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Abstract
Field-scale simulation of flow in porous media in presence of incomplete mixing demands for high-resolution computational
grids, much beyond the scope of state-of-the-art simulators. Hence, the upscaling-based Todd and Longstaff (TL) approach
is typically used, where coarse grid cells are employed with effective mixing fluid properties and parameters found by
matching results obtained with fully resolved reference simulations. Dynamic local grid refinement (DLGR) techniques,
on the other hand, only employ fine-scale grid resolution where the fully mixed assumption is not valid. The rest of the
domain is then solved at coarser resolutions, where the fully mixed assumption is valid. Here, we assess the accuracy and
the robustness of DLGR- and TL-based simulations of miscible displacements in homogeneous and heterogeneous porous
media. Due to the intrinsic uncertainty within the unstable displacement nature of the studied incomplete mixing processes,
the performance of the methods is also investigated based on a range of acceptable solutions rather than relying only on
a single reference one. Systematic numerical results illustrate that the DLGR method is much more robust and accurate
than the upscaling-based TL approach, and employs only a small fraction of fine-scale reference grids. Especially, the TL
upscaling results (though history matched with computationally expensive fine-scale results) are very sensitive to the change
of the simulation parameters. Based on this study, we propose a dynamic multilevel simulation strategy for efficient and
reliable large-scale simulation of the complex incomplete mixing processes.

Keywords Incomplete mixing in porous media · Dynamic local grid refinement · Todd-Longstaff model ·
Algebraic dynamic multilevel method · Viscous fingering

1 Introduction

The miscible and immiscible displacements in subsurface
porous media can develop instabilities at the interfaces of
the fluids with different properties [1]. Moreover, reservoir
rock heterogeneity plays a dominant effect on how fluids are
displaced through the porous reservoir rock. Depending on
its values, variance, and spatial correlation, the permeability
distribution can either accentuate or suppress the viscous
fingering phenomenon [2–8]. To allow for fast decisions
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with the available computational capacities, the state-of-
the-art reservoir simulations are typically performed on far
lower grid resolutions than the scale at which the incomplete
mixing, i.e., fingering and unstable interfaces, occur. Apart
from introducing additional numerical diffusion, these low-
resolution grid cells may suppress small-scale physical
phenomena that contribute to unstable displacements,
leading to inaccurate simulations [9]. There has been a
significant effort to account for these sub-grid features
through effective upscaled fluid properties [10–12]. Among
them, Todd and Longstaff’s (TL) model [11] is widely used
in the petroleum industry.

Similar to alternative upscaling-based models, a major
disadvantage of TL approach is that the effective fluid
properties are described by an undefined scalar mixing
parameter, which must be obtained from either high-
resolution simulation or experimental data. The use of
full-field high-resolution simulations, in order to find these
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tuning (effective) parameters, is impractical. Moreover, the
tuned parameters obtained for a given simulation settings
may not be valid if the simulation inputs are changed.
As such, the applicability of these approaches to properly
address incomplete mixing processes is questionable. Of
particular interest is to investigate the applicability of the
TL approach, and, if it is found impractical, to develop an
alternative simulation approach applicable for field-scale
studies.

This challenge motivates the development of dynamic
local grid refinement (DLGR) techniques [13–20], and
of adaptive mesh refinement (AMR) methods [21–26] in
which coarser grid resolutions are employed when and
where the solution (e.g., saturation and concentration)
variations are low. On the other hand, the fine-scale grid is
employed where sharp gradients exist.

In this work, the accuracy and robustness of DLGR
and the widely used TL model for the simulation of
incomplete mixing are investigated. The sensitivity of
DLGR simulations to different error estimate strategies in
order to refine or coarsen the grid is also assessed. Both
DLGR and TL are implemented in a commercial-grade
simulator for quality benchmarking purposes. As the studied
fluid flow involves unstable displacements, the variations
of the fine-scale reference solution based on different
perturbations are used to define “acceptable solution” range
rather than a specific fine-scale solution map.

Numerical experiments show that DLGR is capable
of simulating incomplete mixing phenomena with only a
fraction of the fine-scale grid blocks. Important is that
although TL upscaling approach was employed after tuning
parameters based on the fine-scale reference solution, its
results are sensitive to changes of the simulation inputs (e.g.,
grid resolution and mobility ratio). The DLGR strategy, on
the other hand, is consistent when simulation parameters
are changed. Based on the results presented here, DLGR
should be preferred over the TL model, since it allows to
accurately and efficiently simulate the incomplete mixing
displacement, and it shares the same sensitivities with
respect to the input parameters compared with the fine-scale
fully resolved simulation.

The manuscript is organized as follows. The fine-scale
governing equations are presented in Section 2. Then, the
DLGR simulation strategy is briefly described in Section 3,
with details of several error criteria approaches that have
been considered in this work. The formulation employed
by the upscaled TL model is described in Section 4. To
investigate the accuracy and consistency of DLGR and TL
models, numerical test cases are presented in Section 5 for
both homogeneous (5.1) and heterogeneous (5.2) media.
Concluding remarks are presented in Section 6.

