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Abstract

The main objective of this research is to understand the development of arch action in a
single T-beam acting as part of the bridge system, ignoring the distribution of the load in
transverse direction. As the beam is loaded, several mechanisms work simultaneously in
the bridge system, resulting in enhanced ultimate load bearing capacity of the bridges, like
compressive membrane action (CMA) in deck slabs and arch action in concrete beams.

In the first phase of the project, an approximate analytical model for quantification
of arch action in underwater concrete slabs loaded with uniformly distributed loads (sug-
gested in CUR-077) is verified using non-linear finite element analysis for varying span-to-
depth ratios, stiffness of lateral restraint and initial prestressing in the system. The adopted
analytical model seems to be able to conservatively predict the arching capacity (within
12%), horizontal stretch (within 10%) and membrane forces (within 10%) in concrete mem-
bers when compared to the numerical models, provided that the slenderness is less than
15 and the stiffness of end-restraint is at least equal to the stiffness of restrained member.
However, the vertical deformations are underestimated by almost 50% for all the models
because the adopted analytical model only takes into account the rigid body rotation, ig-
noring the effect of bending deformations and shortening of the beam under membrane
force. Prestressing seems to have a slightly positive effect on arching behavior and the an-
alytical model is unable to capture this effect. The verified analytical model is then ex-
tended to beams loaded with concentrated loads and within the central half of the span,
the adapted model is able to conservatively predict the arching capacity with an accuracy
of at least 15%. The analytical model is then further extended to beams with T-shaped
cross-sections for uniform and concentrated loads. These models are able to predict the
arching capacity in T-beams with an accuracy of 7.5% when the numerical failure is due
to crushing of concrete. In T-beams with thin webs, the strut failure is observed and the
adapted models are not able to predict the arching capacities.

In the second phase, the beam from the Vechtbrug is modeled using 2D, 2.5D and 3D
approaches in DIANA and the models are validated using the experimental work done by
Ensink as part of his PhD studies. All the models show comparable load-deformation be-
havior and peak loads (within 7%) but only the 3D model is able to simulate the crack
pattern observed during experiments. The validated numerical model of the Vechtbrug
beam is then adapted as though it is connected to the bridge through cross-beams by ap-
plying full restraint at the edge faces of the cross-beams in longitudinal direction. Using
the adapted beam model, it is found that modeling only the loaded sub-span as non-linear
causes only 7% loss in accuracy and takes 67% less computational time when compared
to the full non-linear adapted beam model. The results of the adapted Vechtbrug beam
model are also compared with a disjointed bridge model developed by Ensink in which the
distribution of the load is prevented in transverse direction by disconnecting the slab of
the loaded sub-span with neighboring beams. Applying full restraints at the edge faces of
cross-beams is found to overestimate the influence of arch action in the loaded sub-span
when compared to the disjointed bridge model. The adapted analytical model (from the
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first phase of the project) for T-beams with point loads is applied on the loaded sub-span
but is found to be unable to conservatively predict the arching capacity owing to the thin
web causing strut failure.

This report, therefore, also consist of two parts. The first part discusses the results of
sensitivity analysis and extension of the analytical model (chapter 2, chapter 3 and chap-
ter 4) and the second part discusses the modeling of the Vechtbrug beam and the methods
used to model the behavior of a beam as though it is connected to the bridge through cross-
beams (chapter 5, chapter 6 and chapter 7).
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1
Introduction

This chapter outlines the main objectives of the research and explains the step by step pro-
cedure adapted to try and answer the set out research questions.

1



2 1. Introduction

1.1. Background and Motivation
In recent years, the assessment of existing structures has become one of the major con-
cerns of the engineers all around the world, especially in Europe, as most of the structures
constructed after the second world war approach the end of their service life. This has lead
engineers to use advanced methods like non-linear finite element analysis (NLFEA) to as-
sess the current condition and estimate the remaining life time of these structures.

Most of the bridges in Netherlands were also constructed during 60s and 70s as can be
seen in figure 1.1 and approximately 150 [7] such prestressed T-beam bridges with cast-
in-between decks are still in service. As these bridges were constructed using the older
Dutch code N 1009: 1950 [14] which had a less conservative shear capacity approach com-
pared to the current Eurocode (EN 1992-1-1:2005) [1], most of the prestressed beams do
not fulfill the safety requirements upon assessment and hence the safety of such bridges
is questioned. This effect is even worsened by the increased traffic loads on bridges which
they were not designed for. However, upon inspection there seems to be no sign of distress,
begging the question about the source of this additional capacity in concrete bridges.

Figure 1.1: Number of bridges constructed in NL over time [6]

Possible explanation to this increased capacity can be either the increased concrete
strength over time due to continuous hydration process or certain mechanisms working
(simultaneously) in the bridge system resulting in increased resistance. Many researchers
have tried to explain this discrepancy through the arch action in laterally restrained con-
crete slabs, more commonly referred to as compressive membrane action (CMA) but this
mechanism alone does not explain the differences in experimental and analytical results.
Therefore, this project studies the possibility for the development of arch action in the lon-
gitudinal direction i.e. in the prestressed T-beams.

The arch action is significant in concrete members because of the large difference in
the tensile and compressive strength of concrete [17]. The lower tensile strength causes
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the cracking at lower load levels resulting in the shift of the neutral axis towards the com-
pression zones. If the stretching (outward movement) of the member is restrained by stiff
boundaries, an internal arch action is generated in concrete members ( figure 1.2) resulting
in additional capacity.

Figure 1.2: Arch action in concrete members

The arch action significantly increases the capacity of laterally restrained members in
the ultimate limit state, especially in members with lower span-to-depth ratio and higher
degree of lateral restraint [17]. Initially the slab behaves linear elastically before cracking
(A to B), as the load is increased an elastic-plastic phase is reached (B to C) after which the
capacity reduces as shown in figure 1.3.

Figure 1.3: Influence of arch action on the load deflection response of concrete members [17]

The arching phenomenon has been recognized by engineers since 1909 and the de-
velopment of the knowledge in this domain is comprehensively summarized in Guide to
Compressive Membrane Action [17], but all of the research is mainly focused on the mech-
anism working transversely in the bridge deck slabs i.e. to study the phenomenon as shown
in figure 1.4. It has been documented that the lateral restraint of deck slabs has beneficial
effect on the flexural and punching shear capacities and this restraint is inherent to the
design owing to presence of supporting beams, cross-beams and surrounding area of the
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deck slab [17]. Therefore, some design standards have also incorporated this effect in the
design philosophies.

Figure 1.4: Compressive membrane action in bridge deck slabs

Although a lot of research has been conducted to understand the development of mem-
brane action in bridge deck slabs in transverse direction, much work has not been done to
investigate the similar mechanisms working longitudinally in the loaded beam as shown in
figure 1.5. As the membrane action alone is not able to fully explain the enhanced capaci-
ties of T-beam bridges, it is expected that the contribution of the arch action in the loaded
beam might also be a significant contributor in the bridges with intermediate cross-beams.
The presence of cross-beams is vital for the development of this action as these provide the
necessary external restraint.

Figure 1.5: Arch action in T-beams

A number of publications can also be found investigating the same phenomenon in
efforts to explain the progressive collapse of concrete frame structures [8, 19]. However the
aim of the research at hand is to study the development of arch action in a single beam
as part of a concrete bridge system (without considering the distribution of the load in
transverse direction).

Owing to the lack of literature available for arching action in less slender concrete mem-
bers, a trial beam model is developed to exhibit the effects of arching on the ultimate ca-
pacity of prestressed concrete beams. The trial beam is made by modeling the first and last
4m of the 24m long Vechtbrug beam (used as a case study in this project) and joining them
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together, this gives a symmetric tendon profile and a beam span of 8m, which is also the
distance between the cross-beams in Vechtbrug - this gives an idea of arch development
in T-beams. The cross-section and reinforcement layout of the trial beam is shown in fig-
ure 1.8. The area of reinforcing bars is unaltered but the prestressing tendon area is reduced
by one-third to allow for the yielding of the tendons. The material properties and the anal-
ysis set-up for the trial analysis is the same as described in chapter 6 of the report. A simply
supported and a fully restrained model is developed to visualize the effect of arching on the
ultimate capacity of the beam as shown in figure 1.6.

(a) Simply supported trial beam model

(b) Fully restrained trial beam model

Figure 1.6: Trial beam models
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Figure 1.7: Comparison of fully restrained and simply supported trial beam

The load-deformation response of the simply supported and fully laterally restrained
trial beam can be seen in figure 1.7, which shows that the lateral restraint almost increases
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the capacity of the beam by a factor of 3, when estimated using the point marked A, proving
that significant arch action can be expected in the Vechtbrug beam. However, the ductility
of the beam is significantly reduced.

1.2. Scope and Objectives of Research
This MSc. project is part of a larger PhD project which is aimed at explaining the differences
in experimental and analytical estimation of prestressed T-beam bridge capacity, treating
the bridge as a structural system whereas the scope of this MSc. project is limited to the
structural response of a single beam i.e. the distribution of the load in transverse direction
is completely neglected.

As the project is aimed to also analytically quantify the arch action in T-beams loaded
with point loads, the scope of the project covers the validation of the approximate an-
alytical model to quantify arch action in underwater concrete slabs suggested in CUR-
Recommendation 077 [2] and its extension to beams with T-shaped cross-sections. The
effect on arching capacity of varying the load location along the length of the beam is also
studied.

As a case study, Ensink performed experiments on Vechtbrug [13] near the Eastern bor-
der of the Netherlands. These experiments include the tests on individual beams of Vecht-
brug and tests on beams as part of the bridge system. For this project, the scope is limited
to the development and validation of 2D, 2.5D and 3D numerical models for an individual
beam of Vechtbrug. The cross-section of the Vechtbrug beam is shown in figure 1.8.

Figure 1.8: Cross-section of Vechtbrug beam

The comparison is also to be made with the behavior of beam as part of bridge system
but the distribution of the load in transverse direction is not taken into account as the scope
is limited to the development of arch action in the longitudinal direction of the beam only.

The objective of this research is to understand if the arch action also develops in con-
crete beams as part of the bridge system due to lateral restraint offered by the cross-beams
(ignoring the distribution of load in transverse direction) and if the arching capacity can be
estimated using the adapted analytical approach. It is believed that the arch action working
longitudinally will also help in explaining the higher capacity of such bridges in addition to
CMA working in the transverse direction but this is beyond the scope of this MSc. project.



1.3. Research Hypothesis 7

1.3. Research Hypothesis
As the scope of this project is only a single beam acting as part of the bridge system, the
hypothesis can be summarized as:

"The development of arch action in prestressed concrete beams as part of the bridge
system can also be modeled using a single beam and appropriate boundary conditions"

1.3.1. Research Questions and Methodology
1- How sensitive is the numerical arching capacity of (prestressed) concrete beams to the
slenderness ratio, stiffness of end restraint and amount of prestressing for beams loaded
with uniformly distributed load (UDL) and how sensitive is the numerical arching capacity
of beams to the point of application of load for beams loaded with concentrated loads?

• A finite element model with rectangular cross-section loaded with UDL is used to
study the effect of slenderness ratio, stiffness of lateral restraint and amount of pre-
stressing on the numerical arching capacity of concrete beams.

• A similar finite element model is developed with point load to study the effect of
varying load location on the arching capacity.

• As the main aim is to understand arch action in T-beams, a finite element model of
T-beams is developed with both, UDL and point load.

2- Is the approximate analytical model, suggested in CUR-077, able to predict the arch-
ing behavior in good accordance with the results of non-linear finite element analysis for
rectangular beams loaded with uniform loads? Can this model be extended to beams with
point loads and beams with T-shaped cross-sections?

• CUR-Recommendation 077 [2] provides a method for the estimation of the mem-
brane action developed in thick underwater concrete slabs loaded with uniformly
distributed loads (UDL). This model is adopted as it is most comparable with the
situation at hand i.e. beam with long span and significant height as most of the
known analytical methods for arching capacity are for slender short span slabs.

• The approximate analytical model is validated using the results of non-linear finite
element analysis for varying parameters.

• The ideology of the adopted analytical model is extended to the beams loaded with
point loads and beams with T-shaped cross-sections and the results are compared
with the results of finite element analyses.

3- Is it possible to model the arching behavior of a single beam as part of bridge system
using an individual beam model and the loaded sub-span only, given that the transverse
distribution of load is not taken into account?

• 2D, 2.5D and 3D numerical models of the Vechtbrug beam are developed and ver-
ified by comparing the load-deformation response with the results of experiments
conducted by Ensink. The 3D model is developed as it allows a more realistic mod-
eling of end restraints for torsional behavior of end cross-beams. Efforts are also
made to develop a relatively cheap numerical model using a combination of shell
and brick elements.

• The verified model is then used to determine the numerical arching capacity of
the central sub-span of the beam. The results of this analysis are compared with
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the beam as part of the bridge system (ignoring the distribution of the load in
transverse direction) and the adapted analytical model developed for T-beams with
point loads.

As all the methods discussed in guide to compressive membrane action [17] focus on
the mechanism working transversely in the bridge deck slabs and have certain conditions
which need to be satisfied for their application, most of them cannot directly be used for
beams which are much deeper and have longer spans. Therefore, an approximate analyti-
cal method is used in this research as suggested in CUR Recommendation 077 (Calculation
rules for un-reinforced underwater concrete floors [2]) for determination of the arching ca-
pacity of underwater concrete floors. This is an approximate and easy to apply approach to
analytically estimate the effect of arch action in concrete members with significant heights.
A detailed account explaining the approximate analytical model can be found in chapter 2
and this approach is referred to as the CUR method throughout the report. In the first
phase, the estimated results of arching capacity using CUR method are compared with the
numerical capacities obtained using non-linear finite element analysis (NLFEA) and sensi-
tivity analyses are performed varying slenderness of the beam, stiffness of end restraint and
initial prestressing in the system. These sensitivity analyses help to verify the adopted an-
alytical model and also to understand the development of arch action in concrete beams.
The verified analytical model is then extended to beams loaded with point loads and beams
with T-shaped cross-sections.

In the second phase, the finite element model of Vechtbrug beam is validated using
the experimental results and efforts are made to apply similar theories and modeling tech-
niques to model arch action. The results of a single beam model are then compared with
the full bridge model with disconnected slab to avoid the influence of membrane action.



Part-I Sensitivity Analysis and Extension of
CUR Method

This part of the report discusses the approximate analytical (chapter 2) and the numerical
(chapter 3) approach to study the sensitivity of span-to-depth ratio, stiffness of horizontal
restraint and initial prestressing on the development of arch action in a concrete beam
model loaded with uniformly distributed load. The analytical model is then extended to
beams loaded with point load and for beams with T-shaped cross-section. In chapter 4,
the results of the sensitivity analysis are discussed and the boundary conditions for the
applicability of the modified CUR method are outlined.

9





2
Analytical Model

This chapter describes, in detail, the approximate analytical method used for the sensi-
tivity analysis with the necessary assumptions to make a reasonable comparison with the
numerical models. The numerically verified model is then extended to beams loaded with
concentrated loads and beams with T-shaped cross-sections.

11
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2.1. Background and Description of the Analytical Model
CUR Recommendation 077 (Calculation rules for unreinforced underwater concrete floors
[2]) recommends an approximate analytical model to estimate the arching capacity of un-
reinforced underwater concrete floors in relation to the horizontal restraint available at
the edges of the slab due to surrounding retaining walls and soil pressure. This analytical
approach has been referred to as "CUR method" throughout the report. As this formulation
is derived for the underwater concrete floors, the loading assumed is an upward uniformly
distributed load (UDL) due to water pressure on the slab and for the development of arch
action the concrete has to crack at the center and at the supports. First the method has been
described as mentioned in the CUR recommendations and then the assumptions made for
comparison with numerical model are outlined.

The starting point for the method is the force distribution in the beam in an un-deformed
state as shown in figure 2.1. The force F0 is the initial horizontal force present in the system
due to the soil pressure around the retaining wall. After cracking compressive zones are
assumed to develop at supports and at mid-span. These compressive zones are assumed
to be plastic hinges connected by infinitely rigid rods i.e. the shortening of the strut due to
membrane force is ignored. To be conservative a triangular stress distribution is assumed
at the locations of the plastic hinges as shown in figure 2.1 - sufficient rotation capacity of
the system is assumed. As shown in figure 2.1, the line of action of force runs through the
centroid of triangular stress blocks. The laying of underwater concrete is rather difficult so,
the calculations are based on the average height of the concrete slab, taking into account
the tolerances at the bottom and top of the slab labeled tol1 and tol2 in figure 2.1 respec-
tively. The maximum stress at the supports is also modified using a factor β = 0.60 because
at the supports the complete width of the slab is not activated. Note that for underwater
concrete the supports are the anchors/piles spaced in the short direction of the slab. The
slab is in equilibrium as the upward pressure force is resisted by the membrane force and
the internal lever arm.

Figure 2.1: CUR method - undeformed state

Once the load starts to increase, the mechanism wants to stretch as shown in figure 2.2.
This causes an increase in the membrane force due to lateral restraint, a decrease in the
internal lever arm due to vertical deformation and the increase in height of compressive
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zones. The reduction in the internal lever arm due to vertical deformation is included in
the analytical model to take into account the effects of geometrical non-linearity. However,
only the rigid body rotation of the slab is accounted for and the vertical deformation due
to bending and shortening of the strut is ignored. The stretching of the floor also causes
an increase in the span of the loaded slab and this has also been taken into account while
calculating the arching capacity.

Figure 2.2: CUR method - deformed state

Figure 2.3: CUR formulation (spring and load capacity) [2]
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It is assumed that the relationship between the development of the membrane force
and outward stretch of the slab is linear elastic and can be related through a spring constant
(k) as shown in figure 2.3. A typical capacity vs horizontal deformation graph is also shown.

The CUR method is derived for underwater concrete floor systems so it assumes a unit
width (1m) of the floor slab in all the calculations. The CUR recommendation also provides
a step by step procedure to determine the arching capacity of un-reinforced underwater
concrete floor, as described in the following set of equations.

