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The entirety of acronyms and symbols used in the Appendices A-G is presented in the lists below. The nomen-
clature used in Chapter 1 is presented in the article itself.
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CR3BP-LT Low-thrust circular restricted three-body problem A
FT Floquet targeter A
Hl t -varying Hamiltonian-varying A
al t -varying Acceleration-varying A
Æ-varying Orientation-varying A
l.p.o libration point orbit A
NR Newton-Raphson A
RKF78 Runge-Kutta-Fehlberg 7(8) A
SPM State propagation matrix C
STM State transition matrix C
TLT Two-level targeter A
TPBVP Two-point boundary value problem C
TUDAT TU Delft Astrodynamics Toolbox A

List of symbols

Symbol Description Equation of first appearance
Latin symbols
Ax In-plane amplitude C.19
āk Acceleration vector at node k C.29
al t Low-thrust acceleration magnitude C.6
Bi Polynomial time matrix B.11
b Last column of the inverse of Bi B.18
bi

j Constants for defect computation B.12
C Computable constant for error control B.16
Ci Polynomial coefficient matrix B.11
DF Jacobian C.3
ēi i th column of the Floquet modal matrix C.11
e Local truncation error estimate B.6
F Defect vector C.1
f̄i Field vector evaluation B.10
G(t ) Perturbation decomposition matrix C.12
ḡi i th column of the perturbation decomposition matrix C.11
Hl t Low-thrust Hamiltonian C.38
h Stepsize in explicit propagation schemes B.1
I Collocation error integral B.19
l Relaxation parameter C.8

xi



xii List of acronyms

l§ Characteristic length A.2
n Number of nodes B.15
p Piecewise polynomial B.9
R̄ Position vector
ri j Distance from body i to body j C.6
T Orbital period C.18
t§ Characteristic time A.2
S Eigenvector matrix C.13
V̄ Velocity vector C.14
wi

j Constants for defect computation B.12
X Design vector C.1
Z j Runge-Kutta local function evaluation B.3

Greek symbols
Æ Low-thrust acceleration orientation C.6
Æi Runge-Kutta nodes B.3
Øi j Runge-Kutta internal weights B.5
∞ j External weights of the Runge-Kutta scheme B.3
¢ Difference B.10
@ Partial derivative C.3
≤ Truncation error A.3
¥k Two-level targeter constraint at node k C.32
µ Angle from synodic frame x-axis to equilibrium C.19
≥ Defect constraint B.12
∂ j Floquet targeter coefficients C.14
∑ Line search attenuation parameter C.47
µ Mass ratio parameter A.1
ª Eighth-order derivative estimate B.16
¶ Mesh of the collocation procedure B.15
æ Complex step increment C.46
ø Normalized segment time B.9
¡ Orbital phase C.49
© State transition matrix C.10

Superscripts
§ Constraint reference value C.33
+ Incoming quantity B.10
° Outgoing quantity B.10
T Matrix transpose B.9

Subscripts
§ characteristic A.2
abs Absolute Table A.3
lt Low-thrust A.4
m Machine A.3
max Maximum Table A.3
min Minimum Table A.3
rel Relative A.3
tol Tolerance B.6

Other notation
| | Absolute value B.6
|| || Euclidian norm C.50
h , i Inner product C.49
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LOW-THRUST HORIZONTAL LYAPUNOV ORBITS IN THE
EARTH-MOON RESTRICTED THREE-BODY PROBLEM

Sjors Martens⇤ and Kevin J. Cowan†

Preliminary design of low-thrust trajectories in the circular restricted three-body
problem (CR3BP) frequently relies upon ballistic dynamical structures and opti-
mization algorithms. A fundamental understanding of how these dynamical struc-
tures change due to presence of a low-thrust force may lead to trajectories that
cannot be obtained otherwise. This paper investigates the effect of a constant
low-thrust acceleration on the horizontal Lyapunov (H-L) families in the CR3BP.
Families of low-thrust periodic solutions are constructed in vicinity of L1 and L2
using numerical continuation methods. By either varying the Hamiltonian, ac-
celeration magnitude, or acceleration orientation along the solution family, the
effect of a low-thrust acceleration on H-L orbits is characterized. Investigating
the geometry, bifurcations and hyperbolic unwinding behaviour of these families
provides insight into the low-thrust periodic solution structure of the Earth-Moon
system. The introduction of a constant low-thrust acceleration distorts the geom-
etry of ballistic H-L orbits into ’ear-shaped’ periodic solutions. The bifurcations
of the low-thrust periodic solution families imply the existence of low-thrust halo,
low-thrust axial, and low-thrust planar double-period families. Finally, low-thrust
periodic solutions are identified that possess a higher rate of hyperbolic unwinding
behaviour than the ballistic L1 and L2 H-L families.

INTRODUCTION

Libration point orbits have been key to the realization of numerous space missions. An increased
understanding of the solar wind1 and early Universe2 are just some of the valuable scientific in-
sights which have been obtained by utilization of these non-Keplerian geometries. The significance
of these libration point orbits will only increase in the near future as NASA aims to deploy the
successor of the International Space Station in the vicinity of the Earth-Moon L2 point.3 Recent
advancements in low-thrust propulsion technology have sparked the interest of the scientific com-
munity into investigation of nonballistic libration point orbits. Research efforts have led to the
discovery of novel mission concepts like continuous observation of lunar poles via deformed Halo
orbits.4 These so-called ’pole-sitter’ orbits illustrate the possibility to discover new mission con-
cepts by combining low-thrust technology and non-Keplerian geometries.

Initial designs of space missions involving libration point orbits are commonly obtained from
low-fidelity multi-body models like the CR3BP. Extensive research towards the dynamical struc-
tures of this model has revealed a rich set of periodic solutions in the vicinity of the Lagrangian
points.5 Furthermore, invariant manifolds emanating from these equilibria have opened up new op-
portunities for low-energy space travel.6 The common approach for preliminary design of missions
involving nonballistic libration point orbits is to specify a ballistic trajectory in the CR3BP and

⇤Graduate Student, Aerospace Engineering, Delft University of Technology, Kluverweg 1, 2629 HS Delft, The Netherlands
†Lecturer, Aerospace Engineering, Delft University of Technology, Kluverweg 1, 2629 HS Delft, The Netherlands
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find a control history via trajectory optimization techniques. The mass- or time-optimal trajectories
resulting from this design philosophy may satisfy mission-specific constraints but fail to provide
an understanding how the fundamental flow in the CR3BP changes under influence of low-thrust
propulsion. Such an understanding can be obtained by studying the flow of a multi-body model
whose dynamics allow the formulation of a low-thrust force.

Investigation of dynamical structures in low-thrust multi-body models is an emerging field of re-
search, especially in the context of solar sailing. Studies towards the deformation of Halo orbits in
the Sun-Earth radial solar sail CR3BP7 and the existence of libration point orbits in the Earth-Moon
solar sail CR3BP8 are just some of the examples that have revealed new geometries. Multi-body
models which incorporate a low-thrust force via electric propulsion have received far less attention
despite the widespread use of electric propulsion in today’s space missions. Recent studies that
investigate multi-body models that incorporate a low-thrust force in the form of electric propul-
sion show that key dynamical structures like equilibria, periodic motion and invariant manifolds
exist.9–11 However, the phase space of this model remains largely unexplored. This paper increases
the understanding of dynamical structures in these low-thrust multi-body models by investigating
the planar periodic solution structure in the Earth-Moon system.

This article starts with a formulation of the dynamics of the low-thrust multi-body model. Next,
the characteristics of the planar equilibrium solutions within this system are discussed. Three differ-
ent types of periodic solution families are presented in the vicinity L1 and L2 at a variety of thrust
parameters. Studying the geometry and linear stability of these periodic solution families aids to an
increased understanding of the low-thrust multi-body dynamics.

DYNAMICAL MODEL

Before periodic motion in a low-thrust multi-body model can be investigated, it is necessary to
formulate the dynamics of such a system. The dynamical model adopted in this investigation is
known as the low-thrust circular restricted three-body problem (CR3BP-LT).11 A graphical repre-
sentation of this dynamical model is presented in Figure 1.

X

Y

Z,z

x

y

Z,z

P1

P2

x

y

P3

ālt

↵

✓

�

r13
r23

B

Figure 1. The configuration of the CR3BP-LT. The light grey shaded area denotes the
plane of motion of the two primaries and coincides with the xy and XY-plane. The
orientation of the dark grey shaded area is parallel to the xy plane.

The CR3BP-LT is a combination of the CR3BP and a low-thrust acceleration ālt provided by an
electric propulsion system. The dynamics of the CR3BP are explained first followed by a discussion
on these ballistic dynamics are affected by the introduction of a low-thrust acceleration.
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The circular restricted three-body problem

The CR3BP concerns the motion of three bodies resulting from their mutual gravitational attrac-
tion. The two celestial bodies, from now on referred to as the primary (P1) and secondary (P2),
rotate around their mutual barycenter B in a coplanar and circular fashion. The artificial body (P3)
is unrestricted in its movement and has a negligible mass so its gravitational pull can be ignored. It is
a common strategy to study the three-body problem in a rotating reference frame (x, y, z) where the
x-axis coincides with the primary and secondary. This so-called synodic reference frame removes
the time dependency of the dynamics which simplifies its analysis.12 It is worth noting that the
introduction of a rotating reference frame gives rise to a centrifugal force and Coriolis force. Hence,
the motion in the synodic frame is the result of the gravitational pull and the two aforementioned
forces.

Another standard simplification is the nondimensionalization of the CR3BP which is achieved
by assuming three quantities to unity. These quantities are the total mass in the system, the mean
motion of the synodic reference frame, and the distance between the primary and secondary.12

Nondimensionalization of the system allows full parametrization of the CR3BP via the mass ratio
parameter µ = M2

M1+M2 . This research assumes µ ⇡ 0.0121506⇤ to simulate motion in the Earth-
Moon version of the CR3BP. Since the positions of P1 and P2 are fixed in the synodic reference
frame at (�µ,0,0) and (1�µ,0,0) respectively, the distances of P3 with respect to the spacecraft can
be calculated according to Eq. (1).

r13 =
p
(x+ µ)2 + y2 + z2, , r23 =

p
(x� 1 + µ)2 + y2 + z2 (1)

The motion of P3 is defined through three second order nonlinear differential equations,12 which
are shown below in Eq. (2).

ẍ = 2ẏ + x� 1� µ

r
3
13

(x+ µ)� µ

r
3
23

(x� 1 + µ) = 2ẏ + ⌦x

ÿ = �2ẋ+ y � 1� µ

r
3
13

y � µ

r
3
23

y = �2ẋ+ ⌦y

z̈ = �1� µ

r
3
13

z � µ

r
3
23

z = ⌦z

(2)

⌦ represents the pseudo-potential of the system, which is formed by the sum of the centrifugal force
and gravitational potential of P1 and P2 as shown in Eq. (3).12

⌦ =
1

2
(x2 + y

2) +
1� µ

r13
+

µ

r23
(3)

The aforementioned time independence of the CR3BP implies the existence of a first integral in
the dynamical model according to the theory Hamiltonian mechanics.14 The conserved quantity
is known as the Jacobi integral and is an important parameter for characterizing motion in the
dynamical model. The Hamiltonian of the CR3BP is proportional to the Jacobi integral and is
computed via Eq. (4).11

C = �2Hnat = 2⌦� V
2 (4)

⇤The exact value of µ is obtained directly from the publicly available TUDAT software package13
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The low-thrust circular restricted three-body problem

The CR3BP-LT arises from the CR3BP by introduction of a dimensionless low-thrust accelera-
tion (ālt) in the form of Eq. (5). The magnitude of this acceleration is represented as alt whereas
its orientation is captured via a pointing vector û. The acceleration pointing vector is defined via an
in-plane angle (↵) and out-of-plane angle (�) as shown in Figure 1.

ālt =
f

m
û, û =

2

4
ûx

ûy

ûz

3

5 =

2

4
cos(�)cos(↵)
cos(�)sin(↵)

sin(�)

3

5 , f =
Ft

2
⇤

l⇤M3,0
(5)

In Eq. (5), f denotes the dimensionless thrust magnitude and m = M3
M3,0

represents the dimension-
less spacecraft mass with M3,0 defined as the initial spacecraft mass in kilograms. F symbolizes the
dimensional thrust force in kilonewtons whereas l⇤ and t⇤ are referred to as the characteristic length
and characteristic time respectively.11 The characteristic length represents the distance between P1

and P2 in kilometers whereas the characteristic time represents the inverted mean motion of the
system in seconds. This research adopts l⇤ = 384400 from which the characteristic time can be
computed with Kepler’s third law. Furthermore, this research assumes f 2[0.0,0.1] which is in line
with today’s low-thrust propulsion technology as shown in Appendix A.

The low-thrust dynamics of P3 can be defined via four second order differential equations as shown
in Eq. (6).11 The first three different equations define the dynamics of P3 whereas the fourth
differential equation governs the dimensionless mass flow of the system. Isp denotes the specific
impulse in seconds and g0 = 9.80665m/s

�2 represents the gravitational acceleration at sea level.

ẍ = 2ẏ + ⌦x + altûx

ÿ = �2ẋ+ ⌦y + altûy

z̈ = ⌦z + altûz

ṁ =
fltl⇤

Ispg0t⇤

(6)

Contrary to the CR3BP, the Hamiltonian of the CR3BP-LT, shown in Eq. (7), is not a conserved
quantity since it varies with a change in the acceleration vector.

Hlt = Hnat � hr̄, ālti,
@Hlt

@⌧
= hr̄, ˙̄alti (7)

The time-varying nature of the spacecraft mass gives rise to a non-autonomous dynamical system.
Dynamical structures in time-variant systems are challenging to characterize due to the absence of
a first integral. This research employs three simplifications to transform the CR3BP-LT into an
autonomous dynamical system. First of all, the acceleration orientation vector û is fixed in the
rotating fame. Secondly the thrust magnitude f is held constant. Finally it is assumed that ṁ = 0.
These assumptions ensure a constant low-thrust acceleration vector in the rotating frame which give
rise to an integral of motion in the form of Hlt. The remainder of this work considers alt and
Hlt as constant quantities since a varying spacecraft mass has a negligible influence in the Earth-
Moon system, as suggested in previous literature.11 The validity of this assumption is discussed in
Appendix B. This section is concluded with the notice that the dynamics of P3 are constrained to
planar motion.
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LOW-THRUST EQUILIBRIUM SOLUTIONS

The CR3BP posseses five locations where a spacecraft experiences a net zero acceleration. Anal-
ysis of the dynamics around these Lagrangian points reveals the existence of dynamical structures
like libration point orbits and/or invariant manifolds.15 Hence, the characterization of the CR3BP-
LT phase space starts with an investigation towards the low-thrust equilibria. This section presents
the methodology to locate these equilibria and subsequently characterize the dynamics around them.
Furthermore, it discusses the effect of a constant low-thrust acceleration on the equilibria locations
and the surrounding dynamics.

Equilibria localization and characterization methodology

Previous research has shown that a low-thrust acceleration can considerably shift the locations of
the equilibria.9 The low-thrust equilibrium solutions are located via a multivariate relaxed Newton-
Rapshon root-finding method16 which finds a position in the rotating frame that satisfies the condi-
tions listed in Eq. 8.

ẍ = 2ẏ + ⌦x + altcos(↵) = 0

ÿ = �2ẋ+ ⌦y + altsin(↵) = 0
(8)

This multivariate root-finding algorithm is employed to compute two types of structures. The first
structure comprises a set of low-thrust equilibrium solutions with an identical acceleration magni-
tude but different acceleration orientations (↵ 2 [0, 2⇡]). This structure is referred to as an ↵-varying
zero acceleration contour (ZAC). The second structure, referred to as the alt-varying ZAC, consists
of low-thrust equilibrium solutions that have an identical acceleration orientation but different ac-
celeration magnitudes. (alt 2 [0, 0.1]). These two contours isolate the effect of alt and ↵ so their
influence on the equilibrium solutions can be investigated separately.

The multivariate root-finding procedure is initialized with seed solutions that differ per type of
contour. Two types of seed solutions are employed for the ↵-varying ZAC. The first type of seed
solutions are low-thrust equilibria located on the x-axis of the CR3BP-LT. These seed solutions are
straightforwardly calculated via a univariate Newton-Raphson procedure. The second type of seed
solutions are noncollinear low-thrust equilbria with ↵ = 0 obtained via analytical Eqs. (9-11).11

r̄L4 =
⇥
�µ+ r13cos() r13sin() 0

⇤
T

r̄L5 =
⇥
�µ+ r13cos() �r13sin() 0

⇤
T

(9)

r13 =

✓
1� µ

1� µ+ alt

◆ 1
3

r23 =

✓
1� alt

µ

◆� 1
3

(10)

 =

✓
1 + r

2
13 + r

2
23

2r13

◆
(11)

In the Eq.s above,  represents the angle between the positive x-axis and the r13 vector. The seed
solutions of alt-varying ZAC’s are the Lagrangian points of the CR3BP.

The dynamics in vicinity of the equilibrium can be characterized via analysis of the CR3BP-LT
linearized dynamics at the known equilibrium location. An expression of these linearized dynamics
is shown in Eq. 12 in the form of a first-order Taylor series expansion
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X̄ denotes the state vector and A represents its Jacobian, commonly referred to as the state propaga-
tion matrix (SPM). Ck and Sk refer to sine and cose operator respectively where subscript k denotes
the argument of these operators. The dynamics are defined by the upper 6 ⇥ 6 block of the SPM
since this research assumes a constant thrust magnitude, thrust orientation, and spacecraft mass.11

The six eigenvalues of the upper block, which occur as three pairs with opposite signs, reveal the
stability components in the neighbourhood of the equilibrium point. A pair of real eigenvalues with
opposite sign indicates a so-called saddle (S) mode which suggests the existence of hyperbolic in-
variant manifolds. Secondly, a conjugate pair of purely imaginary eigenvalues gives rise to a center
(C) mode which indicates the existence of periodic solutions. Finally, a conjugate pair of complex
eigenvalues denotes a mixed (M ) mode which suggests spiral behaviour. The combination of two
(three) stability modes defines the planar (spatial) linear stability of the equilibrium point.

Low-thrust acceleration effect on the equilibrium solutions

The root-finding method presented in the previous section allows the construction of the ↵-
varying ZAC’s and alt-varying ZAC’s. An ↵-varying ZAC that arises from Li is denoted with
Ei and these structures are displayed in Figure 2 for three distinct acceleration magnitudes. In an
analogous way, alt-varying ZAC’s are indicated via E

↵

i
where ↵ indicates the acceleration orien-

tation. These structures are displayed in Figure 3. Both images show the planar linear stability at
each location in the rotating frame, also referred to as a stability portrait.11

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

l---------------- 1

i

5*

X

Figure 2. The ↵-varying ZAC contours at three distinct acceleration magnitudes
alt = [0.003,0.1,0.25] over the complete range of thrust orientations ↵ ✏[0,2⇡].
The natural Lagrangian points are plotted as black crosses whereas the two primaries
are symbolized as filled black circles. alt = 0.025 lies outside the feasible range of
acceleration magnitudes but is added to illustrate the impact of a high alt value.
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The stability portrait reveals the presence of four stability regions in the planar CR3BP-LT. The
neighbourhood around the P1,2 characterized by S ⇥ C stability, indicating that planar periodic
solutions and invariant manifolds are present. The S⇥C stability realm is surrounded by two small
bands characterized by C⇥C and S⇥S stability. C⇥C stability suggests that only bounded motion
exists within this field whereas only asymptotic motion can be found within the S ⇥ S realm. An
M ⇥M field encloses these three stability regions.
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Figure 3. The alt-varying ZAC contours at four acceleration orientations ↵ =

[0,12⇡,⇡,32⇡] over the complete range of acceleration magnitude alt ✏[0, 0.1]. The
equilibria are plotted as black crosses whereas P1,2 are shown as black circles.

Figure 2 reveals that a low-thrust acceleration vector can drastically change the location of the
equilibrium solution as well as its stability mode. The largest displacements are observed at E3

followed by the equilateral contours E4 and E5. This effect is so powerful that these three contours
merge into a single C-shaped contour (alt = 1.05 · 10�2). Smaller displacements are observed
at E2 and the low-thrust acceleration has an even more limited effect at E1. The varying effect
of the low-thrust acceleration is directly attributed to the magnitude of the pseudo-potential at the
specific location in the rotating frame. Furthermore, E1 and E2 remain in the S⇥C stability realm.
Figure 3 underpins these conclusions and highlights how the displacement effect is proportional to
the acceleration magnitude.

The stability portrait provides qualitative insight into the stability but fails to show how the mag-
nitude of these stability components spatially evolve in the CR3BP-LT. Figure 4 provides such an
insight for the saddle component.
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Figure 4. The magnitude of the eigenvalue related to the saddle component of the
dynamics as a function of position in the rotating frame. The contour is computed for
||�||  10 for visualization reasons.

7



The saddle component of the dynamics is represented by the positive real eigenvalue of the eigen-
system of Eq. 12. This saddle mode is associated with hyperbolic nature of the dynamics which give
rise to the invariant manifolds.15 A larger positive real eigenvalue is linked to a larger unwinding rate
of the hyperbolic invariant manifolds,17 which might provide opportunities for quicker low-energy
transfer opportunities. Figure 4 shows that the hyperbolic unwinding behaviour increases when the
equilibrium moves towards P1,2 while it decreases towards zero in the neighbourhood of the C ⇥C

stability realm. These findings are confirmed by Figure 5 which shows the positive real eigenvalue
magnitude as a function of the acceleration orientation at two distinct acceleration magnitudes.

au = 0.003

0 ^7T 7T §7T 27T

a

au = 0.1

Figure 5. The magnitude of the eigenvalue related to the saddle component of the
dynamics as a function of the thrust parameters.

The maximum hyperbolic unwinding behaviour of E1 (E2) occurs at at ↵ = ⇡ rad (0 rad) since
this specific orientation results in an equilibrium location closest to P2. In an equivalent way, the
maximum hyperbolic unwinding behaviour for E3 the occurs at ↵ = ⇡ rad since this corresponds
to the equilibrium closest to P1. At higher acceleration magnitudes, unwinding behaviour is not
guaranteed at E3 since parts of this contour are located in the C ⇥ C and M ⇥M stability realm.

The final effect of a low-thrust acceleration on the equilibrium solutions concerns the change in
Hamiltonian value. Figure 6 shows the integral of motion as a function of the acceleration orienta-
tion at two distinct acceleration magnitudes.
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Figure 6. The evolution of the Hamiltonian over the equilibria contours for two
distinct thrust magnitudes alt =[0.003,0.1].
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These energy curves show the minimum Hamiltonian value that a periodic solution, which em-
anates from that specific equilibrium, can posses. Hence this plot allows to predict the existence
of alt-varying ↵-varying families. Unsurprisingly, the change in Hamiltonian is proportional to
the acceleration magnitude. Another interesting observation is the varying number of equilibrium
solutions which can be attributed to the merge of E3,E4 and E5.11

The low-thrust acceleration affects the equilibrium solutions in several ways. It can significantly
alter the the position of an equilibrium and thereby qualitatively change its stability. Furthermore,
the unwinding behaviour can be increased which may open up opportunities for faster transfers via
invariant manifolds. The section is concluded with the notion that Figures (2-6) emphasize the ex-
istence of a symmetry in the CR3BP-LT. If an equilibrium exists at (x,y,alt,↵), another equilibrium
exists at (x,�y,alt,�↵).11

LOW-THRUST PLANAR PERIODIC SOLUTIONS

Periodic motion in the CR3BP has been the subject of extensive research which has resulted in a
comprehensive understanding of the CR3BP periodic solution structure.5 The CR3BP-LT periodic
solution structure on the other hand has been barely investigated. Previous research shows that
low-thrust periodic orbits (LTPO) exist11 but the periodic solution structure of the CR3BP-LT is
essentially unknown. This section provides an overview of the periodic solutions emanating from
E1 and E2 in the CR3BP-LT, thereby investigating the effect of a low-thrust acceleration on planar
periodic motion in the Earth-Moon system. An overview of low-thrust periodic solution structure is
effectively achieved by analyzing families of periodic solutions. These families are a set of periodic
solutions where points belonging to different family members constitute to a continuous curve in
phase space.18 Individual solutions of these families are uniquely defined by the three parameters
Hlt, alt, and ↵. Along a periodic solution family, two of the three aforementioned variables remain
constant while the other parameter, also referred to as the bifurcation parameter,19 is different for
each family member. This gives rise to three types of periodic solution families ⇤ which are analyzed
in the remainder of this Section. First of all, the Hamiltonian-varying (Hlt-varying) families are
investigated to get an initial understanding of the periodic solutions in the vicinity of E1 and E2.
This is followed by analysis of acceleration-varying (alt-varying) families and orientation-varying
(↵-varying) families to explicitly characterize the effect of a low-thrust acceleration on the periodic
motion. Before these families are investigated, the underlying methodology for the construction and
characterization of these families is presented.

Construction and characterization of low-thrust periodic solution families

The three types of solution families are generated by employing numerical continuation proce-
dures. The selected numerical continuation procedure depends on the family type (i.e. the varying
parameter). Hlt-varying families are constructed via a pseudo-arclength numerical continuation19

algorithm which shown in Eq. 13. The pseudo-arclength numerical continuation procedure ensures
a consistent positional increment between two subsequent family members. These family mem-
bers are indicated with X

n and X
n+1 where n refers to the family member number (i.e. X1 is the

first constructed member of the family). The consistent spacing is achieved by scaling the pseudo-
arclength ⇢ relative to the positional increment between the initial states of two family members.
The position coordinates of the initial state of a periodic solution are indicated with x

n

0 and y
n

0 . This
⇤In this research, a family type refers to the parameter that varies along the family rather than the type of periodic

motion that is observed.
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research adheres to positional increment of 10�4 between the initial state of two subsequent family
members to achieve a near-continuous family of solutions.

X
n+2 = X

n+1 + ⇢
�
X

n+1 �X
n
�

, ⇢ =
10�4

q
(xn+1

0 � x
n

0 )
2 + (yn+1

0 � y
n

0 )
2

(13)

The pseudo-arc length continuation procedure is initialized by two periodic seed solutions. These
seed solutions are obtained via a two-step process. The first step concerns the construction of ap-
proximate periodic seed solutions via a Floquet controller.20, 21 During the second step, the approx-
imate seed solutions are transformed into actual periodic seed solutions via a dual-stage multiple
shooting procedure called the two-level targeter.22, 23 Each guess forwarded by the continuation
procedure is solved using a 12th order Legendre-Gauss-Lobatto collocation method24 augmented
with Boor’s method of mesh refinement for error control purposes.25 The alt-varying and ↵-varying
families are constructed viaa natural parameter continuation algorithm.19 Natural parameter contin-
uation requires a start-up solution which is directly obtained from the earlier computed Hlt-varying
families. The guess for a new family member is created by slightly incrementing the bifurcation
parameter, which is either alt or ↵ depending on the family type. The aforementioned collocation
method corrects the guess to a truly periodic solution.

Characterization of a periodic solution family is achieved in two distinct ways. First of all, a
graphical projection is provided to show the spatial evolution of the family with respect to the bi-
furcation parameter. On the other hand, the stability of each family member is mapped with respect
to the bifurcation parameter to detect bifurcations within the dynamical system. Bifurcations are
qualitative changes in the dynamics of the system which help to identify topological equivalent re-
gions in the phase space of the CR3BP-LT.26 According to Floquet theory, the stability of a periodic
solution can be investigated via the eigensystem of the monodromy matrix (M ).27 The monodromy
matrix maps a state on the periodic solution with orbital period T at time ti to a new state at time
ti + T . Hence, the monodromy matrix is a special case of the state transition matrix and can be
obtained via numerical integration of the upper 6⇥6 block of A and the equations shown in Eq. 14.

M = �(T, 0), �̇(ti+1, ti) = Ati�(ti+1, ti), �(ti, ti) = I (14)

M adheres to a symplectic map structure since the CR3BP-LT is a Hamiltonian system.6 This
implies that if � is an eigenvalue of M , ��1 is also an eigenvalue of M . Hence, the six eigenvalues
of M , also known as characteristic multipliers, occur in three reciprocal pairs. The values of these
characteristic multipliers reveal the linear stability of the periodic solution. A pair of eigenvalues
with modulus one indicates periodicity. On the other hand, A pair of eigenvalues with magnitude
larger (smaller) than one indicates instability. More specifically, a real pair of eigenvalues with a
magnitude greater and smaller than one indicates the existence of hyperbolic invariant manifolds.6

The stability of an eigenvalue pair can be represented in the form of a stability index (⌫i) as shown
in Eq. 15. ⌫i > 1 indicates instability and the magnitude of the stability index of related to the
invariant manifolds (⌫1) is directly to the rate of hyperbolic unwinding behaviour.17

⌫i =
1

2

✓
||�i||+

1

||�i||

◆
(15)

A change in the number of unstable eigenvalue pairs, referred to as the linear order of instability,28

indicates the presence of a bifurcation. By providing a graphical projection, bifurcation overview,
and the saddle stability index evolution of periodic solution families, the periodic solution structure
of the CR3BP-LT can be characterized.
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Hamiltonian-varying libration point orbit families

Analyzing Hlt-varying families emanating from E1 and E2 at different acceleration magnitudes
and acceleration orientations provides an initial understanding of the CR3BP-LT periodic solution
structure. The ballistic families emanating from L1 and L2 are presented first for comparison pur-
poses. Low-thrust periodic solution families emanating from E1 and E2 are subsequently analyzed
at three acceleration magnitudes (alt = [0.01, 0.05, 0.1]). At each acceleration magnitude, low-
thrust periodic solution families are analyzed at six acceleration orientations (↵ = [0, 1

3⇡, 2
3⇡, ⇡,

4
3⇡, 5

3⇡]).