2 Fine-scale model equations and solution
strategy

The equations describing a single-phase incompressible
system of two miscible components (oil and a solvent)
flowing in a porous medium [27] are

∇ · u = qt (1)

and

φ
∂c

∂t
+ ∇ · (

c u
) − ∇ · (

φ D · ∇c
) = qc, (2)

where φ is the porosity of the porous medium, t is the time,
c is the volume fraction (or concentration) of the solvent,
and qt and qc denote, respectively, the total and the tracer
source term with [1/s] dimension (only through injection
and production wells). Note that since the source term is
only induced by the wells, the maximum concentration
value cannot exceed 100% void volume of a grid block
[28]. Also note that at c = 0, the convective term and
concentration source in Eq. 2 become zero, and at c = 1,
qc = qt . Thus Eq. 1 enforces the net outgoing fluxes in
Eq. 2 to balance the tracer source term. Furthermore, the
Darcy velocity u in the absence of gravitational effects
reads

u = − K

μmix
· ∇p, (3)

where μmix is the viscosity of the mixture, K is the
permeability tensor, and p is the pressure. Equation 3 is
substituted in Eq. 1 to obtain a pressure equation, i.e.,

−∇ ·
(

K

μmix
· ∇p

)
= qt . (4)

Here, μmix is calculated based on a quarter-power mixing
rule [10], i.e.,

μmix
(
c) =

⎛

⎝ c

μ
1
4
s

+
(
1 − c)

μ
1
4
o

⎞

⎠

−4

. (5)

Finally, D in Eq. 2 is the dispersion tensor representing
molecular diffusion and mechanical dispersion [29]. In a 2D
domain, the dispersion tensor reads

D =
[

Dxx Dxy

Dxy Dyy

]
(6)

where

Dxx = dm + dl

u2x

|u| + dt
u2y

|u| , (7)

Dyy = dm + dl

u2y

|u| + dt
u2x

|u| , (8)



Comput Geosci

and

Dxy = Dyx = (dl − dt)
uxuy

|u| . (9)

Here, ux and uy are the x and y component of the Darcy
velocity u. Additionally, dm is the molecular diffusion

constant [m2

s ] and dl and dt are the longitudinal and
transverse dispersion constants [m], respectively.

Thus, the longitudinal (Pel) and transverse (Pet) Péclet
numbers are defined as

Pel = qinjLx

ADxx

(10)

and

Pet = qinjLy

ADyy

, (11)

whereLx andLy are the dimensions of the domain along the
x and y axes respectively and A is the cross section. Finally,
qinj is the volumetric flux of the injected solvent.

An unstable front (i.e., viscous fingering) is generated
throughout the miscible displacement process whenever the
injected solvent reduces the viscosity of the fluid phase (thus
μs < μo) as shown by the linear stability analysis [30–32].

The system of governing equations (i.e., Eqs. 2–4) is dis-
cretized with a finite-volume method and solved using a
sequential approach. First, Eq. 4 is solved to obtain the pres-
sure field that is used to compute velocity by using Eq. 3.
Then, Eq. 2 is solved using an operator splitting technique.
The linear advection term is solved using an explicit time
discretization whereas the dispersion term is solved implic-
itly due to the stability considerations. A second-order
(two-point upstream) scheme along with high-resolution
time step sizes is employed to limit the effect of discretiza-
tion error that may interfere with the physical dispersion.

3 DLGRmethod

A nested DLGR technique with implicit evaluation of the
grid resolution is employed [17] to solve (2)–(4). At the
beginning of each time step n, the solution grid of time-
step n − 1 is locally coarsened or refined based on a pair
of user-defined refinement and coarsening criteria that aim
at employing high grid resolution only at the advancing
front location. Once the solution grid has been chosen, the
non-linear system of equations is solved. If the converged
solution violates the refinement criteria, the grid is updated
and a new solution is found. This process is referred to as

repeat time step and it is shown in Fig. 1. Previous studies
have shown that the overhead inherent to the inclusion of the
additional solution step is minimal [17]. Here, the maximum
resolution jump between two neighboring cells is forced to
be at most equal to one level of grid refinement to limit the
discretization error [13, 33].

A variety of front-tracking criteria have been presented
in the literature both involving fluid properties [13–15, 34,
34–36] and mass or volume fluxes [15, 16, 37]. Here, given
a variable x (e.g., saturation, concentration, and viscosity),
the following quantities can be considered to determine the
appropriate grid resolutions:

– Difference: Δx

– Normalized gradient: ∇x
||∇x||∞

– Normalized third-order spatial derivative: ∇3x

||∇3x||∞

– Normalized time derivative of the gradient:
∂
∂t

∇x

|| ∂
∂t

∇x||∞

For any given measure (m), two threshold values, δr and
δc, are defined by the user to determine, respectively, when
to refine (if m > δr ) and coarsen (if m < δc) the grid.
Note that the threshold values for refinement and coarsening
can be set independently as long as δc ≤ δr . In this
work concentration, mixture mobility and mixture viscosity
have been considered as properties to locate the advancing
solvent front.

