

Proof of concept:

An Umbrella as a Mobile Acoustic Rain Gauge
for use in Urban Areas

G.H. Gerritsen
G.H.Gerritsen@student.tudelft.nl, 4274164

Supervisors: dr. ir. R.W. Hut, dr. ir. D. van Halem

Water Resources Section, Faculty of Civil Engineering and Geosciences,
Delft University of Technology, Delft, the Netherlands

April 2020

Abstract. To validate rainfall intensity in urban areas
measured by satellite a first prototype proof of concept is
introduced and tested. Using low-cost electronics an
umbrella is converted into a mobile acoustic rain gauge
which can be used in urban areas to measure rainfall
intensities. A reed switch is placed in the umbrella to
measure whether the umbrella is open or closed. Using
a piezoelectric sensor and a Sparkfun sound detector
rain droplets are detected and using a Pycom WiPy send
over Bluetooth to an application which saves it on an
online server. Tests during a laboratory experiment to
see how the output data evolves shows that the data
collected have an output range of about 10 % compared
to its mean value. During field evaluation, to compare its
output data with rainfall intensities as measured with
radar, it is shown that the output data follows the radar
measurements within acceptable bounds.

1. Introduction
To measure rainfall intensities, three main options are
available: rain gauges, radars and satellite data. With
radar and satellite data the rainfall over a large area can
be determined. However, as the grid size of these
methods are from hundreds of meters up to several
kilometres the results of these measurements are in
many cases not accurate enough. For a more accurate
analysis these results should be validated with ground
measurements collected by rain gauges. These rain
gauges provide rainfall measurements at ground level at
a specific point or very small area. Rain gauge stations
must meet specific international norms to be considered
as an official recording rain gauge (KNMI, 2001). The
norms make sure that the results measured by the rain
gauge are accurate and not affected by the surrounding
area like high buildings, which can cause rain shadows.

Because of these norm, all official recording rain gauges
within the Netherlands are placed in rural areas and
barely placed in urban areas.

As most of humanity live in cities, and due to an
increase in extreme rain events and associated flooding,
there is an upcoming need for recording rain gauges in
urban areas. However, high-density buildings make it
nearly impossible to get accurate rainfall data, due to the
beforementioned rain shadows. Beside this,
measurements need to have a very high space-time

Figure 1: The author testing the umbrella in an urban area. The
data measured are send to an application on the mobile phone.

resolution to be applicable for urban hydrology. A
possible solution to this problem is to measure rainfall
with a lot of rain gauges causing the resolution to
become very small and thereby errors will be
minimalised. Under laboratory conditions several rain
gauges have been tested (Lanza and Stagi, 2008) and
found that the gauges complied with the WMO accuracy
specifications of 5 percent. As setting up a high-density
rain gauge system is costly, most urban rainfall data
collection is done with use of radar images. However, the
data is not yet sufficiently reliable for hydrological
application in urban areas (Emmanuel, 2011).
Alternatively, the use of microwave links has a high
potential for use in urban areas (Upton, 2004).

In this paper a low-budget solution is presented: an
umbrella as a mobile acoustic rain gauge using low-cost
electronics (Figure 1). The idea is using the canvas of an
umbrella as an acoustic disdrometer (Hut, 2013). Using
umbrellas as rain gauges gives the possibility to measure
rainfall at a high space-time resolution when several
umbrellas are equipped with the necessary equipment.
When the umbrella is equipped with Bluetooth
technology, it is possible to send real-time the location
and rainfall data with help of a mobile phone to an online
server. This design paper focusses on three parts: first,
the umbrella sends a Bluetooth signal both when opened
and closed. This signal is responded by an android
application. Second, the umbrella starts measuring rain
intensity when the umbrella is opened till the moment it
is closed again. Third, the umbrella sends at a specific
time interval the results of the measurements.

In this report first, the choices for the materials used
are elaborated, furthermore the electric circuit, coding
and application are explained. Next, both experiment
types are explained and the corresponding results are
given: the laboratory experiment, mainly used to
calibrate the electronics, and the field evaluation. The
report is concluded with conclusions and discussion.

2. Methods and materials
The umbrella should register and share, with use of
Bluetooth, whether it is opened or when it is close. When
it is opened, it should measure rainfall intensities and
send at a specific time interval the results of these
measurements. In the following part, first the choices of
the materials used in the umbrella are clarified. After this
the electric circuit and the coding will be elucidated.
Subsequently the application used will be explained as
well as the set-up for both the laboratory experiment and
the field evaluation.