(a)∆F = k(∆u)

(b)Ftot = F0 +αr N .∆F

(c)x f i eld = 2.Ftot

b. fcd ,pl

(d)xst pt = 2.Ftot

0.6 fcd ,pl .b
= x f i eld

0.6

(e)A2 = (h − tol1 − tol2 −p)2 + (
Lx

2
)2 → A

( f )A2 = (h − tol1 − tol2 −p −αv )2 + (
Lx

2
+∆u)2 →αv

(g )z = h − tol1 − tol2 −p − x f i eld

3
− xst pt

3
−αv

(h)qu = 8Ftot z

(Lx +2∆u)2

Where,

F0 is the initial horizontal force due to soil pressure on the system
∆F is the increase in the membrane force due to stretching of the system
Ftot is the total horizontal (membrane) force in the system
αr N is a reduction factor depending on the pressure head
x f i eld is the height of compressive zone at the location of maximum bending moment
xst pt is the height of compressive zone at the supports
A is the length of the active compressive strut
b is the width of the concrete member (assumed 1 m)
tol1 is the tolerances at the bottom of the concrete floor
tol2 is the tolerances at the top of the concrete floor
p is the distance from top of the floor to the support/dish
Lx is the span between the compressive zones at the sides
αv is the vertical deformation as a result of stretching of the system
∆u is the horizontal deformation as a result of stretching of the system
z is the internal lever arm of the system
qu is the ultimate load that can be resisted by the system in KN/m/m

2.2. Simplified Analytical Model - UDL
The method is now to be adapted for the concrete beams, hence a few simplifications are
made in the model to make the comparison with the numerical model. The list of simpli-
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fied equations with the explanation are also listed.

Modifications:
1. F0 is assumed to be zero as there is no soil pressure or external load on the beam. In
case of application of prestressing load, the prestressing force is taken as F0 in the analyti-
cal model.
2. αr N , the reduction factor, is ignored as there is no pressure head in case of the beam.
3. x f i eld is assumed equal to xst pt for the horizontal equilibrium of the system. Further-
more, the numerical model is restrained throughout the height on the edges so the com-
plete width is activated at support level unlike in the case of underwater concrete floor.
4. All the tolerances are ignored as the geometry of a beam is well-defined when compared
to underwater concrete slabs.

(a)∆F = k(∆u)

(b)Ftot = F0 +∆F

(c)x f i eld = 2.Ftot

b. fcd ,pl

(d)xst pt = 2.Ftot

b. fcd ,pl
= x f i eld

(e)A2 = (h)2 + (
Lx

2
)2 → A

( f )A2 = (h −αv )2 + (
Lx

2
+∆u)2 →αv

(g )z = h − x f i eld

3
− xst pt

3
−αv

(h)qu = 8Ftot z

(Lx +2∆u)2
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Figure 2.4: Typical results of CUR method

This simplified set of equations is used for analytically calculating the arching capacity
of the beams for comparison with the numerical model. To calculate the analytical capacity
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of all the variants, an excel worksheet is produced with interlinked formulae so a parametric
study can be performed. Typical load-deformation graphs obtained using CUR method are
shown in figure 2.4.

2.3. Modified Analytical Model - Point Load
The CUR method is derived for uniformly loaded slabs, as that is the loading scenario for
underwater concrete floors but it is of interest to check the applicability of method for
beams loaded with point loads. The effect of varying the location of point load with re-
spect to the support is also to be studied.

Following the results of the numerical analysis, it is observed that due to application of
the point load, there is a localization of stresses at the point of application of load. This
causes the concrete to reach its compressive strength (plasticity) earlier at the point of ap-
plication of load than at the supports - this can be seen in figure 4.18. A pictorial repre-
sentation of stresses in beam loaded with a point load is shown in figure 2.5. This must be
noted that the length of the active strut also needs to be adapted depending on the location
of the load. Although CUR assumes that plasticity would occur at both the edges but due to
eccentric loading this is not the case and all the calculations are based on the distance be-
tween the load and the nearest support (part a), assuming that the horizontal equilibrium
will ensure similar behavior in terms of membrane force for the other side (part b).

Figure 2.5: Modified CUR method - point load

The results of the numerical analysis show that when the point load is at the mid-span,
the ratio of compressive stress at the supports and at center is around 50-60% - to be con-
servative this is assumed to be 50% for the analytical model. This stress ratio is taken into
account by the factor β in figure 2.5. As the load moves closer to the support the stresses at
the support increase (figure 4.17) but the contribution of these stresses in the membrane
force i.e. the area under the plot in figure 4.17 remains the same. Therefore the factor β is
assumed to have a constant value of 0.50 for all the load locations.

β= 0.50 (2.1)

Furthermore, due to eccentric loading the horizontal stretch of the model is not sym-
metric on both sides. To take this into account the relative stretch of the part b is calculated
assuming infinitely rigid struts as assumed in the original model. In the equations, the
stretch of part a and part b is referred to as ∆u1 and ∆u2 respectively. The relation between
∆u1 and ∆u2 is shown in equation (2.2).
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∆u2 =−b +
√

2a∆u1 +b2 +∆u2
1 (2.2)

In light of the discussion above, the following set of equations is derived for the predic-
tion of the analytical capacity of restrained beams loaded with point load.

(a)∆F = k(∆u1)

(b)Ftot = F0 +∆F

(c)x f i eld = 2.Ftot

b. fcd ,pl

(d)xst pt = 2.Ftot

b.β fcd ,pl
= x f i eld

β

(e)A2 = (h)2 + (a)2 → A

( f )A2 = (h −αv )2 + (a +∆u1)2 →αv

(g )z = h − x f i eld

3
− xst pt

3
−αv

(h)Fu = Ftot z(Lx +∆u1 +∆u2)

ba

2.4. Modified Analytical Model - T-Beam with UDL
The CUR method is derived for slabs so it assumes a unit width for all the calculations but
as the Vechtbrug beam has a T-shaped cross-section, the applicability of CUR method for
such beams is also of interest. A simple T-shaped cross-section is assumed for this purpose
as shown in figure 2.6 and the working mechanism is illustrated in figure 2.7.

Figure 2.6: T-beam cross-section
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Figure 2.7: Modified CUR method - T-beams with UDL

In the previous approaches for uniformly loaded beams, it has been assumed that the
height of the compressive zone at mid-span and at support level is equal, given the rectan-
gular shape of the cross-section. In case of T-beam however, this assumption is not valid.
This has been taken into account by using a piecewise function for the calculation of the
height of compressive zones. It can be assumed that the compressive stress in web would
always reach compressive strength of concrete, owing to its lower width compared to the
flange, hence the height of compressive zone at the support level can be calculated using
equation (2.3).

xst pt =


2.Ftot

fcd ,pl bw
xst pt < hw

b f hw fcd ,pl+bw fcd ,pl hw+Ftot+
√
−b f bw f 2

cd ,pl h2
w+b2

w f 2
cd ,pl h2

w+2Ftot b f fcd ,pl hw−2Ftot bw fcd ,pl h2+F 2
tot

fcd ,pl b f
hw < xst pt < h

(2.3)

On the other hand, the stress in concrete at mid-span might be lower due to the wider
flange. To account for this, the factor α is introduced. The height of compressive zone at
the center can then be calculated following equation (2.4).

x f i eld =


2.Ftot

(α fcd ,pl )bw
x f i eld < h f

−b f h f (α fcd ,pl )+bw h f (α fcd ,pl )+Ftot+
√

−b2
f h2

f (α fcd ,pl )2−b f bw h2
f (α fcd ,pl )2−2Ftot b f h f (α fcd ,pl )+2Ftot bw h f (α fcd ,pl )+F 2

tot

(α fcd ,pl )bw
h f < x f i eld < h

(2.4)

The factor α has been derived based on the results of numerical analysis and the ratio
of web to flange width. The expression of α is expressed in equation (2.5).

α= 0.8bw

b f
+0.4 < 1.0 (2.5)

The maximum value of α is limited to 1.0 as for any given combination of web and
flange width, concrete cannot go beyond its compressive strength. The equations for the
compressive zone height have been derived based on the maximum force that can be re-
sisted by flange or web of the cross-section assuming that the extreme fiber reaches a cer-
tain stress level and a triangular stress distribution. A typical plot for estimation of com-
pressive zones is also shown in figure 2.8, where it can be seen that because of wider flange
the compressive zone at mid-span initially grows less steeply and then rapidly as the zone
enters the thinner web of the cross-section and vice versa for the compressive zone at the
supports.
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Figure 2.8: Compressive zone height for T-beams loaded with UDL

The rest of the CUR formulation remains unchanged as described in section 2.2 because
a uniformly distributed load is applied. The point of application of the membrane force at
mid-span and at supports has been calculated following the triangular stress distribution
and the beam geometry.

2.5. Modified Analytical Model - T-Beam with Point Load

Figure 2.9: Modified CUR method - T-beams with point load

As the main goal of the project is to try and apply the approximated analytical method to
estimate the arching capacity of the Vechtbrug beam loaded with a point load, the two pre-
viously discussed models (Point Load (section 2.3) and T-Beam with UDL (section 2.4)) are
combined together. It must be noted that with the application of point load the concentra-
tion of stresses meant that the factor α can be assumed as 1.0 but the factor β needs to be
adjusted based on the ratio of web and flange width. The factor β is also modified based on
the results of the numerical analysis and is expressed in equation (2.6). The height of com-
pressive zones can then be calculated as described in equation (2.7) and equation (2.8).

β= 1.25−0.8
bw

b f
< 1.0 (2.6)

x f i eld =


2.Ftot

(α fcd ,pl )b f
x f i eld < h f

−b f h f (α fcd ,pl )+bw h f (α fcd ,pl )+Ftot+
√

−b2
f h2

f (α fcd ,pl )2−b f bw h2
f (α fcd ,pl )2−2Ftot b f h f (α fcd ,pl )+2Ftot bw h f (α fcd ,pl )+F 2

tot

(α fcd ,pl )bw
h f < x f i eld < h

(2.7)
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xst pt =


2.Ftot

(β fcd ,pl )bw
xst pt < hw

b f hw (β fcd ,pl )−bw hw (β fcd ,pl )+Ftot+
√
−b f bw h2

w (β fcd ,pl )2+b2
w h2

w (β fcd ,pl )2+2Ftot b f hw (β fcd ,pl )−2Ftot bw hw (β fcd ,pl )+F 2
tot

(β fcd ,pl )b f
hw < xst pt < h

(2.8)

The combined equations also show a smooth and expected growth of the concrete com-
pressive zones as shown in figure 2.10. The rest of the steps followed for the analysis are the
same as described in section 2.3. It must be noted that the length of compressive strut (A
in figure 2.9) is also varied for different load locations and the point of action of membrane
force is determined using a triangular stress distribution and beam geometry.
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Figure 2.10: Compressive zone height for T-beam loaded with point load



3
Numerical Model

This chapter describes, in detail, the numerical model used for the sensitivity analysis to
make comparison with the results obtained using the CUR and modified CUR approaches
as described in the previous chapter. For all the models DIANA 10.2 has been used.
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3.1. Description of the Numerical Model
In recent years, the use of non-linear finite element analysis (NLFEA) has become more
common in engineering practices because of the improved speed of calculation and better
understanding of structural behavior. One of the main applications of the non-linear fi-
nite element analysis is analysis of existing structures which is one of the main aims of the
project. For all the non-linear analysis in this report, DIANA 10.2 (release date: 2018-11-13)
is used.

As the numerical capacity of the beams is to be compared with the results of the analyt-
ical model, a finite element model is produced with similar assumptions. To also study the
effect of initial prestress and presence of prestressing tendons, four variations of the model
are produced in total.

1. Plane Cement and Concrete model with ideal (elastic-plastic) behaviour in com-
pression (referred to as PCC ideal model) - this is an un-reinforced concrete model as
assumed in CUR formulation with very similar compressive behavior.
2. Plane Cement and Concrete model with parabolic behaviour in compression (re-
ferred to as PCC parabolic model) - this is an un-reinforced concrete model as as-
sumed in CUR formulation with a more realistic compressive behavior.
3. Un-reinforced concrete model but with central initial prestressing applied as exter-
nal load (referred to as the compression model) - this model helps in understanding
the effect of initial compression on the concrete without the presence of tendons.
4. Prestressed model with central prestressing applied using equally spaced tendons
throughout the height of the structure (referred to as the prestressed model) - this
model includes the effect of presence of prestressing tendons in the system.

All the models except the PCC ideal model have parabolic compressive behavior as sug-
gested in RTD 1016-1:2017 [10].

3.2. Geometry of the Model
All the models are produced in 2D environment using regular plane stress elements and
have a total length of 8700mm from edge to edge with 400mm support plates at 350mm
from each edge giving a span of 8000mm, equivalent to the span of interest in the Vechtbrug
beam. A typical model is shown in figure 3.1.

All the models have unit width (1000mm) as it is one of the assumptions of the CUR
method. The support plate width is also equal to the width of the beam in all the models.
For the generation of arch action, the horizontal restraint is one of the most important fac-
tors. Hence, to study the phenomenon both the extreme edges of the beam are restrained
in the horizontal direction using linear elastic boundary interface. This interface allows the
cracking of the beam at the top and the plasticity at bottom, which is the basic principle for
the generation of arch action and one of the assumptions of the CUR method [2].

3.2.1. PCC Models
The PCC ideal model is produced as close as possible to the assumptions of the analytical
model so a fair comparison can be drawn. To study the effect of a more realistic modelling
of compression behavior the PCC parabolic model is also produced. A typical example of a
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PCC model is shown in figure 3.1. There is no external load on the system at the beginning
of the analysis.

Figure 3.1: PCC model for numerical analysis

3.2.2. Compression Model
The compression model is produced to help understand the effect of initial prestressing on
the system without the presence of the tendons. A phased analysis is used for this model.
The initial prestressing is applied as an external load on the extreme edges of the model to
give a uniform compression throughout the length of the beam in the first phase. During
the application of prestressing the top fiber of the beam at mid-span in restrained in hori-
zontal direction for stability of the system. A typical example of the compression model is
shown in figure 3.2.

Figure 3.2: Compression model for numerical analysis

3.2.3. Prestressed Model
The prestressed model is a more realistic model compared to PCC and compression models
because it has prestressing cables as embedded reinforcement for the application of initial
prestress. To apply central prestressing, 5 tendons are equally spaced throughout the height
of the beam and the prestressing load is applied using reinforcement bar prestress option
in DIANA. All the tendons have the same cross-sectional area equal to 924 mm2. Similar
to the compression model, a phased analysis is performed with an additional horizontal
support in the first phase for stability of the system. A typical example of the prestressed
model is shown in figure 3.3.

Figure 3.3: Prestressed model for numerical analysis
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3.2.4. Point Load Model

This is an additional model produced to study the applicability of the modified CUR for-
mulation on the beams loaded with a concentrated load instead of a uniformly distributed
load. Several modifications were required to the method suggested by CUR to compare the
results of the numerical and analytical approaches. The modifications and the list of equa-
tions used can be found in section 2.3 of the report. For the application of the point load a
500mm long steel plate is added at the top of the beam as shown in figure 3.4.

Figure 3.4: Point load model for numerical analysis

3.2.5. T-Beam Model (UDL)

All the models discussed previously are with rectangular cross-section but it is also essential
to study the applicability of the modified CUR formulation on beams with T-shaped cross-
section like the Vechtbrug beam. The CUR method does not specify any method for T-
beams therefore some assumptions and modifications were made in the analytical model
as mentioned in section 2.4 of the report. A typical T-beam model is shown in figure 3.5
and the cross-sectional details are discussed later in the report with results of the sensitivity
analysis (section 4.7).

Figure 3.5: T-beam model with UDL

3.2.6. T-Beam Model (Point Load)

This model is a T-beam model loaded with point load which is the case for the Vechtbrug
beam. Hence this model is closest to the loading scenario that is being studied. The neces-
sary modifications required in the CUR model to be comparable to this case are discussed
in section 2.5 of the report. A typical numerical model is also shown in figure 3.6.
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Figure 3.6: T-beam model with point load

3.3. Material Properties

The most important material models in these analyses are the compression and tensile
behavior of concrete as all the relevant failures are either cracking of concrete in tension
or crushing of concrete in compression. The behavior of concrete is quite complex given
its heterogeneous nature, hence selection of an appropriate constitutive model is essential
in performing the finite element calculations. For the prestressed model, the non-linear
behavior of the prestressing cable is also important to model the plasticity, if any, in the
tendons.

3.3.1. Concrete

DIANA 10.2 offers a number of options for modeling of concrete behavior in tension. Smeared
cracking approach is used in all the models i.e. the crack opening is smeared over the ele-
ment following a relation between concrete stress and crack opening which is a function of
tensile fracture energy and crack band-width.

