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Abstract

Software-Defined Networking (SDN) potentially can improve the flexibility and management
of Wireless Sensor Networks (WSNs). To investigate the impact of SDN on WSN, in this
thesis, we consider three Software-Defined Wireless Sensor Network (SD-WSN) frameworks,
namely SDN-WISE, SDWN-ONOS, and TinySDN. After comparing these frameworks, the
performance of TinySDN is evaluated in three different scenarios: homogeneous, heteroge-
neous, and dynamic networks. The Collection Tree Protocol (CTP) is used for the evaluations,
and is subsequently compared with Rime data collection protocol in Contiki. Our performance
evaluation is based on four metrics: Packet Delivery Ratio (PDR), packet duplication, duty
cycle, and delay.

Our results show that the PDR for WSN and SD-WSN is relatively similar, that is, around
0.98 to 1 for homogeneous and heterogeneous networks, whereas in a dynamic network, the
PDR of WSN decreases from 0.98 to 0.9. Compared to the WSN, the SD-WSN reduces both
the average delay of SDN sensor node and the time the SDN sensor node is active to send
packets in homogeneous and heterogeneous networks. However, implementing a centralized
controller in a dynamic network may cause the SD-WSN performance decrease, which is
indicated by the increase ratio of average delay from 2.03 to 2.3, whereas the increase ratio of
average delay for the WSN is only around 1.6 to 1.98. The packet duplication level increases
by 33% in the dynamic network when the number of SDN sensor nodes increases from 10 to
15.

The performance of SD-WSN in heterogeneous, homogeneous, and dynamic networks is rel-
atively worse than WSN in terms of packet duplication and Rx duty cycle. SD-WSN; in
addition, is not optimally implemented for dynamic conditions as the activity changes from
the SDN sensor nodes will significantly affect the performance of SD-WSN. To reduce the load
on the centralized controller, the clustering controllers are deployed to distribute the load on
multiple controllers. The result shows that packet duplication and average delay in a dynamic
network can be reduced by 13% and 57%, respectively. Clustering controllers provide more
stability in terms of Rx duty cycle compared to before using clustering controllers.

Keywords : SDN, WSN, Performance Evaluation, Collection Protocol
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Chapter 1

Introduction

Nowadays, Wireless Sensor Networks (WSN) play a significant role in our life. According
to the article from Business Week Online, WSN is considered as one of the most important
technologies for the 21st century [35]. Currently, many technologies use WSN as their main
feature, such as smart buildings and smart homes. These technologies utilize sensor networks
to monitor the energy consumption of all appliances with the aim of achieving efficient energy
utilization [19]. WSNs are also widely used in industrial areas. ON World reported that the
use of wireless devices in industries have increased by 553% between 2011 and 2016. Up to
24 million wireless devices are deployed worldwide, and around 39% among these are used for
the applications that are only possible with WSN [7].

There is a forecast that by 2020, fifty billion of things will be deployed worldwide and con-
nected to the Internet [29]. With the fast technological development of sensor networks, WSN
becomes the main component for the Internet of things (IoT) [7]. It enables physical objects to
perform a task by having them communicate with each other, to share data and to coordinate
decisions [13]. For instance, by integrating the sensor networks in Heating, Ventilation, and
Air conditioning (HVAC) in building systems to create a smart technology which complies
with the user requirements.

The deployment of WSN devices in the future will increase exponentially due to the needs
for extensive observation in industries, automotive, transportation, and other infrastructures
[7]. As a result, the large-scale of WSN will generate data from today’s exabyte (1018 bytes)
level to zettabyte (1021 bytes) level [7]. An estimate by IDC statistics and forecast mentions
that, in 2020, the global data volume will reach 35 zettabyte [7]. The increasing demands for
WSN and the diverse needs for WSN services make the management system of WSN more
difficult. Therefore, there is a crucial need to build an open management system and flexible
framework to tackle this bottleneck.

Software Defined Networking (SDN) is one of the promising technologies that has the potential
to solve the challenges in the management system of WSNs. Initially, the idea of SDN
is proposed to handle several problems in the wired network, such as the complexity of
traditional internet protocol network and the difficulty of configuring the network behavior
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2 Introduction

[21]. SDN emerges to tackle these issues by decoupling the control logic of the network
(control plane) from the network switches (data plane). This concept creates a centralized
control logic where the policy of the network is defined by the control plane, as shown in
Figure 1-1.

Traditional Network Architecture SDN Architecture
Distributed Control Plane Centralized Control Plane
S Control Plane

P——

1
1
1 e Data Plane
\

Figure 1-1: Traditional Network VS Software Defined Networking

Several companies like Google, Facebook, Microsoft, Verizon, have collaborated and built the
Open Network Foundation (ONF) consortium [21]. ONF is created to promote SDN as a
solution for creating a more flexible network infrastructure. They consider SDN as a solution
to provide more dynamic, cost-effective, and adaptable large network infrastructure [41].
Google have successfully utilized SDN, improving the efficiency of its data center connection
around the world by 2-3 times compared to the traditional network infrastructure [20].

The implementation of SDN on the wired network delivers various advantages, such as central-
ized network provisioning and simpler hardware management [40]. These become the reasons
why SDN is considered as a promising technology to solve the problems in WSN management
system, such as resource-constrained system, application-specific architecture, and Quality of
Service (QoS) maintenance [28]. By decoupling the control logic from the sensor node, the
centralized controller is expected to reduce the complexity of the sensor network management
[28, 18, 4]. SDN abstracts the entire sensor network so that the implementation of new net-
work policy and the handling of the user requirements related to the QoS of the WSN will be
easier [28].

1-1 Motivation and Problem Description

1-1-1 Motivation

Initially, SDN was developed for solving a problem in the traditional wired network in which
the data plane, which is responsible for forwarding packets, and the control plane, which is
responsible for routing, are coupled to every network device (switch or router). Having a
control plane and a data plane in every network device means all network devices define their
own decision in a distributed fashion [22].
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1-1 Motivation and Problem Description 3

Using a distributed control system in a large traditional network creates challenges for the
network administrator since the configuration of the network devices should be configured
manually [22]. This adversity led to the idea of separating the control plane from the data
plane, that is, SDN.
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Figure 1-2: The implementation of SDN concept in WSN

SDN creates the network device (switch or router) become a "dumb" device, which is respon-
sible only for forwarding the packet. The control function itself is performed by a single cen-
tralized entity, that is, SDN controller. SDN controller is responsible for defining the behavior
of all of the network devices and managing the entire network. The centralized paradigm in
SDN allows routing policies to be easily deployed and provides innovation opportunity in the
network [22].

The concept of a distributed control system in the traditional wired network has similar
characteristics with WSN, as shown in Figure 1-2. Each sensor node has their own "brain",
and thus the determination of forwarding data to other nodes is independent. One of the
objectives of a distributed control system in WSN is to avoid a single point of failure since
WSN is usually used in extreme and remote areas, such as in forests and mountains. However,
the characteristic of a distributed control system in WSN makes the network development
in large WSN difficult to be handled, since it requires (re)programming individual sensor
node to adapt to a dynamic environment. The application programmers need a higher-level
abstraction in order to ease their task, but the current design of WSN is not designed to
provide higher-level abstraction [38]. Therefore, a dynamic policy change on WSN will be
difficult [25].

Due to the flexibility possessed by SDN in which the network behaviour is defined by a
centralized controller, researchers have become interested in developing SDN technology in
WSN. They are interested with the benefits of SDN which simplifies network management
by decoupling the control plane from the data plane in the sensor nodes [21]. Therefore, the
sensor node, which acts as the data plane, simply forwards the packet, while the network
intelligence, routing, and QoS control are defined by the centralized controller, as shown in
Figure 1-2.

Although SDN is predicted to solve problems in the WSN management system, research on
its effects on WSN is still in its infancy. Combining these two technologies does not guarantee
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4 Introduction

that the performance of WSN will be improved. Therefore, further research is needed to
investigate the impact of SDN implementation in WSN to the network performance.

1-1-2 Problem Description

The integration between SDN and WSN, which can be denoted as Software Defined Wireless
Sensor Network (SD-WSN), is expected to improve the flexibility of WSN management, sim-
plify the WSN architecture, and support innovations via network programmability [28, 18,
4, 9]. However, based on a literature survey and preliminary experiment for the SD-WSN
framework, there are two major problems in the implementation of SDN in WSN: lack of
research and immature platform.

Lack of Research

SDN cannot be guaranteed as one-fits-all solution for WSNs management as research on SD-
WSN is still in its infancy. Moreover, most of the research only discusses the concept of
integrating SDN into WSN without extensive evaluation or performance implication [39, 15,
25, 49, 6, 1].

The research of SD-WSNs seems to be disconnected from WSN research [33]. This condition
leads to an inadequate understanding of challenges faced when implementing SDN on WSN.
Most of the challenges in SD-WSN are due to the limited resources that WSNs possess, such
as low data rates, limited performances, limited energy resources, and unreliable links. The
researchers tried to tackle these challenges by modifying the architecture of SDN. However,
the solution is still a proof of concept and is not specified to solve real problems in WSN.

To the best of author’s knowledge, there is no research which performs an extensive evalu-
ation of SD-WSN. There is limited information on the previous work whether SDN gives a
better performance or not. In addition, the current research of SD-WSN cannot explain the
impact of SDN on WSN performance (network lifetime, packets lost, quality of service, and
adaptation to dynamic environment). This should be the main concern for the researcher
before proceeding SD-WSN to the next stage.

