

Delft University of Technology

Response-Time Analysis for Non-Preemptive Global Scheduling with FIFO Spin Locks

Nogd, Suhail; Nelissen, Geoffrey; Nasri, Mitra; Brandenburg, Bjorn B.

DOI
10.1109/RTSS49844.2020.00021
Publication date
2020
Document Version
Final published version
Published in
Proceedings - 2020 IEEE 41st Real-Time Systems Symposium, RTSS 2020

Citation (APA)
Nogd, S., Nelissen, G., Nasri, M., & Brandenburg, B. B. (2020). Response-Time Analysis for Non-
Preemptive Global Scheduling with FIFO Spin Locks. In Proceedings - 2020 IEEE 41st Real-Time Systems
Symposium, RTSS 2020 (pp. 115-127). Article 9355543 (Proceedings - Real-Time Systems Symposium;
Vol. 2020-December). IEEE. https://doi.org/10.1109/RTSS49844.2020.00021
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/RTSS49844.2020.00021
https://doi.org/10.1109/RTSS49844.2020.00021

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Response-Time Analysis for Non-Preemptive
Global Scheduling with FIFO Spin Locks

Suhail Nogd∗, Geoffrey Nelissen†, Mitra Nasri† and Björn B. Brandenburg‡
∗ Delft University of Technology (TUDelft), The Netherlands
† Eindhoven University of Technology (TU/e), The Netherlands
‡ Max Planck Institute for Software Systems (MPI-SWS), Germany

Abstract—Motivated by the lack of response-time analyses for
non-preemptive global scheduling that consider shared resources,
this paper provides such an analysis for global job-level fixed-
priority (JLFP) scheduling policies and FIFO-ordered spin locks.
The proposed analysis computes response-time bounds for a set
of resource-sharing jobs subject to release jitter and execution-
time uncertainties by implicitly exploring all possible execution
scenarios using state-abstraction and state-pruning techniques. A
large-scale empirical evaluation of the proposed analysis shows
it to be substantially less pessimistic than simple execution-time
inflation methods, thanks to the explicit modeling of contention
for shared resources and scenario-aware blocking analysis.

Index Terms—real-time systems, response-time analysis,
shared resources, global multiprocessor scheduling

I. INTRODUCTION

An essential capability provided by virtually all multitasking

real-time operating systems (or runtime environments) is the

ability to share data or software resources without running into

race conditions. Multiprocessor real-time systems typically use

two types of locking protocols for this purpose: suspension-

based and spin-based protocols, which offer various tradeoffs.

Although the literature provides ample analyses of both of

these approaches for globally scheduled preemptive tasks (e.g.,

see a recent survey [10]), to date only little attention has

been paid to high-accuracy response-time analysis for globally

scheduled non-preemptive tasks that share resources.

To close this gap, we propose a blocking-aware response-

time analysis for non-preemptive tasks that are scheduled

by a work-conserving global job-level fixed-priority (JLFP)

scheduling policy on a multicore platform. We focus on spin-

lock protocols since they are a natural fit for non-preemptive

scheduling: they are relatively simple to implement, require

virtually no OS support, and are compatible with run-to-

completion (or single-stack) runtime systems. Furthermore,

spin locks incur significantly lower runtime overhead (relative

to suspension-based locking protocols) [9], so that the cost of

suspending and resuming a task can easily outweigh the cost

of busy-waiting (i.e., spinning) if critical sections are relatively

short (which they usually are in well-designed systems). Fi-

nally, while it is notoriously difficult to predict cache contents

after suspensions (usually, it is pessimistically assumed that

any suspension results in a complete loss of cache affinity),

a spinning job effectively protects the state of its assigned

processor and cache. This makes the system not only more

time-predictable, but also goes a long way towards enabling a

sound worst-case execution time (WCET) analysis.

More specifically, in this paper, we propose a new schedu-

lability analysis for periodic tasks and other workloads with a

repeating pattern of job releases (such as multi-frame tasks).

This choice is motivated by the fact that many practical

workloads are periodic (e.g., in automotive systems, in control

applications, in video and audio processing, in computer vision

etc.). In fact, a recent survey of 120 industry practitioners

by Akesson et al. [4] indicated that 82% of the respondents

work on systems that include periodic tasks, and 21% of

the respondents answered that their system is exclusively

comprised of tasks with periodic and/or table-driven activation.

The analysis proposed in this paper is based on the notion

of schedule abstraction, a concept initially introduced by

Nasri et al. [21]–[23]. However, whereas Nasri et al.’s prior

analyses do not consider locking-induced delays, we assume—

and model in detail—that tasks coordinate mutually exclu-

sive access to shared resources by means of FIFO-ordered
spin locks, a common choice in multiprocessor real-time

systems [10]. Our analysis is generic in nature and covers all

work-conserving global non-preemptive JLFP schedulers such

as non-preemptive earliest-deadline first (NP-EDF) and non-
preemptive fixed-priority (NP-FP) scheduling. Furthermore,

our analysis is sufficient, i.e., it covers any sequence of job

finish times that may occur in the modeled system.

The proposed analysis implicitly explores all possible orders

of job start times as well as their accesses to shared resources

in a schedule-abstraction graph [21]–[23]. Each such ordering

results in a different sequence of system states. The efficiency

of the analysis (in terms of runtime and memory footprint)

and accuracy of this exploration strongly depends on the

level of abstraction used to encode the system states. To this

end, we propose a completely new system-state abstraction
that accurately models shared resource accesses by means

of FIFO spin locks. This new system state representation

requires the design (and a proof of soundess of) a whole

new set of expansion and merging rules, which are used to

build the schedule-abstraction graph. Ultimately, we prove in

Section IV-I that all possible system states are indeed explored

and that our analysis yields a safe worst-case response time
(WCRT) bound for each job, which reflects the worst-case

blocking suffered by those jobs.