For this first prototype proof of concept an umbrella
with a diameter of 90 centimetre is used. At the top and
the bottom of the shaft small holes are drilled through
which four wires are pulled. To see whether the umbrella
is open or closed, two of the wires are connected to a
reed switch at the top of the shaft. At the moving part of
the umbrella a small magnet is connected which will
close the electric circuit through the reed switch when the
umbrella is opened. Initially the Adafruits LIS3DH
accelerometer would be used to measure the position of
the umbrella arc. The movement of the arc would then

be used to detect whether the umbrella is opened or
closed. However, due to compatibility problems, the

accelerometer is not useable in this set-up.
Beside using the reed switch or accelerometer

several other possibilities are available. For instance,
placing a button in the shaft behind the lever which
activates the opening of the arc. The use of a button was
in this set-up not suitable, as it is quite hard to reach the
area in the shaft behind the lever. Another possibility is
using a hall sensor which measures nearby magnetic
fields. This sensor needs a continuous stream supply to
function which will cause a shorter battery life
expectancy. Other solutions which encounters similar
problems are using light intensity sensors (when the
umbrella is closed there is no light), but when using the
umbrella in the dark, the sensor will think the umbrella is
still closed; a distance sensor who measures the
distance between the shaft and the arc; a temperature
sensor in the handle which measures a temperature
difference when someone holds the handle or the use of
tilt switches on the arc and the shaft: when one of the two
has a different position in relation to the other, the arc is
open. As the other solutions are not very practical, a reed
switch is used.

The WiPy 2.0 (powered by a rechargeable 2500mAh
lithium battery) is used as a low-cost CPU. This Internet
of Things development platform runs on MicroPython
and has an internal Bluetooth radio allowing information
to be sent to a nearby device (through Classic Bluetooth
or Bluetooth Low Energy, BLE) (Pycom, 2020). The
Bluetooth radio will be used in its Low Energy form acting
like a beacon. As the WiPy only has a limited character
length for making it act like a beacon, there is no space
for additional information to send with the basics like its
name and MAC address. For that reason, the name of
the WiPy will be changed into the value you want to send.
The application used to collect the data send by the
WiPy, saves the name of the WiPy on a predetermined
location. The same data is also saved on a SD card
plugged in the Pycom Expansion Board.

Figure 2: Watertight box with on the left the sound detector by
Sparkfun connected to the piezo electric sensor on the arc of the
umbrella, in the centre a potentiometer to adjust the sensitivity of
the sound detector and on the right the WiPy. There is also space
for a battery.

The pins of the WiPy need additional attention as
some pins only act as input pins and the others can also
act as a PWM (Puls-width modulation) pin, which can
work with analog signals as output as well as acting as a
input pin. When the WiPy is connected to a REPL
(Read–Eval–Print Loop) console, the output of these
PWM pins act in a different way, then when it is
disconnected to this console and only connected to an
external battery. This leads to different observed values.
For that reason, it is necessary to connect the reed
switch and the sound sensor to the input-only pins to
make sure the same analog value is red in both
situations.

As all electronics are used outdoors and during rain
events, the set-up needs to be weather proof as much as
possible. Therefore, the main electronics like the WiPy,
battery and the sound detector, are put in a watertight
box as can be seen in Figure 2.

To measure the raindrops falling on the arc of the
umbrella, a piezoelectric pressure sensor is used. This
sensor detects vibrations or knocking and has a voltage
as output. To read out the voltage caused by the piezo
sensor, a SparkFun Sound Detector is used (Sparkfun,
2020). This sound detector has as input a (sinusoidal)
voltage signal from the piezoelectric sensor and turns
this signal in three different outputs: an audio output, a
binary indication of the presence of sound and an analog
representation of its amplitude. In this application, the
third output signal (the envelope output) is used. With
use of this signal output, a counter of the number of
droplets can be created and the amplitude of the signal
caused by an individual droplet can be found.

An elaboration of this coding is given in paragraph
2.2. To adjust the sensitivity (gain) of the sound detector,
a potentiometer is connected to it. To calibrate the

potentiometer and to see the effect of the sensor, a
laboratory experiment is executed as will be elaborated
in paragraph 2.4.

