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1 Introduction

In this section, the three driving forces, including the supply side, demand side and
technology side of managing trajectory data are first presented. Then, the three criteria
which would determine a good implementation outcome are also discussed.

1.1 Background

With the update of the mobile Internet of Things (IoT) infrastructure and the popu-
larization of corresponding devices, massive amounts of various spatio-temporal data
are emerging, collected and stored, highlighting the arrival of the Big Data era in the
field of geomatics (Li (2019); Li et al. (2020)). Among them, trajectory data (shown
in Figure 1) of moving objects (such as vehicles, humans and animals) collected by
the Global Navigation Satellite System (GNSS), Global System for Mobile Communi-
cations (GSM) etc., is uniquely valuable because of the large amount of information it
contains.

Figure 1 General Definition of Trajectory: a trajectory is a sequence of 3D/4D points
in 3D(X, Y, T)/4D(X, Y, Z, T) space, each point may have some attributes as
semantics (Alsahfi et al. (2020)).

Although the storage burden can be solved by horizontally extending inexpensive stor-
age media, the utilization and reproduction of trajectory data is still limited by its large
size and complex structure. This seriously hinders the added-value extraction from
historical as well as real-time data through data analysis or mining technologies in
research, engineering and decision-making, particularly in real-time applications.

To cope with the query, computation and analysis of massive data, distributed/parallel
storage and computation are gradually replacing traditional centralized/serial strate-
gies, with Apache Hadoop and Massively Parallel Processing (MPP) ecosystems as the
dominant ones. While Hadoop is suitable for high-throughput applications, MPP is
more suitable for low-latency applications.

Although these technologies can be well applied in industries such as the Internet and
Finance, actions to expand them to the field of geomatics are still progressing. Con-
sidering the characteristics of trajectory data (non-structural, dynamically evolving,
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multi-dimensional etc.), it is still necessary to reconsider multiple aspects such as data
modelling, clustering, indexing, and data distribution etc.

1.2 Motivation

This research is meant to explore the possibilities (alternatives) to extend the distributed
technologies for the trajectory data. Specifically, this research will be motivated to re-
duce the pressure of data storage, accelerate the speed of data queries, and balance the
space and time complexity, as well as the complexity of thinking and coding.

Time Aspect: The main research focus is on enhancing the query (especially spatio-
temporal related ones such as selection by intersection) speed, meeting the client’s
demands.

Storage Aspect: Though not the primary focus, the research aims to minimize the
redundancy in the original data, exploring compression strategies for efficient storage.

Complexity Aspect: Space and time complexity are often mutually exclusive, for in-
stance, intricate compression algorithms may sacrifice speed for higher compression
ratios. Also, fine design would improve performance but increase the development
cost which is not realistic for this research.

2 Related Work

In this section, relevant works from four aspects are presented and discussed. Specifi-
cally, they are how to model the trajectory phenomenon into the database, what are the
strategies to speed up the accessing process, and the typical storage and computation
architecture, as well as the typical applications.

2.1 Trajectory Modelling

Depending on the aggregation level and whether structured, the trajectories are typi-
cally modelled as points, grids and sequences (Ribeiro de Almeida et al. (2020)).

Point-Based Modelling: It takes the individual points (shown in Figure 2 (a)) as the
basic storage element. Besides using plain tables, considering X, Y, Z, T and other at-
tributes as homogenous dimensions, some separate organizing dimensions and prop-
erty dimensions. While organizing dimensions are usually encoded somehow for clus-
tering a indexing, the property dimensions are kept as usual (De Vreede (2016); Meijers
et al. (2016); Meijers and van Oosterom (2018); li2 (2020); Liu (2022)).

Grid-Based Modelling: It takes the regular cell/cube (shown in Figure 2 (c)) as the
basic storage element. Pre-calculation/aggregation of certain semantics at certain cells
in the regular spatial-temporal cubes is needed. This kind of modelling is especially
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good for OLAP applications due to its regular multi-dimensional nature (Leonardi
et al. (2010, 2014)).

Figure 2 Three Typical Trajectory Models: individual points with implicit lineString
geometries are stored in the point-based modelling; explicit geometries are
stored in the sequence-based modelling; aggregated values (such as average
speed in this example) are stored in the grid-base modelling.

Sequence-Based Modelling: It takes the vector-based lineString (shown in Figure 2
(b)) as the basic storage element after reconstructing (geometrical/semantical) mean-
ingful sequences of points (Pelekis et al. (2015); Zimányi et al. (2020); Biljecki et al.
(2013); Pfoser et al. (2000)). The semantics are assigned to each sequence as attributes.
Depending on the application, sequences are often modelled in 3D or 4D space.