Whenever a grid cell is refined, piece-wise constant
functions are employed to interpolate all variables (i.e.,
pressure and concentration) to the finer resolution. On the
other hand, when coarsening is performed, the average
values are assigned to the coarse blocks.

In heterogeneous domains, the finest level (or maximum)
corresponds to the resolution of the given permeability field.
Coarser permeabilities are obtained with a local flow-based
upscaling procedure (Fig. 2) [38]. Here, the focus of the
studies is on comparing TL and the DLGR approach.

4 Upscaled TLmodel equations and solution
strategy

Our main motivation to revisit the TL model in this
work is that it has been widely used in the literature
to investigate the incomplete mixing process. As such, a
complete investigation of any advanced method, including
DLGR, would require a comparison with the outcome of
this model.

The TLmodel [11] was originally introduced to represent
mixing phenomena when a solvent is added to a water-oil
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Fig. 1 Schematic description of the solution of one time step in DLGR
simulations

system with the use of three-phase black oil equations [28].
The main advantage of this approach was that it allowed for
the use of a black oil simulator (instead of a compositional
one) only by adjusting the fluid properties. Furthermore,
the TL model aims to represent the incompletely mixed
fluid displacement at a much coarser grid resolution than
the mixing (fingering) resolution. Consequently, the effect
of mixing is captured by introducing the effective mixture
coefficients. These coefficients are obtained, typically, by
tuning the TL solutions against a few expensive training
fine-scale simulations. Therefore, the TL model does not
represent the details of the displacement physics (e.g.,
fingering front shape and velocity), despite being widely
used to estimate the production history [39].

The equations of the TL-based approach for miscible oil
(o) and solvent (s) flow with no gravitational effects read

φ
∂Sα

∂t
+ ∇ ·

(
−Kkr,α

μα, eff
· ∇p

)
= qα, α = o, s. (12)

Here, Sα , kr,α , and qα are saturation (volume concentration
of oil and solvent), source term (wells fluxes), and
phase relative permeability, respectively. Because the two
components (oil and solvent) are assumed miscible, there
exist no interfacial forces between them, and thus linear
relative permeabilities are employed in the TL model [11].
Finally, μα, eff is the effective viscosity computed as

μα,eff = μ1−ω
α μω

mix. (13)

The mixture viscosity μmix is calculated from Eq. (5) where
c = Ss . Here, ω is the TL-mixing parameter and its value
determines the mixture effective properties. In particular,
ω = 1 corresponds to the case of complete mixing and
ω = 0 corresponds to the immiscible one. Todd and
Longstaff reported that the use of ω = 2

3 gave satisfactory
results for the simulation of miscible displacements with
an oil/solvent viscosity ratio of 86 [11]. However, it should
be noted that the value of the empirical mixing parameter,
ω, highly depends on changes in properties such as grid
block size, permeability, geometry, and fluid properties, and
therefore, cannot be easily generalized. For example, Fig. 3
shows two possible concentration distribution scenarios
within a simulation grid block. The left figure shows a
stable dispersed front and the right one shows an unstable
displacement with both frontal dispersion and viscous
fingering. The ratio between the size of the grid block
and the thickness of the mixing zone determines the value
of ω that should be used. If the grid block size is small
compared to the dispersed zone, the solvent and oil fluid
parameters can be seen as completely mixed and ω = 1 can
be considered. On the other hand, if frontal dispersion is
negligible compared to the grid block size, pure component
properties can be employed; thus, ω = 0 [11].

The constraint So + Ss = 1 can be used to eliminate
one unknown so that Eq. 12 leads to a well-posed system
of equation for two unknowns (i.e., p and Ss). Here, Eq. 12
is solved employing the finite-volume method on structured
Cartesian grids and an implicit time discretization. A two-
point flux approximation is used to evaluate interface fluxes
along with a first-order upwind for all fluid properties.

5 Numerical results

5.1 Case 1: homogeneous porousmedia

A 100m × 100m reservoir, with a permeability of 400 mD
and uniform porosity equal to 0.3, is considered. No flow
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Fig. 2 Multilevel grid
permeability obtained by local
flow-based upscaling approach
[38]

boundary conditions are considered at all boundaries and
an injection well perforates all cells at the left boundaries
whereas a producer is located in all cells at the right bound-
ary. The solvent is injected at the fixed rate of 1 ft

day (in
the left boundary). At the right boundary, i.e., production
cells, the fixed bottom hole pressure of 350 bar is imposed.
The viscosities of the single components are μs = 1 cP,
for the solvent, and μo = 100 cP, for the oil. The reservoir
is initially saturated with oil and simulations are run until
breakthrough occurs with time step sizes corresponding to
a CFL number equal to 1. Instabilities are generated by ran-
domly perturbing the saturation distribution in the cells
perforated by the injection well (see the Appendix). Three
different physical scenarios are analysed: a zero, a medium,
and a high dispersion case, resulting in different longitudi-
nal and transverse Péclet numbers as presented in Table 1.

