

Delft University of Technology

Improving state estimation through projection post-processing for activity recognition with
application to football

Ciszewski, Michał; Söhl, Jakob; Jongbloed, Geurt

DOI
10.1007/s10260-023-00696-z
Publication date
2023
Document Version
Final published version
Published in
Statistical Methods and Applications

Citation (APA)
Ciszewski, M., Söhl, J., & Jongbloed, G. (2023). Improving state estimation through projection post-
processing for activity recognition with application to football. Statistical Methods and Applications, 32(5),
1509-1538. https://doi.org/10.1007/s10260-023-00696-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10260-023-00696-z
https://doi.org/10.1007/s10260-023-00696-z

Vol.:(0123456789)

Statistical Methods & Applications (2023) 32:1509–1538
https://doi.org/10.1007/s10260-023-00696-z

1 3

ORIGINAL PAPER

Improving state estimation through projection
post‑processing for activity recognition with application
to football

Michał Ciszewski1 · Jakob Söhl1 · Geurt Jongbloed1

Accepted: 10 April 2023 / Published online: 26 April 2023
© The Author(s) 2023

Abstract
The past decade has seen an increased interest in human activity recognition based
on sensor data. Most often, the sensor data come unannotated, creating the need
for fast labelling methods. For assessing the quality of the labelling, an appropri-
ate performance measure has to be chosen. Our main contribution is a novel post-
processing method for activity recognition. It improves the accuracy of the clas-
sification methods by correcting for unrealistic short activities in the estimate. We
also propose a new performance measure, the Locally Time-Shifted Measure (LTS
measure), which addresses uncertainty in the times of state changes. The effective-
ness of the post-processing method is evaluated, using the novel LTS measure, on
the basis of a simulated dataset and a real application on sensor data from football.
The simulation study is also used to discuss the choice of the parameters of the post-
processing method and the LTS measure.

Keywords Activity recognition · Wearable sensors · Post-processing · Performance
measures

1 Introduction

In almost all areas of science and technology, sensors are becoming more prevalent.
In recent years we have seen applications of sensor technology in fields as diverse as
energy saving in smart home environments (Lima et al. 2015), performance assess-
ment in archery (Eckelt et al. 2020), detection of mooring ships (Waterbolk et al.
2019), early detection of Alzheimer disease (Varatharajan et al. 2018) and recogni-
tion of emotional states (Kołakowska et al. 2020), to name just a few.

 * Michał Ciszewski
 M.G.Ciszewski@tudelft.nl

1 Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft,
The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10260-023-00696-z&domain=pdf
http://orcid.org/0000-0001-5719-1192

1510 M. Ciszewski et al.

1 3

Our main interest lies in the detection of human activities using sensors attached
to the body. Sensors generate unannotated raw data, suggesting the use of unsuper-
vised learning methods. If an activity specified in advance is of interest, then super-
vised learning and labelled data are required. However, the task of labelling activi-
ties manually from sensor data is labour-intensive and prone to errors, which creates
the need for fast and accurate automated methods.

Human activity recognition (HAR) attracted much attention since its inception
in the ’90s. A plethora of methods are currently being used to detect human activi-
ties (Lara and Labrador 2013), with various deep learning techniques leading the
charge (Minh Dang et al. 2020; Wang et al. 2019). In many studies (Ann Ronao and
Cho 2017; Capela et al. 2015; Aviles-Cruz et al. 2019) only sensors embedded in a
smartphone are used to classify user activities. Physical sensors, such as accelerom-
eters or gyroscopes attached directly to a body or video recordings (from a camera),
are the most popular sources of data for activity recognition (Rednic et al. 2012; Zhu
and Sheng 2011; Cornacchia et al. 2016). Similarly, cameras can be either placed on
the subject (Li et al. 2011; Ryoo and Matthies 2013; Watanabe et al. 2011) or they
can observe the subject (Song and Chen 2011; Laptev et al. 2008; Ke et al. 2005).
Rarely, both camera and inertial sensor data are captured at the same time (Chen
et al. 2015).

The temporal structure of the time series should be taken into account when
choosing a method for activity recognition. Simple classification techniques (such
as logistic regression or decision trees) ignore time dependencies and will need to be
improved after the procedure. Alternatively, methods which are more complicated
and more difficult to train have to be deployed. Another challenge lies in the reli-
ability of manual labelling (in case of supervised learning). Quite often it is unrea-
sonable to assume that labels annotating the observed data are exact with regards
to timings of transitions from one activity to another (Ward et al. 2006). Timing
uncertainty can be caused by a deficiency of the manual labelling or the inability to
objectively detect boundaries between different activities. This issue is well-known
in the literature, for instance, Yeh et al. (2017) introduced a scalable, parameter-
free and domain-agnostic algorithm that deals with this problem in the case of one-
dimensional time series.

The main contribution of this paper is the introduction of a post-processing pro-
cedure, which improves a result of activity classification by eliminating too short
activities. The method requires a single parameter which can be interpreted as the
minimum duration of the activites (hence the choice of this parameter is driven by
domain knowledge). It allows us to mitigate the problem of activites being frag-
mented in cases where some domain-specific information about state durations is
available. In the current literature, ad hoc techniques are employed for post-process-
ing of human activities and they are particularly suitable when the initial classifier is
already performing satisfactory. A method that exemplifies this approach, utilizing
majority voting, can be found in the article by Shakerian et al. (2022). Some more
advanced approaches have also been devised in special cases, e.g. the approach pro-
posed by Gil-Martín et al. (2020), which is limited to neural network classifiers. In
comparison to any existing methods, our post-processing procedure ensures removal
of all too short events and allows to specify the minimum length of activities

1511

1 3

Improving state estimation through projection post‑processing…

accepted in the post-processed result. Based on empirical evidence, the performance
of classical machine learning classifiers improves significantly by our method. This
enables simple and fast but less accurate classification methods to be upgraded to
accurate and fast classifiers.

In order to compare the quality of competing activity recognition methods, an
appropriate criterion for evaluating the performance is needed (also to demonstrate
the performance of the post-processing procedure we introduce). Below are some
commonly used performance measures:

• accuracy, precision, the F-measure (Lara and Labrador 2013; Lima et al. 2019),
• similarity measures for time series classification (Serrà and Arcos 2014), such as

Dynamic Time Warping or Minimum Jump Costs Dissimilarity,
• custom vector-valued performance metric (Ward et al. 2011).

Our objective is to design a performance measure that satisfies problem-specific
conditions, which will be specified later.

The outline of the paper is as follows. Section 2 provides a method for improv-
ing classification with a post-processing scheme that uses background knowledge
on the specific context. In particular, it validates the state durations and provides
an improved classification that satisfies the physical constraints on the state dura-
tions imposed by the context. Section 3 introduces specialized performance meas-
ures for assessing the quality of classification in general and in activity recognition
in particular. The new performance measure also serves the purpose of showing the
advantages of the post-processing fairly. Section 4 presents an application of the
techniques in a simulated setting. The post-processing method was able to improve
the estimates significantly. The method achieves similar results in an application to
football data.

2 Improving classification by imposing physical restrictions

2.1 Post‑processing by projection

When recognizing human activities, it is often the case that the result of the clas-
sification contains events (time intervals in which a classification result is constant)
that are too short.1 Usually ad hoc methods are used in order to discard those events,
e.g. removal of any short events and replacing them with the next state in the clas-
sification, whose length is above a fixed threshold. There are also more advanced
approaches, such as the one proposed by Gil-Martín et al. (2020). However, this
particular method is suitable only when using a neural network as the classifier of
choice, it does not ensure that too short events will always be eliminated (no matter
what is exactly meant by ‘too short’) and lastly does not provide an intuitive under-
standing of the choice of its tuning parameter. Hence, our interest in a more formal

1 Depending on the application ‘too short’ might be specified differently.

1512 M. Ciszewski et al.

1 3

method that could be used in combination with any activity classifier. The goal of
this section is to introduce a formalized approach to correcting for the classifier’s
mistakes regarding the activity durations by introducing a novel post-processing
procedure.

Consider the set of states S = {1,… ,M} and a metric d on S . Let � denote
the discrete metric2 on S . Any state-valued function of time will be called a state
sequence. In reality we are only able to obtain a discrete-time signal, however, the
relevant information contained in such a signal is a list of all the state transitions,
which can more easily be encoded in a function with continuous argument. Hence,
we define T , the set of all càdlàg3 functions f ∶ ℝ → S with a finite number of
discontinuities. We define the standard distance induced by a metric d between two
state sequences as

If d is a metric on S , then dist is a metric on T . The standard distance induced by
the discrete metric is the time spent by f in a state different from g.

Now, we define a measure of closeness between functions in T , as our goal is to
find a function close enough to a given function in T , while reducing the number
of jumps it has (which in turn will eliminate short events in the state sequence). Let
f , g ∈ T . Then we introduce the notation:

where J(g) is the set of all discontinuities of g, |J(g)| is the number of all discontinui-
ties of g and � is a penalty for a single jump of g.