2.1. Circuit
To resist the wet weather conditions, the electronics are
placed in a box. The main parts which needs weather
protection are the WiPy, the battery and the sound
detector. All electronics are connected to the WiPy which
not only acts as signal processor, but also as power
supplier for the reed switch and the sound sensor. To see
whether the umbrella is open or closed, the signal over
the reed switch is read out over pin 19 (G6), the sound
detector is connected to three points: the VVC is
connected to pin 22 (G9), the Envelope, which measures
the amplitude of the signal, is connected to pin 15 (G0)
and the ground of the sensor is connected to GND. In
this way, the sound detector will only work when pin 22
is activated. Table 1 gives a complete overview of the
wire connections.

Table 1: Wire connections between the WiPy, sound detector and
the reed switch

Sensor WiPy

Sound detector

GND GND

VCC Pin 22 (G9)

Envelope Pin 15 (G0)

Reed switch

+ 3V3

- GND

Analog signal Pin 19 (G6)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

1 3 5 7 9 11 13 15 17 19
N

u
m

b
er

 o
f

im
p

ac
ts

 m
ea

su
re

d

To
ta

l o
f

im
p

ac
tv

al
u

es
 m

ea
su

re
d

Measurement point

Output with Different
Potentiometer Values

Counter Total

36000

37000

38000

39000

40000

41000

42000

43000

44000

45000

0

10000000

20000000

30000000

40000000

50000000

60000000

1 3 5 7 9 11 13 15 17

N
u

m
b

er
 o

f
im

p
ac

ts
 m

ea
su

re
d

To
ta

l o
f

im
p

ac
tv

al
u

es
 m

ea
su

re
d

Measurement point

Output with the Same Rain
Intensity Input

Counter Total

Figure 3: Laboratory experiment with different potentiometer
values. As the electrical potential changes, the output of the sound
detector change.

Figure 4: Laboratory experiment with the same rainfall intensity.
The measured number of peaks vary strongly over time.

2.2. Coding
The code used to control the WiPy, is written in
MicroPython. The main goals of the code are to detect
whether the umbrella is open or not and, if opened to
collect rain intensity data and send its results over
Bluetooth.
To achieve this, first the WiPy reads the analog value on
pin 19 (connected to the reed switch) to know whether
the umbrella is open (the reed switch is near a magnet
and pin 19 gives a low value) or the umbrella is closed
(the analog value measured over pin 19 is high). When
the umbrella status is changed, the Bluetooth module is
activated and sends for 15 seconds respectively
‘HelloWorld’ or ‘ByeWorld’.
When opened, directly a 30 seconds timer is started and
the analog values measured over pin 22, derived from
the sound detector, are processed. For every value it is
considered whether this value is higher than the previous
one. If this statement becomes false, a peak has
reached, which indicates the maximum of a raindrop-
impact. Every maximum is added to the previous ones to
save as many of the limited internal memory space
available as possible. Also the amount of maxima is
counted.
When the 30 seconds are over (a 30 seconds time
interval is chosen to make it easier to filter extreme or
inconsequent values afterwards), the sum of the maxima
is send over Bluetooth. Beside this, the sum of the
maxima together with the number of maxima (counter)

are added to arrays, which are saved on the SD card
when the umbrella is closed again. This is used as a
back-up system when the transfer over Bluetooth fails.
The full coding can be found in appendix A.

2.3. Application
To share the data collected by the umbrella an
application on a smartphone stores the data on a
predetermined location online. Every 10 seconds the
application searches for pre-set MAC addresses and
shouts these values to its server. Together with the sum
of the maxima, the location and time of the phone is
send, so it is known where and at what time the
measurements are done.

2.4. Laboratory experiment
To see the effect of the potentiometer on the output of
the sound sensor and to see how the umbrella reacts to
water droplet impacts generally, the umbrella is tested by
placing it underneath a shower. To approach rainfall as
closely as possible, the showerhead is pointed upwards,
so the shower spray will first go up and eventually fall
scattered. To minimalize the number of drops, the
showerhead is partly taped so only three nozzles are
spraying water.