For these analyses Hordijk tension softening curve is used as suggested in the Guide-
lines for non-linear finite element analysis of concrete structures [10] and proposed by
Hordijk, Cornelissen and Reinhardt [4, 11]. The material properties used in all the analysis
are the design values for the concrete used in the Vechtbrug, the mean material properties
of which are taken from the test results as mentioned in the material investigation report
of the Vechtbrug [5]. The stress-strain relationship of concrete under tensile loading is as
shown in figure 3.7.
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Figure 3.7: Tensile behavior of concrete

Similarly, in compression a number of constitutive relations are available in DIANA for
concrete. As compression failure is the most important when studying the arch action, 2
compression curves are used (I) Ideal plastic (or elastic-plastic) behavior so a reasonable
comparison can be drawn with the results of the analytical method and (II) Parabolic be-
havior so a more realistic compression failure can be modeled as suggested in RTD 1016-
1:2017 [10]. Both the stress-strain relationships of concrete under compression are shown
in figure 3.8. The inputs for the concrete behavior in DIANA are listed in table 3.1. Note that
the material behavior plots have been created assuming a crack band-width of 100, which
is equal to the prescribed element size.
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Figure 3.8: Compressive behavior of concrete

The Poisson ratio of concrete is assumed to be zero and the positive effects of confine-
ment are ignored as these are also not taken into account by the analytical model. For the
ideal plastic model the ultimate strain of concrete is assumed to be equal to 3.5 permille as
shown in sub-figure (a) of figure 3.8.
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Table 3.1: Properties of concrete in DIANA

Property Value

Material class Concrete and masonry
Material model Total strain-based crack model

Young’s modulus, E 37564 MPa
Poisson ratio, ν 0.00

Mass density 2400 kg /m3

Crack orientation Rotating
Tensile curve Hordijk

Tensile strength, fct 2.26 MPa
Mode-I tensile fracture energy, G f 0.149 N /mm

Crack band-width Rots
Compressive curve Parabolic/Ideal Plastic

Compressive strength, fc 53.33 MPa
Compressive fracture energy 37 N /mm

Reduction model Vecchio and Collins 1993
Lower bound reduction curve 0.40

Confinement model No increase

3.3.2. Prestressing Steel
For the prestressed models where the tendons are also included for the application of pre-
stressing loads, a tendon of type QP170 (used in Vechtbrug) is used as mentioned in the
measurement report of Vechtbrug [13]. The stress strain relationship of the prestressing
steel is shown in figure 3.9 with yielding strength of 1505MPa and fracture strength of 1770MPa.
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Figure 3.9: Prestressing steel material model

3.3.3. Boundary Interface at Edges
In CUR formulation [2] a discrete spring is assumed at the height of h/4 in the slab system
(figure 2.2) while in DIANA a linear elastic boundary interface is used to model the end
restraint to allow similar cracking and plasticity. As the application of the end restraint is
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different in numerical and analytical model it has been assumed that half the height of
concrete is always in compression - similar assumptions have also been made and verified
by other researchers [18]. This allows the transformation of the linear spring interface into
a point spring for comparison. The transformation function for the stiffness is expressed in
equation (3.1).

kanal y ti cal = kD I AN A ∗b ∗ h

2
(3.1)

Where,
kanal y ti cal is the stiffness of discrete spring in analytical formulation [N /mm]
kD I AN A is the stiffness of linear spring in the numerical model [N /mm3]
b is the width of the beam [mm]
h is the height of the beam [mm]

The stiffness of end restraint is related to the axial stiffness of the restrained member
for the development of arch action. As a starting point it has been assumed that the end
restraint stiffness should at least be equal to the stiffness of restrained member, hence the
value chosen for end restraint is a bit higher than the axial stiffness of the slab following
equations (3.2) and (3.3). In all the models this value is equal to 25 N /mm3 unless specified
otherwise.

kaxi al =
Ec .Ac

0.5Lx
= 37564∗1000000

4350
= 8.63∗106N /mm (3.2)

kD I AN A = 2.kaxi al

b.h
= 2∗8.63∗106

1000000
= 17.27N /mm3 (3.3)

Furthermore, in the analytical formulation, the system is stretching and ∆u is defined
as the outward stretching of the system while in the numerical model the horizontal de-
formation is an effect of both outward stretch of the system and rotation due to bending
moment. Following the results, it is noticed that the axial stretch of the system is quite neg-
ligible compared to the rotation due to bending. Therefore, an average value of stretch has
been taken following the same assumption that half the height is in compression as shown
in equation (3.4).

∆uanal y ti cal =
∆uD I AN A +0

2
= ∆uD I AN A

2
(3.4)

3.3.4. Plates and Plate Interface
In all the models, the support plates are modeled using linear elastic steel with Young’s
Modulus equal to 200GPa. To avoid the localization of stresses a linear elastic interface has
been provided between the support plates and the beam. The properties of this interface
have been derived based on the properties of concrete i.e the normal stiffness is equal to
the Young’s Modulus of concrete and the shear stiffness is equal to the Young’s Modulus of
concrete divided by 1000 as shown in table 3.2.
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Table 3.2: Properties of interface between beam and plates

Property Value

Normal stiffness 37564 N /mm3

Shear stiffness 37.564 N /mm3

For the point load model, a similar plate is also provided at the top with same material
properties of steel and interface.

3.4. Composed Lines
Composed lines do not have any mechanical properties like mass or stiffness of their own
and hence they do not influence the results of finite element model but they can be used
as a post-processing tool.

To get the axial forces and bending moments in the system as an output, the com-
posed line option has been used in DIANA. The composed lines integrate the stress outputs
over the cross-section plane normal to the element itself to display the resulting forces and
bending moments. By default, the stresses in the embedded reinforcement are also taken
into account while integrating and this has not been changed.

In all the models a composed line element has been included at half the height of the
beam with a radius of 2000mm i.e. it integrates all the stresses in this radius to give the
required output.

3.5. Loads
As the analytical model is defined for the underwater concrete slabs which are loaded by
a uniformly distributed upward load of water pressure, all the models are also loaded by a
uniformly distributed load at the top fiber of the beam as shown in figure 3.1 except for the
point load models. For the application of point load an additional steel plate is provided
at the top of the beam and the load is applied as a vertex load at the center of the plate as
shown in figure 3.4. The effects of self-weight of the beam are ignored in all the models.

3.6. Supports and End Restraint
The linear elastic steel plates are supported at mid-span of the bottom edge of the plate
as shown in figure 3.1. This allows the rotation of the support plate under load without
causing tensile stresses at the interface.

The edges of the beam are also restrained in horizontal direction using a boundary in-
terface, necessary for the generation of arch action as shown in figure 3.1.

3.7. Mesh
Edge meshing with an element size of 100mm is specified in all the models and most of
the elements are quadrilateral as shown in figure 3.10. Quadratic plane stress elements are
used with compatible interface elements at the support plates and the edges. The elements
used in the models are CQ16M, CT12M, CL12I and CL3CM as per the DIANA user manual
[9].
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Figure 3.10: Typical mesh of the models

3.8. Analysis Procedure
All the analysis reported in this section are load-controlled analysis considering both phys-
ical and geometrical non-linearities as the analytical model also takes into account the ge-
ometrical non-linear effects. Full Newton Raphson method is used for all the analysis with
a step size equal to 1.25 % of the capacity determined by the analytical model so all the
analysis have more or less same number of load steps before failure. If the prestressing is
to be applied, it has been done using a single load step in all the models.

For all the analysis a maximum of 100 iterations are used with the energy norm of tol-
erance equal to 0.001 as suggested by RTD 1016-1:2017 [10]. All the peak loads reported
in the sensitivity analysis are the load values of the last load step before numerical failure
which corresponds to the energy norm exceeding 1 %. A typical convergence behavior of
the models discussed for the sensitivity analysis is shown in figure 3.11.

Figure 3.11: Typical convergence behavior of the models
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Sensitivity Analysis (CUR and Modified

CUR)

This chapter presents the results of the sensitivity analysis and compares the results of ana-
lytical and numerical calculations. Some conclusions are also drawn in light of the obtained
results.
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4.1. Sensitivity Analysis - General
As mentioned in the previous chapters, the sensitivity analysis is performed on all the vari-
ants i.e. the PCC model, the compression model and the prestressed model. The PCC
model further has 2 variations, one using ideal plastic compressive behavior and the other
with parabolic compressive curve as shown in figure 3.8.

The analysis are allowed to run until numerical failure (energy norm exceeding 1%) and
the reported value of peak load corresponds to the last converged load step. The reported
vertical deformation is at the mid-span of the top fiber of the beam and the horizontal
deformation is measured at the bottom fiber of the beam at the position of the vertical
support as shown in figure 4.1. Both the deformations correspond to the assumption of
CUR formulation as can be seen in figure 2.2. A comparison is also made between the
membrane force estimated by the analytical and numerical method using the composed
line option in DIANA. The total membrane force is calculated by summing up the axial force
output of composed line and the additional horizontal force due to maximum moment in
the beam. To convert the bending moment to axial force an internal lever arm of 75% of
height of concrete member is assumed following the outputs of non-linear analyses.

Figure 4.1: Location of vertical and horizontal deformation measurement

The general failure mode and P-Delta behavior of all the 4 variants is first discussed
before looking into the results of the sensitivity analysis. All the models discussed here are
with the uniformly distributed loads and the structural behavior of the beams with point
loads is discussed separately in relevant sections. All the results shown are with absolute
deformation and a scale of 5 in DIANA result view settings.

4.1.1. PCC Ideal Model
This model is the closest to the assumptions of the analytical model, hence very similar
failure mode and cracking behavior is expected. The results discussed in this section cor-
responds to the model as described in table 4.1.

Table 4.1: PCC ideal model

Property Value

Width of the beam 1000mm
Stiffness of end restraint (kD I AN A) 25 N /mm3

kanal y ti cal 12.5x106 N /mm
Total length 8700mm

Height of the beam 1000mm
Compressive model Ideal Plastic
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It can be seen from figure 4.2 that concrete has reached its compressive strength at the
edges and as well as at the center of the beam and the height of compressive zone is also
rather comparable. This verifies the horizontal equilibrium of the structure, however, as
can be seen from sub-figure (a) figure 4.2, the height of compressive zone at the mid-span
is a bit smaller compared to height of the compressive zone at the supports possibly due
to higher plasticity. This is further reinforced by the principal strain plot (sub-figure (b) of
figure 4.2) where it can be seen that the mid-span has higher plasticity than the supports.
The arch can also be clearly visualized from the principal stress plot. It is also assumed that
half the height of the beam at the edges would be in compression for conversion of linear
spring to a discrete spring value, as mentioned before. This assumption also seems logical
following the stress plot.

(a) S2 ideal model

(b) E2 ideal model

(c) Ecw1 ideal model

Figure 4.2: General behavior of PCC ideal model

The cracking patterns also fulfills the basic requirement for the generation of arch ac-
tion i.e. cracking at the edges and at the mid-span so the neutral axis shifts towards the
compressive side. However, it must also be noted that there are 4 cracks at the mid-span
contrary to the assumption of the analytical model of a single crack. As an idea to have sim-
ilar crack pattern a discrete crack model was also produced but satisfactory results were not
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found due to rapid concentration of stresses at the mid-span. The cracks seem to become
horizontal after penetrating a certain depth in to the beam at mid-span, an effect which
might be explained by the higher compressive stress at the top acting as prestress and forc-
ing the cracks to change orientation.

4.1.2. PCC Parabolic Model

This model is the same as PCC ideal model except that the compressive behavior of con-
crete is parabolic. The results discussed in this section corresponds to the model as de-
scribed in table 4.2.

Table 4.2: PCC parabolic model

Property Value

Width of the beam 1000mm
Stiffness of end restraint (kD I AN A) 25 N /mm3

kanal y ti cal 12.5x106 N /mm
Total length 8700mm

Height of the beam 1000mm
Compressive model Parabolic

The results of the PCC ideal model (figure 4.2) and the PCC parabolic model (figure 4.3)
are very similar in terms of stress distribution and crack pattern as only the compressive
behavior is different. It can be said that even with parabolic compressive behavior, all
the made assumptions seem logical and expected results are obtained. Therefore, the
parabolic stress-strain model is used for the compression and prestressed models.
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(a) S2 parabolic model

(b) E2 parabolic model

(c) Ecw1 parabolic model

Figure 4.3: General behavior of PCC parabolic model

4.1.3. Compression Model
Compression model allows to study the effect of initial prestressing on the system without
the influence of prestressing tendons on the behavior. The results discussed in this section
corresponds to the model as described in table 4.3.

Table 4.3: Compression model

Property Value

Width of the beam 1000mm
Stiffness of end restraint (kD I AN A) 25 N /mm3

kanal y ti cal 12.5x106 N /mm
Total length 8700mm

Height of the beam 1000mm
Compressive model Parabolic

Initial prestress 4 MPa
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The stress plot of the compression model seems comparable with the PCC ideal and
parabolic model as expected because in all the cases the ultimate failure of the structure
is due to crushing of concrete at sides and at the edges following the arch. The cracking
behavior is also similar as the edge cracking and the change in orientation of the crack at
mid-span can be seen. However, there is a significant difference in the load deformation
response which is discussed later in the chapter.

(a) S2 compression model

(b) E2 compression model

(c) Ecw1 compression model

Figure 4.4: General behavior of compression model

4.1.4. Prestressed Model

Prestressed model is a more realistic model as the prestressing tendons are also modeled
so the effect of their presence can also be studied. The results discussed in this section
corresponds to the model as described in table 4.4.
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Table 4.4: Prestressed model

Property Value

Width of the beam 1000mm
Stiffness of end restraint (kD I AN A) 25 N /mm3

kanal y ti cal 12.5x106 N /mm
Total length 8700mm

Height of the beam 1000mm
Compressive model Parabolic

Initial prestress 4 MPa
Area per tendon 924 mm2

(a) S2 prestressed model

(b) E2 prestressed model

(c) Ecw1 prestressed model

Figure 4.5: General behavior of prestressed model

The cracking pattern in figure 4.5 is quite different from the one observed for all the
other models, possibly because of the presence of the tendons which act as reinforcement
using the residual part of the stress-strain curve once the loading is applied. Therefore,
more distributed and smaller cracks are observed when compared to other models. How-
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ever, the failure mode is still the same i.e. the crushing at mid-span and at the edges so the
stress plot is very similar to other models.

4.1.5. Comparison of the Numerical Models

A typical behavior of all the 4 variants is shown in figure 4.6. Comparing the load-deformation
response of the models, it can be seen that for PCC ideal and parabolic model, there is
hardly any difference. Both crack at around 100 KN/m/m resulting in the plateau of in-
creasing deformation. Beyond that the arch action takes over and allows the member to
resist a much higher load. The compression model has a larger linear elastic part i.e. it
cracks at a higher load of around 350 KN/m/m because of the initial prestressing which de-
lays the cracking and also allows the model to resist a bit higher load of 1200 KN/m/m. The
prestressed model is able to resist even higher load due to the presence of tendons which
act as reinforcement and share a part of the load in concrete member.
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Figure 4.6: Load deformation comparison of the variants

The load-deformation behavior of the numerical model is also compared with the load-
deformation behavior predicted by the analytical model in figure 4.7. From the sub-figure
(a) of figure 4.7, it can be seen that the behavior of analytical and numerical model is in-
deed quite comparable, especially in terms of peak load and deformation at peak load, for
both ideal and parabolic concrete compression models. In sub-figure (b) two graphs are
plotted for the analytical model (i) CUR 0 MPa, which is the analytical model without the
consideration of prestressing and (ii) CUR 4 MPa, which includes the initial prestress of 4
MPa as F0. From the results it can be seen that inclusion of prestress in CUR model using
F0 might not be suitable as the result of numerical model are quite comparable with the
analytical model without the consideration of prestress. This has been further discussed in
section 4.5.
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Figure 4.7: Comparison of analytical and numerical load-deformation behavior

4.2. Slenderness Sensitivity Analysis

To study the effect of varying span-to-depth ratio on arch action in concrete beams, the
total length of the beam, width of the beam and the end restraint is kept constant in all
the models and the height of the beam is varied from 500mm to 1500mm to vary the slen-
derness. A summary of the model description is presented in table 4.5. Note that a lower
prestress of 2MPa is used for the sensitivity analysis of span-to-depth ratio because the nor-
mally used value of 4MPa resulted in significant cracking at anchor locations of the tendons
when applied on the beam with the height of 1500mm. In all other comparisons, the value
of prestress is kept constant at 4MPa.

For comparison in graphs, all the results of the analytical model are referred to as CUR
but they correspond to their respective models as described in chapter 2. For slenderness
sensitivity analysis, the analytical model used is as per section 2.2 of the report.

Table 4.5: Summary - Slenderness sensitivity analysis

Property Value

Width of the beam 1000mm
Stiffness of end restraint(kD I AN A) 25 N /mm3

kanal y ti cal 6.25−18.75x106N /mm
Total length 8700mm

Height of the beam 500-1500mm
Compression model prestress 2 MPa

Prestressed model prestress 2 MPa
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Figure 4.8: Slenderness sensitivity analysis

For sensitivity analysis the peak load, horizontal deformation, vertical deformation and
membrane force are compared among all the models as shown in figure 4.8. The values
plotted in sub-figures (b)-(d) are at the peak load shown in sub-figure(a). The peak load
graph shows that indeed the span-to-depth ratio has a significant effect on the arching ca-
pacity of concrete member as also concluded by several authors [12, 15, 17, 19] - given that
enough restraint is available. It can also be seen that the CUR method is able to conser-
vatively predict the capacity of all the beams with slenderness ranging from 17.40 to 5.80.
When compared to the PCC ideal model, the prediction of arching capacity is within 12%
for all the studied slenderness ratios. Furthermore, it can be seen that for the beam with
500mm height (slenderness = 17.40), the difference in analytical and numerical capacity
is rather small i.e. 1% when compared to PCC ideal model therefore it is suggested to not
make use of this model for beams with l/h < 15 - this is also not explicitly mentioned in the
CUR recommendations as the underwater concrete floors are assumed to meet this crite-
rion. As also discussed before, the results of PCC ideal and parabolic model are very similar.
The inclusion of prestressing (2MPa) slightly increases the capacity of all the models but the
effect is not very significant. Similar conclusion has also been made by FarhangVesali [8] for
reinforced concrete beams i.e. the reinforcement has only minor effect on the load capacity
of structures where the arching capacity is larger than the capacity provided by reinforce-
ment. The sub-figure (b) of figure 4.8 shows that the horizontal deformation predicted by
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the analytical and numerical approach is also rather comparable for all the models with a
maximum difference of 5% for all the studied slenderness ratios. The peak loads and hori-
zontal stretch of the system are the most important parameters in the study of arch action
and the approximate analytical method seems to be able to predict both of them in good
comparison with the numerical results.

The vertical deformation however, is rather underestimated by the analytical model as
shown in sub-figure (c) of figure 4.8. This difference is possibly because of the simplistic as-
sumptions of the model i.e. the ignorance of axial deformation of the strut due to increasing
membrane force and the ignorance of the bending deformation of the member as only the
rigid body rotation is taken in to account. For all the studied slenderness ratios, the analyt-
ically calculated vertical deformation is almost 50% lower than the numerically obtained
results. The vertical deformation of all the numerical models is however rather comparable
and shows the same trend so it can be said that the prestressing does not significantly ef-
fect the vertical deformation at mid-span. In general, both analytical and numerical model
show a decrease in the deformation of the beam with decreasing slenderness due to deep
beam effect.