Given f ∈ T , our goal is to find any solution f̂ ∈ T of the minimization problem

As a default, we will use the standard distance induced by the discrete metric.
In order to characterize the solution f̂ of problem (3) we present the following

lemma.

Lemma 2.1 Let 𝛾 > 0 and f ∈ T . Let J denote the set of all discontinuities of the
function f. There exists a solution f̂ of the problem (3) such that it does not contain
jumps outside of J.

Lemma 2.1 leads to the conclusion that in search for the solution of the mini-
mization problem we can limit ourselves to a finite set of functions, namely a

(1)dist ∶ T × T ∋ (f , g) → dist(f , g) = ∫
ℝ

d(f (t), g(t))dt.

(2)E� (f , g) = dist(f , g) + � ⋅ |J(g)|,

(3)f̂ ∈ argmin
g∈T

E𝛾 (f , g).

2 Distance between two different states is equal 1 and distance from a state to itself is equal 0.
3 right continuous, left limits exist

1513

1 3

Improving state estimation through projection post‑processing…

subset of T with jumps only allowed at the same locations as the function f. The
proof of lemma 2.1 can be found in the appendix.

In this minimization problem the choice of the parameter � plays a crucial role.
We will now show an interpretation of the penalty parameter that will ease the
process of choosing it. It will also allow us to reformulate problem (3). First, we
define a new set of functions.

Definition 2.1 (Function with bounded minimum duration of states) Given a param-
eter 𝛾 > 0 we define G𝛾 ⊂ T , the set of functions with bounded minimum duration of
states, such that for g ∈ G� we have

• g =
n−1∑
i=1

si1[ti,ti+1)
 for some constant n ∈ ℕ , a sequence of states {s1,… , sn−1} ,

such that si ≠ si+1 for i = 1,… , n − 2 , and an increasing sequence
t1 < t2 < ⋯ < tn (we allow t1 = −∞ and tn = ∞),

• if n ≥ 2 , then ∀i≥2 ti − ti−1 ≥ �.

Lemma 2.2 below yields a connection between the penalty � and the minimum
duration of states that we impose on the solution of our minimization problem.

Lemma 2.2 Let 𝛾 > 0 and f ∈ T . Any solution f̂ of problem (3) is an element of G�.

This lemma can be used in practice to select the size of the penalty. The Proof
of Lemma 2.2 can be found in the appendix.

Given f ∈ T , by Lemma 2.2 the minimization problem (3) is equivalent to the
minimization problem

f̂ will be called a projection of f onto G�.
As mentioned before, the regularization by penalizing high numbers of jumps

narrows down the set of possible solutions to a finite nonempty subset of G�
(thanks to lemma 2.1), which leads to the existence of f̂ . However, the solution
might not be unique, as illustrated by the following example.

Consider S = {0, 1} , f = 1[0.35,0.45) + 1[0.55,+∞) and � = 0.2 . Both f̂1 = 1[0.35,+∞)
as well as f̂2 = 1[0.55,+∞) are projections of f. One could think of it as an issue,
however, it reflects well our understanding of the original problem. The assump-
tion is that f has impossibly short windows, because it is uncertain which activity
is actually performed in the interval [0.35, 0.55). Looking only at f we are unable
to decide which solution is more suitable, hence it is only natural that the method
also returns two possible options.

We close with a remark regarding influence of the extreme values of � on pro-
jection f̂ .

(4)f̂ ∈ argmin
g∈G𝛾

E𝛾 (f , g).

1514 M. Ciszewski et al.

1 3

Remark 2.1 Let f ∈ T . If � = 0 , then f̂ = f is the only projection of f. If � = ∞ and
E𝛾 (f , g) < ∞ for some function g ∈ T ,4 then g is constant and equal everywhere to
the most common state of f and f̂ = f .5

2.2 Connection with the shortest path problem

In this section we devise a method for finding a projection in an efficient manner. It
will be shown that the problem of finding the shortest path in a particular graph is
equivalent to the minimization problem (4). This is possible thanks to the lemmas
2.1 and 2.2, which narrowed down the set of possible solutions to a finite set.

First, we present a lemma which further characterizes a projection of f.

Lemma 2.3 Let f ∈ T . Suppose f ≡ c on an interval [a, b] for some constant c ∈ ℝ .
If b − a > 2𝛾 , then f̂ ≡ c on [a, b]. If b − a = 2� , then there exists a projection such
that f̂ ≡ c on [a, b].

The Proof of Lemma 2.3 can be found in the appendix.

Remark 2.2 If n > 2 , then there exists a projection such that the second and the
second-to-last jump locations of the original function are not the first and the last
(resp.) jump locations of this projection.

Remark 2.2 will be used when defining a particular graph and the proof can be
found in the appendix.

We will assume that f has n ≥ 2 jumps6 at time points ti for i = 1,… , n:

where si ∈ S for i = 0,… , n and si ≠ si+1 for i = 0,… , n − 1 . We use the following
notation: t0 = −∞ , tn+1 = ∞ . In light of Lemma 2.3 we assume that

for i = 1,… , n − 1 . If this is not the case, then consider the coarsest partition of the
set J of jumps of f:

(5)f =

n∑

i=0

si1[ti,ti+1)
,

(6)ti+1 − ti < 2𝛾

J =

r⋃

i=1

Ji

4 Note that this is not always true. If the first and the last states of f are different, then any function can
be a projection of f.
5 Note that if E𝛾 (f , g) < ∞ , then the first and the last states of f are the same and the constant function
equal to that state is the only projection.
6 If n = 0 or n = 1 , then f ∈ G� and f̂ = f .

1515

1 3

Improving state estimation through projection post‑processing…

such that for jumps in Ji for i = 1,… , r Eq. (6) holds and min Ji −max Ji−1 ≥ 2� for
i = 2,… , r . For each Ji for i = 1,… , r consider a function fi ∶ ℝ → S , such that
fi ≡ f on [min Ji − 2� , max Ji + 2�] and the only jumps of fi lie in Ji . Once a projec-
tion f̂i is found for fi for all i = 1,… , r , we can then consider a function f̂ , defined
as follows

given x ∈ [min Ji − 2� , max Ji + 2�] for some i = 1,… , r . By Lemma 2.3, there
exists a projection which does not change the states longer than or equal 2� , hence f̂
defined as in (7) is a projection of f. Given this remark, we can now assume that f is
of the form (5) and satisfies (6).

We will now define a graph for the purpose of showing the connection between
the problem of finding a projection f̂ and the problem of finding a shortest path in a
directed graph. Let G = (V ,A) be a directed graph such that the set of vertices V is
given by

and the set of directed arcs is given by7

There is a correspondence between each path from t0 to tn+1 and a sequence of jumps
in the interval (t1 − � , tn + �) . A path (t0, tl1 ,… , tlm , tn+1) can be associated with a
function g with jumps at tl1 , ..., tlm , such that g(tlk) is the most common value of f in
interval [tlk , tlk+1) . The definition (9) of the set of directed arcs ensures that all paths
in the graph G correspond to at least one function in G�.

We now introduce a weight function W ∶ A → ℝ+ ensuring that the cost of the
path coincides with the error E(f , ⋅) of the corresponding function in the interval
(t1 − � , tn + �) . Let Ik = tk+1 − tk for k = 0,… , n . It is noteworthy that I0, In = ∞ ,
while Ik < 2𝛾 for k = 1,… , n − 1 . We introduce the penalty for a jump �k = � for
k = 1,… , n and �n+1 = 0 . Now we define the weight function W:

for (tk, tl) ∈ A , where skl represents the most common state in the interval [tk, tl) of
the original function f. The first term equals the dist(f , g) in [tk, tl] . The second term
adds a penalty for jump at tl if tl is finite (the penalty for jump at tk was added on a
previous arc in the path, if k > 0).

Theorem 2.1 (Problem equivalence) Let 𝛾 > 0 and (t1,… , tn) be the only discontinu-
ities of a function f ∈ T . Let G = (V ,A,W) be a weighted, directed graph as defined

(7)f̂ (x) = f̂i(x)

(8)V = {t0, t1,… , tn, tn+1}

(9)A = {(tk, tl) ∈ V2 ∶ tl − tk ≥ �}�{(t0, t2), (tn−1, tn+1)}.

(10)W((tk, tl)) =

l−1∑

m=k

Imd(skl, sm) + �l,

7 In case of n = 2 , both arcs have to be included in set A.

1516 M. Ciszewski et al.

1 3

in (8), (9), (10) above. The task of finding a projection of f onto G� , as defined in (4),
is equivalent to finding the shortest path from t0 to tn+1 in the graph G.

The proof of the theorem can be found in the appendix. Now, we will illustrate
the method by an example.

