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Executive Summary
Mars has long captured the human imagination as a prime destination for space exploration; how-
ever, the natural satellites, Phobos and Deimos, have often been overlooked. But with the re-
alization of their potential importance to future Mars-bound missions along with the mysteries
surrounding their origins and compositions, there is a growing interest in these moons. Especially
with a pioneer sample-return mission to these moons in the final stages of development, future mis-
sion concepts are already being explored to possibly revisit the moons - particularly by employing
cost-effective low-thrust propulsion systems. Among the low-thrust propulsion options, solar sails
are one of the most fascinating technologies that operate as a propellantless form of propulsion,
relying solely on the the solar radiation pressure exerted by the solar photons. While the potential
of solar sails for visiting Mars’s moons has been briefly mentioned in the past, there is currently
no existing study that thoroughly investigates their application in designing trajectories to Deimos
and/or Phobos.

In this thesis, a solar sail propulsion technique is employed to investigate transfers between the
Earth and a Martian moon for a sample-return mission, with Deimos taken as the case study. The
focus is on designing time-optimal transfers, given the low-thrust nature of solar sails, with the pri-
mary objective of maximizing the duration of stay near the moon for a minimum feasible total mis-
sion duration. To achieve this, an optimal control problem (OCP) is formulated and solved by em-
ploying a direct pseudospectral method implemented through the PSOPT software package. Since
direct methods necessitate a sufficiently accurate initial guess for optimization, the initial guess is
obtained by applying a patched circular restricted three-body problem (CR3BP) method with the
intention to find heteroclinic-like connections between the Lagrange points of two CR3BP systems.
Each leg of the mission, namely the outbound leg from Earth to Deimos and the inbound leg from
Deimos to Earth, traverses three CR3BP systems: Sun-Earth, Sun-Mars, and Mars-Deimos. They
are considered to depart and arrive in the vicinity of Earth at the Sun-Earth (SE) 𝐿2 Lagrange point,
while near Deimos, the target is the Mars-Deimos 𝐿1 point. The departure window from the SE 𝐿2
point for the outbound trajectory is assumed as 2030-2032.

Before proceeding with initial guess generation the necessary dynamical model is set up by iden-
tifying the relevant perturbations in the Mars-Deimos CR3BP system. The initial guess is then
generated by searching for heteroclinic-like connections between the SE 𝐿2 and MD 𝐿1 points, for
which a Monte Carlo and differential evolution method is implemented. The primary objective of
these methods is to minimize position and velocity errors for the solar-sail perturbed stable and
unstable invariant manifolds originating from these Lagrange points, ensuring they fall below a
satisfactory limit to serve as a viable initial guess. During the process of initial guess generation, it
is also found that total mission durations of less than seven years are unattainable, and thus the
maximum limit to the total mission duration is set to eight years. Considering this, the optimal
control problem (OCP) yields a stay duration at the MD-𝐿1 of 329 days, with a total mission duration
of 7.7 years.

While the use of the patched CR3BP approximation successfully yields valid time-optimal transfer
trajectories between Earth and Deimos, the final outcome is considered sub-optimal. This sub-
optimality arises from computational limitations associated with solving many revolution spiral es-
cape and capture trajectories within the Martian system using the direct pseudospectral method.
Consequently, a full end-to-end trajectory optimization is not performed. Instead, the outbound
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and return legs are solved separately, with a partial dependence on each other. Despite this, the
obtained solution is deemed sufficiently optimal for a preliminary mission concept. Furthermore,
extending the same method to Phobos resulted in computational times for producing initial guesses
nine times greater than that for Deimos. This renders the process highly inefficient with the avail-
able computational resources. Therefore, in future, alternative methods such as those employing a
patched 2BP-CR3BP could be considered to generate transfers for similar missions either to Phobos
alone or to both Phobos and Deimos within a single mission.

Nonetheless, this thesis demonstrates the feasibility of designing trajectories to and from the Mar-
tian moons using the fuel-free solar sail propulsion technology. If found to be potentially cost-
efficient compared to existing space propulsion techniques, it will be interesting to see its practical
realisation to explore these enigmatic moons.

iii



Contents

Preface i

Executive Summary ii

List of Figures vi

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Dynamical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Objective and Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Conference Article 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Dynamical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Circular Restricted Three-body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Reference Frames and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Solar sail Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Fourth-body Perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 𝐽2 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Perturbations in the Martian System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Transfer Design Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Initial Guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Monte Carlo Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Differential Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 OCP Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Appendix: Fourth-body Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Conclusion and Future Recommendations 28
3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Future Works and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Bibliography 37

A Verification and Validation 38
A.1 Dynamical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.1.1 Circular Restricted Three-body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.1.2 Frame Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



Contents

A.1.3 Solar sail Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.1.4 Fourth-body Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.1.5 𝐽2 Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.2 PSOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B Numerical Techniques for Initial Guess Generation 49
B.1 Integrator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2 Differential Evolution Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C Moon to Moon Transfer 53

D Sensitivity of the manifold distance parameter 55

E Additional Plots 58

v



List of Figures

1.1 Images of the natural satellites of Mars taken by NASA’s Mars Reconnaissance Orbiter
(MRO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fully deployed Near-Earth Asteroid (NEA) Scout’s solar sail. Its side is the length of a
school bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A.1 Stable and Unstable invariant manifolds associated with the Earth-Moon 𝐿1 point. . . 40
A.2 States of Earth in the heliocentric inertial reference frame (𝐻) . . . . . . . . . . . . . . 41
A.3 Verification of frame transformation from a Sun-Mars CR3BP to a Mars-Moon CR3BP

and vice versa - for position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.4 Verification of the frame transformations between the Sun-Mars and Mars-Deimos

CR3BP - for velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.5 The motion of the Sun in an Earth-Moon system transformed using the analytical ex-

pression using literature [50] and the transformations employed in this thesis (labelled
“Derived”). The transformations used in this thesis assume an inclination and raan of
0deg for generating this plot. Dotted lines are the lines joining the EM barycenter and
the values obtained from the literature formulations. Green and red arrows are the
scaled unit vectors representing the y and x-axis of the EM CR3BP frame, respectively. 43

A.6 Solar sail model verification using the data provided by the author of Ref. [25], Heiligers,
for a lightness number of 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.7 Separate components of the fourth-body perturbation plotted in aMars-Deimos CR3BP
frame, assuming that Deimos’ orbit lies in the ecliptic. The green solid arrow corre-
sponds to acceleration by the fourth body on the particle, the blue arrow is the ab-
solute acceleration between the CR3BP system and the perturber, and the red arrow
indicates the total relative acceleration experienced by the particle. The dashed line
joins the perturber and the particle at a certain instance along its trajectory. . . . . . 44

A.8 Verification of the fourth-body perturbation magnitude. The perturber is the Sun in a
Mars-Phobos CR3BP reference frame planar to the ecliptic. This image is a snapshot
at a particular instance in time for a specific orientation of the Sun. The perturbation
magnitude is given as the ratio of the fourth-body perturbation due to the Sun (|ps| or
|a4|) and the point-mass gravitational acceleration of Phobos (|pm| or |ap|). . . . . . . . 45

A.9 Norm of position and velocity errors between the PSOPT optimal results and reinte-
grated trajectory for leg 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.10Interpolated control profile for the interplanetary phases of leg 1 along with the Legendre-
Gauss-Lobatto (LGL) nodes displayed using black dots. . . . . . . . . . . . . . . . . . . 47

B.1 Position and velocity error for various integrators against the CPU time for the Sun-
Earth case. For each integrator, the position and velocity errors are proportional to
the integrator tolerance - the largest errors are associated with the largest tolerance
(10−5) and the smallest errors with the smallest tolerance (10−11). . . . . . . . . . . . . 50

B.2 Position and velocity error for various integrators against the CPU time for the Mars-
Deimos case. For each integrator, the position and velocity errors are proportional to
the integrator tolerance - the largest errors are associated with the largest tolerance
(10−5) and the smallest errors with the smallest tolerance (10−11). . . . . . . . . . . . . 50

vi



List of Figures

B.3 Convergence of the fitness over the generations for different values of the parameters
- shown for leg 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.1 Results of Monte Carlo analysis showing a scatter plot for the position error, velocity
error and difference in the Jacobi constant computed in the Sun-Mars frame at the
linkages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.2 Relation between position errors, velocity errors and maximum feasible difference in
Jacobi constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.3 Trajectory of the solution with sufficiently low linkage errors employing the locally
optimal steering for a Deimos to Phobos transfer. The zoomed-in image shows the
end state of the stable and unstable manifold at the linkage condition. It is plotted in
the Mars-centered equatorial reference frame. . . . . . . . . . . . . . . . . . . . . . . . . 54

D.1 Classical (ballistic) one-dimensional invariant unstable manifolds propagated for dif-
ferent distance parameters (10−4, 10−6 and 10−10) from the sub-𝐿1 point of the Sun-
Earth system for a solar sail with lightness number 0.01. Unstable branch 1 (in blue)
is the exterior branch while unstable branch 2 (in orange) is the interior branch. The
yellow dot is the Sun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

D.2 Exterior (unstable branch 1 in blue) and interior (unstable branch 2 in orange) un-
stable branches plotted from the SE sub-𝐿1 point for 𝛽 = 0.01. The case labelled
“Literature” corresponds to the plot obtained from reference [71] for 𝜖 = 10−4 with a
cone angle of -20deg. Additionally, 𝜖 = 10−4, 10−5, 10−6 and 10−4 for the same cone
angle are also shown. The case labelled “𝛽 = 0” corresponds to the ballistic case. The
blue dot is the Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

E.1 Perturbations in gravitational acceleration, normalized against the Phobos’ point mass
gravity, at an arbitrary point (x = 1.8) within the Mars-Phobos CR3BP system, observed
from January 1, 2030, to January 1, 2033. . . . . . . . . . . . . . . . . . . . . . . . . . 58

E.2 Selection of the time of flight for the ballistic segment. Mars’ initial position is taken
at J2000, for a circular orbit around the Sun. The black regions indicate no impacts,
while the white grids are associated with impacts with Deimos. This was plotted for
the unstable manifold from Mars-Deimos 𝐿1, the same results were observed for the
stable manifold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

E.3 Position and velocity errors at linkages shown for combinations of cone and clock
angles for mission leg 1. 𝛼1 and 𝛿1 correspond to the cone and clock angles of the
unstable manifold (from Sun-Earth 𝐿2), respectively, and 𝛼2 and 𝛿2 to that of the sta-
ble manifold (from Mars-Deimos 𝐿1). The green crosses represent the designs that
impacted either Deimos or Mars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

E.4 Escape time of flight plotted against the departure epoch for mission leg 2 . . . . . . . 60
E.5 Locations at the Martian sphere of influence at which the trajectories either escape

or get captured. Their respective time of flights within the Martian system are also
specified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

E.6 Frequency distribution of trajectories with spiral time of flights less than 230 days
and greater than 250 days for varying values of the right ascension of ascending node
of Deimos’ orbit on the ecliptic at the time of departure or arrival. . . . . . . . . . . . . 61

E.7 Alternate view of the PSOPT obtained optimal interplanetary trajectories with coordi-
nate axes not scaled equally. It is plotted in the heliocentric inertial reference frame. . 62

E.8 Varying inclinations of trajectories arriving at or departing from the Mars-Deimos 𝐿1
point within the Martian SOI with respect to the Sun-Mars plane. . . . . . . . . . . . . 62

vii



List of Tables

A.1 The estimated and literature positions of the Lagrange points [62]. . . . . . . . . . . . 39
A.2 The estimated and literature eigenvalues for the Sun-Earth CR3BP system [63] . . . . 39
A.3 Discontinuities at the linkages and arrival states for reintegrated trajectories for both

legs. Those at linkages are obtained by forward and backward propagation of two
separate phases while those at arrival are produced by full integration of the inter-
planetary trajectory. The non-dim discontinuity at arrival for leg 1 is computed in the
Sun-Mars frame while the rest is in Sun-Earth. . . . . . . . . . . . . . . . . . . . . . . 46

B.1 Parameters for the tuned differential evolution algorithm for both the legs of the mission. 52

C.1 Characteristic parameters of theMars-Phobos CR3BP system and Phobos’ initial phase
angle. Based on the values provided by NASA/JPL’s Solar System Dynamics group [70]. 53

viii





Nomenclature

Abbreviations

2BP Two-body problem

ABM Adams-Bashforth-Moulton

AEP Artificial Equilibrium Point

AN Ascending Node

CR3BP Circular restricted three-body prob-
lem

DE Differential Evolution

EM Earth-Moon

EoM Equations of Motion

JAXA Japan Aerospace Exploration
Agency

LGL Legendre-Gauss-Lobatto

LPO Lagrange Point Orbit

MC Monte Carlo method

MD Mars-Deimos

MMX Martian Moon eXploration

MP Mars-Phobos

NLP Non-Linear Programming

OCP Optimal Control Problem

PM Planet-Moon

PSOPT PSeudospectral OPTimizer

RK Runge-Kutta

SE Sun-Earth

SM Sun-Mars

SOI Sphere of influence

SP Sun-Planet

SRP Solar Radiation Pressure

ToF Time of Flight

V&V Verification and Validation

Latin Symbols

D Initial guess design variable

l Primer vector

n Sail normal vector

rs Sun-sail line

R Position vector in inertial frame

r Position vector in synodic frame

v Eigenvector

x State vector

𝐵 Sun-sail reference frame

𝐺 Universal Gravitational constant
[m3𝑘𝑔−1𝑠−2]

𝑔1 State linkage error requirement
penalty

𝑔2 Impact penalty

𝐻 Heliocentric inertial reference frame

ℎ Altitude

𝑖 Inclination [deg]

𝐽 Objective Function

𝐽𝐶 Jacobi constant [-]

𝐿𝑖 Lagrange Point, 𝑖 ∈ {1, 2, 3, 4, 5}

𝑙𝑖 Mission legs, 𝑖 ∈ {1, 2}

𝑀 Mars centered reference frame

𝑚 Mass [kg]

𝑝𝑖 Phases of the mission, 𝑖 ∈
{1, 2, 3, 4, 5, 6}

𝑆 Synodic reference frame

𝑡 Time [s, non-dim]

ix



Nomenclature

𝑡𝑙𝑖𝑛𝑘 Linkage fraction

𝑈 Effective gravitational potential

𝑤 DE fitness weights

𝑋, 𝑌, 𝑍 Inertial coordinates

𝑥, 𝑦, 𝑧 Synodic coordinates

Greek Symbols

𝛼 Sail cone angle [deg]

𝛽 Lightness number

𝛿 Sail clock angle [deg]

𝜖 Distance parameter

𝛾 Eigenvalues

𝜆 CR3BP unit of length [km]

𝜇 CR3BP mass ratio [-]

Ω Right ascension of ascending node
[deg]

𝜔 Angular velocity [rad/s]

𝜏 CR3BP unit of time [s]

Superscripts

̈ Double derivative with time

̇ Single derivative with time

̂ Unit vector

̃ Dimensionalized values

∗ Optimal attitude

Subscripts

4 Corresponding to the fourth-body

𝑎𝑟𝑟 Corresponding to arrival

𝑑𝑒𝑝 Corresponding to departure

𝐸 Equatorial

𝐸𝐶 Ecliptic

𝑖𝑔 Corresponds to an initial guess

𝑙𝑖𝑛𝑘 Corresponding to linkage point

𝑠 Corresponding to stable manifold

𝑢𝑠 Corresponding to unstable mani-
fold

x



1 Introduction
Despite the extensive exploration of Mars, the origins and characteristics of its two moons, Phobos
and Deimos, remain largely enigmatic. Currently, there are two main contesting hypotheses re-
garding the origins of the Martian moons. One hypothesis states that they are captured asteroids,
while the other states that they were formed in-situ through accretion either during the formation
of Mars or by a giant impact on Mars [1]. By confirming either hypothesis through observations and
sample-return missions, valuable insights can be gained into either the delivery process of volatiles
to the inner planets or the composition of Mars’ primordial material, and potentially the composi-
tion of its impactor, depending on the confirmed theory [1, 2]. Moreover, the characterisation of
these moons might hold additional significance to the future manned and unmanned exploration of
the Martian system. A platform or orbiter around Phobos and Deimos apart from performing in-situ
science could also be used for monitoring the Martian atmosphere, space weather, data relay for
the Martian and interplanetary spacecrafts (increasing overall bandwidth, mission operation time
and reducing risks during solar conjunctions), in-situ resource utilization and supporting human
Mars surface operations [3]. Additionally, human exploration of Phobos has been suggested as a
precursor for a successful human mission to the Martian surface and if the moons do contain hy-
drated minerals, they could also be exploited for an economical mission to Mars [4]. The scientific
significance of the exploration of these moons, as well as their potential utility in future human
exploration, make Phobos and Deimos a compelling destination for future space exploration efforts
[5]. As a visual reference, the images of Phobos and Deimos are shown in Fig. 1.1a and 1.1b,
respectively.

(a) Phobos (b) Deimos

Figure 1.1: Images of the natural satellites of Mars taken by NASA’s Mars Reconnaissance Orbiter (MRO)1

Recognizing their importance, multiple efforts have been taken in the past to photograph these
moons through missions such as Mariner 9, Viking orbiters and landers, Phobos 2, Mars Recon-
naissance Orbiter, Mars Odyssey spacecraft, Mars Global Surveyor and ESA’s Mars Express, with

1https://photojournal.jpl.nasa.gov/
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a certain bias towards Phobos [6]. To date, three dedicated missions have been launched to Pho-
bos, namely Phobos 1, Phobos 2, and Fobos-Grunt, all of which have failed to accomplish their
objectives [7]. Thus, there has yet to be a successful dedicated mission for the exploration of the
moons.