5.1.1 Convergence of fine-scale simulations

The solvent injection process, for all three physical sce-
narios, is solved with different fine-scale grid resolutions.
Starting from a 25 × 25 grid, 2 × 2 refinement is applied

up to obtaining a 400 × 400 grid. Figure 4 shows the grid
sensitivity of the solvent concentration profile at 0.2 pore
volume injected (PVI) upon grid refinement. The left col-
umn of Fig. 4 corresponds to the solutions obtained without
any physical dispersion, so that discretization errors are the
only cause of smearing out the solution. Note that, since
discretization error reduces with grid refinement, the solu-
tion does not converge. The second and third columns show
reducing instabilities at the front, caused by the increased
physical dispersion. As a result of the physical dispersion,
small perturbations are smeared out, allowing only large fin-
gers to grow. It can be observed in Fig. 4 that the two high-
est resolution simulations show a converging trend, which
indicates that the physical dispersion dominates numerical
diffusion.

5.1.2 Accuracy of the DLGRmethod

In this subsection, the accuracy of the DLGR method and
its sensitivity to the choice of the refinement and coarsening
criteria are evaluated for cases 1a, 1b, and 1c. The high-
resolution (400 × 400 grid) simulations discussed in the

Fig. 3 Frontal dispersion for a
stable displacement (left) and
unstable displacement (right)
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Fig. 4 Case 1: solvent concentration obtained with simulations on
different grid resolutions for the case with zero (left), medium
(middle), and high (right) dispersion coefficients. The grid resolutions
are 25 × 25 (row 1), 50 × 50 (row 2), 100 × 100 (row 3), 200 × 200
(row 4), and 400 × 400 (row 5)

previous subsection are employed as the reference. In order
to mimic the physical uncertainty, a range of possible results
is obtained by generating ten statistically equivalent initial
tracer distribution at the injector. The standard deviations of
the oil production and solvent rates are presented in Table 2.
This allows for quantification of the underlying uncertainty,

Table 1 Case 1: Péclet numbers for the three physical scenarios (zero,
medium, and high dispersion)

Pel P et

Case 1a ∞ ∞
Case 1b 333 10.000

Case 1c 333 2000

Table 2 Case 1: uncertainty of the unstable fluid flow for the three
different dispersion cases

Oil prod. Solvent rate

Case 1a 1.0% 11.0%

Case 1b 1.2% 17.1%

Case 1c 1.1% 11.4%

so to allow for an acceptable solution range for DLGR and
TL simulations.

The error of DLGR simulations is quantified using the
following error indicators:

– Relative error of the cumulative oil production (cp):

εcp = |CPdlgr − CPf s |
CPf s

; (14)

– Relative error of solvent rate (SR) at the producer well

εSR = |SRdlgr − SRf s |
SRf s

; (15)

– Second norm of the concentration difference:

εc = 1

NOE

√√√√
NOE∑

i=1

(
cdlgr(i) − cfs(i)

)2 (16)

Here, the subscript f s stands for fine-scale (reference)
and NOE is the number of grid blocks with a solvent
concentration (c) higher than 0.01.

For the DLGR simulation, the grid resolution has been
selected based on the values of the following quantities:

1. εc
1 = ∇c

||∇c||∞
2. εc

2 = Δc

3. εc
3 = ∂

∂t
∇c

|| ∂
∂t

∇c||∞

4. εc
4 = ∇3c

||∇3c||∞
5. ελ

1 = ∇λs||∇λs ||∞
6. ελ

2 = Δλs .

Table 3 Case 1: tolerances employed for DLGR refinement and
coarsening criteria

DLGR simulations Tolerances (δr = δc)

1 0.005

2 0.01

3 0.05

4 0.1

5 0.15

6 0.20

7 0.25
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7. ε
μ
1 = ∇μmix||∇μmix||∞

8. ε
μ
2 = Δμmix

Here, c, μmix, and λs = c
μmix

are the solvent
concentration and the viscosity and mobility of the mixture.
For each criterion, a total of 7 simulations for each scenario
(1a, 1b, 1c) are performed, each using the tolerance shown
in Table 3.

Fig. 5 a–c Case 1a: DLGR solution errors for different refinement
criteria as functions of the average active grid cells. Shown in different
colors are concentration (magenta), viscosity (blue), and mobility
(green)

Fig. 6 Case 1a: number of repeat time steps in DLGR simulations.
Shown in different colors are concentration (magenta), viscosity
(blue), and mobility (green)

Employing the value of the time derivative of the
concentration gradient (εc

3) as an indicator of the front
location has shown promising results in the literature [17].
However, in the case of viscous fingering, this will lead
to very early coarsening of the rear part of the fingers
which is not subject to large changes in time. This affects
the development of the instabilities. Therefore, the criterion
εc
3 > δr is used for refinement whereas εc

1 < δc is used to
determine where to coarsen.