Notably, our analysis does not just pessimistically account

115

2020 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/20/$31.00 ©2020 IEEE
DOI 10.1109/RTSS49844.2020.00021

20
20

 IE
EE

 R
ea

l-T
im

e
Sy

st
em

s S
ym

po
si

um
 (R

TS
S)

 |
97

8-
1-

72
81

-8
32

4-
4/

20
/$

31
.0

0
©

20
20

 IE
EE

 |
D

O
I:

10
.1

10
9/

R
TS

S4
98

44
.2

02
0.

00
02

1

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

for the union of all critical sections that could theoretically

overlap with a job in some schedule; rather, our analysis is

execution-scenario-aware and accounts only for contention

that can actually arise in a specific interleaving of resource

accesses by the jobs. For example, if a job incurs either
shared-resource contention (if it is scheduled right away) or
interference from higher-priority jobs (but not both), then the

proposed analysis will reflect the worse of the two scenarios,

but not an infeasible combination of both (scheduling interfer-

ence and resource contention). We are not aware of any prior

response-time analysis with a comparable level of accuracy in

the accounting of synchronization delays.

In fact, somewhat surprisingly, we found that there is hardly

any directly related prior work [10]. While FIFO-ordered spin

locks in real-time systems have long been recognized to have

favorable properties for worst-case analysis [3,5]–[7,9,12,13,

15,18,20,27], prior work in this space has focused on either

preemptive global scheduling [3,7,9,12,15,20] or partitioned

scheduling [5]–[7,9,18,27].

In the context of preemptive global scheduling, the most

relevant locking protocols and blocking analyses are Branden-

burg’s holistic blocking analysis of non-preemptive FIFO spin

locks [9] as used in Block et al.’s FMLP for short critical

sections [7], and the suspension-based global OMLP [11],

FMLP for long critical sections [7,28], and PIP [16,25,28].

We compare against each of these in our evaluation (Sec. V).

For a review of real-time locking in general, we refer the

reader to Brandenburg’s recent comprehensive survey of the

area [10].

Finally, we note that, while it might be tempting to compare

the timing analysis of FIFO-ordered spin lock accesses to

queuing theory or the analysis of networks, our given problem

is fundamentally different from packets traversing a network

since dealing with locks in real-time systems is essentially

a multi-resource scheduling problem (i.e., jobs need to get

access to both the processor and the shared resources at the

same time but for different durations). More precisely, we

cannot solely model our problem as a network of queues to be

traversed because the queuing delays for access to processors

and shared resources interact in nontrivial ways. This makes a

direct comparison to the domain of queuing theory, Real-Time

Calculus [26], or Network Calculus [8] inapplicable.

To our knowledge, there is no prior work on the central

contribution of this paper: a blocking-aware response-time

analysis for non-preemptive global scheduling with shared

resources protected by FIFO-ordered spin locks.

II. SYSTEM MODEL AND DEFINITIONS

We consider a work-conserving global JLFP scheduling

policy to schedule a set of non-preemptive tasks on a multicore

platform with m identical cores. Each task releases jobs

according to a specific pattern (e.g., periodic, rate-based or

bursty), and each job has a fixed priority. The JLFP scheduler

dispatches ready jobs in order of decreasing priority.

A. Workload Model

A job Ji = ([rmin
i , rmax

i], di, pi, 〈Ji,1, . . . , Ji,ni
〉) has an

earliest release time rmin
i , a latest release time rmax

i , an

absolute deadline di, and a priority pi. We assume that timing

parameters are discrete, i.e., integer multiples of a clock tick.

A job’s execution is modeled by its sequence of job seg-
ments 〈Ji,1, . . . , Ji,ni

〉, where Ji,1 and Ji,ni
are its first and

last segment, respectively. Each job segment Ji,j is identified

by Ji,j = ([Cmin
i,j , Cmax

i,j], ηi,j , [L
min
i,j , Lmax

i,j]), where Cmin
i,j is

the best-case execution time (BCET), Cmax
i,j is the worst-case

execution time (WCET), ηi,j is the set of resources that the

segment requests, and Lmin
i,j and Lmax

i,j are the minimum and

maximum length of the critical section associated with ηi,j ,

respectively. We obviously must have that Lmin
i,j ≤ Cmin

i,j and

Lmax
i,j ≤ Cmax

i,j since the critical section length is part of the

execution time of the segment. In this work, we assume that

each segment Ji,j can access at most one resource protected

by a lock (i.e., |ηi,j | is equal to 0 or 1). Without any loss

of generality, we further assume that the critical section of

a segment is located at the beginning of the segment. The

segment must first be granted the lock protecting the shared

resource in ηi,j (if any) to start executing.

All segments of a job inherit the job’s priority. For ease of

notation, we use hp(Ji,j) to refer to the set of segments with

a higher priority than Ji,j . We assume that ties in priority are

broken arbitrarily but consistently.

Each job must execute sequentially (on one core) with

run-to-completion semantics, but may compete for shared

resources with other jobs running in parallel on other cores. We

do not consider inter-job precedence constraints in this paper.

B. Shared Resources

We let L denote the set of shared resources protected by

locks. A shared resource �x ∈ L is available iff no job is

currently accessing it. When a job segment Ji,j is given access

to a resource, we say that the resource is granted to Ji,j . A

segment Ji,j cannot start executing until the resource �x ∈ ηi,j
(if any) is granted to Ji,j . Resource �x will be released as

soon as the segment’s critical section completes (i.e., within

[Lmin
i,j , Lmax

i,j] time units after the resource was granted). If a

segment Ji,j requests access to a resource �x that is already

granted to another job, we say that Ji is blocked on �x. The

job Ji busy-waits (i.e., spins) until it is granted �x.