Sub-figure (d) of figure 4.8 shows that the membrane force predicted by the analytical
model is also in accordance with the results of numerical analysis with a maximum differ-
ence of 10%. The slightly higher value of membrane force in non-linear analysis might be
due to the plasticity of concrete which is not considered in the analytical model. Similarly,
as for the vertical deformation, all the numerical models have rather comparable mem-
brane force at the ultimate load i.e. prestressing seems to have very minor effect.

The load against horizontal deformation plots of the ideal PCC model for varying span-
to-depth ratios is shown in figure 4.9.
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Figure 4.9: Peak load against horizontal deformation for ideal PCC model (Slenderness Sensitivity)

The effects of varying the slenderness can also be visualized in figure 4.9, which shows
that not only the ultimate load carrying capacity is enhanced for beams with lower slender-
ness but also the cracking load increases due to the increased section modulus as expected.
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4.3. End Stiffness Sensitivity Analysis
To study the effect of varying end restraint on the arch action in concrete beams the stiff-
ness of restraint is varied from 50 N /mm3 to a very low value of 2.5 N /mm3. All other
parameters i.e. the total length of the beam, width of the beam and height of the beam are
kept constant. A summary of model description can be seen in table 4.6.

Table 4.6: Summary - End stiffness sensitivity analysis

Property Value

Width of the beam 1000mm
Stiffness of end restraint (kD I AN A) 2.5-50 N /mm3

kanal y ti cal 1.25−25x106N /mm
Total length 8700mm

Height of the beam 1000mm
Compression model prestress 4 MPa

Prestressed model prestress 4 MPa
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Figure 4.10: End stiffness sensitivity analysis

It must be noted that the end stiffness is a function of beam geometry which, in this
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case, is the same for all the models so the effect visualized is purely because of the change
in the stiffness of horizontal end restraint. The analytical model used for comparison in
this section is as per section 2.2 of the report. As seen from the results in sub-figure (a) of
figure 4.10, the stiffness of horizontal restraint only has a significant effect on the arching
capacity of the concrete members when the stiffness is rather low, as also concluded by
Valipour [18], who made comparison between the stiffness of end restraint and the axial
stiffness of the restraint member to develop a minimum criterion for the development of
arch action - similar efforts are made to come up with a minimum support stiffness for ap-
plicability of the CUR method. Yu [19] has also concluded that the end support stiffness
only effects the arching capacity of beams at very low values. When comparing the analyt-
ical and numerical results it can be seen that the approximate analytical model is able to
conservatively predict the arching capacity of concrete member above a certain horizon-
tal stiffness. This effect is rather pronounced in the sub-figure (b), as the analytical model
starts significantly overestimating the horizontal deformations. This is one of the limita-
tions of the analytical model as it allows stretching of the member until the membrane
force responsible for the compressive failure of concrete is reached because there is no
limitation on the stretching of the system. It is therefore believed that for the application of
this analytical model, there must be a minimum criterion for the stiffness of end restraint.
This is not explicitly mentioned in the CUR recommendation [2] because for underwater
concrete this restraint is always assumed to be available because of the surrounding retain-
ing walls. As an effort to come up with a suitable minimum stiffness, the relation is made
with the axial stiffness of concrete member as shown in equation (4.1) and equation (4.2).

kaxi al =
Ec .Ac

0.5Lx
= 37564∗1000000

4350
= 8.63∗106N /mm (4.1)

kD I AN A = 2.kaxi al

b.h
= 2∗8.63∗106

1000000
= 17.27N /mm3 (4.2)

It is around the stiffness of 17.27 N /mm3 where the analytical model start overestimat-
ing the horizontal deformations of the concrete member but if the stiffness of the restraint
is more than the axial stiffness of the concrete member, the CUR formulation is able to
predict the peak load with an accuracy of at least 12% and horizontal deformation with an
accuracy of at least 10%. Furthermore, following the results of numerical analysis, there
seems to be an optimum value of end restraint stiffness at 20 N /mm3. As an extreme
value check, the analysis is also performed with fully restrained ends and the numerical
peak value dropped to 880 KN/m/m proving that for numerical analysis the optimum end
restraint stiffness is also comparable to the member stiffness, possibly because at higher
stiffness values the numerical model is less stable due to localization of stresses at the sup-
port level. To further verify this conclusion, the analysis is repeated with beams of height
500mm and 1500mm and similar results are obtained. However, the optimum numerical
stiffness effects are more visible in members with low slenderness.

Comparing the numerical results, the PCC ideal and parabolic models are very simi-
lar but the effect of prestressing with a bit higher prestress (4MPa), is more pronounced -
therefore a sensitivity analysis with varying initial prestress is also performed and discussed
in section 4.5. The difference in membrane force for compression and prestressed model
in sub-figure (d) of figure 4.10 is possibly because of the default composed line option in
DIANA, which includes the forces in prestressing tendons and causes the axial force to be
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zero just after prestressing in prestressed model, which is not the case in the compression
model due to absence of tendons.

Similarly as for horizontal deformation, the vertical deformation is highly over esti-
mated by the analytical model as the stiffness gets rather low, see sub-figure (b) and (c)
of figure 4.10. At higher stiffness the vertical deformation is underestimated because the
analytical model ignores the axial and bending deformation as discussed earlier. For the
end restraint stiffness higher than the axial stiffness of the member, the approximate ana-
lytical model predicts the membrane force with an accuracy of at least 10% when compared
to the PCC ideal model as seen in sub-figure (d) of figure 4.10.
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Figure 4.11: Peak load against horizontal deformation for ideal PCC model (Stiffness Sensitivity)

The load-deformation for the PCC ideal model is shown in figure 4.11. It can be seen
that the peak load is rather comparable for the models with higher stiffness but as the stiff-
ness becomes rather low, the peak load begins to reduce and deformations become very
large. It can also be seen that at lower stiffness the plateau at cracking is bigger because of
the lower restraint available at the edges which allows the system to stretch more.

4.4. Beam Width Sensitivity Analysis
The CUR formulation is derived for a slab with a unit width but as this approach is to be
applied to a T-Beam, a sensitivity analysis is also performed with varying beam width to
verify the applicability of the method on more beam like cross-sections. The summary of
the models analyzed for this is given in table 4.7. It must be noted that the stiffness of end
restraint is a function of beam geometry so the relative stiffness of the loaded beam and
end restraint is the same for all the models.

The analytical model used for comparison in this section is as per section 2.2 of the
report.
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Table 4.7: Summary - Beam width sensitivity analysis

Property Value

Width of the beam 200-1000mm
Stiffness of end restraint (kD I AN A) 25 N /mm3

kanal y ti cal 2.5−12.5x106N /mm
Total length 8700mm

Height of the beam 1000mm
Compression model prestress 4 MPa

Prestressed model prestress 4 MPa
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Figure 4.12: Beam width sensitivity analysis

As expected, a linear graph passing through origin is obtained for peak load comparison
of all the models (sub-figure (a) of figure 4.12). The difference in the analytically estimated
and numerically obtained arching capacity is almost constant around 10% for the studied
beam widths. The CUR method also seem to be able to estimate the peak load of beam
like members with rectangular cross-sections without any influence of the varying beam
width on the accuracy of the model. The prestressing seems to have only minor effect on
the load carrying capacity as discussed earlier. The horizontal deformations predicted by



46 4. Sensitivity Analysis (CUR and Modified CUR)

CUR formulation are also very similar to the results of numerical models with an accuracy
of around 1.5% for all the beam widths when compared to PCC ideal model.

The vertical deformations are underestimated by the analytical model, as described and
explained earlier for the slenderness and stiffness of end restraint sensitivity analysis. The
analytical vertical deformations are again around 50% of the deformations obtained as a
result of numerical analysis. However, there is a good co-relation between analytical and
numerical membrane force in the system with an accuracy of 2.5% for all the beam widths.

The load-deformation behavior of PCC ideal model with varying width of the beam also
shows expected results with almost equal increase in ultimate and cracking load with equal
increase in the width of the member.
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Figure 4.13: Peak load against horizontal deformation for ideal PCC model (Beam width sensitivity)

4.5. Prestressing Sensitivity Analysis
As a side study, the effect of increasing initial prestress is also studied on the structural
response of the system. It must be noted that in this comparison the prestressed model is
not included and the prestressing is applied only as external load.

The analytical model used for comparison in this section is as per section 2.2 of the
report.

Table 4.8: Summary - Prestressing sensitivity analysis

Property Value

Width of the beam 1000mm
Stiffness of end restraint (kD I AN A) 25 N /mm3

kanal y ti cal 12.5x106N /mm
Total length 8700mm

Height of the beam 1000mm
Compression model prestress 0-10 MPa
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Figure 4.14: Prestressing sensitivity analysis

The sub-figure (a) of figure 4.14 shows that the increase in prestressing only slightly in-
creases the ultimate load carrying capacity of the concrete members due to arch action.
Increasing the prestress from 0 to 10MPa increases the peak load carrying capacity by only
11.3%. It can be seen that the CUR method is not able to capture this effect as for all the
initial prestressing values the same capacity is predicted by CUR method. At 0 MPa pre-
stress the difference in analytical and numerical capacity is 2.5% which increases almost
linearly to 20% at 10 MPa prestress . The horizontal deformation estimated by CUR is also
only comparable with no prestress applied (difference of only 1.3%), increasing the pre-
stressing force in the CUR method underestimates the horizontal deformation as seen in
sub-figure(b) of figure 4.14. At 10 MPa prestress the difference in analytical and numeri-
cal horizontal deformation at peak load is around 40%. This is possibly because the CUR
method takes the initial prestress load as F0 which already compresses the system and the
strength of concrete is reached with lesser stretching as shown in figure 4.15 (the graph
shifts leftward). Although this is also observed in numerical models but to a much lower
extent because the beneficial effects of prestressing are also taken into account while the
CUR method ignores any positive effects of prestressing. It can be said that including the
prestress load as F0 might not be a suitable method to include the effect of prestressing in
CUR formulation.

The vertical deformation shows similar behavior as described and discussed in previous
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sections i.e. vertical deformations are underestimated by 50% at zero prestress and 70% at
10 MPa prestress. The analytical model is not able to capture the effect of prestressing
on the membrane force as well, the difference in membrane force with no prestress is only
2.6% when compared to the PCC ideal model which increases to 20% with 10 MPa prestress.
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Figure 4.15: Effect of prestressing on CUR formulation
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Figure 4.16: Peak load against horizontal deformation for ideal PCC model (Prestressing Sensitivity)

Looking at the load-deformation response of the PCC ideal models with varying initial
prestress, it can be seen that the increase in prestress delays the cracking of the member as
expected and reduces the maximum deformation at ultimate load as discussed earlier.

4.6. Load Location Sensitivity Analysis
The load location sensitivity analysis is performed to study the effect of point of applica-
tion of load on the arching capacity of concrete members. It must be noted that the CUR
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formulation can only be used for uniformly distributed loads, hence some modifications
are made to CUR formulation as described in section 2.3. A summary of the analysis per-
formed to study the effect of location of load on the arching capacity of concrete members
is described in table 4.9.

Table 4.9: Summary - Load location sensitivity analysis

Property Value

Width of the beam 1000mm
Stiffness of end restraint (kD I AN A) 25 N /mm3

kanal y ti cal 12.5x106N /mm
Total length 8700mm

Height of the beam 1000mm
Compression model prestress 4 MPa

Load location 4000 to 1000mm

From figure 4.18, it can be seen that the compressive stress at the application of point
load is higher than at the supports, as assumed in the analytical model. Furthermore, as
the loading point gets closer to the support this difference in stress reduces but so does
the height of compressive zone and the contribution of the compressive zone in the mem-
brane force (area under stress plot) almost remains the same as described in section 2.3.
This concentration of stress might also be explained through the crack pattern compari-
son, as shown in figure 4.19. Generally, a single main crack seems to develop at the point
of application of load which results in a rather rapid concentration of stresses at the top
when compared to a beam loaded with uniform load. It is also of interest to note that for
most of the models, the failure of the structure is still due to crushing of concrete, which
is in line with the assumptions of the analytical model. However, as expected, the farther
end of the beam is rather less compressed but the horizontal equilibrium is maintained by
a larger height of compressive zone as can be seen in sub-figure (d) of figure 4.18. The com-
parison of height of compressive zone and maximum stress at support level can be seen in
sub-figure(a) of figure 4.17. Sub-figure (b) of figure 4.17 shows that the compressive zone
at mid-span is not much effected until there is a direct transfer of load to the supports.
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Figure 4.17: S2 and compressive zone height comparison for varying load location
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(a) S2 plot for load at 4000mm

(b) S2 plot for load at 3000mm

(c) S2 plot for load at 2000mm

(d) S2 plot for load at 1000mm

Figure 4.18: S2 comparison for varying load location
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(a) Ecw1 plot for load at 4000mm

(b) Ecw1 plot for load at 3000mm

(c) Ecw1 plot for load at 2000mm

(d) Ecw1 plot for load at 1000mm

Figure 4.19: Ecw1 comparison for varying load location

From the results shown in sub-figure (a) of figure 4.20, it can be seen that the numerical
arching capacity of restraint concrete members is not significantly effected if the load is in
the middle half (from L/4 to 3L/4) of the beam. However, significant increase in the capac-
ity is observed when the load is in the first L/4 of the span, possibly because of the direct
transfer of load from the loading point to the support. It can also be seen that the modifica-
tions made to the CUR model are able to capture the change in numerical capacities if the
load is within the central L/2 span of the beam with an accuracy of at least 15%. Beyond
that the difference rapidly grows to 30% due to direct transfer of load to the supports. The
prediction of maximum horizontal deformation is also within 5% for the described range.

The vertical deformation is underestimated as in the previous studies but follows the
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same trend as the results of numerical analysis. However, the adapted CUR model is able
to predict the membrane force in accordance with the results of numerical analysis. The
difference in analytical and numerical membrane force is a maximum of 6.5% for all load
locations. This also shows that the membrane force at failure is independent of the load
location.
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Figure 4.20: Load location sensitivity analysis
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Figure 4.21: Peak load against horizontal deformation for ideal PCC model (Load Location Sensitivity)



4.7. Web-width Sensitivity Analysis (T-beams with UDL) 53

Looking at the individual load-deformation behavior, the same conclusion can be drawn
that for the load in the central half of the beam, the arching capacity and behavior of the
beam is not significantly effected. However, for the load in the first L/4 of the span signifi-
cant increase in the capacity is observed due to the direct transfer of load to the supports.

4.7. Web-width Sensitivity Analysis (T-beams with UDL)
As the main objective is to apply the analytical model on the Vechtbrug beam to deter-
mine its arching capacity, efforts were made to study the applicability of the modified CUR
method on beams with T-shaped cross-section. The details of modifications made to the
analytical method for this comparison are as mentioned in section 2.4. Most of the cross-
sectional dimensions of the T-beam are kept similar to the Vechtbrug beam but a relatively
simple shape is used to understand the working mechanism. A typical cross-section used
for this analysis and its comparison with the Vechtbrug beam is shown in figure 4.22.

(a) Vechtbrug beam (b) T-beam

Figure 4.22: T-beam cross-section for sensitivity analysis

The width of the web is varied from 200mm to 600mm as shown in table 4.10 and only
the PCC parabolic model is used. It must also be noted that for this sensitivity analysis,
the stiffness of end restraint is not a function of beam geometry because of the T-shaped
cross-section and the stiffness is a constant value of 25000 N /mm2. The load is applied as
a uniformly distributed load on the top fiber of the beam.

Table 4.10: Summary - Web width sensitivity analysis

Property Value

Width of top flange 800mm
Width of the web 200 - 600mm

Height of top flange 200mm
Height of the web 950mm

Stiffness of end restraint (kD I AN A) 25000 N /mm2

kanal y ti cal 14.375x106N /mm
Total length 8700mm

Total height of the beam 1150mm
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Figure 4.23: Web width sensitivity analysis for T-beam with UDL

Table 4.11: Summary - Web width effect in numerical models

Web Thickness (mm) Failure Mode

600 Web Crushing
500 Web Crushing
400 Web Crushing
300 Web Crushing + Strut Failure
200 Web Crushing + Strut Failure

From sub-figure (a) of figure 4.23, it can be seen that after modifications the CUR method
is able to predict the capacity of beams with T-shaped cross-sections even when the strut
failure due to thin web is observed, possibly because even in the models with strut failure,
the final numerical failure of the model is because of crushing of concrete. The difference
in analytical and numerical capacity is found to be a maximum of 8%. The horizontal de-
formation at failure is however a bit underestimated by the modified analytical approach
as the accuracy is within 20% for the compression failure i.e. bw > 400mm. The stress and
cracking plots of the beam with a web thickness of 600mm and 200mm are compared in
figure 4.24 and figure 4.25.
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(a) S2 plot for web width of 600mm

(b) S2 plot for web width of 200mm

Figure 4.24: S2 comparison for varying web width

(a) Ecw1 plot for web width of 600mm

(b) Ecw1 plot for web width of 200mm

Figure 4.25: Ecw1 comparison for varying web width

It can be seen that both the beams have quite different failure modes as the beam with
a web width of 600mm fails in compression (in line with the assumption of the analytical
model) but the beam with the web width of 200mm also shows a strut failure following the
arch. The summary of the results is also presented in table 4.11 and it can be concluded
that the modified CUR method is able to predict the capacity of T-beams if the ultimate
failure is due to crushing of concrete, hence it should only be applied for beams where a
compression failure is expected, as it is one of the basic assumptions of the model and all



56 4. Sensitivity Analysis (CUR and Modified CUR)

other failure mechanisms are not taken into account. Furthermore, as can be seen from
sub-figure (b) of figure 4.24, the stress distribution at mid-span is quite different from the
one assumed in the analytical model.