The grid-based modelling has the coarsest granularity, good at visualization, however,
the geometries are lost during the aggregation process, making geometrical operations
impossible. On the contrary, point-based modelling has the finest granularity and
most flexibility, however, the geometries are not explicitly reconstructed, leading to
bad cases (shown in Figure 3) when doing certain operations.

Figure 3 Bad Cases of Point-Based Modelling: when doing intersection (orange line at
left) or containment selection (orange box at right), it has to first select points
inside a certain range and do reconstruction since there are no explicit geome-
tries. How to determine the pre-selected range is difficult, especially when the
sampling rates are different. The green trajectory intersects the orange line or
is contained inside the orange box, but is missed when doing selection as its
points are not pre-selected.

The sequence-based modelling is a compromise/balance between point-based mod-
elling and grid-based modelling, aggregating at certain levels (reducing redundancy)
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while keeping the geometries. The main disadvantage is the unstructured nature such
as different sampling rates or lengths for each trajectory. Thus, the core when doing
sequence-based modelling is how to transform the unstructured trajectories into struc-
tured ones.

After the reconstruction of the whole trajectory, further splitting is needed which is a
preparation for spatial accessing methods. Typically, there are irregular splitting and
regular splitting (shown in Figure 2 (b)). The irregular method splits the trajectory
geometrically (such as by truing points) or semantically (such as by driving state). The
regular method splits the trajectory by regular spatio-temporal cubes. A combination
of the two splitting methods is also possible (shown in Figure 4).

Figure 4 Combination of Two Splittings: the trajectory is first irregularly split by state
(such as whether there are passengers) and then regularly split. In this way,
the length of each sequence can be controlled, and the sequence can be con-
tained in the cells to facilitate subsequent clustering and indexing.

2.2 Trajectory Accessing

Accessing methods are used to speed up the CURD operations in the DBMS. B-tree,
BRIN etc. are traditional non-spatial indexing methods. However, trajectory by nature
is a spatially related phenomenon with scale and neighbouring effects, when storing
the trajectory, there’s a need to consider spatial locality, homogeneity, regularity etc.

Spatial Clustering and Grouping: It means using spatial locality to store the closer
elements in the real world (or user-defined space) also closer in the storage media
which organizes data in a liner way. The locality is usually application-dependent and
specified by clients. There are several ways to define the closeness such as Space-Filling
Curves (van Oosterom and Vijlbrief (1996)), and some machine learning algorithms
such as K-Means could be used, too.

Dynamically Balanced Search Tree: It exemplified by R-tree (shown in Figure 5 (a))
and its variants (R*tree, R+tree, Hilbert R-tree, etc.), dynamically consider the distribu-
tion of objects during dimensional space partitioning. The primary advantage lies in
achieving a balanced index structure, flexiblely maintaining objects within each node
(both leaf and intermediate nodes), thereby contributing to retrieval performance (van
Oosterom (1999); Liu (2022); Guan (2020); Mahmood et al. (2019)).

However, the construction and updating of this balanced tree index are intricate, pos-
ing challenges for practical deployment, especially in distributed environments. As the
data volume increases, the depth of the index tree grows, resulting in a rapid decline
in retrieval efficiency. Dynamically Balanced Search Trees are well-suited for scenarios
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where the spatial distribution of objects is uneven, but their complexity in construction
and updates make them less suitable for distributed environments or applications with
rapidly increasing data volumes.

Figure 5 Two Typical Spatial Accessing Methods

Regular Dimensional Space Tessellation: It is represented by indices like the grid in-
dex and space-filling curve (shown in Figure 5 (b)), involving static regular segmenta-
tion of dimensional space. The primary advantage lies in its simplicity of construction
and maintenance, eliminating the need for adjustments when adding new data and
ensuring ease of use.

However, this approach struggles with the adaptive handling of data distribution.
Some index division units may become too dense, while others may remain devoid of
data, resulting in unstable retrieval efficiency. Regular Dimensional Space Tessellation
is well-suited for scenarios prioritizing easy construction and maintenance, particu-
larly in environments where data distribution remains relatively stable, and frequent
adjustments to the index structure are undesirable.

In seeking a compromise between the two main steam accessing methods, grid di-
vision index incorporating spatial distribution, and multi-level indexing hybridizing
multiple strategies emerge as potential solutions. It becomes evident that no single
method universally suits all scenarios. The optimization for specific refinement and
complexity may inadvertently result in diminished performance in alternative appli-
cations.

Notably, while regular methods may excel in distributed environments, each approach
presents trade-offs, emphasizing the importance of selection based on the specific de-
mands and characteristics of the given data. In conclusion, the diverse nature of spatial
indexing methodologies underscores the need for a understanding and careful consid-
eration of trade-offs to ensure optimal performance in varied scenarios.