In this paper, we assume FIFO spin locks, i.e., resources

are granted in the order in which requests arrive. If two jobs

request the same resource at the exact same time, we assume

that the tie is broken arbitrarily but consistently (e.g., in our

experiments, ties are broken in favor of lower job IDs).

C. Execution Model

A job is ready at time t if it has been released and has not yet

started executing. Due to the non-preemptive execution model,

a job must run to completion without preemption once it has

started execution. Thus, once the first segment Ji,1 of a job Ji
begins its execution on a core, the core is exclusively serving

Ji until Ji completes its execution, including any blocking

116

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

delays. We say that a job Ji has claimed a core if it started

executing and has not finished yet. Upon completion we say

that Ji releases the core, making it again available to other

jobs. Hence, a core is either claimed (busy executing a job)

or free for a new job to start executing.

Given the finish time fi and the earliest-release time rmin
i

of Ji, we compute the response time of the job as fi − rmin
i .

D. Problem Definition

We seek to bound the worst-case response time of each

member of a finite set of non-preemptive jobs J that access

shared resources. The job set J is the set of all jobs released

in an a priori computed observation window. The input job set

in the observation window must be a representative workload

for the system, namely, either because the observation window

is long enough to capture the whole workload (e.g., in batch

scheduling), or because the release patterns of the jobs in the

observation window repeats for the rest of the lifetime of the

system so that it is sufficient to only analyze one instance. For

example, the observation window of synchronous periodic task

sets with implicit deadlines that exhibit no deadline misses is

one hyperperiod (i.e., the least integer multiple of the periods);

further safe observation windows for various types of periodic

(or multi-frame) task models can be found in [19,21,24].

Our analysis deems a job set J schedulable only if no

execution scenario of J (Definition 1 below) leads to some job

exhibiting a response time exceeding its deadline. We extend

the original definition of execution scenario [21] to reflect

shared-resource accesses.

Definition 1. An execution scenario γ is a mapping of jobs
to release times, segment execution times, and critical-section
lengths such that ∀Ji ∈ J , ri ∈ [rmin

i , rmax
i] and ∀j, 1 ≤

j ≤ ni, Ci,j ∈ [Cmin
i,j , Cmax

i,j] and Li,j ∈ [Lmin
i,j , Lmax

i,j].

III. SCHEDULABILITY ANALYSIS

The proposed schedulability analysis builds a schedule-
abstraction graph (SAG) [21] to implicitly explore all possible

execution scenarios of a job set. In this section, we define our

notion of a resource-aware SAG and explain its construction

and use in bounding each job’s worst-case response time.

A. Schedule-Abstraction Graph

A SAG is a directed acyclic graph G = (V,E), where V in-

dicates the set of (abstract) states reachable by the system and

E represents the set of scheduling decisions leading from one

(abstract) system state to another. An edge e = (vp, vq, Ji,j)
from vp to vq with label Ji,j indicates that executing Ji,j in

state vp evolves the system to state vq . We say that a job

segment Ji,j starts executing next in state vp (or succeeds vp)

if there exists an outgoing edge from vp with label Ji,j .

By convention [21], state v1 represents the initial state of the

system at time zero, where every core is idle and no segment

has started executing yet. A path P from v1 to a state vp
represents a possible job-segment start order that results in

system state vp. The length of such a path P indicates the

number of segments that have started (and potentially already

finished) their execution when the system reaches state vp, i.e.,

|P | � |J P |, where J P denotes the set of labels on the edges

of path P . If a vertex vp has multiple incoming edges, then

the scheduling decisions that lead to vp must involve the same

set of job segments on any two paths from v1 to vp.

Property 1. (adapted from [23]) For any two paths P and Q,
if both P and Q start at v1 and end in vp, then J P = JQ.

B. System State Representation

As previously stated, we consider that jobs can be subject to

release jitter and that there can be variations in the execution

times of its segments. As a consequence of this uncertainty,

we must compute a finish time interval [EFT i,j ,LFT i,j] for

each segment of a job Ji after a sequence of scheduling

decisions taken by the scheduler. This interval is bounded

by the job segment’s earliest and latest finish times EFT i,j

and LFT i,j in any execution scenario that complies with the

assumed sequence of scheduling decisions. Thus, we say that

a job segment Ji,j of job Ji can possibly finish at or after

EFT i,j and is certainly finished by LFT i,j . This uncertainty

in the finish times of segments introduces a challenge as it

also means that we have uncertainty in processor and shared-

resource availability times, which then affect the finish time

intervals of subsequent job segments.

To address this challenge, we develop a new abstraction

to encode information about the system state. In each vertex

vp, the system state abstraction records the availability of the

cores and shared resources for any execution scenario that

complies with the sequence of scheduling decisions modeled

by the edges on the paths leading to vp.

As discussed in Section II-C, a core is either free to execute

a ready job or claimed by a job that was previously dispatched

by the scheduler, i.e., a job has started executing on the core

and not all its segments have finished executing yet. Thus,

let C(vp) denote the set of jobs that claimed a core (where

|C(vp)| ≤ m). A system state is then modeled as follows:

• Claimed core availability intervals. For each job Ji ∈
C(vp), we record the interval [Clmin

i (vp),Cl
max
i (vp)],

where Clmin
i (vp) and Clmax

i (vp) indicate when the core

claimed by job Ji becomes possibly and certainly avail-

able to execute the next segment of Ji, respectively.

• Free-core availability intervals. We record m− |C(vp)|
intervals Ax(vp) = [Amin

x (vp), A
max
x (vp)] such that 1 ≤

x ≤ m − |C(vp)|, which indicate when one, two, three,

. . . , m−|C(vp)| free cores (i.e., those that are not already

claimed by executing jobs) become possibly and certainly

available to execute ready jobs.

• Shared-resource availability intervals. For each shared

resource �x ∈ L, a state records the inter-

val [SRmin
x (vp), SR

max
x (vp)], where SRmin

x (vp) and

SRmax
x (vp) denote the times at which �x become pos-

sibly and certainly available again, respectively.