In recent years, various space agencies have proposed missions to explore the Martian moons,
Phobos and Deimos. Among these are PADME, PANDORA, and MERLIN by NASA [8, 9], DePihne
and PHOOTPRINT by ESA [10, 11], and MMX (Martian Moon eXploration) by JAXA. A few of these
proposals also included a sample-return component in their mission design. So far, only the MMX
mission has been approved and scheduled for launch in 2024 with a mission duration of 5 years,
in collaboration with NASA, ESA, DLR and CNES [12]. The goal of the MMX mission is to uncover
the origins of the Martian moons and gain insight into the circum-Martian environment. This will
be achieved through a combination of remote observations from orbit, sample return from Phobos,
and a rover mission on the surface of Phobos, being developed by DLR and CNES [12].

As of the first quarter of 2022, MMX had begun phase-C of its development schedule and is currently
on track for its planned launch in 2024 [12]. Although a dedicated mission to the Martian moons
with a sample return from Phobos is already underway, there still could be a requirement for
additional missions to the Martian moons. Given the short three-year operation period in the
Martian system, MMX is limited in the amount of science it can collect from both the returned
sample and remote observations, though it is optimized for maximum feasible output [12]. This,
therefore, leaves room for follow-on missions to supplement the scientific return from the MMX
mission [3, 13]. The follow-up spacecrafts can be engineered to maybe offer more coverage, observe
key areas of interest, sample Deimos, perform in-situ analysis, or even return samples from the
other targets of interest on Phobos to complement the data from MMX. For example, if the giant
impact hypothesis for the formation of the Martian moons is confirmed by MMX, the returned
sample may have a disproportionate mix relative to Phobos’ bulk fraction, necessitating further
surface sampling to better understand the proportion of the progenitors that make up the moon [3].
Furthermore, if short mission duration is not a strict requirement, a potentially low-cost mission
using low-thrust propulsion to and from the moons could be a preferred solution.

Compared to their chemical engine counterparts, low-thrust engines provide a more fuel-efficient
propulsion technique. This approach could potentially increase the payload capacity of the mission
and possibly allow for more science; however, at the expense of larger time-of-flight. Several pre-
vious studies have envisioned the use of low-thrust propulsion for the exploration of Phobos and
Deimos [14, 15, 16, 17], but only Englander et al. [18] investigated a sample-return mission using
low-thrust propulsion, specifically Solar Electric Propulsion (SEP). However, it does not explicitly
study the dynamics within the Martian Sphere of Influence (SOI). This study aims to fill this gap
by exploring the feasibility of using a solar sail as the sole low-thrust propulsion technique for
designing a sample-return mission from the Martian moons.

A solar sail, shown in Fig. 1.2, is a low-thrust propulsion technique which propels the spacecraft
by exploiting the solar radiation pressure generated by the photons reflecting off its thin reflective
membrane [19]. The idea of leveraging sunlight to propel in space was first envisioned by Johannes
Kepler in 1607 and was deemed viable when James Clerk Maxwell in 1873 theoretically proved that
light exerts pressure [20]. In fact, solar radiation pressure played a vital role in the Mariner 10’s
success in 1974 when it was actively controlled for the first time using the spacecraft’s solar panels;
it became the first satellite to rendezvous with two planets, Venus andMercury [21]. However, it was
only in 2010 that the first dedicated solar-sail mission, IKAROS, was flown by JAXA [22]. Since
then, several missions have been successful in demonstrating and testing solar-sail technology,
such as NASA’s NanoSail-D2 in 2010 [23], the Planetary Society’s LightSail-1 (2015) and LightSail-
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2 (2017) [24], and most recently Gama’s Alpha (2023) 2.

Figure 1.2: Fully deployed Near-Earth Asteroid (NEA) Scout’s solar sail. It is the length of a school bus.3

Solar sails offer a key advantage over conventional and low-thrust propulsion systems by providing
continuous acceleration without the need for additional expendable fuel, limited only by the sail’s
lifespan. This advantage makes solar sails attractive for a variety of novel missions, for example,
space weather warning missions [25], pole-sitters [26, 27], additional highly non-Keplerian orbits
[28, 29, 30] and futuristic missions beyond the Solar System [31, 32, 33]. Owing to the absence of
fuel, the use of solar sails has also been investigated for sample-return missions from terrestrial
planets and small bodies, with it proving to be a promising form of propulsion to enable a rather
cost-efficient sample-return in a few cases [19, 34, 35, 36, 37]. Extending upon this, solar sails have
also been proposed for a sample-return mission from the moons of Mars [38, 39]. Matloff et al. [39]
evaluated the preliminary feasibility of a solar-sail equipped spacecraft to return samples from the
Martian moons by not only using solar sails for inter-moon transfers within the Martian system but
also by utilizing it to accomplish aerocapture at both Mars and Earth. However, the study did not
include a detailed trajectory design nor did it solely rely on solar-sail propulsion. Additionally, there
is currently no existing literature that specifically addresses the design of a solar-sail trajectory to
the Martian moons, let alone a sample-return mission. Therefore, the current research will focus
on addressing this gap in the literature.

1.1. Dynamical Approach
In most of the previous studies, the trajectories near the Martian moons were designed using three-
body dynamics [16, 40, 41, 42, 43]. This is attributed to the small masses of the moons, and also
the proximity to Mars in the case of Phobos, due to which their sphere of influence is extremely
small compared to their sizes. Thus, making it impractical to have a Keplerian orbit around them.
Therefore, to arrive in the vicinity of Phobos and Deimos a multi-body dynamical model is preferred
[7].

The circular restricted three-body system (CR3BP) is one of the most commonly used multi-body
dynamical models. It comprises of three gravitationally interacting bodies: two celestial bodies and
a spacecraft, whose mass is assumed to be negligible. The CR3BP model reveals several dynamical
structures, such as Lagrange points, Lagrange point orbits (LPOs) and invariant manifolds that
aid in mission design, which otherwise are not easily discernible using a two-body problem (2BP)

2https://gamaspace.super.site/
3https://www.nasa.gov/humans-in-space/nasas-near-earth-asteroid-cubesat-goes-full-sail/
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approximation [44]. For instance, one-dimensional and two-dimensional invariant manifolds asso-
ciated with the Lagrange points and Lagrange point orbits (LPOs) have been employed in the past
to design low-energy efficient transfers between celestial bodies; results of which closely align with
the optimized solutions in a full N-body system [45].

Similar to a patched-conic approach, a system with more than three bodies can be decomposed
into multiple CR3BP systems. A transfer from one celestial body to another can be achieved by
finding intersections between the invariant manifolds originating from the LPOs or Lagrange points
near the bodies of interest present in different CR3BP systems. This modelling technique is known
as a patched CR3BP method, and the trajectories are called heteroclinic orbits or connections [44].
However, intersections between the manifolds for different CR3BP systems do not always exist,
for example: there are no intersections between the Sun-planet CR3BPs of the inner planets. To
bypass this problem, a patched 2BP-CR3BP model was proposed [46]. A study by Park [16] for a
low-thrust mission to Phobos and Deimos used electric-propulsion in a patched 2BP-CR3BP model
for trajectory design, and similarly, Canales et al. [40] employed the same to design Phobos-Deimos
inter-moon transfers.

Alternatively, low-thrust propulsion can be used to replace and manipulate the standard invariant
manifolds to find suitable intersections between the restricted three-body models, as shown by
Mingotti et al. [47] for the Sun-Earth and Sun-Mars CR3BP systems [47]. Likewise, solar sail
perturbed manifolds have also been employed for the transfers between different Sun-Planet CR3BP
systems [48, 49, 50].

For a preliminary trajectory design, a patched CR3BP approach ideally offers a sufficiently accu-
rate model that considers the dominant perturbing bodies. It serves as a good initial estimate
for transitioning to a higher-fidelity ephemeris model for further accurate analysis. Furthermore,
the equations of motion (EoM) governing the CR3BP system can be easily adjusted to incorpo-
rate additional perturbations during the preliminary design phase. Therefore, given the dynamical
constraints near Phobos and Deimos, and the proven feasibility of using solar-sail propulsion for
trajectory design between Earth and Mars using a patched CR3BP, this study employs a patched
CR3BP model. This approach also eliminates the need to define two different sets of EoMs, as
required in a patched 2BP-CR3BP approach.

1.2. Research Objective and Questions
The present research considers Deimos as the case study for designing a sample-return mission
from a Martian moon. Following this and the introduction, the research objective for the thesis is:

“To design solar-sail propelled transfer trajectories by leveraging heteroclinic-like
connections for a sample-return mission from the Martian moon Deimos, with the

objective to maximize the scientific output.”

The research objective can further be achieved by answering the following set of research questions:

1. How feasible is patched CR3BP as a technique to design trajectories for a sample-return mission
from a Martian moon?

2. What is the maximum feasible duration of stay in the vicinity of Deimos for a given possible
minimum mission duration?

1.3. Report Outline
In Chapter 2, the research questions outlined in the previous section will be addressed through
an AAS/AIAA Astrodynamics Specialist Conference paper titled “Solar sail trajectory design for
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a Martian moon Sample-return mission.” The paper structure commences with an abstract and
introduction. It then provides an overview of the dynamical models employed, followed by a dis-
cussion on the trajectory design framework and the method employed to generate initial guesses.
Subsequently, the paper delves into the formulation of the optimal control problem, utilizing the
initial guesses to derive final optimal trajectories. The concluding section summarizes the findings.

Chapter 3 follows the article and addresses the research questions posed. Additionally, the chap-
ter proposes future recommendations based on the obtained results. This is followed by three
appendices: Appendix A is dedicated to the verification and validation of the models employed,
and Appendix B discusses settings for the numerical techniques used in the analysis. Appendix C
offers observations from preliminary analyses focusing on Deimos to Phobos transfer utilizing solar
sail. Appendix D discusses the sensitivity of the distance parameter. Finally, Appendix E presents
additional plots that back the discussions in the article.
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2 Conference Article
This chapter acts as the main body of the report with the content laid down in the form of a
conference article for the AAS/AIAA Astrodynamics Specialist Conference.
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AAS 08-XXX

SOLAR-SAIL TRAJECTORY DESIGN FOR A MARTIAN MOON
SAMPLE-RETURN MISSION

Punit Naresh Gwalani*, and Kevin Cowan†

With a dedicated mission to the Martian moons, Phobos and Deimos, set to launch soon, there
is a growing interest in further exploring these moons using low-thrust propulsion. This paper
investigates the trajectory design for a sample-return mission from Deimos using fuel-free solar
sail propulsion technology, aiming to maximize operational time near Deimos within a mini-
mum permissible total mission duration. Time-optimal transfers between Earth and Deimos are
sought by formulating and solving an optimal control problem using a direct pseudospectral
method. Initial guesses for the direct method are generated by considering a patched circular
restricted three-body problem (CR3BP) approximation and by searching for heteroclinic-like
connections between the Sun-Earth and Mars-Deimos systems using the differential evolution
algorithm. The obtained solution, with a maximum mission duration set to eight years based
on the insights from initial guess generation, results in an optimal duration of stay at Deimos
of 329 days with a mission duration of 7.7 years. Although the patched CR3BP approximation
demonstrated valid transfer solutions for this study, it is deemed computationally inefficient
for future trajectory designs for similar mission concepts targeting either only Phobos or both
moons at once. Nevertheless, the trajectories obtained back and forth from Deimos are suffi-
ciently optimal for a preliminary mission concept and validate the feasibility of achieving such
a mission employing a solar sail.

INTRODUCTION
Mars, despite being one of the focal points of space exploration, still holds mysteries regarding the origin

and characteristics of its moons, Phobos and Deimos. Two contesting hypotheses exist: one states that these
moons are captured asteroids, while the other suggests in-situ formation through accretion or a giant impact.1

Unravelling this mystery can provide valuable insights into either the delivery processes of the volatiles to the
inner planets or Mars’ primordial composition.2 Further, these moons could potentially also hold significance
for future Mars missions, offering platforms for diverse scientific and logistical operations.3

Historically, multiple efforts have been taken to photograph these moons, with a certain bias towards Pho-
bos.4 To date, three dedicated missions have been launched to Phobos, namely Phobos 1, Phobos 2, and
Fobos-Grunt, all of which fell short of their objectives.5 In recent years while several missions have been
proposed to explore the moons,6–9 so far only Martian Moon eXploration (MMX) by JAXA has followed
through, with an expected launch in 2024.10 Although the development of MMX is already underway, there
may arise a future need for additional scientific exploration of the moons. This could serve to either supple-
ment the scientific findings from MMX, including resampling of Phobos, or explore additional targets such
as sampling Deimos, which has received comparatively less attention.3, 10, 11

If short mission duration is not a strict requirement, a potentially low-cost mission using low-thrust propul-
sion to and from the moons could be a preferred solution. Among low-thrust propulsion, one of the fascinating
technologies is a solar sail. It propels a spacecraft by exploiting the solar radiation pressure generated by the
photons reflecting off its thin reflective membrane.12 The idea of leveraging sunlight to propel in space was
first envisioned by Johannes Kepler in 1607 and over the years this has evolved into the concept of a solar
sail.13 Despite being around for almost a century, it was only in 2010 that the first dedicated solar-sail mis-
sion, IKAROS by JAXA, was flown.14 Since then, several missions have been successful in demonstrating

*Graduate Student, Faculty of Aerospace Engineering, Delft University of Technology, Deft, The Netherlands, punitg-
walani27@gmail.com.

†Education Fellow and Lecturer, Faculty of Aerospace Engineering, Delft University of Technology, Deft, The Netherlands.
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and testing solar-sail technology, such as NASA’s NanoSail-D2 in 2010,15 the Planetary Society’s LightSail-1
(2015) and LightSail-2 (2017),16 and most recently Gama’s Alpha (2023) *.

The key advantage of a solar sail over conventional and other low-thrust propulsion systems is its ability
to generate thrust without the need for expendable fuel, limited only by the sail’s lifespan. This capability
enables various missions, which otherwise may not be feasible or cost-effective with other propulsion sys-
tems.17–23 Similarly, the application of solar sails has also been investigated for sample-return missions from
terrestrial planets and small bodies, with it proving to be a promising form of propulsion to enable rather
cost-efficient sample-return for Mercury and Near Earth Asteroids, compared to their conventional counter-
parts.12, 24–26 Building upon this application, the idea of a solar sail for a sample-return mission from the
Martian moons has been tossed around in the past, notably its application in retrieving samples from Phobos
or Deimos as part of a two-spacecraft interplanetary CubeSat.27, 28 However, to date, no trajectory design has
been performed using a solar sail for a mission to and/or from the Martian moons. Thus, this study aims to
design the trajectory for a sample-return mission to a Martian moon, with Deimos as the case study.

Designing a Keplerian orbit around these moons is challenging due to their small sphere of influence (SOI)
compared to their sizes. Therefore, a multi-body dynamical model is preferred to arrive in the vicinity of
Phobos or Deimos.5 To design trajectories to these moons, past studies such as by Park29 and Canales et al.30

have thus incorporated a patched 2BP-CR3BP (two-body problem - circular restricted three-body problem)
approach. In contrast, the present study explores the use of a patched CR3BP approach to design transfers,
where, similar to a patched-conic approach, an N-body system is decomposed into multiple CR3BP systems.
Considering the dominant perturbing gravitational forces along the mission, it can serve as a good initial
estimate for transitioning to a higher-fidelity ephemeris model. Additionally, several previous studies have
demonstrated solar-sail transfers between different CR3BP systems using the same.31–33

In this study, the departure/arrival locations near Earth and Deimos are considered to be the Sun-Earth L2

Lagrange point and the Mars-Deimos L1 point, respectively. For these, heteroclinic-like connections between
different CR3BP systems in the patched model are sought using the Monte Carlo method and differential
evolution. The results obtained from differential evolution then serve as an initial guess for the optimal
control problem (OCP), where a direct pseudospectral method is employed to find time-optimal transfers.

The paper is organized as follows: first, the relevant mathematical models governing the dynamical model
are discussed, along with the relevant perturbations for the analysis. The second section provides an overview
of the transfer design framework, followed by a discussion of the approach and results of the initial guess
generation in the third section. The fourth section presents the optimal control problem and its results, and
finally, the paper ends with a conclusion section.

DYNAMICAL MODEL
As discussed in the previous section, a solar-sail augmented patched CR3BP dynamical framework has

been adopted to design the trajectories for the sample-return mission. Additionally, relevant dominant per-
turbations due to fourth bodies and non-spherical gravity fields have also been incorporated. The following
subsections individually describe the various components of this dynamical framework, including the refer-
ence frame definitions and transformations.

Circular Restricted Three-body Problem

The CR3BP is an autonomous dynamical model that describes the motion of a body with negligible mass
(m3), such as a spacecraft, under the gravitational influence of two larger point masses (m1 and m2), called
the primaries, that move in a circular orbit about their barycenter. Here, the mass of the first primary (m1) is
larger than the second primary (m2).

The motion is described in a barycentric synodic reference frame S(x̂, ŷ, ẑ) that rotates at a constant
angular velocity ω about ẑ as shown in Figure 1. To aid with numerical integration, mass, length, and time
are non-dimensionalized by normalizing with the sum of the masses of the primaries (m1+m2), the distance

*https://gamaspace.super.site/
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between the primaries (λ), and the inverse of the angular velocity (τ = 1/ω), respectively. Consequently, the
masses of the primaries are defined as m1 = (1− µ) and m2 = µ, with µ = m2/(m1 +m2) being the mass
ratio. The equations of motion for the CR3BP model are thus then written as:

ẍ = 2ẏ +
∂U

∂x
+ ax, ÿ = −2ẋ+

∂U

∂y
+ ay, z̈ =

∂U

∂z
+ az (1)

Figure 1: Schematic representation of the
CR3BP and the rotating reference frame
S(x̂, ŷ, ẑ).

where U represents the effective gravitational potential given
by Eq. (2), and ax, ay and az are the components of the total
perturbing acceleration (a). In this study, the total perturbing
acceleration comprises the solar sail acceleration (as), fourth-
body perturbation (a4) and J2 perturbations (aJ2 ), which are
further elaborated upon in subsequent subsections.

