesting to note that for the incli-
nation-changing steering law with an LTAN at 6AM a slightly higher inclination increase is 
achieved when the PRP is considered in the dynamics, despite the fact that the PRP is not ac-
counted for in the optimization process. This indicates that the PRP acceleration can work in fa-
vor of the inclination increase and that accounting for the PRP acceleration in the optimization 
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procedure may enable solar sails to achieve even larger inclination changes than foreseen to 
date14.  

Table 1. ACS3 simulation results for a simulation duration of 10 days, for different steering laws, 
initial LTANs, and orbital dynamics with and without PRP. 

Steering Law Orbit raising Inclination changing 
LTAN 6AM 12 AM 6 AM 12 AM 
PRP ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ 

,BBRP max

c

a

a
[%] N/A 1.42 N/A 9.77 N/A 4.49 N/A 7.85 

,ARP max

c

a

a
[%] N/A 0.59 N/A 19.45 N/A 1.62 N/A 16.77 

Δœ0→f [km, deg] 21.50 21.47 15.41 12.88 9.56⋅10-2 9.58⋅10-2 4.80⋅10-2 3.84⋅10-2 

ϵf,abs [km, deg] 0.03 2.53 1.97⋅10-4 9.61⋅10-3 

ϵf,rel [%] 0.15 19.63 0.21 25.02 

CONCLUSIONS 

In this paper, a novel analytical model for the blackbody radiation pressure (BBRP) and albe-
do radiation pressure (ARP) accelerations has been presented, valid for any planet and for double-
sided perfectly reflecting solar sails. The dynamics of a solar sail in the near-Earth environment 
have been presented, including the solar radiation pressure, aerodynamic, BBRP, and ARP accel-
erations. In particular, special focus has been given to the BBRP and ARP accelerations, whose 
underlying assumptions and analytical derivation have been provided. It has been shown that 
these accelerations depend solely on the sail attitude, distance from the planet, and Sun-planet-
sailcraft angle through two functions, namely the geometrical factor and albedo phase function. In 
order to quantify the achievable BBRP and ARP accelerations in the near-Earth environment, a 
thorough analysis of their magnitudes for a variety of conditions has been presented and dis-
cussed. The results show that BBRP and ARP accelerations in the order of 10% and 20% of the 
solar-sail characteristic acceleration can be achieved, respectively. To assess the accuracy of the 
BBRP and ARP acceleration models presented in this paper, comparisons against the finite-disk 
radiation source model devised by McInnes have been conducted. These show that absolute errors 
in the BBRP acceleration and ARP acceleration up to 3.5-4% and 8% of the solar-sail characteris-
tic acceleration can be achieved, respectively, particularly for low altitudes and for intermediate 
solar-sail cone angles and Sun-Earth-sailcraft angles. To show the perturbing effect of the plane-
tary radiation pressure acceleration on the orbit-raising and inclination-changing capabilities of 
solar sails in LEO, different analyses have been conducted using NASA’s upcoming ACS3 mis-
sion as baseline scenario. These analyses show the non-negligible effect of an uncontrolled plane-
tary radiation pressure acceleration, which can yield losses in the altitude gain up to 2.53 km over 
a 10 day orbit-raising period, equivalent to 19.63% of the total altitude gain. In a similar fashion, 
when an inclination-changing steering law is implemented, losses in the inclination gain of 
9.61⋅10-3 deg are observed after 10 days, corresponding to 25.02% of the total inclination gain.  
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