For ease of reference, we also introduce the two nota-

tions SRmin
i,j (vp) and SRmax

i,j (vp) to refer to the availability

interval of the resource accessed by segment Ji,j (if any).

117

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

Core 2:

Core 1:
0 4 8

௞,ଵܬ௜,ଵܬ
3

(a) System state before scheduling ࢑ࡶ,૛ ଵܣ࢖࢜ ∶ :௞݈ܥ[4,8] [3,3]ܴܵଵ: ௞,ଶܬ[0,0]
Core 2:

Core 1:
௞,ଵܬ௜,ଵܬ

3 5 6 7

(b) System state after scheduling ࢑ࡶ,૛
 ௞,ଶ0 4 8ܬ

0

0

ଵܣࢗ࢜ ∶ ଶܣ[4,7] ∶ [6,8]ܴܵଵ: [5,6]

Fig. 1: Two successive system states for m = 2 and two jobs Ji

(with one segment) and Jk (with two segments) released at time 0.

Only the second segment of Jk requests a shared resource �1 with

a critical section length Lk,2 ∈ [2, 3]. The execution times of the

segments are Ci,1 ∈ [4, 8], Ck,1 ∈ [3, 3] and Ck,2 ∈ [3, 4].

Hence, if Ji,j accesses a shared resource (i.e., ∃�x ∈ ηi,j),

then SRmin
i,j (vp) and SRmax

i,j (vp) are the earliest and latest

availability time SRmin
x (vp) and SRmax

x (vp) of the resource

�x accessed by Ji,j . If Ji,j does not access a resource, then

simply SRmin
i,j (vp) = SRmax

i,j (vp) = 0.

Example. Fig. 1 shows how an abstract state vp in the SAG

evolves into a new state vq when a ready job segment Jk,2 is

scheduled. On the left, we show the status of the cores before

and after scheduling Jk,2. The right side shows the contents of

the abstract state vp and how it evolves after scheduling Jk,2.

Since Ji has only one segment, its start time defines its

finish time interval and thus the time at which Core 1 may

become available for ready jobs (between times 4 and 8).

Thus, vp records that one core is free for a ready job to

execute within the interval [4, 8] (i.e., A1(vp) = [4, 8]). State

vp also records that one core is claimed by job Jk whose first

segment Jk,1 will potentially and certainly complete by time 3
(i.e., Clk = [3, 3]). Moreover, since none of the two segments

executing in vp access a shared resource, the shared resource

�1 is certainly available from time 0 (i.e., SR1 = [0, 0]).

Prior to executing Jk,2, the lock protecting the shared re-

source it requires must be acquired. Since the shared resource

is available, the resource is granted to Jk,2 as soon as the

core already claimed by job Jk becomes available, i.e., at time

3. Since Jk,2’s critical section has a variable execution time,

it may release the lock any time in the interval [5, 6]. This

is recorded in the state vq with the interval SR1 = [5, 6].
Moreover, since Jk,2 is the last segment of its job, as soon as

it finishes, Core 2 is released and becomes available for other

jobs. Hence, in state vq , no core is claimed anymore. Since

the execution time of Jk,2 ranges from 3 to 4 time units, the

core claimed by Jk,2 will become available in the interval

[6, 7]. This means that one core becomes possibly available

at time 4 (Core 1), one core is certainly available at time 7

(Core 2), two cores are possibly available at time 6, and two

cores are certainly available at time 8. Thus, vq records the

Algorithm 1: Construction of the SAG for job set J .

Inputs : Job set J
Output: Bounds on the BCRT and WCRT of every job in J

1 ∀J ∈ J ,BRi ←∞,WRi ← 0 ;
2 Initialize G by adding v1 = ({[0, 0], ..., [0, 0]}, {[0, 0], ..., [0, 0]}) ;
3 while ∃ path P from v1 to a leaf vertex such that P �= J do
4 P ← the shortest path from v1 to a leaf vertex vp ;

5 RP ← set of potentially ready segments obtained with Eq. (1);

6 for each segment Ji,j ∈ RP do
7 if Ji,j can start executing after vp (Theorem 1) then
8 Build v ′

p using Algorithm 2;

9 if Ji,j = Ji,ni then
10 BRi ← min{EFT (v ′

p)− rmin
i ,BRi} ;

11 WRi ← max{LFT (v ′
p)− rmax

i ,WRi} ;

12 end
13 Connect vp to v ′

p with an edge labeled Ji,j ;

14 if ∃ path Q that ends in vq such that Rule 1 is
satisfied for v ′

p and vq then
15 Merge v ′

p and vq in vz using Eq. (16)-(18);

16 Redirect all incoming edges of vq and v ′
p to vz ;

17 Remove vq and v ′
p from G;

18 end
19 end
20 end
21 end

availability intervals A1(vq) = [4, 7] and A2(vq) = [6, 8].

Note that every abstract system state records exactly m core

availability intervals. They are split in |C(vp)| intervals for

claimed cores (those on which the first segment of a job was

dispatched and its last segment was not dispatched yet) and

m− |C(vp)| intervals for free cores (i.e., any core that is not

claimed). Therefore, the number of claimed and free cores

does not depend on a specific time point but rather on the

specific set of in-progress segments.

C. Schedule-Abstraction Graph Generation

The SAG is built iteratively. Each iteration comprises two

phases, namely the expansion phase and the merge phase. In

the expansion phase, (one of) the shortest path(s) P in the

graph is picked and expanded for every job segment that can

possibly start executing next in the state vp at the end of P . For

every such job segment Ji,j , we create a new vertex v′p in the

graph, which represents a new system state and is connected

to vp via a directed edge labeled with Ji,j . The information

encoded in the new state v′p contains an updated version of

the free cores, claimed cores and shared-resource availability

intervals reflecting that Ji,j has now started to execute.