U = −1

2
(x2 + y2)− 1− µ

r1
− µ

r2
(2)

For this system, there exists a first integral of motion called
Jacobi Constant (JC), expressed in Eq. (3). A lower JC cor-
responds to a greater energy of a spacecraft in the CR3BP sys-
tem.

JC = 2U − (ẋ2 + ẏ2 + ż2) (3)

Moreover, the CR3BP also has five equilibrium solutions called
the Lagrange points, where a particle with zero velocity expe-
riences no acceleration relative to the rotating frame and are
computed by equating the gradient of the potential to zero
(∇U = 0). Three of the Lagrange points (L1, L2 and L3) are collinear with the primaries along the x-
axis while the other two (L4 and L5) form an equilateral triangle with primaries in the (x̂, ŷ) plane.

Finally, the values of the characteristic parameters (µ, λ and τ ) for different CR3BP systems of interest to
this study are compiled in Table 1.

Table 1: Characteristic parameters of different CR3BP systems. Computed using the physical data for the
planets and satellites provided by NASA/JPL’s Solar System Dynamics group34

System µ [-] λ [km] τ [s]
Sun-Earth (SE) 3.0542 · 10−6 1.495958219 · 108 5.022548 · 106
Sun-Mars (SM) 3.2272 · 10−7 2.279406953 · 108 9.446647 · 106

Mars-Deimos (MD) 2.2462 · 10−9 2.34632 · 104 1.7316 · 104

Reference Frames and Transformations

Given the patched CR3BP approach, the states have to be propagated in three separate CR3BP systems
(Sun-Earth, Sun-Mars and Mars-Deimos). To ensure continuity between trajectories in various CR3BP sys-
tems, and the computation of fourth-body perturbations and solar-sail acceleration within specific systems,
frame transformations are necessary. Consequently, this also requires the formulation of intermediate inertial
reference frames. The subsequent discussion delves into the necessary reference frames and transformations.
Before proceeding with this, a few prior assumptions are stated regarding the orbits of planets and moons:

• Given the small inclination of Mars to the ecliptic, it is assumed that Earth and Mars are planar.

• Given Deimos’ inclination of roughly 1.8 deg to the Martian equatorial plane,34 it is assumed to lie
along Mars’ equator inclined at 26 deg to the ecliptic.

2.2. Dynamical Model
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Inertial reference frames: Three distinct inertial reference frames are defined: the Heliocentric inertial
reference frame H(X̃H , ỸH , Z̃H), Mars-centred ecliptic inertial frame MEC(X̃EC , ỸEC , Z̃EC) and Mars-
centred equatorial inertial frame ME(X̃E , ỸE , Z̃E), where the tilde (˜) denotes dimensional quantities.

The Heliocentric inertial frame, shown in Figure 2 in black, is centred at the Sun, where the X̃H -axis
points towards the vernal equinox (at J2000), Z̃H -axis perpendicular to the ecliptic plane and the ỸH -axis
completes the right-handed reference frame. The Mars-centered ecliptic frame maintains the same orientation
but with only its origin shifted to the centre of Mars. In contrast, the Mars-centred equatorial frame (in green
in Figure 2) has its X̃E-axis aligned with Deimos’ ascending node (AN ) on the ecliptic plane, the Z̃E-axis
is directed perpendicular to the Martian equatorial plane and the ỸE-axis completes the right-handed system.
The orientation of the ME frame relative to the MEC frame is defined by two angles: the inclination to the
ecliptic (i) and the right ascension of the ascending node (Ω), as illustrated in Figure 2. Deimos is assumed
to have a constant Ω equal to 83 deg.34 Alongside the inertial reference frames, Figure 2 also show the
Sun-Mars (SSM (xSM , ySM , zSM )), in blue, and Mars-Deimos (SMP (xMD, yMD, zMD)), in red, CR3BP
reference frames.

Figure 2: Schematic of Heliocentric inertial reference frame H(X̃, Ỹ , Z̃), Sun-Mars CR3BP frame
SSM (xSM , ySM , zSM ), Mars-centred ecliptic inertial frame MEC(X̃EC , ỸEC , Z̃EC) and Mars-centred
equatorial inertial frame ME(X̃E , ỸE , Z̃E).

CR3BP to Inertial frame: The transformation from a synodic CR3BP reference frame to an inertial frame
is described in the following Eqs. (4) - (6). This is only applicable when the z-axis of the CR3BP reference
frame is parallel to the Z̃-axis of an inertial frame. First, the origin of the CR3BP system (barycenter) is
translated to the first primary (for example Sun in Sun-Earth or Mars in Mars-Deimos system) by:

r′ = r+
[
µ 0 0

]T
(4)

following which the position is dimensionalized and rotated clockwise about the z-axis by a phase angle (ϕ),
which is the angle between the reference axis of the inertial frame (X̃H for the heliocentric frame and X̃E

for the Mars-centered equatorial plane, refer Figure 2) and the line joining the primaries:

R̃ = Tz(−ϕ)r̃′ (5)

where Tz is the rotation matrix about the z-axis. Similarly, the velocity in the inertial reference frame is
given by:

˙̃R = Tz(−ϕ)( ˙̃r+ωωω × r̃′) (6)

The phase angle is computed using the Eq. (7):

ϕ = ϕ0 + t (7)

2.2. Dynamical Model
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where ϕ0 is the angle at J2000 and t is the non-dimensional time in the respective CR3BP system. Table 2
lists initial phase angles for all the relevant CR3BP systems.

Inertial to CR3BP: This follows a transformation reverse to the one detailed in the previous section. The
dimensionalized states are non-dimensionalized, translated with respect to the CR3BP’s barycenter and ro-
tated anti-clockwise about the z-axis as demonstrated in Eqs. (8)-(10).

r̃′ = Tz(ϕ)R̃ (8)

r = r′ −
[
µ 0 0

]T
(9)

ṙ = Tz(ϕ)(Ṙ−ωωω × r′) (10)

Using these two frame transformations, states can be converted from one CR3BP system to another, pro-
vided their primaries lie on the same plane. For example, to transform states from SE CR3BP to SM CR3BP,
the process involves two steps: conversion to the heliocentric inertial frame using Eqs. (4)-(6), followed by
the transformation from the inertial frame to the SM CR3BP using Eqs. (8)-(10).

Mars-Deimos CR3BP to Sun-Mars CR3BP: Given the inclined orbit of Deimos, an additional interme-
diate inertial reference frame is necessary to transform states from a MD to an SM CRBP system. The
transformation sequence involves converting from MD CR3BP to the ME frame using Eqs. (4)-(6). This is
followed by a series of rotations specified by Eq. (11) to align the intermediate Mars-centered equatorial ref-
erence frame with the Mars-centered ecliptic frame. The resulting position is non-dimensionalized, translated
to the barycenter of the SM CR3BP reference frame, and then rotated counterclockwise by ϕM as depicted
in Eq. (12). The corresponding velocity is determined by Eq. (13).

R̃EC = Tz(−Ω)Tx(−i)R̃E,
˙̃REC = Tz(−Ω)Tx(−i) ˙̃RE (11)

here, Tx is the rotation matrix about the x-axis.

rSM = Tz(ϕM )REC + [1− µSM 0 0]T (12)

ṙSM = Tz(ϕM )(ṘEC −ωωω ×REC) (13)

Sun-Mars CR3BP to Mars-Deimos CR3BP: This follows the reverse of the previous transformation se-
quence. Initially, the synodic position in the Sun-Mars CR3BP is translated to the Mars centre through Eq.
(14). Subsequently, rotation to the inertial Mars-centered ecliptic frame is performed, aligning with MEC

using Eq. (15). Finally, the states are transformed from MEC inertial frame to Mars-Deimos CR3BP using
Eqs. (8)-(10).

r′ = r−
[
1− µ 0 0

]T
(14)

R̃E = Tx(i)Tz(Ω)R̃EC,
˙̃RE = Tx(i)Tz(Ω)

˙̃REC (15)

Table 2: Initial phase angles for difference systems corresponding to their respective reference axes (XH for
SE and SM, XE for MD). These values are based on the JPL’s online Horizon ephemeris system.34

SE-CR3BP SM-CR3BP MD-CR3BP
ϕ0 [deg] 100.378 359.433 172.321

2.2. Dynamical Model
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Solar sail Acceleration

The solar sail model considered for this study is a one-sided ideal solar sail that assumes a pure specular
reflection of the incident photons with only a single reflective side.12 Thus, the acceleration due to the solar
radiation pressure (SRP) always acts along the sail’s surface normal n̂ away from the Sun. Figure 3 defines
the sail-centred sun-sail reference frame B(r̂s, q̂, p̂), where r̂s is along the sun-sail line. The attitude of the
sail is expressed through the cone (α) and clock angle (δ) as seen in Figure 3. The cone angle is the angle
between the sail normal and the sun-sail line, while the clock angle is the angle between the projection of the
sail’s normal on (q̂, p̂) plane, d̂, and p̂. Hence, the normal vector in the sun-sail frame is given by:

n̂B =
[
cosα sinα sin δ sinα cos δ

]T
(16)

Figure 3: Definition of the sun-sail frame
B(r̂s, q̂, p̂) and the corresponding solar sail
attitude angles. Vector d̂ is the projection of
the normal vector on the (q̂, p̂) plane.

As the sail cannot generate acceleration towards the Sun, the
cone angle is constrained within the range [−90, 90] deg and
the clock angle takes all values within [0, 180] deg. In a CR3BP
system, the orientation of the sail can be defined by transform-
ing the normal vector as:

n̂ =
[
r̂s q̂ p̂

]
n̂B (17)

The formulation of the solar-sail acceleration varies depending
on whether the Sun is one of the primaries or a fourth-body.
For a Sun-Planet (SP) CR3BP system where the Sun is located
at −µ from the barycenter, the acceleration is formulated as:

as|SP = β
1− µ

r21
(n̂ · r̂1)2n̂ (18)

here r̂s = r̂1 (refer Figure 1) and β is lightness number that
signifies the percentage of solar gravitational acceleration that
is equivalent to the exerted SRP acceleration. For this entire
study, the lightness number is assumed to be 0.05, which is
considered to be a realistic near-term value.33

However, for a Planet-Moon (PM) CR3BP system the mo-
tion of the Sun with respect to its barycenter has to be ac-
counted for, rendering the PM system non-autonomous. This sail acceleration in a PM system is hence
expressed as:

as|PM = β
Gmsun

r23,s

τ2

λ
(n̂ · r̂3,s)2n̂ (19)

where G is the universal gravitational constant, msun is the mass of the Sun, and r3,s = r − s is a vector
from the Sun to the sail, with s being the position vector of the Sun in the PM system. The Sun’s position
in the PM-CR3BP is computed by transforming its state in the SM CR3BP frame, [−µ, 0, 0, 0, 0, 0]T , to the
MD CR3BP frame.

Fourth-body Perturbation

Two reasons necessitate the inclusion of fourth-body perturbations. Firstly, a study by Kardec and Berta-
chini35 showed that the Sun’s perturbation in the Mars-Phobos CR3BP system was the largest compared to
any other Planet-Moon pairs in the Solar System. This finding indicates that a pure CR3BP approximation
may not accurately model transfer trajectories in the similar Mars-Deimos system, necessitating the incorpo-
ration of external gravitational perturbations. Building upon that, the specific fourth bodies relevant within
the Martian system will be discussed in the subsequent section. Secondly, the transfers in this study are
modelled by patching different CR3BP systems, and to maintain consistency in the dynamics during the tran-
sitions between systems, fourth-body perturbations are incorporated.33 Hence, Mars acts as a fourth body
while propagating in the Sun-Earth system, and vice versa.
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This perturbing acceleration from an external body is computed as:

a4 =
∂U4

∂r4
(20)

where,

U4 = µ4

(
1

r3,4
− r · r4

r34

)
(21)

where, r4 is the position vector from the barycenter to the fourth body, r3,4 is the position vector from the
particle (spacecraft) to the fourth body which is given as r3,4 = r4 − r, and µ4 is the dimensionless gravita-
tional parameter of the fourth body with respect to the specified CR3BP system. Equation 20 represents the
relative acceleration acting on the sail which not only accounts for the absolute acceleration experienced by
the sail solely due to the fourth body but also the fourth-body acceleration acting on the CR3BP system.36

The state of the fourth body in the desired CR3BP system can be computed by assuming the perturber to be
the second primary in a Sun-perturber CR3BP system. From this, its state, [1 − µ 0 0 0 0 0]T , can
be transformed to the respective CR3BP system using one of the relevant transformations discussed earlier.

J2 Perturbation

The gravitational field of a non-uniform body can be modelled using a spherical harmonics series, of which
the acceleration associated with the oblateness of a body is the dominant term and is called J2 perturbation.
In a CR3BP the acceleration due to the oblateness of the primaries is computed as:

aJ2 =
∂UJ2

∂r
(22)

where UJ2,1 corresponds to potential of smaller primary while UJ2,2 for the larger, and they are given as:

UJ2,1 = −1

2
J21

1− µ

r31

(
R1

λ

)2[
3

(
z

r1

)2

− 1

]
(23)

UJ2,2 = −1

2
J22

µ

r32

(
R2

λ

)2[
3

(
z

r2

)2

− 1

]
(24)

here, R1 and R2 are the radius of the smaller and larger primaries in dimensional units, respectively. Con-
stants J21 and J22 are the corresponding harmonic coefficient, values for the bodies under investigation are
given in Table 3.

Table 3: J2 coefficients of different bodies.34, 37, 38

Mars Phobos Deimos
J2 coefficient 0.0019566 0.1042085 0.107935

Perturbations in the Martian System

In this section, the relevant perturbations are identified for trajectories propagated in the Martian system.
The perturbations considered for this analysis include the fourth-body effects due to the Sun, Earth, and
Jupiter, perturbations due to the oblateness of Mars, Phobos, and Deimos, and the planetary radiation pressure
from Mars, Phobos, and Deimos. A perturbation is regarded relevant if its maximum acceleration is not less
than two orders of magnitude lower than the maximum sail acceleration (α = 0) for a sail with a lightness
number of 0.05 at Mars’ distance from the Sun.

Based on Zamaro and Biggs’s findings,39 the planetary radiation pressures are immediately deemed irrele-
vant given their values being at least three orders lower than the solar-sail acceleration in the position space
beyond Phobos’ orbit. Among the fourth-body perturbations (a4), only the gravitational influence due to the
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Sun is identified as significant, as illustrated in Figure 4(a). The figure shows the maximum accelerations due
to the fourth bodies computed over three years (which accounts for the periodicity of all fourth body perturba-
tions) and plotted along the positive x-axis of the MD CR3BP system. This one-dimensional variation holds
for the entire MD position space, as evidenced by the concentric variations in the maximum accelerations
seen in the appendix Figure 16 for the Sun and Jupiter.

The perturbation by Mars’ J2 is notably significant at lower altitudes but falls rapidly below the set criteria
beyond Deimos’s orbit. Nonetheless, given its significance near Deimos, it will be considered in this study.
In contrast, the contributions from the J2 components of the moons, as depicted in Figure 4(b), are negligible
at large distances and thus not relevant here.

(a) (b)

Figure 4: One-dimensional variation of different perturbations normalized against the maximum sail accel-
eration at that distance. (a) Maximum accelerations of the fourth bodies computed over three years and J2
perturbation by Mars, calculated in MD CR3BP. Shown along the positive x-axis in the MD frame. (b) Pho-
bos and Deimos J2 acceleration computed from their surfaces along the positive x-axis in their respective
CR3BP frames away from Mars. Vertical Dashed lines indicate their respective L2 points.

TRANSFER DESIGN FRAMEWORK
The sample return mission consists of two legs: leg 1 (l1) represents the outbound trajectory, departing from

the SE-L2 point and arriving at the MD-L1 point, while leg 2 (l2) represents the inbound return trajectory.
Each of these legs is further divided into three phases (p), which model distinct dynamical systems based on
the nearby gravitational bodies: Sun-Earth, Sun-Mars, and Mars-Deimos CR3BP.

Figure 5: Definition of mission phases and legs.

The objective of the transfer design is to find solar sail trajectories that minimize the transfer duration of
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the spacecraft, thereby maximizing the stay time near the Martian moon (at the MD-L1 point) and enhancing
scientific output within a given mission timeframe. The minimum feasible total mission duration will be
decided based on the results obtained in the following section. This ensures that, along with increasing the
potential scientific output by maximizing the stay duration, the operational costs of the mission are kept in
check by limiting the total mission duration. This study adopts a launch period of 2030-2032, following the
return of samples from MMX in 2029.10

To achieve the desired objective, an optimal control problem will be solved by employing a direct method to
find the optimal sail control law (cone and clock angles), and the corresponding departure and arrival epochs.
Prior to this, given the direct methods’ dependence on an initial guess, first-guess sub-optimal trajectories
will be found using the Monte Carlo method and Differential Evolution algorithm.

INITIAL GUESS

As stated earlier, initial guesses are generated using a patched CR3BP approach. This involves connecting
solar-sail perturbed stable and unstable manifolds from the Lagrange points of the Sun-Earth and Mars-
Deimos systems. In the classical case, i.e. when the sail acceleration is not considered, a stable manifold is
a ballistic trajectory that approaches the equilibrium point while an unstable manifold moves away from the
point. These one-dimensional manifolds associated with the Lagrange points are computed by integrating
an initial state that is slightly perturbed in the direction of the unstable or stable eigenvector. This initial
perturbed state is:

x0,s = x± ϵvs, x0,u = x± ϵvu (25)

where x0,s and x0,u are the initial perturbed state associated with the stable and unstable manifolds for the
eigenvectors vs and vu, respectively. The small perturbation, denoted by ϵ, is taken as 10−4. The signs (±)
in the Eq. (25) depict the interior or exterior branches of the manifold; for the given application, the signs
associated with the exterior branches are chosen.