L1 and L2 ballistic families It is well known that the in-plane center modes of L1 and L2 give
rise to the ballistic H-L families.6 A graphical projection of these families can be found in Figure 7.
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Figure 7. Graphical projection of the L1 and L2 H-L families. The ballistic L1
family is shown on the left thewhereras L2 H-L family is shown on right. P1 and P2
are denoted as black dots whereas the natural Lagrangian points are symbolized with
black crosses. The color of the periodic solution indicates the Hamiltonian according
to the colorbar depicted on the right. Each 50th member of the family is plotted.

The graphical projections show that the L1 and L2 ballistic H-L families differ in shape. The
members of the L2 family are heavily curved towards the Moon which can be attributed to the
fact that the L2 family is located to the right side of the Earth and Moon, resulting in a one-sided
gravitational potential from the primaries. A bifurcation analysis of the H-L families at L1 and L2

is presented in Figure 8.
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Figure 8. Bifurcation analysis of the ballistic L1 and L2 H-L families. The left plots
display the characteristic multiplier moduli whereas the right plots present the phase
of the eigenvalue related to the out-of-plane center subspace. The top plots relate to
the L1 H-L family whereas the bottom plots represent the L2 H-L family.
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The left plots of Figure 8 reveal the bifurcations by displaying the moduli of the three reciprocal
eigenvalue pairs. The �1, 1/�1 pair relates to the saddle component of the motion which give rise
to the invariant manifolds. The �2, 1/�2 pair denotes the out-of-plane center subspace whereas the
�3, 1/�3 pair relates to the in-plane center subspace from which the H-L family emanates. The left
plots of Figure 8 show that three bifurcations occur in both families. The right plots of Figure 8
reveal that the first bifurcation of both families occurs when the �2, 1/�2 eigenvalue pair leaves the
unit circle at the positive x-axis. This behaviour is referred to as a tangent bifurcation and indicates
the existence of a new family of solutions; the Halo family.28 The second change in linear order of
instability in both the L1 and L2 ballistic H-L families is also a tangent bifurcation.28 This tangent
bifurcation generates the axial family that connect the H-L families with the vertical Lyapunov (V-
L) families at the respective Lagrangian point.5 The third bifurcation in the L1 and L2 ballistic H-L
families occurs when the �2, 1/�2 leaves the unit circle at the negative x-axis. Such a phenomenon
is interpreted as a period-doubling bifurcation and is related to periodic solutions with twice the
period of the family they emanate from.27 The discussion of the L1 and L2 ballistic H-L families
is concluded with the analysis of the stability index of the unstable eigenvalue pair (⌫1) and the Hlt

evolution as shown in Figure 9.
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Figure 9. The evolution of ⌫1 over the L1 and L2 ballistic H-L families is shown on
the left. The evolution of Hlt as a function of T for both ballistic H-L families.

It can be observed that stability index of the eigenvalue pair related to the saddle subspace attains a
maximum for periodic solutions situated closest the equilibrium point and decreases monotonically
while the orbits grow in amplitude. Finally, The Hamiltonian and orbital period are minimal near
the equilibria and increase monotonically over the families.

alt = 0.01 families The effect of a small low-thrust acceleration on the orbit geometry of LTPO’s
emanating from E1 can be observed from Figure 10. At this acceleration magnitude, the charac-
teristic H-L shape is maintained whenever the acceleration is parallel with the x-axis. However,
distortions with respect to the ballistic H-L geometry occur when the acceleration orientation is
not parallel with the x-axis. A lobe appears in the orbit geometry in either positive or negative
y-direction, depending upon the acceleration orientation. Furthermore, families with acceleration
orientation ↵ and �↵ seem symmetric w.r.t to the x-axis which is expected because of the earlier
mentioned symmetry.

The bifurcation diagrams of these Hlt-varying families are shown in Figure 11. It can be con-
cluded that for alt = 0.01, the qualitative nature of the bifurcation diagrams do not change with
respect to the bifurcation diagram of the ballistic L1 family. This implies the existence of spatial
low-thrust halo and axial families. Furthermore, the symmetry between families with acceleration
orientation ↵ and �↵ can be observed since the bifurcations of these families happen at identical
Hamiltonians. Figure 12 shows the saddle subspace stability index of each family which reveals
that the maximum unwinding behaviour can be found near the artificial equilibria. Furthermore, the
Hamiltonian and orbital period increase monotonically over each family.
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Figure 10. Six Hlt-varying families at alt = 0.01 for different ↵ values in vicinity
of E1. The color of an LTPO corresponds to its Hamiltonian value according to the
colorbar located on the right side. The family with ↵ =

4
3
⇡ is terminated earlier with

respect to the ↵ =
2
3
⇡ family due to instabilities in the collocation algorithm.

Figure 11. Bifurcation diagram of the six Hlt-varying families at alt = 0.01 for
different ↵ values in vicinity of E1. The family with ↵ =

4
3
⇡ is terminated earlier

with respect to ↵ =
2
3
⇡ due to instabilities in the collocation algorithm.
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Figure 12. The evolution of ⌫1 over the E1, alt = 0.01, Hlt-varying families is
shown on the left. The evolution of Hlt as a function of T is shown on the right.

Six Hlt-varying families with identical thrust parameters are constructed in vicinity of the E2.
The graphical projection of these families can be found in Figure 13, their bifurcation diagrams
are shown in Figure 14 whereas the evolution of their saddle stability index and Hamiltonian is
presented in Figure 15. Inspection of Figures 13-15 reveal that a small acceleration magnitude
has an identical effect on families emanating from E2 as on families that emanate from E1. The
geometry of the libration point orbit families is distorted by a lobe whose direction depends upon
the orientation of the acceleration. The bifurcation diagram remains qualitatively identical implying
that halo and axial libration point orbits exist in vicinity of E2. The maximum unwinding behaviour
is found near the artifical equilibria and the Hamiltonian and orbital period increase monotonically
along these families.

Figure 13. Six Hlt-varying families at alt = 0.01 for different ↵ values in vicinity
of E2. The color of an LTPO corresponds to its Hamiltonian value according to the
colorbar located on the right side.
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Figure 14. Bifurcation diagram of the six Hlt-varying families at alt = 0.01 for
different ↵ values in vicinity of E2.
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Figure 15. The evolution of ⌫1 over the E2, alt = 0.01, Hlt-varying families is
shown on the left. The evolution of Hlt as a function of T is shown on the right.

alt = 0.05 families The effect of a medium low-thrust acceleration on the orbit geometry of
periodic motion in vicinity of E1 can be observed from Figure 16. While the acceleration is par-
allel with the x-axis, no clear differences can be observed with respect to the natural L1 family in
Figure 7. This cannot be said from the Hlt-varying families with an acceleration orientation that
is not aligned with the x-axis. The geometry of these families is distorted in such a way that they
take on an ’ear-like’ shape. The lobe of the ↵ = 5

3⇡ family even reaches twice as far in y-direction
relative to the ballistic L1 family. The bifurcation diagrams of these six Hlt-varying families, shown
in Figure 17, reveal two interesting phenomena. First of all, the qualitative nature of the bifurca-
tion behaviour remains identical with respect to the ballistic families for the ↵ = [0, 1

3⇡, ⇡, 5
3⇡]

families. This suggests the existence of low-thrust axial and halo orbits. The existence of these
spatial solutions is also suggested for the ↵ = [23⇡, 4

3⇡] families from the two tangent bifurcations
but a period-doubling bifurcation is not observed here. Analysis of the saddle stability index, dis-
played in Figure 18, reveals that the maximum hyperbolic unwinding behaviour remains maximum
near the equilibria but does not monotonically decrease for the ↵ = [13⇡, 5

3⇡] families. This fig-
ure also demonstrates that all six Hlt-varying families with alt = 0.05 in vicinity of E1 increase
monotonically in Hamiltonian and orbital period.
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Figure 16. Six Hlt-varying families at alt = 0.05 for different ↵ values in vicinity
of E1. The color of an LTPO corresponds to its Hamiltonian value according to the
colorbar located on the right side. The family with ↵ =

1
3
⇡ is terminated earlier with

respect to the ↵ =
5
3
⇡ family due to instabilities in the collocation algorithm.

Figure 17. Bifurcation diagram of the six Hlt-varying families at alt = 0.05 for
different ↵ values in vicinity of E2. The family with ↵ =

1
3
⇡ is terminated earlier

with respect to ↵ =
5
3
⇡ due to instabilities in the collocation algorithm.
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Figure 18. The evolution of ⌫1 over the E1, alt = 0.05, Hlt-varying families is
shown on the left. The evolution of Hlt as a function of T is shown on the right.

Six Hlt-varying families with identical thrust parameters are constructed in vicinity of the E2 con-
tour. The graphical projection of these families can be found in Figure 19, corresponding bifurcation
diagrams are shown in Figure 20 whereas evolution of the saddle stability index and Hamiltonian
over these families is shown in Figure 21. Inspection of Figures 19-21 reveals that a medium low-
thrust acceleration has a similar effect on Hlt families in vicinity of the E2 contour as on periodic
solutions emanating from the E1 contour. As long as the acceleration vector remains parallel with
the x-axis. The geometry of the low-thrust periodic solutions remains similar to the L2 ballistic
family. Off-axis acceleration orientations give rise to ’ear-shaped’ families that curve around the
Moon and even the ballistic L1 Lagrangian point.

a 0 a

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

0.0 0.5 1.0 1.5 0.0 0.5

a = ir a

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

0.0 0.5 1.0 1.5 0.0 0.5
x

3
--1.425

1.5

--1.450

--1.475

--1.500

--1.525

--1.550

--1.575

--1.600

--1.625

1.5 0.0 0.5 1.0 1.5

Figure 19. Six Hlt-varying families at alt = 0.05 for different ↵ values in vicinity
of E2. The color of an LTPO corresponds to its Hamiltonian value according to the
colorbar located on the right side.

The qualitative bifurcation behaviour of the ↵ = [0, 1
3⇡, ⇡, 5

3⇡] families remains identical to the
ballistic L2 family since two tangent bifurcations and one period-doubling bifurcation are observed
in Figure 20. These bifurcations suggest the existence of low-thrust axial, halo, and double-period
families for these acceleration orientations. The bifurcation behaviour of the ↵ = [23⇡, 4

3⇡] Hlt-
varying families however is qualitatively different from the ballistic L2 H-L family. Inspection of
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their bifurcations diagrams reveal that these two families possess two tangent fold bifurcation after
which the magnitude of all six characteristic multipliers goes to unity at the extremum of the family
Hamiltonian. This indicates a cyclic-fold bifurcation and although it changes the linear order of
instability it does not imply a new family of periodic solutions.27 Besides these tangent and cyclic-
fold bifurcations, three period-doubling bifurcations occurs towards the end of the families. The
totality of these bifurcations imply that low-thrust halo, axial, and multiple double-period families
bifurcate from the investigated families.

Figure 20. Bifurcation diagram of the six Hlt-varying families at alt = 0.05 for
different ↵ values in vicinity of E2.

Figure 21 displays the evolution of the saddle stability index and Hamiltonian over the six E2,
alt = 0.05, Hlt-varying families. Inspection of this figure reveals that the hyperbolic unwinding
behaviour remains maximum near the equilibria but does not monotonically decrease over the ↵ =
[13⇡, 5

3⇡] families and even increases during the second half of the ↵ = [23⇡, 4
3⇡] families. The

orbital period increases monotonically for all six families which can also be said for the Hamiltonian
of the ↵ [13⇡, 2

3⇡, ⇡, 4
3⇡, 5

3⇡] families. An extremum in Hamiltonian (Hlt,max = �1.482005956) is
encountered at the 1265th member of the ↵ [23⇡, 4

3⇡] families.
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Figure 21. The evolution of ⌫1 over the E2, alt = 0.05, Hlt-varying families is
shown on the left. The evolution of Hlt as a function of T is shown on the right.
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alt = 0.1 families The effect of a large low-thrust acceleration on the orbit geometry of periodic
solutions emanating from E1 can be observed from Figure 22. Whereas the ↵ = 0 family has a
similar geometry as the ballistic L1 H-L family, this cannot be said for the ↵ = ⇡ family. The orbits
belonging to this family curve around the Moon in a similar fashion as the ballistic L2 family. The
geometry of the ↵ = 0[13⇡, 2

3⇡, 4
3⇡, 5

3⇡] family take on an ’ear-like’ shape.
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Figure 22. Six Hlt-varying families at alt = 0.1 for different ↵ values in vicinity
of E1. The color of an LTPO corresponds to its Hamiltonian value according to the
colorbar located on the right side. The family with ↵ =

4
3
⇡ is terminated earlier with

respect to the ↵ =
2
3
⇡ family due to instabilities in the collocation algorithm.

The bifurcation diagrams of these families are presented in Figure 24. The bifurcation behaviour
of the ↵ = [0, ⇡] families remains qualitatively identical to the ballistic L1 H-L family. This
cannot be said for families with off-axis acceleration orientations. The ↵ = [13⇡, 4

3⇡, 5
3⇡] Hlt-

varying families possess two tangent bifurcations before termination of the numerical continuation
procedure. The ↵ = 2

3⇡ Hlt-varying family however possesses two tangent bifurcations. one
cyclic-fold bifurcation and three period-doubling bifurcation. The two tangent bifurcations that are
present in each family implies the existence of low-thrust halo and axial orbits whereas the three
period-doubling bifurcations suggest the existence multiple double-period families at ↵ = 2

3⇡.
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Figure 23. The evolution of ⌫1 over the E1, alt = 0.10, Hlt-varying families is
shown on the left. The evolution of Hlt as a function of T is shown on the right.
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Figure 24. Bifurcation diagram of the six Hlt-varying families at alt = 0.10 for
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Figure 25. Six Hlt-varying families at alt = 0.1 for different ↵ values in vicinity
of E2. The color of an LTPO corresponds to its Hamiltonian value according to the
colorbar located on the right side.
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Analysis of the saddle stability indices, shown in Figure 23, reveal that the unwinding behaviour
is maximum near the equilibria at for all six families. ⌫1 decreases monotonically over the family
for each acceleration orientation apart from ↵ = 2

3⇡ where an extremum in Hamiltonian occurs
(Hlt,max = �1.481275691) is encountered at the 659th member. The orbital period however in-
creases monotonically over the six families.

The final families discussed in this section concern six E2, Hlt-varying families with alt = 0.1
and varying acceleration orientations. The impact of this acceleration magnitude on the geometry
of the periodic solution family can be observed in Figure 25. Similar to the previous discussed
sets of periodic solution families, the families with an acceleration orientation parallel with the
x-axis possess a similar geometry as the ballistic L2 H-L family. This cannot be said for off-axis
acceleration orientations which leads to ’ear-like’ shaped families. These families curve well beyond
the moon in case ↵ =[13⇡, 5

3⇡]. The bifurcation diagrams of these families are presented in Figure
26.

Figure 26. Bifurcation diagram of the six Hlt-varying families at alt = 0.10 for
different ↵ values that emanate from E2. The family with ↵ = 2

3⇡ is terminated
earlier with respect to ↵ = 4

3⇡ due to instabilities in the collocation algorithm.

The bifurcation behaviour of the ↵ = [0, ⇡] families remains qualitatively identical to the bal-
listic L2 H-L family as these families possess two tangent bifurcations and one period-doubling
bifurcation. A total of nine bifurcations occur along the ↵ =[13⇡, 5

3⇡] families. The first two bi-
furcations are tangent bifurcations which imply the existence of the halo and axial families at these
acceleration orientations. The third bifurcation occurs at a local extremum and therefore classifies
as a cyclic-fold bifurcation. The remaining five bifurcations are all period-doubling bifurcations
apart from second-last bifurcation that classifies as a tangent bifurcation. Finally, five bifurcations
appear at the ↵ =[23⇡, 4

3⇡] families which have are if the same type as the first five bifurcations of
the ↵ =[13⇡, 5

3⇡] families.
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The evolution of the saddle stability index and Hamiltonian over these six families can be found
in Figure 27. It suggests that the maximum unwinding behaviour of the ↵ = [0, 1

3⇡,⇡, 5
3⇡] family

remains near the equilbria whereas the maximum unwinding behaviour of ↵ = [23⇡, 4
3⇡] occurs at

the final member of the family. Two extrema in Hamiltonian are observed in the ↵ = [13⇡, 5
3⇡]

whereas one extremum is present in the ↵ = [23⇡, 4
3⇡] families. These latter two families are the

only Hlt-varying families that possess a local extremum in the orbital period.
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Figure 27. The evolution of ⌫1 over the E2, alt = 0.10, Hlt-varying families is
shown on the left. The evolution of Hlt as a function of T is shown on the right.

This section investigated the geometry, bifurcations and hyperbolic unwinding behaviour of thirty-
eight Hlt-varying families which provides the reader with an initial understanding of the periodic
solution structure of the CR3BP-LT. The geometry of the low-thrust periodic solution family is
heavily distorted with respect to the natural H-L geometry in case the low-thrust acceleration ori-
entation is not parallel to the x-axis. An off-axis acceleration orientation also introduces numerous
additional bifurcations of which the majority hints towards the existence of families with twice the
orbital period they emanate from. Finally, the hyperbolic unwinding behaviour is also affected by
the low-thrust acceleration. The maximum unwinding behaviour in vicinity of E1 was found at the
first member of the E1, alt = 0.1, ↵ = ⇡ family with a saddle stability index of ⌫1,max = 1487,
which is approximately 11% higher compared to the maximum saddle stability index of the ballistic
L1 H-L family. The maximum unwinding behaviour in vicinity of E2 was found at the first member
of the E1, alt = 0.1, ↵ = 0 family with a saddle stability index of ⌫1,max = 1195, which is 64%
higher than the maximum saddle stability index of the ballistic L2 H-L family.

Acceleration-varying libration point orbit families

While the Hlt-varying families provide an initial understanding of the CR3BP-LT, it remains
difficult to characterize the effect of the low-thrust acceleration. To investigate the effect of a low-
thrust acceleration magnitude, alt-varying families are investigated that in vicinity of the E1 and
E2 contour for six different acceleration orientations ↵ = [0, 1

3⇡, 2
3⇡, ⇡, 4

3⇡, 5
3⇡]. Every libration

point orbit belonging to one of these twelve families has the same low-thrust Hamiltonian value
(Hlt = �1.525). The graphical projections of the six alt-varying families in vicinity of the E1

contour can be found in Figure 29 whereas the evolution of the saddle stability T over the families
can be found in Figure 28.
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Figure 28. The evolution of ⌫1 over the E1, Hlt = �1.525, alt-varying families is
shown on the left. The evolution of T as a function of alt is shown on the right.
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Figure 29. Six alt-varying families at Hlt = �1.525 for different ↵ values in vicinity
of E1. The color of an LTPO corresponds to its acceleration magnitude according to
the colorbar located on the right side.

The alt-varying families in Figure 29 reveal that the acceleration magnitude has various effects
on the orbit geometry depending upon its orientation. The ↵ = 0 family shows that an increase in
an acceleration magnitude orientated in the x-axis results in a larger low-thrust periodic solution.
The opposite effect is observed for in with ↵ = ⇡ family where an increase in acceleration results
in a smaller low-thrust periodic solution. The ↵=[13⇡, 5

3⇡] families show how the ballistic H-L orbit
morphs into an ’ear-shaped’ periodic solution with an increase in acceleration magnitude. These
geometry distortions are not observed for ↵=[23⇡, 4

3⇡] where an increase in acceleration magnitude
leads to a slight deformation of the low-thrust periodic solutions. Inspection of the saddle stability
indices in Figure 28 show that the rate of the hyperbolic unwinding behaviour monotonically in-
creases with a growing acceleration magnitude for ↵ = [23⇡, ⇡, 4

3⇡]. The saddle stability indices
of the remaining families attain a first attain a local minimum before the hyperbolic unwinding be-
haviour increases. Depending upon the acceleration orientation, the orbital period monotonically
increases or decreases with an increasing acceleration magnitude.

The alt-varying families in vicinity of the E2 are investigated in the remainder of this section.
Figure 31 shows graphical projections of theses six families whereas the evolution of the saddle
stability index and orbital period can be found in Figure 30.
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Figure 30. The evolution of ⌫1 over the E2, Hlt = �1.525, alt-varying families is
shown on the left. The evolution of T as a function of alt is shown on the right.
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Figure 31. Six alt-varying families at Hlt = �1.525 for different ↵ values in vicinity
of E2. The color of an LTPO corresponds to its acceleration magnitude according to
the colorbar located on the right side.

Inspection of Figures 31 and 30 reveal the the acceleration magnitude has an identical effect on
families emanating from the E2 contour as families emanating from the E1 contour.

Orientation-varying libration point orbit families

The Hlt-varying and alt-varying families show that the periodic solutions characteristics can
widely vary due to a change in acceleration orientation. To characterize the effect of this parameter,
↵-varying families are constructed in vicinity of the E1 and E2 contour. Per contour, ↵-varying
families are constructed at three distinct acceleration magnitudes (alt = [0.01, 0.05, 0.10]) and three
low-thrust Hamiltonian values (Hlt =[�1.55, �1.525, �1.50]) which results in nine ↵-varying
periodic solution families per contour. The geometries of the nine ↵-varying families in vicinity of
the E1 contour are shown in Figure 33 whereas the evolution of the saddle stability index and orbital
period over these families is presented in Figure 32.
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Figure 32. The evolution of ⌫1 over the E1, ↵-varying families is shown on the left.
The evolution of T as a function of ↵ is shown on the right.

The planar projections in Figure 33 show that the degree of geometry with respect to the ballistic
L1 H-L family depends upon the acceleration orientation. This effect even leads to the ’ear-shaped’
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periodic solutions that curve beyond P1. The bottom three subplots and the middle right subplot
display asymmetric behaviour which are caused by instabilities of the collocation procedure and
are not a feature of the dynamical model. These asymmetries are also clearly visible in Figure 32.
However, it observed that the stability indices reaches a maximum at ↵ = ⇡ or at the orientation
closest to ↵ = ⇡ for periodic solution families that do not exist over the complete domain of
acceleration orientations (↵ 2 [0, 2⇡]).
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Figure 33. Nine ↵-varying families at different alt and Hlt values emanating from
E1. The color of an LTPO corresponds to its acceleration magnitude according to
the colorbar provided on the right side of the Figure. The asymmetry observed in
the middle right plot (6.) and bottom plot (7., 8., 9.) is caused by instabilities in the
continuation procedure

Similar conclusions can be drawn from the analysis of the ↵-varying families in vicinity of the
E2 contour. Their planar projections, shown in Figure 34 reveal the existence of ’ear-shaped’ LTPO
which curve beyond the Earth. Inspection of their saddle stability indices, shown in Figure 35, reveal
that the maximum unwinding behaviour of the ↵-varying families attain a maximum at ↵ = ⇡ or
at the orientation closest to ↵ = ⇡ for periodic solution families that do not exist over the complete
domain of acceleration orientations (↵ 2 [0, 2⇡). It should be noted that asymmetries are also
observed in ↵-varying families in vicinity of the E2 contour which are caused by instabilities of the

25



collocation algorithm. Furthermore, the majority of the E2-families could not be fully computed
due to the earlier mentioned instabilities.
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Figure 34. Nine ↵-varying families at different alt and Hlt values emanating from
E2. The color of an LTPO corresponds to its acceleration magnitude according to
the colorbar provided on the right side of the Figure. The asymmetry observed in the
bottom left plot (7.) is caused by instabilities in the continuation procedure
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Figure 35. The evolution of ⌫1 over the E2, ↵-varying families is shown on the left.
The evolution of T as a function of ↵ is shown on the right.
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CONCLUSIONS

This paper explores the effect of a constant low-thrust acceleration on the equilibria and horizontal
Lyapunov orbits in the Earth-Moon CR3BP. These effects can be characterized by investigating the
dynamics of a combined multi-body low-thrust model developed in previous work.9–11

The planar low-thrust equilibria, obtained via a multivariate relaxed Newton-Rapshon root-finder,
show that the low-thrust acceleration can significantly shift the position of the natural Lagrangian
points. These positional changes can lead to a qualitative change in the linear stability of the equi-
libria and increase (decrease) the rate of hyperbolic unwinding behaviour as the equilibria moves
towards (away from) the primary and secondary body.

Families of low-thrust horizontal Lyapunov orbits are constructed in vicinity of L1 and L2 via
numerical continuation methods that are driven by a 12th order Legendre-Gauss-Lobatto collocation
method. Employing the low-thrust Hamiltonian, acceleration magnitude, and acceleration orienta-
tion as bifurcation parameters give rise to three types of periodic solution families. Analysis of
the geometry, bifurcations, and hyperbolic unwinding behaviour of these three family types allows
characterization of the bifurcation parameters’ effect on the ballistic horizontal Lyapunov families
in an isolated fashion. Thirty-six low-thrust Hlt-varying families have been generated in vicinity of
L1 and L2 for three distinct acceleration magnitudes and six acceleration orientations. Inspection
of their geometry reveals that the ballistic horizontal Lyapunov shape is preserved while the accel-
eration orientation is aligned with the x-axis of the synodic frame whereas geometry distortions are
observed whenever this is not the case. The degree of deformation is proportional to the low-thrust
Hamiltonian and acceleration magnitude and can be so extreme that ’ear-shaped’ low-thrust peri-
odic solutions arise. Analysis of the bifurcation behaviour implies the existence of low-thrust halo
and low-thrust axial periodic solution families for all Hlt-varying families. Hlt-varying families
with alt = 0.01 show identical bifurcation behaviour with respect to the ballistic orbits but addi-
tional cyclic-fold and period-doubling bifurcations are observed at higher acceleration magnitudes.
Inspection of the saddle stability indices of the Hlt-varying families reveal the existence of periodic
solutions with a higher hyperbolic unwinding rate compared to the ballistic horizontal Lyapunov
families. In vicinity of L1 (L2), an LTPO is identified with an hyperbolic unwinding rate that is
11% (64%) higher compared to the maximum hyperbolic unwinding rate of the ballistic L1 (L2)
family. The invariant manifolds emanating from these orbits might provide the opportunity for more
novel transfer solutions in the Earth-Moon system.

Analysis of the alt-varying families confirm that the degree of geometry distortion is proportional
to the acceleration magnitude. A low-thrust acceleration in the direction of the positive x-axis is
associated with an increase in amplitude while the opposite orientation is associated with a decrease
in amplitude. These findings are confirmed by inspection of the ↵-varying families which emphasize
that the degree of geometry distortion heavily depends upon the acceleration orientation. Inspection
of the saddle stability indices of the alt-varying families reveal that the maximum rate of hyperbolic
unwinding behaviour for a certain low-thrust Hamiltonian consistently occurs in the families with
↵ = ⇡ rad. A similar conclusion can be drawn from the saddle stability indices of the ↵-varying
families as the maximum rate of hyperbolic unwinding behaviour of a single ↵-varying family
consistently occurs at the family member whose acceleration orientation is (closest to) ↵ = ⇡ rad.

The families of low-thrust periodic solutions provided in this paper allow initial characterization
of the effect of a constant low-thrust acceleration on horizontal Lyapunov orbits in the Earth-Moon
CR3BP. The totality of presented periodic solution families scratch the surface of the low-thrust
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periodic solution structure of the Earth-Moon CR3BP-LT. Improved numerical continuation algo-
rithms are needed to further explore the largely unknown periodic solution of the CR3BP-LT.

NOTATION

↵ In-plane angle of the low-thrust acceleration vector (rad)
� Out-of-plane angle of the low-thrust acceleration vector (rad)
✓ In-plane rotation angle between inertial and synodic reference frame (rad)
 Angle between positive x-axis of synodic frame and r13 vector (rad)
� Eigenvalue (�)
µ Mass ratio parameter of the CR3BP(-LT) (�)
⌫ Stability index
� State transition matrix (�)
⌦ Pseudo-potential (�)

Ā State propagation matrix (�)
ālt Acceleration vector (�)
alt Dimensionless acceleration magnitude (�)
C Jacobi integral (�)
Ei Equilibria contour (�)
F Dimensional thrust force (kN )
f Dimensionless thrust force (N )
g0 Gravitational acceleration at sea level (s)
H Hamiltonian (�)
Ī Identity matrix (�)

Isp Specific impulse (s)
Li Lagrangian point i of the CR3BP (�)
l⇤ Characteristic length of CR3BP(-LT) (km)

Mi Dimensional mass of body i (kg)
m Dimensionless mass of P3 (�)
Pi Body in the three-body problem (�)
rij Position vector from body i to body j (�)
T Orbital period (�)
t⇤ Characteristic time of the CR3BP(-LT) (s)
ū Acceleration orientation vector (�)
V Velocity magnitude in the rotating frame (�)

x,y,z synodic reference frame position coordinates (�)
X,Y,Z Inertial reference frame position coordinates (�)

eq Equilibrium
lt Low-thrust

nat Natural
x,y,z Partial derivative with respect to the synodic position coordinates

˙ First time derivative
¨ Second time derivative
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CR3BP Circular restricted three-body problem
CR3BP-LT Low-thrust circular restricted three-body problem

SPM State propagation matrix
ZAC Zero acceleration contour

APPENDIX A: LOW-THRUST PROPULSION SYSTEM CHARACTERISTICS

This research considers dimensionless thrust magnitudes f 2 [0.0, 0.1] since this is in line with
the capabilities of current low-thrust propulsion technology as shown in Table 1.