0

0,5

1

1,5

2

0

2000

4000

6000

8000

10000

12000

R
ai

n
 in

te
n

si
ty

 m
ea

su
re

d
 w

it
h

u

se
 o

f
R

ad
ar

 [
m

m
]h

]

im
p

ac
ts

 m
ea

su
re

d
 b

y
p

ie
zo

el
ec

tr
ic

 s
en

so
r

[-
]

Rain Intensity Measured by the Umbrella vs. Radar

Rain intensity measured by radar Total of impactvalues Number of impactvalues

Figure 5: Results of the field evaluations during different rain events.

0

0,5

1

1,5

2

0

5000

10000

15000

20000

25000

R
ai

n
 in

te
n

si
ty

 m
ea

su
re

d
 w

it
h

 u
se

o

f
R

ad
ar

 [
m

m
/h

]

im
p

ac
ts

 m
ea

su
re

d
 b

y
p

ie
zo

el
ec

tr
ic

 s
en

so
r

[-
]

Rain Intensity Measured by the Umbrella vs. Radar

Rain intensity measured by radar Total of impactvalues Number of impactvalues

2.5. Field evaluation
To measure the effectiveness of the umbrella in an urban
area, it is tested in the field. At different locations, both
windy as less windy, rainfall events are measured. As
explained previously, every 30 seconds the total
measured peaks and the total impact value is send over
Bluetooth. At the end the results measured by the
umbrella are compared to data obtained by radar. The
rain intensities obtained by radar is only available time-
space resolution of 5 minutes. To make the data suitable
for comparison with the umbrella results, the radar data
are interpolated to one a time-space resolution of one
minute.

3. Results

3.1. Laboratory experiment
As elucidated in paragraph 2.4, the umbrella is placed
underneath a shower head, to measure the effect of the
potentiometer, it is placed in three different levels (full
electrical potential, half electrical potential and minimum
electrical potential) and lastly completely removed. In
Figure 3 the results of this experiment are shown. The
bars give the number of impact peaks measured and the
line represents the total of these impact values.

It is clear to see the effect of using a potentiometer
added to the sound detector. Using a potentiometer is
needed as when it is left out in the circuit, the gain is at
such a high level, every small vibration, which can have
other origins than the water droplets, is encountered and
registered.

In Figure 4 the output data during a consequent rain
intensity is showed. From this graph can be conclused

that even during the same rain intensity, the output data
still various allot. The difference between the utmost
value and the mean of al values can be up to 10%. This
can be caused by inconsistency in the water droplets
falling on the arc due to pressure differences, or because
the gain of the sound sensor is still too high and
additional vibrations are still measured. For the field
evaluation the potentiometer is set in its full electrical
potential.

3.2. Field evaluation
When the umbrella is opened, vibration caused by this
movement are recorded by the piezoelectric sensor, so
the first 30 seconds of measurements are not reliable for
further use. Furthermore, gusts of wind cause vibrations
of the umbrella arc which affects the results. To know the
impact of a gust of wind, the umbrella is tested during a
windy, but dry period.

The results of this test is plotted in the graph of
Figure 6. As the measured values due to vibrations
caused by gusts of wind are significant, the impact of the
wind is clearly not negligible. To avoid that
measurements during rain events are affected by gusts
of wind, the locations of the field evaluation are chosen
to be as windless as possible without staying in the rain
shadow of for example a building which will influence the
results as well.

The results of the experiments are found in the in
graphs of Figure 5. In each graph two lines and a set of
bars are plotted. The bars present the rainfall as
measured with radar at the location. These quantities are
compared with the measured results found with the
umbrella. The upper orange line presents the number of
peaks measured by the piezo electric sensor. The lower
blue line presents the sum of the amplitude values
measured at these peaks. In this way, it should be
possible to say how many droplets fell on the area
surrounding the sensor and the size of the droplets as it
is assumed that bigger droplets have a greater impact on
the umbrella than smaller droplets.

It can be clearly seen that when the rain intensity
increases, the counter and total of values are increasing.
However, with low rain intensities, up to 0.4 mm per hour,
the measurements are quite variable. Probably because
the droplets have not enough impact strength. From 0.6
mm per hour on, the lines clearly rise and follows the
pattern of the rain intensities as measured by the radar.

4. Conclusion and discussion
The umbrella works as a mobile acoustic rain gauge
during the field evaluation. This prototype proof of
concept shows that umbrellas, used in urban areas, can
be equipped with low cost electronics and can be used
as a rain gauge. The results gathered by the umbrella
set-up can be send using Bluetooth to a mobile device
which can send it to the server online. The data can
thereafter be used for urban water management and the
validation of satellite data.