Figure 5a–c shows the DLGR errors for different
refinement criteria as functions of the average number of
the employed grid blocks (indicated as a percentage of
the number of cells of the fine-scale grid). The red line
indicates the allowable mean deviation from the reference
solution, due to the variations within the fine-scale results
for different perturbations. The average number of repeated
time steps (for the implicit dynamic grid strategy) is shown
in Fig. 6. Note that the DLGR performance is similar

Fig. 7 Normalized gradients of phase viscosity (blue), concentration
(magenta), and phase mobility (green) against dimensionless length.
The corresponding concentration gradient is shown in red
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for difference- and gradient-based operators, but different
between the quantities of μ, c, and λ.

In fact, viscosity-based criteria (shown in blue) perform
slightly better than the mobility (in green) and the
concentration (in magenta) ones. A possible explanation
can be deduced when analyzing the normalized gradients
illustrated in Fig. 7.

As described earlier by Eq. 5, viscosity is a strong
function of the concentration. Figure 7 illustrates that the
gradient of viscosity criterion tends to refine the grid
relatively towards the tip of the front, compared with the
gradients of mobility and concentration strategy. As such,

the front is captured more accurately, when a viscosity
gradient (or difference) is being used.

Figure 8 illustrates this concept by showing the
concentration solution and the grid at 0.2 PVI for the
normalized viscosity and mobility gradient criteria using
the tolerance of 0.05. It is observed that, as mentioned
above, the viscosity criteria refine the grid more towards the
front tips where the resolution is actually needed. It is also
clear from Fig. 6 that the viscosity-based approach requires
the minimum re-adjustment of the implicit dynamic grid
strategy. It should be also stressed that these results obtained
for the phase viscosity and mobility criteria are based

Fig. 8 Case 1a: DLGR
concentration solution at 0.4
PVI, with ε

μ
1 (top) and ελ

1
(bottom) criteria of 0.05 (both)
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on the quarter-power mixing formulation, as mentioned in
Section 2. Therefore, if other functions are used, one has
to first study which criteria tend to employ the fine grids
towards the tip of the front.

Due to the unstable nature of the front, different grid
resolutions impose different perturbations, which in the

Fig. 9 a–c Case 1b: DLGR solution errors for different refinement
criteria as functions of the average active grid cells. Shown in different
colors are concentration (magenta), viscosity (blue), and mobility
(green)

absence of physical dispersion can cause different fingering
patterns. As such, the concentration error εc, shown in
Fig. 5, does not show any specific trend when more refined
grids are being employed.

Both the space-time derivative and the third-order spatial
derivative of concentration were able to perform within the
allowable range of cumulative oil production and solvent
rate of 1% and 11% respectively. Moreover, the mean repeat
time steps needed per simulation time step strongly increase
for both error estimators when the tolerance value is relaxed
(as high as 5.3 repeat time steps per simulation time step
shown in Fig. 6).

Figures 9 and 11 show the accuracy evaluation for
the medium and high dispersion cases, respectively. The
acceptable error ranges are shown by the red lines, which
indicate the uncertainty within the fine-scale solution.
Figures 10 and 12 show, instead, the number of repeat
time-steps for these two scenarios.

For the medium dispersion case, based on the cumulative
oil production, acceptable results are obtained by employing
15% of the fine-scale grid cells. For the high dispersion
case, all the studied values fall below the allowable error
line; thus, only a few percent active grid cells are enough.
The concentration error (mean l2 − norm) and the number
of repeat time steps, illustrated in Figs. 9c, 10, 11c and 12,
show that DLGR is more accurate when using difference,
i.e., Δ, based criteria. This can be explained by the different
asymptotic behaviors, i.e.,

lim
Δx→0

Δf

Δx
→ ∂f

∂x
(17)

lim
Δx→0

Δf → 0. (18)

Here, f is an arbitrary smooth function of location x and
Δx is the discretization step. Additionally, Δf = f (x +

Fig. 10 Case 1b: number of repeat time steps in DLGR simulations.
Shown in different colors are concentration (magenta), viscosity
(blue), and mobility (green)
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Fig. 11 a–c Case 1c: DLGR solution errors for different refinement
criteria as functions of the average active grid cells. Shown in different
colors are concentration (magenta), viscosity (blue), and mobility
(green)

Δx) − f (x). When Δx tends towards zero, the ratio Δf
Δx

converges to the first derivative of f with respect to x (i.e.,
∂f
∂x
) whereas Δf tends to zero. This means that the gradient

criteria require an enforced maximum refinement level in
order to limit the amount of refinements, because the true
derivative, ∂f

∂x
, may be larger than the refinement tolerance

(so the refinement never meets the tolerance value). On
the other hand, the gradients can be lowered by simply

Fig. 12 Case 1c: number of repeat time steps in DLGR simulations.
Shown in different colors are concentration (magenta), viscosity
(blue), and mobility (green)

coarsening the grid, which then leads to smearing out the
fronts. This is illustrated in Fig. 13 showing the solution
for concentration difference (top) and gradient (bottom)
criterion at 0.6 PVI using the normalized tolerance of 0.2.
Figure 14 shows the amount of grid blocks used in each
refinement level during the simulation time for both the
concentration difference and gradient criteria, confirming
that more intermediate refinement levels are used with
the difference criterion. The distinct difference between
gradient-based and difference-based criteria in the mean
repeat time steps used during during the simulation, as
shown in Figs. 10 and 12, emphasizes the added benefit of
the difference-based strategy to refine the grid.