Table 1. Overview of today’s state of low-thrust propulsion technology.
Spacecraft Propulsion type F (mN ) M3,0 (kg) f (�) Isp (s) ṁ (�)
Deep Space29 Ion thruster 92.0 486 6.95 · 10�2 1900 - 3200 2.61 · 10�3

Hayabusa30 Ion thruster 72.0 510 5.17 · 10�2 2760 - 3000 1.94 · 10�3

Hayabusa 231 Ion thruster 84.0 609 1.73 · 10�2 2400 - 2750 1.90 · 10�3

Dawn32 Ion thruster 92.7 1218 2.79 · 10�2 1740 - 3065 1.04 · 10�3

NEXT33 Ion thruster 236 1218 7.10 · 10�2 4190 2.67 · 10�3

Lunar Icecube34 Ion thruster 1.0 14 2.62 · 10�2 2500 1.50 · 10�4

SMART-I35 Ion thruster 70.0 350 7.33 · 10�2 1600 2.75 · 10�3

Sunjammer36 Solar sailing 8.0 32 9.16 · 10�2 not applicable

Table 1 allows the reader to get an idea of the kind of propulsion systems involved in this study.
Looking at the specific impulse column, it can be observed that some missions have a range of pos-
sible specific impulses whereas some missions have a fixed specific impulse. This can be adressed
to the fact that some propulsion systems have throttling capability. This addendum is concluded
with the notion that parts of Table 1 have been obtained from.11

APPENDIX B: SENSITIVITY ANALYSIS VARIABLE MASS

This research employs several assumptions that simplify the dynamics of the CR3BP-LT to en-
sure the existence of an integral of motion. Whereas the feasibility of a constant low-thrust force
magnitude and orientation largely depend upon the selected electric propulsion system, a constant
spacecraft mass cannot be realized as this type of propulsion generates thrust by expelling propel-
lant at a high velocity. This Appendix tests the feasibility of ṁ = 0 by numerically verifying the
original justification of this assumption.11

The reasoning behind the constant mass assumption is that if a varying spacecraft mass has a
negligible effect on ālt, the low-thrust Hamiltonian can be reasonably assumed constant. The effect
of a varying mass on ālt can be investigated via the time derivative of ālt which is shown in Eq
(16).11

˙̄alt = �fṁ

m2
û = �a

2
lt

l⇤
Ispg0t⇤

û (16)

Previous literature11 compares the derivative magnitude with the natural energy range of the
CR3BP, defined as �Hnat = Hnat(L5) � Hnat(L1) ⇡ 0.100172, to determine if ālt and Hlt can
be assumed constant. The third column of Table 2 provides a numerical example that shows that the
derivative magnitude is 0.34% of the natural energy range when considering a low energy efficiency
and high acceleration magnitude. Literature11 considers this as enough proof to assume ālt and Hlt

29



as constant quantities. This assertion is verified by simulating the trajectories of three satellites,
situated on different low-thrust horizontal Lyapunov orbits, for one orbital period while assuming
ṁ > 0. The first trajectory (test case 1) is the final member of the L1 (alt = 0.01, ↵ = 0 rad)
Hlt-varying family whereas the second (test case 2) and third (test case 3) trajectory are the final
member of the L1 (alt = 0.05, ↵ = 0) Hlt-varying family and E1 (alt = 0.10, ↵ = 0) Hlt-varying
family respectively. Table 2 shows the orbit characteristics, full-period state deviations, and �Hlt

after one orbital revolution. Test case 3 is visualized in Figure 36.

Variable Unit Literature11 Test case 1 Test case 2 Test case 3
alt [-] 0.07 0.01 0.05 0.1
↵ [rad] - 0 0 0
Isp [s] 1500 1500 1500 1500
Hltstart [-] - -1.462010 -1.487190 -1.522927
T [-] - 6.537957 6.347544 6.062807
�Hltfamily

[-] - 0.140525 0.148713 0.147015
�Hltnat [-] 0.100172 0.100172 0.100172 0.100172
�a

2
lt

l⇤
Ispg0t⇤

[-] 3.412839 ·10�4 6.964977 ·10�6 1.741244 ·10�4 6.964977 ·10�4

||�R̄|| [-] - 4.653406 ·10�3 1.275210 ·10�1 4.706526 ·10�1

||�V̄ || [-] - 2.276086 ·10�3 8.488162 ·10�2 3.726720 ·10�1

Hltperiod
[-] - -1.462049 -1.488152 -1.526636

�a
2
lt

l⇤
Ispg0t⇤

/�Hltnat [%] 3.4 ·10�1 7.0 ·10�3 1.7 ·10�1 6.9 ·10�1

|Hltperiod
�Hltstart |

�Hltnat
[%] - 3.8 ·10�2 9.6 ·10�1 3.7

|Hltperiod
�Hltstart |

�Hltfamily
[%] - 2.8 ·10�2 6.4 ·10�1 2.5

Table 2. Verification of the constant mass assumption. The first five rows show the properties of the
spacecraft and libration point orbit. The sixth and seventh column show the energy ranges of the Hlt-
varying family and the CR3BP. The eight row shows the magnitude of acceleration time derivative.
The full-period state discrepancies are presented in ninth and tenth row. The eleventh row shows the
magnitude of acceleration time derivative as a percentage of the natural energy range. The final two
rows express the low-thrust Hamiltonian deviation over one revolution as a percentage of the natural
energy and periodic solution family energy range.

The results in Table 2 confirm that ālt and Hlt can reasonably be considered as constant quantities
since the Hamiltonian of a low-thrust libration point orbit only deviates 3.7% with respect to the
natural energy range when assuming the highest possible acceleration magnitude and a low engine
efficiency.
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Figure 36. Propagation of a spacecraft with constant and varying mass (Isp = 1500

s) situated on a L1 (alt = 0.01, ↵ = 0 rad, Hlt ⇡ �1.462010) low-thrust Hori-
zontal Lyapunov orbit. The upper left figure shows the trajectory whereas the upper
right plot shows Hlt evolution as a function of time. The lower left plot shows the
spacecraft mass as a function of time whereas the lower right plot presents the Hlt
derivatve as a function of the spacecraft mass.

REFERENCES
[1] R. Bonnet and F.Felici, “Overview of the SOHO mission,” Advances in Space Research, Vol. 20, No. 12,

1997. doi: https://doi.org/10.1016/S0273-1177(97)00894-6.
[2] J. Tauber, “The Planck mission,” Advances in Space Research, Vol. 34, No. 3, 2004. doi:

https://doi.org/10.1016/j.asr.2003.05.025.
[3] R. Whitley and R. Martinez, “Options for staging orbits in cislunar space,” IEEE Aerospace Conference,

2016. doi: 10.1109/AERO.2016.7500635.
[4] M. Ozimek and K. H. D. Grebow, “Solar Sails and Lunar South Pole Coverage,” AIAA/AAS Astrody-

namics Specialist Conference, Honolulu, Hawaii, 2008. doi: https://doi.org/10.2514/6.2008-7080.
[5] E. Doedel, V. Romanov, R. Paffenroth, H. Keller, D. Dichmann, J. Gálan, and A. Vander-

bauwhede, “Elemental periodic orbits associated with the libration points in the circular restricted
3-body problem,” International Journal of Bifurcation and Chaos, Vol. 18, No. 7, 2011. - DOI:
10.1142/S0218127407018671.

[6] W. Koon, M. Lo, J. Marsden, and S. Ross, Dynamical Systems, The Three-Body Problem and Space

Mission Design. New-York: Springer-Verlag, 2007. - ISBN: 978-0387495156.
[7] P. Verrier, T. Waters, and J. Sieber, “Evolution of the L1 Halo family in the radial solar sail CRTBP,”

Celestial Mechanics and Dynamical Astronomy, Vol. 120, No. 4, 2014. doi: 10.1007/s10569-014-9575-
2.

[8] J. Heiligers, M. Macdonald, and J. Parker, “Extension of Earth-Moon libration point orbits with solar
sail propulsion,” Astrophysics and Space Science, Vol. 361, 2016. DOI: 10.1007/s10509-016-2783-3.

[9] A. Cox, K. Howell, and D. Folta, “Dynamical Structures in a Combined Low-Thrust Multi-Body Envi-
ronment,” Advances in the Astronautical Sciences Series, Vol. 162, 2017. ISBN: 978-0-87703-646-3.

[10] D. F. A. Cox, K. Howell, “Transit and Capture in the Planar Three-Body Problem Leveraging Low-
Thrust Dynamical Structures,” AAS/AIAA Space Flight Mechanics Conference, Honolulu Hawaii, jan
2019.

31



[11] A. Cox, K. Howell, and D. Folta, “Dynamical structures in a low-thrust, multi-body model with appli-
cations to trajectory design,” Celestial Mechanics and Dynamical Astronomy, Vol. 131, feb 2019.

[12] V. Szebehely, Theory of Orbits. Academic Press, 1967. - ISBN: 978-0-12-395732-0.
[13] K. Kumar, Y. Abdulkadir, P. Barneveld, F. Belien, S. Billemont, E. Brandon, M. Dijkstra, D. Dirkx,

F. Engelen, D. Gondelach, L. Ham, E. Heeren, E. Iorfida, E. Leloux, J. Melman, E. Mooij, P. Musegaas,
R. Noomen, S. Persson, B. Romgens, A. Ronse, T. Secretin, B. Tong-Minh, and J. Vandamme, “Tudat: a
modular and robust astrodynamics Toolbox.,” Fifth ICATT, International Conference on Astrodynamics

Tools and Techniques, 2012, pp. 1–8.
[14] E. Ott, Chaos in Dynamical Systems. Cambridge University Press, 1993. - ISBN: 978-0521010849.
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A
Physical constants and algorithm

parameters

This adjunct presents all constants and parameters that have been used to produce the work in Chapter 1.
Section A.1 discusses the constants that define the dynamics of the physical model while Section A.2 presents
the settings of the algorithm responsible for the generation of the equilibria contours and libration point orbit
(l.p.o) families. In case one wishes to reproduce the results in the TU Delft Astrodynamics Toolbox (TUDAT)
development environment[12], the reader is advised to contact the author or thesis supervisor for a complete
copy of the code1. Given that the reader wishes to reproduce the results outside the TUDAT environment, the
remainder of this Chapter provides an exhaustive list of the constants and parameters used during this thesis
project.

A.1. Physical constants
The low-thrust circular restricted three-body problem (CR3BP-LT) model is a combination of the natural
circular restricted three-body problem (CR3BP) and a low-thrust force. The CR3BP is fully defined by the
mass ratio parameter, which can be computed via Equation A.1.

µ= µMoon

µE ar th +µMoon
(A.1)

The symbols on the right hand side denote the gravitational parameters of the primary and secondary body.
The values of these parameters are listed in Table A.1.

Due to a presence of a low-thrust force in the CR3BP-LT, three additional physical constants are needed to
fully parametrize the dynamical model. Two of these parameters are the characteristic length, (i.e. semi-
major axis) and characteristic time (i.e. inverse of the system’s mean motion). The latter follows directly from
the former via Kepler’s third law, shown below in Equation A.2.

t§ =

s
l 3
§

µE ar th +µMoon
(A.2)

The final physical constant is the gravitational acceleration at sea-level. The values of these variables have
been obtained directly from TUDAT and [25] and are listed in Table A.1. It should be emphasized that propul-
sion system characteristics of the spacecraft are also necessary to parametrize the CR3BP-LT model. These
variables are regarded as mission-specific variables rather than fundamental physical constants of the CR3BP-
LT model. An overview of the adopted propulsion system characteristics can be found in Chapter 1 of this
report.

1S.H.F. Martens: shfmartens@gmail.com
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Symbol Description Value Unit
µ Mass ratio parameter 1.2150581017337 ·10°2 [-]
µE ar th Earth gravitational parameter 3.986004418 ·1014 [m3s°2]
µMoon Moon gravitational parameter 4.9027988158612 ·1012 [m3s°2]
l§ Characteristic length 3.84400 ·105 [km]
t§ Characteristic time 4.354369171925 ° [days]
g0 Gravitational acceleration at sea level 9.80665 ° [m · s°2]

Table A.1: Fundamental physical constants of the Earth-Moon CR3BP-LT model. All values have been directly adopted from TUDAT or
[25].

A common approach to simplify analysis in multi-body models like the CR3BP-LT is nondimensionalization
of the dynamics. A disadvantage of dimensionless variables is that their values are difficult to interpret. Table
A.2 overcomes this problem by providing the relation between the dimensionless and dimensional values.

Symbol Description Value Unit Dimensionless Value
x Position 3.84400 ·105 [km] 1
t Time 2.7359308403075 ·101 [days] 2º
ẋ Velocity 1.0245468537379 ° [km · s°1] 1

Table A.2: A representation of the dimensionless quantities of position, time, and velocity in the Earth-Moon CR3BP-LT.

The constants summarized in Table A.1 and A.2 fully establish CR3BP-LT dynamical model.

A.2. Algorithm settings for orbit generation
The results presented in Chapter 1 of this report have been obtained by employing techniques with specific
settings. This section provides an exhaustive overview of the adopted settings of these numerical methods.

A.2.1. Integrator settings
The Runge-Kutta-Fehlberg 7(8) (RKF78) method is one of two numerical integration techniques that have
been deployed in this thesis project. The RKF78 is an essential techniques in this work since it is employed in
every step of l.p.o family construction process. An extensive discussion on the fundamentals of this technique
can be found in Appendix B. TUDAT is equipped with a RKF78 integrator so the user is only concerned with
selection of the integrator settings. Both the integrator settings and the integrator overshoot procedure are
based on the work of [25] and can be found below in Table A.3. These settings have proven to allow the
construction of l.p.o families in the CR3BP with near machine-precision.

Symbol Value Unit Description
h0 1.0 ·10°5 [-] Initial stepsize
hmi n ≤m [-] Minimum stepsize
hmax 1.0 ·10°4 [-] Maximum stepsize
≤abs 1.0 ·10°24 [-] Absolute error tolerance
≤r el ≤m ·102 [-] Relative error tolerance

Overshoot procedure
i 6.0 - 12.0 [-] Step size control parameter
hmi n 1.0 ·10°i [-] Minimum stepsize
hmax 1.0 ·10°i+1 [-] Maximum stepsize

Table A.3: Parameter settings of the RKF7(8) used for trajectory propagation in CR3BP-LT. The settings have been obtained from [25].

In the Table above, ≤m denotes the machine epsilon. This variable is defined as the smallest quantity that can
be added to number such that the machine interprets it as another number [2]. It’s value is given below in
Equation A.3.

≤m º 2.2204460492503 ·10°16 (A.3)
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The other numerical integration method employed in this thesis project is the 12th order Legendre-Gauss-
Lobatto (LGL) collocation scheme. An extensive discussion on this method is provided in Appendix B. Con-
trary to the RK7(8) procedure, this method is built from scratch and the parameter settings, obtained via a
trial-and-error procedure, are shown below in Table A.4.

Symbol Value Unit Description
5 [°] Initial number of nodes

eimax 1.0 ·10°9 [°] Maximum error tolerance per segment
¢ei 1.0 ·10°12 [°] Error equidistribution criterium

Table A.4: 12th order Legendre-Gauss-Lobatto collocation methods parameter settings.

A.2.2. Settings for equilibria generation
The construction of the equilibria contours relies on a multivariate Newtown-Raphson (NR) root-finding
method. An elaborate discussion on this method is provided in Appendix C. The settings of the root-finding
procedure have been determined via a trial-and-error procedure resulting in robust performance as long as
Equation A.4 is satisfied. The settings of the root-finding procedure can be found in Table A.5.

al t ∑ 0.25 (A.4)

Symbol Value Unit Description
l 2.0 ·10°1 [°] Relaxation parameter

1.0 ·105 [°] Maximum number of univariate NR iterations
8.0 ·104 [°] Maximum number of multivariate NR iterations
1.0 ·10°13 [°] Maximum potential deviation

¢Æ 1.0 ·10°2 [±] Step size angle contour
¢al t 1.0 ·10°5 [°] Step size acceleration contour

10 [°] Save frequency
0.1 [°] Upper acceleration limit

|Æst ar t °Æ| < 2º [rad] Angle stopping condition

Table A.5: Settings of the Newton-Rapson multivariate root-finder employed for equilibria contour construction.

A.2.3. Settings for orbit generation
The l.p.o family construction process comprises a three-step approach as explained in Chapter 1 of this re-
port. The first step concerns the generation of the approximate seed solutions via a Floquet targeter (FT). A
detailed discussion and performance analysis of this technique is presented in Appendix C. The settings of
the targeter algorithm have been determined via a trial-and-error procedure resulting in robust performance
for in-plane amplitudes values far beyond the required amplitude of the seed solutions. An overview of these
settings is provided below in Table A.6.

Symbol Value Unit Description
Ax 1.0 ·10°5 [°] Amplitude for first approximate solution
Ax 1.0 ·10°4 [°] Amplitude for second approximate solution

1.0 ·10°13 [°] Numerical threshold for motion decomposition
5.0 ·10°2 [°] Time interval between two FT corrections
1.0 ·10°6 [°] Maximum eigenvalue deviation
1000 [°] Save frequency

Table A.6: Algorithm settings of the Floquet targeter used for computation of the approximate periodic solutions.
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The second step in construction of l.p.o families concerns the refinement of the initial guess constructions via
a multiple shooting approach known as the two-level targeter (TLT). An extensive discussion on the principles
and performance of this method can be found in Appendix C. The values of the parameters involved in the
TLT procedure are shown below in Table A.7.

Value Unit Description
5 [°] Number of nodes
10 [°] Maximum Number of TLT Cycles
1.0 ·10°12 [°] Maximum position deviation
5.0 ·10°12 [°] Maximum velocity deviation
1.0 ·10°12 [°] Maximum period deviation
1000 [°] Save frequency

Table A.7: Settings for the TLT algorithm employed for refinement of approximate seed solutions.

The numerical continuation procedure concerns the final step in the construction of the Hamiltonian-varying
(Hl t -varying), acceleration-varying (al t -varying) and orientation-varying (Æ-varying) l.p.o families. The pa-
rameters of the continuation procedure are shown below in Table A.8 and have been established via a trial-
and-error procedure.

Symbol Value Unit Description
5.0 ·103 [°] Maximum number of family members
1.0 ·10°4 [°] Pseudo-arclength Hl t -varying family

¢al t 1.0 ·10°2 [°] Increment al t -varying family
¢Æ 1.0 [±] Increment Æ-varying family
∑ [0.1,0.2, . . . ,1.0] [°] Line search attenuation parameter
≤ 1.0 ·10°10 [°] Complex step increment
||F|| 1.0 ·10°12 [°] Maximum defect vector magnitude

5.0 ·103 [°] Maximum number of collocation iterations
1.0 ·10°3 [°] Maximum center eigenvalue deviation
1.0 ·10°3 [°] Maximum eigensystem determinant deviation
1.0 ·10°5 [-] Minimum spacing between family members at half-phase
1.0 ·10°9 [-] Maximum state component discrepancy at full-period

Table A.8: Settings for the numerical continuation procedure of the three types of periodic solution families.

The data in Tables A.1-A.8 comprise all constants and parameters employed during this thesis project and
allow the reader to reproduce the results presented in Chapter 1 of this report.



B
Numerical integration

This Appendix provides a discussion on the techniques that are used for trajectory propagation in the CR3BP-
LT. The propagation of trajectories requires one to find a solution to a set of differential equations subjected
to various constraints [23]. In literature, this commonly referred to as a Boundary Value Problem (BVP). Nu-
merical integrators are able to solve these systems of differential equations and two of them are adopted in
this thesis project. The remainder of Appendix B presents the principles of both integrators. Section B.1 dis-
cusses the fundamentals of the RKF78 integrator while Section B.2 presents the principles of the 12th order
Legendre-Gauss-Lobatto collocation method.

B.1. Runge-Kutta Fehlberg 7(8) method
The RKF7(8) integrator belongs to the family of Runge-Kutta methods. These methods are widely used in the
scientific community because of their simplicity and capability to straightforwardly control the truncation
error [3]. The RKF7(8) integration procedure is a so-called explicit Runge-Kutta method since it uses the
current state of the system to approximate the system’s solution at another state. The principles of the RK78
method are illustrated on the basis of the system depicted in Equation B.1.

ẏ = f (x, y), y(xn) = Yn , xn+1 °xn = h (B.1)

The system’s solution (yn) is known at a particular location (xn). Suppose one is interested in the solution
at a new location xn+1 which is separated from xn°1 by a distance h, commonly referred to as the stepsize.
Explicit Runge-Kutta methods compute the solution at the new location according to Equation B.2.

yn+1 = yn +hF (xn , yn ,h; f ) (B.2)

It can be observed from Equation B.2 that the core principle of Runge-Kutta methods is the approximation of
the average slope over the specified increment. This is achieved by computing a weighted averages of slopes
at different locations within the increment interval. The procedure for computing the weighted average slope
is shown in Equations B.3-B.5 and involves a set of nodes (Z j ) with associated external weights ( ∞ j ). The
number of function evaluations per integration step (s) is referred to as stages. For an s-stage Runge-Kutta
method, the location of the nodes and their respective weights are fixed on the increment interval.

F (xn , yn ,h; f ) =
sX

j=1
∞ j Z j (B.3)

Z1 = f (xn , yn) (B.4)

Z j = f (x +Æ j h, y +
j°1X

i
Øi j Zi ) j = 2, . . . , s (B.5)

For sake of accuracy, it is desirable that the local truncation error is constant for each step of the integra-
tion process. Embedded Runge-Kutta-Fehlberg methods provide an error estimate by comparing the com-
puted solution of an Runge-Kutta method accurate up to order p with the solution obtained by a Runge-Kutta

39



40 Numerical integration

method accurate up to order p+1. This error estimate can be obtained with little extra computation cost since
the higher order method uses the same function evaluations as the lower order method. The RKF7(8) method
belongs to this category of Runge-Kutta methods and the exact procedure can be described in a so-called
Butcher tableau presented below in Table B.1.

Øi j
Æ j 1 2 3 4 5 6 7 8 9 10 11 12 ∞ j ∞̂ j

0 41/840 0
2/27 2/27 0 0

1/9 1/36 1/12 0 0
1/6 1/24 0 1/8 0 0

5/12 5/12 0 -25/16 25/16 0 0
1/2 1/20 0 0 1/4 1/5 34/105 34/105
5/6 -25/108 0 0 125/108 -65/27 125/54 9/35 9/35
1/6 31/300 0 0 0 61/225 -2/9 13/900 9/35 9/35
2/3 2 0 0 -53/6 704/45 -107/9 67/90 3 9/280 9/280
1/3 -91/108 0 0 23/108 -976/135 311/54 -19/60 17/6 -1/12 9/280 9/280

1 2383/4100 0 0 -341/161 4496/1025 -301/82 2133/4100 45/82 45/164 18/4 41/840 0
0 3/205 0 0 0 0 -6/41 -3/205 -3/41 3/41 6/41 0 0 41/840
1 -1777/4100 0 0 -341/161 4496/1025 -289/82 2193/4100 51/82 33/164 12/41 0 1 0 41/840

Table B.1: The Butcher tableau of the RKF7(8) method as presented in [11]. External weights of the higher order are indicated by ŷ j

The difference between the two solutions produced by the pth and (p +1)th order method, provides an es-
timate of the truncation error (e(hi )). The truncationerror estimate together with the error tolerance (≤tol )
allows adaption of the stepsize. The stepsize adaption procedure is outlined in Equation B.6 [28]. The largest
of the absolute and relative error provides the error tolerance for the stepsize adaption procedure. The inte-
gration process is repeated with the new stepsize (e§(hi )) until the error criteria are satisfied. This procedure
leads to a consistent truncation error over the complete integration process.

e(hi ) = |ŷi ° yi |

h§
i = p+1

r
≤tol

e(hi )
] ·hi

(B.6)

The methodology outlined in Section B.1 establishes the numerical integration process that is leveraged in
the approximation and refinement of the seed solutions for the l.p.o families as well as the verification of the
periodic solutions.

B.2. 12th order Legendre-Gauss-Lobatto collocation method
The other numerical integration technique deployed in this thesis is the 12th order Legendre-Gauss-Lobatto
collocation method. Subsection B.2.1 explains underlying process of collocation, while Subsection B.2.2 ex-
plains the methodology for error control.

B.2.1. Numerical integration through Gauss-Legendre-Lobatto quadrature
Collocation methods approximate the solution to an ordinary differential equation from a set of states via
polynomial interpolation. For purpose of illustration, consider the system depicted in Equation B.7 [33]. This
problem concerns the identification of a solution to an ordinary differential equation over the time interval
[tn°1,tn] separated by a time increment (h).

ẏ = f (x, y), given a set of solutions y(t1), y(t2), . . . , y(ts )

ti = tn°1 + ci h, 0 ∑ c1 < c2 < ·· · < cs ∑ 1
(B.7)

The goal of the collocation method is to find a polynomial ¡ up to a degree s which satisfies conditions listed
below in Equation B.8. When these conditions are satisfied, the solution to the system in Equation B.7 is
known on the entire segment [tn°1,tn]. The reliance of collocation methods on a reference trajectory show
that collocation methods are implicit in nature [33].

¡(tn°1) = yn°1

¡̇(ti ) = f (ti ,¡(ti ))
(B.8)
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All collocation methods discretize the reference trajectory into a set of n nodes, resulting in n °1 segments.
At each segment, so-called interior points and defect points are added. The former, in conjunction with the
segment bounds, is used for construction of the polynomial while the latter type allows one to check whether
the constructed polynomial accurately approximates the dynamics of the reference trajectory. The number
and distribution of the interior and defect points over a single segment is referred to as the node placement
strategy which is unique per collocation method. This thesis project employs the 12th order Legendre-Gauss-
Lobatto collocation method which places two interior points and three defect points at each segment. An
illustration of the discretization procedure, together with the 12th order Legendre-Gauss-Lobatto node place-
ment strategy is shown in Figure B.1.

⇤t1

t2 ti

ti+1

tn tn�1
x̄i,1

x̄i,2

x̄i,3

x̄i,4

x̄i,5

x̄i,6

x̄i+1,1

ti,1 ti,2 ti,3 ti,4 ti,5 ti,6 ti+1,1

Figure B.1: The left figure shows the discretization of the trajectory into n °1 segments. The right picture shows how a seventh degree
polynomial is constructed for a single segment. The bounds of the segment, denoted with black circles, together with the interior points,
symbolized by white circles, are used to construct to the polynomial. The locations of the defect points are indicated by the black squares.

The node placement strategy is defined by the normalized time values of the collocation points. The nor-
malized time values for the 12th order Legendre-Gauss-Lobatto collocation method can be found in Table B.2
[14].

node time symbol normalized time symbol normalized time value node type
ti ,1 ø1 0 node
ti ,2 ø2 8.4888051860717 ·10°2 defect point
ti ,3 ø3 2.65575603264643 ·10°1 interior point
ti ,4 ø4 5.0 ·10°1 defect point
ti ,5 ø5 7.34424396735357 ·10°1 interior point
ti ,6 ø6 9.15111948139284 ·10°1 defect point
ti+1,1 ø7 1.0 node

Table B.2: The normalized time values characterizing the node placement starategy of the 12th order Legendre-Gauss-Lobatto colloca-
tion method. Values reproduced from [14].

Polynomial interpolation allows the computation of the solution on the entire segment interval via Equation
B.9.

x̄(ø) = pi (ø) =Ci ·
£
1 ø ø2 ø3 ø4 ø5 ø6 ø7§T

on [ti , ti+1], 0 ∑ ø∑ 1 (B.9)

The piecewise polynomial is defined by the the coefficient matrix Ci , which depends upon a constant matrix
(B ), shown in Equation B.11, the time duration of the segment (¢t ), states x̄i and field vector evaluation
( f̄ (x̄i )). The coefficient matrix can be computed through Equation B.10.

Ci =
h

x̄i ,1 x̄i ,3 x̄i ,5 x̄i+1,1 x̄
0
i ,1 x̄

0
i ,3 x̄

0
i ,5 x̄

0
i+1,1

i
·B°1

i where x̄ 0
i =¢ti · f̄ (x̄i ) (B.10)
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Defect constraints are critical to obtain a polynomial that correctly approximates the dynamics over the entire
interval. These constraints are computed at all three defect points according to Equations B.12-B.14.

≥̄i ,2 = b1
i x̄i ,1 +b1

i ,3x̄i ,3 +b1
i ,5x̄i ,5 +b1

i+1,1x̄i+1,1

+¢ti (w1
i ,1 f̄i ,1 +w1

i ,2 f̄i ,2 +w1
i ,3 f̄i ,3 +w1

i ,5 f̄i ,5 +w1
i+1,1 f̄i+1,1)

(B.12)

≥̄i ,4 = bc
i x̄i ,1 +bc

i ,3x̄i ,3 +bc
i ,5x̄i ,5 +bc

i+1,1x̄i+1,1

+¢ti (wc
i ,1 f̄i ,1 +wc

i ,3 f̄i ,3 +wc
i ,4 f̄i ,4 +wc

i ,5 f̄i ,5 +wc
i+1,1 f̄i+1,1)

(B.13)

≥̄i ,6 = b6
i x̄i ,1 +b6

i ,3x̄i ,3 +b6
i ,5x̄i ,5 +b6

i+1,1x̄i+1,1

+¢ti (w6
i ,1 f̄i ,1 +w6

i ,3 f̄i ,3 +w6
i ,5 f̄i ,5 +w6

i ,6 f̄i ,6 +w6
i+1,1 f̄i+1,1)

(B.14)

The values for the constants b j
i and w j

i can be found below in Table B.3.