Using low-cost electronics: a piezoelectric sensor, a
reed switch, a Sparkfun sound detector and a Pycom
WiPy laboratory experiments and field evaluations are

0

5000

10000

15000

20000

25000

30000

0
0

:3
0

0
1

:3
0

0
2

:3
0

0
3

:3
0

0
4

:3
0

0
5

:3
0

0
6

:3
0

0
7

:3
0

0
8

:3
0

0
9

:3
0

1
0

:3
0

1
1

:3
0

1
2

:3
0

1
3

:3
0

1
4

:3
0

1
5

:3
0

im
p

ac
ts

 m
ea

su
re

d
 b

y
p

ie
zo

el
ec

tr
ic

 s
en

so
r

[-
]

Time [m:ss]

Gusts of Wind measured by the
Umbrella

Total of impactvalues Number of impactvalues

Figure 6: Graph showing the impact of gusts of wind on the results
measured by the umbrella. The impact of the wind is strongly
noticeable

done. During the laboratory experiments it has become
clear that the gain of the sound detector has a major
influence on the number of peaks encountered.
Decreasing the gain leads to a less sensitive system.

It also becomes clear that the collected data show
many highs and lows for the same rain intensity. This can
be due to the way peaks are measured, as a peak is
registered as a peak when the following data point is
lower than the previous one. This lower value can be an
incident and still be part of a rising line towards the real
peak.

During the field evaluation it has become clear that
the impact of the wind can’t be neglected as the number
of impact values strongly rises. However, the impact on
the total of the impact values is clearly less influential.
When measuring rain events in areas with less wind, the
results of the field evaluation are promising as the values
measured by the umbrella follows the rain intensities as
measured by radar.

If the umbrella is further developed, the following
improvements should be made. First, the impact of the
potentiometer on the sound detector should be further
examined to know what impact lowering the gain has on
the number of impacts measured. Furthermore, one
should try to achieve a more stable signal output during
similar rain intensities by adjusting the gain or using more

piezoelectric sensors on the arc of the umbrella. Lastly
the limited internal memory capacity of the WiPy should
be considered as individual data points can’t be
extracted from the results measured.

5. References

Emmanuel, I., Andrieu, H., and Tabary, P., Evaluation
of the new French operational weather radar product for
the field of urban hydrology, Elsevier, 2011

Hut, R.W., New Observational Tools and
Datasources for Hydrology, TU Delft, 2013

KNMI, Handboek Waarnemingen – Hoofdstuk 6:
Neerslag, Koninklijk Nederlands Meteorologisch
Instituut, 2001

Lanza, L.G., and Stagi, L., Certified accuracy of
rainfall data as a standard requirement in scientific
investigations, Advances in Geosciences, 2008

Pycom: WiPy 2.0, https://pycom.io/wp-
content/uploads/2018/08/wipy2-specsheet.pdf, last
access: 14 April 2020

Sparkfun: Sound Detector SEN-12642,
https://www.sparkfun.com/products/12642, last access:
14 April 2020

Upton, G.J.G., Holt, A.R., Cummings, R.J., Rahimi,
A.R., and Goddard, J.W.F., Microwave links: The future
for urban rainfall measurement?, Elsevier, 2004

 Appendix A: Coding

1. import pycom # import all nessecary librarys
2. import time
3. import machine
4. import math
5. from machine import SD
6. from machine import Timer
7. from network import Bluetooth # MAC-address: 24:0A:C4:00:A5:B0
8.
9. # pins: Reedsensor: pin 19 (G6), Piezosensor - VVC: pin 22 (G9), Envelope: pin 15 (G0), GND: GND
10.
11. pycom.heartbeat(False) # turns flashlight off
12. pycom.rgbled(0xf0000) # turns LED to red
13.
14. High = 2500 # threshold reed sensor
15.
16. sd = SD()
17. os.mount(sd, '/sd') # find SD-card
18.
19. bluetooth = Bluetooth() # bluetooth
20. adc = machine.ADC() # analog to digital reader
21. apin_reed = adc.channel(pin = 'P19') # reads analog signal on pin 19 (G6)
22.
23. class BLE: # use Bluetooth for sending information
24. def __init__(self):
25. print(' ')
26. print('Bluetooth will send:', str(self.name)) # for testing: print the information to be se

nd
27. bluetooth.set_advertisement(name = str(self.name), service_uuid = b'1123581321345589', servic

e_data = 'FurbsTest')
28. print('Bluetooth activated')
29. bluetooth.advertise(True) # start advertising with values bluetooth.set