For the first leg, a solar-sail perturbed unstable manifold is propagated forward in time from SE-L2, while
a stable manifold from MD-L1 is propagated backwards. Once the trajectory from Deimos reaches the
Martian sphere of influence (SOI) (refer Figure 5), states are transformed to the Sun-Mars CR3BP frame and
continued to be integrated backwards. On the contrary, the second leg involves forward propagation in the
MD and SM systems, with simultaneous backward propagation in the SE system. Note that the trajectories
passing between the MD and SM frames are continuous with no state discontinuities.

The initial guesses assume that the sail attitude remains constant in the SE and SM systems. However,
a locally optimal tangential control law for the sail is implemented for the trajectories in the MD systems
(phases 3 and 4). This is because, unlike the Earth-Moon system where past studies assumed a constant
sail attitude,31, 40 owing to the low mass and proximity of the moons to Mars, a fixed sail attitude proves
inadequate for generating trajectories capable of manipulating energy to reach the Martian SOI. Hence, when
shifting from the Mars-Deimos phase to the Sun-Mars phase, the control law is switched from a tangential
control to a fixed attitude control (or vice-versa).

Based on Eq. (26), a tangential control law produces low time-of-flight trajectories by maximizing the rate
of change in the Jacobi constant by directing thrust either along or against the instantaneous velocity vector
in the synodic frame.41

˙JC = −2as · vSM (26)

In Eq. (26), vSM is the instantaneous velocity vector of the spacecraft in the Sun-Mars CR3BP. For a
Mars escape trajectory, the thrust acts along the velocity vector, maximizing energy. In contrast, for a capture
trajectory spiralling inwards to the Lagrange points of the MD system, thrust acts opposite the velocity vector,
minimizing energy. However, since trajectories within the Martian SOI are propagated in the MD system,
and the rate of change of JC is maximised/minimised in the SM system, the velocity vector in the SM system
must be represented in the MD system. This transformation is achieved using Eq. (27).
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vSM|MD =

ẋẏ
ż


MD

+

 −y + y τMD

τSD

x+ µ+ (x+ µ) τMD

τSD

0


MD

(27)

Figure 6: Ideal solar sail acceler-
ation bubble in the (r̂s, d̂) plane.

Given that a solar sail is constrained by its inability to produce acceler-
ation facing the Sun, the sail normal cannot always point in the desired
direction. Nonetheless, the sail acceleration acting along it can be maxi-
mized using Eqs. (28) and (29), adapted from the locally optimal steering
laws introduced by McInnes.12

α∗ =
1

2

[
αl − sin−1

(
sinαl

3

)]
(28)

δ∗ = δl (29)

where α∗ and δ∗ are the locally optimal attitude angles, and αl and δl
are the attitude angles of primer vector l̂, i.e. the reference direction
(±vSM|MD here) for desired acceleration, as shown in Figure 6. The
figure shows a sail acceleration bubble plotted in the plane (r̂s, d̂) (see
Figure 3), representing the maximum attainable acceleration by a solar
sail corresponding to a certain cone angle, and the optimal sail normal
(n∗) that maximizes the sail acceleration along the desired reference di-
rection (̂l). Note that the primer vector is not subject to any constraints
regarding the attitude angles it can take.

Additionally, note that this locally optimal steering is not immediately
implemented when propagating the sail-perturbed manifolds near the moons. Instead, a brief 0.25 day bal-
listic segment (classical manifold) is included in the moon’s vicinity. This addresses trajectories that might
otherwise impact the moon immediately, depending on the Sun’s relative position in the MD CR3BP. The
selected duration ensures that the spacecraft reaches an adequate distance from the moon before initiating
powered flight, and was determined through a grid search over different epochs for a single Martian year.

Design Approach

Alongside assuming a constant and locally optimal steering law, initial guesses are generated by also ne-
glecting certain perturbations. Additionally, minor discontinuities in position (∆r) and velocity (∆v) between
the forwards and backwards propagated trajectories are permitted, as long as they remain feasible enough for
the direct method to solve. Feasibility in this context is considered if ∆r ≤ 10−3 (1.5e5 km) and ∆v ≤ 10−2

(0.30 km/s) in the Sun-Earth CR3BP frame.31 Thus, yielding a sub-optimal solution for each individual leg.
The design variable D for this optimization problem is:

D =
[
tdep tarr tlink αus δus αs δs

]T
(30)

Here, tdep and tarr represent the departure and arrival epochs of a leg, respectively, in SE dimensionless time
unit. The variable tlink is the linkage time fraction, defined as the ratio of the forward propagated trajectory’s
ToF in the interplanetary phase (phase 1 for leg 1 and phase 5 for leg 2) to the total ToF of the interplanetary
phase, i.e. between the SE-L2 point and the Martian SOI. The variables (αus, δus) and (αs, δs) are the
constant sail attitude angles associated with the unstable and stable manifolds, respectively. Note that while
the trajectory when switching between the MD and SM phases remains continuous in state, the control may
not be continuous.

The first step is to perform a Monte Carlo (MC) analysis for each leg to explore the design space while
evaluating the ToF, ∆r and ∆v as objectives. The insights of this are then used to perform a more refined
search using the differential evolution (DE) algorithm. Except for the departure epoch, arrival epoch and
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cone angles, the bounds for the design parameters are the same for both legs. The departure epoch always
spans one Earth-Mars synodic period while the arrival epoch is computed based on the possible maximum
and minimum ToF inferred from literature. The bounds for cone angle for the outbound trajectory is [0, 90]
deg and for the inbound leg is [−90, 0] deg.

The following is an example of the first leg of the mission: departure epoch (tdep) spans one Earth-Mars
synodic period from Jan 01, 2030, 12:00 noon. The arrival epoch tarr ranges between Nov 01, 2032 and Nov
01, 2036. This is determined by considering both the maximum (1400 days) and minimum (900 days) ToF
achievable for a solar sail to travel between Earth and Mars based on past literature,31–33 and an analytical
estimate, Eq. (31), for the ToF of locally-optimal solar-sail escape trajectories from a planetocentric system,
adapted from McInnes,12 which for Deimos is 261 days. Next, the linkage fraction tlink is considered to vary
between 0.1 and 0.9. Finally, the cone angles αus and αs fall within [0, 90] deg, while the clock angles δus
and δs within [0, 180] deg.

ToFesc =
λ2
SM

√
Gmmars

0.4393β · λ0.5
MD ·Gmsun

(31)

In Eq. (31), msun and mmars denote the masses of the Sun and Mars, respectively.

Monte Carlo Analysis

The Monte Carlo analysis is performed assuming no perturbations (fourth-body and Mars J2) in all three
phases. The analysis found no clear correlation between the state error at linkages, ToF, and cone and clock
angles. This is attributed to the fact that the attitude angles required to obtain a feasible trajectory depend on
the arrival and departure epochs and thus will have the same bounds moving forward. However, the bounds
for the linkage fraction (tlink) are narrowed to [0.2, 0.8] as this ensures that trajectories in the Sun-Mars phase
(p2 and p5) move sufficiently away from Mars, avoiding flybys and impacts with Mars. Nonetheless, much
like the attitude angles, the linkage fraction lacks a strong correlation with the objectives.

Figure 7: Time of flight to spiral towards the Mars-Deimos L1 point plotted against the arrival epoch at L1.
Vertical dotted lines encapsulate one of the regions with smaller capture times.

The departure and arrival epochs, on the contrary, exhibit a strong correlation with the linkage position and
velocity errors. Additionally, it is also observed that the time of flight for both the capture trajectory to the
moon and the escape trajectory to the Martian SOI follow a periodic trend that repeats every half Martian year
(roughly 0.94 years), as depicted in Figure 7 for the first leg. Here a minimum ToF of roughly 225 days is
attainable, and the same was observed for the second leg as well. This periodicity is attributed to the relative
position of Deimos at arrival/departure, specifically the orientation of Deimos’ orbit in the Sun-Mars frame.
For certain orientations of the orbit, the level of sail acceleration is maximum along the trajectory. When
viewed in the Sun-Mars frame, the ascending node of Deimos’ orbit in the SM frame “precesses” with time,
shown in Figure 8, and a given orientation of the orbit repeats itself every half a Martian year. Additionally,
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it was also observed that all the trajectories, as expected, escape the SOI from the anti-Sun direction given
the sail’s inherent inability to point towards the Sun.

Figure 9 illustrates regions where position errors below 2 · 107 km and velocity errors below 1 km/s are
achievable for the first leg of the mission to Deimos, for various arrival and departure epochs.

Figure 8: Orbit of Deimos plotted over a pe-
riod of four months in a Sun-Mars CR3BP
system.

The feasible region, confined by the inclined dashed red line,
aligns with the minimum ToF estimate made from the litera-
ture. White scatters mark points with the lowest ∆r and ∆v
in the solution set, while green crosses denote epochs where
the spacecraft impacts Deimos post-departure, and considering
the moon’s short orbital period (1.2 days), no specific trend is
observed for these impacts. The vertical black dotted line cor-
responds to the region from Figure 7, where, for given arrival
epochs, the spiral times of the trajectories are minimum. The
region enclosed within this (shaded in grey in Figure 9) is the
refined search space for DE, providing not only feasible solu-
tions with potential minima but also shorter ToFs.

Figure 10 presents a similar plot for the second leg. Given
the chosen DE region for leg 1, a minimum total mission
time of seven years appears to fall within the infeasible region
of Figure 10, where linkages between the manifolds cannot
be found. Therefore, henceforth, a maximum mission time-
frame of eight years will be considered, potentially allowing
for a maximum one-year stay near Deimos. Finally, the epoch
bounds for DE of leg 2 will be determined by DE-optimized solutions of leg 1 and Figure 10. The leg 2
departure epoch will extend from the arrival epoch of the DE-optimized leg 1 solution to the maximum per-
missible departure epoch for leg 2 as per Figure 10, i.e. 2035.50. The leg 2 arrival epoch will be constrained
by the minimum permissible arrival epoch from Figure 10 and the DE-optimized departure epoch of leg 1
plus eight years. Note that, unlike for leg 1, these epoch bounds are not constrained by the smaller escape
ToF limits.

Figure 9: ToF contours for regions with ∆r ≤ 2 · 107 km (left) and regions with ∆v ≤ 1 km/s (right).
Plotted for the first leg (outbound trajectory) of a Deimos sample return mission. The transparent grey area
is the overlap of the feasible region in both ∆r and ∆v plots and acts as the restricted design space for the
differential evolution.
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Figure 10: ToF contours for regions with ∆r ≤ 2 · 107 km (left) and regions with ∆v ≤ 1 km/s (right).
Plotted for the second leg (inbound) of a Deimos sample return mission.

Differential Evolution

While the MC analysis provides insights into the design space, it falls short in generating results that
satisfy the ∆r ≤ 10−3 and ∆v ≤ 10−2 requirements given the highly non-convex nature of the design space.
Achieving feasible designs would demand a larger number of samples, leading to increased computational
effort. To address this, differential evolution is applied with the same design variable D (Eq. (30)), building
upon insights gained from the MC analysis. DE focuses on a narrowed search space, as outlined in the
previous section, for each leg of the mission separately. Additionally, for DE, the spiral trajectories in the
MD system are propagated considering the Sun’s gravity and Mars’ J2 effect.

For leg 1, accounting for the minimization of the state error at the linkages and the time of flight, the fitness
function formulated is given by Eq. (32).

Jl1 = k(∆rl1 + w1∆vl1) + w2(tarr,l1 − tdep,l1) + g1 + g2 (32)

Here, ∆rl1 and ∆vl1 denote the position (in km) and velocity (in km/s) errors at the linkage, respectively.
To address their magnitude difference, the weight w1 scales the velocity error. The term (tarr,l1 − tdep,l1)
represents the time of flight (in days) for the first leg, with w2 as the corresponding weight. The binary
variable k ensures that once the minimum requirement for linkage state errors is met, the focus shifts to
further minimizing the ToF, as defined in Eq. (33). Additionally, g1 and g2 serve as penalty functions.
Due to the problem’s complexity, g1 penalizes fitness values deviating from the set requirements (Eq. (34)).
Meanwhile, g2 is a death penalty, set to 1020, penalizing the objective for trajectories that impact either
Deimos or Mars.

k =

{
1 if ∆rl1/l2 > 1.5 · 105 km and ∆vl1/l2 > 0.3 km/s
0 if ∆rl1/l2 ≤ 1.5 · 105 km and ∆vl1/l2 ≤ 0.3 km/s

(33)

g1 = 100 ·max(0, (∆rl1/l2 + w1∆vl1/l2)− 106) (34)

For leg 2, the objective function, Eq. (35), is formulated similarly, with the only difference being the
second term (tarr,l1 − tdep,l2 ). The minimization of this term increases the stay time near the moons for the
arrival epoch obtained by optimizing Eq. (32).

Jl2 = k(∆rl2 + w3∆vl2) + w4(tarr,l1 − tdep,l2) + g1 + g2 (35)
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Note that, because the arrival epoch bounds of leg 2 depend on the departure epoch of leg 1 and the eight-
year mission time constraint, the escape spiral from MD-L1, unlike the capture spiral trajectory of leg 1 that
considers a restricted design space (Figure 9), might not result in minimum spiral time.

Following the tuning of the DE algorithm, the initial guesses obtained for both legs are listed in Table 4.

Table 4: Initial guesses obtained from differential evolution.

Leg 1 Leg 2
∆r [km] 1.59·104 1.21·105
∆v [km/s] 0.12 0.28
tdep Aug 12, 2030 Nov 20, 2034
tarr Mar 16, 2034 Aug 08, 2038
αus [deg] 54.42 -40.28
δus [deg] 79.29 75.27
αs [deg] 23.20 -14.66
δs [deg] 100.29 68.66
Stay time [days] 249

OPTIMAL CONTROL PROBLEM
To tackle the infinite-dimensional low-thrust optimization problem, this study employs a direct pseu-

dospectral method as the optimal control algorithm. The primary objective is to maximize the duration of stay
in the vicinity of the moon. While the ideal scenario to achieve this objective involves simultaneously solving
both legs of the sample-return mission (as depicted in Figure 5), the trajectories in phases 3 and 4, involving
numerous revolutions, are not considered in the optimisation due to computational limitations encountered
while employing the direct pseudospectral method. As a result, only the sub-optimal tangential steering law
is considered for these phases, and both the legs are solved separately. Nevertheless, it is worth noting that
existing literature suggests that the locally optimal steering law for the escape/capture trajectories provides
solutions that align very closely to the optimal solutions found using the optimal control theory.12, 42

Problem Definition

The optimization of both legs is performed separately while being partially dependent on each other. First,
phases 1 and 2 of leg 1 are solved for minimum transfer time, utilizing the initial guess generated in the pre-
vious section but also incorporating fourth-body perturbations. The objective function is defined by Eq. (36):

J = tf − t0 (36)

where for leg 1, t0 is the epoch of departure from the SE-L2 point and tf is the epoch at the Martian SOI.

The states (x), defined in the respective CR3BP system, and control (u) associated with the OCP consid-
ered are:

x =
[
x y z ẋ ẏ ż

]T
(37)

u =
[
α δ

]T
(38)

here the bounds for the control are α ∈ [−90, 90] deg and δ ∈ [0, 90] deg, taking the full range of feasible
values for the control angles, unlike during the initial guess generation, giving the optimizer more flexibility.

Furthermore, the trajectory is subject to boundary constraints, ensuring its departure from the SE-L2 point
and arrival at the Martian SOI with states and controls equal to the final state and control of the backward-
propagated initial guess trajectory from phase 3, represented in the Sun-Mars frame. These constraints are
expressed through Eqs. (39) and (40).

x0l1,p1
= xSE−L2 (39)
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xfl1,p2
= x0ig,p3

, ufl1,p2
= u0ig,p3

(40)

where the subscripts li, pi and ig refer to the leg number, phase number, and initial guess, respectively. The
symbols 0 and f correspond to the initial and final values of the variable for the denoted phase.

Since both phases 1 and 2 are solved in different CR3BP frames, linkage constraints on states, controls and
time are applied to ensure a continuous trajectory as follows:

xfl1,p1
= x0l1,p2

, ufl1,p1
= u0l1,p2

, tfl1,p1
= t0l1,p2

(41)

In this formulation, the state constraints are defined in the Sun-Earth frame, requiring the states of SM CR3BP
to be transformed to the SE frame at linkage. Since the control is defined in a sun-sail frame, it need not
undergo any transformation.

Given that the arrival time of phase 2 at the Martian SOI is constrained by the initial guess, the sole variable
in the objective function (Eq. (36)) is the departure epoch. It is thus the departure epoch that is optimized
to minimize the total ToF of the first leg, up to the SOI. The trajectory beyond this point (i.e., for phase 3,
involving the spiral into the Martian system) has already been generated as part of the initial guess.

Recall that the maximum bound for the arrival epoch of leg 2 is determined by the leg 1 departure epoch
plus eight years. Therefore, the newly optimized departure epoch of leg 1 is utilized to calculate the maximum
arrival epoch for the return leg based on the maximum eight-year mission timeline. Subsequently, a new
initial guess is generated for the return trajectory by employing the already-tuned DE algorithm. The updated
maximum limit on the arrival epoch of leg 2 is expected to surpass that obtained from the departure epoch of
the initial guess of leg 1. Consequently, the new estimate from DE for the return leg is anticipated to increase
the duration of stay at Deimos further.

The new initial guess for the return trajectory is then subjected to the same optimal control problem (OCP)
described in Eqs. (36)-(41), but for phases 5 and 6. In these phases, the arrival epoch at SE-L2 serves as the
free variable, while the departure epoch from MD-L1 is constrained at the SOI based on the spiral escape
trajectory generated using DE.