The vertical deformations show similar trends as discussed in previous sections. How-
ever, the membrane forces predicted by the modified CUR formulation are comparable to
the numerical results with an accuracy of at least 5% for all the studied web-widths.
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Figure 4.26: Peak load against horizontal deformation for parabolic PCC model (Web width sensitivity)

The load-deformation graph of individual analysis can be seen in figure 4.26. An ex-
pected trend of increasing peak load and horizontal deformation is observed as the web
width increases because of the availability of more material which contributes to a higher
membrane force and higher capacity.

4.8. Web-width Sensitivity Analysis (T-beams with Point Load)

Numerical models are also developed to verify the modified analytical model described in
section 2.5 of the report which takes into account both, the differences in the web width
and width of the flange and the variation in shear span. The summary of the preformed
analysis can be seen in table 4.12.
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Table 4.12: Summary - Web width and load location sensitivity analysis

Property Value

Width of top flange 800mm
Width of the web 200 - 600mm

Height of top flange 200mm
Height of the web 950mm

Stiffness of end restraint (kD I AN A) 25000 N /mm2

kanal y ti cal 14.375x106N /mm
Total length 8700mm

Total height of the beam 1150mm
Load location 4000 and 2250mm
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Figure 4.27: Web width sensitivity analysis for T-beam with point load at 4000mm
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(a) S2 plot for web width of 600mm

(b) S2 plot for web width of 200mm

Figure 4.28: S2 comparison for varying web width with load at 4000mm

(a) Ecw1 plot for web width of 600mm

(b) Ecw1 plot for web width of 200mm

Figure 4.29: Ecw1 comparison for varying web width with load at 4000mm

From sub-figures (a) of figure 4.27, it can be seen that the modified CUR approach is
able to conservatively predict the load carrying capacity of T-beams loaded with point load
at mid-span for web widths greater than 300mm within an accuracy of 7.5%. The horizontal
deformation predicted by the analytical approach shows a constant reduction as the web
width is reduced whereas the numerical model shows little variation but the values are
within 10% for web-widths greater than 300mm i.e. crushing failure of concrete. As seen
before, vertical deformations are highly underestimated (60%) and the membrane forces
are within 5% of the numerical results for bw > 300mm.
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Comparing the sub-figures (a) and (b) of figure 4.28, it can be seen that for web width
of 600mm the concrete at mid-span has reached plasticity but not at supports while for
web width of 200mm the stress distribution is quite different due to strut failure. Further-
more, in sub-figure (b) of figure 4.29, the start of the shear crack is visible which results in
the numerical instability of the analysis, hence the capacity predicted by the modified an-
alytical model in sub-figure (a) of figure 4.27 is higher than the numerical capacity. It can
be concluded that the analytical model is able to predict the arching behavior of T-beams
loaded with point load if the failure of concrete is in compression at supports or at point of
application of load.

Similarly, as for the load at 4000mm the comparison has been made for the point load at
2250mm from the supports for varying web widths and the results are shown in figure 4.30.
This has been done to also study if the modified analytical model is able to predict the
arching behavior of the T-shaped cross-section loaded asymmetrically.
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Figure 4.30: Web width sensitivity analysis for T-beam with point load at 2250mm
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(a) S2 plot for web width of 600mm

(b) S2 plot for web width of 200mm

Figure 4.31: S2 comparison for varying web width with load at 2250mm

(a) Ecw1 plot for web width of 600mm

(b) Ecw1 plot for web width of 200mm

Figure 4.32: Ecw1 comparison for varying web width with load at 2250mm

As seen from figure 4.30, the modified analytical model overestimates the capacity of
T-beam for all the web widths, possibly because for all the analyses the numerical failure
is because of the strut failure and not plasticity of concrete. However, the over prediction
increases as the web-width reduces because strut failure becomes more dominant for the
structure. The comparison of the horizontal deformation, vertical deformation and mem-
brane force is also shown in figure 4.30.

The stress distribution in sub-figure (b) of figure 4.31 is not in line with the assump-
tion of analytical model and the failure mechanism can also be seen in sub-figure(b) of
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figure 4.32. Similar failure is observed with the web width of 600mm. This reinforces the
previous conclusion that the modified analytical model is only able to predict the arching
capacity of T-beams for which the compression failure of concrete is expected at mid-span
or at supports as it is one of the basic assumptions of the model and any other failure mode
is not taken into account.





Conclusions (Part-I)

1. The numerical arching capacity of concrete members highly depends on the slen-
derness ratio and stiffness of end restraint (below a certain value) whereas central
prestressing, with or without the tendons, has very limited effect on the ultimate load
carrying capacity. However, the crack pattern of concrete members with tendons is
quite distributed when compared to un-reinforced members due to presence of ten-
dons.

2. CUR method as described in CUR-077 [2] underestimates the vertical deformations
by almost 50-60% when compared with the results of numerical models, possibly be-
cause it ignores the axial shortening of the strut and bending deformations of the
beam.

3. The analytical model suggested in CUR-077 [2] is able to predict the arching capac-
ity of concrete members in terms of peak load carrying capacity with an accuracy of
at least 12%, horizontal stretch with an accuracy of at least 5% and membrane force
in the system with an accuracy of at least 10% when compared to PCC ideal model for
all the studied slenderness ratios. It is also concluded that the approximate analyti-
cal model suggested in CUR-077 should be used only when the slenderness (l/h) of
the concrete member is less than 15. This is not explicitly mentioned in CUR recom-
mendations as this criterion is always assumed to be not governing for underwater
concrete floors.

4. To analytically determine the arching capacity of concrete members using CUR
method, there should be a minimum end restraint stiffness equal to the axial stiff-
ness of the restrained concrete member. This is not explicitly mentioned in the CUR
recommendation as sufficient deformation capacity and restraint is always assumed
to be available. When this criterion is fulfilled, the CUR method is able to predict
the arching capacity with an accuracy of 12%, horizontal stretch with an accuracy of
10% and membrane force with an accuracy of 10% when compared to the PCC ideal
model.

5. The CUR formulation is recommended for slabs with a unit width but it can be used
to predict the capacity of rectangular cross-sections with varying width without any
effect on the accuracy of the model. The predicted peak load, horizontal deforma-
tion and membrane force have a difference of 10%, 1.5% and 2% respectively, when
compared to the results of numerical models.

6. Prestressing seems to have only minor effect on the arching capacity of concrete
beams. Increasing the initial prestress from 0 MPa to 10 MPa results in an increase
of only 11.3% in the arching capacity. It has also been concluded that the inclusion
of prestress in the analytical model using F0, as described in chapter 2, might not be
a suitable method. The error in the prediction of horizontal deformation and mem-
brane force increases from 1.5% to 40% and 3% to 20% respectively, when the pre-
stress is increased from 0 MPa to 10 MPa.

63



64 4. Sensitivity Analysis (CUR and Modified CUR)

7. The adapted CUR model for point load gives comparable peak loads with the nu-
merical models, especially when the load is applied in the central L/2 of the beam
span. Beyond this region the direct transfer of load occurs between the loading point
and the supports and this is not captured by the analytical model. For the load in the
central L/2 of the span the maximum error in peak load, horizontal deformation and
membrane force is 15%, 5% and 5% respectively.

8. The adapted CUR model for T-beams with uniformly distributed load (UDL) is
able to conservatively predict the load carrying capacity of concrete members with an
accuracy of 7.5% if the failure of the numerical model is due to crushing of concrete.
For T-beams with rather thin web, strut failure is also observed which is not taken into
account by the assumptions of the analytical model. Therefore, it is concluded that
the adapted analytical model should only be used if the crushing failure of concrete
is expected.

9. The adapted CUR model for T-beams with point load is also able to predict the
arching capacity with an accuracy of 7.5% if the failure of the member is due to crush-
ing of concrete. In T-beams with thin webs the strut failure is also observed and the
analytical model developed in this study should not be used as it does not take into
account this mode of failure and overestimates the arching capacity.



Part-II Assessment of Vechtbrug Beam

This part of the report focuses on the numerical modeling of the Vechtbrug beam for a
simply supported case, as tested on-site, and as part of the bridge deck system, ignoring
the distribution of load in transverse direction. The results of the numerical 2D, 2.5D and
3D models are compared with the experimental data and efforts are made to model the
behavior of the beam as part of the bridge system by modeling only the loaded sub-span.
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5
Vechtbrug - Layout and Details

This chapter describes the layout and details of the Vechtbrug. The experimental set-up for
the experiments performed by Ensink as part of his PhD are also discussed so a comparison
can be drawn with the numerical models - discussed in the next chapter.
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5.1. Location and Layout of Vechtbrug

Vechtbrug was a part of the former Dutch highway A1, see figure 5.1, starting from Amster-
dam to the German border in the east of the Netherlands. As a part of project SAAOne, some
parts of the highway were renovated and re-positioned. Owing to this, the Vechtbrug was
no longer in use and had to be demolished. This gave a unique opportunity to test the full
scale bridge on-site and use the experimental data for understanding of the mechanisms
working in the bridge system.

Figure 5.1: Location of the Vechtbrug [13]

A partial layout view of the Vechtbrug is shown in figure 5.2 with marked test locations.
The materials investigation section in figure 5.2 is used to determine the mean material
properties of the bridge materials including the concrete for girder, the concrete for slab in
between girders, the reinforcing steel and the prestressing steel - a detailed account on the
investigation can be found in [5, 13]. The results obtained are tabulated in table 5.2 with
the corresponding class of material that the obtained properties can be classified to. Tests
1-3 are performed on the bridge system to study the effect of neighboring beams and the
development of compressive membrane action in bridge deck slab, this study is beyond
the scope of the MSc. project and hence is not discussed further.

The most relevant tests for this project are the tests 4-7, as they have been performed
on a single beam. The beams have been disconnected from the bridge system using a saw
cut through deck slab and cross-beams (figure 5.6). However, the end cross-beam on the
far side of the beam is left intact for stability of the beam during the test. Tests 4, 5 and
6 are performed with the load at a distance of 2250mm from the support while test 7 is
performed with the load at a distance of 4000mm from the support. A summary of the
relevant test description is presented in table 5.1.
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Figure 5.2: Layout of the Vechtbrug with marked test locations [7]

Table 5.1: Test description - summary

Test No. Load (mm) Description

4 2250 Single beam
5 2250 Single beam
6 2250 Single beam
7 4000 Single beam

5.2. Description of Vechtbrug Beam
The standard cross-section of the Vechtbrug beam is T-shaped, as shown in sub-figure (a)
of figure 5.3, with the reinforcement detailing. Each beam has a 750mm long end block on
both sides with the thickness equal to the thickness of bottom flange i.e. 400mm. For the
transition from end block to the standard cross-section, a 1000mm long curved transition
piece is used. All the beams are post-tensioned using 7 tendons - 6 tendons are anchored
in the end block while the seventh tendon is anchored in the top flange at a distance of
1902mm from the support as shown in figure 5.4. The tendons have both, vertical and
horizontal curvature along the length of the beam.

For individual beam tests the slab has been cut through the center line of the deck
slab in between girders (figure 5.6) resulting in a total top flange width of 1225mm, from
which 800mm is girder concrete and 425mm is slab concrete - 212.5mm on both sides of
the flange. The beams are supported using elastomeric bearings with a size of 206x306mm,
following the construction drawings of the Vechtbrug.

The total span of the beam is 24m with a cross-beam at every 8m. The end cross-beams
are 400x850mm and are prestressed using 5 tendons while the intermediate cross-beams
are 500x950mm and are prestressed using 8 tendons. The details of cross-beams can be
seen in figure 5.5.
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(a) Cross-scetion (b) Tendon anchorage at
end block

Figure 5.3: Cross-section and tendon anchorage

Figure 5.4: Beam geometry and tendon anchorage
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(a) End cross beam (b) Intermediate cross beam

Figure 5.5: Cross beam detail

Figure 5.6: Saw-cuts used for individual beam tests

5.3. Results of Material Testing
The material testing on span 3 of the bridge as shown in figure 5.2 shows that the aver-
age compressive strength of the girder concrete is 106.7 MPa and the compressive strength
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of slab concrete is 73.5MPa [5]. Owing to the dimensions of the tested cylinders, the re-
sulting values are multiplied with a factor of 0.85 to obtain the mean cylindrical compres-
sive strength of concrete which comes out to be 90 MPa for girder concrete and 62MPa for
slab concrete. The yield strength of reinforcing steel is found to be 288MPa and a fracture
strength of 352MPa - this corresponds to the steel quality QR24 as mentioned in the mea-
surement report [13]. Similarly, the prestressing tendons are found to be of class QP170,
which was used quite a lot during the 60s and 70s, with fy = 1505 MPa and fu = 1770 MPa
[13]. The results are also summarized in table 5.2.

Table 5.2: Material investigation results

Material Strength (MPa) Class

Girder Concrete 90 C90
Slab Concrete 62 C60

Reinforcing Steel fy = 288, fu = 352 QR24
Prestressing Steel fy = 1505, fu = 1770 QP170

5.4. Results of Individual Beam Tests

For all the individual beam tests, the deformation readings are measured at 3 locations - at
the point of application of load, at the level of the first intermediate cross-beam and near
the support. Part of the bridge deck used for the single beam tests with location of load and
LVDTs to measure the vertical deformation is shown in figure 5.7. It must be noted that the
deformation at supports is measured at 20cm from the end of the elastomeric bearing. It
can also be seen that the end-beam at the far end of the bridge is left intact as described
earlier. An overview of the experimental set-up at the site can also be seen in figure 5.9.

Figure 5.7: Experimental set-up and location of LVDTs
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Figure 5.8: Results of individual beam tests

From the experimental results in sub-figures (a-c) of figure 5.8, it can be seen that Test
5 is within the range described by Test 4 and Test 6 but shows some unexpected readings,
possibly due to an error in installing the LVDT. Hence, the results of Test 5 would not be
used to make the comparison with the numerical models.
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Figure 5.9: Overview of the test set-up used at site



6
Vechtbrug - Numerical Model

This chapter describes the 2D, 2.5D and 3D numerical models developed in DIANA for the
individual beam tests (tests 4-7). The comparison of the numerical model results is made
with the experimental results to validate the finite element models so they can be used
further to study arching in beams as part of the bridge system (ignoring the distribution of
load in the transverse direction).
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6.1. Description of Vechtbrug Beam

The Vechtbrug beam has a total span of 24m with cross-beams at every 8m. A detailed
description of the beam geometry, reinforcement and prestressing layout can be found in
chapter 5. The longitudinal view of the beam is also shown in figure 6.1.

Figure 6.1: Longitudinal view of the beam

6.2. Geometry of the Beam

The standard cross-section of the beam is T-shaped with some variations along the length
of the beam, like the 750mm long end blocks on both sides which have flanges of the same
width as the standard cross-section but a constant web width of 400mm. Furthermore, as
the beam is cut from the bridge system using saw cuts, it has some parts of the end and
intermediate cross-beams connected to the main girder. This has also been modeled in the
numerical analysis.

There is also a curved concrete transition piece of 1000mm on each side of the beam,
but this has not been included in the numerical models. The beam is supported on linear
elastic steel plates (206x306mm) and an interface has been used between the supporting
plates and the beam to model the effect of elastomeric bearings. The loading plate is mod-
eled either at a distance of 2250mm from the support or at 4000mm following the experi-
ments.

6.2.1. 2D Model

To develop the 2D geometry in DIANA, use of spatial functions have been made which de-
scribe the variation in the cross-section of the beam as a factor of the maximum width.
It must also be noted that for the 2D model, the concrete of the deck slab is transformed
into the concrete of the girder using the ratio of compressive strengths, however this some-
what overestimates the stiffness. The total length of the slab extending from the flange was
425mm which is transformed to 293mm to give a total flange width of 1093mm. Based on
the variations in the cross-section along the beam length, 4 different functions are defined
(i) Girder (Standard cross-section) (ii) End blocks (iii) End cross-beam and (iv) Intermedi-
ate cross-beam. An overlay of all the functions is shown in figure 6.2. This must also be
noted that the radii in the cross-section have been approximated using small linear lines
for ease of modeling.
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Figure 6.2: Cross-sectional function definition in 2D

In 2D model, all the reinforcing steel along the width of the beam is added up and shown
as a single bar and the horizontal curvature of the tendon has also not been modeled owing
to the restraints of 2D work environment. The longitudinal view of the 2D DIANA model is
shown in figure 6.3 and the thickness function assigned to each part is also labeled with the
same name as described in figure 6.2. The same color codes have been used in 3D and 2D
shell model for each part of the beam.

Figure 6.3: Longitudinal view of 2D model

6.2.2. 3D Model

In 3D model, both the deck slab concrete and the girder concrete have been modeled sep-
arately with the actual slab dimensions of 425mm at the flange level of the beam. The
stirrups are modeled as per the details in the drawings (figure 5.3). The support and load
plates are also modeled as solids with respective interfaces connecting them to the beam.
The 3D work environment allowed the modeling of horizontal curvature of the tendons and
it has also been included in the model. The 3D geometry and reinforcement layout of the
model are shown in figure 6.4 and figure 6.5 respectively. It must be noted that the one of
the end cross-beam is also modeled because it was not cut during the experiments. The
reinforcement and prestressing tendons of this part of end cross-beam are also included in
the model.
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Figure 6.4: Isometric view of the 3D model

Figure 6.5: Isometric view of the reinforcement in 3D model

6.2.3. 2D Shell Model
A so-called 2.5D model of the beam is also prepared using shell elements. This has been
done to be able to model the torsional behavior of the end-beam in a better way and still
be able to produce a computationally cheap model. Apart from the end cross-beam, the
shell elements have been assigned the geometry as described for the 2D model in subsec-
tion 6.2.1. The end cross-beam and the reinforcement layout is modeled as described for
the 3D model in subsection 6.2.2. The 2D shell model with reinforcement is shown in fig-
ure 6.6. At the level of end cross-beam, the 2D shell sheet meets the 3D solid and results in
a concentrated line load, to avoid this the use of tying has been made for a width of 400mm
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i.e. the width of the end-block. The horizontal deformation (T1) and the shell element ro-
tations (R1 and R3) of the edges of the end-block are tied to the point of connection of the
shell elements with the end-block as shown in figure 6.7

Figure 6.6: Isometric view of the 2D shell model

Figure 6.7: Tying used in shell model

6.3. Material Properties
The material properties used for concrete, reinforcing steel and prestressing steel are the
same for all the models. The properties are derived from the experimental results as de-
scribed in chapter 5. The mean material values are used because a comparison of the
model has to be made with the experimental results.