_advertisement()
30. pycom.rgbled(0xf) # blue LED to indicate advertisement turned o

n
31.
32. class StopBLE: # timer to stop bluetooth advertisement (coun

ting on background)
33. def __init__(self):
34. self.seconds = 0 # set timer to zero
35. self.__alarm = Timer.Alarm(self._seconds_handler, 1, periodic = True)
36. # start timer and measure every second
37. def _seconds_handler(self, alarm):
38. self.seconds += 1
39. if self.seconds == self.stop:
40. bluetooth.advertise(False) # stop bluetooth advertisement
41. print(' ')
42. print(self.seconds, 'seconds passed #BLE')
43. print('Bluetooth disabled')
44. pycom.rgbled(0xf00) # LED to green
45. alarm.cancel() # stop counting after 'self.seconds' seconds

46.
47. class Minute: # alarm (counting on background)
48. def __init__(self):
49. self.time = 60 # set initial time to 60 seconds
50. self.stop = False # initial value, will change when umbrella is

 closed
51. self.seconds = 0 # initial value
52. self.__alarm = Timer.Alarm(self._seconds_handler, 1, periodic = True)
53. # alarm; steps of 1 second
54. def _seconds_handler(self, alarm):
55. if self.seconds == 1: # for testing: print new cycle is started

56. print(' ')
57. print('new Alarm cylce started')
58. self.seconds += 1 # +1 seconds
59. if self.seconds == self.time - 10: # for testing: print 10 seconds left till end

 cycle
60. print(' ')
61. print('10 seconds left #Alarm')
62. if self.seconds == self.time: # if "self.time" seconds has passed, print th

e elapsed time
63. print(' ')
64. print(self.seconds, 'seconds passed #Alarm')
65. if self.seconds == self.time + 1: # restart counting at 1 second
66. self.seconds = 1
67. if self.stop == True: # when umbrella is closed, stop counting
68. print(' ')
69. print('Alarm cancelled')
70. alarm.cancel() # stop alarm
71.
72. while True:
73. """Start"""
74. pycom.rgbled(0xf0000)
75. active = False # startpoint to see whether DAC and ADC pins

are activated
76. counter = 0 # reset counter measurements piezo sensor to

zero
77. t2 = 0 # reset counter averages piezo sensor to zero

78. total = 0 # reset total to zero
79. timer = False # if True: Alarm is activated
80. send = False # if True: Bluetooth is activated
81. rising = False # if True: running toward maximum
82. val_max = 0 # startpoint maximum value piezo sensor
83.
84. lst1 = [] # lists to print on SD (when umbrella is clos

ed)
85. lst2 = []
86. lst3 = []
87. lst4 = []
88.
89. val_reed = apin_reed() # read analog signal reed switch (when zero:

umbrella is open)
90.
91. if val_reed <= High: # if reedswitch near magnet (value < High), u

mbrella open: start measurements
92. pycom.rgbled(0xf00) # turn LED to green
93. print('Umbrella open, initiating bluetooth')
94. BLE.name = 'HelloWorld' # send HelloWorld to show the umbrella is ope

n
95. StopBLE.stop = 15 # send BLE signal for 15 seconds
96. ble = BLE() # start up class 'BLE'
97. stopBLE = StopBLE() # start counter to stop BLE signal
98.
99. lst1.append('HelloWorld') # add HelloWorld to lists
100. lst2.append('HelloWorld')
101. lst3.append('HelloWorld')
102. lst4.append('HelloWorld')
103.
104. while True: # while umbrella is open:
105. if active == False: # if first measurement loop:
106. apin_sound = adc.channel(pin = 'P15') # use pin 15 (G0) as analog-

digital reader (Piezosensor)
107. dac_sound = machine.DAC('P22') # use pin 22 (G9) as DAC
108. dac_sound.write(1) # maximum voltage over pin 22 (3V3)
109. active = True # return pins activated
110.
111. if active == True: # loop this sequence:

112. if timer == False: # if alarm is not activate, activate a
larm (class Minute)