Given � = 0.2 and S = {0, 1, 2, 3} , consider the function
f = 1[0.2,0.35) + 2 ⋅ 1[0.4,0.55) + 3 ⋅ 1[0.55,0.75) + 2 ⋅ 1[0.75,+∞) . The graph G, as defined
in (8), (9), (10), for f, is shown in Fig. 1. Note that the vertex corresponding to 0.35
is omitted in the graph, since there is no path from the vertex corresponding to −∞
to it (according to the definition (9), the arc (0.2, 0.35) is not included).

There are nine possible paths from −∞ to +∞ . The path P̂ = (−∞, 0.4,∞) has
the cost equal to 0.55 and is the shortest path from −∞ to +∞ . Hence we conclude
that f̂ = 2 ⋅ 1[0.4,∞) is the projection of f onto G0.2 (in this case, it can be shown f̂ is
the only projection of f).

2.3 Binary case

In case the set of states S consists of only two elements, a stronger result than
Lemma 2.2 can be achieved. The main advantage of the binary case comes from the
fact that we do not need to specify the sequence of states since knowing the starting
state, each jump signifies a move to the only other available state. First, we present a
supporting remark which further strengthens the relation between jumps of a func-
tion from T and its projection.

Fig. 1 Graph G constructed for the function f

1517

1 3

Improving state estimation through projection post‑processing…

For the remainder of the section, we will always assume that S = {0, 1}.8

Lemma 2.4 Let 𝛾 > 0 and f ∈ T . Let J denote the set of all discontinuities of the
function f. If a function g ∈ G� contains a jump j ∈ J(f) , but in an opposite direction
than in f, then g cannot be a projection of f onto G�.

Lemma 2.5 Let 𝛾 > 0 and f ∈ T . Any solution f̂ of the problem (3) is an element of
G2�.

The Proofs of Lemma 2.4 and lemma 2.5 can be found in the appendix. Lemma
2.5 leads to the equivalence of the problem (4) with the minimization problem:

The strengthening of Lemma 2.1 by restricting not only the locations of the jumps
but also their directions is a favorable change as it narrows the set of possible
solutions.

Lemma 2.6 Let f ∈ T . Suppose f ≡ c on an interval [a, b] for some constant c ∈ ℝ .
If b − a > 𝛾 , then f̂ ≡ c on [a, b]. If b − a = � , then there exists a projection such
that f̂ ≡ c on [a, b].

Proofs of Lemma 2.6 can be found in the appendix.
Lemma 2.6 potentially reduces the number of jumps that have to be considered in

the post-processing. Moreover, lemma 2.4 reduces the number of arcs when building
the graph making the process of finding the shortest path more effective.

Additionally, Remark 2.2 can also be strengthened.

Remark 2.3 If n > 2 and all states are shorter than � (except for the first and the last
state), there exists a projection such that the second and the second-to-last jump of
the original function are not present in it.

Remark 2.3 allows us to ignore the second and the penultimate jump of the pro-
jected function when searching for jump locations in the projection. The proof of
this remark can be found in the appendix.

The directed graph G has a different set of vertices compared to (8):9

and of directed arcs compared to (9):

(11)f̂ ∈ argmin
g∈G2𝛾

E𝛾 (f , g).

(12)V = {t0, t1,… , tn, tn+1}�{t2, tn−1},

8 This convention deviates from the notation established in Sect. 2.1 as it is more natural to use 0 and 1
as states in the binary case.
9 If n = 2 , then both of those jumps are present in V.

1518 M. Ciszewski et al.

1 3

Theorem 2.2 (Problem equivalence-binary version) Let 𝛾 > 0 and (t1,… , tn) be the
only discontinuities of a function f ∈ T . Let G = (V ,A,W) be a weighted, directed
graph as defined in (10), (12), (13). The task of finding a projection of f onto G2� , as
defined in (11), is equivalent to finding a shortest path from t0 to tn+1 in the graph G.

Proof of the theorem 2.2 can be found in the appendix.

3 Incorporating domain knowledge into the performance measure
of classification

3.1 Problem‑specific requirements on the performance measure

In order to choose an appropriate performance measure for a given classification
task, it is important to understand the problem-specific demands on the result. The
standard distance (1), which can be understood as a continuous analogue of the most
common performance metric, namely the misclassification rate, can often be inad-
equate to compare the classification results as it is a one-fits-all type of metric and
if more is known about the problem, it might not represent the idea of accuracy that
users have in mind. On the other hand, there have been other approaches to perfor-
mance metrics, e.g. (Ward et al. 2011). Their approach focuses on characterizing the
error in terms of the number of inserted, deleted, merged and fragmented events.
Event fragmentation occurs when an event in the true labels10 is represented by more
than one event in the estimated labels,11 whereas merging refers to several events in
true labels being represented by a single event in the estimated labels. Ward et al.
(2011) provide an overview of different performance metrics used in activity rec-
ognition proposing a solution to the problem of timing uncertainty as well as event
fragmentation and merging. Their solution is based on segments, which are intervals
in which neither the true labels nor the estimated labels change the state. If the state
in the estimate and the state in the true labels agree in a given segment, they denote
it as correctly classified. If that is not true, the segment is classified accordingly as
fragmenting segment, inserted segment, deleted segment or merged segment. This
provides a deeper level of error characterization, which is then used in different met-
rics of classifier performance. Their vector-valued performance metric is preferable
when in-depth overview of the types of mistakes made by the classifier is needed.
We will introduce a novel scalar-valued performance metric, which can be easily
compared and includes problem-specific information such as timing uncertainty in
the labels.

(13)A = {(tk, tl) ∈ V2 ∶ tl − tk ≥ 2� and l − k mod 2 ≡ 1}.

10 If a state sequence corresponds to the true underlying sequence of activities in a time series, then it
will be called the true labels.
11 An estimate of the true labels will be called the estimated labels.

1519

1 3

Improving state estimation through projection post‑processing…

In this section, we aim at highlighting the main characteristics of the classifica-
tion of movements based on wearable sensors and at translating them into specific
requirements on the performance measure. Our first requirement comes from physi-
cal restrictions. The states considered in our application represent human activities,
but also in more general contexts they often cannot be arbitrarily short; there is a
lower bound on the length of the events in a state sequence. Hence, estimated labels
that violate this lower bound indicate a bad performance. The lower bound condition
requires two parameters: the lower bound and the penalty for each violation. The
lower bound can either be estimated or determined from domain knowledge, while
the penalty can be chosen more freely. Through physical restrictions we can see a
deeper connection with the method introduced in Sect. 2. It is clear that the stand-
ard classification methods cannot ensure that the state sequence contains only events
longer than a certain level. The post-processing method addresses this issue directly
and as a consequence we can expect classifiers to benefit from it in the context of the
new performance measure.

The issue of timing uncertainty should also be addressed when designing the per-
formance measure. To illustrate its importance more clearly, we present an exam-
ple. Five people were asked to detect boundaries between activities in different time
series using a visualization tool. The tool outputs an animated stick figure model12
given sensor data.

Three time series were selected, each with one of the following activities: run-
ning, jumping and ball kick. The start and the end of each activity were recorded by
participants. Table 1 presents the results of the experiment.

The experiment indicates there is indeed uncertainty regarding the state transi-
tions. Granted that the sample size is very small, we notice more variation in results
referring to the end of activities rather than the beginnings. Additionally, we see
more variation in the results for the kick than the jumping. So the boundaries of
some activities seem to be more difficult to identify than of others.

Table 1 The results of the
labelling experiment; all times
are in seconds

The two last rows show the average and the sample standard devia-
tion for each boundary

Partic. Running Jumping Kick

Start End Start End Start End

P1 2 7.3 2.7 5.2 2.5 3.5
P2 2 7.5 2.7 5.2 2.5 3.9
P3 2.3 6.6 2.7 5.1 2.7 3.6
P4 2.3 7.2 2.7 5.3 2.5 4.3
P5 2.2 7.2 2.9 5.4 2.5 4.1
Avg. 2.16 7.16 2.74 5.24 2.54 3.88
Std 0.15 0.34 0.09 0.11 0.09 0.33

12 A symbolic representation of the human body using only lines.

1520 M. Ciszewski et al.

1 3

3.2 Globally time‑shifted distance

The standard distance (1) is an unsatisfying measure to compare two state sequences,
since it does not incorporate the requirements posed in the previous section. In order
to improve it, we start by modelling the timing uncertainty. Let f ∈ T be the true
labels process and let f have n discontinuities t1,… , tn . The locations of the disconti-
nuities are corrupted by additive noise:

for all i = 1,… , n , where Ti is the true and unknown location of the i-th jump. In this
section we will assume that X1 = X2 = ⋯ = Xn (all jumps are moved by the same
value; the global time shift), although in general, it is more realistic to assume that
X1,… ,Xn are independent random variables. We will relax this condition later.