6.3.1. Concrete
The girder concrete has a mean compressive strength of 90MPa while the slab concrete
has a mean compressive strength of 62MPa. For the compressive behavior of concrete a
parabolic compressive curve is used and for tensile behavior, Hordijk’s tension softening
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curve has been used. The modeled compressive and tensile behavior of concrete is shown
in figure 6.8 and table 6.1.
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Figure 6.8: Behavior of concrete for Vechtbrug beam model

Table 6.1: Properties of concrete in DIANA for Vechtbrug models

Property Girder Concrete Slab Concrete

Material class Concrete and Masonry
Material model Total strain based crack model

Young’s modulus, E 44722 MPa 39497 MPa
Poisson ratio, ν 0.15

Mass density 2400 kg /m3

Crack orientation Rotating
Tensile curve Hordijk

Tensile strength, fct 4.84 MPa 4.19 MPa
Mode-I tensile fracture energy, G f 0.153 N /mm 0.149 N /mm

Crack band-width Govindjee
Poisson’s ratio reduction Damage based

Compressive curve Parabolic
Compressive strength, fc 90 MPa 62 MPa

Compressive fracture energy 41 N /mm 38 N /mm
Reduction model Vecchio and Collins 1993

Lower bound reduction curve 0.40
Confinement model Selby and Vecchio

6.3.2. Reinforcing and Prestressing Steel
Following the results of the experiments, the reinforcing steel is classified as QR24 and the
prestressing steel as QP170. All the reinforcements are modeled as embedded reinforce-
ments i.e. they are fully bonded to the mother elements or no slip is considered between
concrete and steel. The modeled behavior of both the materials is shown in figure 6.9.
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Figure 6.9: Behavior of reinforcing and prestressing steel

6.3.3. Load and Support Plate Interface
The load and support plates are modeled as linear elastic steel since these are subjected
to concentrated loads in the model. These plates are connected to the beam through an
interface to avoid localization of stresses and to model the effect of elastomeric bearings
on the beam deformations.

The properties of load interface are derived from the properties of girder concrete as
suggested in RTD 1016-3B [3]. The normal stiffness of the interface is equal to the Young’s
modulus of girder concrete and the shear stiffness is a factor of 1000 lower. This helps avoid
the localization of stresses at the point of application of the load.

The properties of support interface are determined using the calibration of the model
as per the experimental results by Ensink and can be expressed using equation (6.1) and
equation (6.2).

knor mal =
475∗1000

lsbs
= 475∗1000

306∗206
= 7.53N /mm3 (6.1)

kshear =
0.90

2∗15.5
= 0.029N /mm3 (6.2)

Where, ls and bs are dimensions of the elastomeric bearing.

6.4. Loads
6.4.1. Prestressing Loads
The beam is prestressed using 7 tendons which are modeled as embedded reinforcement,
as mentioned earlier. All the tendons are loaded using the reinforcement bar prestress op-
tion in DIANA, which means that the stress is same throughout the length of the tendons.
The time dependent losses of the prestress are assumed to be 20%, which results in a work-
ing stress of 867 MPa in the prestressing tendons. Hence, a stress of 867 MPa is assigned to
all the tendons.

In 3D model, the end beam is also modeled which is prestressed in the transverse di-
rection using 5 similar tendons. The equivalent stress on the concrete has been calculated
as shown in equation (6.3).
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σcp = σp∞∗n ∗ Ap

Ac
= 867∗5∗462

400∗850
= 5.89N /mm2 (6.3)

This stress has been applied on the faces of the end beam as an external face load to
model the effect of prestress in the transverse direction.

As a refinement of the models, the post-tension load option is also used in DIANA. This
allows to take into account the effects of wedge set, friction losses and wobble affects to
get a more realistic stress distribution in the tendons. The values used for the friction and
wobble coefficients are taken from section 3.3 of RBK 1.1 [16] and are listed in table 6.2
along with the recommended value of normal wedge set for the used prestressing system (
Tabel B4-1 of RBK). All the tendons are stressed from both sides with left side as first anchor
for all odd numbered tendons and right side as first anchor for even numbered tendons. In
all the tendons, overstressing of 10% has been used to take into account the anchorage
losses.

Table 6.2: Properties used for post-tensioning load

Description Value Unit

Friction coefficient (µ) 0.26 -
Wobble coefficient (ω) 0.01 /m

Wedge set 7 mm
Over-stressing 10 %

6.4.2. Applied Load
The load on the beam is applied as a point deformation at a distance of 2250 or 4000mm
from the support, depending on the experiment. As an imposed deformation is applied a
support is also needed at the point of application of the load and it has also been modeled
as shown in figure 6.10. The applied deformation has a magnitude of 1mm.

(a) Load in 2D (b) Load in 3D

Figure 6.10: Application of load in DIANA

6.5. Behavior of the End-Beam
As the end cross-beam at the far end of the beam is not sawed during the experiments, its
behavior under loading has to be determined. This beam is believed to be loaded in tor-
sion, given the Vechtbrug beam geometry, and it is known that after cracking the torsional
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stiffness reduces to around 20% of its initial value - this knowledge has been used to verify
the numerically obtained behavior of the end-beam. To study the behavior of the end-
beam under torsion, a 3D model of the end-beam is generated with the same dimensions,
reinforcement and prestressing layout as the end-beam in the Vechtbrug beam model. The
beam (gray in sub-figure (a) of figure 6.11) is assigned the properties of non-linear end-
beam concrete while the central part (yellow in color) is assigned the properties of linear
elastic steel to avoid any effect of localization due to point loads. The edge face of the end-
beam is divided in top and bottom part using the imprint command in DIANA (red line in
sub-figure (b) of figure 6.11) and the use of tying option is made to tie the deformations of
top and bottom half of the edge faces to the corner node as shown by black lines in sub-
figure(b) of figure 6.11 - this allows to model the restrained offered by neighboring beams
and to extract the reaction forces on the edge face as concentrated loads. The model is also
initially prestressed using external force as in actual beam model and then the point loads
are applied to load beam in torsion. The applied prestressing can be seen in sub-figure (a)
of figure 6.11.

(a) End-beam model (b) Tying and support

Figure 6.11: Tying and supports for end-beam model

(a) 3D model (b) 2D model

Figure 6.12: Tying and supports for end-beam
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To further verify the assumed loading condition of the end-beam in Vechtbrug, simi-
lar support and tying options are used for the end-beam in the Vechtbrug beam model as
shown in figure 6.12.

In both, the end beam model and the Vechtbrug beam model, the crack pattern is quite
similar with diagonal torsional cracks in the non-linear concrete. A comparison of the
cracks in the end-beam at the final load step for Vechtbrug beam loaded at 2250mm and
4000mm is shown in figure 6.13. The bigger cracks in the end-beam for load at 4000mm
might be explained by the relative proximity of the load to the end-beam and higher duc-
tility of the Vechtbrug beam due to shear bending effect.

(a) Beam loaded at 2250mm (b) Beam loaded at 2250mm

Figure 6.13: Torsional cracks in the end-beam

Using the reaction forces from the tying option and the deformations at the central in-
ner node of the end-beam (Point marked A in sub-figure (a) of figure 6.11), the moment-
rotation behavior of the model is obtained.

In the 2D work environment it is not possible to directly model the end-beam on the
Vechtbrug beam hence a linear spring interface is used as shown in sub-figure (b) of fig-
ure 6.12. The input for the line interface is a force-displacement behavior hence the moment-
rotation plot is transformed into a force-displacement plot using beam geometry. The re-
sulting load-deformation plots are shown in figure 6.14 which is in accordance with the
expectations i.e. the stiffness reduces to around 20% of the initial stiffness after cracking.
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Figure 6.14: Force-deformation behavior of end-beam

It can be seen that the model generated for the study of torsional behavior gives quite
comparable results with the end-beam in the actual beam model, for the load at either 2250
or 4000mm, hence the same approach is also used to determine the torsional behavior of
the intermediate cross-beam. The selected input for the behavior of the linear interface in
2D model is also shown in figure 6.14, as the end-beam cannot directly be modeled.

6.6. Support Conditions
The Vechtbrug beam is supported using elastomeric bearing (properties in section 6.3). To
model this behavior an interface is used between the support plates and the beams. The
deformation of the support plates are tied to a single (central) node of the bottom edge
and the left support plate is supported in vertical direction while the right support plate
is restrained in both vertical and horizontal direction as shown in figure 6.15 - the same
has been done for 3D and 2D shell models. As mentioned earlier, an additional support is
added at the center of the top edge/face of the loading plate for the application of imposed
deformation.

Figure 6.15: Supports of beam in 2D

The supports and tying option used to model the torsional behavior of the un-cut end-
beam are discussed in section 6.5.

6.7. Mesh
A wide range of structural elements can be used in DIANA [9] for analysis of structures.
As both 2D and 3D models are developed, different element types have been used for the
analysis. It must be noted that for the same given size of element the 3D model requires a
lot more computation time and storage than the 2D model.
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6.7.1. 2D Model
The mesh set-up for the 2D model is quadratic with regular plane stress element i.e. σz = 0.
The elements size is specified using the edge meshing option and a size of 100mm. The
elements used in 2D model are shown in figure 6.16.

(a) CQ16M (b) CL12I

Figure 6.16: Elements used in 2D model

CQ16M is an eight-node quadrilateral isoparametric plane stress element which uses
quadratic interpolation and Guass integration. It has 2 degrees of freedom per node (ux

and uy ). By default a 2x2 integration scheme is used to yield optimal stress points. The
interface elements used in the 2D model are CL12I, these also have quadratic interpolation
scheme and 2 variables per node making them compatible with the plane stress elements.
By default a 3-point Newton-Cotes integration scheme is used for these elements.

6.7.2. 3D Model
The mesh generating algorithm in DIANA for 3D structures sometimes results in a mesh
with quite sharp edges which causes convergence issues and compromises the reliability
of the finite element model. Hence the mesh is generated using the 2D sheet element and
these elements are then extruded to give a 3D solid structure - this allows to have more
control over the mesh. As for 2D model, a general element size of 100mm is used with
quadratic elements. The cross-sectional view of the final mesh is shown in figure 6.17 and
an isometric view of the mesh is shown in figure 6.18.

Figure 6.17: 3D cross-sectional mesh
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Figure 6.18: 3D isometric mesh

As can be seen from figure 6.17, most of the elements used are cubic brick elements
with few wedge shaped elements. In brick element not only the geometry of the element
is 3D but the stress situation is also 3-dimensional. All the elements used in 3D model are
shown in figure 6.19.

(a) CHX60 (b) CTP45

(c) CQ48I

Figure 6.19: Elements used in 3D model

The most commonly used brick element is CHX60. It is a twenty-node isoparametric
solid brick element which uses quadratic interpolation and Guass integration. CHX60 has
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3 degrees of freedom per node (ux , uy and uz). A 3x3x3 integration scheme is used by de-
fault in DIANA. CTP45 is a fifteen-node isoparametric solid wedge element with quadratic
interpolation and numerical integration. It has the same degrees of freedom per node as
CHX60. CQ48I is a surface interface element between two 3-dimensional bodies, it uses
quadratic interpolation and a 3x3x3 Newton-Cotes integration scheme.

6.7.3. 2D Shell Model
The mesh setting used for 2D shell model is the same as for the 2D model with plane stress
elements. The elements used in the 2D shell model are shown in figure 6.20.

(a) CQ40S (b) CL24I

Figure 6.20: Elements used in 2D shell model

CQ40S is an eight-node quadrilateral isoparametric curved shell element which uses
quadratic interpolation and Guass integration in ξ and η, in thickness direction Simpson
integration is used. It has 5 degrees of freedom per node i.e. ux ,uy , uz , φx and φy . To avoid
shear and membrane locking a reduced integration scheme of 2x2 is used by default. CL24I
acts as an interface element between the two curved shell elements. In ξ direction a 3-point
Newton-Cotes and in thickness direction a 3 point Simpson scheme is used.

6.8. Analysis Set-up
The Vechtbrug beam is prestressed and a displacement controlled analysis is performed,
which means that the use of phased analysis has to be made. In the first phase the pre-
stressing and dead weight of the beam are applied simultaneously using 4 load steps (0.5
0.25 0.125(2)) and the support for deformation application is switched off. This phase re-
sults in a beam with a certain camber as expected. Once the prestressing is applied, the
support for load application is switched on and a start step is used to let the model adjust
to this change. Following this, the load is applied on the beam with a step size of 1mm until
numerical failure which corresponds to the energy norm exceeding 1%, crushing of con-
crete or fracture of steel. For 3D and 2D shell model, there is an additional load step after
the prestress and before switching on the support for load application. This is to apply the
transverse prestressing in the end-beam on the far side of Vechtbrug beam. The supports
for the end-beam are switched on once the transverse prestressing has been applied.

An energy norm is used for all the analysis with a tolerance of 0.001. A maximum of 100
iterations for 2D and 50 iterations for 3D and 2D shell model are used. The convergence
behavior for all the 2D and 3D models described in this section can be seen in Appendix A.
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6.9. Results
For the validation of the numerical models, the numerical results are compared with the ex-
perimental data in terms of load-deformation behavior at the point of application of load,
at the level of cross-beam and near the support. Comparison is also made in terms of the
cracking behavior.

6.9.1. Load at 2250mm
The load-deformation response of all the numerical models with load at 2250mm is shown
in the same figure (figure 6.21) and some of the selected results from DIANA output are
shown separately for comparison (figures 6.22, 6.23 and 6.24). It can be seen from fig-
ure 6.21 that all the numerical models have similar load-deformation behavior with a max-
imum difference of 10% in the peak load. The peak loads of the numerical models are also
comparable to the experimental results with a difference of 2.9%, 7% and 0.3% for 2D, 3D
and 2D shell model respectively.
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Figure 6.21: Load-deformation comparison of numerical models and experiments for load at 2250mm

In general, the numerical models are also able to capture the load-deformation behav-
ior of the beam, especially under the point of application of the load as both the initial and
final stiffness of the models are quite close to the experimental results. In all the models the
numerical failure occurs due to the crushing of concrete at the point of application of the
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load. The 3D model seems to have lower deformation capacity compared to the 2D and 2D
shell models, hence the peak load is also underestimated by 7% - a summary of the peak
load comparison is given in table 6.3.

Comparing the sub-figures (a) and (b) of figures 6.22, 6.23 and 6.24 it can be seen that
the application of prestressing in all the models has similar effects in terms of stresses in
tendon (difference < 1.3%) and camber of the beams (difference < 5%). Similarly, it can be
seen that for all the models the prestressing steel has yielded at the final load step but the
stresses are still lower than the fracture strength. From the comparison of sub-figure (c)
it can be seen that the 3D model is least ductile with the final deformation of 76mm (25%
lower) compared to 100mm for 2D and 108mm for 2D shell model.

Comparison of sub-figure (e) shows that the crack pattern is a bit different for 3D and 2D
models as the 3D model shows a single major shear crack between the point of application
of the load and the supports while in both, the 2D and 2D shell model, an additional crack
between the loading point and first intermediate cross-beam is also observed. The results
of the 3D model are closest to the experimental observations in terms of cracking - the
resulting cracks after test 4 and test 6 can be seen in figure 6.25 for comparison. It must be
noted that the crack pattern shown is at the last load step before numerical instability for
all the models hence there are some obvious differences in the observed results because
the total applied deformation is different.

The comparison of the computation time required for each analysis is also shown in
table 6.3 and it can be seen that using the 2D model is much economical in terms of time
as it take only 2% of the time required for a full 3D analysis.

Table 6.3: Peak load and computation time comparison for load at 2250mm

Description Peak load (KN) Time (min)

Test 4 1634 -
Test 6 1773 -

2D model 1754 16
3D model 1582 786

2D shell model 1709 104

It can be concluded that the numerically cheap 2D models are able to predict the peak
load and load-deformation behavior in good accordance with the experiments but for the
study of the cracking pattern a 3D model is to be preferred.
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(a) Deformation after prestressing

(b) Stress in tendons after prestressing

(c) Deformation at final load step

(d) Stress in tendons at final load step

(e) Crack-widths at final load step

Figure 6.22: Behavior of the 2D model with load at 2250mm
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(a) Deformation after prestressing

(b) Stress in tendons after prestressing

(c) Deformation at final load step

(d) Stress in tendons at final load step

(e) Crack-widths at final load step

Figure 6.23: Behavior of the 3D model with load at 2250mm
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(a) Deformation after prestressing

(b) Stress in tendons after prestressing

(c) Deformation at final load step

(d) Stress in tendons at final load step

(e) Crack-widths at final load step

Figure 6.24: Behavior of the 2D shell model with load at 2250mm
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(a) Cracks after test 4

(b) Cracks after test 6

Figure 6.25: Cracking behavior of tested beams with load at 2250mm [13]

6.9.2. Load at 4000mm
As for the models with load at 2250mm, a comparison of the 2D, 3D and 2D shell numerical
models is made with the experimental data for load at 4000mm (Test 7 in measurement
report [13]). For loading at 4000mm on an individual beam, only one experiment is per-
formed and due to safety reasons and lack of clearance below the bridge, the beam was
also unloaded during testing as can be seen in figure 6.26. It can also be seen that all the
numerical models are in good comparison with each other in terms of peak load (maximum
difference of 2.8%) and load-deformation behavior. However, compared to the experiment
the peak load is around 21% higher for all the models. All the models are able to capture
the behavior of the beam in the linear elastic phase and after flexural cracking, but as soon
as the shear crack develops between the point of application of the load and the support,
the redistribution of forces is such that the model is not able to capture the subsequent
load-deformation behavior.