Parameter Value Parameter Value

b1
i +8.84260109348311 ·10°1 b1

3 -8.23622559094327 ·10°1

b1
5 -2.35465327970606 ·10°2 b1

i+1 -3.70910174569208 ·10°2

bc
i +7.86488731947674 ·10°2 bc

3 +8.00076026297266 ·10°1

bc
5 -8.00076026297266 ·10°1 bc

i+1 -7.86488731947674 ·10°2

b6
i +3.70910174569208 ·10°2 b6

3 +2.35465327970606 ·10°2

b6
5 +8.23622559094327 ·10°1 b6

i+1 -8.84260109348311 ·10°1

w1
i ,1 +1.62213410652341 ·10°2 w1

i ,2 +1.38413023680783 ·10°1

w1
i ,3 +9.71662045547156 ·10°2 w1

i ,5 +1.85682012187242 ·10°2

w1
i+1,1 +2.74945307600086 ·10°3 wc

i ,1 +4.83872966828888 ·10°3

wc
i ,3 +1.00138284831491 ·10°1 wc

i ,4 +2.43809523809524 ·10°1

wc
i ,5 +1.00138284831491 ·10°1 wc

i+1,1 +4.83872966828888 ·10°3

w6
i ,1 +2.74945307600086 ·10°3 w6

i ,3 +1.85682012187242 ·10°2

w6
i ,5 +9.71662045547156 ·10°2 w6

i ,6 +1.38413023680783 ·10°1

w6
i+1,1 +1.62213410652341 ·10°1

Table B.3: An overview of the constants for the defect computation for the 12th order Legendre-Gauss-Lobatto collocation method. Data
is directly obtained from [14].

If the defect constraints do not meet the tolerance specified in Table A.4, The totality of nodes, interior points
and defect points should be altered to improve the polynomial approximation of the dynamics. The proce-
dure for this correction is presented in Section C.5.

B.2.2. Error control via Boor’s method
A collocation problem solved via the methodology explained in Sections B.2.1 and C.5 does not necessarily
satisfy the tolerances as specified in Table A.8. The root cause of the invalidity of such a solution is that the
segment truncation error can vary widely over the mesh (i.e the totality of nodes representing the discretiza-
tion of the trajectory). An ideal mesh equidistributes the truncation error over the segments and keeps the
magnitude of this error within bounds as specified in Table A.8. This process is referred to as mesh refinement
and is equivalent to the concept of stepsize control in explicit integration schemes [8]. The remainder of this
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section explains the principles of Boor’s method of mesh refinement [9]. This mesh refinement error method
is favoured because no higher-order solution is required for error estimation which makes it a computation-
ally efficient method. The following explanation is based on [8, 9, 14] unless stated otherwise.

The input for error control procedure is a discretized trajectory, proposed as a solution by the collocation
procedure as outlined in Sections B.2.1 and C.5, with a mesh according to Equation B.15[8].

¶ : t1 < t2 < ·· · < tn (B.15)

The error per segment, can be computed according to Equation B.16, where ¢ti denotes the time duration of
the segment and ªi represents the eighth-order derivative of segment i .

ei =C¢t 8
i ªi +O (¢t 9

i ), i = 1, . . . ,n °1

C = 2.93579395141895 ·10°9 (B.16)

The eighth-order derivative can be computed via a difference scheme, shown below in Equation B.17.

ªi º

8
>>>>>>><

>>>>>>>:

2max
∑

|p7
1°p7

2|
¢t1+¢t2

∏
on (t1, t2)
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∑

|p7
i°1°p7

i |
¢ti°1+¢ti

∏
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∑
|p7

i+1°p7
i |
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∏
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∏
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(B.17)

The differencing scheme involves the seventh order derivatives p
7
i which can be computed using Equation

B.18, where b denotes the final column of B°1
i

p
7
i = 7!

h
xi ,1 xi ,3 xi ,5 xi+1,1 x

0
i ,1 x

0
i ,3 x

0
i ,5 x

0
i+1,1

i
b

¢t 7
i

(B.18)

The differencing scheme involves seventh-order derivatives p
7
i which can be computed using Equation B.18,

where b denotes the final column of B°1
i . The new mesh is then recomputed according to Equation B.19.

ti+1 = I°1
∑

i I (tn)
n °1

∏
for i = 1, . . . ,n °2 (B.19)

The quantity I (t ) is defined in Equation B.20 and can be computed exactly since it is a piecewise linear func-
tion.

I (t ) =
Zt

t1

ª
1
8 (s)d s (B.20)

The states corresponding to the new mesh are computed via polynomial interpolation. The updated mesh is
fed back into the collocation procedure and this procedure is repeated until the mesh satisfies the segment
truncation error distribution tolerance and segment error magnitude criterium as specified in Table A.4. If
the mesh satisfies the equidistribution criterium but does not meet segment truncation error magnitude
tolerance the number of nodes is increased according to Equation B.21 [9].

nnew = round

"

nold

µ
10ei

tol

∂ 1
8
+5

#

(B.21)

The new mesh with the updated number of nodes is subjected to the collocation and mesh refinement pro-
cedure until the error is equidistributed again. The totality of the collocation procedure and Boor’s method
of error control ensures that the solution adheres to the tolerances as specified in Table A.8.

This concludes the discussion on the numerical integration techniques employed during this thesis project.
Recommendations for improving these techniques can be found in Chapter G.
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C
Root-finding algorithms

Root-finding algorithms are the backbone of this thesis project. In conjunction with numerical integrators,
these algorithms allow the construction of the equilibria contours and l.p.o families. This addendum pro-
vides an overview of all the root-finding algorithms employed during this thesis work. Section C.1 provides
the reader with the principles of multivariate root-finding. The root-finder algorithm that computes the ar-
tificial equilibria is presented in Section C.2. Section C.3 discusses the targeting scheme that computes the
approximate seed solutions. The refinement of these seed solutions is accomplished via the two-level tar-
geter (TLT) which is explained in Section C.4. Finally, the algorithm that constructs the l.p.o families during
the numerical continuation procedure is explained in Section C.5.

C.1. Multivariate Newton’s method
The multivariate Newton’s method is a numerical method which can solve a set of nonlinear equations sub-
jected to multiple nonlinear constraints. It does so by finding the solution X , commonly referred to as the
design vector, such that the residual F , commonly referred to as the defect vector, at this solution is zero. The
mathematical formulation of this objective is shown below in Equation C.1 [24].

F (X ) = 0 (C.1)

The multivariate Newton’s method is initialized with a seed solution, denoted by X 0 with F (X 0) > 0. The
solution to the system is found through an iterative process where F (X i ) > F (X i+1) > 0. The design vector is
updated throughout the iterative process until Equation C.1 is met. The required update can be computed
from Equation C.2.

F = DF¢X , where X i+1 = X i +¢X (C.2)

In the Equation above, D(F ) denotes the Jacobian of X with respect to F . The Jacobian provides a relationship
between the defect vector and design variables which allows one to find the required update to the current
solution. For sake of clarity, the Jacobian is displayed in Equation C.3.
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In case the number of unknowns equals the number of equations (k = l ). The required update ¢X can be
computed via Equation C.4.

¢X =°(DF )°1
F (C.4)

The number of unknowns will often exceed the number of equations (k > l ). In that event, the update is
computed via the Gauss-Newton algorithm, displayed below in Equation C.5 [6].

¢X =°DF
T °

DF DF
T ¢°1

F (C.5)

The methodology presented in this Section provides the reader with the working principles of multivariate
root-finding which is leveraged by all root-finders presented in the remainder of this Chapter.

45
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C.2. Equilibria root-finding procedure
This section outlines the multivariate root-finding algorithm that computes the two types of artificial equi-
libria contours. The first type of equilibria contour has a fixed acceleration orientation while the accelera-
tion magnitude varies over the curve. For this type of contour, the natural equilibria are employed as seed
solutions. The design and defect vector for this procedure are listed in Equation C.6, whereas the partial
derivatives of the Jacobian are presented in Equation C.7.
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(C.7)

The desired increment is computed according to Equation C.4. Correcting the solution in this way did not
result in robust behaviour and led to the cyclic and sometimes divergent behaviour of the root-finder. Ro-
bust performance has been achieved by the introduction of a relaxation parameter (l ), which attenuates the
increment of the root-finding procedure [20]. Hence, the solution is updated according to Equation C.8.

X i+1 = X i + l ·¢X (C.8)

When an equilibrium is found using the procedure listed in Equations C.6-C.8, the acceleration magnitude
is increased and a new equilibrium is found via the root-finding procedure until acceleration magnitude ex-
ceeds an upper limit (al t,max = 0.1). The values for the acceleration increment and relaxation parameter can
be found in Table A.5.

The second type of equilbria contour has fixed acceleration magnitude while the acceleration orientation
varies over the contour. This contour is initialized from collinear equilibria with the desired acceleration mag-
nitude. The seed solution(s) are found using the a relaxed version of the Newton-Raphson method, shown
below in Equation C.9

x1 = x0 ° l · f (x0)

f 0 (x0)
(C.9)

In the Equation above, f (x) equals f1 of Equation C.6 while f 0(x) equals DF 11 of Equation C.7. Th com-
plete equilibria contours are achieved by incrementing the acceleration orientation in both a clockwise and
counterclockwise fashion for each seed solution until the angle stopping condition is reached. This stopping
condition is listed in Table A.5.

The procedure listed above provides robust performance while al t ∑ 0.25. It worth noting that the equilibria
contours start to merge if al t > 0.25 [1]. This merging phenomenon is likely the root cause for failure of
the equilibria root-finding procedure. If one is interested in investigating the merging of these equilibria
contours, the reader is referred to Chapter G for suggestions performance improvement of the equilibria
root-finding procedure.
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C.3. Floquet targeter
The approximate solutions of the first two members of Hl t -varying l.p.o families are constructed via a target-
ing scheme based on Floquet analysis [21]. The so-called Floquet targeter decomposes the spacecraft motion
along the six stability components and determines a velocity correction to cancel out the unwanted compo-
nents of motion. Section C.3.1 explains the fundamentals of the Floquet targeter and how the procedure is
adapted to facilitate the construction of libration point orbits. The procedure of constructing approximate
seed solutions is presented in Section C.3.2. This section is concluded with a performance analysis of the
targeter scheme in Section C.3.3.

C.3.1. Velocity correction via Floquet analysis
To determine the required velocity correction at an arbitrary time, the Floquet controller should be provided
with a periodic reference trajectory in the form of a monodromy matrix M = ©(T,0) and an initial devia-
tion with respect to this trajectory ±x̄(t0). The deviation at the time of interest is then easily obtained from
Equation C.10.

±x̄(t ) =©(t ,0)±x̄(t0) (C.10)

The Floquet controller decomposes this deviation into six states which indicate the deviation of spacecraft
along each stability components with the help of Equation C.11.

±x̄t =
6X

j=1
±x̄ j =

6X

j=1
ḡ j (t )ē j (t ) (C.11)

In the Equation above, ēi symbolizes the columns of the Floquet modal matrix E(t ) obtained from Equation
C.13 whereas ḡ j represents the columns of matrix pertubation decomposition G(t ) shown in Equation C.12.

G(t ) = E(t )°1±x̄(t ) (C.12)

The Floquet modal matrix depends upon the eigensystem of the reference trajectory J is a diagonal matrix
which hold the complex characteristic exponents of the monodromy matrix. The eigenvectors related to
these characteristic multipliers are stored in Matrix S

E(t ) =©(t ,0)Se°J t (C.13)

The motion decomposition matrix allows identification of the perturbation contributions of each stability
component. Knowing these contributions allows determining of a velocity correction that cancels out the
unwanted motion. The mathematical formulation of this problem is presented in Equation C.14 in which ∂ j
symbolises coefficients of the desired perturbation components.

X

j=2,3,4
(1+ ∂ j (t ))±x̄ j (t ) =

6X

j=1
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∑
03
¢V̄

∏
(C.14)

The abovementioned procedure was originally designed for station keeping procedures in the vicinity of li-
bration point orbits[21]. However, the procedure can be straightforwardly adapted for the construction of
approximate periodic solutions. The reference trajectory is a stationary point rather than a periodic orbit.
Since periodicity is not defined in a stationary point, The monodromy matrix of an equilibrium does not
exist. However, the stability of an equilibrium point can be obtained from the eigensystem of the state prop-
agation matrix (SPM). The deviation at any given time is simply obtained as the state difference between the
equilibrium point and the current state of the spacecraft as displace in Equation C.15.

±x̄ = x̄eq ° x̄ (C.15)

It is evident that the deviation in Equation C.15 does not depend on time as opposed to Equation C.10. As a
consequence, the Floquet modal matrix is a constant quantity and takes on the form as shown in Equation
C.16

E = S (C.16)

The Floquet targeter algorithm then boils down to Equation C.17.
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The root-finding scheme ignores the out-of-plane stability components and out-of-plane state components
to avoid an underdetermined system. In this way, the required velocity correction can be computed according
to Equation C.4.

C.3.2. Construction of approximate periodic solutions
The root-finder algorithms presented in Sections C.4 and C.5 rely on a reference trajectory in the form of
a set of nodes with associated times (i.e. a mesh). The approximate seed solutions are defined using an
isochronous mesh as defined below in Equation C.18.

¶: t1 < ·· · < ti < ·· · < tn , for i = 2,. . . ,n-1, where t1 = 0, ti = (i °1)
tn ° t1

n °1
and tn = T (C.18)

The orbital period of the approximate periodic solution is unknown but Richardson’s third-order method
[31] provides an analytic expression for approximation of this period. This expression however, can only be
used for libration point orbits that emanating from collinear equilibria. In this thesis project, an approximate
orbital period is computed by propagating the initial state of a libration point orbit via a RK78 integration
scheme until a full revolution has occurred. The initial state of this trajectory is determined in a two-way
fashion. First, the initial position of the spacecraft is determined by offsetting it with respect to the equi-
librium point according to Equation C.19. This positional offset provides an identical offset as Richardson’s
third-order method [31] in the case of natural l.p.o families but it extends well to libration point orbits ema-
nating from artificial equilibria not located on the x-axis of the synodic reference frame.
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Secondly, the initial velocity of the spacecraft is computed according to the Floquet targeter specified in Equa-
tion C.17. The initial state is then computed via Equation C.20. The pseudocode for the aprroximation of the
orbital period approximation is presented in Table C.1 .

x̄0 = ±x̄0uncorrected +¢V̄ (C.20)

Pseudocode for orbital period approximation
Input:

°
Lp , x̄0,µ

¢

Output:(T )
1: µ0 ( ComputeOrbitAngle(

°
Lp , x̄0,µ

¢
) Equation C.19

2: x̄1, t1 ( PropagateOrbit(x̄0, t0) Section B.1
3: µ1 ( ComputeOrbitAngle(

°
Lp , x̄1,µ

¢
) Equation C.19

4: if µ1 °µ0 > 0
5: µsi g n = 1
6: else
7: µsi g n =°1
8: µchang e = 0
9: while µchang e < 2
10: x̄i , ti ( PropagateOrbit(x̄i°1, ti°1) Section B.1
11: µi √ ComputeOrbitAngle(

°
Lp , x̄i ,µ

¢
) Equation C.19

12: if (µi °µ0) ·µsi g n < 0
13: µchang e ++
14: T = ti

Table C.1: the subscript p refers to the equilibrium contour instead of the natural libration point. In the case that p = 1, the values of the
orbit angle are rescaled to the [0,2º] domain to ensure proper functionality. The subscript i denotes a random state along the orbit and
is not linked to the mesh as defined in Equation C.18.

With the orbital period known, the node times, as defined in Equation C.18, can be computed while their
associated states can be approximated via explicit propagation. This completes the procedure for generation
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of approximate periodic solutions. These start-up arcs serve as input for the two-level targeter algorithm
which is described in Section C.4.

C.3.3. Effect of the velocity correction interval
The correction interval parameter of the Floquet targeter allows the user to exert control over the amount of
velocity corrections that are performed during one orbital revolution. The effect of this parameter is analyzed
in Figure C.1 which shows two sets of approximate periodic solutions. The sets of approximate periodic so-
lutions have identical thrust parameters and in-plane amplitudes but differ in the amount of Floquet correc-
tions which are applied during one orbital revolution. One family uses a correction interval ¢t = 50.0 which
means that no velocity corrections are applied during a single revolution. The other family uses a correction
interval ¢t = 0.05 resulting in a multitude of intermediate velocity corrections during a single revolution.

L\{ait = 0.1, a = ^7r rad)
Approximate periodic solutions - At = 50.0

Approximate periodic solutions - At = 5.0 • 10 2

0.3

0.2

0.1
I

^ 0.0

0.4 0.6 0.8 1.0 1.2 1.4
x

- Correction interval effect
Position and velocity deviation after one orbital revolution

1.0-10~5 2.5 ■ 10-2 5.0 • 10-2 7.5 • 10-2 1.0-10
11 A|| [-]

Position and velocity deviation after one orbital revolution

Figure C.1: Two families of approximate libration points generated by the floquet targeter with different correction intervals. The ¢V
quantity in the bottom right plot symbolizes the totality of the velocity discrepancy at the full period and the intermediate velocity
corrections. The maximum position discrepancy when using a ¢t = 5.0 ·10°2 interval is ¢R = 1.9 ·10°3

It can be observed from Figure C.1 that the intermediate corrections have a critical effect on the resulting
trajectories. When no intermediate corrections are applied, the chaotic nature of the CR3BP-LT takes over re-
sulting in unpredictable trajectories that do not come close to a periodic orbit. However, Trajectories remain
bounded near the equilibrium when intermediate velocity corrections are applied. The deviation plots show
that both the position and velocity discrepancy of the corrected trajectories are at least an order of magnitude
smaller compared to the uncorrected trajectories for large amplitudes. Finally, it is worth noting that the cor-
rected trajectories have an elliptical shape and do not posses the typical indent that is characteristic for the
horizontal Lyapunov orbits.

C.4. Two-level targeter algorithm
A crucial step in the construction of the l.p.o families is the refinement of the approximate seed solutions to
actual periodic orbits. Section C.4.1 explains the principles of this refinement procedure whereas the per-
formance of the two-level targeter (TLT) is analysed in Section C.4.2. An extension to the TLT in the form of
energy path constraints is discussed in Section C.4.3.
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C.4.1. Two-level targeter correction scheme
As mentioned in Section C.3.2, the input into the TLT algorithm is a discretized trajectory in the form of n
nodes with multiple state discontinuities. Each node is subjected to a set of constraints. A visualization of the
input trajectory is shown below in Figure C.2.

x̄+
1 x̄+

2

x̄�
2

. . .
x̄+
k�1

x̄�
k

�R̄k

x̄+
k

V̄ �
k

V̄ +
k

�V̄k

x̄�
k+1

x̄+
k+1. . .

x̄+
n�1

x̄n

x̄�
n

Figure C.2: A discretized trajectory with position and velocity continuous as shown at node k

The discretization transforms the BVP into n ° 1 two-point boundary value probblems (TPBVP). The TLT
algorithm constructs a periodic trajectory by solving each TPBVP problem separately. The technique of sub-
dividing a trajectory into smaller subintervals and solving them independently is better known as multiple
shooting, which is a frequently adopted technique in the field spacecraft trajectory design [5]. The TLT owes
its name to the two multiple shooting that make up the algorithm. These shooting schemes are referred to as
the level-I corrector and the level-II corrector respectively.

Level-I corrector A multiple shooting scheme that alters the velocity of the nodes to generate a tra-
jectory that is continuous in position.

Level-II corrector A multiple shooting scheme that alters the position and time of the nodes to con-
struct a trajectory with smaller velocity discrepancies.

Both the level-I and level-II algorithm correct the state at a certain node based upon the state discontinuities
at another node. The relationship between these deviations can be easily obtained from Equation C.21.

±x̄(tk ) =©(tk , tk°1)±x̄(tk°1) (C.21)

The deviations presented in the equation above are so-called contemporaneous deviations which do not
consider deviations due to a change in node times. Since the Level-II corrector alters these times, non-
contemporaneous deviation should be taken into account as well. This achieved via Equation C.22.

±x̄ 0 = ±x̄(t 0) = ±x̄(t )+ ˙̄x±t , where ±t = t ° t 0 (C.22)

The first term on the right hand side of Equation C.22 represents the contemporaneous deviation whereas the
latter term represents the non-contemporaneous variation. Substituting Equation C.22 into C.21 results in
the variational equation that serves as the basis for both levels of the TLT algorithm. This variational equation
is shown below in Equation C.23.

(±x̄ 0(tk +±tk )° ˙̄x(tk )±tk ) =©(tk , tk°1)(±x̄ 0(tk°1 +±tk°1)° ˙̄x(tk°1)±tk°1) (C.23)

The partial derivatives of the state transition matrix (STM) are expressed below in Equation C.24 along with
an abbreviated notation to avoid lengthy expressions later in this Section.
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@ẋk°1

@ẋk
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@żk
@yk°1

@żk
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@ẏk°1

@żk
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The remainder of this Section is dedicated to the explanation of both multiple shooting schemes. The discus-
sion is based upon [4, 7, 22] unless stated otherwise.

Level-I corrector
The objective of the level-I corrector is to remove all position discrepancies. The root-finding scheme for a
single segment of this trajectory is provided in Equation C.25.
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ẋ+

k°1
ẏ+
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@ẋk°1

@z+k
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The Level-1 corrector can simultaneously compute velocity corrections for each segment by merging the
the N °1 root-finding algorithms into one large root-finding algorithm as shown in Equation C.26. The di-
mensions of the design vector and defect vector are identical and equal to (3N £1). This results in a square
Jacobian of dimensions (3N £3N ) meaning that correction can be computed via Equation C.4.
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It is worth noting that [22] uses a different correction scheme than the correction scheme presented above.
The difference being that the node times are allowed to vary. Both versions have been tested during this the-
sis project but no significant difference in performance was observed. The performance of the implemented
Level-I corrector is analyzed in Section C.4.2.

Level-II corrector
The position-continuous trajectory arising from the level-I corrector serves as the input for the level-II correc-
tor. The level-II scheme aims to provide an update to the position and times of the nodes such that another
level-I correction will result in a trajectory with smaller velocity discrepancies. The root-finding scheme for
single segment of the trajectory is presented below in Equation C.27.
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The partial derivatives of the Jacobian in Equation C.27 can be obtained by relating the design variables to
the defect variables. Such a relationship can be retrieved from a first-order expansion as shown in Equation
C.28
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Leveraging this first-order expression, the elements of the Jacobian in Equation C.27 can be expressed in
partial derivatives of velocity states with respected to the design vectors as shown in Table C.2.
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Partial derivatives of the Jacobian of the level-II corrector
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Table C.2: Partial derivatives that form the Jacobian of the level-II corrector. The data in this Table is obtained from [4].

Expressions for the derivatives in Table C.2 can be obtained by considering the variational equations for seg-
ments (k ° 1 ! k) and (k + 1 ! k). More specifically, a finite differencing method allows the formulation
of these partial derivatives. For sake of clarity, the full expressions of these variational equations are shown
below in Equation. C.29.
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The finite differencing approach is a well-known method in the field of engineering for the approximation
of partial derivatives [36]. It allows the approximation of a change in the velocity state at node k due to a
change in the design variables in a separate fashion. In the context of the level-II corrector, this boils down
to nullifying the terms containing other design variables in the Equations of C.29. The results of the finite
differencing procedure are presented below in Table C.3.

Partial derivatives of the velocity states at node k with respect to the design variables
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Table C.3: Expressions for the partial derivatives that form segment Jacobian of the level-II corrector. The data in this Table is obtained
from [4].

The spatial and temporal correction of each node can be computed simultaneously by combining the defects
into one vector and all partial derivatives into one matrix. This total root-finding scheme can be found below
in Equations C.30 and C.31.
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The level-II correction scheme as presented in Equations C.30 and C.31 provides a correction that reduces the
velocity discontinuity at the interior nodes of the trajectory. The periodic nature of the libration point orbits
also requires state continuity between the initial and terminal state of the discretized trajectory. Hence, the
level-II corrector needs to be augmented with periodicity constraints. This constraint is denoted as ¥k and
can be found below in Equation C.32.

¥k =
∑

R̄1 ° R̄n
V̄ +

1 ° V̄ °
n

∏
(C.32)

The constraint above is used to construct the defect variable [4] which is defined in Equation C.33. Here,
¥§k is the desired value of the constraint. Defining the constraint in such away allows generalization of the
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procedure to other types of constraints as will be shown in Section C.4.3. Regarding the periodicity constraint,
it is obvious that ¥§k = 0̄.

±¥k = ¥§k °¥k (C.33)

Similar to the derivation of the interior velocity continuity constraints, a first order Taylor series expansion
provides a relationship between the constraints and design variables. This expansion is shown below in Equa-
tion C.34.
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A change in ¥k with respect to V̄ +
1 , R̄1, V̄ °

n and R̄n is obtained via basic differentiation. The result of these
derivations are shown in C.35.1
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The eight partial derivatives
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using Table C.3. The complete notation of the periodicity constraint can be found in Equation C.422.
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The complete level-II correction scheme with periodicity constraints is obtained by simply augmenting the
Jacobian and defect vector of Equation C.37 with first order Taylor expansion of Equation C.42. The result is
shown below in Equation C.37. ∑

X

±¥k

∏
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∑
DF

@¥k
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X (C.37)

The dimensions of the design and defect vector level-II corrector with periodicity constraints are 4n £1 and
(3(n °1)+6)£1 respectively. This results in a Jacobian of size (3(n °1)+6)£ (4n). The inverse of this matrix
can easily be solved with standard C++ operations due to the sparsity of the matrix. The sparsity is a direct
consequence of the decoupling of the multiple shooting segments [4]. The performance of TLT algorithm is
presented in Section C.4.2 whereas its veracity is discussed in Section F.3. It should stressed that TLT algorithm
can be used to construct Hl t -varying l.p.o families. However, the root-finding scheme described in Section
C.5 is preferred due to the lower computational cost and its ability to construct the al t -varying and Æ-varying
l.p.o families.
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Ī
0̄

∏
= ° @¥k

@V̄ °
n

. When these partial

derivatives were used, the TLT targeter did not converge.
2The sixth term contains the term V +

n which should be V +
n°1 according to [4]. The TLT correction scheme could not find convergence

when V +
n°1 was used.
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C.4.2. Two-level targeter performance analysis
The behaviour of the TLT correction procedure is defined by the tolerances (Table A.7), input trajectory and
number of nodes. This section is dedicated to investigate the effect of the latter two on the algorithm’s be-
haviour. Figure C.3 presents the performance of the algorithm for three different input trajectories over a
wide variety of number of nodes used.
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Figure C.3: Sensitivity analysis of TLT algorithm for different input trajectories amplitudes and number of nodes.

It can be concluded from Figure C.3 that the number of nodes has little effect on the converged solution for
input trajectories with a small amplitude. This is not the case for libration point orbits with larger amplitudes
since the shape of the converged solution heavily depends on the number of nodes used to discretize the
input trajectory. A higher number of nodes corresponds to a periodic solution that has more similarities with
the input trajectory.

An alternative way to ensure that the converged solution closely resembles the input trajectory is to fix the
position of one of the nodes. Such an approach has been proposed for the construction of l.p.o families in
the natural CR3BP [15]. However, it cannot be known a-priori at which positions periodic solutions exist.
Hence the node states should remain variable. If the reader desires to use the TLT correction procedure for
orbits with larger amplitudes, it is advised to carefully check if the periodic solution complies with the desired
characteristics.
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C.4.3. Hamiltonian path constraints
At the outset of the thesis project, the TLT algorithm was the preferred methodology for construction of l.p.o
families. This idea was based on two observations. First of all, shooting algorithms in conjunction with a
numerical continuation procedure have proven to be a robust method for the construction of l.p.o families
in the natural CR3BP [25], elliptic restricted three-body problem [26] and even in non-ballistic versions of the
CR3BP where the propulsive force is generated by a solar sail [17]. Secondly, literature concerning the two-
level targeter state that it can be augmented with additional path constraints that depend on a combination
of R̄k , V̄k and/or tk [4]. A TLT algorithm with periodicity constraints and Hamiltonian path constraints is able
to construct the Æ°varying and al t -varying l.p.o families since periodic solutions with specific Hamiltonian
values can be generated. The remainder of this section presents the efforts that have been undertaken to
implement these path constraints and reports on the performance of the resulting TLT algorithm.

The derivation process of the Hamiltonian path constraint is identical to the derivation of the periodicity
constraint in Section C.4.1. The constraint is defined below in Equation C.38. Although the thrust parameters
influence the Hamiltonian of an orbit, it should be noted these are constant throughout the TLT correction
process. Therefore, the constraint’s only explicit dependencies are Rk and V +

k .
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Similar to the periodicity constraint described in Section C.4.1, the defect is computed as the difference be-
tween the desired Hamiltonian value, denoted as ¥§k and the current value of the Hamiltonian as shown in
Equation C.39.

±¥k = ¥§k °¥k = H§
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°Hl tk (C.39)

The next step in deriving the Hamiltonian path constraint is relating the design variables to the constraint
variables via a first order Taylor expansion. This expansion is shown below in Equation C.40.
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The partial derivatives in the aforementioned Taylor series expansion can be obtained from Table C.3, except
from @¥k

@R̄k
and @¥k

@R̄k
which are shown below in Equation C.41.
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The full version of the periodicity constraint is defined below in Equation C.42.
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The performance of this constraint is evaluated via a simple test case. The objective is to find a natural L1
H-L orbit with a specific Hamiltonian value. The input to the TLT targeter consists of a periodic libration
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L1 (al t = 0.0, Æ= 0.0, Hl t =°1.594170243726332), n = 10
Seed solution Input deviations TLT result

||¢R̄|| 5.5476770323909 ·1014 5.5476770323909 ·1014 3.53674153196 ·10°10

||¢V̄ || 1.5003029806242 ·1012 1.5003029806242 ·1012 8.27673925667 ·10°11

|¢Hl t | 0.0000000000000 -1.000000000000 ·10°6 1.80496935643 ·10°7

Table C.4: Evaluation of the Hamiltonian path constraints. It should be stressed that the TLT result was obtained in 30 iterations after
which the TLT process was manually terminated since the algorithm showed cyclic behaviour. 10 nodes were used during the TLT
correction process.

point orbit with a Hamiltonian that differs slightly from the desired Hamiltonian value ( ¢Hl t = 1.0 · 10°6).
The Hamiltonian path constraint is enforced at the initial node of the trajectory which leads to the results as
presented in Table C.4.
The results of the test case show that the Hamiltonian path constraint does not provide the TLT corrector
with the ability to find periodic orbits of a desired Hamiltonian. Although the position and velocity discrep-
ancies approach the tolerances as specified in Table A.7, the Hamiltonian of the resulting trajectory does not
come close to the desired value. It should be stressed that the state and Hamiltonian discrepancies with the
same order of magnitude were already obtained after the third iteration of the TLT algorithm. However the
algorithm did not improve in subsequent iterations and therefore the correction process was killed after 30
iterations. A possible cause for the non-convergence is the nonlinear relationship between the Hamiltonian
constraints and the design variables which makes the problem difficult to solve [5]. The inability of the TLT
algorithm to refine orbits to a desired Hamiltonian solution creates the need for another correction method-
ology that can correct orbits to the desired Hamiltonian value. This algorithm is presented in Section C.5.