Immature Platform

To the best of author’s knowledge, there are three open-source frameworks that can be used
for implementing SDN on WSN, namely SDN-WISE [14], SDWN-ONOS [1], and TinySDN
[31]. These platforms share the same objective, that is, to demonstrate that the concept of
SDN can be applied to WSN. However, these frameworks have several drawbacks, such as
limited documentation and lack of community support to develop these frameworks. In SDN-
WISE, the sensor node cannot be implemented in real sensor network devices, e.g., TelosB,
MICAz, Zolertia Z1, since the sensor node is custom-built, and thus the code from these
frameworks does not comply with the existing WSN firmware. Consequently, SDN-WISE
cannot be integrated with the existing WSN.

SDWN-ONOS made a breakthrough by using an existing SDN controller on the wired net-
work, namely Open Network Operating System (ONOS). In order to make ONOS comply
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1-2 Research Objective 5

with SD-WSN network, SDWN-ONOS modified the architecture of ONOS and used the cus-
tom WSN devices from SDN-WISE, namely SDN-WISE Emulated Mote and SDN-WISE
Emulated sink. However, these devices are not designed based on IEEE 802.15.4 standard.
Thus, this framework cannot be implemented in the real WSN device as well.

SDN-WISE, SDWN-ONOS, and TinySDN are considered unable to provide a comprehensive
solution to handle the problems in WSN. They have not been able to evaluate the significance
of implementing SDN in WSN. Therefore, further testing in more scenarios, benchmarking
with existing WSN, and more development are required.

1-2 Research Objective

The main objective of this thesis is "to evaluate and identify the performance chal-
lenges for wireless sensor networks when integrated with Software Defined Net-
working". With this regard, the following objectives are defined:

e To figure out whether an SD-WSN could perform as good as a decentralized WSN

e To analyze the results of SD-WSN simulation against WSN performance metrics (duty
cycle, delay, packet delivery ratio, and packet duplication) in several scenarios (homo-
geneous network, heterogeneous network, and dynamic network)

e To present a solution to make SDN suitable for functioning in WSN management

1-3 Research Questions

Based on the research objective described, the research questions for this thesis can be elab-
orated as the following:

e What are the trade-offs between duty cycle, delay, packet delivery ratio and packet
duplication when WSN uses SDN for management?

e What kind of improvements could SDN bring for WSN compared to an existing solution?

1-4 Methodology

In this thesis, the performance of software defined wireless sensor network is evaluated using
one of the SDN frameworks for WSN, that is, TinySDN [31]. TinySDN is an open-source
framework for SD-WSN and is designed to be hardware independent. The TinySDN frame-
work is applied in both SDN controller node (control plane) and SDN sensor node (data
plane) through TinySDN API. The Collection Tree Protocol (CTP) is used for collecting
data in SD-WSN [17]. Afterwards, the performance of SD-WSN, which uses CTP, will be
compared with WSN, which uses Rime data collection protocol in Contiki [10]. Figure 1-3
shows the steps that shall be followed.
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Identification and
Literature Review Classification of
SDN Solution for WSN

Learn The SDN-WSN
Framework

Analyze The Result and Compared with Develop and Evaluate The
Conclusion The Existing WSN Framework

Figure 1-3: The Methodology

e Literature Review: In the initial stage, the survey paper which is related to the topic
of SDN, WSN, and IoT is read. From the survey paper, the information, the main
issues, and the challenges of SD-WSN are summarized to figure out a state-of-the-art
of SD-WSN.

e Identification and classification of the SDN solution for WSN: At this stage, all the
relevant papers related to SD-WSN are divided into several categories: advantages and
disadvantages, features, simulations, availability, and performance evaluation.

e Learn the SD-WSN framework: After identifying some papers on SDN solution for
WSN, there are three open-source frameworks that can be used, namely SDN-WISE,
SDWN-ONOS, and TinySDN. Afterwards, these framework are tested and analyzed to
figure out the extent to which these frameworks can be used to solve the problems in
SD-WSN.

e Develop and evaluate the framework: After preliminary experiments using these three
frameworks, TinySDN is selected for further analysis.

e Compared with the existing WSN: Collection tree protocol (CTP) is used as the protocol
that is implemented on TinySDN. This framework is evaluated based on four perfor-
mance metrics and three scenarios. Duty cycle, delay, packet delivery ratio, and packet
duplication are used as an indicator for SD-WSN performance metrics. To vary the net-
work environments, homogeneous, heterogeneous, and dynamic network scenarios are
evaluated. The results from SD-WSN experiments are compared with the experimental
results from the Rime data collection protocol in Contiki.

e Analyze the result and conclusion: In the final stage, the result between SD-WSN and
an existing WSN are analyzed. This result is used to answer the objectives and the
conclusions about performance challenges for wireless sensor network when integrated
with software defined networking.

1-5 Thesis Structure

This thesis is organized into five chapters. Chapter 1 provides an introduction to WSN and
SDN; this chapter explains an overview of the problems faced by the WSN and the solutions
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1-5 Thesis Structure 7

offered by SDN. This chapter also discusses the methodology to answer the research questions.
Chapter 2 describes the summary of the literature review and the comparison of the SDN
solutions for WSN. Chapter 3 covers the implementation of centralized controller using SDN
framework into WSN and then several test scenarios will be introduced. Chapter 4 discusses
the performance evaluation of SDN for WSN based on the several test scenarios, and the
result is then compared with an existing WSN solution. Finally, Chapter 5 concludes the
overall thesis and provides possible future work.
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Chapter 2

SDN Solutions for WSN

The idea of SDN is based on the separation of the control plane from the data plane. This
concept creates a centralized controller which can manage and control the overall behavior of
the network. The network devices such as sensor nodes simply forward or drop a packet based
on the instruction from the controller. SDN allows network configuration to be performed
globally as opposed to a distributed approach which requires individual configuration [28].
Figure 2-1 shows the principles of dividing the network where the control plane determines
the traffic route and the data plane forwards the traffic packet.

Northbound API

Q\é\e i%

Southbound API

. Sensor -
Sink Node " Wireless

Figure 2-1: SD-WSN Architecture

SDN provides convenience in terms of the regulation and control of the network. This sim-
plicity allows SDN to be implemented in many technologies. Some journals and researchers
propose SDN as a solution to tackle several problems in WSN;, such as energy efficiency [45,
48, 47] and network management [12, 31]. However, the results are still limited and most
of them only propose a concept of SD-WSN without an extensive evaluation [39, 15, 25, 49,
6, 1]. The differences regarding characteristics and requirements between wired networks
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10 SDN Solutions for WSN

and wireless sensor networks make implementing SDN into WSN challenging since WSN has
many limitations, such as limited power, low communication capabilities, and small processing
capabilities [15].

Although SD-WSN research is still in its infancy, several researchers have initiated their
research to propose an ideal solution for SD-WSN. The research of SDN for WSN is started
by two early adopters: Sensor OpenFlow [25] and SDWN [9].

2-1 The Early Adopters of SD-WSN

Luo et al. [25] proposed Sensor OpenFlow: Enabling Software-Defined Wireless Sensor Net-
works. This research is one of the early adopters of SDN on WSN. The focus of Sensor
OpenFlow is to propose a concept of Southbound API as this component is very crucial for
sending an instruction or receiving a request between the data plane and the control plane.
The idea of Sensor OpenFlow is inspired by one of the de-facto protocols in SDN, namely
OpenFlow [26]. However, OpenFlow is designed for a wired protocol, and thus this protocol
is not comply with WSN. To address this issue, Sensor OpenFlow proposes a modification
based on the OpenFlow version v1.3.0 so that the Sensor OpenFlow can be used as a wireless

sensor communication protocol between the data plane (sensor nodes) and control plane in
SD-WSN.

Sensor OpenFlow’s concept claims to be able to support multiple applications, flexible, and
improve the management system in WSN. However, several things are missing in this paper,
such as the explanation of the control plane, specifically whether the control plane belongs
to a sensor network or non-sensor network. Sensor OpenFlow also does not discuss the
specification and the performance evaluation of its system. Therefore, Sensor OpenFlow is
difficult to be implemented into real devices.

Costanzo et al. [9] proposed a concept of SD-WSN, namely SDWN (Software Defined Wire-
less Networks). SDWN is also one of the early adopters of SD-WSN, but the approach is
different with Sensor Open Flow. Unlike Sensor OpenFlow, SDWN proposes an API for
the communication interface between sensor node and controller, namely flow table. SDWN
tries to analyze the benefits of SDN in wireless infrastructure networking and to validate the
statement that SDN brings simplification and flexibility of the network management.

The main contribution of SDWN is to propose a concept of SDWN architecture while consid-
ering the characteristics of WSN which are based on IEEE 802.15.4, such as supporting duty
cycles and in-network data aggregation to reduce the energy consumption. The proposed
architectures of SDWN consist of two components: generic node and sink node. The generic
node acts as the data plane where the forwarding layer is executed. It is also responsible for
handling packets as specified by the controller. The sink node acts as the control plane in
which the rules for the data plane is defined.

SDWN proposes an architecture for SD-WSN. However, this research has not proven to solve
any problems in the management of WSN. Moreover, SDWN could not answer the main
reason why SDN should be implemented in WSN, since there is no performance evaluation
to validate the benefits of SDWN. SDWN can be considered as the first step towards SDN
solutions for WSN, since many papers refer to SDWN as the foundation for their researches,
such as SDN-WISE [14], SDWN-ONOS [1] and SDN-TAP [12].
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2-2 The Framework of SD-WSN

To tackle a few shortcomings of Sensor OpenFlow and SDWN related to the (lack of) perfor-
mance evaluation, an API for SD-WSN, and the architecture of SD-WSN, Galluccio et al. [14]
proposed SDN-WISE (Software Defined Networking solution for Wireless Sensor Networks),
Anadiotis et al. [1] proposed SDWN-ONOS (Software-Defined Open Network Operating Sys-
tem), and Oliveira et al. [31] proposed TinySDN (TinyOS-based SDN), respectively.