We define a class of Globally Time-Shifted distances (GTS distances), loosely
inspired by the Skorokhod distance on the space of càdlàg functions (Billingsley
1999, pp. 121). The GTS distances are parametrized by two parameters. The param-
eter w controls the weight of misclassification occurring from the uncertainty of the
true labels, while the parameter � controls the magnitude of the shift of activities.

Definition 3.1 (Globally Time-Shifted distance) Let f , g ∈ T . Given w ≥ 0, 𝜎 > 0
and a metric d on S we define a Globally Time-Shifted distance as:

where for 𝜖 > 0 �� ∶ ℝ → ℝ is a time shift defined as follows:

Depending on the choice of parameters the GTS distance possesses certain prop-
erties. For w > 0 and � = ∞ , the GTS distance is an extended metric13 and a proof of
this fact is given in the appendix. If w > 0 and 𝜎 > 0 , then it is a semimetric mean-
ing that it has all properties required for a metric, except for the triangle inequality.

The main downside of using the GTS distance is the unrealistic assumption on
timing uncertainty. However, if we know that the true labels preserve the true state
durations then it is a good choice. Consider a function f ∈ T with two state transi-
tions located at t1 and t2 . Let g ∈ T also feature two state transitions located at t1 − �1
and t2 − �2 . If �1 ≠ �2 , then there is no global time shift that can align the functions f
and g. This implies that the true state durations need to be preserved in the estimate
in order to align functions using the global time shift.

ti = Ti + Xi,

GTSw,�(f , g) = inf
�∈[−�,�]

{dist(f◦�� , g) + w|�|},

��(t) = t − �.

13 It may attain the value ∞.

1521

1 3

Improving state estimation through projection post‑processing…

3.3 Locally time‑shifted distance and the duration penalty term

The global time shift stresses the state durations, which is not always desirable. For
instance, if the true labels do not preserve the real state durations, or e.g. if the addi-
tive noise terms in the locations of the jumps are independent. Here is an example:
Fig. 2 shows f and its approximations gi for i = 1, 2, 3 . It is impossible to align f with
any of the gi with a single time shift, however, it would be possible if each state tran-
sition could be shifted ‘locally’.

Naturally, to accommodate for this issue, a suitable modification would be to
replace one global time shift with multiple local time shifts. We now introduce a
measure of closeness between state sequences which conceptually can be seen as
derived from the GTS measure. We will be working with sequences of jumps, but
more specifically given two sequences of state boundaries we will combine them
together and sort the resulting joint sequence in an increasing order. Subsequent
pairs of values in this sequence are determining segments understood as in Ward
et al. (2011). We weigh different types of segments and the result is a weighted aver-
age of segment lengths, which is supposed to reflect well the error magnitude of the
classifier.

We define segments formally and introduce a new distance on T .

Definition 3.2 (Segments) Let f , g ∈ T . The elements of the smallest partition14 of
ℝ such that in each element of the partition neither f nor g changes state will be
called segments.

Since functions from T are piece-wise constant and have a finite number of dis-
continuities, there is always a finite number of segments. The general form of seg-
ments that we will use is as follows:

Fig. 2 The function f represents
the true labels with an uncer-
tainty around state boundaries,
gi are the approximations of f

14 A partition that cannot be made coarser.

1522 M. Ciszewski et al.

1 3

where a1 < a2 ⋯ < al if f and g are not both constant on the real line. Otherwise
there is only one segment, consisting of the whole real line. By convention, a0 = −∞
and al+1 = ∞ , and

Definition 3.3 (Locally Time-Shifted distance) Let w ≥ 0 , 𝜎 > 0 and d be a metric
on S . Let f , g ∈ T and their set of segments to be denoted as in (14). We define the
Locally Time-Shifted distance (LTS distance) as

where

Similarly to the GTS distance, the parameter w controls the weight of misclas-
sification occurring from the uncertainty of the true labels. The case when w < 1
is more interesting to us, since it corresponds to timing uncertainty of the labels. If
w ≥ 1 , then we put more importance on the timings of the jumps (opposite to timing
uncertainty). The LTS distance is an extended semimetric for w > 0 (for a proof, see
the appendix). The triangle inequality does not hold in general.

The LTS distance addresses the issue of timing uncertainty in the true labels. Let
𝜁 > 015 be the lower bound on the lengths of the events as determined by the domain
knowledge (or through estimation if possible). Let 𝜆 > 0 be the penalty for each vio-
lation of the lower bound condition. For f ∈ T with its discontinuities t1,… , tn , we
introduce a duration penalty term:

This term will allow to lower the performance of classifications with unrealistically
short events.

In practice, we will need to extend the functions to the real line in order to use
the LTS distance as it is defined for functions with domain equal to the whole of ℝ .
One natural extension could be to extend the first and the last state of each func-
tion indefinitely. However, this solution leads to a problem. Let M > 0 . Consider

(14)(−∞, a1) ∪

l−1⋃

i=1

[ai, ai+1) ∪ [al,∞),

f (a0) = f (a−
1
) = lim

x→−∞
f (x), f (al+1) = f (al).

LTSw,�(f , g) =

l−1∑

i=1

�i(ai+1 − ai)d(f (ai), g(ai)),

�i =

{
w, ai+1 − ai ≤ �, f (ai−1) = g(ai−1), f (ai+1) = g(ai+1)

1, otherwise.

DP�,� (f) = �

n−1∑

k=1

1[0,�)(tk+1 − tk).

15 Note that � is related in its interpretation to the � parameter introduced in Sect. 2.

1523

1 3

Improving state estimation through projection post‑processing…

two functions f ∶ [0,M] → S and g ∶ [0,M] → S such that for some 0 < a < M ,
f (t) ≠ g(t) on [0, a). No matter how small a is, the distance between extended f and
g will always be infinite when using this extension, since in this case extended f and
g are in different states on the whole half line (−∞, a) . Both functions need to be
extended by the same state for the distance to be finite. We extend any function f
defined on interval [0, M] to the real line, setting its value to an arbitrary state out-
side of [0, M). The distance is independent of the chosen state, as on the infinite seg-
ments that it introduces f and g are both equal. Without loss of generality, we choose
state 1.

Notice that this extension does not have the problem stated above as f ∗ and g∗ are
equal on the segments that it introduces and does not change the value on the origi-
nal segments regardless of the choice of the state outside of [0, M].

We combine the LTS distance and the duration penalty term to define the LTS
measure of closeness of two state sequences.

Definition 3.4 Let f be a function of true labels and g its estimate, both defined on
[0, M]. The LTS measure is defined as:

The scaling through the division by M normalizes the LTS distance to the inter-
val [0, 1]. The transformation [0,+∞) ∋ x → exp(−x) ∈ (0, 1] maps the sum of the
LTS distance and the duration penalty term to the interval (0, 1], while reversing the
order as well: g is closer to f if the LTS measure is closer to 1.

4 Application to activity recognition

4.1 Simulation study

We consider a dataset created using a random procedure, which mimics the behavior
of activity recognition classifiers with varying accuracy (depending on the param-
eters). Let S = {1, 2, 3} . Consider a function f representing a 60 second long state
sequence:

f will be referred to as the correct labels. We introduce noise into f in the following
manner:

• two sequences of i.i.d. random variables are considered {Yk} and {Zk} , with
Yk ∼ Exp(�1) and Zk ∼ Exp(�2) for some parameters 𝜇1,𝜇2 > 0,

(15)f ∗(t) =

{
f (t), t ∈ [0,M)

1, t ∉ [0,M).

LTSw,�,�,� (f , g) = exp(−LTSw,�(f
∗, g∗)∕M − DP�,� (g)).

f = 1[0,5) + 2 ⋅ 1[5,15) + 3 ⋅ 1[15,30) + 2 ⋅ 1[30,40) + 3 ⋅ 1[40,55) + 1[55,60].

1524 M. Ciszewski et al.

1 3

• {Yk} represents the time spent in the correct state, while {Zk} represents the time
spent in the incorrect state,

• we use the sequence Y1, Z1, Y2, Z2,… to generate noisy labels, where the
sequence ends when the sum of all drawn numbers is exceeding 60 seconds,

• for each variable Zi an incorrect state is chosen randomly out of the remaining

two and f is changed to that state on interval [
i−1∑
k=1

(Yk + Zk) + Yi,
i∑

k=1

(Yk + Zk)),

• �1 and �2 control the duration of the states.

As our performance measure we choose the LTS measure with parameters: w = 0.6 ,
� = 0.35 , � = 0.0001 , � = 0.5 , d = � . The post-processing is performed for the
noisy labels with parameter � = 0.5s . To demonstrate the utility of the post-process-
ing procedure, we draw the noisy function 1000 times for a given set of parameters
(�1,�2) and compare the accuracy of the noisy labels, the accuracy of the post-pro-
cessed labels, the LTS measure of the noisy labels and the LTS measure of the post-
processed labels.