After the graph has been expanded with new states, the

merge phase commences. The purpose of the merge phase is

to slow down the growth of the graph, to postpone a potential

state-space explosion for as long as possible. This is achieved

by merging any two “similar” states that terminate paths with

identical sets of job segments. To preserve soundness, every

system state that is reachable from any of the two original

states must also be reachable from the merged state, which

ensures that no possible execution scenario is discarded.

The exploration completes when no vertex remains to be

expanded, i.e., all job segments have been scheduled on every

118

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

path. At this point, each path represents a set of valid execution

scenarios and every possible schedule has been explored.

The complete SAG construction procedure is given in

Algorithm 1. Note that it uses two variables (BRi and WRi)

for each job in J to keep track of its best-case (BCRT) and

worst-case response time (WCRT) on any path in the graph.

Those bounds are updated (lines 10–11) whenever the last

segment of a job is scheduled on a path, hence indicating the

completion of the job in that execution scenario. If, by the end

of the exploration, no job has a WCRT exceeding its deadline,

then the analysis deems the job set schedulable.

IV. EXPANSION PHASE

We now consider the expansion and merge phases and show

how a path ending in state vp is expanded to a new state vq .

A. Overview

First, we build a set of potentially ready job segments in

state vp, i.e., the segments that have not started executing on

path P and for which all preceding segments have started and

potentially completed. For each such segment Ji,j , we com-

pute the earliest and latest time EST i,j(vp) and LST i,j(vp) at

which the segment can start executing in vp. That is, EST (vp)
denotes the earliest time at which a global work-conserving

JLFP scheduler would allow Ji,j to start in vp. Similarly,

LST i,j(vp) indicates the latest time at which Ji,j must have

certainly started executing if it is the next segment to succeed

vp. If Ji,j has not started by LST i,j(vp), a different segment

must have started to execute after vp. Hence, a segment is

said to be eligible to be a successor of vp only if its earliest

start time EST i,j(vp) is no later than its latest start time

LST i,j(vp). For each eligible job segment, a new vertex v′p is

added to the graph, where v′p encodes the system state after

Ji,j started executing. In addition to deciding whether a job

segment is eligible to start executing after state vp, EST i,j(vp)

and LST i,j(vp) also help compute the earliest and latest finish

times EFT i,j(vp) and LFT i,j(vp) of Ji,j .

Next, each step of the expansion phase is explained in detail.

B. Ready Interval

We consider that a job segment is ready if the job has been

released and all its preceding segments have completed. Thus,

we define the set of potentially ready segments RP for path P
to be the set of segments that have not yet started to execute

(i.e., Ji,j �∈ J P) and whose predecessor (if any) has already

started and potentially completed its execution (i.e., either Ji,j
is the first segment of its job Ji, thereby meaning j = 1, or

Ji,j−1 ⊆ J P).

RP � {Ji,j | Ji,j �∈ J P ∧ (j = 1 ∨ Ji,j−1 ⊆ J P)} (1)

C. Earliest Start Time

Since we consider that jobs may suffer from release

jitter and execution-time variation, the exact finishing

times of preceding job segments is unknown. Therefore,

the exact time at which a segment Ji,j may start to

execute is also unknown. For each segment Ji,j in

RP , we prove a lower bound EST i,j(vp) and an upper

bound LST i,j(vp) on the time at which Ji,j may start

executing in vp (Equations (2) and (7), respectively).

EST i,j(vp) =⎧⎪⎨
⎪⎩
∞ if j = 1 ∧ |C(vp)| = m

max{rmin
i , Amin

1 (vp), SR
min
i,j (vp)} if j = 1 ∧ |C(vp)| < m

max{Clmin
i (vp), SR

min
i,j (vp)} if j > 1

(2)

Lemma 1. Segment Ji,j ∈ RP cannot start executing (as a
successor of state vp) before EST i,j(vp).

Proof: The first segment Ji,1 of a job Ji can start its

execution only if (i) it is released, (ii) the shared resource �x
it requests (if any) is available and (iii) a core is available.

Thus, if all cores have already been claimed by other jobs

(i.e., |C(vp)| = m|) then Ji,1 cannot be a successor of vp and

EST i,j(vp) =∞. This proves the first case of Eq. (2).

However, if there is a free core (i.e., |C(vp)| < m|), then,

by definition, Amin
1 is the earliest time at which a core can

potentially become available. Furthermore, rmin
i is the earliest

release time of Ji and SRmin
i,j (vp) is the earliest time at which

the shared resource accessed by Ji,j may become available.

Thus, the earliest time at which Ji,1 may start to execute is

given by EST i,j(vp) = max{rmin
i , Amin

1 (vp), SR
min
i,j (vp)}

if j = 1. This proves the second case of Eq. (2).

Any segment that is not the first segment of a job (i.e., a

segment Ji,j with j > 1) can start its execution only if (i) the

core claimed by the preceding segments belonging to the same

job is available, and (ii) the shared resource it requests (if any)

is also available. Since Ji,j is in RP , all the segments of Ji
that precede Ji,j must have started (and potentially finished)

executing on the core claimed by Ji. Thus, the earliest time at

which the core claimed by Ji may become available for Ji,j
is given by Clmin

i (vp). Therefore, the earliest time at which

Ji,j may start to execute is max{Clmin
i (vp), SR

min
i,j (vp)} if

j > 1. This proves the last case of Eq. (2).

D. Latest Start Time

The latest start time LST i,j(vp) of segment Ji,j is computed

considering that the scheduler is (i) work-conserving and

(ii) that it follows a non-preemptive JLFP scheduling policy.

First, focus on (i). By definition, a work-conserving sched-

uler must execute a segment as soon as the segment is certainly

ready and a core is certainly available. We can thus prove the

following two lemmas and their corollary.