2-2-1 SDN-WISE

The concept of SDN-WISE is based on the SDWN [9], but the architecture is modified in
order to comply with IEEE 802.15.4. The architecture of SDN-WISE is divided into three
main parts, namely sensor node, sink, and control plane. Figure 2-2 shows the preliminary
experiment of SDN-WISE. The sensor node acts as the data plane that executes commands
from the control plan to its device. The sink acts as a gateway between sensor nodes, and
the control plane acts as a central network management.

WISE flow table is used as the communication protocol between the sensor nodes and the
controller in SDN-WISE. WISE flow table contains a set of rules installed on each sensor node.
To contact the controller, the sensor node needs a WISE Flow Table entry which indicates
its best next hop towards the sink.

Eée_Semuiation Motes Toos Setings b

Figure 2-2: SDN-WISE

Compared to the previous work (SDWN and Sensor Openflow), SDN-WISE introduces the
performance evaluation of their systems such as Round Trip Time (RTT), efficiency, and
controller response time. However, the implementation of SDN-WISE has not been validated
with WSN protocol. The idea of implementing SDN into WSN is to reduce the complexity
of management system, but SDN-WISE is not able to prove whether integrating SDN on
WSN will provide benefits or not. SDN-WISE also cannot be implemented in real sensor
network devices, e.g. TelosB, MICAz, Zolertia Z1, since the sensor node in SDN-WISE is
only supporting its system; thus, the code from this framework does not comply with the
existing WSN devices.
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2-2-2 SDWN-ONOS

SDWN-ONOS is a framework for SD-WSN which is developed from SDN-WISE. The aim of
this framework is to create an SDN framework that can be implemented on IoT. In general,
the components and the architecture in SDWN-ONOS are similar to SDN-WISE. However, in
order to connect IoT and SDN, SDWN-ONOS adds a controller from wired network into SDN-
WISE, namely ONOS [3]. Figure 2-3 shows the preliminary experiment of SDWN-ONOS.

ONOS has different characteristics with WSN since ONOS is used for the wired network.
In order to apply ONOS into SDN-WISE, Anadiotis et al. modified the ONOS controller
based on the SDN-WISE architecture. Although SDWN-ONOS can demonstrate that the
SDN concept can be applied for IoT, the main problems faced by WSN are still not resolved
by SDWN-ONOS. The implementation of SDWN-ONOS is not validated with the WSN
protocol and is not able to prove whether integrating SDN on IoT will provide benefits or
not. In addition, this framework cannot be implemented into real WSN devices as well, since
the firmware of this sensor node is custom-built.
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Figure 2-3: SDWN-ONOS

2-2-3 TinySDN

Most of the existing frameworks of SD-WSN are not open source, and some of them are
partially open such as SDN-WISE and SDWN-ONOS. De Oliveira et al. proposed TinySDN
[31], an open-source framework to enable SDN controller for WSN.

TinySDN is based on TinyOS which consists of two main components: SDN-enabled sensor
node, which acts as data plane, and SDN controller node, which acts as control plane where
the intelligence of the network is programmed. As opposed to SDN-WISE and SDN-ONOS
in which they cannot be implemented on real WSN hardware, TinySDN is designed to be
hardware independent so that it can be implemented into many existing WSN devices, such
as TelosB and Micaz. Figure 2-4 shows the implementation of TinySDN.
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Figure 2-4: TinySDN

TinySDN provides several scenarios and evaluations to test its system and also inspires several
papers which use this framework as a core architecture, such as Distributed SDWSN [30] and
WARM [39]. However, the performance evaluation of TinySDN is limited, and this framework
cannot answer the main doubt about how SDN can be beneficial for WSN since the evaluation
performance is insufficient.

2-3 The Algorithm of SD-WSN

Apart from the framework of SD-WSN, some papers propose a centralized algorithm to solve
several problems faced by WSN such as energy efficiency and supporting multiple applications
in WSN. Zeng et al. [48] and Wang et al. [45] proposed algorithms which can be implemented
in the centralized controller.

Zeng et al. proposed Multi-task SDSN (Energy Minimization in Multi-Task Software-Defined
Sensor Networks) algorithm to support multiple applications by considering energy efficiency.
To overcome the challenges in WSN energy, Multi-task SDSN utilizes a centralized algorithm
that regulates the activation of the sensor and the work schedule of each sensor. Multi-task
SDSN consists of a sensor control server (acting as the control plane) which defines the rules
of the network by utilizing a centralized algorithm and sensor nodes (acting as data plane)
which execute the rules from the control server.

Multi-task SDSNs provides a performance analysis of SDSNs using its proposed algorithm,
such as effective sensing rate, rescheduling time and power efficiency. However, Multi-task
SDSN is only focused on the design, implementation, and evaluation of their algorithm applied
in SDSNs without considering the effect of this algorithm in WSNs. The description of the
control plane and data plane behaviors are also insufficient, and thus the Multi-task SDSN
will be difficult to implement in real WSN devices.

Wang et al. [45] proposed a similar approach as Zeng et al. They proposed an algorithm
based on sleep scheduling mechanism, namely SDN-ECCKN (Software Defined Networking-
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Energy Consumed uniformly-Connected K-Neighborhood). The idea of this algorithm is to
reduce the total transmission time so the sensor node can sleep without reducing or affecting
the performance of the network.

They claim that the SDN-ECCKN algorithm is better than EC-CKN (Energy Consumed
uniformly- Connected K- Neighborhood) regarding network lifetime. SDN-ECCKN concept
adopts the idea of SDN which removes the computation units from each node and then the
computation is executed by the controller using EC-CKN to manage the entire network.

The architecture of SDN-ECCKN is divided into three main parts, namely controller, switch,
and sensor node. The controller acts as the central computation which processes all network
management to control the sensor node, the switch forwards the decision from the controller
to sensor node or as a gateway between the sensor node and controller. The sensor node acts
as the data plane which sense or collect information in the target area. The drawback of
SDN-ECCKN is similar to Multi-Task SDSN where the description of the control plane and
data plane behaviors are insufficient.

To summarize current research of SD-WSN, Table 2-1 compares several works which propose
SDN solutions for WSN. The summary contains the features, simulator, availability, the
evaluation and the performance comparison with existing WSN.
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Table 2-1: SDN Solutions for WSN
Compared
. . 1posts Perfomance with
Year SD-WSN Features Simulation | Availability . . .
Evaluation existing
WSN
2012 Sensor Proposte af N N N N
concept o o) o o) o
OpenFlow [25] SD-WSN
Propose a
2012 SDWN [9] concept of No No No No
SD-WSN
Propose a
Smart
2014 concept of No No No No
WSN-SDN [15] SD-WSN
Provide an Response
2014 TinySDN [31] SD-WSN Cooja Open time, No
framework memory
A centralized
SDN sleep Network
2015 ECCKN [45] scheduling Matlab No Lifetime Yes
algorithm
SDWN Provide an Cooja, Partially
2015 ONOS [1] SDN-IoT Mininet Open No No
framework
A centralized Sensing rate,
SDSN [48] Optimizer ’
energy power
efficiency efficiency,
Provide an Partially RTT,
2015 | SDN-WISE [14] SD-WSN Cooja 0 efficiency, No
framework ben response time
Propose an
. energy
2016 SDP\{;)%;\IIHE%N] eﬂ?.lcient Matlab No E&iﬁﬁt Yes
algorithm for
SD-WSN
Provide an Comm.
2016 WARM [39] SD-WSN Cooja No overhead, No
framework memory
Provide an
. Delay,
2016 | SDN-TAP [12] SD-WSN Cooja No No
packet loss
framework
Propose a
2016 | SDWSN-IoT [32] | concept of No No No No
SDN-IoT
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Chapter 3

Implementation

In this chapter, our performance evaluation setup of SDN framework for WSN is discussed,
including TinySDN as the core component for the SD-WSN framework, data collection proto-
col, SD-WSN and WSN work flows, test scenario and the performance metrics for evaluating

SD-WSN.

3-1 Framework Overview

In general, the framework of this thesis is divided into five main blocks, shown in Figure 3-1,
namely nesC, TinyOS, TinySDN, TelosB, and Cooja. A brief description of each block is as

follows:

nesC

>

TinyOS

>

TinySDN

Cooja

<« TelosB

J

Figure 3-1: Framework Overview

e nesC: Network embedded systems C (nesC) [16] is a programming language used to
create an application for TinyOS. This programming language is an extension of the
C programming language with features to minimize the code size and random access
memory (RAM). C and nesC have similarities, but the difference in nesC is that every
program is formed by components, consisting of modules and configurations. The main
task of the module is to declare the variables and the functions, while the main task of
configuration is to connect components together (wiring).