OCP Solver

PSOPT,43 a C++-based open-source software package, is used to implement the direct pseudospectral
method for the local optimization of the initial guess. This method discretizes the continuous control and
state variables on a finite time grid, reducing an infinite-dimensional optimal control problem to a finite-
dimensional parameter optimization problem that is solved as a non-linear programming problem (NLP). This
study uses the Legendre pseudospectral method, which approximates the states and controls using Legendre
polynomials at Legendre-Gauss-Lobatto nodes that serve as the finite time grid. The NLP solver used is
IPOPT.

The motivation to opt for a pseudospectral method for the OCP is threefold. Firstly, pseudospectral meth-
ods provide high convergence rates and enable accurate solutions even with relatively coarse grids.44 Sec-
ondly, numerous studies, such as those by Heiligers et al.,33 Vergaaij et al.,31 and Bakx et al.,45 have suc-
cessfully employed pseudospectral methods for their OCPs with similar dynamics. Lastly, its accessibility
through an open-source software makes it a convenient choice. Additionally, given that the OCP under con-
sideration involves multiple phases, nonlinear path constraints, bounds on state and control variables, free
initial and final conditions, as well as linkage constraints - all of which align with the capabilities of PSOPT
- it is the preferred tool for this study.

Results

The time-optimal interplanetary trajectory for leg 1, generated by PSOPT, is presented in Figure 11(a),
plotted in the heliocentric inertial frame. Additionally, Figure 11(b) illustrates the capture trajectory that
employs the locally optimal steering within the Martian SOI, and is plotted in the SM CR3BP frame. The
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control profile for these trajectories is given in Figure 12. The solution obtained from PSOPT clearly satisfies
the linkage and boundary constraints as seen in these figures, and produces a result that has a time-of-flight
shorter than its initial guess as evident from Figure 12.

Looking at the control profile (Figure 12) and thrust vectors (Figure 11(a)) for the interplanetary phases,
it can be observed that the optimal result consists of a significant non-planar thrust segment in the second
phase. This steadily changes the inclination of the trajectory to rendezvous with the end state at the SOI.

(a) (b)

Figure 11: Trajectories for leg 1 of the mission. (a) Interplanetary transfer shown in the heliocentric inertial
frame. (b) Capture trajectory shown in the Sun-Mars CR3BP frame

Figure 12: Control profile for the outbound trajectory to Mars-Deimos L1 point. The solid lines are the
outputs from PSOPT, while the dashed lines are the initial guesses obtained through differential evolution.

In phase 3, the locally optimally steering law gradually reduces the inclination of the orbit, to the SM plane
(ecliptic), until it reaches MD-L1, as observed in Figure 11(b). This also explains the gradual increase in
the maximum and minimum cone angles for the spiral capture trajectory depicted in Figure 12. Because this
phase was computed by propagating backwards in time, a more intuitive understanding of this control profile
can be gained by reversing the time perspective. Recall that the locally optimal steering law does not target
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a specific end state; rather, it only aims to maximize the rate of change of the Jacobi constant (Eq. (26))
at any given time. When propagating backwards from MD-L1, given its initial inclination of 26 deg in the
SM frame, the velocity vector, optimal normal vector, and Sun-sail vector typically do not lie in the same
plane. This introduces an additional non-planar thrust component (to the orbital plane), causing a change in
inclination. As the orbit becomes more inclined (backwards in time), the velocity and Sun-sail line orient less
in either the maximum acceleration orientation (α = 0 deg) or minimum acceleration orientation (α = ±90
deg). This behaviour is further illustrated in the zoomed-in image of the phase 3 control (Figure 13), where
orbits with higher inclination exhibit no data points at 0 deg cone angle. This observation aligns with the
findings by Macdonald and McInnes,46 where higher-inclined orbits led to lower Earth escape times due to a
greater non-planar sail acceleration.

Figure 13: Zoomed-in image of the phase 3 control profile generated using the locally optimal steering law.
The black dots represent the points at which integration is performed.

For leg 2, as mentioned earlier, using the time-optimal result for leg 1 the initial guess for leg 2 is regener-
ated. This guess exhibits a linkage position and velocity error of 1.99 · 103 km and 0.13 km/s, respectively,
with fixed control angles and epochs that are shown as part of Figure 14. As expected, the new optimal
departure epoch from SE-L2 increases the duration of stay at Deimos to 329 days, given a maximum mission
duration of eight years. This is 80 days longer than that obtained from the leg 1 initial guess (see Table 4).

(a) (b)

Figure 14: Trajectories for leg 2 of the mission. (a) Interplanetary phases shown in the heliocentric inertial
frame. (b) Escape trajectory shown in the Sun-Mars CR3BP frame

Similar to leg 1, Figures 14(a), 14(b), and 15 show the interplanetary trajectory, escape trajectory, and
control profile for the inbound leg 2, respectively. The interplanetary control profile is similar to that of leg 1,
with only attitude angles adjusted for an inward spiral to Earth. However, the phase 4 control for the escape
is rather intriguing. In contrast to phase 3, the maximum and minimum cone angles increase over time until
they approach their maximum bounds of [−90, 90] deg, accompanied by clock angles close to 90 deg. This is
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followed by a decrease in the maximum bounds of cone angles that the locally optimal algorithm generates.
This occurs because the non-planar sail force not only alters the inclination but also the right ascension of
ascending node of the orbit when viewed in the SM frame (similar to Figure 8). This leads to a certain
orbital orientation where the sun-sail vector is nearly parallel to the velocity along the orbital plane, closely
approaching the maximum and minimum acceleration orientations.

Figure 15: Control profile for the inbound trajectory departing from Mar-Deimos L1 point. The solid lines are
the outputs from PSOPT, while the dashed lines are the initial guesses obtained through differential evolution.

Since the direct pseudospectral method produces optimal control and states only at discrete points in time,
the validity of the solution in a continuous time horizon is checked through reintegration. The discrete control
obtained from PSOPT is interpolated and used to reintegrate the states of the interplanetary phases for legs 1
and 2 from their respective initial to final states. Reintegrated results for leg 1 show errors of 25,845.82 km
in position and 0.00103 km/s in velocity at its end state near the Mars SOI. For leg 2, the errors are 45,829.28
km in position and 0.0019 km/s in velocity. These errors are considered sufficiently low and can be corrected
through manoeuvres along the trajectory.

Table 5: Time-optimal results obtained using PSOPT

Leg 1 Leg 2
Departure epoch Oct. 17, 2030 Feb. 07, 2035

Arrival epoch Mar. 16, 2034 July 01, 2038
Heliocentric transfer time [days] 1019.72 998.08

Spiral time [days] 226.55 241.72
Stay duration [days] 329

Table 5 summarizes the resultant epochs and ToF for different phases of the final time-optimal trajectories.
Compared to previous studies which employ the same dynamical model and a lightness number of 0.05 for
an ideal sail, the ToF for the Earth-to-Mars transfer (or vice versa) obtained using PSOPT in the present
study is up to 10% longer. Vergaaij and Heiligers32 reported transfer times from SE-L2 to Mars pole sitters
around 952 or 992 days, depending on the type of pole sitter. Similarly, in Ref. 31 and 33 transfers between
the Halo orbits of SE-L2 and SM-L1 were found to have ToFs roughly in the range of 910-930 days. The
longer transfer times seen here can be attributed to the different arrival/departure states (to or from Mars SOI)
compared to those in the literature and the fact that the optimizer has the freedom to only vary the epoch
at SE-L2, not the arrival/departure epoch at the SOI. This introduces an additional constraint to the OCP
compared to the previous studies. Further, on comparing the results obtained for the near-term sail with those
using a realistic model for electric propulsion, the transfer times obtained here are substantially large - the
fuel optimal solutions computed by Park29 had a ToF of 500 days and 27.75 days for the interplanetary and
Martian phases, respectively.
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The approach to trajectory design using heteroclinic-like connections does indeed find valid trajectories
to and from Deimos using a solar sail; however, it is hampered by its computational limitations. While
generating the interplanetary trajectory is not computationally expensive, the trajectory within the Martian
SOI proves challenging due to Deimos’s low mass and proximity to Mars. This renders the consideration of
a three-body problem ineffective, as trajectories exhibit behaviour similar to a two-body approximation.

Here, a mission to Deimos involves about 60 revolutions around Mars, which computationally was man-
ageable; but a mission to Phobos, which is closer to Mars, requires 400 revolutions, resulting in computational
times nine times that to Deimos. Hence, a more computationally efficient approach is necessary. While a dif-
ferent approach might expedite convergence to a better solution, the lack of constraints on the maximum
feasible steering rate and the sail’s steering capability during the escape or capture trajectory - where the sail
must reorient by 180 deg per orbit, taking all angles between [−90, 90] deg (Figure 13) - will continue to
limit the practicality of the optimal trajectory obtained.12, 33, 47

CONCLUSION

In this paper, transfers using solar sails have been designed for a sample-return mission from the Martian
moon Deimos. The departure and arrival locations near Earth and Deimos are considered to be the Sun-Earth
L2 and Mars-Deimos L1 Lagrange points, respectively. The trajectory design aims to maximize operational
time near Deimos by minimizing the time of flights (ToFs) for transfers between these two Lagrange points,
within a minimum feasible total mission duration. The corresponding optimal control problem is solved using
a direct pseudospectral method, implemented with PSOPT. This method depends on a sufficiently accurate
initial guess, which is obtained through a patched circular restricted three-body problem (CR3BP) approach.
In this approach, heteroclinic-like connections between the Lagrange points of different CR3BP systems
are sought by employing Monte Carlo and differential evolution methods. The entire trajectory framework
involves three CR3BP systems: Sun-Earth (SE), Sun-Mars (SM), and Mars-Deimos (MD). Furthermore,
additional relevant perturbations have been identified for each system: fourth-body perturbations due to Mars
for SE, Earth for SM, and the Sun for MD, as well as Mars’ J2 perturbation for MD.

For the initial guess, the sail is assumed to have a fixed control law in the interplanetary phases (SE and
SM) and a locally optimal steering law within the Martian system (MD). The results of the Monte Carlo
analysis reveal that total mission durations of seven years and below are infeasible, thus the maximum limit
on the total mission duration is set at eight years. Additionally, the capture and escape ToFs are found to
periodically vary over half a Martian year.

Using insights from the Monte Carlo analysis, differential evolution minimizes position and velocity er-
rors at the linkages between the phases below a satisfactory limit while optimizing the transfer time for each
leg. These initial guesses for each mission leg are considered to be sub-optimal due to the discontinuities at
linkages, the use of constant sail attitude for interplanetary phases, and locally optimal steering for MD. The
MD trajectories, involving multiple revolutions for escape and capture, push PSOPT to its limits; thus, these
phases are not solved using the direct pseudospectral method. Consequently, the optimal control problem is
limited to the interplanetary phases of both mission legs. The optimal control problem employs relevant con-
straints to remove discontinuities and incorporates all of the relevant perturbations considered. The outbound
leg is solved first using PSOPT, and its optimized result then serves as an input for producing an initial guess
for the inbound leg, which is later optimized separately.

For a near-term sail with a lightness number of 0.05, the optimization results in 329 days of stay at the
MD-L1 point for a total mission duration of 7.7 years. This result, produced with only partial dependence
between the outbound and return legs and a locally optimal steering law within the Martian system, is con-
sidered to an extent sub-optimal but sufficiently accurate for a preliminary mission concept to Deimos. The
patched CR3BP approximation approach towards trajectory design for a sample-return mission from Deimos
successfully generates valid solutions. However, it is found to be computationally expensive, where a similar
study for Phobos led to computational times nine times longer than those for Deimos, and was later deemed
infeasible. Therefore, for future trajectory designs for similar mission concepts to only Phobos or one that
tours both Phobos and Deimos, an alternative computationally efficient method should be explored.

2.6. Conclusion
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APPENDIX: FOURTH BODY PERTURBATIONS

(a) (b)

Figure 16: Maximum point mass gravitational perturbations normalized against the maximum sail accelera-
tion at that distance and plotted in the Mars-Deimos CR3BP system. (a) Sun (b) Jupiter

2.8. Appendix: Fourth-body Perturbations
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3 Conclusion and Future

Recommendations
This chapter concludes the thesis report by answering the research questions posed in Chapter 1
in Section 3.1 and by stating the possible recommendations for future work in Section 3.2.

3.1. Conclusion
Mars has piqued human interest for many years, and additionally owing to its accessibility from
Earth, it has stolen the limelight as the most prominent destination for space exploration in the
Solar System. However, its natural satellites, Phobos and Deimos, have received little attention,
and no dedicated missions have flown successfully to date. The Japanese Aerospace Exploration
Agency (JAXA), with its Martian Moons eXploration (MMX) mission, seeks to bridge this gap. MMX
aims to conduct numerous observations of Phobos and Deimos and return samples from Phobos by
2029. Nonetheless, there might be a future need to conduct additional scientific exploration at the
moons, possibly complementing and supplementing the data gathered by MMX. In this context, a
low-thrust propulsion system could offer a cost-effective solution for a sample-return mission from
the moons. One of the fascinating low-thrust techniques is solar sail propulsion which requires no
fuel and is propelled solely by solar radiation pressure. No past studies were found that explored
the trajectory design to the Martian moons. To that extent, this study investigated the trajectory
design for a solar-sail propelled spacecraft targeting a sample-return mission from the less-studied
Martian moon, Deimos. Following this, the research objective for the study was laid down as:
“To design solar-sail propelled transfer trajectories by leveraging heteroclinic-like connections for a
sample-return mission from the Martian moon Deimos, with the objective to maximize the scientific
output.”

The research objective was achieved by designing the trajectories using a patched circular restricted
three-body (CR3BP) approach to establish continuous trajectories between different CR3BP sys-
tems. Specifically, heteroclinic-like connections were found for solar-sail perturbed trajectories
that depart from the Sun-Earth 𝐿2 point and arrive and stay at the 𝐿1 point of the Mars-Deimos
CR3BP system, and vice-versa for the return trajectory. This patched CR3BP method provided
an initial guess for a direct pseudospectral method to solve the optimal control problem (OCP) at
hand. The optimization aimed to maximize the scientific output by increasing the stay duration
near Deimos. This was achieved by reducing the time-of-flights (ToFs) for both the outbound and
inbound trajectories, within a maximum mission duration of eight years.

The answers to the research questions, that aided in achieving the objective, are as follows:

1. How feasible is patched CR3BP as a technique to design trajectories for a sample-return mission
from a Martian moon?

Answer: For the patched CR3BP approach, three separate CR3BP systems were considered,
namely, Sun-Earth (SE), Sun-Mars (SM), and Mars-Deimos (MD), with the arrival/departure
locations being the SE-𝐿2 and MD-𝐿1 point. To design a continuous trajectory, heteroclinic-
like connections were sought between the solar-sail perturbed invariant manifolds of the SE-
𝐿2 and MD-𝐿1, for both the outbound leg (SE-𝐿2 to MD-𝐿1) and the inbound leg (MD-𝐿1 to
SE-𝐿2). To achieve this, first, a Monte Carlo analysis was performed to explore the design
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space for minimum Euclidean position and velocity errors between the two manifolds (of a
given mission leg). The insights from this were later used to further minimize the errors
using the differential evolution (DE) algorithm whilst also minimizing the ToF of each leg.
Throughout the implementation of these two methods, it was assumed that the sail attitude
was constant for each of the two manifolds in their interplanetary phases (Sun-Earth and
Sun-Mars) and locally optimal within the Martian SOI (Mars-Deimos frame). Once the errors
were below a sufficiently accurate value, the results of DE were used as initial guesses for a
direct pseudospectral method, implemented through PSOPT, that solved the OCP with a full
set of relevant perturbations. The relevant perturbations implemented were: the Mars fourth-
body perturbation in Sun-Earth CR3BP, the Earth fourth-body in Sun-Mars CR3BP, the Sun
fourth-body perturbation in Mars-Deimos CR3BP and Mars 𝐽2 perturbation in Mars-Deimos
CR3BP.

This approach successfully generated valid optimal solutions; however, it was computationally
very demanding, primarily due to the spiral escape and capture trajectories within the Martian
system. The low mass of Deimos rendered the MD CR3BP assumption ineffective, causing the
trajectory to behave similarly to that in a two-body problem approximation. Extending the
same method to Phobos resulted in computational times nine times that for Deimos, making
it impractical with the available computational resources. Additionally, due to the software
limitations of PSOPT, only a locally optimal steering law was considered for the spiral trajec-
tory segment with multiple revolutions. This also meant that both the legs could not be solved
simultaneously (for an end-to-end trajectory design) and were solved with only a partial de-
pendence on each other. Thus, this means that the results obtained are rather sub-optimal
in terms of maximizing the stay duration at Deimos. Nonetheless, they are considered to be
adequately optimal for a preliminary mission design.

In summary, while a patched CR3BP approximation provides trajectories that meet all con-
straints and optimise the objective to a satisfactory extent, it may not be the most suitable
option for a mission to only Phobos or to tour both Phobos and Deimos given the computational
overhead.

2. What is the maximum feasible duration of stay in the vicinity of Deimos for a given possible
minimum mission duration?

Answer: The results of the Monte Carlo analysis made it evident that a total mission duration
of seven years or lower was not feasible, thus the maximum mission duration was set to eight
years. Following this, for the assumption of an ideal sail with a lightness number of 0.05 and
departure epoch between 2030-2032, the maximum duration of stay at MD-𝐿1 was found to
be 329 days with a total mission duration of 7.7 years (2815 days). It is 80 days more than
that of the initial guess.