It is observed that the error criteria using the space-time
derivative of the spatial gradient of the solvent concentra-
tion performed well for simulations including dispersion.
This is reflected in the error in production data and the con-
centration solution, as it can be seen in Figs. 9 and 11.
However, as the tolerances are loosened, the error in cumu-
lative production strongly increases, suggesting that the
space-time derivative criteria are smaller than the toler-
ances, and thus no local grid refinements are introduced.

5.1.3 Upscaled TL model simulations

In this subsection, the sensitivity of the upscaled TL model
to the grid block size and the parameter ω are investigated
for case 1b (medium dispersion). Figure 15 shows a surface
plot of the error made by the TL model in the cumulative
oil production as a function of the grid block size and
the mixing parameter. At three different locations on the
surface plot, the actual difference in cumulative production
is visualized in order to relate the error.
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Fig. 13 Case 1a: DLGR
concentration solution at 0.6
PVI, with εc

2 (top) and εc
1

(bottom) criteria of 0.2 (both)
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Fig. 14 Case 1b: active grid blocks for each refinement level against PVI for DLGR simulations employing difference- (top) and gradient-based
criteria (bottom)
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Fig. 15 Case 1b: effect of grid block size and mixing parameter on the error (%) made by the TL model compared to a fine-scale simulation in
cumulative oil production for medium dispersion. The fine-scale reference solution is obtained on a 400 × 400 grid

FromFig. 15, it can be observed that the range of accurate
TL results (i.e., results within the “allowable deviation” of
1.2%) obtained for a given grid resolution are narrow.

5.1.4 TL model vs. DLGRmethod: sensitivity to domain size

Here, four homogeneous reservoirs, of equal heights (25
m) and lengths of 200, 100, 50, and 25 m, are considered.
The same injection rate (1 ft/day) and fluid properties are
used in all reservoirs and no dispersion is present. The TL-
mixing parameter is fit to match the fine-scale simulation of
the largest reservoir. The cumulative oil production curves
obtained with fine-scale, DLGR, and TL simulations for
all four reservoirs are shown in Fig. 16. In each figure,
the high-resolution simulation curves are depicted in red,
DLGR in green, and TL effective model in blue. The top left
(a) corresponds to a reservoir length of 200 m. DLGR uses
the concentration difference across grid block interfaces as
error criterion, using a threshold value of 0.05. On average,
this resulted in a mean active grid block count of 31% of the
fine-scale simulation grid block count. It is clearly observed

that DLGR is capable of capturing the physics independent
of the scale of the system. It is also observed that the number
of grid blocks used by DLGR reduces when increasing the
size of the domain. On the other hand, the TL model is
not able to scale with the physical solution. The mixing
parameter used shows an underprediction of local mixing,
resulting in incrementally earlier solvent breakthrough for
the downscaled reservoir sizes.

5.1.5 TL model vs. DLGRmethod: sensitivity to mobility
contrast

The same 100m × 100m reservoir previously described is
considered along with the three different physical scenarios
(cases 1a, 1b, 1c). The injection process is simulated with
fine-scale (400 × 400), DLGR, and TL model (40 × 40),
for three different mobility ratios M = μo

μs
: M=10, M=100,

and M=500. DLGR simulations use the concentration
difference error criterion and the mixing parameter of TL
is fit to match the fine-scale simulation cumulative oil
production curve for M=10.
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Fig. 16 Cumulative oil production curves obtained with fine-scale
simulations (red), DLGR (green), and TL (blue) for a homogeneous
reservoir with a length of 200 (row 1), 100 (row 2), 50 (row 3), and
25 m (row 4). The mean active grid block used by DLGR for the
simulations of the 4 reservoirs are 28, 29, 33, and 34%

Figures 17, 18 and 19 show the cumulative oil production
curves obtained with the three simulation strategies for
all scenarios. For all three cases, DLGR provides accurate
cumulative oil production curves irrespective of the mobility
ratio. Note that the mean active grid blocks employed by
DLGR tend to increase with the mobility ratio. On the other
hand, the TL model only provides accurate solutions for
the mobility ratio for which the parameter is tuned (here,
M = 10). Figure 20 illustrates the matched (optimum)
mixing parameter values against the mobility ratio for the
three different scenarios. Clearly, a linear relation exists
on a semi-log scale, allowing for potential rescaling of the
mixing parameter in order to fit the data consistently. The
literature reported a relation of the mixing parameter as a
function of the mobility ratio [40, 41]. This was obtained
by equating the fractional flow formulation derived from
the TL effective (upscaling) model with the fractional flow
obtained from Koval’s effective (upscaling) model [10],
assuming an average solvent concentration at the front. This
relationship, depicted with yellow markers, shows a good
fit with the zero dispersion case, however, is incapable
of predicting an optimal mixing parameter for cases with
added dispersion.