Lemma 2. An upper bound on the time at which a segment
Jy,z can certainly start executing (as a successor of state vp)
is given by

twy,z =

⎧⎪⎨
⎪⎩

∞ if z = 1 ∧ |C(vp)| = m;

max{rmax
y , Amax

1 , SRmax
y,z (vp)} if z = 1 ∧ |C(vp)| < m;

max{Clmax
y (vp), SRmax

y,z (vp)} if z > 1.
(3)

119

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

Proof: Infinity is an obvious upper bound on the start

time of Ji,j . Therefore, in this proof, we only focus on the

cases where twy,z �=∞.

A starting segment Jy,1 must start to execute as soon as

(i) it is released, (ii) the resource �x it requests (if any) is

available and (iii) a core is available. By definition, rmax
y is

an upper bound on the release time of Jy,1, SRmax
y,z (vp) is an

upper bound on the availability time of the shared resource

accessed by Jy,z (if any) and Amax
1 (vp) denotes the time at

which a core is certainly available in state vp. Thus, Jy,1 can

certainly start executing at max{rmax
y , Amax

1 , SRmax
y,1 (vp)}

when z = 1 and there is at least one free core in vp.

Any segment Jy,z that is not the first segment of Jy,z (i.e.,

with z > 1) can certainly start executing when (i) the resource

it requests (if any) is available, and (ii) the segments of Jy that

precede Jy,z have all completed their execution on the core

claimed by Jy . Since Jy,z is in RP , all the segments of Jy,z
preceding Jy,z have already started (and potentially finished)

executing on the core claimed by Jy , and because Clmax
y (vp)

is an upper bound on the time at which the core claimed by Jy
becomes available to execute the next segment of Jy , we have

that Jy,z certainly starts at max{Clmax
y (vp), SR

max
y,z (vp)}.

Lemma 3. A work-conserving scheduler will start executing
a job segment no later than1

twc = min∞ {twy,z | Jy,z ∈ RP } (4)

Proof: By Lemma 2, a job segment Jy,z ∈ RP is

certainly ready to start executing at time twy,z . Thus there

is at least one job segment that is ready to execute at time

min∞{twy,z |Jy,z ∈ RP }. Thus, twc is an upper-bound on the

time at which a work-conserving scheduler will start executing

a job segment.

Corollary 1. A segment Ji,j ∈ RP cannot be a direct
successor of a state vp if it starts executing any later than twc .

Proof: Since the scheduler will certainly schedule a job

segment by time twc , Ji,j must start executing at or before

twc if it is the first job scheduled after vp .

Now that we covered work conservation, we consider the

impact of the JLFP scheduling policy.

First, assume that two segments Ji,j and Jy,z request the

same resource. Since a FIFO spin lock provides access to the

shared resource based on the order in which requests were

made, the order in which those segments will start executing

does not depend on their priority but on the order of their

releases instead. Therefore, the JLFP scheduling policy does

not impact the start time of segments that share the same

resource. Then, let H denote the set of segments with a higher

priority than Ji,j that do not share a resource with Ji,j , i.e.,

H = {Jy,z | Jy,z ∈ {RP ∩ hp(Ji,j)} ∧ ηy,z ∩ ηi,j = ∅}. Let

thigh be an upper-bound on the time at which any segment in

1min∞ {X} = min{X ∪ {∞}} where X is a set of positive values.

H will certainly be ready to execute. We prove (Lemmas 4

and 5) that thigh can be computed with Eq. (5).

thigh = min∞ {thy,z (Ji,j) | Jy,z ∈ H} (5)

where

thy,z (Ji,j) =

⎧⎪⎨
⎪⎩

max{rmax
y , SRmax

y,z (vp)} if z = j = 1

max{Amax
1 (vp), rmax

y , SRmax
y,z (vp)} if z = 1 ∧ j > 1

max{Clmax
y (vp), SRmax

y,z (vp)} if z > 1

(6)

Lemma 4. Let Jy,z be a segment in H. If Ji,j did not start
to execute before thy,z (Ji,j), then Jy,z will start before Ji,j .

Proof: We analyze the three cases of Eq. (6).

Case 1. Assume that both Ji,j and Jy,z are the first segment of

their respective jobs (i.e., j = z = 1). For a starting segment to

be able to execute, it needs to be (1) released, (2) the resource

it requests (if it requests one) must be available and (3) a

core must be available for it to execute on. By definition,

rmax
y is an upper bound on (1) and SRmax

y,z (vp) is an upper

bound on (2). Regarding (3), we note that because Jy,1 and

Ji,1 are both starting segments, they both compete for the

same available cores. Since Jy,1 has a higher priority than

Ji,j , if both Jy,1 and Ji,j are ready and have their shared

resources available at the same time, then Jy,1 will certainly

start before Ji,j . Therefore, only (1) and (2) decide whether

Jy,1 will start to execute before Ji,j . Thus, if Ji,j did not start

before max{rmax
y , SRmax

y,z (vp)} when z = j = 1, then Jy,1
will be dispatched before Ji,j .

If Ji,j is not a starting segment (i.e., j > 1), then it already

has a reserved core. Therefore, it does not compete with Jy,z
for the same core (i.e., we must account for (3)).

Case 2. If Jy,z is the first segment of the higher priority job

Jy , then, by definition, Amax
1 (vp) is a safe upper bound on (3).

Thus, because Jy,z has a higher priority than Ji,j , Jy,z will

be dispatched before Ji,j if Ji,j did not start to execute before

max{Amax
1 (vp), r

max
y , SRmax

y,z (vp)} when z = 1 ∧ j > 1.

Case 3. If Jy,z is not the first segment of the higher-priority

job Jy , then job Jy is already released and it already claimed a

core. Thus, by definition, Clmax
y (vp) is an upper bound on (3).