In short, to create an application on nesC, three files are required: Makefile, configura-
tion file, and module file. The process that must be passed to produce an application
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from nesC is as follows: First, the nesC file is compiled using the nesC compiler, pro-
ducing the app.c file. Afterwards, this C file is compiled with a native gcc compiler.
As TelosB sensor node is used in this thesis, the msp430-gcc is used to compile and
produce the binary file, that is, main.exe, which subsequently will be installed in the
actual mote (TelosB or Micaz).

e TinyOS [23] version 2.1.2 is used as the operating system (OS) for our implementation.
This OS is designed for wireless devices which have limited computational power and
memory such as wireless sensor networks, personal area networks (PAN), and smart
meter. TinyOS is not tied to certain devices, and thus can be implemented on vari-
ous generic platforms, such as MicaZ, TelosB, TinyNode, and Zolertia Z1. Moreover,
TinyOS supports various types of sensors that provide ease in the development of the
new platform.

This OS is written in the nesC programming language where the components are con-
nected to each other by interfaces. This mechanism allows users to create components
that can be made independent of hardware on various platform.

To facilitate application usage and development, TinyOS provides abstraction, such as
radio communication, timers, storage, and APIs which support various features, e.g.
transmitting a packet, sensing sensor data, and communicating between each sensor
node.

e TinySDN [31] version 0.2 is used as the framework for SD-WSN; it consists of two main
components: SDN sensor node and SDN controller node. The SDN sensor nodes act like
switches on SDN for a wired network which works only to forward packets. The SDN
controller node acts as the control center which defines the behavior of the network.

e TelosB: TelosB [42] is a sensor node from Memsic which is used in our framework.
This mote is compatible with the TinyOS and consists of MSP430 microcontroller,
C(C2420 radio chip, and several sensors, e.g. light sensor, temperature, humidity. In
our framework, the TelosB is emulated in the Cooja simulator and used as SD-WSN
devices for SDN sensor node and SDN controller node.

e Cooja [34]: In this thesis, Cooja is used as a network simulator to evaluate SDN frame-
work on SDN. Cooja is an open-source network simulator. It can be used to emulate
various types of sensor nodes. The code used in Cooja can be implemented on real
sensor devices as the firmware used in Cooja is compatible with the firmware on the
WSN devices (TelosB, Micaz, and Zolertia Z1)

Cooja allows large and small networks of motes to be simulated. It is able to analyze
the behavior of sensor networks. This simulator is useful to test the application code
before running it on real hardware. Cooja is used to verify the behavior of our simulated
network under several conditions and scenarios.

3-2 Architecture

In general, the architecture of SD-WSN is divided into two main components, shown in Figure
3-2, namely control plane and data plane. The architecture of this framework is implemented
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based on the TinySDN architecture [31], where the description for each component is as
follows:

™\ SDN Controller Node (Control Plane)
SDN Sensor Node (Data Plane)
Controller Application
TinyOS Application

. <
| ~
R4 'Sou!bopnd APl ~ TelosB
~
. ' ~

z Y <, I
Sensor Sensor Sensor
Node Node Node
J

Figure 3-2: SD-WSN Architecture

TinySdnP TelosB

TinySdnControllerC

DR Multi-hop Wireless Communication, ____!

3-2-1 Control Plane

In traditional WSN, the control plane and the data plane is coupled to each sensor node.
In other words, each sensor node has their control plane, so the determination of forwarding
data to other nodes is independent. In our architecture, the control plane and data plane is
decoupled. Thus, the task of control plane and data plane are defined in different entities.

In the new control plane, the control plane works as one entity, namely SDN controller node
which acts as the sink. The task of the sink is not only collecting the data from the sensor
node but also deciding the routing path for each sensor node and managing the network flows.
In contrast to the traditional WSN, the sink acts only for collecting information from each
sensor node and forwarding all packets from each sensor node to the user.

In the control plane (SDN Controller Node), there are four sub-components: Controller Ap-
plication, SerialActiveMessageC, TinysdnControllerC, and Active MessageC. The relation of
each sub-component is depicted by Figure 3-3, and the function of each sub-component is as
follows:

e Controller Application: This sub-component contains the control plane logic, such as
managing network flows and deciding the routing path for each SDN sensor node.

o SerialActiveMessageC': The main task of this sub-component is to forward received pack-
ets from SDN sensor node to SDN controller node application or from SDN controller
node application to the network.

o TinysdnControllerC: This sub-component is used for adapting the messages between
SDN controller node and SDN sensor node.

o ActiveMessageC': This sub-component is a part of the TinyOS component that is re-
sponsible for managing and providing the radio module of the SDN sensor node. It is
used for handling all tasks related to wireless communication.

3-2-2 Data Plane

In the traditional WSN, the functions of sensor nodes involve finding a route, sensing, and
forwarding packets. In this architecture, the functions of the sensor node are reduced, so the
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task is only forwarding information and sensing. The new entity of sensor node (only sensing
and forwarding the packet) is defined by the data plane (SDN sensor node). In the data
plane (SDN sensor node), there are three sub-components: TinyOS Application, TinySdnP,
and ActiveMessageC. The relation of each sub-component is depicted by Figure 3-3 and the
function of each sub-component is as follows:

o TinyOS Application is used for generating data packets and then to put the data pack-
ets on the network using application programming interface (API) provided by the
TinySDN.

e TinySdnP is used for checking the received packet. If the incoming packet matches the
flow table, then it performs the related action. Otherwise TinySdnP will send a flow
setup request to the control plane (SDN controller node).

e The last sub-component in SDN sensor node is ActiveMessageC. This sub-component
is responsible for communicating with the radio module/wireless communication of the
sensor node. Furthermore, ActiveMessageC' is also used for link quality estimation.

3-2-3 Southbound API

In the SD-WSN architecture, the southbound API is used to communicate between the SDN
controller node and the SDN sensor node. The southbound API in SD-WSN is represented
by a flow table which contains a set of instructions that will be executed by each SDN sensor
node. Control flow is used to control traffic between SDN controller node and SDN sensor
node, while data flow is used for application data traffic.

typedef struct { ) Action
uint16_t dataFlowID; Flow ID | Action Parameter
uint8_t actionlID; 0 Receive _
uintl6_t actionParameter;
1 Forward )
} flow_table_entry;
2 Drop -
Listing 3.1: Flow Table Struct Table 3-1: Flow Table

Table 3-1 denotes the flow table in SD-WSN, based on three data flow actions which are
specified in TinySDN, namely Forward, Receive, and Drop. Forward means that the packet
should be forwarded to the next hop of SDN sensor node; Receive denotes that the packet
will be accepted by the SDN sensor Node or SDN controller node; and Drop defines that the
packet is not used, thus the packet will be dropped. These actions will be categorized into
three fields: Flow ID, to identify the flow which is used for the packets; Action, to specify the
related action e.g. Forward, receive, and drop; Action Parameter, to specify the next hop.
The structure of flow table is denoted by Listing 3.1.

3-3 Collection Tree Protocol (CTP)

The Collection Tree Protocol (CTP) [17] is the de-facto standard protocol in collection routing
of WSN that makes the network look like a tree structure with the controller as root and the
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Figure 3-4: An example of data collection applications

sensor nodes at the perimeter of the network as the leafs. The concept of CTP is shown in
the Figure 3-4. CTP is used for collecting the data from a network by assigning one node or
several nodes as (a) tree root (s) in charge of collecting data generated by all the other sensor
nodes in the network.

In order to create the route from the leafs to the root, the SDN sensor nodes use routing
gradient. Expected transmission (ETX) is a routing gradient used by CTP, where the lowest
ETX will be selected as the path to the root (SDN Controller Node). This routing gradient
can be defined as the number of transmissions an SDN sensor node has to make so that the
packet can be acknowledged by the receiver. An SDN sensor node, for instance with an ETX
of 2 can be assumed to be able to transmit a message to the other SDN sensor nodes after
2 transmissions. The following equations from 4 bits link estimator [11] show the process to
obtain the ETX value.

Firstly, the packet reception ratio (PRR) is calculated based on the received beacons (Rp)
and failed beacons (F},).

Ry

PRRjqst = m

(3-1)

Then, an exponentially weighted moving average (EWMA) function is used to calculate new
PRR, with o as weighting factor between 0 and 1:

PRRpew = a X PRRyjg+ (1 — ) X PRRygst (3-2)
and the PRR value is used to obtain the ETX value.

1
ETX = —— -
PRR (3-3)

Finally, the ETX values are used to update the new ETX

ETXpew = a X ETX g+ (1 — a) x BT X4y (3-4)
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ETX values in CTP represent the 16-bit decimal fixed-point real number with a precision of
tenths. An ETX value of 35, for instance, represents an ETX of 3.5, while an ETX value of
20 represents an ETX of 2.

ETXA=2

(2) (o

ETXB=1

ETXD=3

Figure 3-5: The Illustration of ETX Mechanism

Figure 3-5 illustrates the concept of ETX: there are four SDN sensor nodes: A, B, C, D and
one SDN controller node. The SDN sensor node A, B, and D are within the transmission
range of an SDN sensor node C. The SDN controller node has an ETX of 0, and SDN sensor
node B who is the nearest node to the SDN controller node has an ETX of 1, which means
when SDN sensor node C wants to send a packet to the SDN controller node, SDN sensor
node C will use the node with the lowest ETX, that is SDN sensor node B, as the next hop.
Overall, the aim of the ETX metric is to reduce the number of transmissions made by nodes.
In order to keep the best routes up to date, each SDN sensor node broadcast periodic beacons
to update the ETX value [24].

’ Network Layer ‘

T 3

Compare Pin

Figure 3-6: A Four-Bit Link Estimator [11]

The link estimator in CTP is using a four-bit (4B) link estimator [11] to assess the quality
of its link. It uses information from three Open System Interconnection (OSI) layers, namely
physical layer, data link layer, and network layers. Figure 3-6, shows the interfaces of 4B link
estimator. These interfaces represent 4 bits of information: 2 bits from the network layer,
namely pin bit and compare bit, 1 bit from the data link layer, namely ack bit, and 1 bit
from the physical layer namely white bit.