In the first setting, we fix �1 = 0.1s . The procedure is repeated for �2 ∈ [0.01, 0.1]
(100 sample points from the interval are chosen). Figure 3 compares the mean accu-
racy of the noisy labels and the post-processed labels as well as the mean LTS meas-
ure of the noisy labels and the post-processed labels.

Fig. 3 The top left plot shows the mean accuracy of the noisy labels (red) and the mean accuracy of the
post-processed labels (green) as calculated for different values of �2 . The top right plot shows the LTS
measure of the noisy labels (red) and the post-processed labels (green) as calculated for different values
of �2 . All lines drawn for 100 different values of �2 . The bottom left boxplot shows the variability of the
accuracy amongst the estimates (red) and the post-processed estimates (green). The bottom right boxplot
shows the variability of the LTS measure amongst the estimates (red) and the post-processed estimates
(green). Boxplots have been constructed for 5 different values of �2

1525

1 3

Improving state estimation through projection post‑processing…

In the second setting, we fix �1 = 0.5s . The procedure is repeated for
�2 ∈ [0.05, 0.5] (100 sample points from the interval are chosen). Figure 4 shows the
mean accuracy of the noisy labels and the post-processed labels as well as the mean
LTS measure of both the noisy labels and the post-processed labels.

In the third setting, we fix �1 = 1s . The procedure is repeated for �2 ∈ [0.1, 1]
(100 sample points from the interval are chosen). Figure 5 shows the mean accuracy
of the noisy labels and the post-processed labels as well as the mean LTS measure of
both the noisy labels and the post-processed labels.

All three experiments show the improvement in the accuracy as well as the
LTS measure thanks to the use of post-processing. Additionally, we conclude that
the post-processing method behaves better when dealing with multiple shorter
intervals rather than fewer longer intervals. Moreover, the boxplots show more
variability in the performance of the post-processed estimates when dealing with
initial estimates with fewer but longer intervals of misclassification. This can be
due to the fact that at the level of around 0.5 in accuracy and in the LTS measure,
the post-processing starts behaving much worse and is not able to recover the
original signal as reliably. It shows the limits of the method and the fact that there
is a point at which the method starts to behave worse.

We also investigate the importance of the parameter � on the results. We fix
�1 = 0.1 , �2 = 0.08 . The procedure is repeated for � ∈ [0.01, 2.5] (100 sample

Fig. 4 The top left plot shows the mean accuracy of the noisy labels (red) and the mean accuracy of the
post-processed labels (green) as calculated for different values of �2 . The top right plot shows the LTS
measure of the noisy labels (red) and the post-processed labels (green) as calculated for different values
of �2 . All lines drawn for 100 different values of �2 . The bottom left boxplot shows the variability of the
accuracy amongst the estimates (red) and the post-processed estimates (green). The bottom right boxplot
shows the variability of the LTS measure amongst the estimates (red) and the post-processed estimates
(green). Boxplots have been constructed for 5 different values of �2

1526 M. Ciszewski et al.

1 3

points from the interval are chosen). Figure 6 shows the mean LTS measure of the
post-processed labels.

Fig. 5 The top left plot shows the mean accuracy of the noisy labels (red) and the mean accuracy of the
post-processed labels (green) as calculated for different values of �2 . The top right plot shows the LTS
measure of the noisy labels (red) and the post-processed labels (green) as calculated for different values
of �2 . All lines drawn for 100 different values of �2 . The bottom left boxplot shows the variability of the
accuracy amongst the estimates (red) and the post-processed estimates (green). The bottom right boxplot
shows the variability of the LTS measure amongst the estimates (red) and the post-processed estimates
(green). Boxplots have been constructed for 5 different values of �2

Fig. 6 The line shows the LTS measure of the post-processed labels drawn for 100 different values of � .
The mean accuracy of noisy labels was equal to 0.556 and the mean LTS measure of noisy labels was
equal to 0.602

1527

1 3

Improving state estimation through projection post‑processing…

We conclude that the parameter � can influence the LTS measure of the post-
processed functions ĝi . It needs to be chosen carefully since too low values will
lead to accepting unrealistically short events while too high values will eliminate
true events. In our case the values of � between 0.5 and 1 are the most favourable.
In practice the minimal length of the events in the true labels can inform on the
choice of �.

We finish the simulation study with a look at the parameters of the LTS measure.
We will investigate the weight w first. Let all the other parameters of the LTS meas-
ure be set to � = 0.35 , � = 0.0001 , � = 0.5 . We fix �1 = 0.1,�2 = 0.08, � = 0.5 . The
procedure is repeated for 100 different values of w in the interval [0, 2]. Figure 7
shows the mean LTS measure of the post-processed labels.

Fig. 7 The line shows the LTS measure of the post-processed labels drawn for 100 different values of w.
The mean accuracy of noisy labels was equal to 0.555

Fig. 8 The line shows the LTS measure of the post-processed labels drawn for different values of � . The
mean accuracy of noisy labels was equal to 0.56

1528 M. Ciszewski et al.

1 3

Figure 7 shows the effect of the parameter w on the LTS measure. As we can
see on the y-axis, the values of the LTS measure are quite close together. Hence,
we conclude that the choice of w is less important as its effect on the LTS measure
is minimal. The main reason for this behaviour stems from the fact that � restricts
many of the erroneous intervals and the remaining ones for which w takes effect are
quite small. Hence, the effect of w on the LTS measure is not large.

The parameter � determines the length of the misclassified events up to which
they are caused by timing uncertainty of the labels. � can be chosen based on the
domain knowledge, based on the experiment described in Sect. 3.1. The parameter
� is a lower bound on the lengths of the events, hence can be determined by the
domain knowledge. Given their clear interpretation, the parameters � and � will not
be subjected to the same procedure as the parameter w. Hence, the only parame-
ter left to investigate is � . As before, we fix �1 = 1,�2 = 0.8, � = 0.5 . We choose
w = 0.6 . The procedure is repeated for 100 values of � between 0 and 0.5. Figure 8
shows the mean LTS measure of the post-processed labels. We can see that high
values of � can influence the LTS measure significantly, hence choices lower than
0.01 are preferable. We want to avoid that the penalty term is overshadowing the
LTS distance.

4.2 Application to a football dataset

We will now demonstrate the benefits of the post-processing by projection in a real-
life setting, utilizing the LTS measure to compare different methods of classification.
Wilmes et al. (2020) give an extensive description of the football dataset of which
we give a short summary below.

Eleven amateur football players participated in a coordinated experiment at a
training facility of the Royal Dutch Football Association of The Netherlands. Five
Inertial Measurement Units (IMUs) were attached to 5 different body parts: left
shank (LS), right shank (RS), left thigh (LT), right thigh (RT) and pelvis (P). Each
IMU sensor contains a 3-axis accelerometer (Acc) and a 3-axis gyroscope (Gyro).
Athletes were asked to perform exercises on command, e.g. ‘jog for 10 meters’ or
‘long pass’. For each athlete and exercise this resulted in a 30-dimensional time
series (5 body parts times 6 features per IMU) of length varying from 4 to 14 sec-
onds. Each athlete performed 70–100 exercises which amounts to nearly 900 time
series (each with a sampling frequency of 500 Hz). Time series are labelled with the
command given to an athlete, but there are still other activities performed in each of
the time series, for example standing still. This causes a problem; ignoring standing
periods and treating them as part of the main signal pollutes the data and lowers
the quality of the classification. To show the advantages of post-processing by pro-
jection, we select only two states: ‘standing’ and ‘other activity’ encoded as 0 and
1, respectively. 15 time series (representative of all possible actions performed by
athletes) were manually labelled time point by time point in order to be able to train
classifiers, and these will form our sample. All 15 time series were chosen from the
single athlete.

1529

1 3

Improving state estimation through projection post‑processing…

In pre-processing we are using the sliding window technique on the sensors
(Dietterich 2002). This method transforms the original raw data using windows of
fixed length d and a statistic of choice T: given a time point t, its neighbourhood
of size d is fed to the statistic T for each variable separately. Performing the proce-
dure for each time point results in a time series of the same dimension as the origi-
nal one, but every observation is equipped with some knowledge about the past and
the future through the statistic T and through forming the neighbourhoods of size d.
Regarding the choice of the statistic T one needs to be careful, since the sensors are
highly correlated with each other. The information about standing contained in one
variable is comparable to the one in another, namely the variance of the signal is low
when the person is standing (differences can occur when considering different legs;
a low variance on one leg might be misleading since the other leg might already be
transitioning into another position).