In terms of maximum deformation (sub-figure (c) of figures 6.27, 6.28 and 6.29), similar
behavior is observed as for the load at 2250mm with 2D shell model being the most ductile,
however all the models have final deformation within 7.5% of each other. The numerical
failure in all these models is also due to crushing of concrete at the point of application of
the load. From sub-figure (d) of it can be seen that the prestressing tendons have yielded



6.9. Results 95

but the stresses are still lower that the fracture strength of steel as in the case of the load at
2250mm.

0 50 100 150 200

Deformation (mm)

0

200

400

600

800

1000

1200

F
o

rc
e
 (

K
N

)

Load-Deformation Under Load

2D Model

3D Model

2D Shell

Test 7

(a) P-Delta under load

0 50 100 150 200

Deformation (mm)

0

200

400

600

800

1000

1200

F
o

rc
e
 (

K
N

)

Load-Deformation at Cross-Beam

2D Model

3D Model

2D Shell

Test 7

(b) P-Delta at cross-beam

0 5 10 15

Deformation (mm)

0

200

400

600

800

1000

1200

F
o

rc
e
 (

K
N

)

Load-Deformation at Support

2D Model

3D Model

2D Shell

Test 7

(c) P-Delta at support

Figure 6.26: Load-deformation comparison of 3D model and experiments for load at 4000mm

The cracking behavior observed during testing is shown in figure 6.30 which shows a
single major crack between the point of application of the load and the supports. As pre-
viously discussed, the 3D model is able to capture this behavior in quite good comparison
with the experiment but the 2D models show some significant cracking in the other direc-
tion as well, reinforcing the previously drawn conclusion that for shear cracking study a 3D
model is recommended.

A comparison of experimental and numerical peak load is given in table 6.4 with the
computation time required for each analysis.

Table 6.4: Peak load comparison for load at 4000mm

Description Peak load (KN) Time (min)

Test 7 1022 -
2D model 1239 73
3D model 1205 1158

2D shell model 1215 121
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(a) Deformation after prestressing

(b) Stress in tendons after prestressing

(c) Deformation at final load step

(d) Stress in tendons at final load step

(e) Crack-widths at final load step

Figure 6.27: Behavior of the 2D model with load at 4000mm
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(a) Deformation after prestressing

(b) Stress in tendons after prestressing

(c) Deformation at final load step

(d) Stress in tendons at final load step

(e) Crack-widths at final load step

Figure 6.28: Behavior of the 3D model with load at 4000mm
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(a) Deformation after prestressing

(b) Stress in tendons after prestressing

(c) Deformation at final load step

(d) Stress in tendons at final load step

(e) Crack-widths at final load step

Figure 6.29: Behavior of the 2D shell model with load at 4000mm
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Figure 6.30: Cracks after test 7 [13]

6.10. Refinement using Post-tension Load

In all the discussed models, the prestressing load is applied using the initial bar prestress
option in DIANA which assumes a uniform stress along the length of the tendon. As a
refinement to the model, the option of post-tension load application is also explored as
this allows a more realistic modeling of the stresses in the tendons. The parameters used
for the post-tension load application are discussed in section 6.4.

To study the resulting differences in these prestressing load application approaches,
comparison has been made between the stress distribution along the length of a single ten-
don (figure 6.31) and the resulting axial force in the system due to prestressing (figure 6.32).
Using the initial bar prestress option results in a relatively uniform stress along the length
of the tendon (including the anchor locations) while the post-tension load option results
in relatively lower stress at the anchor locations, possibly due to wedge set effects. In gen-
eral, there is a larger variation in the stresses along the tendon using the post-tension load
option because it also considers the losses due to friction and wobble effects.

Comparing the resulting prestressing force in the beam, it can be concluded that the
results of using both approaches are quite comparable, as the difference is only 3.5%, but
the post-tension load results in a bit higher maximum prestress loss locally (30%) compared
to the initial stress option causing a maximum local loss of around 21%.

In light of this discussion, it can be concluded that the use of initial bar prestress option
in DIANA gives similar results with the post-tension load option, at least when the tendons
are modeled as embedded reinforcements in the mother elements.
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(a) Stress distribution in tendon using initial bar prestress

(b) Stress distribution in tendon using post-tension load

Figure 6.31: Comparison for stress distribution in a tendon

(a) Axial prestressing force using initial bar prestress

(b) Axial prestressing force using post-tension load

Figure 6.32: Comparison for axial prestressing force in the system



7
Comparison of Disjointed Bridge and

Equivalent Beam Model

This chapter focuses on smart modeling techniques that can be used to simulate the be-
havior of structural elements as though they were part of a bigger structural system. First
the feasibility of modeling the behavior of a beam by only modeling the distance between
the cross-beams (loaded sub-span) is analyzed and then efforts are made to model an in-
dividual beam that behaves as though it is connected to the bridge through cross-beams.

Note: The distribution of the load in transverse direction has not been taken into ac-
count so the observed increase in load bearing capacity is only because of the longitudinal
arch action in the beam and not the transverse compressive membrane action in the deck
slab.
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7.1. Equivalent Beam Model
The equivalent beam model is developed with the idea that it represents the beam as though
it is connected to the bridge through cross-beams. The first aim of the equivalent beam
model is to analyze if it is possible to model the behavior of the entire beam by model-
ing only the loaded sub-span i.e. the distance between the cross-beams. For this part of
the project, the verified numerical model of the Vechtbrug beam has been used with load
acting at mid-span of the beam to study a more symmetric loading scenario.

To model the beam as though it is connected to the bridge system, all the cross-beams
are modeled till the neighboring beams and restraints are applied to model the resistance
offered by the connection of cross-beam with the rest of the bridge. The reinforcement and
prestressing tendons of the cross-beams are also modeled and the transverse prestressing
is applied as an external load, as described earlier for end-beam of Vechtbrug in section 6.4.
The geometry and reinforcement layout of the equivalent beam model can be seen in fig-
ures 7.1 and 7.2 respectively. The behavior of the intermediate cross-beam is modeled in
the same manner as for the end-beam in Vechtbrug beam model (A detailed account of the
adopted methodology can be found in section 6.5). For the vertical stiffness, calibration has
been made relative to the disjointed bridge model (described later in the chapter), ignoring
the distribution of the load in transverse direction.

To model the cross-beams as though they are connected to the bridge system, the use
of tying is made in global X and Y direction and all the deformations are tied to one of
the corners of the cross-beam as described in section 6.5. Whereas, in vertical (global Z)
direction, a face boundary interface has been used to model the vertical stiffness offered
by the connection of the cross-beams with the bridge. A pictorial representation of these
modifications can be seen in figure 7.3.

Figure 7.1: Geometry of the equivalent beam model
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Figure 7.2: Reinforcement of the equivalent beam model

(a) Cross-beam front view (b) Cross-beam isometric view

Figure 7.3: Intermediate cross-beam boundary conditions

All the other properties of the equivalent beam model are the same as described in
chapter 6 for the Vechtbrug beam model except the load steps in the analysis procedure.
The vertical deformation load step is reduced to 0.5(100) with a specified 1mm imposed
deformation because the total deformation of the equivalent beam model is much lower
than the Vechtbrug beam models.

The equivalent beam model can be simplified by modeling only the distance between
the intermediate cross-beams to simulate the full beam behavior, this would help develop
a much cheaper numerical model. The motivation for this idea comes from a linear elastic
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analysis performed by Ensink [7] on the full bridge model with load at 4000mm from the
supports and the results (figure 7.4) show that almost all of the applied shear and bending
moment is resisted by the sub-span between the cross-beams and the rest of the beam
seems to have very minor contribution in load resistance. Similar conclusion can also be
drawn looking at the principal stresses as there is almost no change in the stresses with
application of the load beyond the loaded sub-span.

Figure 7.4: Shear force and moment distribution in linear elastic bridge system [7]

Developing on this idea, the equivalent beam model is modified by assigning linear
elastic properties to the concrete outside the region of intermediate cross-beams as shown
in sub-figure (b) of figure 7.5. This model is referred to as EQ-CB model and the full non-
linear equivalent beam model is called EQ-NL model.

(a) EQ-NL model (Complete beam model is non-linear)

(b) EQ-CB model (Only the distance between the cross-beam in non-linear)

Figure 7.5: Description of EQ-NL and EQ-CB model

The behavior of the two models has been compared in terms of load-deformation at the
point of application of the load and at the intermediate cross-beam. The load-horizontal
deformation behavior at the cross-beam level and the development of membrane force
between the cross-beams with increasing load is also compared. The results of both the
analysis are shown in figure 7.6. It must be noted that for the membrane force, composed
line option has been used with selected elements and only the forces in concrete elements
are considered for post-processing i.e. the stresses in reinforcing and prestressing steel are
ignored.
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(a) Load-deformation at load level
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(b) Load-defromation at cross-beam level
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(c) Load-horizontal deformation at cross-beam
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(d) Load-membrane force

Figure 7.6: Comparison of EQ-NL and EQ-CB model

Following the results shown in figure 7.6, it can be said that the behavior of the complete
beam can indeed be simulated by modeling only the loaded sub-span between the two
cross-beams. The ultimate capacity of the EQ-CB model is 7% higher than the capacity of
EQ-NL model but the difference in the load at the shear crack development is only 2.25%.
Both the beams also show very similar arching behavior as the difference in the membrane
force is only 1.6% at the load level when shear crack develops. Comparing the sub-figure
(a-c) of figure 7.6, it can be seen that the EQ-NL model is slightly less stiff than the EQ-CB
model. This difference is especially visible after the end of the linear elastic phase and can
be possibly explained by the cracking adjacent to the cross-beam visible in sub-figure (a)
of figure 7.7. This cracking is prevented in EQ-CB model due to assignment of linear elastic
properties beyond the loaded sub-span resulting in a slightly higher stiffness. In general,
both the beams show quite similar cracking behavior as seen in figure 7.7.

Note that the cracking near the end-beams in EQ-NL model is due to the localization
caused by prestressing load in the tendons and not as a result of the applied deformation.
Therefore, these cracked elements can be ignored in this comparison.
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(a) Ecw1 for EQ-NL model

(b) Ecw1 for EQ-CB model

Figure 7.7: Comparison of crack pattern for EQ-NL and EQ-CB model

The computation time required for both, EQ-NL and EQ-CB model, is also compared
and shown in table 7.1. Modeling only the loaded sub-span of the beam to simulate the full
beam behavior appears to be a very attractive approach as with little (2.5%) loss in accuracy
the computation time is reduced by 67%.

Table 7.1: Computation time of EQ-NL and EQ-CB model

Model Computation Time (min)

EQ-NL 1032
EQ-CB 342

7.2. Disjointed Bridge Model
The full Vechtbrug model is developed and verified using the experimental results (Tests
1-3 as mentioned in chapter 5) by Ensink as part of his PhD study at Delft University of
Technology. It consist of 15 T-beams connected to each other through 4 cross-beams at
a distance of 8m from each other. The cross-beams and bridge deck are also transversely
prestressed using QP170 tendons.

The validated full bridge numerical model is then adapted to simulate the beam be-
havior as though it is connected to the bridge through cross-beams only i.e. the slab of
the loaded sub-span is disjointed using the no connection interface option in DIANA to
prevent the distribution of the load in transverse direction - this adapted model is referred
to as disjointed bridge model. Disconnecting the slab ensures that the observed enhance-
ment in capacity of the beam is only because of the arch action in the loaded sub-span as
the compressive membrane action is completely prevented. This has been done because
the scope of this MSc. thesis is limited to the arching behavior of a single beam in longitu-
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dinal direction only.
An illustration of the disjointed bridge model and the mesh used can be seen in fig-

ure 7.8 and figure 7.9 respectively. The edges of the slab assigned the no connection inter-
face are marked using the dashed red line in figure 7.8. In section 7.1 it has been observed
that modeling the loaded sub-span only results in almost the same behavior as the full
non-linear beam model with significant reduction in computation time. Using this idea
for the disjointed bridge model, only the light gray part around the load in figure 7.8 and
light gray finely meshed part in figure 7.9 is modeled as non-linear concrete and the rest
of the bridge is assigned linear elastic properties. In transverse direction only three beams
are non-linear but as the slab between the beams is disconnected, any distribution of load
in transverse direction is prevented. This justifies the use of limited numbers of non-linear
beams in transverse direction.

The cross-beams are also assigned non-linear concrete properties so their contribution
in the arching effect can be modeled realistically. The mesh size of the non-linear part is
assigned to be 100mm (equal to the mesh size of equivalent beam model) and for the linear
elastic part a mesh size of 300mm is used. In the disjointed bridge model, the transverse
prestressing is applied as external load, similar to the equivalent beam model and the use
of composed line elements has been made with selected elements in DIANA to obtain the
results of membrane force and bending moments in the central sub-span of the loaded
beam. For this comparison the concrete elements, longitudinal bars and prestressing ten-
dons are all contributing to the results of composed line.

Figure 7.8: Disjointed bridge model with disconnected slab (Light gray part is non-linear)
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Figure 7.9: Disjointed bridge model mesh (Light gray part is non-linear)
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(a) Load-deformation at load level
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(b) Load-defromation at cross-beam level
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(c) Load-horizontal deformation at cross-beam
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Figure 7.10: Comparison of disjointed bridge model and equivalent beam model
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The equivalent beam model used for comparison with the disjointed bridge model is
similar to the EQ-CB model as described in section 7.1 i.e. only the concrete of the loaded
sub-span is non-linear and the rest of the beam is assigned linear elastic properties. This
is also consistent with the disjointed bridge model as only the loaded sub-span is modeled
as non-linear. The vertical stiffness of the equivalent beam model is calibrated as per the
disjointed bridge model and all other material parameters and inputs are the same as dis-
cussed in section 7.1. The convergence behavior of all the numerical models discussed in
this chapter can be seen in Appendix B.

The vertical deformation of the equivalent beam model and the disjointed bridge model
is compared at the point of application of the load and at the level of cross-beam in sub-
figures (a) and (b) of figure 7.10 respectively. It can be seen that the initial stiffness of
both the models is in good comparison because of the calibration of the equivalent beam
model for vertical stiffness of the interface. However, the disjointed bridge model shows a
16% lower capacity for shear crack development when compared to the equivalent beam
model. This might be explained using the results shown in sub-figure (c) and (d) of fig-
ure 7.10 where it can be seen that the applied boundary conditions cause the equivalent
beam model to be stiffer against the horizontal stretch - the difference in the initial slope of
the load-horizontal deformation plot is 22%. This difference in the stiffness of cross-beam
causes a higher membrane force in the equivalent beam model as the load is applied (sub-
figure (d) of figure 7.10), therefore a more pronounced arching effect is observed resulting
in the increased capacity of the equivalent beam model.

(a) Shear force distribution in equivalent beam model

(b) Shear force distribution in disjointed bridge model

Figure 7.11: Comparison of shear force distribution in equivalent beam and disjointed bridge model

To further compare the behavior of the loaded beam in disjointed bridge model and
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the equivalent beam model, the shear force distribution along the length of the beam is
compared in figure 7.11. It can be seen that almost all the load is resisted by the loaded
sub-span in both the models, reinforcing the previously drawn conclusion that most of the
load in the beam is resisted by the loaded sub-span. The cracking behavior of both the
models is also very similar as can be seen in figure 7.12 and sub-figure (b) of figure 7.7.

Figure 7.12: Cracks in the loaded sub-span of disjointed bridge model

The adapted CUR model for T-beams with point load is also used to analytically deter-
mine the arching capacity of loaded sub-span. For the application of the analytical model,
the web of the Vechtbrug beam is modified as shown in figure 7.13 so that both the sections
have same cross-sectional area of the web. Note that for this calculation the equivalent
width of slab and beam concrete is used as discussed in subsection 6.2.1.

Figure 7.13: Vechtbrug beam and transformed T-section for CUR method application

Table 7.2: Parameters used to calculate analytical arching capacity of the loaded sub-span

Property Value Unit

Width of top flange (b f ) 1093 mm
Height of top flange (h f ) 180 mm

Width of web(bw ) 260 mm
Height of web (hw ) 970 mm

Compressive strength ( fc ) 90 MPa
End stiffness (k) 1.18x107 N/mm

Length of beam (Lx) 8000 mm
Load location 4000 mm
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The stiffness of lateral-restraint is calculated using the same procedure as discussed in
section 6.5 and all the parameters used for analytical calculation are listed in table 7.2.

The adapted CUR model predicts the capacity to be 3980 KN which is around 80%
higher than the numerical capacity of 2170KN obtained for the equivalent beam model.
The difference in the analytical and numerical capacity is possibly because of the relatively
thin web (180mm) causing the strut failure to be governing instead of compression of con-
crete at the point of application of the load, which is one of the assumptions of the ana-
lytical model. Furthermore, as the shear failure is governed by the tensile strength of con-
crete and the relative increase is tensile strength is much lower with increasing compressive
strength, the high compressive strength of 90 MPa might also be a factor in this difference.
As concluded in the first part of the report, the use of the studied approximate analytical
model should only be made if the crushing failure of concrete is expected as it does not
take into account any other failure mechanisms. It must also be noted that the analytical
model assumes the stiffness of lateral restraint to be constant while in the numerical model
this stiffness is significantly reduced due to cracking of the intermediate cross-beams. The
reduction of the lateral restraint might also be a significant factor causing the difference in
analytically and numerically calculated arching capacity of the loaded sub-span.

In light of the above discussion it can be concluded that, if the distribution of the load is
prevented in the transverse direction, a single beam model with fully restraint edge faces of
the cross-beam overestimates the influence of arching phenomenon on the load carrying
capacity of the loaded sub-span by 16%.





Conclusions (Part-II)

1. All the modeling approaches (2D, 2.5D and 3D) show quite similar results in terms
of peak load (within 10%) and load-deformation response of the prestressed concrete
beam. However, the 2D models require much less computational time compared to
the 2D shell and 3D models. Although the load-deformation response is very similar,
only the 3D model is able to accurately predict the cracking pattern of the prestressed
concrete beam.