The physical layer is used to denote whether the received packet experiences few errors or
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not. If the white bit is set, the channel quality is good. The link layer is used to indicate
whether the acknowledgment packet is received or not. If the ack bit is set, the packet has
been acknowledged. The network layer is used to indicate how valuable the link is. If the pin
bit is set, then the neighbor entry cannot be removed. If the the compare bit is set, then the
metric value is better.

3-4 Work Flow of SD-WSN

Controller Discovery Routing Phase
Process the packet
Initialization Sensor node update New Packet r'y
the flow table ¢ Yes
¢ Check the Receive Resend Packet
Controller flow table ?
Discovery
Yes

Controller send flow
¢ setup to sensor node
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No
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controller found
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v

Send flow request
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Figure 3-7: Controller Discovery and Routing Phase

3-4-1 Neighbor Discovery/Controller Discovery

Initially, when the SDN sensor node is deployed, each SDN sensor node does not know who is
the SDN controller node and the number of its neighboring sensor nodes. As soon as an SDN
sensor node boots up, the first step for each SDN sensor node is performing neighbor discovery
and controller discovery procedure by broadcasting a beacon packet to all its neighbors. The
structure of the beacon packet is shown by Listing 3.2.

typedef nx_struct rssi_beacon_msg{
nx_uintl6_t source_id;
nx_uintl6_t controller_id;
nx_uintl6_t metric;
nx_bool findController;
}rssi_beacon_msg;

S T AW N

Listing 3.2: Beacon Packet Struct
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In the process of neighbor discovery, SDN sensor nodes employs CTP. Upon reception of a
beacon packet, the sensor node which receives the broadcast packet forwards an acknowl-
edgment (ACK) packet to the original sensor node. When an ACK is received by a sensor
node, the sensor node extracts all the relevant information about its neighbors, such as the
neighbor ID and the ETX link value. This information is added to a list of neighbor sensor
nodes. The example of the neighbor table shown in Table 3-2 and the structure of neighbor
table are defined by Listing 3.3 and Listing 3.4.

typedef nx_struct {
nx_am_addr_t neighbor_id;
nx_uintl6_t etx;
nx_uintl6_t rssij;

} nx_neighbor_table_entry;

TR W N

Listing 3.3: Neighbor Table Entry Struct

typedef nx_struct {

2 nx_uint8_t numOfNeighbors;

3 nx_neighbor_table_entry neighbors]
NEIGHBOR_TABLE_SIZE|;

4 |} nx_neighbor_table;

Listing 3.4: Neighbor Table Struct

typedef struct {
nx_uintl6_t origin;
} tinysdn_set_controller_t;

Listing 3.5: Set Controller Struct

The SDN controller node is predefined by ETX value 0 and the structure of defining the
controller is denoted by Listing 3.5 . When the neighbor report reaches the SDN controller
node, the SDN controller node extracts the report, then the SDN controller node can use
the information from the neighbor report to make the rule (flow table) for each of the SDN
sensor nodes. The concept of flow table is similar to OpenFlow [26] which defines the action
for each SDN sensor node. When the SDN controller node computes the flow table for each
SDN sensor node, the SDN controller node broadcasts the flow table to each SDN sensor
node. Upon reception of the flow table, the SDN sensor nodes recognize that the controller
discovery is done and the SDN sensor node will update the flow table. Figure 3-8 shows the
implementation of data collection in SD-WSN.

Table 3-2: Neighbor Table

Neighbor ID | Link Quality
2 10
3 20
4 30
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3-4-2 Routing Phase

The routing phase is started by the reception of the flow table from the SDN controller
node. When a SDN sensor node receives the flow table, the SDN sensor node stops controller
discovery. The flow table defines the next hop for the SDN sensor node. The SDN sensor
node then forwards the packet according to the next hop defined by the flow table. When a
SDN sensor node receives a packet during the routing phase, the sensor node will check the
packet in the flow table. If the new packet is not defined, the SDN sensor node will send flow
request to the SDN controller node. If the packet is matched with the flow table, the SDN
sensor node will execute the action based on the flow table rule.

1 |typedef nx_struct
tinysdn_flow_request_ctp {
nx_uint8_t type;
nx_uintl6_t origin;
nx_uintl6_t target;
} tinysdn_flow_request_ctp_t;

UL W N

Listing 3.6: Flow Request Struct

Listing 3.6 denotes the structure of flow request, which consists of three parameters: type,
origin, and target. Type, to specify the request of the flow; origin, to show the originating
address of the packet; and target, to define the flow which is used for the packets.

The flow table defines the action for each SDN sensor node. The three actions defined by
the SDN controller node are: Drop, receive, and forward. In drop action, the packet will be
discarded since the packet is not intended for that particular SDN sensor node. In receive
action, the packet will be accepted, while forward action, the packet is transmitted to the
next hop defined by its flow table.
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Figure 3-8: The Implementation of Data Collection in SD-WSN
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3-5 Work Flow of WSN

The implementation of WSN work flow is based on the Rime data collection protocol using the
Contiki operating system [10]. The explanation of WSN work flow using Rime data collection
protocol consists of two steps: setting up the collection tree and sending messages towards the
sink. The sensor nodes use identified polite broadcast primitives (ipolite) channel for creating
the collection tree. After the tree has been created, the sensor nodes send the message by
using hop-by-hop reliable unicast channel (ruc).

In the process of setting up the collection tree, the sensor nodes send a periodic announce-
ment containing the number of hops from the sensor nodes to the sink through ipolite. The
ipolite channel stores the list of packet attributes in queue buffer and sets up a timer (listen
period and transmission period). During the listen period, the sender node listens for other
transmission. If it hears a packet that matches the attributes in queue buffer, the sender
node drops the packet. Otherwise, the sender node broadcasts its packet to all local neigh-
bors during transmission period. In other words, ipolite is used to avoid multiple copies of
messages.

In the process of sending the message, ruc uses acknowledgements and retransmissions to en-
sure the local neighbors receive the packet. If the receiver node has acknowledged the packet,
the ruc notifies the sending application. Otherwise, ruc retransmits the acknowledgement
packet.

The difference between SD-WSN and WSN lies in the mechanism for choosing the path from
the source to the sink. In SD-WSN, the route for SDN sensor node is determined by the
SDN controller node, whereas in WSN, the route from sensor node to the sink is determined
by each sensor node. The collection protocol in WSN is an address-free protocol, and thus
the sensor nodes send packets toward a sink node without predefined routes, as opposed to
the concept of a collection protocol on SD-WSN where the path for each SDN sensor node is
determined by the SDN controller node.
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Figure 3-9: The Implementation of Data Collection in WSN

The controllers on the WSN are coupled and distributed on each sensor node, thus each node
sensor can select the paths automatically based on the routing protocol used. The protocol
in WSN builds a tree structure from the sink node by sending periodic announcements which
contain the number of hops from each sensor node to the sink node. After the process of
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building the tree has finished, the sensor nodes start sending packets toward the sink. Figure
3-9 shows the implementation of data collection in WSN.

3-6 Scenario

Network performance can vary due to the WSN device’s capabilities or the network environ-
ments [2]. To simulate the performance of SD-WSN, some network parameters are changed
to measure the network performance over a range of environments. Three types of network
environments were used to test this network: homogeneous network, heterogeneous network,
and dynamic network. The following section explains these parameters.

3-6-1 Network Topology

Table 3-3: Network Topology

5 Motes 15 Motes
Source Neighbors Source Neighbors
(Node Id) (Node Id) (Node Id) (Node Id)
1 2,3 1 2,4,5
2 1,4 2 1,3,4,5,6
3 1,45 3 2,5,6
4 2,3 4 1,2,5,7,8
5 3 5 1,2, 3,4,6,7,8,9
10 Motes 6 2,3,5,8,9
Source Neighbors
(Node 1d) (Node 1Id) 7 4,5,8,10, 11
1 2,4,5 3 4,5,6,7,9
2 1,3,4,5,6 10, 11, 12
3 2,5,6 9 5,6,8, 11, 12
4 1,2,5,7,8 10 7,8,11,13, 14
5 1,2,3,4,6,7,8,9 11 7,8,9, 10
6 2,3,5,8 9 12, 13, 14, 15
7 4,5, 8,10 12 8,9, 11, 14, 15
8 4,5,6,7,9,10 13 10, 11, 14
9 5, 6,8 14 10, 11, 12, 13, 15
10 7,8 15 11, 12, 14

There are two types of network topology that will be compared: SD-WSN and the existing
WSN (Rime data collection protocol, Contiki). Each network topology consists of 5, 10, and
15 motes (sensor nodes, SDN sensor nodes, SDN controller node). The illustration is shown
in Figure 3-10.

In SD-WSN;, sensor node number 1 (blue mote) acts as the SDN controller node and the other
SDN sensor nodes transmit packets to the SDN controller node. On the other hand, in WSN
the sensor node number 1 (blue mote) acts as the sink and the other sensor nodes transmit
packets to the sink.
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Figure 3-10: The Illustration of Network Topology

3-6-2 Simulation Setup

To perform the simulation and performance evaluation of SD-WSN, several parameters are
divided into three parts, namely general parameters, homogeneous network parameters, and
heterogeneous network parameters. Homogeneous network and heterogeneous network are
used to define the capability of motes (sensor nodes, SDN sensor nodes, SDN controller
node) in terms of the transmission range and sensing range [46]. Table 3-4 summarizes the
simulation setup in our thesis.