Leave-5-out cross-validation will be performed in order to select the best per-
forming classification method out of the 7 standard machine learning methods,
which will be listed below. A typical approach to k-fold cross-validation with a
training sample of size k − 1 cannot be applied here, since a single time series is
not a representative sample of different types of events. 15 time series will be used.
In each iteration 10 time series will be randomly chosen for training and 5 for test-
ing. The results are going to be shown for post-processed classifiers, unless specified
otherwise. Before cross-validation can be performed, we need to fix the parameters
of the performance measure we introduced in Sect. 2. The parameters of the LTS
measure are chosen as follows:

• We have limited information regarding how uncertain locations of state transi-
tions are, but based on the small experiment described in Sect. 3.1 we select
� = 0.35 (the largest deviation between different true labels).

• The parameter w is chosen as 0.6, but as shown in Sect. 4.1 its choice is not that
important.

• The lower bound � on the duration of activities is selected as the length of the
shortest activity in the learning dataset, which is equal to 0.8s in our case.

• A penalty � represents the cost of additional or missing jumps in a state sequence
compared to the true labels. We decide for the penalty � = 0.01 in order not to
overshadow the LTS distance with too much importance placed on the penalty
term (more details on that were given in Sect. 4.1, specifically in Fig. 8).

Before assessing classifiers on the training set, one needs to consider an appropriate
feature set. Our variables are highly dependent on one another, so we start with fea-
ture selection. We perform feature ranking using the Relieff algorithm and select the
6 most relevant features based on the Relieff weights (more details on the method
in Kononenko et al. 1997). Then we test all possible combinations of these features,
which is now computationally feasible, in order to find the best set for each of the
classifiers. The features selected by the Relieff algorithm are RTGyroX, RTGyroY,
RTAccX, RTAccZ, LTAccY, PAccY, where the naming convention is as follows:
RTGyroX refers to the x-axis of the gyroscope located on the right thigh and so
forth.

1530 M. Ciszewski et al.

1 3

Proceeding with the cross-validation we select the following classifiers (with
their abbreviations) to be assessed: DT—Decision Tree, kNN—k-Nearest Neigh-
bors, LR—Logistic Regression, MLP—Multi-layer Perceptron, NB—Naive Bayes,
RF—Random Forest, SVM—Support Vector Machine. The results of leave-5-out
cross-validation are shown in table 2. It is striking that the test scores of the post-
processed classifiers are at most 0.028 apart. This is due to post-processing by pro-
jection. The correction it provides brings all classifiers closer together. This result
can be extended even further. The test score of a decision tree ranges from 59–86%
for different sensor sets before post-processing, while using the post-processing
results in a range of test scores from 93–96.5% and this is not specific to decision
trees only.

The example shows that the post-processing is crucial. Firstly, it increases the
accuracy of a given estimator on a given feature set by 35%. Secondly, it diminishes
the impact of feature selection as the difference in accuracy between different fea-
ture subsets decreases substantially. Feature selection is of course still important as
it decreases the computational complexity of the problem and allows to get rid of
redundancy in the feature set. However, with methods that only rank features such
as Relieff the choice of the threshold we choose to classify a feature as significant
or not is less important. Finally and most importantly, the post-processing by pro-
jection allows to select a method according to criteria other than the performance,
namely the computational speed.

5 Conclusion

In this paper we have introduced a post-processing scheme that allows to improve
estimates. It finds estimated activities that are too short and eliminates them in an
optimal way by finding the shortest path in a directed acyclic graph.

Table 2 Average of the leave-
5-out cross-validation scores
for all classifiers using the best
sensor set for each of them

The pre-processing consisted of the sliding window technique in
combination with summarizing by the standard deviation. The OG
Test averages the LTS measure on the test set for the original classi-
fier, while the PP Test is the same value for the post-processed clas-
sifier

Classifier OG test PP test

MLP 0.916+/-0.031 0.972+/-0.008
LR 0.898+/-0.034 0.968+/-0.015
kNN 0.59+/-0.05 0.967+/-0.020
RF 0.83+/-0.07 0.966+/-0.017
SVC 0.894+/-0.034 0.966+/-0.017
DT 0.83+/-0.07 0.965+/-0.008
NB 0.88+/-0.04 0.944+/-0.023

1531

1 3

Improving state estimation through projection post‑processing…

A simulation study is conducted to assess the benefits brought by the post-
processing method. Generated noisy labels are improved with the use of the post-
processing. The positive effects on the LTS measure are more significant when the
noisy sequence contains more short intervals of misclassification.

Real-life football sensor data were used to assess the adequacy of the post-process-
ing scheme in the more realistic setting. It significantly improved the performance
of the classifiers. At the same time, the post-processed classifiers are closer to each
other in performance than the original ones. This allows placing more importance on
other criteria, such as the computational speed of the method. It should be noted that
post-processing cannot correct for uncertainty in the classification result of the estima-
tors. It can be seen in Figs. 3, 4 and 5 that the worse the original estimate the worse
the post-processed one (at least as a rule of thumb as there can be cases when it is
reversed). However, most importantly, the results of the application to the football data-
set are promising. The post-processing by projection was able to improve the estimators
of accuracy ranging from 59% to 86% up to a score of 93% to 96.5%. We note that
the lowest score of the post-processed estimates for any given classification method
is still higher than the highest score of the original estimates. An alternative to our
method could be to integrate the penalization of too short windows into the classifier.

Fig. 9 Illustration support-
ing the Proof of Lemma 2.1.
Plots correspond (from top to
bottom) to cases 1a, 1b, 2a, 2b
respectively

1532 M. Ciszewski et al.

1 3

This is not an easy idea to realize, since classifiers usually do not consider the duration
of activities themselves and they classify in a time linear manner. Nonetheless, if an
appropriate scheme were to be defined, it would expand on the theory developed in this
paper.

Another contribution are novel measures of classifier performance in the task of
activity recognition using wearable sensors. They address the issue of timing offsets
as well as unrealistic classifications, while retaining a typical scalar output of a perfor-
mance measure allowing for easy comparisons between classifiers.

A Proofs

Proof of Lemma 2.1 Let f̂ be a solution of problem (3) for a given function f. Assume
that f̂ contains a jump t outside of the set J(f). Denote the jump or one of the jumps
closest to t in the original function f by tk . Without loss of generality we assume tk is
located left of t (tk exists otherwise f is constant and f̂ = f). Let ta and tb denote the
jump preceding and resp. following t in the projection f̂ . Let tk+1 denote the jump
following tk in the original function f. Let s1 be the state in which the original func-
tion stays in the interval [tk, tk+1) and let s2 be the state from which the projection f̂
jumps at t and let s3 be the state to which the projection f̂ jumps at t.

We will consider multiple cases and in each of them we will present a modifica-
tion to f̂ that either shows that f̂ cannot be a projection or that there exists a func-
tion which is not worse than f̂ and does not contain a jump at t. The configurations
of the cases are depicted in Fig. 9.

1. s1 ≠ s2

(a) ta < tk . Moving the jump t to tk does not increase the error (and potentially
lowers it, if s3 = s1).

(b) ta ≥ tk . We move the jump ta to t, which results in lowering the error by at
least � . Then we go back to the beginning of the proof with redefined state
s2 and jump ta.

2. s1 = s2

(a) tb ≥ tk+1 . Moving the jump t to tk+1 lowers the error by at least tk+1 − t since
s3 ≠ s1.

(b) tb < tk+1 . We move the jump t to tb , which results in lowering the error
by penalty term � and tb − t , since s1 = s2 . We go back to the case s1 = s2
with t moved to tb and tb moved to the next jump in f̂ (if it does not exist,
then tb = ∞). Eventually the jump t can be moved to tk+1 (when case 2(a)
is reached).

1533

1 3

Improving state estimation through projection post‑processing…

Loops occurring in cases 1(b) and 2(b) are not problematic, since with each itera-
tion the number of jumps of the solution is reduced, eventually cases 1(a) or 2(a)
are reached. ◻

Proof of Lemma 2.2 Let f̂ be a solution of the problem 3 for a given function f.
Assume that for certain �̃� < 𝛾 , f̂ ∈ G�̃� and f̂ ∉ G𝛾 . Hence there exist two jumps tk
and tl of f and f̂ (which follows from lemma 2.1), such that �̃� < tl − tk < 𝛾 . Since
the state lasts less than � , it can be removed (in the sense that one of the jumps is
removed and either the previous state or following state is longer by tl − tk) with a
gain in error of less than � and decrease in error of exactly � , which means we found
a function with lower error than f̂ . This contradiction ends the proof. ◻

Proof of Lemma 2.3 Let f be a function with two neighboring jumps t1, t2 and the
state s1 between them. Assume t2 − t1 ≥ 2� . Since the interval is longer than or equal
to 2� it satisfies the condition of the class G� . Let us assume that the projection f̂ of f
contains two neighbouring jumps ta and tb such that ta ≤ t1 < t2 ≤ tb and the state
in the interval [ta, tb) is s2 ≠ s1 . We introduce notation � ∶= t1 − ta and � ∶= tb − t2 .
If �, � ≥ � , then introducing the jumps at t1 and t2 with the state s1 between them is
possible, because the condition of the class G� is satisfied. Moreover, the error is
decreased if t2 − t1 > 2𝛾 and is not increased if t2 − t1 = 2� . If � ≥ � and 𝛽 < 𝛾 , then
introducing a jump at t1 such that the state following it is s1 is possible. Moreover,
the error is decreased. Analogously when 𝛼 < 𝛾 and � ≥ � . If 𝛼, 𝛽 < 𝛾 , then chang-
ing state s2 to s1 reduces the error.