2.3 Trajectory Organizing

When jumping from the data storage and computing in the geomatics field back to
a broader scope, there’s a need to care about the macro classification of the DBMS
architectures (Elmasri et al. (2015); Wang (2022); Guan (2020)).
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Figure 6 Three Typical DBMS Architecture: the performance bottleneck of shared-
everything and shared-storage architecture mainly comes from the IO (data
exchange between disk and memory)

Shared-Everything: In this architecture, CPU, Memory, and Disk resources are shared
(shown in Figure 6 (a)). Depending on the application, the bottleneck may occur at the
CPU cache or IO, causing a decline in performance.

Shared-Storage: In this architecture, disk resources are shared (shown in Figure 6
(b)). Vertical scaling is possible (though expensive), and the bottleneck may still be
associated with IO operations.

Shared-Nothing: In this architecture, CPU, Memory, and Disks are all distributed
(shown in Figure 6 (c)). Horizontal scaling helps alleviate the bottlenecks mentioned
in the previous two models, but it may introduce additional costs and marginal effects.
There are two main stream distributed system architectures, MPP and Hadoop. Their
comparison with traditional databases is shown in Table 1.

Table 1 Architecture Comparison Adopted from Wang (2022)

Feature Traditional Database Hadoop MPP Database

Volume GB-TB PB-EB TB-PB
Robustness High High Medium
Scalability Low High Medium
Delay Medium High Low
Throughput Low High Medium
Data Type Structured All Structured

1. MPP (Massively Parallel Processing) Ecosystem: MPP ecosystems excel in high-
performance data processing through a shared-nothing DBMS-based architec-
ture, distributing computational tasks across multiple nodes for efficient han-
dling of large datasets. Horizontal scalability enhances its suitability for complex
analytics and data warehousing applications.

2. Hadoop Ecosystem: The Hadoop ecosystem, anchored by the Apache Hadoop
core, embraces distributed computing for large-scale data processing. With a
shared-nothing architecture, Hadoop facilitates parallel computation and fault
tolerance, making it a versatile and scalable solution for diverse big data needs.
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Some variants such as Spark convert disk-based calculations into memory-based
calculations, reducing latency.

In a distributed environment, it is better to store objects that are closer also closer in
the storage media, however, in the distributed system, this may not be the case (shown
in Figure 7).

Figure 7 Different Distributing Strategies: If data is distributed linearly and orderly
according to the Space-Filling Curve, closer data will be stored on the same
machine. When only relevant data is queried, only one machine is working,
and the other machines are ”sleeping”.

2.4 Trajectory Application

There are plenty of applications, including selection, matching, bundling etc. Some of
these queries and computations could be sped up by certain strategies.

Selection: It is the most basic operation and serves as the basis to support other more
complex and advanced applications.

1. Selection by Intersection: select the features that intersect with the querying fea-
tures (such as lineString or polygon).

2. Selection by Containment: select the features that are contained inside the query-
ing features (such as polyhedron or sphere). It is also called range selection, de-
pending on the accessing methods, the querying process could be sped up such
as the Sweep algorithm (shown in Figure 8) (Liu (2022)).

3. Selection by Identifiers: select the features that belong to one object, in the taxi
trajectory case, it is selected by the unique identifier of the vehicle.

Matching: It can complete applications independently (machining two trajectories or
matching the trajectories with roads) and can also be used as a prerequisite for other
applications (measuring the similarity/distance between trajectories used for cluster-
ing/bundling).

Bundling: It mainly works for visualization (shown in Figure 9). The use of bundling
remedies visual clutter and reveals high-level patterns (Holten and Van Wijk (2009)).

Note that some applications may need to be adjusted due to the distributed architec-
ture.
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Figure 8 Sweep Algorithm Adopted from Liu (2022).

Figure 9 Bundling Visualization Adopted from Holten and Van Wijk (2009).

3 Research Objective

In this section, the main research question and sub-questions are presented, further-
more, the scope of the research (must, must not and could) is briefly introduced.

3.1 Research Question

Main Question: Is it possible to extend the space-filling curve clustering and indexing
methods for trajectory data into a distributed database with MPP architecture?

1. How to perform trajectory modelling? Is it better to model it as a sequence in-
stead of a point cloud or grid?

2. How to perform spatial accessing? Is it possible to use space-filling curve clus-
tering and indexing methods for sequence-based modelling?

3. How to distribute data to the multiple nodes of the MPP database? Has the na-
ture of SFC encoding changed, and how does it affect some regular queries?