Table 3-4: Simulation Setup

No Parameters Details
1 Node placement Fixed
2 The number of motes 5, 10, 15
. CTP (SD-WSN), Rime Data

3 Routing protocol Colle(ction, Cor)ltiki (WSN)

4 Simulation time 12 Minutes

5 | Network circumstances Normal and Dynamic

6 Topology Grid

7 Sampling Period 30s
Homogeneous Network

1 Radio Medium UDGM

2 Tx Range 50m

3 INT Range 100m

4 Tx and Rx Ratio 100%
Heterogeneous Network

1 Radio Medium DGRM

2 Rx Ratio 20%-100%

3 RSSI ((-10) - (-18)) dBm

4 LQI (105 - 65)

3-6-3 Homogeneous Network

A homogeneous network is a network comprised of motes using similar configurations. In our
simulation, all the motes are identical in terms of transmission range (Tx range: The range
in which the transmitted packet within this range can be received correctly by any mote),
interference range (INT range: The range in which the packet transmission can be heard
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by any mote within this range, but the packet transmission cannot be received correctly),
and the successful transmission-reception of the radio packet (Tx and Rx Ratio: The packet
from each mote can be sent and received with a certain probability of success). Figure 3-11
illustrates the concept a homogeneous network.

To simulate the homogeneous network (a condition where all the motes have the same range
and success ratio), the radio medium is designed, using Unit Disk Graph Medium (UDGM)
Constant loss. The radio medium is modelled with a transmission range of 50m, interference
range of 100m, and transmission success ratio and receives success ratio of 100%. Figure 3-15
shows the implementation of homogeneous network configuration.

3-6-4 Heterogeneous Network

In a heterogeneous sensor network, two or more motes are designed with different link quali-
ties, and success ratio, but the number of motes with fixed node placement in the heteroge-
neous network are similar to the homogeneous network. Figure 3-12 illustrates the concept
of heterogeneous network.

Table 3-5: The Initial Configuration for Each Motes in Heterogeneous Network

RX Ratio | RSSI (dBm) | LQI
100% -10 105

A different link quality is used, and this makes the network more complex than the homoge-
neous network. To create a heterogeneous network, directed graph radio medium (DGRM)
is used. With DGRM, several parameters are varied, such as reception ratio, received signal
strength indicator (RSSI), and link quality indicator (LQI). The reception ratio is set from
20% to 100%, the received signal strength indicator (RSSI) is set from -10 dBm to -18 dBm,
and the link quality indicator (LQI) is set from 105 to 65. RSSI denotes an estimation of the
average signal power received, while LQI values denotes the quality of the received packet.
higher values of RSSI and LQI indicate higher quality. [5].

Table 3-5 shows the initial configurations for each mote in heterogeneous network. Some
motes which have a high degree of neighborhood are given different configurations. These
motes configuration (Table 3-6) are used to represent heterogeneous networks. Figure 3-15
shows the implementation of heterogeneous network configuration.

3-6-5 Dynamic Network

To measure how effectively the flow table can adapt to SDN sensor node failures, a network
is designed which contains joining and leaving sensor nodes. After four minutes, we remove
several motes that have a high degree of neighborhood and after four minutes those sensor
nodes rejoin the network. When one of these motes is off, routes which currently flow through
its mote will fail. This condition triggers the route discovery phase to reconnect the SDN
controller node or sink. Figure 3-16 denotes the gray circles as the dynamic motes.

The parameters for the dynamic network is similar to the homogeneous network where the
radio medium is UDGM, Tx range is 50m, INT range is 100m, and the Tx-Rx ratio is 100%.
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Table 3-6: The Configuration of Heterogeneous Networks
for Several Motes

5 Motes
Node ID RX Ratio | RSSI (dBm) | LQI
3 <->1 90% -11 100
3 <->4 80% -12 95
3 <->H 70% -13 90
10 Motes
Node ID RX Ratio | RSSI (dBm) | LQI
5 <->1 90% -11 100
5 <->2 80% -12 95
5 <->3 70% -13 90
5 <->4 60% -14 85
5 <->6 50% -15 80
5 <->7 40% -16 75
5 <->8 30% -17 70
5 <->9 20% -18 65
15 Motes
Node ID RX Ratio | RSSI (dBm) | LQI
5 <->1, 11 <->7 90% -11 100
5 <->2, 11 <->8 80% -12 95
5 <->3, 11 <->9 70% -13 90
5 <->4, 11 <->10 60% -14 85
5 <->6, 11 <->12 50% -15 80
5 <->7, 11 <->13 40% -16 75
5 <->8, 11 <->14 30% -17 70
5 <->9, 11 <->15 20% -18 65
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Figure 3-13 denotes the normal network where the motes forward a packet to the controller

and Figure 3-14 illustrates the dynamic network where two motes in the stable network are
off.

3-7 Performance Metrics

e Duty Cycle.

Power consumption is important for the motes to achieve a long network lifetime. For
instance, the CC2420 radio transceiver, used in the TelosB, draws approximately 60
milliwatts of power when it is listening for radio traffic, and then its power consumption
is slightly higher when transmitting radio data. With a power draw of 60 milliwatts, a
mote depletes its batteries in a matter of days [8]. The most widely used approach to
calculate energy consumption for each mote node is to monitor the duty cycle of the
radio [24]. Duty cycle denotes the proportion of the time a mote in the active state (¢
active) Over the total time (¢4 ) [37].

t(lC e
Duty Cycle = (=%*°)100 (3-5)

total

In our simulation, the duty cycle is a combination between Radio Tx time and Rx time
and it is expressed as a percentage. Radio Tx time and Radio Rx time denote how long
the motes transmit and receive packets, respectively. By investigating the percentage
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of time radio is being kept active, i.e. by keeping track of the duty cycle for each mote,
we can estimate the network lifetime. The higher the duty cycle means the shorter the
network lifetime and the lower duty cycle represents more energy will be saved by the
motes. In other words, a low duty cycle mote has a much longer lifetime [43].

Delay

WSN is used for many applications such as health monitoring and surveillance system.
Those WSN applications require QoS guarantees to fulfill the requirements, for instance,
real-time data delivery. According to this requirement, delay is one of the major factors
which affect QoS [44]. In this simulation, delay is defined as the time difference between
when a packet is sent by a mote and the time a packet is received by the SDN controller
node (SD-WSN) or the sink (WSN). If we let (¢ ¢ mote) be the time a mote sends the
packet and (% ., controlier/sink) e the time when a SDN controller node/sink receives the
packet.

Delay = ltz,mote — tr:c,controller/sink (3'6)

Packet Delivery Ratio

Packet Delivery Ratio (PDR) is the ratio between the number of received packets by
the SDN controller node (SD-WSN) or the sink (WSN) (m8g 15, controtier/sink) and the
number of packets transmitted by a mote (msg i, mote). If the PDR is equals to one, it
can be said that all the packets have been received successfully by the SDN controller
node/sink. In the worst case, none of the packets reaches the SDN controller node/sink.
This may happen if the controller is disconnected from the network and causes the
packet delivery ratio to be zero [27]

MSGrz controller/sink

MSGtx, mote

PDR =

(3-7)

Packet Duplication

Packet duplication is a condition when a single packet may be forwarded by multiple
neighbors simultaneously, which can increase the channel occupancy and the energy
consumption in the network [36]. This problem can be caused by several factors such
as routing loop on a path, lost acknowledgments, packet re-transmissions and packet
merging [17]. SD-WSN and WSN use multiple hops to send a packet from the motes to
the SDN controller node/sink. If each hop generates one duplicate packet, on the next
hop, there will be multiple duplicate packets. Over a small-scale network, this is not a
crucial issue. However, in the large-scale network which has many hops from the motes
to the SDN controller node/sink, this is an important issue as the packet duplication
can increase significantly. The ratio of packet duplication can be obtained as follows:

(msgrx,controller/sink - msgtm,mote)

MSgtx mote

Packet Duplication = (3-8)
where msg 1. controtler/sink 1S the number of received packets by the SDN controller node
(SD-WSN) or the sink (WSN) and msg ¢z, mote is the number of packets transmitted by
the mote.
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Chapter 4

Experimental Results and Analysis

This chapter discusses the simulation of the proposed SD-WSN and its performance against
an existing WSN, where the simulations were conducted on an ubuntu 14.04 LTS, Intel (R)
Core i7-4510U 2.00 GHz with 4 GB RAM memory. The implementation is evaluated based
on four performance metrics: Delay, packet delivery ratio, duty cycle, and packet duplication
with three network conditions: Homogeneous network, heterogeneous network, and dynamic
network.

4-1 CTP Verification on SD-WSN

To determine the extent to which CTP on SD-WSN can produce a reliable ETX link value,
a comparison of ETX link value between SD-WSN and WSN are performed by using collect
protocol through the Contiki shell (CollectView). The verification process is performed during
the neighbor/controller discovery phase, when the SDN controller node receives the neighbor
report of each SDN sensor node. The verification process uses three types of scenarios:
Homogeneous network, heterogeneous network, and dynamic network, while the number of
motes are 5, 10, and 15.

Figure 4-1 shows the tree structure of ETX link value on WSN, and the comparison results
of ETX link values on SD-WSN and WSN are shown by Figure 4-2 and Figure 4-3. Figure
4-2 shows that the ETX link values are relatively similar for SD-WSN and WSN in the
homogeneous and heterogeneous network. However, as the number of nodes is increased, the
ETX link values for some nodes in SD-WSN are slightly different from the ETX value in
WSN.