In all cases, we have shown that there exists a projection that does not change the
state longer than 2� . ◻

Proof of remark 2.2 Let f̂ be a projection of f onto G� . Let t1 and t2 be the first two
jumps in the original function f. Let s1 and s2 be the first two states in the original
function f. If f̂ had the first jump at t2 from the state s1 , then a function g equal to f̂
outside of interval [t1, t2) , but such that the jump from state s1 is moved to the loca-
tion of the jump t1 has an error lower than or equal that of f̂ . If f̂ had the first jump
at t2 from a state si ≠ s1 , then the error is infinite (since the value of f̂ differs from f
on the interval (−∞, t1)) and f̂ cannot be a projection.

The argument is analogous for the penultimate jump. ◻

Proof of theorem 2.1 We use Lemma 2.1 to prove that a projection of a function from
T onto G� can only have jumps at the same positions as the jumps in the original
function. This leads to the fact that finding the shortest path in the graph is equiva-
lent to finding f̂ . ◻

Proof of Lemma 2.4 Let f̂ be a projection of f onto G� . Let tk and tk+1 be two consecu-
tive jumps of f. Assume that f̂ contains a jump tk , but in opposite direction than in
f. From Lemma 2.1 we know that the next jump of f̂ can occur at the earliest at tk+1 .
This means that in the interval [tk, tk+1) the projection f̂ is equal to 1 − f . In this case,
moving the jump at tk to tk+1 (or in the case of tk+1 ∈ J(f̂) removing both jumps)

1534 M. Ciszewski et al.

1 3

reduces the error by tk+1 − tk . Hence, we conclude, a jump from f can only be pre-
sent in its projection if it is in the same direction as in f. ◻

Proof of Lemma 2.5 The proof of this lemma is analogous to the Proof of Lemma
2.2. The possibility of strengthening the previous result comes from the fact that we
can remove two jumps at once, in effect reducing the error by 2� . ◻

Proof of Lemma 2.6 The proof of this lemma is analogous to the Proof of Lemma
2.3 ◻

Proof of remark 2.3 Let f̂ be a projection of f onto G2� . Let t1 and t2 be the first two
jumps in the original function f. Let 0 and 1 be the first two states in the original
function f without loss of generality. By assumption t2 − t1 < 2𝛾 (note that without
this assumption both jumps could be included in a projection). Since [t1, t2) is not a
valid activity (shorter than �), if f̂ has a jump at t2 , it does not have a jump at t1 . If
f̂ had a jump at t2 from the state 0, then a function g equal to f̂ outside of interval
[t1, t2) , but such that the jump from state 0 is moved to the location of the jump t1
has lower error than f̂ . If f̂ had a jump at t2 from the state 1, then the error is infi-
nite (since the value of f̂ differs from f on the interval (−∞, t1)) and f̂ cannot be a
projection.

The argument is analogous for the penultimate jump. ◻

Proof of theorem 2.2 We use Lemmas 2.1 and 2.4 to prove that a projection of a
function from T onto G� can only have jumps at the same positions and in the same
directions as the jumps in the original function. This leads to the fact that finding the
shortest path in the graph is equivalent to finding f̂ . ◻

GTS distance with w > 0 and � = ∞ is an extended metric We will show that:

is an extended metric on T .

0. Since for any � , dist(f◦�� , g) ≥ 0 and w|�| ≥ 0 we conclude that the GTSw is non-
negative.

1. It is obvious to see that GTSw(f , f) = 0 for any f ∈ T . Now let us assume that for
some f , g ∈ T we have GTSw(f , g) = 0 . This implies that

 Since dist(f◦��n , g) + w|�n| is an upper bound of dist(f◦��n , g) and w|�n| , we have

GTSw(f , g) = inf
�∈ℝ

{dist(f◦�� , g) + w|�|}

∃(�n) dist(f◦��n , g) + w|�n|
n→∞
�������������������→ 0.

|�n|
n→∞
�������������������→ 0,

∫
ℝ

d(f◦��n (t), g(t))d�(t)
n→∞
�������������������→ 0.

1535

1 3

Improving state estimation through projection post‑processing…

 From Fatou’s lemma we have

 where � is the Lebesgue measure on ℝ . Because f and g are càdlàg, this implies
that for almost all t we have f (t−) = g(t) or f (t) = g(t) and so we conclude that
f = g.

2. Let f , g ∈ T , we have

 hence we conclude that GTSw is symmetric.
3. Letting f , g, h ∈ T , we have

 which shows that GTSw satisfies the triangle inequality and that concludes the
proof. ◻

The LTS distance with w > 0 is a semimetric Let w > 0, 𝜎 > 0 and a metric d on
S be fixed. We observe that LTSw,� is nonnegative. Symmetry of LTSw,� follows
directly from the definition. It only remains to show that LTSw,�(f , g) = 0 if and
only if f = g for f , g ∈ T .

We have

because there is only one segment (as defined in 3.2). Assume now that
LTSw,�(f , g) = 0 and f ≠ g . In that case, there exists more than one segment.

∫
ℝ

lim inf
n→∞

d(f (t − �n), g(t))d�(t) = 0,

GTSw(f , g) = inf
�
{dist(f◦�� , g) + w|�|} = inf

�
{dist(g◦�−� , f) + w| − �|}

= inf
−�
{dist(g◦�� , f) + w|�|} = inf

�
{dist(g◦�� , f) + w|�|}

=GTSw(g, f),

GTSw(f , g) = inf
�
{dist(f◦�� , g) + w|�|}

= inf
�1,�2

{dist(f◦��1◦��2 , g) + w|�1 + �2|}

≤ inf
�1,�2

{dist(f◦��1◦��2 , h◦��2) + dist(h◦��2 , g)+

+ w|�1| + w|�2|}
= inf

�1,�2
{dist(f◦��1 , h) + w|�1| + dist(h◦��2 , g) + w|�2|}

= inf
�1

{dist(f◦��1 , h) + w|�1|} + inf
�2

{dist(h◦��2 , g) + w|�2|}

=GTSw(f , h) + GTSw(h, g),

LTSw,�(f , f) = 0,

1536 M. Ciszewski et al.

1 3

which implies that f = g , which contradicts the assumption. We conclude that
LTSw,�(f , g) = 0 iff f = g , which completes the proof. ◻

Acknowledgements We thank Erik Wilmes for providing football data of high quality and the stick-
model animation tool. It was the basis for the analysis of our methods in section 4. We also thank Bart
van Ginkel for the idea of how to generalize the performance measure from the binary to the multiclass
case.

Author contributions All authors contributed to the study conception and design. Data analysis were per-
formed by the first author. The first draft of the manuscript was written by the first author and all authors
commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This work is part of the research programme CAS with project number P16-28 project 2, which
is (partly) financed by the Dutch Research Council (NWO).

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Availability of data and material The dataset analysed during the current study are available under the link
https:// zenodo. org/ record/ 37329 88#. YMcXO qgzZEZ.

Code availability Custom code for post-processing and performance measures can be found at: https://
github. com/ mgcis zewski/ impro ving_ state_ estim ation_ 2022.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Aviles-Cruz C, Rodriguez-Martinez E, Villegas-Cortez J, Ferreyra-Ramirez A (2019) Granger-causality: an
efficient single user movement recognition using a smartphone accelerometer sensor. Pattern Recognit
Lett 125:576–583. https:// doi. org/ 10. 1016/j. patrec. 2019. 06. 029

Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, Hoboken
Capela Nicole A, Lemaire Edward D, Natalie B (2015) Feature selection for wearable smartphone-based

human activity recognition with able bodied, elderly, and stroke patients. PLoS One 10:e0124414.
https:// doi. org/ 10. 1371/ journ al. pone. 01244 14

Chen C, Jafari R, Kehtarnavaz N (2015) Utd-mhad: a multimodal dataset for human action recognition uti-
lizing a depth camera and a wearable inertial sensor. In: Proceedings of the 2015 IEEE international
conference on image process. (ICIP). IEEE, New York, pp 168–172

LTSw,�(f , g) =

l−1∑

i=1

�i(ai+1 − ai)d(f (ai), g(ai)) = 0

⇒ ∀i=1,2,3,…,l−1 f (ai) = g(ai),

https://zenodo.org/record/3732988#.YMcXOqgzZEZ
https://github.com/mgciszewski/improving_state_estimation_2022
https://github.com/mgciszewski/improving_state_estimation_2022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.patrec.2019.06.029
https://doi.org/10.1371/journal.pone.0124414