C.5. Collocation root-finding scheme
The section discusses the root-finding schemes that, in conjunction with numerical continuation algorithms,
generate the three types of l.p.o families. Subsection C.5.1 presents the root-finder algorithm for one segment
whereas C.5.2 discusses additional constraints. The totality of this section with the matter discussed in Sec-
tion B.2.1 is commonly referred to as the 12th order Legendre-Gauss-Lobatto collocation method.

C.5.1. General collocation root-finding scheme
The design vector, defect vector and Jacobian of the root-finding scheme for a single segment can be found
below in Equation C.43. Please note that the computation of the design and defect vector are discussed in
Section B.2.1.
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Similar to the TLT corrector, the multivariate root finding scheme can compute the required correction for
the complete mesh at once by collecting the design vectors, defect vectors and Jacobian of each segments
and merge them into a single design vector, defect vector and Jacobian according to Equation C.44.
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The partial derivatives that form the Jacobian in Equation C.43 are approximated via the complex step method
[18]. This technique computes the partial derivative of the defect vector F with respect to a single design
variable X k j by re-evaluation of the defect vector with a modified version of the design variable of interest
according to X k jcomplex = X k j +æi . The partial derivative with respect to X k j is then obtained via Equation
C.46.
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F
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¥¥
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The complex step method avoids the need for manual derivation of partial derivatives, which is inherent to
the finite difference approach as described in Section C.4.1. Furthermore, the quadratic convergence of the
complex step method is preserved as long as ≤ < 10°8, resulting in a derivative estimation of O (10°16). At
these tiny increments, finite-difference approaches experience substractive cancellation errors and produce
unreliable estimates [19].

The existing solution is updated via a line search procedure which finds a correction step by reducing the
computed correction step with an attenuation factor k according to Equation C.47.

X
n+1 = X

n +∑¢X n (C.47)

The attenuation factor that provides a correction step resulting the defect vector with the smallest euclidian
norm is selected as the new solution. The range of values used for parameter ∑ can be found in Table A.8.

C.5.2. Additional constraints
Various types of constraints are necessary to enable the collocation algorithm to compute l.p.o families. Re-
gardless of the family that is being generated, the size of the Jacobian for a trajectory consisting of n nodes
will be ((18(n °1)+7)£ (19(n °1)+7)). The remainder of this section is dedicated to the explanation of these
constraints.

Periodicity constraint
Periodicity is of the solution is enforced through an equality constraint in the form of the state discrepancy
between the initial state. The dimensions of the resulting constraints are (6£ (19(n °1)+7)), where only the
first and final seven columns contain non-zero entries, as shown below in Equation C.48.
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Phase constraint for Hl t -varying families
The spacing of the members of the Hl t -varying l.p.o families is determined via pseudo-archlength continu-
ation procedure. To ensure consistent spacing between subsequent family members, it is necessary that the
phase drift between orbit members is minimized. Literature suggests the use of a Poincaré phase condition
in the form of Equation C.49 [10]. It comprises the inner product of the state increment between the family
members x̄n°1 and x̄n°1 between their initial states and the state derivative of x̄n .

±¡= hx̄n
1,1 ° x̄n°1

1,1 , ẋn°1
1,1 i (C.49)

The disadvantage of the Poincaré phase condition is that the phase error grows during the numerical contin-
uation procedure [10]. Hence, this thesis project introduces two adaptions to decrease the phase drift over
the l.p.o family. First of all, the state increment over the complete family becomes constant. It is defined as the
state discrepancy between the initial state of the first family member and the equilibrium point. Secondly,
the initial node state derivative of the already computed member xn°1

1,1 is replaced by the initial node state
derivative of the to be computed member ẋn

1,1. The resulting constraint is shown below in Equation C.50.
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It can be observed that the resulting phase constraint is normalized and multiplied by an amplification factor
k. This modification allows the user to control the constraint magnitude and thereby the sensitivity of the
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collocation procedure to phase constraint. The value of k has been determined through a trial and error
procedure and can be found in Table A.8. The phase constraint is implemented in the root-finding scheme
via Equation C.51.
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Hamiltonian constraint for al t -varying and Æ-varying families
The members of a single al t -varying and Æ-varying families should have an identical Hamiltonian. This is
achieved through an equality constraint at the first node of the trajectory in the form of the discrepancy
between the desired Hamiltonian and the actual value of the Hamiltonian of the first node. The dimensions of
the resulting constraints are (1£ (19(n °1)+7)), where only the first seven columns contain non-zero partial
derivatives, as shown below in Equation C.52.
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D
Extended analysis of acceleration-varying

families

In Chapter 1 of this report, twelve al t -varying families at Hl t =°1.525 are presented for different acceleration
orientation at E1 and E2. More al t -varying families have been constructed at other Hamiltonian values (Hl t =
[°1.55,°1.50]) but these are not included in Chapter 1 for sake of conciseness. The remainder of this Appendix
D is dedicated to analyzing these al t -varying families for reasons of completeness. Section D.1 discusses the
al t -varying families with Hl t =°1.55 whereas Section D.2 presents the al t -varying families with Hl t =°1.50.

D.1. Acceleration-varying families at low-thrust Hamiltonian of -1.55
Figure D.1 shows a planar projection of six al t -varying families emanating from the E1 contour whereas Figure
D.2 presents the evolution of their saddle stability index as well as the evolution of their orbital period.
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Figure D.1: Six al t -varying families at Hl t =°1.55 for different Æ values in vicinity of E2. The color of an l.p.o corresponds to its acceler-
ation magnitude according to the colorbar located on the right side.
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Figure D.2: The evolution of ∫1 over the E1, Hl t =°1.55, al t -varying families is shown on the left. The evolution of T as a function of al t
is shown on the right.

The planar projections support the conclusions provided in Chapter 1. These conclusions state that a growing
acceleration orientation enlarges (shrinks) the orbit size in case of positive (negative) collinear acceleration
and distorts the orbit geometry into ’ear-shaped’ solutions for non-collinear acceleration orientations. The
evolution of the stability indices in Figure D.2 support a different conclusion than presented in Chapter 1.
Figure D.2 shows that an increase in acceleration orientation either monotonically decreases or increases the
saddle stability index, apart from the Æ = 0 family. Another interesting observation is that the orbital period
evolves in an opposite way compared to the saddle stability indices.

These analyses are repeated for al t -varying families emanating from E2. Figure D.3 shows a planar projection
of six al t -varying families emanating from the E2 contour whereas Figure D.4 presents the evolution of their
saddle stability index as well as the evolution of their orbital period.
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Figure D.3: Six al t -varying families at Hl t = °1.55 for different Æ values in vicinity of E2. The colour of an l.p.o corresponds to its
acceleration magnitude according to the colorbar located on the right side.
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Figure D.4: The evolution of ∫1 over the E2, Hl t =°1.55, al t -varying families is shown on the left. The evolution of T as a function of al t
is shown on the right.
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Figures D.3 and D.4 show that the acceleration magnitude has the same effect on the geometry, saddle stabil-
ity index and orbital period of the E2 al t -varying families as on the al t -varying families arising from E1.

D.2. Acceleration-varying families at a low-thrust Hamiltonian of -1.50
Figure D.5 shows a planar projection of six al t -varying families emanating from the E1 contour whereas Figure
D.6 presents the evolution of their saddle stability index as well as the evolution of their orbital period.
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Figure D.5: Six al t -varying families at Hl t =°1.50 for different Æ values in vicinity of E1. The color of an l.p.o corresponds to its acceler-
ation magnitude according to the colorbar located on the right side.
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Figure D.6: The evolution of ∫1 over the E1, Hl t =°1.50, al t -varying families is shown on the left. The evolution of T as a function of al t
is shown on the right.

The planar projections in Figure D.5 support the conclusions provided in Chapter 1. These conclusions state
that an increase in acceleration orientation can enlarge (shrink) the orbit size in case of positive (negative)
collinear acceleration and distort the orbit geometry into ’ear-shaped’ solutions for non-collinear accelera-
tion orientation. The evolution of the stability indices in Figure D.6 also support the conclusions drawn in
Chapter 1 and previous the Section. It can be observed that an increase in acceleration orientation monoton-
ically increases the saddle stability index when Hl t = °1.50, apart from the Æ = [0, 1

3º, 5
3º] families. Further-

more, it can be observed that the orbital period evolves in an opposite way compared to the saddle stability
indices. The al t -varying families emanating from E2 support these conclusions as well. The graphical pro-
jections of the E2 al t -varying families can be found in Figure D.7 whereas the evolution of the saddle stability
indices and orbital periods are provided in Figure D.8. These two figures complete the analysis of the al t -
varying families.
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Figure D.7: Six al t -varying families at Hl t =°1.50 for different Æ values in vicinity of E2. The color of an l.p.o corresponds to its acceler-
ation magnitude according to the colorbar located on the right side.
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Figure D.8: The evolution of ∫1 over the E2, Hl t =°1.50, al t -varying families is shown on the left. The evolution of T as a function of al t
is shown on the right.



E
Quantitative results overview

Chapter 1 and Appendix D contain several quantitative assertions which are not clearly observable from the
Figures present in these Chapters. The goal of this section is to substantiate these claims by providing a
quantitative overview of characteristics of both the equilibria contours and periodic solution families. Section
E.1 presents the equilibria contour characteristics while Sections E.2,E.3 and E.4 discuss the characteristics
of the Hl t -varying, al t -varying and Æ-varying families respectively.

E.1. Low-thrust equilibrium solutions
The low-thrust equilibria are studied in Chapter 1 via analysis of its position, Hamiltonian and eigenvalue re-
lated to the unstable subspace. Table E.2 presents the extrema of these variables for the Æ°varying equilibria
contour at al t = 0.1. The characteristics of the natural Lagrangian points are shown in Table E.1 for reference
purposes.

Variable L1 L2 L3 L4 L5

x 0.836915148369 1.1557821477825 -1.005072643897 0.487854418983 0.487854418983
y 0.000000000000 0.000000000000 0.000000000000 0.866034064038 -0.866034064038
∏ 2.932055876779 2.158674362159 0.177875325621 - -

Hl t -1.594170537701 -1.586080212362 -1.506073573046 -1.493998527801 -1.493998527801

Table E.1: Characteristics of the CR3BP equilibrium solutions. ∏ denotes the eigenvalue related to the saddle subspace.

Variable E1 E2 E3

xmi n 0.827608726610 1.143236632185 -1.039291188287
xmax 0.845328433899 1.170499045727 0.948146945706
ymi n 0.024529061495 -0.047042953312 -1.031812984559
ymax -0.024529061495 0.047042953312 1.031812984559
∏mi n 2.745942677592 1.856372716147 0.089124730775
∏max 3.135841405289 2.459287202304 0.557456692346

Hl t ,mi n -1.677404319667 -1.701008408830 -1.604961223715
Hl t ,max -1.510051094876 -1.469793025395 -1.392875936337

Table E.2: Characteristics of the Æ-varying equilibria contour at al t = 0.1. These properties involve the minimum and maximum posi-
tion,Hamiltonian and dominant eigenvalue related to the saddle subspace.

E.2. Hamiltonian-varying families
A multitude of Hl t -varying families has been generated during this thesis project. The characteristics of these
families are presented below in Table E.3. These characteristics include the number of orbits (N) in the family
and the extrema of the Hamiltonian, orbital period and hyperbolic unwinding behaviour rate per family. The
family members at which these extrema occur are provided in superscript. Besides these characteristics, the
bifurcations occurring in a single family are defined by stating the member (Me) at which a bifurcation occurs
along with the change in order of instability (OI). Specification of the bifurcation type (Type), which is either
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Tangent Bifurcation (T-B), Period-Doubling (P-D) or Cyclic-Fold (C-F) together with the Hamiltonian value
at which they occur fully define the bifurcation behaviour of a family.

Family Bifurcation behaviour
Ei al t Æ N OI Me Type Hl tbif Hl t range T range ∫1 range

L1 0.00 0 1898
I ! II 127 T-B -1.587131685972

-1.5941702437231

-1.4552271245401898
2.6915816562611

6.5379572625891898
1337.71

53.71888II ! I 545 T-B -1.510627491172
I ! II 1232 P-D -1.474609611856

L2 0.00 0 1440
I ! II 253 T-B -1.576017966662

-1.5860802112591

-1.4708384241721440
3.3732580922641

6.2116339672581440
726.81

52.51440II ! I 644 T-B -1.506802366126
I ! II 1191 P-D -1.477844290086

L1 0.01 0 1939
I ! II 130 T-B -1.595379944034

-1.6025349601291

-1.4620099147001938
2.7057877097391

6.4999107066311939
1323.11

67.31702II ! I 558 T-B -1.519718995775
I ! II 1259 P-D -1.482933044552

L1 0.01 1
3º 3000

I ! II 128 T-B -1.591327226597
-1.5918736920061

-1.4765341338833000
2.6989857607091

7.1028336480513000
1330.01

62.31814II ! I 545 T-B -1.516244859768
I ! II 1274 P-D -1.481012979867

L1 0.01 2
3º 3000

I ! II 126 T-B -1.582959708307
-1.5899935394861

-1.4482654505751857
2.6847696670251

7.1610390534783000
1345.31

49.11999II ! I 533 T-B -1.507044344097
I ! II 1247 P-D -1.472851211016

L1 0.01 º 1858
I ! II 125 T-B -1.578761182010

-1.5857966737771

-1.4482654505751858
2.6773785626331

6.5759055668071858
1352.41

40.51858II ! I 532 T-B -1.501487136680
I ! II 1205 P-D -1.466191776357

L1 0.01 4
3º 2038

I ! II 126 T-B -1.582959584247
-1.5899935394841

-1.4558666212022038
2.6773785626331

6.5759055668071858
1345.31

49.11999II ! I 553 T-B -1.507044715495
I ! II 1247 P-D -1.472851297376

L1 0.01 5
3º 3000

I ! II 128 T-B -1.591327107766
-1.5983628184231

-1.4324770773503000
2.6989857607161

7.1028366626533000
1330.01

62.31814II ! I 545 T-B -1.516244640995
I ! II 1274 P-D -1.481012923014

L2 0.01 0 1364
I ! II 237 T-B -1.587624895773

-1.5976301837861

-1.4804583487931364
3.3415669962831

6.1073930270903000
750.61

62.31363II ! I 611 T-B -1.516718364461
I ! II 149 P-D -1.486959298629

L2 0.01 1
3º 1484

I ! II 240 T-B -1.581892566913
-1.5918736920061

-1.4765341338831484
3.3575692315251

6.2306400199011483
738.91

56.31484II ! I 622 T-B -1.512605435535
I ! II 1174 P-D -1.484420421819

L2 0.01 2
3º 1583

I ! II 248 T-B -1.570199462219
-1.5803173687091

-1.4672199929421583
3.3895291569941

6.3680025831971583
715.11

44.91583II ! I 642 T-B -1.502852851866
I ! II 1211 P-D -1.475502524684

L2 0.01 º 1501
I ! II 252 T-B -1.564336329171

-1.5745164712791

-1.4612829120821501
3.4054428289171

6.3220315910061501
703.11

42.51500II ! I 658 T-B -1.496983113191
I ! II 1215 P-D -1.468723798407

L2 0.01 4
3º 1583

I ! II 248 T-B -1.570199480946
-1.5803173687091

-1.4672197954631583
3.3895291568171

6.3680193694891583
715.11

44.91583II ! I 642 T-B -1.502852069664
I ! II 1211 P-D -1.475502275274

L2 0.01 5
3º 1484

I ! II 240 T-B -1.581892620441
-1.5918736920061

-1.4765341313101484
3.3575692314341

6.2306402113911484
738.91

56.31484II ! I 622 T-B -1.512605414373
I ! II 1174 P-D -1.484420419112

L1 0.05 0 2114
I ! II 139 T-B -1.628666470803

-1.6359034899841

-1.4871902824722114
2.7625473675121

6.3475444789852114
1265.21

114.81317II ! I 609 T-B -1.555701732880
I ! II 1376 P-D -1.514931886986

L1 0.05 1
3º 2102

I ! II 128 T-B -1.608790672486
-1.6152993560891

-1.5152926373732102
2.7352434395611

6.0787231611322102
1308.41

71.5 1482II ! I 471 T-B -1.550650408588
I ! II 1341 P-D -1.522298526451

L1 0.05 2
3º 1097

I ! II 118 T-B -1.566967967973 -1.5734384101031

-1.4817316152131097
2.6628540004721

5.2152659567831097
1381.91

1.2 1097II ! I 424 T-B -1.504286336700
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L1 0.05 º 1616
I ! II 116 T-B -1.545349079168

-1.5522156391551

-1.4203389518641616
2.6206835019841

6.5869980489611616
1411.81

7.9 1616II ! I 481 T-B -1.464305486592
I ! II 1104 P-D -1.431376314540

L1 0.05 4
3º 1097

I ! II 118 T-B -1.566967440708 -1.5734384100971

-1.4817316631141097
2.6628540003531

5.2134076595191097
1381.91

1.4 1097II ! I 424 T-B -1.504286214386

L1 0.05 5
3º 4023

I ! II 128 T-B -1.608790279609
-1.6152993560841

-1.4637063231534023
2.7352434394401

6.8484607927904023
1308.41

71.5 1482II ! I 471 T-B -1.550649993159
I ! II 1341 P-D -1.522298495545

L2 0.05 0 1109
I ! II 211 T-B -1.633937104194

-1.6436996259891

-1.5197923421501109
3.2195708346411

5.7140196628701109
846.71

95.6 937II ! I 517 T-B -1.556032081390
I ! II 1015 P-D -1.523429301657

L2 0.05 1
3º 3038

I ! II 221 T-B -1.606075307705
-1.6153280810211

-1.5044834734313038
3.2993815925291

6.9890380290653038
792.41

46.6 1437II ! I 535 T-B -1.546099631383
I ! II 1151 P-D -1.523287719992

L2 0.05 2
3º 2465

I ! II 255 T-B -1.548206547685

-1.5576057855921

-1.4820059563531265
3.4620406750341

8.1026188576272465
673.31

1.0 1266

II ! I 629 T-B -1.497993846942
I ! 0 1266 C-F -1.482005957509
0 ! I 1277 P-D -1.482008183610
I ! II 1362 P-D -1.482152122822
II ! I 2305 P-D -1.493633812747

L2 0.05 º 1789
I ! II 242 T-B -1.517721259775

-1.5281216014831

-1.4244227314451789
3.5392734239191

6.8053841960961789
609.71

7.2 1789II ! I 752 T-B -1.457276785819
I ! II 1343 P-D -1.432171258093

L2 0.05 4
3º 2465

I ! II 255 T-B -1.548206316982

-1.5576057855921

-1.4820059563111265
3.4620406751061

8.1026501337392465
673.31

1.0 1266

II ! I 629 T-B -1.497993624051
I ! 0 1266 C-F -1.482005957557
0 ! I 1277 P-D -1.482008184640
I ! II 1362 P-D -1.482152130639
II ! I 2305 P-D -1.493633875187

L2 0.05 5
3º 3038

I ! II 221 T-B -1.606075553625
-1.6153280810221

-1.5044838005733038
3.2993815925291

6.9890380290653038
792.41

46.6 1437II ! I 535 T-B -1.546101085825
I ! II 1151 P-D -1.523287901842

L1 0.10 0 2168
I ! II 152 T-B -1.669942040687

-1.6774040835601

-1.5229273333202168
2.8329737796401

6.0628068534102168
1195.11

163.2 1137II ! I 676 T-B -1.599363160136
I ! II 1544 P-D -1.551679481714

L1 0.10 1
3º 1018

I ! II 114 T-B -1.632321869922 -1.6368752012081

-1.5731629493081018
2.7990326632281

5.0618505431201018
1294.91

1.0 1018II ! I 339 T-B -1.600447087399

L1 0.10 2
3º 947

I ! II 99 T-B -1.548341123295

-1.5530610631991

-1.481275690618659
2.6456118033591

6.209508129725947
1441.11

1.0 659

II ! I 297 T-B -1.506675678442
I ! 0 659 C-F -1.481275717243
0 ! I 661 P-D -1.481276343384
I ! II 813 P-D -1.483385202767
II ! I 946 P-D -1.490997327610

L1 0.10 º 1210
I ! II 106 T-B -1.503326358770

-1.5100507252111

-1.3815395217991210
2.5503800701681

6.1725962995911210
1486.91

1.4 1210II ! I 415 T-B -1.416820162272
I ! II 916 P-D -1.385549149138

L1 0.10 4
3º 659

I ! II 99 T-B -1.548339738565 -1.5530610631870

-1.481275689579659
2.6456118031701

4.441184225369659
1441.11

1.4 659II ! I 297 T-B -1.506672652333

L1 0.10 5
3º 1014

I ! II 114 T-B -1.632321045167 -1.6368752011990

-1.5731632018821013
2.7990326629561

5.0525589889791014
1294.91

2.6 1014II ! I 339 T-B -1.600445578392

L2 0.10 0 1000
I ! II 182 T-B -1.691702004715

-1.7010082437331

-1.5607725163071000
3.0772380273801

5.6948000088751000
967.41

120.4 627II ! I 401 T-B -1.604890150188
I ! II 827 P-D -1.568950027379
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L2 0.10 1
3º 4450

I ! II 190 T-B -1.637709361660

-1.6451774763561

-1.5362853150234500
3.2332623895751

7.2366765479263028
871.21

1.0 966

II ! I 422 T-B -1.592804071586
I ! 0 966 C-F -1.570479376834
0 ! I 973 P-D -1.570480485213
I ! II 1008 P-D -1.570514780452
II ! I 1942 P-D -1.574864562848
I ! 0 1948 P-D -1.574865435036
0 ! I 1955 T-B -1.574865741211
I ! II 3737 P-D -1.557066278025

L2 0.10 2
3º 1278

I ! II 238 T-B -1.523476564602

-1.5301061948441

-1.482899373508929
3.5780289132591

6.5274645295211278
644.51278

1.0 929

II ! I 520 T-B -1.497633780034
I ! 0 929 C-F -1.482899373508
0 ! I 932 P-D -1.482899910330
I ! II 1210 P-D -1.487231349121

L2 0.10 º 2037

I ! II 330 T-B -1.459199384025

-1.4697929542151

-1.3827361773472035
3.7186788302281

7.3118050766342037
497.61

1.0 2035

II ! I 867 T-B -1.407251797015
I ! II 1498 P-D -1.386382553565
II ! I 1629 T-B -1.384751919567
I ! II 1698 P-D -1.384105703933
II ! I 1970 P-D -1.382785759706

L2 0.10 4
3º 1278

I ! II 238 T-B -1.523477507825

-1.5301061948451

-1.482899373396929
3.5780289130851

6.5272381990531278
644.51278

1.0 929

II ! I 520 T-B -1.497634654480
I ! 0 929 C-F -1.482899373396
0 ! I 932 P-D -1.482899906931
I ! II 1210 P-D -1.487230995314

L2 0.10 5
3º 4450

I ! II 190 T-B -1.637708250609

-1.6451774763571

-1.5362854058174500
3.2332623892651

7.2366765477523028
871.21

1.0 966

II ! I 422 T-B -1.592805054171
I ! 0 966 C-F -1.570479376767
0 ! I 973 P-D -1.570480483551
I ! II 1008 P-D -1.570514772557
II ! I 1942 P-D -1.570514772557
I ! 0 1948 P-D -1.574865434552
0 ! I 1955 T-B -1.574865741264
I ! II 3737 P-D -1.557066325982

Table E.3: An overview of the key characteristics of Hl t -varying families. These characteristics include the number of family members,
bifurcation behaviour and extrema of the Hamiltonian, orbital period and hyperbolic unwinding behaviour. All variables are dimension-
less apart from the angle which is shown in radians.

The bifurcation diagrams in Chapter 1 of this report reveal the bifurcation behaviour by plotting the module
of all six eigenvalues along with the phase of the out-of-plane center subspace (∏2 and 1

∏2
) as a function of the

bifurcation parameter. This allows full specification of the bifurcations as long as the stability of the saddle
subspace eigenvalue pair (∏1 and 1

∏1
) remains unchanged. However, The stability saddle subspace eigenvalue

pair did change for eight of the 38 Hl t -varying families which are listed below:

• L2 (al t = 0.05, Æ= 2
3º and 4

3º)

• L1 (al t = 0.10, Æ= 2
3º)

• L2 (al t = 0.10, Æ= 1
3º and 5

3º)

• L2 (al t = 0.10, Æ=º)

• L2 (al t = 0.10, Æ= 2
3º and 4

3º)

The bifurcations occurring in these eight families have been determined by manually inspecting the values,
phase and stability indices1 of the three eigenvalue pairs. The remainder of this section shows how these
variables change along the eight families to remove any ambiguity regarding the documented bifurcation
behaviour in Chapter 1 and Table E.3.

1The minimum value of the stability index is +1 as its the average of an absolute valued reciprocal eigenvalue pair. This observation
coincides with work from renowned scientists [37] but opposes previous student work [25, 26]. Inspection of Langemeijer’s source code
[25] revealed that the absolute value operator was omitted in computation of the stability index.
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L2(alt = 0.05,Æ= 2
3º andÆ= 4

3º)
The evolution of the eigenvalues and stability indices along the L2 (al t = 0.05, Æ= 2

3º) Hl t -varying family can
be observed below in Figure E.1.
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Figure E.1: Stability analysis of the L2 (al t = 0.05, Æ = 2
3º) Hl t -varying family. The upper rows shows the magnitude of the eigenvalue

pairs whereas the middle row shows their phase as a function of Hl t . From left to right, the bottom row shows the stability indices related
to the saddle subspace, out-of-plane center subspace and in-plane center subspace respectively.

Table E.3 states that six bifurcations are present in this specific family. Inspection of Figure E.1 confirms
that the first two bifurcations are tangent bifurcations since the phase of the out-of-plane center subspace
eigenvalue pair leaves and rejoins the unit circle. The third bifurcation is caused by the saddle eigenvalue
pair which joins the unit circle at +1. This change in order of instability is a cyclic-fold rather than a tangent
bifurcation as it occurs at an extremum of the Hamiltonian. The fourth bifurcation occurs when the saddle
eigenvalue pair leaves the unit circle at °1 which gives rise to a period-doubling bifurcation. The final two bi-
furcations are also period-doubling bifurcations caused by the out-of-plane center subspace eigenvalue pair
that leaves and rejoins the unit circle at °1. The stability analysis of the the evolution of the eigenvalues and
stability indices along the L2 (al t = 0.05, Æ = 4

3º) Hl t -varying family is identical to Figure E.1 and has been
omitted from this report for sake of conciseness.

L1(al t = 0.1,Æ= 2
3º)

The evolution of the eigenvalues and stability indices along the L1 (al t = 0.10, Æ= 2
3º) Hl t -varying family can

be observed below in Figure E.2.
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Figure E.2: Stability analysis of the L1 (al t = 0.10, Æ = 2
3º) Hl t -varying family. The upper rows shows the magnitude of the eigenvalue

pairs whereas the middle row shows their phase as a function of Hl t . From left to right, the bottom row shows the stability indices related
to the saddle subspace, out-of-plane center subspace and in-plane center subspace respectively.

Table E.3 states that five bifurcations are present in this specific family. Inspection of Figure E.2 confirms
that the first two bifurcations are tangent bifurcations since the out-of-plane center subspace eigenvalue pair
leaves and rejoins the unit circle. The third bifurcation is caused by the saddle eigenvalue pair which joins
the unit circle at +1. This change in order of instability is a cyclic-fold rather than a tangent bifurcation as it
occurs at an extremum of the Hamiltonian. The fourth bifurcation occurs when the saddle eigenvalue pair
leaves the unit circle at °1 which gives rise to a period-doubling bifurcation. The final two bifurcations are
also period-doubling bifurcations caused by the out-of-plane center subspace eigenvalue pair that leaves and
rejoins the unit circle at °1.

L2(alt = 0.05,Æ= 1
3º andÆ= 5

3º)
The evolution of the eigenvalues and stability indices along the L2 (al t = 0.10, Æ= 1

3º) Hl t -varying family can
be observed below in Figure E.3.
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Figure E.3: Stability analysis of the L2 (al t = 0.10, Æ = 1
3º) Hl t -varying family. The upper rows shows the magnitude of the eigenvalue

pairs whereas the middle row shows their phase as a function of Hl t . From left to right, the bottom row shows the stability indices related
to the saddle subspace, out-of-plane center subspace and in-plane center subspace respectively.