The majority of the flight time was spent in the interplanetary transfer - 1019.72 days for
the outbound leg and 998.08 for the inbound leg. The spiral capture and escape ToFs within
the Martian system were 226.55 days and 241.72 days, respectively. As a comparison, the
MMX mission which employs a chemical thruster, has a total mission timeline of five years
with three of those spent operating within the Martian system (1.8 years in the proximity of
Phobos) [12]. This result is significantly large compared to the planned MMX mission but
expected given its low-thrust nature. Additionally, even compared to an electric propulsion
engine (modelled after a realistic engine), as implemented by Park [16] for a transfer from the
low Earth orbit to MD 𝐿1, the ToFs for the transfers are greater. The fuel-optimal solutions
obtained by Park had a ToF of 500 days and 27.75 days for the interplanetary and Martian
phases, respectively.
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3.2. FutureWorks and Recommendations
Based on the methodology undertaken in this thesis and the outcomes, the following recommen-
dations are made for future works:

1. Quantify the significance of solar sails: While the current thesis focuses on trajectory design
to enable a sample-return mission from Deimos, it would also be interesting to analyse how
substantially can a solar-sail propelled spacecraft affect the total mission cost compared to a
chemical or electric propulsion system. A study conducted by Hughes et al. [35] demonstrated
that while sample-return missions from Mercury and a high inclination near-Earth asteroid
using a sail can lead to substantial budget savings, those to Mars and Venus only resulted in a
modest reduction inmission costs. Recall that the ToF for different legs of themission obtained
in this study for a near-term sail technology (0.05 lightness number) itself is significantly larger
than the flight-proven electric propulsion, which in turn might result in greater operational
costs. Therefore, a cost analysis to quantify the significance of using a solar sail for a mission
to and from the Martian moons could be an interesting addition to future works, especially to
assess the practical feasibility of employing it.

2. Alternate modelling approach: A potentially more efficient approach to address the com-
putational burden and enhance the optimality of solutions could be to explore a patched
2BP-CR3BP model coupled with an orbital averaging method. This alternative would involve
using a CR3BP model for trajectories near the moons that transitions to a two-body model to
compute the spiral escape/capture trajectories through orbital averaging. In this approach,
equations of motion are formulated in terms of slowly evolving orbital elements, and by aver-
aging the dynamics over one orbital period, terms with short periods can be eliminated. This
can significantly reduce the number of collocation points needed to capture the dynamics us-
ing a direct method. In the context of solar sail, studies by Fitzgerald [51] and Tresaco et al.
[52] have employed some form of averaging techniques tailored to their specific applications,
wherein particularly Fitzgerald uses a direct pseudospectral method to solve the correspond-
ing OCP. However, no literature has been found on its implementation for solar sail escape
and capture trajectories. McInnes [19] briefly mentions its application to reduce computa-
tional effort in designing escape trajectories, suggesting the generation of escape trajectories
up to a sub-escape point using averaging given its accuracy limitations, beyond which the full
set of equations should be integrated for the final few revolutions of the escape. Nonetheless,
it could be an interesting approach for future work for computationally efficient analyses.

3. Departure/arrival orbits: The current thesis, for simplicity and proof of concept, assumes
that the trajectories depart and arrive at the collinear Lagrange points of the Sun-Earth (SE)
and Mars-Deimos (MD) systems. However, in reality, this is impractical as the real locations
of the Lagrange points are rather fuzzy due to the orbit eccentricities and additional perturba-
tions, and represent more of a region in space. Therefore, instead of considering the departure
and arrival locations as points in the rotating reference frame, Lagrange point orbits can be
considered. Additionally, the departure and arrival orbit near the Earth could be extended
to either the low Earth orbits or the Geostationary orbits, employing similar spiral escape or
capture segments within the Earth’s SOI.

Furthermore, Deimos and Phobos have an irregular shape and exhibit an extremely inhomo-
geneous gravity field, which coupled with their orbital eccentricities, though small, strongly
influence the dynamics in their close vicinity [53]. Past studies have observed that under this
strongly perturbed environment, multiple closed orbits which exist in a simple CR3BP system
diverge to impact the surface [43, 54, 55]. Therefore, accurate modelling of both the gravity
and the orbit of the Martian moons is a necessity to design true orbits near them. No re-
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search has been performed on the stability and dynamics of solar sail-perturbed orbits at the
Lagrange points of these Moons. For a more practical design, further studies need to explore
this.

4. Higher-fidelity models: The dynamical model employed for the given case study can be made
more realistic by potentially employing the following:

• If continued with a patched CR3BP approximation that assumes the circular motions of
the primaries about their barycenters, a more realistic approach would involve incorpo-
rating the eccentricities of their orbits. This can be achieved by implementing an elliptical
restricted three-body problem (ER3BP). In fact, for Lagrange point orbits at the colinear
Lagrange points of both the Mars-Deimos and Mars-Phobos systems, it was found that
the moons’ orbital eccentricity, though small, significantly influences these orbits when
combined with the inhomogeneous gravity fields of the moons. This influence is to the
extent that multiple closed orbits, which exist in a simple CR3BP system, diverge and
impact the surface [43, 53, 54, 55].

• Since the trajectory involves multiple revolutions around Mars, it could spend a sig-
nificant amount of time within Mars’ and potentially even Deimos’ and Phobos’ eclipse
regions. During an eclipse, the sail would either generate low or no thrust and can
influence the time of flight for the escape or capture segments.

• Constraining sail steering rates and capabilities. Real sail actuators cannot steer at
the higher rates demanded by the control profiles obtained in this thesis, especially for
spiral trajectories where an instantaneous 180 deg rotation of the sail is required, and
fast changes in attitude occur at lower altitudes. This also extends to the maximum
cone angles that a practical sail can take, as they are inherently limited by the thermal
and structural constraints of the sail [56]. Thus a more practical simulation should
incorporate these constraints during optimization - which might again lead to an increase
in mission time.

• Considering optimal imperfections and their associated uncertainties. The present tra-
jectories assume an ideal sail, where the photons are reflected in a specular manner from
a flat surface. In reality, the sail experiences diffuse reflection, absorption, and thermal
emission, and is not perfectly flat, but instead exhibits billowing and wrinkles [19]. Ad-
ditionally, the sail’s optical properties may also degrade over time [57]. To accurately
model the dynamics of solar sails, various sophisticated mathematical models have been
developed in the past to account for these imperfections [19, 57, 58].

• Finally, the trajectories obtained from any models should be validated against a compar-
atively higher fidelity ephemeris model to check whether they can best approximate the
real-world scenario.

5. Martian moon to moon transfer: Instead of focusing solely on a single moon, the solar sail’s
fuel-less low-thrust capabilities could be an efficient possibility for targeting both Deimos and
Phobos as sample-return destinations within a single mission. This mission framework could
involve visiting either Deimos first and then Phobos or vice versa. A preliminary analysis
for such a mission scenario was conducted in this study using the patched CR3BP model, as
detailed in Appendix C. It was found that unlike other multi-moon systems such as the Jovian
moons [59], Phobos and Deimos, having almost negligible mass, did not have heteroclinic-like
connections between their respective Lagrange points when employing both fixed sail attitude
and locally optimal control laws.

This essentially translates to designing transfers between two planetocentric near-circular
orbits, which has been an ongoing challenge using solar sails due to their inherently low

31



3.2. Future Works and Recommendations

control authority - especially since they cannot face towards the Sun. However, despite these
challenges, it has been demonstrated that even non-ideal solar sails possess the capability to
achieve transfers between planet-centered near-circular orbits [60]. Achieving time-optimal
transfers between such orbits necessitates a sufficiently accurate initial guess to solve the
optimal control problem, as illustrated earlier in this thesis. The locally optimal control law
applied in this thesis focuses on maximizing the rate of change of the orbit semi-major axis.
While effective, this alone may not be adequate for achieving rendezvous with the desired
orbit. Consequently, additional analytical approaches have been explored, such as blending
locally optimal control laws for various orbital elements using a solar sail. For instance, a
solar sailing Q-law for planetocentric orbits was recently devised [61]. Methods like these
could thus be explored in the future for solar sail transfers between Deimos and Phobos, and
potentially employ the patched 2BP-CR3BP approach to ensure transfer to orbits near the
moons which require a multi-body system approximation.
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A Verification and Validation
This appendix discusses the verification and validation of the mathematical models and numerical
techniques used to produce the sample-return solar sail trajectories from the Martian moons in
the thesis. The chapter is divided into two sections: Section A.1 verifies the dynamical models, and
Section A.2 the PSOPT optimization technique.

A.1. Dynamical Model
All the components of the dynamical model discussed in the journal article are verified in this
section, this includes: the circular restricted three-body problem (CR3BP), frame transformations,
solar sail acceleration, fourth-body perturbation and 𝐽2 perturbation.

A.1.1. Circular Restricted Three-body Problem

Three major components need to be verified to verify the implementation of the CR3BP for the
present application: the accurate computation of the Lagrange point locations, the computation
of ballistic invariant manifolds and the propagation of the CR3BP equations of motion (EoM), the
latter two are combined into a single section.

Lagrange Points
The CR3BP exhibits five equilibrium solutions, called the Lagrange points, of which this study
utilizes the colinear 𝐿1 and 𝐿2 points for different phases of the missions. To reiterate, the EoM of
an un-perturbed CR3BP are presented again:

𝑥̈ = 2𝑦̇ + 𝜕𝑈𝜕𝑥 , 𝑦̈ = −2𝑥̇ + 𝜕𝑈𝜕𝑦 , 𝑧̈ = 𝜕𝑈
𝜕𝑧 (A.1)

where 𝑈 represents the effective gravitational potential given by Eq. A.2.

𝑈 = −12(𝑥
2 + 𝑦2) − 1 − 𝜇𝑟1

− 𝜇
𝑟2

(A.2)

Now, for a body to be in equilibrium, the gradient of the effective potential (∇𝑈) should be zero.
Thus, the colinear Lagrange points, that lie along the line of the primaries, can be computed as:

𝜕𝑈
𝜕𝑥 = 𝑥 − (1 − 𝜇)

𝑥 + 𝜇
𝑟31

− 𝜇𝑥 − 1 + 𝜇𝑟32
= 0 (A.3)

where, 𝑟1 = |𝜇 + 𝑥| is the distance from the first primary along the 𝑥-axis and 𝑟2 = |1 − 𝜇 − 𝑥| is
the distance from the second primary. The Eq. A.3 has three real roots between the intervals,
(−∞,−𝜇), (−𝜇, 1 − 𝜇) and (1 − 𝜇,∞) respectively. However, given that it does not have a closed
analytical solution, they are computed using the Newton-Raphson method. The locations of these
points computed in this thesis are successfully verified against the values for the Sun-Earth (SE)
and Mars-Phobos (MP) systems available in literature [62], shown in Table A.1.

38



A.1. Dynamical Model

Table A.1: The estimated and literature positions of the Lagrange points [62].

𝐿1 𝐿2 𝐿3
Estimated

Sun-Earth 0.98997092 1.01009043 -1.000001272
Mars-Phobos 0.99824982 1.00175219 -1.000000006

Literature
Sun-Earth 0.98997092 1.01009044 -1.00000127

Mars-Phobos 0.99824982 1.00175219 -1.00000001

Invariant Manifolds
To generate initial guesses for transfer trajectories, the implementation of invariant manifolds is
crucial. The stable and unstable invariant manifolds are computed by perturbing the motions along
the eigenvectors corresponding to the non-imaginary eigenvalues of the Jacobian matrix (𝐴). The
Jacobian is derived from the linearized approximation of the EoM, Eq. A.1, in the proximity of the
Lagrange point of interest. This Jacobian matrix is defined as:

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝑈𝑥𝑥 𝑈𝑥𝑦 𝑈𝑥𝑧 0 2 0
𝑈𝑥𝑦 𝑈𝑦𝑦 𝑈𝑦𝑧 −2 0 0
𝑈𝑥𝑧 𝑈𝑦𝑧 𝑈𝑧𝑧 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.4)

Here, 𝑈𝑖𝑗 indicates the second-order partial derivatives of the effective potential with respect to 𝑖 and
𝑗. The stable eigenvector corresponds to the negative real eigenvalue, while the unstable eigenvector
corresponds to the positive real eigenvalue.

Verification is performed by computing the eigenvalues associated with the Sun-Earth CR3BP sys-
tem and comparing them with literature, as outlined in Table A.2. This comparison ensures the
correct implementation of the invariant manifolds in the study.

Table A.2: The estimated and literature eigenvalues for the Sun-Earth CR3BP system [63]

𝛾1 𝛾2 𝛾3 𝛾4
Estimated

𝐿1 2.53265917 -2.53265917 2.08645356𝑖 -2.08645356𝑖
𝐿2 -2.48431672 2.48431672 2.05701419𝑖 -2.05701419𝑖

Literature
𝐿1 -2.532659 2.532659 2.0864535𝑖 -2.0864535𝑖
𝐿2 -2.484317 2.484317 2.057014𝑖 -2.057014𝑖

While this does indeed confirm the right computation of the eigenvalues and consequently the
eigenvectors, the propagation of the manifolds isn’t verified. This was again achieved by plotting
the stable and unstable invariant manifolds emanating from the Earth-Moon 𝐿1 point and cross-
referencing them with existing literature, as illustrated in Fig. A.1. This also verifies the correct
implementation and integration of the CR3BP EoM.
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(a) Plot from literature [63].

(b) Reproduced plot.

Figure A.1: Stable and Unstable invariant manifolds associated with the Earth-Moon 𝐿1 point.

A.1.2. Frame Transformations

Two different sets of reference frame transformations are used in this thesis: 1. transformations
between the planar inertial and CR3BP reference frames, and 2. between the inclined Mars-Moons
CR3BP and Sun-Mars CR3BP.

Between CR3BP and Inertial
The transformation from a CR3BP to an inertial frame is verified by plotting Earth’s orbit in the
heliocentric inertial reference (𝐻), as illustrated in Fig. A.2. Here, the state of Earth in the Sun-
Earth (SE) CR3BP frame, [1−𝜇𝑆𝐸 0 0 0 0 0]𝑇, is transformed to the heliocentric inertial frame.
The radius of Earth’s orbit aligns with the anticipated value of 1.49 ⋅ 108 km, forming a perfectly
circular trajectory about the Sun. Moreover, the velocity component is tangential to the orbit,
exhibiting magnitudes that conform to the expected circular velocity at this altitude, 29.7 km/s.
Since the reverse transformation yields the anticipated states of the Sun (𝑥 = −𝜇𝑆𝐸) and Earth (𝑥 =
1−𝜇𝑆𝐸) in the SE CR3BP, the CR3BP to inertial transformation is considered correctly implemented.
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Figure A.2: States of Earth in the heliocentric inertial reference frame (𝐻)

Mars-Moon CR3BP and Sun-Mars CR3BP
The transformation between the Mars-Moon (MM) Circular Restricted Three-Body Problem (CR3BP)
and the Sun-Mars (SM) CR3BP involves two intermediate inertial reference frames: a Mars-centered
ecliptic frame aligned with the ecliptic plane and the SM CR3BP, and a Mars-centered equatorial
frame inclined at 26 deg with respect to the ecliptic. To validate these transformations, the coordi-
nate axes of these frames are visualized in other reference frames.

In Fig. A.3a, the position axes of the Mars-centered ecliptic frame in the heliocentric inertial refer-
ence frame are depicted. As intended, their reference axes are parallel, with only the origin trans-
lated to the centre of Mars. Similarly, in Fig. A.3b, the position axes of the Mars-Phobos CR3BP
are visualized in the Sun-Mars frame, with a longitude of ascending node equal to zero. The orbit is
well inclined at 26 deg to the ecliptic, with the 𝑥-axis consistently pointing along the Mars-Deimos
line and the 𝑧-axis being perpendicular to the orbital plane. Consequently, the transformation of
the position vectors is deemed accurate.

(a) Position axes of the Mars-centered ecliptic frame 𝑀𝐸𝐶 shown
in the heliocentric inertial reference frame.

(b) Position axes of MarS-Deimos CR3BP in the Sun-Mars
CR3BP reference frame.

Figure A.3: Verification of frame transformation from a Sun-Mars CR3BP to a Mars-Moon CR3BP and vice versa - for
position.
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While the preceding discussion successfully verifies the transformation of the position vectors, it
does not specify whether the velocity components are transformed correctly. To achieve this, an
arbitrary initial state in the MD frame is propagated. The same initial state is then transformed into
the SM frame and propagated separately in the SM. The states of both these integrated trajectories
are then transformed into the other frames; for instance, those integrated in SM are transformed
into MD, and those in MD are transformed into SM. Figures A.4b and A.4a show that these tra-
jectories accurately overlap each other. However, since the initial state is defined only in the MD
system and later transformed to SM for propagation in SM, this method of verification may not
entirely reflect any inaccuracies in the transformation. Nonetheless, considering that the transfor-
mation between the SM and MD frames involves intermediate transformations between CR3BP and
inertial frames, something that has been verified before, and the fact that the obtained integrated
trajectory in the SM frame in Fig. A.4b is inclined as expected, the transformation of the velocity
between these frames is considered verified.

(a) Trajectory shown in the Mars-Deimos system. (b) Trajectory shown in the Sun-Mars system.

Figure A.4: Verification of the frame transformations between the Sun-Mars and Mars-Deimos CR3BP - for velocity.