Figure 4-3 shows the ETX link values in the dynamic network which are divided into three
parts: 0-4 minutes, all the motes are on; 4-8 minutes, some of the motes are off; and 8-12
minutes, all the motes are on again. When the number of motes is five, the ETX link values
for SD-WSN and WSN are equal, but when the number of motes is increasing from 5 to
15, the ETX link values for some SDN sensor nodes in SD-WSN are different from WSN. A
significant difference of ETX values is observed when the number of the SDN sensor nodes
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is 15 in the dynamic network. Since the determination of the SD-WSN path is defined by
the SDN controller node, when some SDN sensor nodes are off, the SDN sensor nodes must

perform routing discovery to update the ETX link value.

Consequently, SD-WSN slowly

detects the failures and takes longer adaptation to find the best path for each SDN sensor
node because the path for each SDN sensor node is specified by the SDN controller node.
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Figure 4-4 shows the average delay of WSN and SD-WSN in three scenarios: Homogeneous
network, heterogeneous network, and dynamic network. In general, increasing the number of
motes from 5 to 15 will increase the average delay gradually, both for WSN and SD-WSN.
The increasing ratio of average delay in homogeneous network and heterogeneous network for
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WSN and SD-WSN is relatively similar, where the ratio of average delay ranges from 1.2 to
1.9. However, in the dynamic network, the ratio of average delay for SD-WSN rises from 2.03
(when the number of SDN sensor node grows from 5 to 10) to 2.3 (when the number of SDN
sensor node grows from 10 to 15). On the other hand, the ratio of average delay for WSN
is only around 1.6 (when the number of sensor nodes grows from 5 to 10) to 1.98 (when the
number of sensor nodes grows from 10 to 15). The significant increase of SD-WSN average
delay in dynamic network indicates that the use of SDN controller node causes the SDN
sensor node to be less able to adapt to dynamic network changes so that each SDN sensor
node takes a long time when some SDN sensor node are leaving and joining the network.
The performance deficit in terms of the average delay can also be attributed to the increased
overhead caused by maintaining the entire SDN sensor node by the SDN controller node.
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Figure 4-4: Average Delay

Increasing the number of motes also affects the standard deviation. Because a longer delay
is to be expected for further distance between the motes and the SDN controller node/sink.
Figure 4-4 denotes the standard deviation of WSN is higher than the standard deviation
of SD-WSN as WSN uses identified polite broadcast primitive (ipolite) during the process
of setting up the collection tree. In this mechanism, ipolite stores the outgoing message in
queue buffer. Then, it sets up a random timer during the second half of the interval time.
The timeline algorithm of polite broadcast primitive is shown in Figure 4-5. If a packet of
outgoing message with the same header is received from its neighbor within the interval, the
packet is not sent. This mechanism aims to reduce the total amount of packet transmission
by reducing the messages that other sensor nodes have already sent [10]. However, using this
mechanism in WSN can increase the average delay and standard deviation since Rime Data
Collection protocol uses random transmission period for setting up the collection tree.

Figure 4-4 shows the average delay of SD-WSN is lower around 34% than the average delay
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Figure 4-5: The Timeline of Polite
Broadcast Primitive Algorithm [10]

of WSN as SD-WSN uses the SDN controller node in which the routing of sending a message
is defined by the SDN controller node. Thus, the time required by each SDN sensor node to
send a packet is shorter than WSN.

4-3 Packet Delivery Ratio (PDR)
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Figure 4-6: Average Packet Delivery Ratio

Figure 4-6 denotes the performance metric of WSN and SD-WSN from the perspective of
packet delivery ratio in homogeneous network, heterogeneous network, and dynamic network.
In homogeneous and heterogeneous network, we observed that with the increasing number
of the motes from 5 to 15, the average PDR for WSN and SD-WSN are relatively similar
(around 0.98 to 1). However, in dynamic network, the increment of the motes from 5 to 15
affects the performance of WSN: the average PDR of WSN in a dynamic network decreases
from 0.98 to 0.9, whereas the average PDR of SD-WSN is 1. The packets lost during the
process of delivery messages from the sensor node to the controller/sink indicates that there
are inaccuracies in the link estimation.
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According to author’s investigation, one of the causes of packet delivery ratio value for SD-
WSN always 1 in the three scenario is due to packet duplication. On the one hand, packets
duplication can increase the packet delivery ratio because their redundancy can prevent packet
drops [17], but on the other hand, packets duplication will increase the load of the network
as many duplicate packets are received by the SDN controller node.

4-4 Packet Duplication

Figure 4-7 shows the performance metric of WSN and SD-WSN from the perspective of packet
duplication in a homogeneous network, heterogeneous network, and dynamic network. This
performance metric is measured by the percentage number of packet duplication at the SDN
controller node or sink per transmission.
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Figure 4-7: Packet Duplication

On average, packets duplication do not occur on WSN (a homogeneous network, heteroge-
neous network, and dynamic network). Moreover, increasing the number of sensor nodes
does not affect the packet duplication on the WSN as well. WSN uses Rime data collec-
tion for creating the tree structure and sending messages to the sink. During the neighbor
discovery process, Rime data collection uses a single-hop broadcast primitive (polite). The
polite algorithm is constructed to reduce the total amount of packet transmissions by not
repeating messages that other sensor nodes have already sent [10]. Polite broadcast primitive
suppresses the multiple copies of the packet by only allowing a single message to be delivered
to the sender.

On the other hand, packets duplication occurs in SD-WSN. The results from Figure 4-7 shows
that the increasing number of SDN sensor nodes have a significant effect on packet duplication
in SD-WSN. Increased packet duplication occurs significantly on the dynamic network. When
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the number of SDN sensor nodes is 5 (one SDN sensor node leaving and rejoining network),
there is no packet duplication. However, when the number of SDN sensor nodes increases
from 10 to 15 (three SDN sensor nodes are leaving and rejoining the network), the duplicate
packet rises drastically by 33%. In homogeneous network and heterogeneous network of SD-
WSN, there is also an increase of packet duplication, when adding SDN sensor nodes from 10
to 15, although not as significant as on dynamic networks. The increase of duplication packets
on the homogeneous network and the heterogeneous network are 24% and 6%, respectively.

Packet duplication in SD-WSN indicates that SD-WSN cannot suppress the duplicate packet
when an inconsistency occurs. Due to SD-WSN’s inability to suppress the packet duplication,
increasing the node could easily generate the copies of a packet in the network significantly.

The control plane is responsible for forming a topology and selecting routes, but due to the
centralized controller, each SDN sensor node is unable to adapt to changing network condi-
tions. Thus, SDN sensor node generates copies of a packet during the process of discovering
and fixing routing failures.

4-5 Duty Cycle

Figure 4-8 shows that the increasing number of the motes causes the average duty cycle to
increase as well. In other words, the growing number of the motes can reduce the network
lifetime. According to Figure 4-8, SD-WSN performs better than WSN regarding the efficiency
of the average duty cycle (Tx). The centralized controller can reduce the active time of the
sensor node to send packets compared to WSN as routing and path calculations in SD-WSN
are determined by the SDN controller node. Thus, the SDN sensor node simply runs the rules
that have been made by the SDN controller node, whereas in WSN, the path calculation is
determined by each sensor node, so the active time of sending packet is longer in order to
find the route from the sensor node to the sink.

One of the factors causing the average of Tx Duty cycle on WSN is being higher than the
average of Tx Duty Cycle value on SD-WSN because before the message is sent to the neigh-
bors, the outgoing message stored in a queue buffer, and then the upper layer in Rime data
collection protocol sets up a timer. The timer is set by Rime data collection protocol to a
random time during the second half of the interval time. When the timer fires and the sender
has not yet heard a transmission of the same packet attributes from its neighbors, the sender
broadcasts the packet to all its neighbors [10].

Although SD-WSN performs better in the sense of average duty cycle (Tx) compared to WSN,
the use of centralized controller will increase the Rx duty cycle. Figure 4-8 shows that the
average duty cycle (Rx) of SD-WSN is higher than the average duty cycle (Rx) of SDN. This
is due to each SDN sensor node in SD-WSN needs to communicate with the SDN controller
node. In addition, packet duplication is one of the main factors causing the average of Rx
duty cycle value in SD-WSN is being higher than that of WSN. Packet duplication causes
the SDN sensor node to receive multiple copies of the packet. This condition makes the SDN
sensor node Rx duty cycle in SD-WSN increase drastically as increasing the node could easily
generate an exponential number of copies of a packet in the network.

The increase in the average of Rx duty cycle in WSN from the five sensor nodes to the 15
sensor nodes on the homogeneous network, heterogeneous network, and dynamic network are
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Figure 4-8: Average Duty Cycle (Tx and Rx)

relatively stable at about 0.2%. On the other hand, the increase of the average of Rx duty
cycle in SD-WSN from 5 SDN sensor nodes to 15 SDN sensor nodes on the homogeneous
network, heterogeneous network, and dynamic network are quite high at around 1.8%, 0.73%,
and 1.9%, respectively.

In a dynamic network environment, the performance of WSN in the sense of Rx duty cycle
is more stable than SD-WSN. This is demonstrated by the increasing value of the average
and standard deviation of Rx duty cycle which are being relatively similar, around 0.2% and
0.01%, respectively. On the other hand, the values of the average and standard deviation of
Rx duty cycle in SD-WSN increase drastically up to 2% and 1.89%, respectively, since each
SDN sensor node needs to communicate with the SDN controller node, so that when the
network changes, each SDN sensor node cannot automatically make adjustments to the new
network conditions.