Table E.3 states that nine bifurcations are present in this specific family. Inspection of Figure E.3 confirms
that the first two bifurcations are tangent bifurcations since the out-of-plane center subspace eigenvalue pair
leaves and rejoins the unit circle. The third bifurcation is caused by the saddle eigenvalue pair which joins
the unit circle at +1. This change in order of instability is a cyclic-fold rather than a tangent bifurcation as it
occurs at an extremum of the Hamiltonian. The fourth and fifth bifurcation occur when the saddle eigenvalue
pair followed by the out-of-plane center eigenvalue pair leave the unit circle at °1, resulting in two period-
doubling bifurcations. The sixth and seventh change in order of linear instability are also period-doubling
bifurcations as the two eigenvalue pairs rejoin the unit circle at °1. The eighth bifurcation is a tangent bi-
furcation which happens when the saddle eigenvalue pair leaves the unit circle at +1. The final bifurcation
is a period-doubling bifurcation as the out-of-plane center eigenvalue pair leaves the unit circle at °1. The
stability analysis of the the evolution of the eigenvalues and stability indices along the L2 (al t = 0.10, Æ= 5

3º)
Hl t -varying family is identical to Figure E.3 and has been omitted from this report for sake of conciseness.

L2(alt = 0.1,Æ= 2
3ºandÆ= 4

3º)
The evolution of the eigenvalues and stability indices along the L2 (al t = 0.10, Æ= 2

3º) Hl t -varying family can
be observed below in Figure E.4.
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Figure E.4: Stability analysis of the L2 (al t = 0.10, Æ = 2
3º) Hl t -varying family. The upper rows shows the magnitude of the eigenvalue

pairs whereas the middle row shows their phase as a function of Hl t . From left to right, the bottom row shows the stability indices related
to the saddle subspace, out-of-plane center subspace and in-plane center subspace respectively.
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Table E.3 states that five bifurcations are present in this specific family. Inspection of Figure E.4 confirms
that the first two bifurcations are tangent bifurcations since the out-of-plane center subspace eigenvalue pair
leaves and rejoins the unit circle. The third bifurcation is caused by the saddle eigenvalue pair which joins
the unit circle at +1. This change in order of instability is a cyclic-fold rather than a tangent bifurcation as it
occurs at an extremum of the Hamiltonian. The fourth bifurcation occurs when the saddle eigenvalue pair
leaves the unit circle at °1 which gives rise to a period-doubling bifurcation. The final bifurcation is also
period-doubling bifurcations caused by the out-of-plane center eigenvalue pair leavin the unit circle at °1.
The stability analysis of the evolution of the eigenvalues and stability indices along the L2 (al t = 0.10, Æ= 4

3º)
Hl t -varying family is identical to Figure E.4 and has been omitted from this report for sake of conciseness.

L2(alt = 0.1,Æ=º)
The evolution of the eigenvalues and stability indices along the L2 (al t = 0.10, Æ= º) Hl t -varying family can
be observed below in Figure E.5.
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Figure E.5: Stability analysis of the L2 (al t = 0.10,Æ=º) Hl t -varying family. The upper rows shows the magnitude of the eigenvalue pairs
whereas the middle row shows their phase as a function of Hl t . From left to right, the bottom row shows the stability indices related to
the saddle subspace, out-of-plane center subspace and in-plane center subspace respectively.

Table E.3 states that six bifurcations are present in this specific family. Inspection of Figure E.5 confirms
that the first two bifurcations are tangent bifurcations since the out-of-plane center subspace eigenvalue pair
leaves and rejoins the unit circle. The third bifurcation is a period-doubling bifurcation caused by the out-
of-plane center eigenvalue pair which leaves the unit circle at °1. The fourth bifurcations is caused by the
saddle eigenvalue pair which joins the unit circle at +1 giving rise to a tangent bifurcation. The final two
bifurcations are also caused by the saddle eigenvalue pair as it leaves and rejoins the unit circle at °1. Hence
these bifurcations are period-doubling bifurcations.

E.3. Acceleration-varying families
The characteristics of the al t -varying families are presented in an similar way as the Hl t -varying families in
Section E.2. The only difference being that the al t range of the family is presented instead of the Hl t range
since it is the bifurcation parameter of this family type. The characteristics of the al t -varying families can be
found in Table E.4.
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Family Bifurcation behaviour
Ei Hl t Æ N OI Me Type al tbif al t range T range ∫1 range

L1 °1.550 0 101
II ! I 45 T-B 0.044 0.0001

0.100101
3.1237509026661

5.621647753697101
556.01

141.874I ! II 99 P-D 0.098

L1 °1.550 1
3º 77 II ! I 51 T-B 0.050

0.0001

0.07677
3.1237509026661

5.15617782161077
556.01

49.177

L1 °1.550 2
3º 101 II ! I 97 T-B 0.096

0.0001

0.07677
2.667445460384101

3.1237509026660
1365.8101

556.01

L1 °1.550 º 53 II ! I 46 T-B 0.045
0.0001

0.05253
2.62123103140953

3.1237509026661
1402.053

556.00

L1 °1.550 4
3º 101 II ! I 97 T-B 0.096

0.0001

0.07677
2.667445460384101

3.1237509026660
1365.8101

556.01

L1 °1.550 5
3º 77 II ! I 51 T-B 0.050

0.0001

0.07677
3.1237509026661

5.15617782160977
556.01

49.177

L2 °1.550 0 101
II ! I 45 T-B 0.044 0.0001

0.100101
3.5837950542671

6.132330574703101
360.21

106.777I ! II 81 P-D 0.080

L2 °1.550 1
3º 79

II ! I 56 T-B 0.055 0.0001

0.07879
3.5837950542671

5.52527551169879
360.21

6.778I ! II 79 P-D 0.078

L2 °1.550 2
3º 64 II ! I 48 T-B 0.047

0.0001

0.06364
3.49061501327664

3.5837950542671
656.964

360.21

L2 °1.550 º 32 II ! I 24 T-B 0.023
0.0001

0.03132
3.47549364528332

3.5837950542671
651.532

360.21

L2 °1.550 4
3º 64 II ! I 48 T-B 0.047

0.0001

0.06364
3.49061501327564

3.5837950542671
656.964

360.21

L2 °1.550 5
3º 79

II ! I 56 T-B 0.055 0.0001

0.07879
3.5837950542671

5.52527551166979
360.21

6.778I ! II 79 P-D 0.078

L1 °1.525 0 101
II ! I 17 T-B 0.016 0.0001

0.100101
3.5654178998041

6.038622665072101
300.51

118.150I ! II 65 P-D 0.064

L1 °1.525 1
3º 101

II ! I 23 T-B 0.022 0.0001

0.100101
3.5654178998041

6.69781640298787
346.7101

68.755I ! II 54 P-D 0.053

L1 °1.525 2
3º 101 II - - -

0.0001

0.100101
2.892552556355101

3.5654178998040
840.5101

300.51

L2 °1.525 º 83 II ! I 77 T-B 0.076
0.0001

0.08283
2.57709082665283

3.5654178998041
651.532

360.21

L1 °1.525 4
3º 101 II - - -

0.0001

0.100101
2.892552556355101

3.5654178998040
840.5101

300.51

L1 °1.525 5
3º 101

II ! I 23 T-B 0.022 0.0001

0.100101
3.5654178998041

6.69781640298787
346.7101

68.755I ! II 54 P-D 0.053

L2 °1.525 0 85
II ! I 20 T-B 0.019 0.0001

0.08485
3.8934392781241

6.60993696875884
247.184

93.248I ! II 53 P-D 0.052

L2 °1.525 1
3º 101

II ! I 28 T-B 0.027 0.0001

0.100101
3.8934392781241

7.19126333880895
382.5101

42.355I ! II 53 P-D 0.052

L2 °1.525 2
3º 101 II ! I 98 T-B 0.097

0.0001

0.100101
3.612698367901101

3.8934392781241
568.9101

203.11

L2 °1.525 º 53 II ! I 46 T-B 0.045
0.0001

0.05253
3.55005752166753

3.8934392781241
596.153

203.11

L2 °1.525 4
3º 101 II ! I 98 T-B 0.097

0.0001

0.100101
3.612698367901101

3.8934392781241
568.9101

203.11

L2 °1.525 5
3º 101

II ! I 28 T-B 0.027 0.0001

0.100101
3.8934392781241

7.19126333880995
382.5101

42.355I ! II 53 P-D 0.052

L1 °1.500 0 101 II ! I 32 T-B 0.031
0.0001

0.100101
4.3350797696351

6.27853433583286
312.9100

92.926

L1 °1.500 1
3º 101 I ! II 31 T-B 0.030

0.0001

0.100101
4.3350797696361

6.70970884992073
336.3100

75.433

L1 °1.500 2
3º 101 I - - -

0.0001

0.100101
3.285404209897101

4.3350797696360
441.0101

143.81
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L1 °1.500 º 101 I ! II 13 T-B 0.012
0.0001

0.100101
2.610808484840101

4.3350797696361
1253.0101

143.81

L1 °1.500 4
3º 101 I - - -

0.0001

0.100101
3.285404209898101

4.3350797696360
441.0101

143.81

L1 °1.500 5
3º 101 I ! II 31 T-B 0.030

0.0001

0.100101
4.3350797696361

6.70970884992073
336.3100

75.433

L2 °1.500 0 40 I ! II 26 T-B 0.025
0.0001

0.03940
4.5429997240011

6.31406164193340
106.31

76.722

L2 °1.500 1
3º 67 I ! II 28 T-B 0.027

0.0001

0.06667
4.5429997240001

7.28009413410967
249.267

58.231

L2 °1.500 2
3º 101 I ! II 24 T-B 0.023

0.0001

0.100101
3.902464774388101

4.5429997240001
302.5100

106.31

L2 °1.500 º 75
I ! II 8 T-B 0.007 0.0001

0.07475
3.62456579932975

4.5429997240001
553.375

106.31II ! I 67 T-B 0.066

L2 °1.500 4
3º 101 I ! II 24 T-B 0.023

0.0001

0.100101
3.902464774388101

4.5429997240001
302.5100

106.31

L2 °1.500 5
3º 67 I ! II 28 T-B 0.027

0.0001

0.06667
4.5429997240001

7.28009413410967
249.267

58.231

Table E.4: An overview of the key characteristics of al t -varying families. These characteristics include the number of family members,
bifurcation behaviour and range of the acceleration magnitude, orbital period and hyperldlic unwinding behaviour. All variables are
dimensionless apart from the angle which is shown in radians.

E.4. Orientation-varying families
The characteristics of the Æ-varying families are presented in an similar way as the two other family types
presented in Sections E.2 and E.3. The only difference being that theÆ range of the family is presented instead
of the Hl t or al t domain since it is the bifurcation parameter of this family type. The characteristics of the
Æ-varying families can be found in Table E.5.

Family Bifurcation behaviour
Ei al t Hl t N OI Me Type Æbif Æ range T range ∫1 range

L1 0.01 °1.550 360 I - - - [0.01,359.0360]
2.996039048368181

3.2741970209981
678.3181

450.61

L1 0.01 °1.525 360 II - - - [0.01,359.0360]
3.361571234121181

3.8126847208071
379.8181

235.31

L1 0.01 °1.500 360 II - - - [0.01,359.0360]
3.982295048464181

4.7479872990411
112.4181

188.71

L2 0.01 °1.550 360 I - - - [0.01,359.0360]
3.774611374213181

4.0580517844011
440.3181

292.21

L2 0.01 °1.525 360 II - - - [0.01,359.0360]
3.774611374213181

4.0580517844011
254.4181

161.51

L2 0.01 °1.500 360
I ! II 140 T-B 139.0

[0.01,359.0360]
4.259693007789181

4.9238473773461
134.4181

86.41II ! I 223 T-B 222.0

L1 0.05 °1.550 360

II ! I 63 T-B 62.0

[0.01,359.0360]
2.634915062987181

4.2215437649301
1359.1181

184.31
I ! II 155 T-B 154.0
II ! I 208 T-B 207.0
I ! II 300 T-B 299.0

L1 0.05 °1.525 360
I ! II 99 T-B 98.0

[0.01, 359.0360]
2.827514995243181

5.31817767533241
856.1181

85.1302II ! I 264 T-B 263.0

L1 0.05 °1.500 360

I ! II 96 P-D 95.0

[0.01, 359.0360]
3.109902476676181

9.887662172813134
500.2181

31.0260
II ! I 124 T-B 123.0
I ! II 237 T-B 236.0
II ! I 268 P-D 267.0
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L2 0.05 °1.550 259

II ! I 53 T-B 52.0
[0.01,129.0130]
[231.0131,359.0259]

3.482678917992259

4.310716269762130
656.7259

126.6130
I ! II 120 T-B 119.0
II ! I 142 T-B 242.0
I ! II 209 T-B 309.0

L2 0.05 °1.525 360

I ! II 16 P-D 15.0

[0.01,359.0360]
3.554712961880180

5.507825353936323
574.7181

61.6305

II ! I 56 P-D 55.0
I ! II 92 T-B 91.0
II ! I 154 T-B 153.0
I ! II 207 T-B 206.0
II ! I 270 T-B 269.0
I ! II 306 P-D 305.0
II ! I 346 P-D 345.0

L2 0.05 °1.500 161
I ! II 19 T-B 118.0

[100.01, 260.0161]
3.72749362062881

5.112035199537161
342.781

33.21II ! I 145 T-B 243.0

L1 0.10 °1.550 247

II ! I 70 P-D 69.0

[0.01,123.0124]
[237.0125,359.0247]

2.643556604309124

9.16699513534893
1432.0124

185.71

I ! II 99 T-B 98.0
II ! I 121 T-B 120.0
I ! II 128 T-B 242.0
II ! I 149 T-B 263.0
I ! II 178 P-D 291.0

L1 0.10 °1.525 291

II ! I 69 P-D 118.0

[0.01,145.0146]
[215.0147,359.0291]

2.589415277041146

9.517163714780110
1455.3146

161.5110

I ! II 82 T-B 81.0
II ! I 111 T-B 110.0
I ! II 141 T-B 140.0
II ! I 182 T-B 250.0
I ! II 212 P-D 280.0

L1 0.10 °1.500 360

II ! I 95 P-D 94.0

[0.01,359.0360]
2.610808484840181

9.504294020205125
1252.9181

78.1251
I ! II 125 T-B 124.0
II ! I 237 T-B 236.0
I ! II 267 P-D 266.0

L2 0.10 °1.550 219

II ! I 64 P-D 63.0

[0.01,109.0110]
[251.0110,359.0219]

3.522504113637110

9.831729889375125
669.1110

211.61

I ! II 89 T-B 88.0
II ! I 108 T-B 107.0
I ! II 115 P-D 246.0
II ! I 134 T-B 227.0
I ! II 159 P-D 202.0

L2 0.10 °1.525 54

I ! II 11 T-B 106.0
[96.01,122.027]
[238.028,264.054]

3.59804343981627

4.4717321028140
604.127

88.61
II ! I 25 T-B 120.0
I ! II 30 T-B 240.0
II ! I 44 T-B 254.0

L2 0.10 °1.500 57

I ! II 9 T-B 119.0
[111.01,138.028]
[222.029,249.057]

3.66105872403928

4.47862163620757
554.028

100.61
II ! I 24 T-B 134.0
I ! II 34 T-B 227.0
II ! I 50 T-B 252.0

Table E.5: An overview of the key characteristics of Æ-varying families. These characteristics include the number of family members,
bifurcation behaviour and range of the acceleration orientation, orbital period and hyperbolic unwinding behaviour. All variables are
dimensionless apart from the acceleration orientation which is shown in degrees.
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The totality of techniques presented in Appendices A, B and C enable the numerical approximation of equi-
libria contours and l.p.o families. This Addendum establishes the veracity of these dynamical structures via
verification and validation of the techniques presented in Appendices A-C. Section F.1 presents the verifica-
tion procedure for the root-finding algorithms used for construction of equilibria contours. The veracity of
the Floquet targeter is discussed in Section F.3 whereas the correctness of the collocation method is presented
in Section F.4. The veracity of the continuation procedure and resulting periodic solution families is discussed
in Section F.5.

F.1. Equilibria contour verification
The equilibria contours comprise a set positions where a stationary spacecraft experiences a net zero accel-
eration. Each equilibrium location is calculated via the root-finding algorithm presented in Section C.2. The
performance of this root-finder is verified by inspecting whether the defect vector of each solution satisfies
the tolerances as specified in Table A.8.

Defect vector verification of cr-varying equilibria contours
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an =0.07 an =0.1
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Figure F.1: Each subfigure shows the modulus of the defect vector of the complete equilibria contour at a specified acceleration.

It can be concluded from Figure F.1 that the root-finding algorithm performs as expected since the defect
vector of each solution adheres to the defect tolerances.

75
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While Figure F.1 confirms a correct implementation of the multivariate root-finding technique. It does not
prove that the positions produced by the algorithm are equilibria. According to [35], a spacecraft that is
exactly positioned at a Lagrangian point without any velocity, will forever stay at this Lagrangian point. Val-
idation of the algorithm’ solutions are obtained by explicit propagation for half a synodic period. The state
deviations with respect to the equilibrium point after propagation are shown below in Figure F.2.
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Figure F.2: The left Figure shows the position discrepancy whereas the right Figure shows the velocity discrepancy after propagation for
a synodic half-period. The black dotted line indicates a threshold for machine noise. All deviation smaller than 10 ·1.0°20 have been set
to 1.0 ·10°20 for visualization purposes.

The data in Figure F.2 shows that the position and velocity discrepancy are negligible after propgation of a
synodic half-period. These deviations are the result of the errors associated with the explicit propagation pro-
cedure and a near-perfect computation of the equilibrium position via the root-finding algorithm of Section
C.2. It is interesting to see that the deviations of the seed solutions are considerably larger compared to the
deviations of other equilibria on the contour. A possible explanation for this phenomenon is that the seed
solutions are computed via the univariate Newton-Raphson method instead of a multivariate root-finding
method.

Figure F.1 proves a robust performance of the root-finding algorithm over the complete range of acceleration
magnitudes whereas Figure F.2 confirms that the solutions generated by the algorithm are in fact libration
points of the CR3BP-LT. These two Figures provide confidence in the veracity of the equilibria contours.

F.2. Floquet targeter verification
The veracity of the Floquet targeter is established by investigating how the state discrepancies of the seed
solutions evolve as a function of the in-plane amplitudes and thrust parameters. These errors should evolve
smoothly since the CR3BP-LT is a smooth system. The amplitude range is determined by the maximum am-
plitude offset as specified in Section A.6. Furthermore, rhe state discrepancies are investigated for all possible
values of thrust orientations and the complete range of investigated thrust acceleration as specified in Chap-
ter 1 of this report. The evolution of the state discrepancies due to a change in the three aforementioned
variables. can be found in Figures F.3-F.5.

In-plane amplitude effect on deviation at full period
Li(au = 0.1, a = jTr rad) approximate periodic solutions Position and velocity deviation after one orbital revolution

Figure F.3: Evolution of the approximate periodic solution state discrepancies due to a change in in-plane amplitude.
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Figure F.5: Evolution of the approximate periodic solution state discrepancies due to a change in acceleration magnitude.

Figure F.3 show that the state discprencies of the approximate seed solutions smoothly evolve over the range
of in-plane amplitudes as specified in Table A.6. Hence a robust performance of the Floquet targeter algo-
rithm is proved within this range of in-plane amplitudes. Figures F.4 and F.5 show that the state discrepancies
smoothly evolve as a function of the thrust parameters. The validation of the Floquet targeter is accomplished
by comparing its performance against Richardson third order method [31]. Richardson’s approximation is a
widely used methodology for computation of approximate libration point orbits in the CR3BP [31]. A com-
parison between the two methods is provided below in Table F.1. A natural L1 H-L orbit is selected as a test
case. The in-plane amplitude is set equal to the maximum in-plane amplitude specified in Table A.6.

State Floquet targeter Richardson’s method Difference
x 8.368151483688 ·10°1 8.368151483689 ·10°1 -1.0 ·10°12

y 1.2246467991474 ·10°20 0.0 -1.2246467991474 ·10°20

z 0.0 0.0 0.0
ẋ 0.0 0.0 0.0
ẏ 8.3722730179494 ·10°4 8.3784707256357 ·10°4 -6.197707686299 ·10°7

ż 0.0 0.0 0.0
T 2.6915797202527 2.6915816604254 -1.940172699832488 ·10°6

Table F.1: Initial states for a natural H-L orbit around L1 with an in-plane amplitude Ax = 1.0 · 10°4. It can be observed that the two
methods provide a near-identical position but the methods provide a different starting velocity and estimation of the orbital period. The
data regarding Richardson’s method has been obtained from [25].

It can be concluded from Table F.1 that the positional difference between the two methods is in the range of
machine noise. It can also be observed that there are significant differences between the Floquet targeter and
Richardson’s third order method in terms of velocity and orbital period. Both differences are attributed to the
different order of the methods. The Floquet targeter determines a velocity correction based upon a first order
linearization of the dynamics whereas Richardson’s method cancels out secular components of the dynamics
up to the third order.
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The totality of Figures F.3- F.5 and Table F.1 prove the correctness of the Floquet targeter scheme as described
in Section C.4.

F.3. Two-level targeter verification
The TLT algorithm is verified by correcting an approximate solution around an artificial equilibrium in vicin-
ity of L1. The low-thrust orientation acceleration of the seed solution is set to its maximum value (al t = 0.1)
with an orientation perpendicular to the x-axis of the synodic reference frame (Æ = 1

2º). Furthermore, an
in-plane amplitude is chosen that is almost two orders of magnitude larger than maximum in-plane ampli-
tude specified in Table A.6. These settings result in a test case which tests the full functionality of the TLT
algorithm. The behaviour of the TLT algorithm during the correction procedure of this orbit is shown below
in Figure F.6.
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Figure F.6: The left Figure shows the convergence behaviour of the TLT procedure. The right Figure shows the computational cost of the
TLT and the number of iterations required for the Level-I corrector needs to produce a position-continous trajectory.

Figure F.6 shows that the algorithm exhibits monotone convergence and converges in six iterations. Fur-
thermore, it confirms the findings of [4] which state that the corrections provided by the level-II correction
procedure should result in a smaller velocity discontinuities once the solution is reconverged with the level-I
correction process. A visualization of the process presented in Figure F.6 is shown below in Figures F.7-F.9.

L\ (ait = 0.1, a = W rad,
Initial guess from Floquet targeter

0.80 0.82 0.86 0.88

8.0 -10 3) - Correction procedure
Cycle 1 - Level I ouput

0.840.80 0.82 0.86 0.88

Figure F.7: The input trajectory of the TLT trajectory and the trajectory forwarded by the level-I corrector of cycle 1
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Figure F.8: The result of the TLT cycle 1, level-II corrector cycle 2, level-I corrector.
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Figure F.9: The result of the TLT cycle 2, level-II corrector cycle 3, level-I corrector.

Figures F.7-F.9 do not show the complete process depicted in Figure F.6 since the corrections of the final three
cycles cannot be observed with the naked eye.

The TLT correction procedure is validated by propagating the initial states of the input trajectory and cor-
rected trajectory for their estimated orbital periods. Table F.2 provides an overview of the full-period devi-
ations after one orbital revolution together with the characteristic multiplier related to the in-plane center
subspace.

Approximate seed solution Refined seed solution
||¢R̄|| 3.8290618036382 ·10°1 4.2363516820387 ·10°11

||¢V̄ || 0.82710696039002 ·10°1 1.2258327370445 ·10°10

|| 1° ||∏3|| || 1.5983036872667 ·10°1 1.9085844016331 ·10°12

|| 1°det(M) || -4.4061911896875 ·10°9 -1.1124317467193 ·10°8

Table F.2: The full period state discrepancies of the input and corrected trajectory. Furthermore, the error in characteristic multiplier
related to the in-plane center subspace is displayed for both trajectories.

Table F.2 shows that the TLT is able to produce an initial state and estimate an orbital period that belong to a
periodic libration point orbit emanating from a noncollinear low-thrust equilibrium.

F.4. Collocation method verification
The veracity of the collocation procedure is established by computing the L1 (al t = 0.05, Æ = 0.0 rad, Hl t =
°1.525) orbit from a ballistic seed solution L1 (al t = 0.0, Æ = 0.0 rad, Hl t = °1.525). In case the collocation
procedure succeeds, it confirms its capability to produce libration point orbits with a desired Hamiltonian.
This is an essential capability to compute the al t - and Æ-varying l.p.o families. The input orbit of the colloca-
tion procedure is obtained by providing an acceleration increment (¢al t = 0.05) to each node of the ballistic
seed orbit. The ballistic, input and converged orbit are depicted in Figure F.10 while their full period devia-
tions and monodromy eigensystem are presented in Table F.3.
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Figure F.10: A visualization of the seed orbit, input trajectory and converged solution of the collocation procedure. The totality of the
dots form the mesh of the algorithm whereas the green dot indicates the initial state.

It should be stressed that the center subfigure in Figure F.10 is nowhere close to a periodic solution, although
it could be interpreted as such from visual inspection.The periodicity of an orbit can be checked by investi-
gating the state deviations and eigensystem properties. Such an analysis is presented below in Table F.3.

Method Variable Seed orbit Input orbit Converged orbit

Collocation

||¢F || 4.3230053967504 ·10°13 4.6386010389410 ·10°2 3.5152358156095 ·10°13

¢ei 2.7869117126167 ·10°13 1.38974793094065 ·10°4 3.6751022289658 ·10°13

max(ei ) 4.6724900286984 ·10°10 1.42080133528164 ·10°4 1.8799082394172 ·10°13

nodes 26 26 43

TLT defects
||¢R̄|| 1.6005337645492 ·10°12 4.4031766961721 ·10°3 5.6570955097312 ·10°12

||¢V̄ || 2.9338554376173 ·10°12 4.1270508152016 ·10°2 5.7516248616859 ·10°12

||¢Hl t || 4.4381578877015 ·10°13 2.2776414277751 ·10°1 5.3794955767292 ·10°12

Explicit prop-
agation

||¢R̄|| 7.5734759633996 ·10°12 1.3671995113793 6.2045150719090 ·10°11

||¢V̄ || 2.1321116993244 ·10°11 1.7345934861397 2.0004908897853 ·10°11

||¢Hl t || 9.3258734068512 ·10°15 3.9657409547945 ·10°2 7.5495165674510 ·10°15

|| 1° ||∏3|| || 9.8530295034038 ·10°11 4.9451492555471 ·10°1 5.5449405624963 ·10°5

||1°det(M)|| 4.36806768533415·10°9 3.6865976937861 ·10°10 5.2271951211935 ·10°12

Table F.3: Validation of the collocation procedure by benchmarking comparing full period state deviations and monodromy eigensystem
characteristics to the TLT and explicit propagation.

The top four rows of Table F.3 show whether the converged solution adheres to the collocation tolerances as
specified in Table A.4. The middle three rows provide a consistency check with the TLT by computing the TLT
defect vector. Finally, the bottom five rows present the state deviations and eigensystem properties of the
orbits after explicit propagation of the initial state for estimated orbital period.

Several conclusions can be drawn from Table F.3. First of all, the collocation procedure described in Section
C.5 satisfies the constraints specified in Table A.4 despite significant state discrepancies in the input trajec-
tory. Secondly, the TLT defect vector resulting from the mesh of the converged orbit nearly satisfies with
the criteria as specified in Table A.7. The similarity between the state deviations of both methods establish
confidence in a correct implementation of the collocation procedure and an appropriate selection of the tol-
erances as specified in Table A.4. Thirdly, inspection of the state deviations and eigensystem properties after
explicit propagation reveal that the collocation procedure is able to produce an initial state and orbital pe-
riod that belong to a periodic solution. Finally, it can be concluded that the collocation procedure can refine
periodic solutions to a desired Hamiltonian, contrary to the TLT targeter as specified in Secion C.4.3.

The converged solution in Figure F.10 shows a peculiar spacing of the nodes over the interval. The mesh is
the result of the mesh refinement methodology as explained in Section B.2.2. This error control method is
crucial in obtaining a periodic solution that satisfies the tolerances as specified in A.8. Tthe mesh refinement
process associated with the transformation of the input orbit to the converged orbit as described Figure F.10
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and Table F.3 is visualized via a collection of bar charts in Figure F.11. The error distribution of single mesh is
represented using a bar chart where the width of each bar represents the time duration of the segment and
the bar’s height indicates the segment error.

Figure F.11: The mesh refinement procedure associated with the collocation procedure as described in Figure F.10 and Table F.3.

Figure F.11 suggests a correct implementation of Boor’s method for error control [9] since the mesh refine-
ment procedure distributes the errors more equally with each iteration and the number of nodes is increased
once the equidistributed mesh does not meet the error tolerance as specified in Table A.4.

The totality of Figure F.10, Table F.3 and Figure F.11 establish confidence in a proper implementation of the
collocation procedure as explained in Section C.5.

F.5. Libration point orbit families verification
The final Section of this addendum discusses the veracity of the l.p.o families as presented in Chapter 1 and
Appendices D and E. The veracity of the l.p.o families are established per type of family. Section F.5.1 presents
the veracity of the Hl t -varying families. The correctness of the al t -varying families is discussed in Section
F.5.2 whereas the authenticity of the Æ-varying families is discussed in Section F.5.3. Each Section provides an
overview of the termination causes for the numerical continuation procedure associated with construction
of an l.p.o family. An exhaustive list of the encountered termination causes is provided in Table F.4.
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Label Termination root cause
A Full-period position discrepancy exceeds threshold.
B Full-period velocity discrepancy exceeds threshold.
C Increment at half-period below threshold.
Dn Maximum number (n) of family members reached.
E Termination due to reversing of continuation direction.
F Periodic eigenvalue deviation exceeds threshold.
G Acceleration of al t -varying family exceeds upper limit.
H Orbit Hamiltonian smaller than Hamiltonian of associated equilibrium.
I Instability in collocation procedure.
J Full revolution of Æ-varying family reached.

Table F.4: An overview of the termination causes of the numerical continuation procedure responsible for the construction of l.p.o
families.

An instability in the collocation procedure refers to the phenomenon where a node at ti+1 is corrected to a
time earlier than node ti . This results in a mesh where a part of the trajectory travels back in time. This phe-
nomenon results in a unsolvable collocation problem which triggers the numerical model to terminate the
numerical continuation procedure.