5.2 Case 2: heterogeneous permeability with small
correlation length

A 100m × 20m 2D heterogeneous reservoir is considered
with no flow boundary conditions at all boundaries. A rate-
constrained injection and a production well perforate all
the cells at the left and right boundaries, respectively. The
solvent is injected with a constant rate of 1 ft/day. The
solvent and oil viscosities are 1 and 10 cP respectively.
Three permeability fields with an average value of 90
mD, a variation corresponding to a Dyskstra-Parson (Vdp)
coefficient of 0.63, and a correlation length, λD=0.01, are
used, one of which is shown in Fig. 21. Table 4 illustrates
all simulation parameters. Note that, in DLGR simulations,
the highest refinement level (level 4) corresponds to
the fine-scale permeability map. Permeability fields of
coarser resolutions are obtained with a flow-based upscaling
procedure.

The concentration solutions for all three simulation
techniques as well as the grid generated by DLGR,
for one permeability realization, at 0.4 PVI are shown
in Fig. 22. DLGR employs a concentration difference
tolerance of 0.05 as refinement criterion. Note that DLGR is
capable of capturing all small-scale flow features using, on
average, 35% of the grid blocks compared to the fine-scale
simulation (see Fig. 22b, c).

The calibration of the TL model–mixing parameter for
heterogeneous systems obtained by equating the fractional
flow formulation of the Koval and TL models is the only
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Fig. 17 Case 1a: cumulative oil production curves for fine-scale,
DLGR, and TL. The different colors indicate the different mobil-
ity ratios M=10 (red), M=100 (green), and M=500 (magenta). Two

different results for DLGR are shown, obtained with different average
active grid block counts (aagc) over simulation time

Fig. 18 Case 1b: cumulative oil production curves for fine-scale,
DLGR, and TL. The different colors indicate the different mobil-
ity ratios M=10 (red), M=100 (green), and M=500 (magenta). Two

different results for DLGR are shown, obtained with different average
active grid block counts (aagc) over simulation time
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Fig. 19 Case 1c: cumulative oil production curves for fine-scale,
DLGR, and TL. The different colors indicate the different mobil-
ity ratios M=10 (red), M=100 (green), and M=500 (magenta). Two

different results for DLGR are shown, obtained with different average
active grid block counts (aagc) over simulation time

method described in the literature [40]. However, this leads
to the estimation of an erroneous negative value (- 0.043)
for the mixing parameter. By tuning the mixing parameter
to fit the data of the high-resolution reference simulation,
an optimal mixing parameter of 0.6 is found. Figure 22d
shows the concentration profile obtained with the empirical
TL model.

Figures 23 and 24 show the cumulative oil production
and the oil rate. In Fig. 23, DLGR employs a refinement

Fig. 20 Case 1: mixing parameter match against the logarithm of
mobility for zero, medium, and high dispersed cases. The results from
the mixing parameter relation [41, 42] are shown in yellow, showing
good results for zero dispersion cases

criterion tolerance of 0.05, resulting in an average grid
block count of 37% of the fine-scale grid blocks. Figure 24,
instead, shows results with DLGR using a tolerance value
of 0.15, resulting in using only in 19% of the fine-scale grid
blocks on average. It can be observed that the TL model
shows low sensitivity to the variation in production and
local solvent concentration distributions compared to the
high-resolution and DLGR simulations.

5.3 Case 3: heterogeneous permeability with long
correlation length

The same reservoir as the one of the previous case is
considered along with the same fluid properties and the

Fig. 21 Case 2: permeability realization with dimensionless correla-
tion length λ=0.01 and Vdp=0.63
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Table 4 Case 2: simulation parameters

Fine-scale DLGR TL

Base grid 400 × 80 25 × 5 40 × 8

Refinement – 2 × 2 –

Ref. levels – 4 –

Time step size 1 day 1 day 10 days

same boundary conditions. Here, a permeability field with a
higher correlation length is employed as shown in Fig. 25.
As for the previous case, the fine-scale permeability map is
upscaled (locally) for TL and the coarser grid resolutions
used by DLGR.

Figure 26 shows the solvent concentration map at 0.4 PVI
for fine-scale, DLGR, and TL simulations. Here, DLGR

employs, on average, 29% of the fine-scale grid cells. The TL
model is run using the optimal mixing parameter ω =
0.375. Note that the long correlation length reduces the local
mixing as shownby the optimal value of theTL-mixing param-
eter. As for the previous case, DLGR is capable of capturing
the physics of fluid flow altered by the underlying per-
meability field. However, due to the increased correlation
length of permeability, the frontal surface area is higher than
that in the previously described case resulting in a higher
amount of refinements during simulation.

Figures 27 and 28 show the cumulative oil production
and the oil rate. In Fig. 27, DLGR uses a refinement
criterion tolerance of 0.05 and in Fig. 28, a refinement
criterion tolerance equal to 0.15. Similar to the previous
case, DLGR results are in good agreement with the fine-
scale reference one for all permeability realizations whereas
the TL ones show a considerable error for some of them.