113. minute = Minute() # call class Minute
114. minute.time = 30 # use a specific timespan in which val

ues will be send over BLE (standard 60 seconds)
115. timer = True # return alarm is activated
116.
117. counter = 0
118. total = 0
119.
120. if minute.seconds == minute.time and send == False:
121. # when "minute.time" seconds have pass

ed and BLE is not activated:
122. send = True # indicates BLE is activated and won't

 redo this loop
123.
124. if counter > 1: # if rain is detected:
125. gem = total / counter # calculate average value per maximum

126. tt = total / minute.time # calculate average value per second
127. var = math.sqrt(float(S) / (counter - 1))
128. # calculate variance per maximum
129. print('total : ', total)
130. print('counter : ', counter)
131. print('S:', S,'M1:', M1,'M2:', M2)
132. print('variance : ', var)
133. print('average : ', gem)
134. print('total/time : ', tt)
135.
136. value1 = tt/1000 # save values in lists
137. value2 = gem
138. value3 = total
139. value4 = counter
140. else:
141. value1 = 'NoRain' # save 'NoRain' in lists
142. value2 = 'NoRain'
143. value3 = 'NoRain'
144. value4 = 'NoRain'
145.
146. t2 += 1 # new cycle
147. print('measurement : ', t2)
148.
149. BLE.name = value1 # send the average value per second
150. StopBLE.stop = 15 # send BLE signal for 15 seconds
151. ble = BLE() # start up BLE
152. stopBLE = StopBLE() # stop BLE signal
153.
154. counter = 0 # reset counter measurements Piezosens

or to zero
155. total = 0 # reset total to zero
156.
157. lst1.append(value1) # save values in lists (SD)
158. lst2.append(value2)
159. lst3.append(value3)
160. lst4.append(value4)
161.
162. if minute.seconds == 1: # reset "send" to False, so when a new

 timespan has passed, BLE can be activated again
163. send = False
164.
165. val_sound = apin_sound() # read value Piezosensor over P15
166.
167. if val_sound > val_max: # if new value is larger than previous

: save new value as maximum
168. val_max = val_sound
169. rising = True # indicate values are rising

170.
171. if val_sound <= val_max and rising == True:
172. # if new value is smaller than previou

s and sequence was rising: previous value was maximum
173. counter += 1 # add 1 to counter
174. total += val_max # add maximum to total
175. if counter == 1:
176. M2 = val_max # set initial value to val_max (varian

ce)
177. S = 0 # set initial value to 0 (variance)
178. else: # calculate new values to determine va

riance at the end of a cycle
179. M1 = M2
180. M2 = M1 + (val_max - M1)/counter
181. S = S + (val_max - M1) * (val_max - M2)
182. rising = False # maaximum is reached, values are drop

ping
183.
184. if val_sound <= val_max and rising == False:
185. # if new value is smaller than previou

s value and trend is dropping: save new value as maximum
186. val_max = val_sound
187.
188. val_reed = apin_reed() # read value reedswitch over P19 (umbr

ella open/closed)
189.
190. if val_reed >= High: # if reedvalue is high, umbrella is cl

osed: stop measuring
191.
192. minute.stop = True # stop alarm
193. bluetooth.advertise(False) # if sending data over BLE; stop it
194. print('umbrella closed, activate bluetooth')
195. dac_sound.deinit() # turn of DAC over pin 22
196.
197. BLE.name = 'ByeWorld' # send ByeWorld to show the umbrella i

s closed
198. StopBLE.stop = 15 # send BLE signal for 10 seconds
199. ble = BLE() # start up BLE
200. stopBLE = StopBLE() # stop BLE signal
201.
202. lst1.append('ByeWorld') # add 'ByeWorld' to lists
203. lst2.append('ByeWorld')
204. lst3.append('ByeWorld')
205. lst4.append('ByeWorld')
206.
207. os.listdir('/sd')
208. f = open('/sd/tt2.txt', 'a') # print lists to SD card
209. f.write(str(lst1))
210. f.close()
211. f = open('/sd/average2.txt', 'a')
212. f.write(str(lst2))
213. f.close()
214. f = open('/sd/total2.txt', 'a')
215. f.write(str(lst3))
216. f.close()
217. f = open('/sd/counter2.txt', 'a')
218. f.write(str(lst4))
219. f.close()
220.
221. print('lists send to SD card')
222.
223. break # break and return to """Start""" (lin

e 72)