Hence, as Jy,z has a higher priority than Ji,j , Jy,z will be

dispatched before Ji,j if Ji,j did not start to execute before

max{Clmax
y (vp), SR

max
y,z (vp)} when z > 1.

Lemma 5. A segment Ji,j ∈ RP cannot be the direct
successor of a state vp if it starts executing later than thigh−1.

Proof: According to Lemma 4, ∀Jy,z ∈ H, Jy,z will start

before Ji,j if Ji,j did not start before thy,z (Ji,j). Then, Ji,j
will not be the next segment to succeed vp if Ji,j did not start

before min∞{thy,z (Ji,j) | Jy,z ∈ H}.
It directly follows that an upper bound on the start time of

Ji,j can be computed according to Lemma 6.

Lemma 6. A segment Ji,j ∈ RP can be the first segment to
start executing in state vp only if it starts no later than

LST i,j = min{twc , thigh − 1} (7)

120

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

Proof: Since LST i,j ≤ twc (by Cor. 1) and LST i,j ≤
thigh − 1 (by Lemma 5), the claim holds.

E. Eligibility Condition

Now that we have computed a lower bound EST i,j(vp) on

the earliest start time and an upper bound LST i,j(vp) on the

latest start time of Ji,j in state vp, it is rather obvious that Ji,j
can be a successor to vp only if

EST i,j(vp) ≤ LST i,j(vp). (8)

Lemma 7. A segment Ji,j is a direct successor of vp only if
EST i,j(vp) <∞ and Inequality (8) holds.

Proof: According to Eq. (2), if EST i,j(vp) =∞ then Ji,j
is the first segment of job Ji and no free core is available to

start executing Ji,j (i.e., every core is claimed by an unfinished

job). Since we assume a non-preemptive system, the scheduler

cannot dispatch Ji,j on a core in vp. Further, from Lemma 1,

we know that EST i,j(vp) is a lower bound on the earliest time

at which Ji,j can start executing in vp. From Lemma 6, we

have that LST i,j(vp) is an upper bound on the time at which

Ji,j can start executing in vp. Hence, if EST i,j > LST i,j , it

creates a contradiction, thereby meaning that Ji,j cannot start

to execute in vp and thus cannot be a successor to vp.

Beside the eligibility condition stated in Lemma 7, systems

using FIFO spin locks have a second eligibility condition.

Consider the case where two segments Ji,j and Jy,z com-

pete for the same shared resource. Since access to the resource

is granted in FIFO order, the order in which those job segments

will start to execute depends on the order of their requests.

Assume that we know a lower bound on the earliest time at

which Ji,j may request its shared resource, and that we further

have an upper bound on the latest time at which Jy,z may

request the resource. We refer to those bounds as ERTi,j(vp)
and LRTy,z(vp), respectively. We prove in Theorem 1 that

if ERTi,j(vp) > LRTy,z(vp), then Jy,z must execute before

Ji,j , thereby implying that Ji,j cannot be the first segment

dispatched in state vp.

To prove Theorem 1, we first prove a lower and an upper

bound on ERTi,j(vp) and LRTy,z(vp), respectively.

Lemma 8. Segment Ji,j ∈ RP cannot request a shared
resource in vp earlier than

ERTi,j(vp) =

{
max{rmin

i ,Amin
1 (vp)} if j = 1;

Clmin
i (vp) if j > 1.

(9)

Proof: The first segment Ji,1 of job Ji cannot request a

resource prior to its release, i.e., not before rmin
i , nor can it

request a resource prior to the earliest time at which a core

may become available to start its execution, i.e., not before

Amin
1 (vp). Thus, the earliest time at which Ji,1 may request its

resource is lower-bounded by max{rmin
i ,Amin

1 (vp)} (hence

case 1 of Eq. (9)). If Ji,j is not the first segment of Ji, then

Ji is already released and Ji,j requests the resource as soon

as preceding segment completes, which is lower-bounded by

Clmin
i (vp) (hence case 2 of Eq. (9)).

Lemma 9. A job segment Jy,z ∈ RP will have certainly
requested its shared resource by time

LRTy,z(vp) =

{
max{rmax

y ,Amax
1 (vp)} if j = 1;

Clmax
y (vp) if j > 1.

(10)

Proof: A segment Jy,z will certainly request its shared

resource when (1) the job it belongs to has been released and

(2) the segment has a core to execute on.

By definition, the first segment Jy,1 of a job Jy is certainly

released at time rmax
y and a core is certainly available by time

Amax
1 (vp). Thus, Jy,1 will have certainly requested its resource

by time max{rmax
y ,Amax

1 (vp)} (hence case 1 of Eq. (10)).

If Jy,z is not the first segment of job Jy , then, because

Jy,z ∈ RP , the predecessor of Jy,z must have started to exe-

cute. Hence, Jy is already certainly released, and LRTy,z(vp)
is only bounded by the time at which the core claimed by the

segment of Jy that precedes Jy,z becomes available to execute

Jy,z . That time is upper-bounded by Clmax
y (vp). Therefore,

segment Jy,z will have certainly requested its resource by time

Clmax
y (vp) (hence case 2 of Eq. (10)).

Now that the earliest time ERTi,j(vp) at which Ji,j may

request its resource, and the latest time LRTy,z(vp) at which

another segment Jy,z has certainly requested its resource have

been bounded, we can prove the following necessary condition

for Ji,j to possibly be the next segment to start executing in

state vp.