Besides an understanding of the termination causes, the veracity of a single l.p.o family is established via four
analyses. First of all, it is checked whether each family member satisfies the tolerances as specified in Tables
A.4 and A.8. Secondly, the monodromy eigensystem of each family member is investigated to check whether
it adheres to the structure of a symplectic map. Thirdly, the evolution of Hl t , al t and Æ are investigated to see
if a family evolves along the Hl t , al t or Æ solution branch respectively. Finally, a symmetry shooting analysis
evaluates the degree of symmetry between the shooting condition of two families (Hl t - and al t -varying) or
within one family (Æ-varying) to investigate the root cause of observed asymmetries. The aforementioned
four analyses are shown for a subset of all constructed l.p.o families for sake of conciseness.

F.5.1. Hamiltonian-varying families
A multitude of Hl t -varying families is presented in Chapter 1 and their veracity is discussed in this Sec-
tion. The termination cause of each numerical continuation procedure associated with construction of a
Hl t -varying family is presented in Table F.5.

E1 E2

Æ [rad] 0 1
3º

2
3º º 4

3º
5
3º 0 1

3º
2
3º º 4

3º
5
3º

al t = 0.00 C - - - - - E - - - - -
al t = 0.01 C D3000 D3000 C A D3000 I I I I I I
al t = 0.05 C B F C F I I I I I I I
al t = 0.10 C F I E F I D1000 I I I I D4500

Table F.5: An overview of the termination causes of the numerical continuation procedures associated with Hl t -varying families. The
termination cause of some Hl t -varying families is underlined, meaning that proof of their veracity is provided later in this Section

Several reasons for termination are observed from Table F.5. Most families with a collinear acceleration ori-
entation are terminated because the spacing between two subsequent family members at the half-period
falls below the threshold specified in Table A.4. Some families have been terminated after reaching a spec-
ified number of family members. This constraint has been imposed to keep the computational cost of a
Hl t -varying family bounded to a maximum of ten days. However, the majority of continuation procedures
have been terminated because of instabilities in the collocation algorithm which are attributed to the vari-
able node times of the collocation root-finding scheme. The remainder of this Section discusses the veracity
of the Hl t -varying families whose termination code in Table F.5 is underlined.

L1 (alt = 0.0,Æ= 0 rad) Hl t -varying family
The periodicity of each member of the natural L1 family is verified in Figure F.12. This Figure shows that the
collocation procedure produces a converged solution with an equidistributed truncation error. The initial
state of the resulting solution is explicitly propagated for the estimated orbital period which confirms the pe-
riodicity of the family members and a correct implementation of the collocation procedure. The full-period
state discrepancy of the first orbits exceeds the thresholds of Table A.8 but termination is intentionally sup-
pressed since the performance of the collocation procedure improves afterwards.
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Figure F.12: Periodicity verification of the L1 (al t = 0.0, Æ = 0 rad) family. The three left subfigures and the bottom right subfigure
demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

According to Floquet theory [34], The eigensystem of the monodromy matrix of a periodic solution adheres
to the structure of a symplectic map. Among others, the determinant of a symplectic map is equal to one and
its eigenvalues occur in reciprocal pairs. Furthermore, a periodic solution requires at least one eigenvalue
pair with |∏| = 1. Figure F.13 demonstrates that these properties are satisfied for each member of the ballistic
L1 family.
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Figure F.13: Monodromy matrix eigensystem validation of the L1 (al t = 0.0, Æ = 0 rad) family. The left subfigure shows the deviation of
the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.14 demonstrates that the Hamiltonian varies over the ballistic L1 family while both thrust parameters
are constant. Furthermore, the phase constraint is also satisfied over the complete family.
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Figure F.14: Numerical continuation verification of the L1 (al t = 0.0, Æ = 0 rad ) family. The top subfigures and bottom left subfigure
show the evolution of Hl t , al t and Æ. The bottom right subfigure shows the spatial evolution and phase drift of the initial condition
along the family.

Figure F.15 confirms a consistent spacing between the initial state of two consecutive members of the solution
family. The bottom left subfigure shows that the positional increment between two consecutive members
does not meet the threshold in Table A.8 resulting in termination of the continuation procedure.
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Figure F.15: Spatial evolution of the L1 (al t = 0.0, Æ = 0 rad) family. The two top subfigures show the spatial evolution of the initial
condition and half-period state. The bottom two subfigures show the positional increment between the initial and half-period state
between two subsequent family members.

L2 (alt = 0.0,Æ= 0.0 rad) Hl t -varying family
The periodicity of each member of the natural L2 family is verified in Figure F.16. This Figure shows that the
collocation procedure generates a converged solution with an equidistributed truncation error. The initial
state of the resulting solution is explicitly propagated for the estimated orbital period which confirms the
periodicity of the family members and a correct implementation of the collocation procedure.
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Figure F.16: Periodicity verification of the L2 (al t = 0.0, Æ = 0 rad) family. The three left subfigures and the bottom right subfigure
demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the ballistic L2 family are shown in Figure
F.17. It can be concluded that the monodromy eigensystem of each family member adheres to the structure
of a symplectic map.
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Figure F.17: Monodromy matrix eigensystem validation of the L2 (al t = 0.0, Æ = 0 rad) family. The left subfigure shows the deviation of
the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.18 proves that the ballistic family is a Hl t -varying family since its thrust parameters are constant.
Next to that it can be observed that the pseudo-arclength continuation provides a constant spacing between
the family members and the phase constraint is also satisfied over the complete family.
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Figure F.18: Numerical continuation verification of the L2 (al t = 0.0, Æ = 0 rad) family. The top subfigures and bottom left subfigure
demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family.

L1 (alt = 0.01,Æ= 2
3º rad) Hl t -varying family

The periodicity of the members that form the L1(al t = 0.01, Æ = 2
3º rad) family are established in Figure

F.19. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. The full-period state discrepancy of the first orbits exceeds the thresholds of Table A.8. but termi-
nation is intentionally suppressed since the performance of the collocation procedure improves afterwards.
It can also be observed that the error distribution does not always meet the equidistribution threshold but
this does not result in a member with a state discrepancy that violates the periodicity constraints.
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Figure F.19: Periodicity verification of the L1 (al t = 0.01, Æ = 2
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L1 (al t = 0.01, Æ= 2
3º rad) family are

shown in Figure F.20. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.20: Monodromy matrix eigensystem validation of the L1 (al t = 0.01,Æ= 2
3º rad) family. The left subfigure shows the deviation of

the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.21 proves that the L1 (al t = 0.01, Æ= 2
3º rad) family is a Hl t -varying family since its thrust parameters

are constant. Next to that it can be observed that the pseudo-arclength continuation provides a constant
spacing between the family members. The phase constraint is satisfied for the majority of the family apart
from the final members of the family where a slight phase shift is observed.
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Figure F.21: Numerical continuation verification of the L1 (al t = 0.01, Æ = 2
3º rad) family. The top subfigures and bottom left subfig-

ure demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure demonstrates that pseudo-
archlength continuation results in a constant spacing between family members and the phase constraint is satisfied over the complete
family. The bottom right subfigure shows the spatial evolution and phase drift of the initial condition along the family.

The symmetry shooting analysis that investigates the root cause between different termination points of the
L1 (al t = 0.01, Æ= 2

3º rad and Æ= 4
3º rad) families is presented in the next paragraph.

L1 (alt = 0.01,Æ= 4
3º rad) Hl t -varying family

The periodicity of the members that form the L1(al t = 0.01, Æ = 4
3º rad) family are established in Figure

F.22. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. The full-period state discrepancy of the first orbits exceeds the thresholds of Table A.8. but termi-
nation is intentionally suppressed since the performance of the collocation procedure improves afterwards.
At the end of the family generation procedure, the numerical continuation algorithm is terminated since the
final member exceeds the position discrepancy threshold at full-period.
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Figure F.22: Periodicity verification of the L1 (al t = 0.01, Æ = 4
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L1 (al t = 0.01, Æ= 4
3º rad) family are

shown in Figure F.23. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.23: Monodromy matrix eigensystem validation of the L1 (al t = 0.01,Æ= 4
3º rad) family. The left subfigure shows the deviation of

the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.24 proves that the L1 (al t = 0.01, Æ= 4
3º rad) family is a Hl t -varying family since its thrust parameters

are constant. Next to that it can be observed that the pseudo-arclength continuation provides a constant
spacing between the family members. The phase constraint is satisfied for the majority of the family apart
from the final members of the family where a slight phase shift is observed. The phase shift is in the opposite
direction as the shift observed at the end of the L1 (al t = 0.01, Æ= 2

3º rad) family.

L\ Horizontal Lyapunov (an = 0.01, a = \t t  rad) - Numerical continuation verification
Hu evolution a evolution

250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
orbit Number [-] orbit Number [-]



F.5. Libration point orbit families verification 89

0.10

I--------------- 1

“t 0.05
<3

0.00

250 500 750 1000 1250 1500 1750 2000
orbit Number [-]

au evolution

-------- au [-]

Spatial and phase evolution
- 2n

_J-----------:---------- :-----------i-----------i----------  - 0
750 1000 1250 1500 1750 2000

orbit Number [-]
250 500

Figure F.24: Numerical continuation verification of the L1 (al t = 0.01, Æ= 4
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family.

It is expected that the numerical continuation procedure of the L1 (al t = 0.01, Æ= 2
3º rad) and L1 (al t = 0.01,

Æ = 4
3º rad) family would terminate after the same number of members because of the symmetry in the

CR3BP-LT. Since this is not the case, a symmetry analysis between the shooting conditions of both families is
shown below in Figure F.25.
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Figure F.25: Shooting symmetry analysis of the L1 (al t = 0.01, Æ= 2
3º and 4

3º rad) families. The left subfigure shows the evolution of the

spatial conditions of both families. The upper branch shows the Æ= 2
3º family whereas the lower branch denotes the Æ= 4

3º family. The
right subfigure shows the symmetry between the initial conditions of the family members.

Figure F.25 reveals that the degree of symmetry between the initial conditions of both families remains con-
stant until the preliminary termination of the L1 (al t = 0.01, Æ= 4

3º rad) family. Therefore, it is unlikely that
the phase drift is the cause for the different termination points of the two families. This discrepancy is ex-
plained by the fact that collocation procedure responsible for generation of the final member of the Æ = 4

3º
family uses an insufficient number of nodes.

L1 (alt = 0.05,Æ= 1
3º rad) Hl t -varying family

The periodicity of the members that form the L1(al t = 0.05, Æ= 1
3º rad) family are established in Figure F.26.

This Figure show that the collocation procedure produces a converged solution with an equidistributed trun-
cation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital period
which confirms the periodicity of the family members and a correct implementation of the collocation proce-
dure. The full-period state discrepancy of the first orbits exceeds the thresholds of Table A.8. but termination
is intentionally suppressed since the performance of the collocation procedure improves afterwards. At the
end of the family generation procedure, the continuation procedure is terminated since the final member
exceeds the velocity discrepancy threshold at full-period.
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Figure F.26: Periodicity verification of the L1 (al t = 0.05, Æ = 1
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L1 (al t = 0.05, Æ= 1
3º rad) family are

shown in Figure F.27. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.27: Monodromy matrix eigensystem validation of the L1 (al t = 0.05,Æ= 1
3º rad) family. The left subfigure shows the deviation of

the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.28 proves that the L1 (al t = 0.05, Æ= 1
3º rad) family is a Hl t -varying family since its thrust parameters

are constant. Next to that it can be observed that the pseudo-arclength continuation provides a constant
spacing between the family members. The phase constraint is satisfied for the first half of the family but
drifts during the final half of the continuation procedure.
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Figure F.28: Numerical continuation verification of the L1 (al t = 0.05, Æ= 1
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family

The symmetry shooting analysis that investigates the root cause between different termination points of the
L1 (al t = 0.05, Æ= 1

3º rad and Æ= 5
3º rad) families is presented in the next paragraph.

L1 (alt = 0.05,Æ= 5
3º rad) Hl t -varying family

The periodicity of the members that form the L1(al t = 0.05, Æ = 5
3º rad) family are established in Figure

F.29. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. The full-period state discrepancy of the first orbits exceeds the thresholds of Table A.8. but termi-
nation is intentionally suppressed since the performance of the collocation procedure improves afterwards
until the end of the family where the members just meet the periodicity criteria.
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Figure F.29: Periodicity verification of the L1 (al t = 0.05, Æ = 5
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L1 (al t = 0.05, Æ= 5
3º rad) family are

shown in Figure F.30. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.30: Monodromy matrix eigensystem validation of the L1 (al t = 0.05,Æ= 5
3º rad) family. The left subfigure shows the deviation of

the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.31 proves that the L1 (al t = 0.05, Æ = 5
3º rad) family is a Hl t -varying family since its thrust param-

eters are constant. The phase constraint is satisfied for the beginning of the family but drifts significantly
throughout the family.
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Figure F.31: Numerical continuation verification of the L1 (al t = 0.05, Æ= 5
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family

It is expected that the numerical continuation procedure of the L1 (al t = 0.05, Æ= 1
3º rad) and L1 (al t = 0.05,

Æ = 5
3º rad) family would terminate after the same number of members because of the symmetry in the

CR3BP-LT. Since this is not the case, a symmetry analysis between the shooting conditions of both families is
shown below in Figure F.32.
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Figure F.32: Shooting symmetry analysis of the L1 (al t = 0.05, Æ= 1
3º and 5

3º rad) families. The left subfigure shows the evolution of the

spatial conditions of both families. The upper branch shows the Æ= 2
3º family whereas the lower branch denotes the Æ= 4

3º family. The
right subfigure shows the symmetry between the initial conditions of the family members.

Figure F.32 reveals that the degree of symmetry between the initial conditions of both families remains con-
stant until the preliminary termination of the L1 (al t = 0.05, Æ= 1

3º rad) family. Therefore, it is unlikely that
the phase drift is the cause for the different termination points of the two families. This discrepancy is ex-
plained by the fact that collocation procedure responsible for generation of the final member of the Æ = 1

3º
family uses an insufficient number of nodes.

L1 (alt = 0.10,Æ= 2
3º rad) Hl t -varying family

The periodicity of the members that form the L1(al t = 0.10, Æ = 2
3º rad) family are established in Figure

F.33. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity threshold listed in Table A.8. The family is ultimately
terminated due to an instability in the collocation procedure. The equidistribution threshold of the trunca-
tion error is not satisfied for all members of the family but this does not lead to violation of the periodicity
thresholds.

L\ Horizontal Lyapunov {an = 0.10, a =
Defect vector magnitude after convergence

IQ-iO

I II
I--------------- 1

= 10“13

10"16

-1.5531 -1.5351 -1.5172 -1.4992 -1.4813

Maximum number of corrections
i-------------------i

C
N
|C
O 7r rad) - Periodicity constraints verification

10-10

<1 10 -13

10 -16
-1.5531

Position deviation at full period

-1.5351 -1.5172 -1.4992 -1.4813

10 -10

I--------------- 1

<3 10 -13

10 -16
-1.5531

Velocity deviation at full period

\x(T) -i(0)|

\y(T)-m\

-1.5351 -1.5172 -1.4992 -1.4813



94 Verification and validation

- m
m

Distribution of errors over collocated trajectory
i---------------- 1

to-13

IQ-16

-1.5531 -1.5351 -1.5172
Hit [-]

-1.4992 -1.4813

m
ax

 ei

10-a

10 -8

10

10

Maximum collocation segment error

-60

Hu [-]

N
um

be
r o

f c
ol

lo
ca

tio
n 

po
in

ts

Figure F.33: Periodicity verification of the L1 (al t = 0.10, Æ = 2
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L1 (al t = 0.10, Æ= 2
3º rad) family are

shown in Figure F.34. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.34: Monodromy matrix eigensystem validation of the L1 (al t = 0.10,Æ= 2
3º rad) family. The left subfigure shows the deviation of

the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.35 proves that the L1 (al t = 0.10, Æ = 2
3º rad) family is a Hl t -varying family since its thrust param-

eters are constant. The phase constraint is satisfied for the beginning of the family but drifts significantly
throughout the family.
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Figure F.35: Numerical continuation verification of the L1 (al t = 0.10, Æ= 2
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family.

The symmetry shooting analysis that investigates the root cause between different termination points of the
L1 (al t = 0.10, Æ= 2

3º rad and Æ= 4
3º rad) families is presented in the next paragraph.

L1 (alt = 0.10,Æ= 4
3º rad) Hl t -varying family

The periodicity of the members that form L1(al t = 0.10, Æ= 4
3º rad) family are established in Figure F.36. This

Figure shows that the collocation procedure produces a converged solution with an equidistributed trunca-
tion error. The initial state of the resulting solution is explicitly propagated for the estimated orbital period
which confirms the periodicity of the family members and a correct implementation of the collocation pro-
cedure. All family members adhere to the periodicity threshold and equidistribution criterium listed in Table
A.8.
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Figure F.36: Periodicity verification of the L1 (al t = 0.10, Æ = 2
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L1 (al t = 0.10, Æ= 4
3º rad) family are

shown in Figure F.37. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.37: Monodromy matrix eigensystem validation of the L1 (al t = 0.10,Æ= 4
3º rad) family. The left subfigure shows the deviation of

the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.38 proves that the L1 (al t = 0.10, Æ= 4
3º rad) family is a Hl t -varying family since its thrust parameters

are constant. The phase constraint is satisfied for the first half of the family but shifts slightly during the
second half of the family.
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Figure F.38: Numerical continuation verification of the L1 (al t = 0.10, Æ= 4
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family.

It is expected that the numerical continuation procedure of the L1 (al t = 0.10, Æ= 2
3º rad)and L1 (al t = 0.10,

Æ = 4
3º rad) family would terminate after the same number of members because of the symmetry in the

CR3BP-LT. Since this is not the case, a symmetry analysis between the shooting conditions of both families is
shown below in Figure F.39.
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Figure F.39: Shooting symmetry analysis of the L1 (al t = 0.10, Æ= 2
3º and 4

3º rad) families. The left subfigure shows the evolution of the

spatial conditions of both families. The upper branch shows the Æ= 2
3º family whereas the lower branch denotes the Æ= 4

3º family. The
right subfigure shows the symmetry between the initial conditions of the family members.

Figure F.39 reveals that the degree of symmetry between the initial conditions of both families remains con-
stant until the preliminary termination of the L1 (al t = 0.10, Æ = 4

3º) family. Therefore, it is unlikely that the
phase drift is the cause for the different termination points of the two families. This discrepancy can be at-
tributed to the instability of the collocation procedure due to the variable nodes times.

L2 (alt = 0.10,Æ= 1
3º rad) Hl t -varying family

the periodicity of the members that form the L2(al t = 0.10, Æ= 1
3º rad) family are established in Figure F.40.

This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity threshold despite the fact that some members do
not adhere to the equidistribution criterium listed in Table A.8.
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Figure F.40: Periodicity verification of the L2 (al t = 0.10, Æ = 1
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L2 (al t = 0.10, Æ= 1
3º rad) family are

shown in Figure F.41. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map although the eigenvalue pair related to the in-plane center subspace is
nearly violated at the end of the family.
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Figure F.41: Monodromy matrix eigensystem validation of the L2 (al t = 0.10,Æ= 1
3º rad) family. The left subfigure shows the deviation of

the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.42 proves that the L2 (al t = 0.10, Æ= 1
3º rad) family is a Hl t -varying family since its thrust parameters

are constant. A phase shift is observed throughout the family which does not affect the periodicity of the
family members.
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Figure F.42: Numerical continuation verification of the L2 (al t = 0.10, Æ= 2
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family.

The symmetry shooting analysis that investigates the root cause between different termination points of the
L2 (al t = 0.10, Æ= 1

3º rad and Æ= 5
3º rad) families is presented in the next paragraph.

L2 (alt = 0.10,Æ= 5
3º rad) Hl t -varying family

the periodicity of the members that form the L2(al t = 0.10, Æ= 5
3º rad) family are established in Figure F.43.

This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity threshold despite the fact that some members do
not adhere to the equidistribution criterium listed in Table A.8.
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Figure F.43: Periodicity verification of the L2 (al t = 0.10, Æ = 5
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L2 (al t = 0.10, Æ = 5
3º rad) family

are shown in Figure F.44. It can be concluded that the monodromy eigensystem of each family member
adheres to the structure of a symplectic map apart from the final member who’s eigenvalue pair related to the
planar center subspace violates the threshold listed in Table A.4. This violation leads to the termination of
the continuation procedure.
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Figure F.44: Monodromy matrix eigensystem validation of the L2 (al t = 0.10,Æ= 5
3º rad) family. The left subfigure shows the deviation of

the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-plane
center subspace.

Figure F.45 proves that the L2 (al t = 0.10, Æ= 5
3º rad) family is a Hl t -varying family since its thrust parameters

are constant. No phase shift is observed throughout the family.
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Figure F.45: Numerical continuation verification of the L2 (al t = 0.10, Æ= 5
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the Hamiltonian branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family.

It is expected that the numerical continuation procedure of the L2 (al t = 010, Æ= 1
3º rad) and L2 (al t = 0.10,

Æ= 5
3º) family would terminate after the same number of members because of the symmetry in the CR3BP-

LT. Since this is not the case, a symmetry analysis between the shooting conditions of both families is shown
below in Figure F.46.
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Figure F.46: Shooting symmetry analysis of the L2 (al t = 0.10, Æ= 1
3º and 5

3º rad) families. The left subfigure shows the evolution of the

spatial conditions of both families. The upper branch shows the Æ= 1
3º family whereas the lower branch denotes the Æ= 5

3º family. The
right subfigure shows the symmetry between the initial conditions of the family members.

Figure F.39 reveals that the degree of symmetry between the initial conditions of both families slightly de-
creases over the numerical continuation procedures. The imperfections in degree of symmetry can be at-
tributed to the truncation errors associated with the implicit integration technique described in Appendix
B.2.1.

F.5.2. Acceleration-varying families
A total of thirty-six al t -varying families have been presented in Chapter 1 and Appendix D. The veracity of
these families is discussed in this Section. The termination cause of each numerical continuation procedure
associated with construction of an al t -varying family is presented in Table F.6.

E1 E2

Æ [rad] 0 1
3º

2
3º º 4

3º
5
3º 0 1

3º
2
3º º 4

3º
5
3º

Hl t =°1.55 G I G H G I G I H H H I
Hl t =°1.525 G G G H G G D85 G G H G G
Hl t =°1.50 G G G G G G D40 I G G G I

Table F.6: An overview of the termination causes of the numerical continuation procedures associated with al t -varying families. The
termination cause of some al t -varying families is underlined, meaning that proof of their veracity is provided later in this Section.

Table F.6 reveals that the continuation procedures associated with generation of the al t -varying families are
terminated due to four different reasons. Most numerical continuation procedures are terminated because
the periodic solutions over the complete range of acceleration magnitudes (0 ∑ al t ∑ 0.1) have been com-
puted. Six continuation procedures were terminated before orbits for the complete range of acceleration
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magnitudes were computed since these solutions do not exist. Two continuation procedures have been in-
tentionally terminated before computation of the complete family since the computational cost exceeded the
time constraints of this thesis project. The remaining six continuation procedures were terminated due to an
instability in the collocation algorithm associated with the numerical continuation procedure. The veracity
of these six families will be discussed in the remainder of this Section.

L1 (Hlt =°1.55,Æ= 1
3º rad) al t -varying family

The periodicity of the members that form the L1(Hl t = °1.55, Æ = 1
3º rad) family are established in Figure

F.47. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity criteria listed in Table A.8.
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Figure F.47: Periodicity verification of the L1 (Hl t = °1.55, Æ = 1
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L1 (Hl t =°1.55,Æ= 1
3º rad) family are

shown in Figure F.48. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.48: Monodromy matrix eigensystem validation of the L1 (Hl t =°1.55, Æ= 1
3º rad) family. The left subfigure shows the deviation

of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace.
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Figure F.49 proves that the L1 (Hl t =°1.55, Æ= 1
3º rad) family is an al t -varying family since the Hamiltonian

and acceleration orientation are constant.
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Figure F.49: Numerical continuation verification of the L1 (Hl t =°1.55, Æ= 1
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution of the
initial condition along the family.

The symmetry shooting analysis that investigates the root cause between different termination points of the
L2 (Hl t =°1.55, Æ= 1

3º rad and Æ= 5
3º rad) families is presented in the next paragraph.

L1 (Hlt =°1.55,Æ= 5
3º rad) al t -varying family

The periodicity of the members that form the L1(Hl t = °1.55, Æ = 5
3º rad) family are established in Figure

F.50. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity criteria listed in Table A.8.
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Figure F.50: Periodicity verification of the L1 (Hl t = °1.55, Æ = 5
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L1 (Hl t =°1.55,Æ= 5
3º rad) family are

shown in Figure F.51. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.51: Monodromy matrix eigensystem validation of the L1 (Hl t =°1.55, Æ= 5
3º rad) family. The left subfigure shows the deviation

of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace.

Figure F.52 proves that the L1 (Hl t =°1.55, Æ= 5
3º rad) family is an al t -varying family since the Hamiltonian

and acceleration orientation are constant.
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Figure F.52: Numerical continuation verification of the L1 (Hl t =°1.55, Æ= 5
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution of the
initial condition along the family.

The verification of the L1 (Hl t =°1.55, Æ= 1
3º rad) and L1 (Hl t =°1.55, Æ= 5

3º rad) family is wrapped up by
evaluating the degree of symmetry between their shooting conditions. This analysis can be found in Figure
F.53.
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Figure F.53: Shooting symmetry analysis of the L1 (Hl t =°1.55, Æ= 1
3º and 5

3º rad) families. The left subfigure shows the evolution of

the spatial conditions of both families. The upper branch shows the Æ= 1
3º family whereas the lower branch denotes the Æ= 5

3º family.
The right subfigure shows the symmetry between the initial conditions of the family members.

Figure F.53 reveals that the degree of symmetry between the initial conditions of both families decreases as
the acceleration magnitude of the family members increase. A possible explanation for this phenomenon is
that truncation errors associated with the polynomial interpolation propagate along the numerical continu-
ation procedure. This results in a decrease in symmetry between the shooting conditions of the families.

L2 (Hlt =°1.55,Æ= 1
3º rad) al t -varying family

The periodicity of the members that form the L2(Hl t = °1.55, Æ = 1
3º rad) family are established in Figure

F.54. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity and equidistribution criteria listed in Table A.8.
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Figure F.54: Periodicity verification of the L2 (Hl t = °1.55, Æ = 1
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.
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Characteristics of the monodromy eigensystem of each member of the L2 (Hl t =°1.55,Æ= 1
3º rad) family are

shown in Figure F.55. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.55: Monodromy matrix eigensystem validation of the L2 (Hl t =°1.55, Æ= 1
3º rad) family. The left subfigure shows the deviation

of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace.

Figure F.56 proves that the L2 (Hl t =°1.55, Æ= 1
3º rad) family is an al t -varying family since the Hamiltonian

and acceleration orientation are constant.
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Figure F.56: Numerical continuation verification of the L2 (Hl t =°1.55, Æ= 1
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution of the
initial condition along the family.

The symmetry shooting analysis that investigates the root cause between different termination points of the
L2 (Hl t =°1.55, Æ= 1

3º rad and Æ= 5
3º rad) families is presented in the next paragraph.

L2 (Hlt =°1.55,Æ= 5
3º rad) al t -varying family

The periodicity of the members that form the L2(Hl t = °1.55, Æ = 5
3º rad) family are established in Figure

F.57. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity and equidistribution criteria listed in Table A.8.
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Figure F.57: Periodicity verification of the L2 (Hl t = °1.55, Æ = 5
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L2 (Hl t =°1.55,Æ= 5
3º rad) family are

shown in Figure F.58. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.

de
t(M

)

Z/2 Horizontal Lyapunov [Hu = — 1.550, a = §7r
Error in determinant ^

10"6 

1(T8 

10-10 

io-12 

to-14
0.0000 0.0195 0.0390 0.0585 0.0780

- Monodromy matrix eigensystem validation
Error in eigenvalue pair denoting periodicity

0.0000 0.0195 0.0390 0.0585 0.0780

Figure F.58: Monodromy matrix eigensystem validation of the L2 (Hl t =°1.55, Æ= 5
3º rad) family. The left subfigure shows the deviation

of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace.

Figure F.56 proves that the L2 (Hl t =°1.55, Æ= 5
3º rad) family is an al t -varying family since the Hamiltonian

and acceleration orientation are constant.
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Figure F.59: Numerical continuation verification of the L2 (Hl t =°1.55, Æ= 5
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution of the
initial condition along the family.

The verification of the L2 (Hl t =°1.55, Æ= 1
3º rad) and L1 (Hl t =°1.55, Æ= 5

3º rad) family is wrapped up by
evaluating the degree of symmetry between their shooting conditions. This analysis can be found in Figure
F.60.
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Figure F.60: Shooting symmetry analysis of the L2 (Hl t =°1.55, Æ= 1
3º and 5

3º rad) families. The left subfigure shows the evolution of

the spatial conditions of both families. The upper branch shows the Æ= 1
3º family whereas the lower branch denotes the Æ= 5

3º family.
The right subfigure shows the symmetry between the initial conditions of the family members.

Figure F.60 reveals that the degree of symmetry between the initial conditions the family members remains
fairly constant over the families.A possible explanation for the asymmetries can be attributed to truncation
errors that are inherent to the polynomial interpolation method of the collocation procedure.

L2 (Hlt =°1.50,Æ= 1
3º rad) al t -varying family

The periodicity of the members that form the L2(Hl t = °1.50, Æ = 1
3º rad) family are established in Figure

F.61. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity and equidistribution criteria listed in Table A.8.
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Figure F.61: Periodicity verification of the L2 (Hl t = °1.50, Æ = 1
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L2 (Hl t =°1.50,Æ= 1
3º rad) family are

shown in Figure F.62. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.62: Monodromy matrix eigensystem validation of the L2 (Hl t =°1.50, Æ= 1
3º rad) family. The left subfigure shows the deviation

of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace.