Figure 4-9 shows the average of Rx duty cycle per sensor node in a dynamic network for
SD-WSN and WSN. Although the sensor nodes 5, 8, and 11 are leaving and rejoining the
network, there is no significant change in the average of Rx duty cycle on the WSN. On the
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Figure 4-9: Average Duty Cycle per Sensor Node
in Dynamic Network

other hand, there is a significant increase in SDN sensor node 5, 8, and 11 since these SDN
sensor node requires a longer time to be able to send or receive packets when leaving and
rejoining the network. Figure 4-9 depicts that SD-WSN is not optimally applied to dynamic
conditions in the sense of Rx duty cycle because the activity changes from the SDN sensor
node will affect the network lifetime significantly.

4-6 Clustering Controller

‘ SDN controller node O 'SDN sensor node

Figure 4-10: Clustering Controller Topology

Based on the results from the previous performance evaluation (Section 4-2, Section 4-3,
Section 4-4 and Section 4-5), the increasing number of SDN sensor node will decrease the
performance of SD-WSN. To solve these issues, we propose using multiple controllers in
TinySDN. By using clustering controller in SD-WSN, the multiple controllers is expected to
be able to improve the performance of SD-WSN.

The process of finding the multiple controllers in Cluster SD-WSN is similar to finding single
SDN controller node in SD-WSN. Collection tree protocol is used for creating a tree structure
to deliver a message over the network to the SDN controller nodes. When multiple SDN
controller nodes are announced, each SDN sensor node joins the lowest ETX value.

Figure 4-10 illustrates the network topology of clustering controller. We use 14 SDN sensor
nodes and two SDN controller nodes. The Cluster SD-WSN is performed in three scenarios:
Homogeneous network, heterogeneous network, and dynamic network, while packet delivery
ratio, delay, duty cycle, and packet duplicate are used as the performance metrics. The
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configuration of Cluster SD-WSN for homogeneous network, heterogeneous network, and
dynamic network are shown in Table 3-4, Table 3-5, and Table 3-6. Then, the result from
Cluster SD-WSN is compared with the result from WSN (one sink, 14 sensor nodes) and
SD-WSN (one SDN controller nodes, 14 SDN sensor nodes).

4-6-1 Packet Delivery Ratio of Cluster SD-WSN
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Figure 4-11: Average Packet Delivery Ratio
(WSN, SD-WSN, Cluster SD-WSN)

Figure 4-11 shows the packet delivery ratio between WSN, SD-WSN, and Cluster SD-WSN.
Based on the simulation result of Cluster SD-WSN on the homogeneous network, heteroge-
neous network, and dynamic network, multiple controllers do not affect the performance of
Cluster SD-WSN because the result of average PDR for SD-WSN and Cluster SD-WSN is
similar, i.e. 1. It indicates that all the packets have been received successfully by the SDN
controller nodes in a homogeneous network, heterogeneous network, and dynamic network.

4-6-2 Packet Duplication of Cluster SD-WSN

Figure 4-12 shows that clustering controller mechanism achieves to reduce the multiple recep-
tions of a single packet at the SDN controller node. In particular, In a homogeneous network,
packet duplication decreased by 5%, from 56% to 51%. In a heterogeneous network, packet
duplication condition decreased by 10%, from 26% to 16%. Finally, in a dynamic network,
clustering controller successfully reduce the packet duplication by 13%, from 41% to 28%.

Clustering controllers can reduce packet duplication because it minimizes the number of
multiple hops that must be passed by each SDN sensor node. The more hops traversed, the
more likely multiple receptions of a single packet at the SDN controller node. With multiple
controllers, each SDN sensor node is more adaptable in dynamic network. Thus, packet
duplication can be reduced to 13%.
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4-6-3 Average Delay of Cluster SD-WSN
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Figure 4-13 shows that clustering controller mechanism achieves to reduce the average de-
lay of SD-WSN. In homogeneous network, using Cluster SD-WSN, the average delay and
standard deviation of SD-WSN are reduced by 38% and 67%, respectively. In heterogeneous
networks, the average delay and standard deviation of SD-WSN are reduced by 26% and 15%,
respectively. Furthermore, in dynamic network, clustering controller succeeded in decreasing
the percentage of average delay and standard deviation of SD-WSN significantly, that is 57%
and 75%.

Since in cluster SD-WSN, the SDN sensor nodes are using multiple controllers, instead of
single SDN controller nodes. Thus, the duration of transmit packet from SDN sensor nodes
to SDN control nodes becomes shorter as the path for each SDN sensor node is defined by
the nearest SDN controller nodes.
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4-6-4 Duty Cycle of Cluster SD-WSN
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Duty Cycle on SD-WSN is closely related to the number of SDN sensor nodes, network
conditions, and packet duplication. The fewer number of SDN sensor nodes and the less
packet duplication, the smaller the duty cycle of SD-WSN. On average, clustering controller
reduces the average duty cycle of SD-WSN, shown in Figure 4-14. In a dynamic network,
clustering controller reduces the average duty cycle of Tx and Rx significantly. The average of
Tx duty cycle drops about 80%, while the average of Rx duty cycle drops by 64%. Figure 4-15
shows the average of Rx duty cycle for each node in WSN, SD-WSN, and Cluster SD-WSN
under dynamic network. Before using clustering controller, fluctuation occurs when nodes 5,
8, and 11 are leaving and rejoining network, but after using clustering controller, the Rx duty
cycle value from SD-WSN becomes relatively stable.
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Chapter 5

Conclusion and Future Work

This final chapter gives a summary of the most important conclusions drawn from the discus-
sion in this master thesis. After that, the contribution of this thesis and the recommendations
that will be useful for future work are described.

5-1 Conclusion

In this thesis, the SDN framework for WSN is evaluated, our implementation of this mecha-
nism shows that Packet Delivery Ratio (PDR) for WSN and SD-WSN are relatively similar
around 0.98 to 1 for a homogeneous and heterogeneous network. However, in a dynamic
network, the PDR of WSN decreases from 0.98 to 0.9, whereas the average PDR of SD-WSN
stays 1. The reason why the PDR of SD-WSN is always 1 is due to the packet duplication.
On the one hand, packets duplication can increase the packet delivery ratio because its redun-
dancy can prevent packet drops, on the other hand, packet duplication will increase the load
of the network. The packet duplication occurs significantly in the dynamic network, when
the number of SDN sensor nodes is increasing from 10 to 15, the duplicate packet rises by

33%.

Compared to WSN, SD-WSN performs better in the sense of average duty cycle (Tx) and
average delay, since the SDN controller nodes reduces the active time of a SDN sensor node to
find the best route. However, utilizing SDN controller nodes increases the average duty cycle
for Rx because of packet duplication and dependency with SDN controller nodes. Using the
centralized concept on the SDN sensor nodes causes the SDN sensor nodes to become highly
dependent on the controller. Thus, in a dynamic network, the SDN sensor nodes require a
longer adaptation. The indication that SD-WSN is not suitable for a dynamic network is
shown by the increasing ratio of average delay for an SD-WSN which rises from 2.03 to 2.3.
On the other hand, the ratio of average delay for WSN is only around 1.6 to 1.98. Therefore,
SD-WSN is not optimally applied to dynamic conditions as the activity changes from the
SDN sensor nodes will affect the performance of SD-WSN significantly.
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The performance of SD-WSN in a heterogeneous, homogeneous, and dynamic network is
relatively worse than WSN, in the sense of packet duplication and Rx duty cycle. Also,
SD-WSN is not optimally applied to dynamic conditions as the activity changes from the
SDN sensor nodes will affect the performance of SD-WSN significantly. To reduce the load
on the centralized controller, clustering controller is used to distribute the load on multiple
controllers, based on the evaluation, after using clustering controller, SD-WSN performance
has increased. Packet duplication and average delay in a dynamic network can be reduced
by 13% and 57%, respectively. Clustering controller also successfully makes Rx duty cycle of
SD-WSN relatively stable compared to before using clustering controller.

5-2 Contributions
The contributions of this thesis can be divided into the following:

e The performance of SD-WSN and WSN were evaluated in three network environments:
homogeneous, heterogeneous, and dynamic networks.

o Packet delivery ratio, average delay, duty cycle, and packet duplication are proposed as
the performance metrics for WSN and SD-WSN.

e A clustering controllers are proposed to improve the performance of SD-WSN.

e Data collection protocols (collection tree protocol and rime data collection) were used
to measure the performance of SD-WSN and WSN in terms of collecting information
from each mote to the SDN controller node/sink

5-3 Future Work

e Performance evaluation of SDN framework for WSN is using Cooja as a network sim-
ulator. We expect that in future work, the performance evaluation can be tested in
realistic scenarios, so the results from our simulation can be compared with the results
from the real implementation. A realistic scenario will give a better understanding of
the challenges and benefits. Moreover, the framework that is used in this thesis can be
implemented into WSN devices directly since the TelosB firmware used in Cooja is the
emulator of the actual TelosB firmware.

e CTP is used as the routing protocol for SD-WSN and compare it with Rime data col-
lection for WSN; Integrating the SD-WSN framework with a different routing protocol
and evaluating the performance with a different scenario, e.g. mobility might give a
better understanding about the effect of SDN on WSN.

e Clustering controller reduces the load of a centralized controller. However, the clustering
controllers have not been able to communicate with each other. The development of
communication protocol for supporting SDN controller nodes is expected to be able to
increase scalability and management of a large network.
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