2. The peak loads predicted by the numerical models are quite comparable to the
experimental results for the beam loaded at 2250mm (within 7%) but for the load
at 4000mm the predicted peak load is higher by 21%. In the latter, the difference
is possibly because the numerical model is not able to simulate the distribution of
stresses after the shear crack development as the numerical load-deformation plots
deviate from the experimental plot once the shear crack develops.

3. The use of initial bar prestress and post-tensioning load options in DIANA result in
quite similar axial forces in the system (within 3.5%) when the tendons are modeled
as embedded reinforcements. However, the maximum local losses are around 9%
higher when post-tension load option is used because of the friction, wobble and
wedge set effects.

4. When the cross-beams are fully restrained in the longitudinal direction of the
beam, only the loaded sub-span can be used to model the behavior of the full beam
with an error of only 7% in the ultimate load carrying capacity and requires only 33%
of the computational time for a full beam analysis.

5. Fully restraining the cross-beams in longitudinal direction of the beam overesti-
mates the arching phenomenon in the loaded sub-span as it limits the stretch of the
system and causes higher membrane forces to develop. This results in an increase of
19% in the load for shear crack development when compared to the disjointed bridge
model.

6. The adapted analytical model for T-beams with point loads is not able to estimate
the arching capacity of the loaded sub-span of the beam due to the failure of the strut.
This failure mode is not accounted for in the assumptions of the analytical model as
it assumes a crushing failure of concrete at mid-span or at supports.
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Recommendations

Developing on the work done in this project, a few recommendations are made for future
researchers as an idea to explore further in understanding the mechanisms responsible for
the enhancement of load carrying capacity of concrete bridges.

1. The results of this project show that there is a significant increase in the load-
carrying capacity of concrete beams due to arching action in T-beam bridges with
cast-in-between decks, a phenomenon that has not been taken into account previ-
ously. However as a starting step, arching has been studied separately by preventing
the distribution of the load in transverse direction in the bridge system. As a step fur-
ther in understanding the mechanisms responsible for the hidden capacities of such
bridges it is recommended to study the longitudinal arch action in beams in combi-
nation with the transverse compressive membrane action (CMA) in deck slabs. Stud-
ies to understand the relative contribution of both the mechanisms in enhancing the
capacity of bridges and the geometric conditions required to guarantee the existence
of both the mechanisms would greatly help in explaining the differences in expected
and observed capacities of bridge systems.

2. The main focus of this project has been to study the influence of arch action on
the bending capacity of concrete beams. A detailed study focusing on the effect of
membrane force on different shear failure mechanisms would also be quite useful
in understanding the effects of arching that can be conservatively used by engineers
in practice while analyzing existing structures, if not in the design. As a motivation
for this the trial beam (described in chapter 1) has been used with load placed at
2250mm from the support and comparison has been made between the load at which
the shear crack develops for a simply supported and a fully restrained beam as shown
in figure R.1. This proves that the membrane force also has a significant effect on the
shear capacity of concrete beams and hence is vital to investigate.
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Figure R.1: Effect of arching on shear capacity of prestressed concrete beams
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3. This is the first study in efforts to quantify the arch action in eccentrically loaded
beam like concrete members hence the approximate analytical model developed in
this study is only able to predict the arching capacity of beams if the compression
failure of concrete is expected. There are some accounts for the effect of membrane
action on punching shear capacities in bridge deck slabs but methods have not been
developed to study the effect of arching on shear-tension type failures which are more
common in beams. Studying this effect as mentioned earlier and incorporating it in
analytical tools would be a significant step further in being able to practically quan-
tify and use the arching phenomenon.
4. In literature, the compressive strength of concrete is also reported to have sig-
nificant effect on the arching capacity of concrete members which has not been in-
cluded in this study. The applicability of the adopted method for varying compressive
strength of concrete would also help validate the analytical model for further use.



A
Appendix A

Convergence behavior of Vechtbrug beam models used for comparison with the experi-
mental results.
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Figure A.1: Convergence behavior of 2D model with load at 2250mm from the support

Figure A.2: Convergence behavior of 3D model with load at 2250mm from the support

Figure A.3: Convergence behavior of 2D shell model with load at 2250mm from the support



119

Figure A.4: Convergence behavior of 2D model with load at 4000mm from the support

Figure A.5: Convergence behavior of 3D model with load at 4000mm from the support

Figure A.6: Convergence behavior of 2D shell model with load at 4000mm from the support





B
Appendix B

This appendix shows the convergence behavior of the equivalent beam model and the dis-
jointed bridge model used to compare the possibility of modeling the behavior of the beam
as though it is connected to the bridge through cross-beams.
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Figure B.1: Convergence behavior of EQ-CB Model

Figure B.2: Convergence behavior of EQ-NL Model

Figure B.3: Convergence behavior of EQ-CB model used for comparison with disjointed bridge model
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Figure B.4: Convergence behavior of the disjointed bridge model





C
Appendix C

This section of the report shows a possible conference publication following the research
conducted during the course of the project.
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Abstract. Arch action significantly improves the load bearing capacity of concrete members.
This paper presents a practical approach to quantify the arch action in rectangular and T-
beams loaded with uniform and concentrated loads. The investigated approach is able to
conservatively predict the load bearing capacity for beams with slenderness less than 15
and end-restraint stiffness equal to the stiffness of restraint member. Within these boundary
conditions, the slenderness ratio seems to have a significant impact on arching while stiffness
of end restraint and prestressing have only minor effect. For T-beams, this methodology is
only applicable if the failure is due to crushing of concrete.

1. Introduction
The arch action is significant in concrete members due to a large difference in compres-
sive and tensile behavior of concrete. The cracking in the tensile zone causes change in
the position of neutral axis which in turn causes the axial extension of the concrete member
[Valipour et al. 2013]. If this extension is prevented by lateral restraints, like cross-beams in a
bridge, an internal arch action is generated in the concrete member that results in significantly
enhanced capacities.

The main focus of research on arch action is related to the response of bridge deck
slabs [Taylor et al. 2002] and the progressive collapse of reinforced concrete frame structures
[Valipour et al. 2013]. In both the cases the cross-section of the loaded member is assumed to
be rectangular with a centrally placed concentrated load.

This study presents an approximate analytical approach to study the arch action in rect-
angular and T-shaped beams loaded with UDL and concentrated load at varying position along
the length of the beam in efforts to quantify the arch action in beams as part of the bridge
system.

2. Approximate Analytical Model
The approximate analytical model developed in this study is in line with the method suggested
in CUR Recommendation 077 (Calculation rules for unreinforced underwater concrete floors
[77:2014 2014]) for determination of arch action in underwater concrete floors.

2.1. Beams with Rectangular Cross-section
For the analytical model, the starting point is the load distribution in an un-deformed state,
the factor F0 (figure 1) is to account for initial axial forces in the system. The compressive
zones at supports and at mid-span are assumed to be plastic hinges connected through infinitely
rigid rods i.e. shortening of the strut under membrane force is ignored. To be conservative a
triangular stress distribution is assumed and the line of action of force is assumed to be passing
through the centroid as shown in figure 1.

As the load on the system increases, the mechanism wants to stretch and if this stretch
is resisted, an increase in the membrane force (∆F ) is observed depending on the stiffness (k)
of lateral restraint. An internal moment is developed in the beam following the membrane force
(Ftot) and internal lever arm (z) which is in equilibrium with the externally applied moment. As



the load is increased, the height of compressive zones (xfield and xstpt) and vertical deformation
(αv) increases causing a reduction in the internal lever arm which influences the ultimate load
bearing capacity (qu or Fu) of the concrete member. A pictorial representation of the arching
mechanism is shown in figure 1.

Figure 1. Arch action in concrete members

This methodology can be used for beams loaded with UDL or point loads as shown in
table 1 where, b is the width and h is the height of the beam. Note that for beams with UDL
the factor α = β = 1 and for beams with point loads the factor β = 0.50 to take into account
effects of localization at the point of application of the load. For asymmetrically applied point
loads the horizontal stretch is different on both sides and this has been taken into account using
infinitely rigid struts while for beams with uniform loads, ∆u1 = ∆u2 = ∆u.

UDL Point Load
∆F = k(∆u) ∆F = k(∆u1)
Ftot = F0 + ∆F Ftot = F0 + ∆F
xfield = 2.Ftot

b.αfcd,pl
xfield = 2.Ftot

b.αfcd,pl

xstpt = 2.Ftot

b.βfcd,pl
=

xfield
β

xstpt = 2.Ftot

b.βfcd,pl
=

xfield
β

A2 = (h)2 + (Lx

2
)2 → A A2 = (h)2 + (a)2 → A

A2 = (h− αv)2 + (Lx

2
+ ∆u)2 → αv A2 = (h− αv)2 + (a+ ∆u1)2 → αv

z = h− xfield
3
− xstpt

3
− αv z = h− xfield

3
− xstpt

3
− αv

qu = 8Ftotz
(Lx+2∆u)2

Fu = Ftotz(Lx+∆u1+∆u2)
ba

Table 1. Step by step procedure for application of approximate analytical model

2.2. T-Beams
For extension of the analytical model to T-beams, a regular T-shape is considered with a constant
width of flange and web as shown in figure 2. The difference in the width of web and flange
results in different stress concentrations at support and mid-span and this has been taken into
account using factor α and β. For T-beams with UDL, the factor β can be considered equal
to one owing to the thin web while the factor α can be defined as shown in equation (1). The
height of the compressive zone at mid-span and at supports has been calculated using the beam



geometry and the rest of the procedure is the same as outlined in table 1 for beams loaded with
UDL.

α =
0.8bw
bf

+ 0.4 < 1.0 (1)

Figure 2. T-beam cross section

For T-beams with point loads the factors α and β are modified, where α = 1.0 due to lo-
calization and β is defined in equation (2) following the results of non-linear finite element anal-
ysis (NLFEA). The compressive zones are calculated following the geometry of cross-section
and the rest of the procedure is as defined in table 1 for beams with point loads.

β = 1.25− 0.8
bw
bf

< 1.0 (2)

3. Numerical Models
All the numerical models used for the validation of the approximate analytical model are de-
veloped using DIANA 10.2 (release date 2018-11-13) following the guideline for non-linear
analysis of concrete structures [Hendriks et al. 2012].

The models are developed in a 2D work environment and have a total length of 8700mm
with 400mm long steel plates for the supports at 350mm from each edge. As assumed in the an-
alytical model, all the beams are un-reinforced concrete beams - study has also been performed
on prestressed beams and no significant differences have been observed. The beam is restrained
using a linear elastic interface over the complete height at both edges of the beam. The con-
crete has been assigned a parabolic compression behavior [FEA and Manie 2017] and Hordijk
tension-softening behavior [Hordijk 1991] following the guidelines [Hendriks et al. 2012]. The
support plates are assigned linear elastic steel properties and an interface has been used between
the plates and the beam to avoid concentration of stresses. A load-controlled analysis is per-
formed using full Newton-Raphson method with the energy norm tolerance of 0.001. The peak
values reported in all the studies correspond to the last converged load step before numerical
failure which is defined by energy norm exceeding 10%.

4. Comparison of Analytical and Numerical Models
4.1. Slenderness Ratio
To verify the approximate analytical model, comparison has been made with the results of
NLFEA as shown in figure 3. The peak load (qu) before numerical failure, horizontal deforma-



tion (∆u), vertical deformation (αv) and membrane force (Ftot) are all compared. As the beams
are un-reinforced, the membrane force has been calculated assuming an internal lever arm of
0.75h (75% of the height of concrete member), following the results of NLFEA.

500 700 900 1100 1300 1500

h (mm)

0

500

1000

1500

2000

2500

3000

q
u
 (

K
N

/m
/m

)

L
x
 = 8700mm

b = 1000mm

f
c
 = 53.33MPa

k = 12500*h N/mm

h = 500 - 1500mm

Numerical

Analytical

(a) Peak Load

500 700 900 1100 1300 1500

h (mm)

0

1

2

3

4

u
 (

m
m

)

Numerical

Analytical

(b) Horizontal Deformation

500 700 900 1100 1300 1500

h (mm)

0

10

20

30

40

50

60

v
 (

m
m

)

Numerical

Analytical

(c) Vertical Deformation

500 700 900 1100 1300 1500

h (mm)

0

0.5

1

1.5

2

2.5

3

3.5

F
to

t (
K

N
)

104

Numerical

Analytical

(d) Membrane Force

Figure 3. Effect of slenderness ratio on arching capacity

The peak load graph (figure 3a) shows that indeed the span-to-depth ratio has a signif-
icant effect on the arching capacity of concrete members as also concluded by several authors
[Taylor et al. 2002, Park and Gamble 2000, Yu and Tan 2014, Kang and Tan 2017] - given that
enough restraint is available. It can also be seen that the approximate analytical method is able
to conservatively predict the capacity of all the beams with a maximum difference of 12%. As
the slenderness increases, the difference in analytical and numerical capacities reduces, hence
it is recommended to use this method only for beams with a slenderness of less than 15. The
results in figure 3b show that the horizontal deformations predicted by the analytical and nu-
merical approaches are also comparable with a maximum difference of 5% for all the studied
slenderness ratios. However, the analytical model underestimates the vertical deformations (fig-
ure 3c) by almost 50%, possibly because the analytical model does not take into account the
bending deformations of the beam and the shortening of the strut under the membrane force.
The analytical model is also able to predict the membrane force in the system with an accuracy
of 10% as shown in figure 3d. The phenomenon of arching is defined by the horizontal stretch
and membrane force in the system and the approximate analytical model seems to be able to
quantify the behavior in accordance with the numerical results for all the studied slenderness



ratios.
The vertical deformations and membrane forces show a similar co-relation with the

numerical results for all the studied parameters, hence are not discussed further.

4.2. Stiffness of End-restraint
To study the effect of varying end restraint on the arch action in concrete beams the stiffness of
restraint is varied from 25x106N/mm to 1.25x106N/mm.

As seen from the results in figure 4a, the stiffness of horizontal restraint only has a
significant effect on the arching capacity of the concrete members when it is rather low, as also
concluded by other authors [Valipour et al. 2013], who made comparison between the stiffness
of end restraint and the axial stiffness of the restrained member to develop a minimum criterion
for the development of arch action - similar efforts are made to come up with a minimum support
stiffness for applicability of the method discussed in this study. When comparing the analytical
and numerical results it can be seen that the analytical model is able to conservatively predict
the arching capacity of concrete member when the stiffness is greater than the axial stiffness of
the member. This effect is rather pronounced in figure 4b, as the analytical model significantly
overestimates the horizontal deformations at low stiffness values. This is one of the limitations
of the analytical model because it allows stretching of the member until the membrane force
responsible for the compressive failure of concrete is reached as there is no limitation on the
stretching of the system. It is therefore concluded that for the application of this analytical
model, the end stiffness should at least be equal to the stiffness of the restraint member. Given
that this restraint is available the analytical model can predict the capacity within 12% and
horizontal deformation within 10% of the numerical results.
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Figure 4. Effect of end stiffness on arching capacity

4.3. Pre-stressing
To compare the effect of prestressing on arch action, the prestressing load is applied as an ex-
ternal load on the concrete member in the numerical model. The initial prestress is increased
from 0 MPa to 10 MPa and as seen from figure 5a, prestressing seems to have a minor influ-
ence on arch action - increasing the prestress to 10MPa increases the arching capacity by only
11%. It can also be seen that the approximate analytical model is not able to capture this effect
as the increase in capacity is not observed and the error in predicting horizontal deformation
increases with increasing prestress. This is possibly because the analytical model ignores the
positive effects of prestressing and treats the prestressing force as an external load causing the
compressive failure of concrete at lower levels of horizontal deformation.



It can be concluded that including the effect of prestressing as F0 in the system might
not be a suitable method for this approximate analytical approach.
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Figure 5. Effect of prestressing on arching capacity

4.4. Load Location
For the application of point load, a 500mm long steel plate is modeled in the numerical model
with an interface between the plate and the beam. The load location is varied from mid-span
(4000mm) to 1000mm from the support. As can be seen in figure 6a, the load location seem to
have a minor effect on the arching capacity for the central L/2 of the span (2000mm from either
of the supports). Beyond this, there is a direct transfer of load to the support and this effect is
not captured by the analytical model.
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Figure 6. Load Location sensitivity analysis

For the load in central L/2 of the span, the analytical model is able to predict the capacity
within 15% and horizontal stretch within 5% of the result from NLFEA.

4.5. T-beam
For T-beam, a sensitivity analysis is performed for the width of the web as it governs the failure
mechanism. For thin webs (bw ≤ 300mm) the shear crack develops before the plasticity of
concrete which is not in line with the assumptions of the analytical model and it is not able



to conservatively predict the arching capacity - this effect is evident in figure 7a and figure 8a.
Nonetheless, it can be seen from figures 7 and 8 that the approximate analytical model is able to
predict the arching capacity of beams with T-shaped cross-sections with an accuracy of at least
7.5% given that the numerical failure is due to the plasticity of concrete.
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Figure 7. Effect of web-width on arching capacity (UDL)
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Figure 8. Effect of web-width on arching capacity (Point Load)

5. Conclusions
• The approximate analytical model investigated in this study is able to conservatively

predict the arching capacity of rectangular beams with uniformly distributed loads if the
slenderness of the member is less than 15 and the end restraint stiffness is at least equal
to the stiffness of restrained member. Within these boundary conditions, the maximum
difference in numerical and analytical results is 12%.
• Prestressing seems to have a minor effect on the arching capacity of concrete member

and the analytical model is unable to capture this effect.
• The approximate analytical model significantly underestimates (50%) the vertical de-

formation of the member as it ignores the bending deformation and shortening of strut
under membrane force.



• The extended model for beams loaded with point load is able to predict the arching
capacity of beams for load at the central L/2 of the span with an accuracy of 15%.
• The extended model for T-beams loaded with UDL or point load is able to predict the

arching capacity of beams with an accuracy of 7.5% if the numerical failure of the beam
is due to plasticity of concrete. For beams with thin web, shear cracking is observed and
the analytical model significantly overestimates the capacity because it does not take
into account any other failure mechanism.
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