Figure F.63 proves that the L2 (Hl t =°1.50, Æ= 1
3º rad) family is an al t -varying family since the Hamiltonian

and acceleration orientation are constant.
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Figure F.63: Numerical continuation verification of the L2 (Hl t =°1.50, Æ= 1
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution of the
initial condition along the family.

The symmetry shooting analysis that investigates the root cause between different termination points of the
L2 (Hl t =°1.50, Æ= 1

3º rad and Æ= 5
3º rad) families is presented in the next paragraph.

L2 (Hlt =°1.50,Æ= 5
3º rad) al t -varying family

The periodicity of the members that form the L2(Hl t = °1.50, Æ = 5
3º rad) family are established in Figure

F.64. This Figure shows that the collocation procedure produces a converged solution with an equidistributed
truncation error. The initial state of the resulting solution is explicitly propagated for the estimated orbital
period which confirms the periodicity of the family members and a correct implementation of the collocation
procedure. All family members adhere to the periodicity and equidistribution criteria listed in Table A.8.
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Figure F.64: Periodicity verification of the L2 (Hl t = °1.50, Æ = 5
3º rad) family. The three left subfigures and the bottom right subfigure

demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure.

Characteristics of the monodromy eigensystem of each member of the L2 (Hl t =°1.50,Æ= 5
3º rad) family are

shown in Figure F.65. It can be concluded that the monodromy eigensystem of each family member adheres
to the structure of a symplectic map.
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Figure F.65: Monodromy matrix eigensystem validation of the L2 (Hl t =°1.50, Æ= 5
3º rad) family. The left subfigure shows the deviation

of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace.

Figure F.66 proves that the L2 (Hl t =°1.50, Æ= 5
3º rad) family is an al t -varying family since the Hamiltonian

and acceleration orientation are constant.
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Figure F.66: Numerical continuation verification of the L2 (Hl t =°1.50, Æ= 5
3º rad) family. The top subfigures and bottom left subfigure

demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution of the
initial condition along the family.

The verification of the L2 (Hl t =°1.50, Æ= 1
3º rad) and L1 (Hl t =°1.50, Æ= 5

3º rad) family is wrapped up by
evaluating the degree of symmetry between their shooting conditions. This analysis can be found in Figure
F.67.
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Figure F.67: Shooting symmetry analysis of the L2 (Hl t =°1.50, Æ= 1
3º and 5

3º rad) families. The left subfigure shows the evolution of

the spatial conditions of both families. The upper branch shows the Æ= 1
3º family whereas the lower branch denotes the Æ= 5

3º family.
The right subfigure shows the symmetry between the initial conditions of the family members.

Figure F.60 reveals that the degree of symmetry between the initial conditions the family members remains
fairly constant over the families. A possible explanation for the asymmetries can be attributed to truncation
errors that are inherent to the polynomial interpolation method of the collocation procedure.

F.5.3. Orientation-varying families
A total of eighteen Æ-varying families have been presented in Chapter 1. Their veracity is discussed in this
Section. The termination cause of each numerical continuation procedure associated with construction of
an Æ-varying family is presented in Table F.7.

E1 E2

al t 0.01 0.05 0.10 0.01 0.05 0.10
Hl t =°1.55 J J H J§ H J§

Hl t =°1.525 J J H J§ J I§

Hl t =°1.50 J J§ J§ J I§ I§

Table F.7: An overview of the termination causes of the numerical continuation procedures associated with Æ-varying families. The
termination cause of someÆ-varying families is underlined, meaning that proof of their veracity is provided later in this Section. Families
whose termination codes is augmented with an asterix subscript are generated via multiple continuation procedures.

The continuation procedures responsible for construction of the Æ-varying families are terminated due to
various reasons. Most continuation procedures are terminated because the complete family has been cal-
culated. Some families have been constructed via multiple continuation procedures that leverage different
seed solutions. The remaining families could not be fully computed due to instabilities in the collocation
procedure. The veracity of the families that have been fully computed via multiple numerical continuation
procedures are discussed in the remainder of this Section.

L1 (Hlt =°1.50, al t = 0.05)Æ-varying family
The degree of periodicity of the members that form the L1(Hl t =°1.50, al t = 0.05) family is shown in Figure
F.68. This Figure shows that the collocation procedure produces a converged solution whose truncation error
is not always equidistributed. The initial state of the resulting solution is explicitly propagated for the esti-
mated orbital period. One member of the family does not meet the periodicity thresholds at full period but
termination of the continuation procedure due to this violation is intentionally suppressed since Æ-varying
families would otherwise be impossible to obtain. The family has been constructed via three continuation
procedures where the first procedure has produced the partial family for Æ 2 [0±,134±]. The second contin-
uation procedure has computed the partial family for Æ 2 [135±,260±] and the third continuation procedure
computes the partial family for Æ 2 [261±,359±]. The piecewise construction is clearly observed in the right
subfigures of F.68. A shift in full period state discrepancies and number of nodes is visible at 135± and 261±,
which are indicated with red dotted lines.
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Figure F.68: Periodicity verification of the L1 (Hl t = °1.50, al t = 0.05) family. The three left subfigures and the bottom right subfigure
demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure. The red dotted lines emphasize the piecewise construction of this family.

Characteristics of the monodromy eigensystem of each member of the L1 (Hl t = °1.50, al t = 0.05) family
are shown in Figure F.69. It can be concluded that the monodromy eigensystem of each family member
adheres to the structure of a symplectic map. The piecewise construction of the family is also visible in the
monodromy eigensystem deviations. A shift in the magnitude eigensystem deviations occur at 135± and 261±.
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Figure F.69: Monodromy matrix eigensystem validation of the L1 (Hl t =°1.50, al t = 0.05) family. The left subfigure shows the deviation
of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace. The red dotted lines emphasize the piecewise construction of this family.

Figure F.70 proves that the L1 (Hl t =°1.50, al t = 0.05) family is anÆ-varying family since the Hamiltonian and
acceleration magnitude are constant. The piecewise construction of the family is also visible in this Figure
since the deviation in Hamiltonian increases at the end of the first and third collocation procedure (Æ= 134±)
and at the beginning of the third collocation procedure (Æ= 261±).
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Figure F.70: Numerical continuation verification of the L1 (Hl t =°1.55, al t = 0.05) family. The top subfigures and bottom left subfigure
demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family. The red dotted lines emphasize the piecewise construction of this family.

It is unlikely that the asymmetries observed in the L1 (Hl t = °1.50, al t = 0.05) family are correct since sym-
metry exists in the CR3BP-LT[1]. These asymmetries are a consequence of the asymmetry in the shooting
conditions of the family. Figure F.71 shows the degree of symmetry between family members with accelera-
tion orientation Æ and 2º°Æ.
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Figure F.71: Shooting symmetry analysis of the L1 (Hl t =°1.50, al t = 0.05) family. The left subfigure shows the evolution of the shooting
conditions of family. The right subfigure shows the symmetry between the initial conditions of the family members Æ and 2º°Æ.

Inspecting Figure F.71, it can be observed that the degree of asymmetry between members of the Æ-varying
family is at least two orders of magnitude higher compared to the other two family types. Furthermore, the
two spikes in degree of (a)symmetry are a consequence of the piecewise construction of this family. The fact
that the resulting orbits depends heavily on the initial conditions means that the collocation procedure is not
accurate enough to compute the Æ-varying families.

L1 (Hlt =°1.55, al t = 0.10)Æ-varying family
The degree of periodicity of the members that form the L1(Hl t = °1.55, al t = 0.10) family is shown in Fig-
ure F.72. This particular family exists for Æ 2 [238± ! 122±] which explains the straight line segment in each
subfigure. This Figure shows that the collocation procedure produces a converged solution whose truncation
error is not always equidistributed. The initial state of the resulting solution is explicitly propagated for the
estimated orbital period. Several members of the family do not meet the periodicity thresholds at full pe-
riod but termination of the continuation procedure due to this violation is intentionally suppressed since the
Æ-varying families could not be obtained otherwise. The family has been constructed via four continuation
procedures where the first procedure has produced the partial family for Æ 2 [0±,92±]. The second continua-
tion procedure has computed the partial family for Æ 2 [93±,122±] whereas the third and fourth continuation
procedure compute parts of the family for Æ 2 [238±,267±] and Æ 2 [268±,359±] . The piecewise construction
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is clearly observed in the right subfigures of F.72. A shift in full period state discrepancies and patch points is
visible at 93± and 268±.
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Figure F.72: Periodicity verification of the L1 (Hl t = °1.55, al t = 0.10) family. The three left subfigures and the bottom right subfigure
demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure. The red dotted lines emphasize the piecewise construction of this family.

Characteristics of the monodromy eigensystem of each member of the L1 (Hl t = °1.55, al t = 0.10) family
are shown in Figure F.73. It can be concluded that the monodromy eigensystem of each family member
adheres to the structure of a symplectic map. The piecewise construction of the family is also visible in the
monodromy eigensystem deviations. A shift in the magnitude eigensystem deviations occur at 93± and 268±.
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Figure F.73: Monodromy matrix eigensystem validation of the L1 (Hl t =°1.55, al t = 0.10) family. The left subfigure shows the deviation
of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace. The red dotted lines emphasize the piecewise construction of this family.

Figure F.74 proves that the L1 (Hl t =°1.55, al t = 0.1) family is an Æ-varying family since the Hamiltonian and
acceleration magnitude are constant. The piecewise construction of the family is also visible in the contin-
uation verification since the deviation in Hamiltonian increases at the end of the first collocation procedure
(Æ= 93±) and at the beginning of the fourth collocation procedure (Æ= 268±).
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Figure F.74: Numerical continuation verification of the L1 (Hl t =°1.55, al t = 0.10) family. The top subfigures and bottom left subfigure
demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family. The red dotted lines emphasize the piecewise construction of this family.

It is unlikely that the asymmetries observed in the L1 (Hl t = °1.55, al t = 0.10) family are correct since sym-
metry exists in the CR3BP-LT [1]. These asymmetries are a consequence of the asymmetry in the shooting
conditions of the family. Figure F.75 shows the degree of symmetry between family members with accelera-
tion orientation Æ and 2º°Æ.
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Figure F.75: Shooting symmetry analysis of the L1 (Hl t =°1.55, al t = 0.10) family. The left subfigure shows the evolution of the shooting
conditions of family. The right subfigure shows the symmetry between the initial conditions of the family members Æ and 2º°Æ.

Inspecting Figure F.75, it can be observed that the degree of asymmetry between members of the Æ-varying
family is an order of magnitude higher compared to the other two family types. Furthermore, the two spikes
in degree of asymmetry are a consequence of the piecewise construction of this family. The fact that the re-
sulting orbits heavily depend on the initial conditions means that the collocation procedure is not accurate
enough to compute the Æ-varying families for these settings.

L1 (Hlt =°1.525, al t = 0.10)Æ-varying family
The degree of periodicity of the members that form the L1(Hl t = °1.525, al t = 0.1) family is shown in Fig-
ure F.76. This particular family exists for Æ 2 [215± ! 145±] which explains the straight line segment in each
subfigure. This Figure shows that the collocation procedure produces a converged solution whose truncation
error is not always equidistributed. The initial state of the resulting solution is explicitly propagated for the
estimated orbital period. Several members of the family do not meet the periodicity thresholds at full period
but termination of the continuation procedure due to this violation is intentionally suppressed since con-
struction of Æ-varying families would not be possible otherwise. The family has been constructed via four
continuation procedures where the first procedure has produced the partial family for Æ 2 [0±,109±]. The sec-
ond continuation procedure has computed the partial family for Æ 2 [110±,145±] whereas the third and fourth
continuation procedure compute parts of the family for Æ 2 [215±,253±] and Æ 2 [254±,359±].
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Figure F.76: Periodicity verification of the L1 (Hl t = °1.525, al t = 0.10) family. The three left subfigures and the bottom right subfigure
demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure. The red dotted lines emphasize the piecewise construction of this family.

Characteristics of the monodromy eigensystem of each member of the L1 (Hl t = °1.525, al t = 0.10) family
are shown in Figure F.77. It can be concluded that the monodromy eigensystem of each family member
adheres to the structure of a symplectic map. The piecewise construction of the family is also visible in the
monodromy eigensystem deviations. A shift in the magnitude eigensystem deviations occur at 110± and 254±.
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Figure F.77: Monodromy matrix eigensystem validation of the L1 (Hl t =°1.525, al t = 0.10) family. The left subfigure shows the deviation
of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace. The red dotted lines emphasize the piecewise construction of this family.

Figure F.78 proves that the L1 (Hl t = °1.525, al t = 0.10) family is an Æ-varying family since the Hamilto-
nian and acceleration magnitude are constant. The piecewise construction of the family is also visible in
the continuation verification since the deviation in Hamiltonian increases at the end of the first collocation
procedure (Æ= 110±) and at the beginning of the fourth collocation procedure (Æ= 254±).



F.5. Libration point orbit families verification 117

1

0

L\ Horizontal Lyapunov {Hu
X10~12 - 1.525 Hu evolutlon

1.525, ait

50 100 150 200 250
orbit Number [-]

an evolution

r ait [-]

0.10

0.05

0.00

50 100 150
orbit Number [-]

200 250

0.10) - Numerical continuation validation
a evolution

Spatial evolution

Figure F.78: Numerical continuation verification of the L1 (Hl t =°1.525, al t = 0.10) family. The top subfigures and bottom left subfigure
demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family. The red dotted lines emphasize the piecewise construction of this family.

It is unlikely that the asymmetries observed in the L1 (Hl t =°1.525, al t = 0.10) family are correct since sym-
metry exists in the CR3BP-LT [1]. These asymmetries are a consequence of the asymmetry in the shooting
conditions of the family. Figure F.79 shows the degree of symmetry between family members with accelera-
tion orientation Æ and 2º°Æ.
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Figure F.79: Shooting symmetry analysis of the L1 (Hl t =°1.525, al t = 0.10) family. The left subfigure shows the evolution of the shooting
conditions of family. The right subfigure shows the symmetry between the initial conditions of the family members Æ and 2º°Æ.

Inspecting Figure F.79, it can be observed that the degree of asymmetry between members of the Æ-varying
family is in the same order of magnitude as the until 110± where symmetry between the shooting conditions
is lost. This is the result of the construction of the family in multiple numerical continuation procedures. The
fact that the resulting orbits heavily depend on the initial conditions means that the collocation procedure is
not accurate enough to compute the Æ-varying families for these settings.

L1 (Hlt =°1.50, al t = 0.10)Æ-varying family
The degree of periodicity of the members that form the L1(Hl t = °1.50, al t = 0.10) family is shown in Fig-
ure F.80. This Figure shows that the collocation procedure produces a converged solution whose truncation
error is not always equidistributed. The initial state of the resulting solution is explicitly propagated for the
estimated orbital period. Several members of the family do not meet the periodicity thresholds at full period
but termination of the continuation procedure due to this violation is intentionally suppressed since con-
struction of Æ-varying families would not be possible otherwise. The family has been constructed via four
continuation procedures where the first procedure has produced the partial family for Æ 2 [0±,125±]. The sec-
ond continuation procedure has computed the partial family for Æ 2 [126±,250±] whereas the third computes
the family for Æ 2 [251±,359±].
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Figure F.80: Periodicity verification of the L1 (Hl t = °1.50, al t = 0.10) family. The three left subfigures and the bottom right subfigure
demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure. The red dotted lines emphasize the piecewise construction of this family.

Characteristics of the monodromy eigensystem of each member of the L1 (Hl t = °1.50,al t = 0.10) family
are shown in Figure F.81. It can be concluded that the monodromy eigensystem of each family member
adheres to the structure of a symplectic map. The piecewise construction of the family is also visible in the
monodromy eigensystem deviations. A shift in the magnitude eigensystem deviations occur at 126± and 251±.
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Figure F.81: Monodromy matrix eigensystem validation of the L1 (Hl t =°1.50, al t = 0.10) family. The left subfigure shows the deviation
of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace. The red dotted lines emphasize the piecewise construction of this family.

Figure F.82 proves that the L1 (Hl t =°1.50, al t = 0.1) family is an Æ-varying family since the Hamiltonian and
acceleration magnitude are constant. The piecewise construction of the family is also visible in the contin-
uation verification since the deviation in Hamiltonian increases at the end of the first collocation procedure
(Æ= 126±) and at the beginning of the third collocation procedure (Æ= 251±).
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Figure F.82: Numerical continuation verification of the L1 (Hl t =°1.50, al t = 0.10) family. The top subfigures and bottom left subfigure
demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution and
phase drift of the initial condition along the family. The red dotted lines emphasize the piecewise construction of this family.

It is unlikely that the asymmetries observed in the L1 (Hl t = °1.50, al t = 0.10) family are correct since sym-
metry exists in the CR3BP-LT [1]. These asymmetries are a consequence of the asymmetry in the shooting
conditions of the family. Figure F.83 shows the degree of symmetry between family members with accelera-
tion orientation Æ and 2º°Æ.
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Figure F.83: Shooting symmetry analysis of the L1 (Hl t =°1.50, al t = 0.10) family. The left subfigure shows the evolution of the shooting
conditions of family. The right subfigure shows the symmetry between the initial conditions of the family members Æ and 2º°Æ.

Inspecting Figure F.83, it can be observed that the degree of asymmetry between members of the Æ-varying
family is in the same order of magnitude as the until 126± where symmetry between the shooting conditions
is lost. This is the result of the construction of the family in multiple numerical continuation procedures. The
fact that the resulting orbits heavily depend on the initial conditions means that the collocation procedure is
not accurate enough to compute the Æ-varying families for these settings.

L2 (Hlt =°1.55, al t = 0.10)Æ-varying family
The degree of periodicity of the members that form the L2(Hl t =°1.55, al t = 0.10) family is shown in Figure
F.84. This Figure show that the collocation procedure produces a converged solution whose defect vector does
not always meet the desired threshold. This is caused by the fact that the numerical threshold is relaxed once
the collocation algorithm takes more than 500 iterations to converge. The initial state of the resulting solution
is explicitly propagated for the estimated orbital period. The family has been constructed via six continuation
procedures. The first procedure has produced the partial family for Æ 2 [0±,60±]. The second continuation
procedure has computed the partial family forÆ 2 [61±,95±] whereas the third procedure computes the family
for Æ 2 [96±,109±]. The final three procedures produce parts of the family for Æ 2 [251±,264±], Æ 2 [265±,300±]
and Æ 2 [301±,359±]
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Figure F.84: Periodicity verification of the L2 (Hl t = °1.55, al t = 0.10) family. The three left subfigures and the bottom right subfigure
demonstrate the characteristics of the collocation method whereas the upper and middle right subfigure show the full-period state
discrepancy of the solution. These discrepancies are obtained via explicit propagation of the initial state forwarded by the collocation
procedure. The red dotted lines emphasize the piecewise construction of this family.

Characteristics of the monodromy eigensystem of each member of the L2 (Hl t = °1.55, al t = 0.10) family
are shown in Figure F.85. It can be concluded that the monodromy eigensystem of each family member
adheres to the structure of a symplectic map. The piecewise construction of the family is also visible in the
monodromy eigensystem deviations via the shifts that occur in both subfigures.

Figure F.85: Monodromy matrix eigensystem validation of the L2 (Hl t =°1.55, al t = 0.10) family. The left subfigure shows the deviation
of the monodromy matrix determinant whereas the right subfigure demonstrates the deviation of the eigenvalue representing the in-
plane center subspace. The red dotted lines emphasize the piecewise construction of this family.

Figure F.86 proves that the L2 (Hl t = °1.55, al t = 0.10) family is an Æ-varying family since the Hamiltonian
and acceleration magnitude are constant. The piecewise construction of the family is also visible in the con-
tinuation verification from the shifts in each subfigure
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Figure F.86: Numerical continuation verification of the L2 (Hl t =°1.55, al t = 0.10) family. The top subfigures and bottom left subfigure
demonstrate that the l.p.o family unfolds along the acceleration branch. The bottom right subfigure shows the spatial evolution of the
initial condition along the family. The red dotted lines emphasize the piecewise construction of this family.

It is unlikely that the asymmetries observed in the L2 (Hl t = °1.55, al t = 0.10) family are correct since sym-
metry exists in the CR3BP-LT [1]. These asymmetries are a consequence of the asymmetry in the shooting
conditions of the family. Figure F.87 shows the degree of symmetry between family members with accelera-
tion orientation Æ and 2º°Æ.
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Figure F.87: Shooting symmetry analysis of the L2 (Hl t =°1.55, al t = 0.10) family. The left subfigure shows the evolution of the shooting
conditions of family. The right subfigure shows the symmetry between the initial conditions of the family members Æ and 2º°Æ.

Inspecting Figure F.87, it can be observed that the degree of asymmetry between members of the Æ-varying
family is approximately two orders of magnitude larger compared to other family types. From 95± onward,
the degree of symmetry between this family is similar to the other two family types. The discrepancy in degree
of symmetry over the the family can be attributed to the piecewise of the family. The fact that the resulting
orbits heavily depend on the initial conditions means that the collocation procedure is not accurate enough
to compute the Æ-varying families for these settings.

F.5.4. Concluding statements on veracity of libration point orbit families
The majority of the results adhere to the tolerances as specified in Tables A.4 and A.8 which cultivates the
credibility of the proposed numerical continuation methodology. However, the implemented numerical con-
tinuation procedure is not perfect as it can become unstable and asymmetry can sometimes be observed in
the results. Following is an explanation of the encountered imperfections:
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Phase shift of initial con-
dition

The adapted Poincaré phase condition prevents a phase drift during the
construction of the Hl t -varying families with a collinear acceleration orien-
tation. However, a phase drift cannot be prevented for Hl t -varying fami-
lies with a noncollinear acceleration orientation. A possible explanation for
the constraint failure is that the adapted Poincaré phase condition cannot
cope with the geometry distortions that are observed for families with non-
collinear acceleration orientations.

Outliers in required num-
ber of corrections

It can be observed that maximum number of corrections evolves smoothly
during the numerical continuation procedure. However, peaks in number of
required corrections are observed in some cases. These peaks coincide with
a change in number of nodes. A possible explanation for the excessive num-
ber of correction after a change in number of nodes is that the new number
of nodes are equidistributed in time. This probably results in an initial guess
far from the actual solution.

Asymmetry in Æ-varying
families

The observed asymmetries in theÆ-varying families are a result of the asym-
metry in their shooting conditions. The asymmetry in the shooting condi-
tions are a consequence of different seed solutions for the particular family
member. This is surprising as collocation methods are generally praised for
their wide radius of convergence [5]. A possible explanation for lack of ro-
bustness is that the order of the LGL node placement strategy is insufficient
to correctly construct the Æ-varying families. The insufficient order of the
collocation scheme is also a likely cause for the substantial full-period state
discrepancies observed in the Æ-varying families.

Periodicity violation of
initial family members

The initial members of some Hl t -varying families do not always satisfy the
full-period state discrepancy tolerances. A possible explanation for this phe-
nomenon is that the tolerance for the maximum allowed truncation error
per collocation segment is not strict enough.



G
Recommendations

The equilibria contours and periodic solution families presented in Chapter 1 and Appendix D allow the
reader to understand the effects of constant low-thrust acceleration on dynamical structures in the circular
restricted Earth-Moon system. However, the results presented in this thesis project only scratch the surface
of the periodic solution structure of the CR3BP-LT. This Appendix provides the reader with suggestions how
to further explore the low-thrust periodic solution structure and leverage the results presented in this report
for other new research efforts. Section G.1 provides recommendations that concern the improvement of
the numerical model as presented in Appendices A-C. Recommendations for new research directions can be
found in Section G.2.

G.1. Technical recommendations
The construction of equilibria contours and periodic solution families rely heavily on the numerical tech-
niques explained in Appendices A-C. Several ideas regarding performance improvement of these techniques
emerged over the course of this thesis project. An exhaustive overview of these ideas can be found in the
remainder of this Section.

Stochastic equilibria root-
finding

The equilibria root-finding procedure provides robust performance as long
as the equilibria contours do not merge. Stochastic root-finding procedures
might provide a more reliable alternative with lower associated computa-
tional cost compared to classic multivariate root-finding procedures [30].
Alternatively, heuristic algorithms may provide additional seed solutions
which could enable the equilibria root-finding procedure to compute equi-
libria contours at large acceleration values (al t ∏ 0.25).

Perturbation based Flo-
quet targeter

The floquet targeter scheme, as explained in Section C.3, provides a velocity
correction after passing of a time interval as specified in Table A.6. Alterna-
tively, a correction manoeuvre can be executed each time the perturbation
along the unwanted motion components exceeds a certain threshold.

Extend Floquet targeter to
other family types

The current implementation of the floquet targeter scheme generates ap-
proximate solutions for H-L type of libration point orbits. According to [4],
Floquet targeter schemes can also be used to generate vertical Lyapunov or-
bits (V-L). If the floquet targeter scheme is augmented with this capability,
l.p.o families of the V-L type can be investigated. It remains to be seen if
approximate Halo orbits can be generated with the Floquet controller since
this type of orbits is not a principle form of motion around the equilibria of
the CR3BP-LT.

123
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Variable number of nodes
for the two-level targeter

The two-level targeter does not guarantee that its solution resembles the
characteristics of the input trajectory. The reliability of the two-level targeter
can be improved by providing it with the capability to automatically increase
the number of nodes in case the solution does not meet user-specified crite-
ria (i.e amplitude or distance to primaries).

Legendre Gauss node
placement strategy

The choice of a Gauss-Legendre-Lobatto node placement strategy gives rise
to a numerical continuation procedure with a high associated computa-
tional cost. This can be attributed to the number of nodes that are needed to
achieve the orbits with the desired accuracy. A higher-order method like the
Legendre-Gauss node placement strategy will require less nodes to achieve
the desired accuracy which will result in a computationally less costly con-
tinuation procedure [8].

Collocation scheme with
fixed node times

A common approach for collocation methods is to fix the node times during
the root-finding procedure and only update them via mesh refinement tech-
niques once a solution has been found [8]. The collocation method imple-
mented during thesis project allows the node times to vary to enable estima-
tion of the orbital period. The variable node time introduces an instability
in the collocation procedure. Such an instability occurs when the sequence
of the nodes is changed which results in an unsolvable problem. This in-
stability is the root-cause for the termination of the majority of numerical
continuation procedures. Fixed node times will circumvent this instability
but this does not allow computation of the unknown orbital period of the
solution. A possible solution might be to only vary the final node time. It
remains to be seen how such a collocation scheme will produce a solution
with an equidistributed error.

Extend TUDAT with im-
plicit integration

One of the bottlenecks that prevents near-instant computation of l.p.o fam-
ilies is the use of the RK7(8) integrator in the verification procedure. Replac-
ing the RK(7)8 integrator with an integration procedure based upon polyno-
mial interpolation will significantly reduce the computational load of l.p.o
family construction. In combination with a higher order node placement
strategy, near-instant construction of l.p.o families might be achieved [29].

Higher order error esti-
mation method

Boor’s error control method does not always equidistribute the truncation
error over the segments according to the desired constraints listed in Table
A.4. A higher order error estimation method may solve this problem at the
expense of increased computational cost.

Bifurcation detection via
Broucke stability diagram

Bifurcations in the periodic solution families can be detected in a straightfor-
ward manner by analysis of monodromy eigensystem. However, determin-
ing the type of bifurcation is more cumbersome process that requires man-
ual inspection of the eigenvalues. The Broucke stability diagram is a method
for automatic detection and classification of bifurcations without the need
for analysis of the monodromy eigenvalues [16, 37].

G.2. Scientific recommendations
The equilibria contours and periodic solution families presented in this thesis report provide an initial under-
standing of the low-thrust phase space in the circular restricted Earth-Moon system. At the same time, these
dynamical structures give rise to numerous questions which could not be answered within the constraints of
this thesis project. These questions provide opportunities for new research efforts and will be discussed in
the remainder of this Section.
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Investigate l.p.o families
at large acceleration val-
ues

In, [1], equilibria contours have been investigated for low-thrust acceleration
magnitudes that are unattainable for state-of-the-art low-thrust propulsion
technology. However, these equilibria are positioned in close proximity to
the moon which could be interesting for a variety of space missions. Study-
ing the periodic solutions and invariant manifolds emanating from these
equilibria might result in novel mission geometries for the distant future.

Analytical l.p.o approxi-
mation

Approximate solutions for libration point orbits are usually obtained via an-
alytical expressions. These expressions exist for natural libration point orbits
[31], solar-sail assisted libration point orbits [13], and even low-thrust libra-
tion point orbits [27, 32]. The common restriction of these methods is that
they can only generate periodic solutions that emanate from equilibria lo-
cated on the x-axis of the synodic frame. Literature suggests that an analyti-
cal expression for off-axis low-thrust libration point orbits exists [1] but this
expression has not been published in literature. Deriving such an expression
could allow the construction of low-thrust Halo orbits.

Investigate spatial pe-
riodic solutions in the
CR3BP-LT

Results in Chapter 1 imply that Halo, Axial and vertical-Lyapunov families
exist. These orbits provide an exciting topic for future research efforts. The
current implementation of the two-level targeter and numerical continua-
tion procedure are able to compute spatial libration point orbits. This can-
not be said for the current implementation of the equilibria root-finding pro-
cedure and the Floquet targeter.

Investigate hyperbolic
invariant manifolds em-
anating from low-thrust
periodic solutions

The results of this thesis project show that some low-thrust periodic solution
have a higher rate of hyperbolic unwinding behaviour compared to the bal-
listic periodic solutions. Investigating the hyperbolic flow emanating from
low-thrust periodic solutions might lead to identification of novel transfer
solutions in the Earth-Moon system.
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