The details of the questions (such as the parameters that need to be explored) are not
shown in detail, but they can be seen in Section 4.

3.2 Research Scope

This research will be mainly divided into two parts: engineering implementation and
scientific research. Among them, the engineering implementation as the basis of ev-
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erything must be completed, including database deployment, Python-DBMS interface
implementation, and basic applications such as visualization.

For each sub-problem, a minimum degree of scientific research must be completed,
including the performance of one space-filling curve such as the Morton curve, the
performance of one distribution strategy such as random distribution etc.

Detailed parameter tuning (such as comparisons of the Morton curve and Hilbert
curve) in the production environment testing with extremely large volumes of data
will be optional due to factors such as time and equipment. This research would not
focus on the compression and the absolute speed (due to the different hardware and
software environments to existing benchmarks).

Considering that the production environment is difficult to obtain, this study first con-
siders testing on a virtual environment with a subset of data, focusing on the distribu-
tion of various query data to indirectly measure performance. The experiments on the
production environment would be optional if time and other resources allowed.

4 Methodology

In this section, a brief methodology (shown in Figure 10) of this research is presented.

Figure 10 Methodology and Work Flow: the methodology of this research is divided
into four main parts. Each part are one-to-one correspondence to previously
mentioned related work and proposed research sub-questions.

Modelling/Pre-processing: This is in response to the question ”How to perform tra-
jectory modelling”. This research will reconstruct the trajectory points into trajectory
sequences, and then use the states to first split the whole trajectories irregularly, and
then split them regularly using the space-time cube. The number of states used and
the granularity with which the dimensions are divided will be explored as parameters
affecting performance.

Clustering/Indexing: This is in response to the question ”How to perform spatial ac-
cessing”. This research will use space-filling curves (specifically the Morton curve) for
clustering and encoding, and then use b-tree (or other linear indexing) methods for
indexing. The scaling of different dimensions and the order in which they are encoded
(XYT, XTY etc.) will be explored as parameters affecting performance (li2 (2020); Pso-
madaki (2016)).

Deployment/Distribution: This is in response to the question ”How to distribute data
to the MPP database”. This research explores the possibility of random distribution,
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distributed by space-filling code, distributed by vehicle ID, and distributed based on
machine learning, the load balance is the final target (Gao et al. (2022)). Considering
that virtual machines are used, the important point is that each selection needs to pull
data from each node evenly.

Application/Experiment: How to measure the performance of modelling, indexing
and distributing needs to be tested experimentally, and some common query applica-
tions will be implemented. At the same time, considering the characteristics of dis-
tributed systems, the integrity of the space-filling curve may be destroyed, and some
queries may need to be changed accordingly (Liu (2022)).

5 Practical Issues

In this section, some practical matters related to this graduation research are presented,
such as schedule, platforms, tools and data availability, which will support the feasi-
bility of this research.

5.1 Time Planning

The proposed timeline (shown in Figure 11) is also presented, most of the tasks before
P2 have been done (although some content may still need to be re-read and optimized
in the future). Considering that there is still the possibility of adjustments to the re-
search plan, this timeline only serves as a guide.

5.2 Platforms and Tools

1. Database Implementation: Greenplum, built on Postgresql, works as an open-
source MPP database.

2. Experiment Platform: VMware Workstation, working together with Xshell, set
up virtual machines on a single physical machine.

3. Pre-processing and Interaction: Python, along with its libraries such as Pandas
eases the programming tasks.

5.3 Datasets Collection

Nine days’ taxi data in Zhuhai (a city with 2 million population which is near the
HongKong, China). There are 10GB of data with 20 million recodes and 3000 taxis per
day. There are taxi id, gps time, latitude, longitude, altitude, speed, direction, mileage,
state and other fields, a total of 66 attributes whose samples are shown in Table 2.
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Figure 11 Gantt Chart for Time Planning: The timeline is divided into three parts:
Research (reading relevant materials), Development (specific coding imple-
mentation) and Documentation (notes, thesis and slides). The key stages
(with higher importance and would be allocated more time and resources)
are marked in yellow. The deliverables at each stage are marked in purple.

Table 2 Datasets Sample

taxi id gps time latitude longitude state

800000000130 2021-10-14 00:00:03 22.22945 113.530618 2
800000000130 2021-10-14 00:00:13 22.228835 113.531048 2
800000000130 2021-10-14 00:00:23 22.228315 113.531411 2

In case of experiment need, the Automatic Identification System (AIS) 1 data is also
prepared. It may share different properties with the taxi data, such as the spatial dis-
tribution (clustering), sample rates etc.

1The automatic identification system (AIS) is an automatic tracking system that uses transceivers on
ships and is used by vessel traffic services (VTS).
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