Transformation for Fourth-bodies in Mars-moon CR3BP
The motion of a fourth body in the Mars-Moon system can be described by performing three sets of
transformations: from a Sun-planet (SP) CR3BP to heliocentric inertial, from heliocentric inertial to
Sun-Mars CR3BP, and from Sun-Mars CR3BP toMars-moon CR3BP. If the perturber is a planet, the
state in the Sun-planet CR3BP that undergoes these transformations is [1 − 𝜇𝑆𝑃 0 0 0 0 0]𝑇,
while if it is the Sun, the state taken is [−𝜇𝑆𝑃 0 0 0 0 0]𝑇. Although all the transformation
steps required to realize a fourth body’s motion in the Mars-Moon system have been successfully
verified, as a sanity check, it is checked whether these results align with the commonly used an-
alytical formulation of the Sun’s motion in the Earth-Moon CR3BP system for a two-dimensional
system (i.e., the Earth, Moon, and Sun all lie on the ecliptic). This equation is given as follows [50]:

Ŝ(𝑡) = [cos (Ω𝑠𝑡 + Ω0) − sinΩ𝑠𝑡 + Ω0 0] (A.5)

where Ŝ is the position vector of the Sun with respect to the CR3BP barycenter, Ω𝑠 is the ratio
of the synodic lunar period and the sidereal lunar period, 𝑡 is the non-dimensional time in the
respective CR3BP system, and 𝜔0 is the angle between sun-sail line and the x-axis at 𝑡 = 0. For
the Earth-Moon CR3BP, Ω𝑠 = 0.9252.

The result is shown in Fig. A.5, and it is evident that both the solution obtained from Eq. A.5
(labelled as “literature”) and the transformations employed in this thesis almost perfectly align
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with each other. The small misalignments are attributed to the unknown values of EM CR3BP
characteristic parameters used to derive the value of Ω𝑠, which might not coincide with those used
in this thesis.

Figure A.5: The motion of the Sun in an Earth-Moon system transformed using the analytical expression using literature
[50] and the transformations employed in this thesis (labelled “Derived”). The transformations used in this thesis assume
an inclination and raan of 0deg for generating this plot. Dotted lines are the lines joining the EM barycenter and the values
obtained from the literature formulations. Green and red arrows are the scaled unit vectors representing the y and x-axis
of the EM CR3BP frame, respectively.

A.1.3. Solar sail Acceleration

The inclusion of solar sail acceleration in the dynamics is achieved by simply introducing an ad-
ditional acceleration term to Eq. A.1. The specific formulation of sail acceleration depends on
whether the dynamics are being propagated within a Sun-planet CR3BP or a Mars-moon CR3BP,
as detailed in Chapter 2. To verify the accurate implementation of sail acceleration in a CR3BP
system, a sail-perturbed halo orbit is reproduced about the SE 𝐿1 artificial equilibrium point (AEP).
This is done for a sail lightness number of 0.05 and is compared with data provided for its literature
counterpart [25].

(a) Solar sail halo orbit about the Sun-Earth Sub-𝐿1 point.
The dashed orange curve corresponds to the reference or-
bit, while the solid dashed curve is the reproduced halo
orbit. (b) Position and velocity error computed against the reference solution.

Figure A.6: Solar sail model verification using the data provided by the author of Ref. [25], Heiligers, for a lightness number
of 0.05.
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AEPs, similar to classical equilibrium points, represent locations where a stationary solar sail ex-
periences zero net acceleration in a CR3BP. The SE 𝐿1 AEP is located closer to the Sun at position
(0.98040998, 0, 0) for 𝛽 = 0.05 and a cone angle of zero degrees. The propagated halo orbit also
considers a zero-degree cone angle. Figure A.6a shows a comparison between the reproduced and
original halo orbits, both of which appear to overlap perfectly. The errors between these orbits,
depicted in Fig. A.6b, are deemed sufficiently low to verify the accurate implementation of the sail
acceleration. It is to be noted that these errors are originally computed in the SE CR3BP system,
where the maximum errors are on the order of 10−13, limited only by numerical precision.

Given that the primary difference in formulating sail acceleration for Mars-moon involves the need
for a frame transformation to factor in the Sun’s position - a step verified in the preceding section
- its verification in the SE system can be extended to the Mars-moon system too.

A.1.4. Fourth-body Perturbation

To verify the fourth-body perturbations, their magnitude and directions are looked at separately.
For ease of explanation, the formulation of the fourth-body perturbation is restated:

a4 =
𝜕𝑈4
𝜕𝑟4

(A.6)

where,

𝑈4 = 𝜇4(
1
𝑟3,4

− r ⋅ r4
𝑟34

) (A.7)

where, r4 is the position vector from the barycenter to the fourth body, r3,4 is the position vector from
the particle (spacecraft) to the fourth body which is given as r3,4 = r4−r, and 𝜇4 is the dimensionless
gravitational parameter of the fourth body with respect to the specified CR3BP system. The fourth-
body perturbing acceleration is a relative acceleration acting on a particle in a CR3BP frame. It
comprises of two separate components: 1. the absolute gravitational acceleration acting on the
particle by the fourth body ( 𝜇4𝑟3,4 ) and 2. the absolute acceleration between the primaries and the

fourth-body (𝜇4
r⋅r4
𝑟34
).

Figure A.7: Separate components of the fourth-body perturbation plotted in a Mars-Deimos CR3BP frame, assuming that
Deimos’ orbit lies in the ecliptic. The green solid arrow corresponds to acceleration by the fourth body on the particle, the
blue arrow is the absolute acceleration between the CR3BP system and the perturber, and the red arrow indicates the total
relative acceleration experienced by the particle. The dashed line joins the perturber and the particle at a certain instance
along its trajectory.
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To verify the direction of the acceleration, these components are computed along an arbitrary tra-
jectory in a Mars-Deimos CR3BP system. The results are visualized in Fig. A.7. As expected, the
first component aligns with the line connecting the fourth body and the particle - pointing towards
the perturber, while the second component is parallel to the line joining the CR3BP barycenter and
the fourth body - pointing towards the barycenter.
To verify the magnitude of this relative perturbation, a plot generated by Kardec and Bertachini
[64], illustrating the perturbation magnitudes by the Sun in a Mars-Phobos CR3BP, is reproduced.
The original and replicated plots are shown in Fig. A.8. It is to be noted that these plots specifically
pertain to a particular instance in time, i.e., for a specific orientation of the Sun relative to the
CR3BP frame. It is also assumed that the moon’s orbit lies in the ecliptic.

(a) The plot found in the reference [64]. (b) The reproduced plot.

Figure A.8: Verification of the fourth-body perturbation magnitude. The perturber is the Sun in a Mars-Phobos CR3BP
reference frame planar to the ecliptic. This image is a snapshot at a particular instance in time for a specific orientation of
the Sun. The perturbation magnitude is given as the ratio of the fourth-body perturbation due to the Sun (|ps| or |a4|) and
the point-mass gravitational acceleration of Phobos (|pm| or |ap|).

A.1.5. 𝐽2 Perturbation
The 𝐽2 perturbations are verified by computing the displacement in the positions of the Mars-Phobos
colinear Lagrange points 𝐿1,2 under the perturbed Mars and Phobos 𝐽2 environment and comparing
them against literature. The new displaced colinear Lagrange points are computed by simply adding
additional perturbation terms, due to both the oblateness of Mars and Phobos, to Eq. A.3 followed
by the application of the Newton-Raphson method. It was found that both 𝐿1 and 𝐿2 are displaced
by 365.45m farther away from the moon relative to their original location. This value closely aligns
with the displacement of 365m calculated by Zamaro [65].

A.2. PSOPT
The optimal control problem (OCP) in this study is solved using the direct pseudospectral method
implemented in the open-source software package PSOPT. Past literature, including studies such as
references [48, 49, 50, 66], have demonstrated PSOPT’s capability to successfully converge to local
minima for similar dynamical models, objectives, and constraints. As such, no separate verification
is necessary for the same.

However, since a direct pseudospectral method outputs the state and control variables at discrete
time intervals, ensuring valid results only at these nodes, it is necessary to validate whether the
output remains valid for a continuously integrated solution. This validation is performed by rein-
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tegrating the states using a control law derived by interpolating the optimal control obtained from
PSOPT. The interpolation is performed using a cubic spline, and the EoM are solved with a variable
step size variable order implicit integrator LSODA, with a relative and absolute tolerance of 10−11.
If the reintegrated solution is sufficiently accurate, i.e., it satisfies the constraints, it is considered
to be valid. This is performed in two ways for each leg:

1. Linkage constraint: This involves checking whether the linkage constraint between two in-
terplanetary phases is satisfied. The procedure includes propagating the states forward from
the departure state in the interplanetary phase and propagating the states backwards in time
from the arrival state. The Euclidean error in position and velocity at the linkage is then
computed. As an example, for leg 2, the state at the end of the spiral escape trajectory at
the Martian SOI is propagated forward in time in the Sun-Mars CR3BP, while the states from
Sun-Earth 𝐿2 are propagated backwards.

2. Arrival boundary constraint: This method involves fully propagating the interplanetary tra-
jectory from the departure to the arrival state to check whether it satisfies the arrival boundary
constraint. For instance, the integration is performed from the state at the Martian SOI to the
SE-𝐿2 for leg 2.

The results from reintegration are presented in Table A.3. Given the large interplanetary distance
between Earth and Mars, 108km, these errors are considered sufficiently small and can be corrected
through small manoeuvres along the trajectory. Hence, the PSOPT solution is deemed valid.

Table A.3: Discontinuities at the linkages and arrival states for reintegrated trajectories for both legs. Those at linkages are
obtained by forward and backward propagation of two separate phases while those at arrival are produced by full integration
of the interplanetary trajectory. The non-dim discontinuity at arrival for leg 1 is computed in the Sun-Mars frame while the
rest is in Sun-Earth.

Discontinuity location
Δ𝑟 Δ𝑣

[non-dim] [km] [non-dim] [km/s]

Leg 1
Linkage 3.24 ⋅ 10−5 SE 4845.11 3.33 ⋅ 10−5 SE 2.11 ⋅ 10−4
Arrival 1.13 ⋅ 10−4 SM 25845.82 3.32 ⋅ 10−4 SM 1.03 ⋅ 10−2

Leg 2
Linkage 1.61 ⋅ 10−4 SE 24117.37 7.21 ⋅ 10−5 SE 3.11 ⋅ 10−3
Arrival 3.06 ⋅ 10−4 SE 45829.28 3.51 ⋅ 10−4 SE 1.9 ⋅ 10−2

The position and velocity errors between the reintegrated solution and the PSOPT results, plotted
as a function of time, are shown in Fig. A.9 for leg 1. Here, Fig. A.9a represents the forward
propagated trajectory in the SE system up to the linkage point, while Fig. A.9b corresponds to
the backward propagated trajectory in the SM system. Notably, a significant portion of the error
is contributed by the backwards propagated trajectory, characterized by a sharp spike to errors
exceeding 103 km for position and 10−3 km/s for velocity. This phenomenon can be attributed to
the rather irregular control profile depicted in Fig. A.10 (specifically shown for leg 1) at the end
of the Sun-Mars phase, leading to less accurate interpolation between the last few nodes. This
discrepancy is a result of the boundary constraint at the end of the SM phase, requiring the state
and control to be identical to those at the start of the spiral capture trajectory to Deimos within
the Martian SOI that has been computed separately as part of the initial guess and not optimized
along with the interplanetary phases using PSOPT. On the other hand, errors in the SE phase
are an order of magnitude lower, showing a consistent increase owing to its comparatively smooth
control profile as seen in Fig. A.10. The same observations were made for leg 2. Additionally,
errors for full integration (at arrival state) are larger than those at the linkage solely due to the
accumulation of errors over the two phases.
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(a) Trajectory propagated forwards in time in the Sun-Earth system - phase 1.

(b) Trajectory propagated backwards in time in the Sun-Mars system - phase 2.

Figure A.9: Norm of position and velocity errors between the PSOPT optimal results and reintegrated trajectory for leg 1.

Figure A.10: Interpolated control profile for the interplanetary phases of leg 1 along with the Legendre-Gauss-Lobatto (LGL)
nodes displayed using black dots.

The integration error can be reduced by considering a finer mesh grid for both interplanetary
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phases. Currently, the mesh was refined from 50, 80 to 100 nodes for the entire interplanetary
trajectory (50 for each phase) and was solved using a tolerance of 10−6. However, further refinement
was not possible given the 32-bit build of PSOPT, which was constantly running out of the allocated
memory. Although it is feasible to modify the package to a 64-bit build, this process demands a
substantial amount of time and was deemed unimportant for the current study, which primarily
aimed to design a preliminary trajectory.
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B Numerical Techniques for Initial Guess

Generation
This appendix chapter outlines the settings used for various numerical techniques during the gen-
eration of initial guesses. The chapter is divided into two sections: Section B.1 focuses on selecting
a suitable integration scheme, and Section B.2 delves into the tuning procedure for the differential
evolution (DE) algorithm and presents the final DE parameters used in this thesis.

B.1. Integrator Selection
While PSOPT employs its own integrator as part of the pseudospectral method to solve the OCP,
a separate integrator is required to generate initial guesses for PSOPT. Given that the process of
generating initial guesses involves a computationally demanding Monte Carlo analysis and differ-
ential evolution, selecting an integrator becomes crucial to ensure computational feasibility. This,
however, should not come at the cost of the solution’s accuracy.

To select an appropriate integrator, various integration schemes are used to propagate the EoM
in two distinct systems: a Sun-Planet CR3BP and a Mars-Moon CR3BP system. Considering both
dynamical models ensures that the non-autonomy of a Mars-Moon system, resulting from the
varying position of the Sun, is also considered during integrator selection. The resulting position
and velocity at the end of the propagation are compared to a benchmark solution, and a subsequent
trade-off is conducted between the integrator accuracy and computational time to decide on a
suitable integrator for the study. Higher weightage is given to integrators that require less time to
propagate the initial value problem.

The analysis considers integration schemes available in the open-source Python library scipy [67].
These include:

• RK45: Single-step, explicit and variable step-size Rung-Kutta integrator of order 5(4).

• DOP853: Single-step, explicit and variable step-size Runge-Kutta integrator of order 8(5,3).

• LSODA: Multi-step, variable step-size, variable order and implicit integrator that switches be-
tween the Adam methods for non-stiff problems and backward differentiation formulas (BDF)
for stiff problems [68].

For each integration scheme under consideration, four values of tolerance are considered: 10−5,
10−7, 10−9 and 10−11.

While several other integrators, such asmulti-step Adams-Bashforth-Moulton (ABM), explicit Runge-
Kutta-Fehlberg of different orders, and others exist, due to their unavailability in scipy, they were
not considered. Nonetheless, the chosen schemes do holistically represent most of the commonly
used integrator categories for trajectory design.

The integrator employed to generate the benchmark solution is DOP853 with a relative and abso-
lute tolerance of 10−14. In the case of the Sun-Planet scenario, a sail-perturbed manifold emanating
from the SE-𝐿2 point with a constant sail attitude of 30deg cone angle and 30deg clock angle is
propagated for four years. This prolonged trajectory ensures that it extends just beyond the Mar-
tian orbit, thereby accounting for the accumulation of truncation error during integrator selection,
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given the substantial propagation time. For the Mars-Deimos system, a similar constant attitude
sail-perturbed trajectory is propagated from the MD-𝐿1 for 100 revolutions of Deimos about Mars,
roughly equivalent to about 120 days.

While no specific CPU time requirement was stipulated for the integrator due to the uncertainty
in the number of runs during the tuning of the differential evolution algorithm, a requirement on
the position and velocity error was indeed considered. Keeping in mind the minimum required
linkage position and velocity error of Δ𝑟 ≤ 10−3 and Δ𝑣 ≤ 10−2 in a CR3BP frame (refer to the article
in Chapter 2), any integrator with errors two to three magnitudes below this threshold is deemed
suitable. Once the accuracy requirement is satisfied, the scheme with the lowest computational
time is chosen. The results for both the Sun-Earth and Mars-Deimos systems are presented in
Figs. B.1 and B.2, respectively. Based on these outcomes, the integration scheme selected for
generating the initial guesses is LSODA, with 10−9 as the relative and absolute tolerance. It is to
be noted that the error profiles of all the integrators are dominated by truncation errors.

Figure B.1: Position and velocity error for various integrators against the CPU time for the Sun-Earth case. For each
integrator, the position and velocity errors are proportional to the integrator tolerance - the largest errors are associated
with the largest tolerance (10−5) and the smallest errors with the smallest tolerance (10−11).

Figure B.2: Position and velocity error for various integrators against the CPU time for the Mars-Deimos case. For each
integrator, the position and velocity errors are proportional to the integrator tolerance - the largest errors are associated
with the largest tolerance (10−5) and the smallest errors with the smallest tolerance (10−11).
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B.2. Differential Evolution Tuning
Differential evolution (DE) is a metaheuristic global optimization algorithm belonging to the class
of evolutionary algorithms that are inspired by Darwin’s theory of evolution. The algorithm begins
with randomly initialising a population of candidate solutions (design variables). Through itera-
tive processes involving mutation, crossover, and selection, the population evolves until it either
converges to a solution within a specified tolerance limit or reaches the maximum limit set for the
number of generations. In the current study, both these criteria were used as termination con-
ditions, with a tolerance set to 0.01, and the maximum number of generations adjusted during
the tuning process. The particular implementation of the differential evolution part of the Python
library scipy as scipy.optimize.differential_evolution method was used whilst also employing
multiprocessing.

The differential evolution algorithm relies on parameters such as the mutation rate, crossover ratio
(𝐶𝑅), population size (𝑁𝑝), and seed to seek the global optimum. The values chosen for these param-
eters are problem-specific and need to be tuned for optimal performance. In this thesis, parameters
considered for tuning were the crossover ratio, population size, seed, and weights of the objective
functions. The mutation rate was assumed to vary randomly within the range (0.5, 1) to potentially
speed up the convergence and was not included in the tuning process. For other parameters, like
the crossover ratio and population sizes, the values considered for tuning were based on rules of
thumb provided by Price et al. [69] for highly non-convex problems, which based on the Monte
Carlo analysis was the nature of the problem at hand. Population sizes were chosen to be equal to
or greater than ten times the number of design variables (seven), with values of 70, 105, and 140.
Crossover ratios were set to mid-to-high values, specifically 0.4, 0.6, 0.8, and 0.9.