Fig. 22 a–d Case 2: solvent
concentration map at 0.4 PVI for
fine-scale, DLGR, and TL
models. The mixing parameter
for TL was equal to 0.6 and
DLGR employs, on average,
35% of the fine-scale grid cells



Comput Geosci

Fig. 23 Case 2: comparison of the cumulative oil production and oil
rate obtained with fine-scale (solid line) simulation, with a 400 × 80
grid, DLGR (dashed line), and TL (solid line with white circles), with

a 40 × 8 grid and ω=0.6. DLGR employs a refinement criterion tol-
erance of 0.05. The different colors indicate the different permeability
realizations
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Fig. 24 Case 2: comparison of the cumulative oil production and oil
rate obtained with fine-scale (solid line) simulation, with a 400 × 80
grid, DLGR (dashed line), and TL (solid line with white circles), with

a 40 × 8 grid and ω=0.6. DLGR employs a refinement criterion tol-
erance of 0.15. The different colors indicate the different permeability
realizations
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Fig. 25 Case 3: permeability realization with dimensionless correla-
tion length λ=0.1 and Vdp=0.63.

6 Conclusion

In this work, the accuracy and sensitivity of a DLGRmethod
were compared against those of the TL upscaling approach
for incomplete mixing process.

Numerical results show that DLGR has a great poten-
tial to overcome the limitations of effective models

like those of the TL one, both for homogeneous and
heterogeneous media. In fact, it was shown that, for a
homogeneous domain, the TL model is very sensitive to
modifications of the simulation parameters (both size of
the domain and mobility contrast). Consequently, TL sim-
ulations require adequate tuning of the mixing parame-
ter ω every time the simulation input changes. In many
cases, the correct value of the TL-mixing parameter can
only be found by running high-resolution simulations
and an a priori estimate cannot be found. On the other
hand, DLGR provides accurate solutions for simulations
of incomplete mixing processes by employing only a frac-
tion of the grid cells used for fine-scale fully resolved
simulations.

Accuracy and robustness of the described DLGR
strategy and the TL model for heterogeneous media with
different correlation lengths were also assessed. DLGR

Fig. 26 a–d Case 3: solvent
concentration map at 0.4 PVI for
fine-scale, DLGR, and TL
models. The mixing parameter
for TL was equal to 0.375 and
DLGR employs, on average,
29% of the fine-scale grid cells
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Fig. 27 Case 3: comparison of the cumulative oil production and oil
rate for fine-scale (solid line) simulation, with a 400× 80 grid, DLGR
(dashed line), and TL (solid line with white circles), with a 40×8 grid

and ω=0.6. DLGR employs a refinement criterion tolerance of 0.05.
The different colors indicate the different permeability realizations
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Fig. 28 Case 3: comparison of the cumulative oil production and oil
rate for fine-scale (solid line) simulation, with a 400× 80 grid, DLGR
(dashed line), and TL (solid line with white circles), with a 40×8 grid

and ω=0.6. DLGR employs a refinement criterion tolerance of 0.15.
The different colors indicate the different permeability realizations
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allows for local preservation of the underlying geological
features, clearly indicating the potential of DLGR to
solve for incomplete mixing in heterogeneous media.
This is illustrated by the fact that the production results
of DLGR show the variations similarly observed in the
high-resolution simulations that were used as a reference.
Furthermore, it was shown that the error of DLGR
simulations can be controlled by regulating the tolerances
used for the refinement criteria.

As such, DLGR strategies represent a promising
approach to obtain more accurate results and overcome the
limitations of upscaled models for simulations of incom-
plete mixing processes. Note that efficient implementation
of the DLGR method is an important factor for its success-
ful implementation in field-scale commercial simulators.
Additionally, the use of upscaled properties (i.e., per-
meabilities) in coarse grid blocks may negatively affect
the accuracy of the dynamic multilevel simulations, espe-
cially in the presence of more complex physics. These
issues have been resolved by the algebraic multiscale-
based ADM method [43]. As such, the developed
DLGR approach of this article can be implemented
in a commercial-grade simulator with an ADM-based
implementation strategy, where constant interpolators are
used for both pressure and concentration across different
scales. Such implementation would allow for computational
speedup measurements, which is the subject of our future
work.
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Appendix: Concentration perturbations
at initial time step

The solvent (randomly generated) perturbations (for the
initial concentration values) imposed in the first column
of the domain are shown in Table 5. To perturb the initial
concentration values at the finer grid resolution Ny , these
values are applied per patches of Ny/25 cells.

Table 5 Perturbations imposed in the first column at the injection
boundary in order to initiate the unstable displacement

Cell Perturbation Cell Perturbation Cell Perturbation

(1,1) 0.100 (1,2) 0.800 (1,3) 0.500
(1,4) 0.200 (1,5) 0.900 (1,6) 0.400
(1,7) 0.700 (1,8) 0.965 (1,9) 0.958
(1,10) 0.993 (1,11) 0.547 (1,12) 0.188
(1,13) 0.279 (1,14) 0.547 (1,15) 0.097
(1,16) 0.308 (1,17) 0.632 (1,18) 0.221
(1,19) 0.914 (1,20) 0.969 (1,21) 0.127
(1,22) 0.840 (1,23) 0.900 (1,24) 0.820
(1,25) 0.140
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