1537

1 3

Improving state estimation through projection post‑processing…

Cornacchia M, Koray OY, Velipasalar S (2016) A survey on activity detection and classification using wear-
able sensors. IEEE Sens J 17:386–403. https:// doi. org/ 10. 1109/ JSEN. 2016. 26283 46

Dietterich TG (2002) Machine learning for sequential data: a review. In: Caelli T, Amin A, Duin RPW, Rid-
der DD, Kamel M (eds) Structural, Syntactic, and statistical pattern recognition, vol 2396 of Lecture
notes in computer science. Springer, Berlin, Heidelberg, pp 15–30

Eckelt M, Mally F, Brunner A (2020) Use of acceleration sensors in archery. Proceedings 49:98. https:// doi.
org/ 10. 3390/ proce eding s2020 049098

Gil-Martín M, San-Segundo R, Fernández-Martínez F, Ferreiros-López J (2020) Improving physical activ-
ity recognition using a new deep learning architecture and post-processing techniques. Eng Appl Artif
Intell 92:103679. https:// doi. org/ 10. 1016/j. engap pai. 2020. 103679

Ke Y, Sukthankar R, Hebert M (2005) Efficient visual event detection using volumetric features. In: Proceed-
ings of the tenth IEEE international conference on computer vision (ICCV’05), vol 1. IEEE, New York,
pp 166–173

Kołakowska A, Szwoch W, Szwoch M (2020) A review of emotion recognition methods based on data
acquired via smartphone sensors. Sensors 20:6367. https:// doi. org/ 10. 3390/ s2021 6367

Kononenko I, Šimec E, Robnik-Šikonja M (1997) Overcoming the myopia of inductive learning algorithms
with RELIEFF. Appl Intell 7:39–55. https:// doi. org/ 10. 1023/A: 10082 80620 621

Laptev I, Marszałek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In:
Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, New
York, pp 1–8

Lara OD, Labrador MA (2013) A survey on human activity recognition using wearable sensors. IEEE Com-
mun Surv Tutor 15:1192–1209. https:// doi. org/ 10. 1109/ SURV. 2012. 110112. 00192

Li L, Zhang H, Jia W, Mao Z-H, You Y, Sun M (2011) Indirect activity recognition using a target-mounted
camera. In: Qiu P, Xiang Y, Ding Y, Li D, Wang L (eds) Proceedings of the 2011 4th international con-
gress on image and signal processing. IEEE, New York, pp 487–491

Lima WS, Souto E, Rocha T, Pazzi RW, Pramudianto F (2015) User activity recognition for energy saving in
smart home environment. In: Proceedings of the 2015 IEEE symposium on computer and communica-
tion (ISCC). IEEE, New York, pp 751–757

Lima WS, Souto E, El-Khatib K, Jalali R, Gama J (2019) Human activity recognition using inertial sensors
in a smartphone: an overview. Sensors 19:3213. https:// doi. org/ 10. 3390/ s1914 3213

Minh Dang L, Min K, Wang H, Piran MJ, Lee CH, Moon H (2020) Sensor-based and vision-based human
activity recognition: a comprehensive survey. Pattern Recognit 108:107561. https:// doi. org/ 10. 1016/j.
patcog. 2020. 107561

Rednic R, Gaura E, Brusey J, Kemp J (2012) Wearable posture recognition systems: factors affecting per-
formance. In: Proceedings of the 2012 IEEE-EMBS international conference on biomedical and health
information. IEEE, New York, pp 200–203

Ronao CA, Cho S-B (2017) Recognizing human activities from smartphone sensors using hierarchical con-
tinuous hidden Markov models. Int J Distrib Sens Netw 13:1550147716683687. https:// doi. org/ 10.
1177/ 15501 47716 683687

Ryoo MS, Matthies L (2013) First-person activity recognition: What are they doing to me? In: Proceed-
ings of the 2013 IEEE conference on computer vision and pattern recognition. IEEE, New York, pp
2730–2737

Serrà J, Arcos LJ (2014) An empirical evaluation of similarity measures for time series classification. Knowl
Based Syst 67:305–314. https:// doi. org/ 10. 1016/j. knosys. 2014. 04. 035

Shakerian R, Yadollahzadeh-Tabari M, Rad SYB (2022) Proposing a Fuzzy Soft-max-based classifier in a
hybrid deep learning architecture for human activity recognition. IET Biomet 11:171–186. https:// doi.
org/ 10. 1049/ bme2. 12066

Song K-T, Chen W-J (2011) Human activity recognition using a mobile camera. In: Proceedings of the 2011
8th international conference on ubiquitous robotics and ambient intelligent (URAI). IEEE, New York,
pp 3–8

Varatharajan R, Manogaran G, Priyan MK, Sundarasekar R (2018) Wearable sensor devices for early detec-
tion of Alzheimer disease using dynamic time warping algorithm. Clust Comput 21:681–690. https://
doi. org/ 10. 1007/ s10586- 017- 0977-2

Wang J, Chen Y, Hao S, Peng X, Lisha H (2019) Deep learning for sensor-based activity recognition: a sur-
vey. Pattern Recognit Lett 119:3–11. https:// doi. org/ 10. 1016/j. patrec. 2018. 02. 010

Ward JA, Lukowicz P, Tröster G (2006) Evaluating performance in continuous context recognition using
event-driven error characterisation. In: Hazas M, Krumm J, Strang T (eds) Location- and context-
awareness. Springer, Berlin, Heidelberg, pp 239–255

https://doi.org/10.1109/JSEN.2016.2628346
https://doi.org/10.3390/proceedings2020049098
https://doi.org/10.3390/proceedings2020049098
https://doi.org/10.1016/j.engappai.2020.103679
https://doi.org/10.3390/s20216367
https://doi.org/10.1023/A:1008280620621
https://doi.org/10.1109/SURV.2012.110112.00192
https://doi.org/10.3390/s19143213
https://doi.org/10.1016/j.patcog.2020.107561
https://doi.org/10.1016/j.patcog.2020.107561
https://doi.org/10.1177/1550147716683687
https://doi.org/10.1177/1550147716683687
https://doi.org/10.1016/j.knosys.2014.04.035
https://doi.org/10.1049/bme2.12066
https://doi.org/10.1049/bme2.12066
https://doi.org/10.1007/s10586-017-0977-2
https://doi.org/10.1007/s10586-017-0977-2
https://doi.org/10.1016/j.patrec.2018.02.010

1538 M. Ciszewski et al.

1 3

Ward JA, Lukowicz P, Gellersen HW (2011) Performance metrics for activity recognition. ACM Trans Intell
Syst Technol 2:6. https:// doi. org/ 10. 1145/ 18896 81. 18896 87

Watanabe Y, Hatanaka T, Komuro T, Ishikawa M (2011) Human gait estimation using a wearable camera. In:
Proceedings of the 2011 IEEE workshop on applied of computing vision. IEEE, New York, pp 276–281

Waterbolk M, Tump J, Klaver R, van der Woude R, Velleman D, Zuidema J, Koch T, Dugundji E
(2019) Detection of ships at mooring dolphins with Hidden Markov Models. Transp Res Rec
2673:0361198119837495. https:// doi. org/ 10. 1177/ 03611 98119 837495

Wilmes E, de Ruiter CJ, Bastiaansen BJC, van Zon JFJA, Vegter RJK, Brink MS, Goedhart EA, Lemmink
KAPM, Savelsbergh GJP (2020) Inertial sensor-based motion tracking in football with movement inten-
sity quantification. Sensors 20:2527. https:// doi. org/ 10. 3390/ s2009 2527

Yeh C-CM, Kavantzas N, Keogh E (2017) Matrix profile IV: Using weakly labeled time series to predict
outcomes. In: Boncz P, Salem K (eds) Proceedings of the VLDB endow, vol 10. VLDB Endowment,
pp 1802–1812

Zhu C, Sheng W (2011) Motion- and location-based online human daily activity recognition. Pervasive Mob
Comput 7:256–269. https:// doi. org/ 10. 1016/j. pmcj. 2010. 11. 004

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/1889681.1889687
https://doi.org/10.1177/0361198119837495
https://doi.org/10.3390/s20092527
https://doi.org/10.1016/j.pmcj.2010.11.004

	Improving state estimation through projection post-processing for activity recognition with application to football
	Abstract
	1 Introduction
	2 Improving classification by imposing physical restrictions
	2.1 Post-processing by projection
	2.2 Connection with the shortest path problem
	2.3 Binary case

	3 Incorporating domain knowledge into the performance measure of classification
	3.1 Problem-specific requirements on the performance measure
	3.2 Globally time-shifted distance
	3.3 Locally time-shifted distance and the duration penalty term

	4 Application to activity recognition
	4.1 Simulation study
	4.2 Application to a football dataset

	5 Conclusion
	A Proofs
	Acknowledgements
	References