Among the weights 𝑤1, 𝑤2, 𝑤3, and 𝑤4 in the objective functions, Eqs. 32 and 35 in the article,
only 𝑤2 and 𝑤4 were tuned, with values of 100 and 1000 used for tuning. This decision was
based on the relative magnitudes of the expected times-of-flight values (approximately 103 to 102)
for leg 1 and the duration of stay associated with the objective for leg 2, in comparison to the
position and velocity errors. The position and velocity errors were considered in the Sun-Earth
dimensional units, expected to have values on the order of magnitudes greater than 105 and 10−1,
respectively. For the same reason, the weights 𝑤1 and 𝑤3, acting as the scaling factors for velocity,
were kept constant at 5000000, which is the ratio between the maximum position and velocity
error requirements (1.5 ⋅ 105 and 0.3) in the inertial frame. This ensures that each variable being
minimized is treated with roughly the same importance by the algorithm.

Given the computationally demanding problem, particularly due to the spiral trajectories, instead
of conducting a grid search, the DE algorithm was tuned by varying one set of parameters at a time.
First, the parameters 𝑁𝑝, seed, and weights were fixed at 70, 56587, and 1000, respectively, with
only the values of 𝐶𝑅 varied in each run performed for 100 generations, as illustrated in Fig. B.3a.
These results were then utilized to fix the value for 𝐶𝑅 while varying the remaining parameters. The
convergence of the fitness for different population sizes and seeds is shown in Figs. B.3b and B.3c,
respectively. Subsequently, for the selected values of 𝐶𝑅, 𝑁𝑝, and seed, the weights were tuned for
200 generations. Finally, with the obtained set of tuned parameters, an additional 100 generations
were performed (300 in total), where the solution for leg 1 converged within the set tolerance, while
that for leg 2 did not but was still considered sufficiently optimal for an initial guess. Table B.1
lists the values of parameters taken by the tuned DE algorithm.
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(a) Crossover ratio. 𝐶𝑅 = 0.9 found the best solution. (b) Population sizes. 𝑁𝑝 = 140 is the best.

(c) Different seeds. Seed 565 is the most optimal.

Figure B.3: Convergence of the fitness over the generations for different values of the parameters - shown for leg 1.

Table B.1: Parameters for the tuned differential evolution algorithm for both the legs of the mission.

𝑁𝑝 𝐶𝑅 Seed 𝑤2 𝑤4
Leg 1 140 0.9 565 100 -
Leg 2 70 0.9 56587 - 1000
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C Moon to Moon Transfer
This section presents the results obtained from a preliminary analysis for devising a transfer be-
tween Phobos and Deimos using a solar sail. Similar to the transfers to Deimos, an ideal sail with a
lightness number of 0.05 is assumed, and trajectories are established in a patched CR3BP model.
The orbit of Phobos is considered to be planar to that of Deimos, i.e. it is also inclined at 26 deg
to the ecliptic with a raan of 83 deg. The characteristic parameters taken for Phobos along with
its initial phase angle (𝜙0), with respect to the x-axis of the Mars-centered equatorial frame (𝑀𝐸), is
summarized in Table C.1.

Table C.1: Characteristic parameters of the Mars-Phobos CR3BP system and Phobos’ initial phase angle. Based on the
values provided by NASA/JPL’s Solar System Dynamics group [70].

Parameters 𝜇 [-] 𝜆 [km] 𝜏 [s] 𝜙0 [deg]
Values 1.611 ⋅ 10−8 9.468 ⋅ 103 4.452 ⋅ 103 172.3214

Here, heteroclinic-like connections are sought between the Mars-Deimos (MD) 𝐿1 and Mars-Phobos
(MP) 𝐿2 Lagrange points by minimizing the position and velocity errors at the linkages between the
solar-sail perturbed invariant manifolds originating from these points. Two different control laws
are employed to achieve this: one with a sail featuring fixed cone and clock angles for both the MD
and MP phases, and the other with a sail following the locally optimal steering law, maximizing
the rate of change of the Jacobi constant (JC). Similar to the approach outlined in the article, the
linkage errors Δ𝑟 ≤ 10−3 and Δ𝑣 ≤ 10−2 in the Mars-Phobos system are regarded as criteria to
achieve a satisfactory result that ensures the feasibility of obtaining continuous transfers between
the moons.

A Monte Carlo analysis was conducted for both control laws for a transfer from MD-𝐿1 to MP-𝐿2
involving an unstable manifold from Deimos and a stable manifold from Phobos. The results are
illustrated in Fig. C.1a for fixed control and Fig. C.1b for locally optimal control, where the relation
between the position error, velocity error and difference in Jacobi constant in the Sun-Mars frame
(Δ𝐽𝐶𝑆𝑀) at the linkage is shown. It’s worth noting that for fixed control, the cone and clock angles of
stable and unstable manifolds may not necessarily be the same. From the figures, it was concluded
that even with roughly 33,000 samples, none of the data points met both the required Δ𝑟 and Δ𝑣
criteria.

(a) Using fixed cone and clock angles. The greyed-out points repre-
sent the designs that either impacted the moons or Mars. (b) Using locally optimal steering law.

Figure C.1: Results of Monte Carlo analysis showing a scatter plot for the position error, velocity error and difference in
the Jacobi constant computed in the Sun-Mars frame at the linkages.
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To further evaluate the feasibility of these control laws in producing trajectories that meet the
linkage requirements, a map was generated to illustrate the general relationship between Δ𝑟, Δ𝑣,
and Δ𝐽𝐶 as depicted in Fig. C.2. It was generated by calculating the maximum feasible value of Δ𝐽𝐶
in the Sun-Mars frame for various combinations of Δ𝑟 and Δ𝑣. The plot reveals that to meet the
requirements, a Δ𝐽𝐶 of less than 2 ⋅ 10−4 is essential, a criterion that neither of the implemented
control laws satisfies in Fig. C.1. Although the locally optimal control law narrows the gap between
the Jacobi constants of the two manifolds, it falls short of achieving the desired output.

Figure C.2: Relation between position errors, velocity errors and maximum feasible difference in Jacobi constants.

The impracticality of achieving the desired outcome is further evident in the trajectory depicted in
Fig. C.3 plotted, in the𝑀𝐸 frame, for the solution with adequately low position and velocity errors for
the locally optimal steering. It is evident that the current steering law alone cannot close the energy
gap, and requires either the use of alternative control laws or a series of impulsive maneuvers.

Figure C.3: Trajectory of the solution with sufficiently low linkage errors employing the locally optimal steering for a Deimos
to Phobos transfer. The zoomed-in image shows the end state of the stable and unstable manifold at the linkage condition.
It is plotted in the Mars-centered equatorial reference frame.
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D Sensitivity of the manifold distance

parameter
This chapter discusses the sensitivity of the distance parameter 𝜖, which defines the magnitude
by which the state at the Lagrange points is perturbed in the direction of the stable or unstable
eigenvectors to ride along their respective manifolds. This application of 𝜖 for the computation of
the initial state is shown by restating the following equation:

x0,𝑠 = x± 𝜖v𝑠 , x0,𝑢 = x± 𝜖v𝑢 (D.1)

where x0,𝑠 and x0,𝑢 are the initial perturbed state associated with the stable and unstable manifolds
for the eigenvectors v𝑠 and v𝑢, respectively. The signs (±) in the Eq. (D.1) depict the interior or
exterior branches of the manifold. An interior branch is the one that moves towards the second
primary while an exterior branch moves away.

Typically, the chosen value for 𝜖 falls within the range of 10−4 to 10−6 [46]. A smaller 𝜖 value re-
sults in a solution that closely follows the invariant manifolds associated with the Lagrange point.
Generally, for classical manifolds, the states of the manifolds propagated using this linear approx-
imation for different values of 𝜖 between 10−4 and 10−6 is consistent. The only primary distinction
lying in the fact that those propagated with smaller values evolve more slowly with time, better
approximating the manifolds, as illustrated in Fig. D.1 for both branches of the ballistic unstable
manifolds (zero force due to SRP) from the sub-SE-𝐿1 point (refer to Section A.1.3) for a solar sail
with a lightness number of 0.01.

Figure D.1: Classical (ballistic) one-dimensional invariant unstable manifolds propagated for different distance parameters
(10−4, 10−6 and 10−10) from the sub-𝐿1 point of the Sun-Earth system for a solar sail with lightness number 0.01. Unstable
branch 1 (in blue) is the exterior branch while unstable branch 2 (in orange) is the interior branch. The yellow dot is the
Sun.
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However, while reproducing the sail-perturbed manifolds generated by Farrés et al. [71] from the
same sub-𝐿1 point for a solar sail with a lightness number of 0.01 and cone angle of -20deg, it
was noted that trajectories produced with different distance parameters were strikingly different.
This can be observed in Fig. D.2, where four different values of distance parameters are shown,
along with a case where the lightness number of the solar sail is zero (ballistic). Here it is seen
that as the value of the distance parameter increases, both the branches of the unstable manifolds
gradually end up overlapping. None of the past literature explicitly mention this behaviour. Note
that although these figures specifically show only the unstable manifolds of a particular Lagrange
point in the SE system, similar behaviour was noticed for stable manifolds and other colinear
Lagrange points in different CR3BP systems.

This observed behaviour is attributed to the fact that smaller values of the distance parameter result
in initial states starting very close to the Lagrange point. Consequently, the acceleration acting on
the particle, solely due to the accelerations in the CR3BP, is much smaller than the perturbing
acceleration by the sail. This leads to a significant influence on the directions of both branches,
causing them to follow in the same direction. This is further supported by the similarity observed
between the case with the lowest distance parameter (𝜖 = 10−4) and the ballistic case (𝛽 = 0), where
the particle starts at a much further distance from the sub-𝐿1 point, leading to the total acceleration
experienced by it being less dominated by the sail.

Figure D.2: Exterior (unstable branch 1 in blue) and interior (unstable branch 2 in orange) unstable branches plotted from
the SE sub-𝐿1 point for 𝛽 = 0.01. The case labelled “Literature” corresponds to the plot obtained from reference [71] for
𝜖 = 10−4 with a cone angle of -20deg. Additionally, 𝜖 = 10−4, 10−5, 10−6 and 10−4 for the same cone angle are also shown.
The case labelled “𝛽 = 0” corresponds to the ballistic case. The blue dot is the Earth.

Therefore, the ambiguity in selecting an appropriate distance parameter can be solved by consider-
ing it as another design variable during the initial guess generation. However, to avoid increasing
the computational effort, the current study adopts a fixed value for the distance parameter, i.e.,
𝜖 = 10−4. This choice is based on the observation that, for both SE-𝐿2 and MD-𝐿1, this value results
in branches that move away from each other, similar to the scenario depicted in Fig. D.2, providing
two distinct choices for manifolds for obtaining the initial guess. For the final application, among
the two branches, the exterior branches - those that move away from the secondary - were chosen
for both the SE and MD systems. Additionally, it was reasoned that if this particular value of the
distance parameter cannot achieve position and velocity errors between the manifolds below the
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specified requirements, a different value of the distance parameter could be employed; however,
this was not found to be necessary.

57





E Additional Plots
This appendix chapter presents relevant additional plots that complement certain arguments men-
tioned in the journal article.

Periodicity of the fourth-body perturbations
Figure E.1 shows different fourth body perturbing accelerations normalized with Phobos’ point mass
gravity at an arbitrary point in the Mars-Phobos system. It is evident that all the perturbations
exhibit periodicity within a timeframe of less than 3 years, forming the basis for the perturbation
analysis conducted in this paper.

Figure E.1: Perturbations in gravitational acceleration, normalized against the Phobos’ point mass gravity, at an arbitrary
point (x = 1.8) within the Mars-Phobos CR3BP system, observed from January 1, 2030, to January 1, 2033.

Length of the ballistic segment
During the generation of the initial guesses for the spiral trajectory, a short ballistic segment was
introduced to prevent immediate impacts with Deimos as soon as the sail departs from the Mars-
Deimos 𝐿1 point. Given the short orbital period of Deimos, there are multiple instances in each
orbit where an immediate powered flight, depending on the relative orientation of the Sun and the
solar sail, might result in an impact with the moon. Therefore, the addition of a ballistic segment
is preferred; it ensures that the spacecraft moves sufficiently away from the moon before initiating
powered flight. However, for this the ballistic flight should be long enough, requiring a grid search
to identify the appropriate time of flight (ToF) for the ballistic segment.

The grid search was performed with two varying parameters: ballistic ToFs and the location of Mars
in its orbit around the Sun. The reason for selecting Mars’ orbital position is Deimos’ inclined orbit,
due to which the sail acceleration experienced by the spacecraft varies depending on the location
of Mars in its orbit. The results obtained are shown in Fig. E.2, where ballistic flights up to 0.20
days were found to impact the moon immediately. Thus, including some factor of safety, 0.25 days
was chosen as the constant ToF for the ballistic segment. Additionally, it is noted that the other
outliers impacting the moon at higher ballistic ToFs do so after moving away from the moon and
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not immediately. This occurs due to a specific orientation of the Sun in the Mars-Deimos system,
causing the sail-perturbed trajectory to run back into the moon.

Figure E.2: Selection of the time of flight for the ballistic segment. Mars’ initial position is taken at J2000, for a circular
orbit around the Sun. The black regions indicate no impacts, while the white grids are associated with impacts with Deimos.
This was plotted for the unstable manifold from Mars-Deimos 𝐿1, the same results were observed for the stable manifold.

Linkage errors as a function of cone and clock angles

Figure E.3: Position and velocity errors at linkages shown for combinations of cone and clock angles for mission leg 1. 𝛼1
and 𝛿1 correspond to the cone and clock angles of the unstable manifold (from Sun-Earth 𝐿2), respectively, and 𝛼2 and 𝛿2
to that of the stable manifold (from Mars-Deimos 𝐿1). The green crosses represent the designs that impacted either Deimos
or Mars.

Figure E.3 is a result of the Monte Carlo analysis where the position and velocity errors at linkages
for mission leg 1 are shown as a function of cone and clock angles. It is evident from the figure
that no clear correlation between the attitude angles and linkage errors exists.
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Escape and capture spiral trajectories
Figure E.4 is a plot between the time of flight of the escape trajectory and the departure epoch. It
clearly illustrates that similar to the capture trajectory, the minimum and maximum values of the
escape time vary periodically with the epoch at departure from Deimos - with a half Martian year
period.

Figure E.4: Escape time of flight plotted against the departure epoch for mission leg 2

Figure E.5 shows the locations from which the trajectories either escape or get captured on the
Martian sphere of influence (SOI) for varying spiral ToF. To facilitate the depiction of these locations
on the SOI, spherical coordinates of right ascension and declination are utilized. This assumes a
frame centred at Mars in a Sun-Mars CR3BP system, with the x-axis pointing along the Sun-Mars
line (opposite to the Sun), the z-axis normal to the Sun-Mars plane, and the y-axis completing the
right-handed reference frame. Right ascension is positive along the positive y-components, while
declination is positive along the positive z-component. The figure illustrates that the solar sail
consistently escapes or enters the Martian SOI from the anti-sun direction. Spiral times are almost
uniformly distributed about the declination, but exhibit smaller times at large right ascension.
The capture trajectories enter at negative right ascension while the escape exits at positive right
ascensions.

(a) Capture trajectories - leg 1 (b) Escape trajectories - leg 2

Figure E.5: Locations at the Martian sphere of influence at which the trajectories either escape or get captured. Their
respective time of flights within the Martian system are also specified.

Figures E.6 illustrate the orientations of Deimos’ orbit in the Sun-Mars frame at departure/arrival,
using the right ascension of ascending node (raan), for which minimum and maximum escape (Fig.
E.6b) or capture times (Fig. E.6a) are observed. The raan used here is defined with respect to
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the x-axis pointing on the Sun-Mars line centred at Mars, similar to the right ascension along the
Sun-Mars plane, i.e. the ecliptic in this study. The majority of obtained solutions that exhibit
small or large spiral times are seen to be spaced by almost 180 deg, indicating that the orienta-
tion of Deimos’s orbit at the time of departure/arrival in the Sun-Mars frame indeed causes the
capture/escape times to behave periodically, as shown in Fig. E.4. This periodic behaviour is at-
tributed to certain orientations allowing for a better alignment of the orbital velocity vector and the
sun-sail line, resulting in a larger sail acceleration available to be directed along the velocity vector.

(a) Capture trajectories.

(b) Escape trajectories.

Figure E.6: Frequency distribution of trajectories with spiral time of flights less than 230 days and greater than 250 days
for varying values of the right ascension of ascending node of Deimos’ orbit on the ecliptic at the time of departure or arrival.

Complementary figures for the optimal trajectories
Figure E.8 depicts the interplanetary trajectories for both leg 1 and leg 2 plotted with coordinate
axes unequally scaled, plotted in the heliocentric inertial reference frame. It clearly illustrates how
the sail’s optimal interplanetary control profile changes the inclination of the trajectory to either
rendezvous with the state at the Martian SOI for leg 1 or at the SE-𝐿1 point for leg 2.
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(a) Leg 1 (b) Leg 2

Figure E.7: Alternate view of the PSOPT obtained optimal interplanetary trajectories with coordinate axes not scaled equally.
It is plotted in the heliocentric inertial reference frame.

Figure E.8 shows how the inclination of the locally optimal capture or escape trajectories changes
with time in the Sun-Mars CR3BP frame with the coordinate axis centred at Mars. The inclination
monotonically increases during the escape spiral and decreases during the capture phase. This
complements the explanations provided in the conference article for the obtained control profiles.

(a) Capture Spiral - Phase 3: From Martian SOI to MD-𝐿1 (b) Escape Spiral - Phase 4: From MD-𝐿1 to Martian SOI

Figure E.8: Varying inclinations of trajectories arriving at or departing from the Mars-Deimos 𝐿1 point within the Martian
SOI with respect to the Sun-Mars plane.
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