Theorem 1. A segment Ji,j is a direct successor of vp only
if EST i,j(vp) <∞, Condition (8) holds, and

∀Jy,z ∈ RP s.t. ηy,z = ηi,j �= ∅, ERTi,j(vp) ≤ LRTy,z(vp). (11)

Proof: The necessity of EST i,j(vp) < ∞ and Condi-

tion (8) were already proven in Lemma 7. Therefore, we

focus on proving Condition (11). From Lemma 8, we know

that ERTi,j(vp) is the earliest time at which a job Ji,j can

request its shared resource. Similarly, from Lemma 9, we know

that the latest time at which a different segment Jy,z requests

its own resource is given by LRTy,z(vp). Therefore, if Ji,j
and Jy,z request the same resource �x and ERTi,j(vp) >
LRTy,z(vp), Jy,z must certainly be in front of Ji,j in the FIFO

queue regulating access to �x. In this case, Jy,z will certainly

execute before Ji,j , so Ji,j cannot be a direct successor of vp.

F. Earliest and Latest Finish Times

Since segments execute non-preemptively, if Ji,j is the

segment dispatched in system state vp, then its earliest finish

time (EFT i,j(vp)) and latest finish time (LFT i,j(vp)) are:

EFT i,j(vp) = EST i,j(vp) + Cmin
i,j (vp), (12)

LFT i,j(vp) = LST i,j(vp) + Cmax
i,j (vp). (13)

121

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Create a new state v ′
p by executing job

segment Ji,j after vp .

1 if Ji,j is the first segment of Ji then
2 if Ji,j is not the last segment of Ji then

// Ji claims a core
3 Create the interval Cli = [EFT i,j(vp),LFT i,j(vp)];
4 C(v′p)← C(vp) ∪ Cli ;
5 end
6 else
7 if Ji,j is the last segment of Ji then

// the core claimed by Ji is released
8 C(v′p)← C(vp) \ Cli ;
9 else

// update the core claimed by Ji
10 Cli = [EFT i,j(vp),LFT i,j(vp)];
11 C(v′p)← C(vp);
12 end
13 end
14 Update C using Eqs. (14) and (15);

// Update the shared resource availability
15 if ηi,j �= ∅ then
16 Let �x = ηi,j ;

17 SRmin
x (v′p) = EST i,j(vp) + Lmin

i,j ;

18 SRmax
x (v′p) = LST i,j(vp) + Lmax

i,j ;

19 end
// Update the free cores availability intervals

20 Initialize PA and CA using Lemma 11 ;
21 Sort PA and CA in non-decreasing order;
22 ∀1 ≤ x ≤ m− |C(v′p)|, Ax (v ′

p)← [PAx, CAx];

G. Creating a new State

As discussed in Sec. III-C, we expand the SAG for every

segment Ji,j that is eligible according to Theorem 1. For each

such segment, we create a new node v′p that represents the

new state after dispatching Ji,j , as described in Alg. 2.

First, depending on whether Ji,j is the first, last, or an

intermediate segment of job Ji, it will claim a core, release the

core it previously claimed, or keep executing on its claimed

core, respectively. Therefore, in lines 1–13, Alg. 2 updates the

set of claimed cores C by either adding, removing, or updating

the claimed-core availability interval associated with job Ji. If

a core is claimed or was claimed, then its availability interval is

set to the finish time interval [EFT i,j ,LFT i,j] of the segment

Ji,j that starts to execute on it (Lines 3 and 10).

For all other claimed cores in C, their availability interval

is updated according to Equations (14) and (15) below.

Lemma 10. If the first segment executed in system state vp
starts executing no later than EST i,j(vp), then

Clmin
y (v ′

p) = max{EST i,j(vp),Cl
min
y (vp)} (14)

Clmax
y (v ′

p) = max{EST i,j(vp),Cl
max
y (vp)} (15)

Proof: Since the first segment that starts to execute in

system state vp does so no later than EST i,j(vp), the earlier

time at which the next segment may start to execute is not

before EST i,j(vp). Thus, the cores are not available to execute

new segments before EST i,j(vp). This proves the lemma.

Thereafter, the availability interval of the resource accessed

by Ji,j (if any) is updated to align with the end of Ji,j’s critical

section, i.e., Lmin
i,j time units after it started executing at the

earliest, and Lmax
i,j time units after it started at the latest.

Finally, Alg. 2 uses Lemma 11 to create two sets PA and

CA that store the times at which each free core becomes

possibly and certainly available after Ji,j started to execute

(Line 20). Then, as discussed in Sec. III-B, the free cores

availability intervals can be computed by sorting the sets PA
and CA in a non-decreasing order and picking the xth element

of the sorted set PA (CA, resp.) as the lower bound (upper

bound, resp.) on the availability interval Ax (Line 22).

Lemma 11. The times at which each free core becomes
possibly and certainly available in v′p are contained
in the sets PA and CA, respectively, computed as follows.

PA =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
max{EST i,j ,A

min
x } | 2 ≤ x ≤ m− |C|

}
if j = 1 �= ni{

max{EST i,j ,A
min
x } | 2 ≤ x ≤ m− |C|

}
∪
{
EFTi,ni

}
if j = 1 = ni{

max{EST i,j ,A
min
x } | 1 ≤ x ≤ m− |C|

}
if 1 < j < ni{

max{EST i,j ,A
min
x } | 1 ≤ x ≤ m− |C|

}
∪
{
EFTi,ni

}
if j = ni > 1

CA =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
max{EST i,j ,A

max
x } | 2 ≤ x ≤ m− |C|

}
if j = 1 �= ni{

max{EST i,j ,A
max
x } | 2 ≤ x ≤ m− |C|

}
∪
{
LFTi,ni

}
if j = 1 = ni{

max{EST i,j ,A
max
x } | 1 ≤ x ≤ m− |C|

}
if 1 < j < ni{

max{EST i,j ,A
max
x } | 1 ≤ x ≤ m− |C|

}
∪
{
LFTi,ni

}
if j = ni > 1

Proof: We use the following facts.

Fact 1. As already proven for Lemma 10, because EST i,j(vp)
is the earliest time at which Ji,j starts to execute in system

state vp, no segment dispatched after Ji,j may start to execute

prior to EST i,j(vp). Therefore, no core may be available to

execute new jobs before EST i,j(vp). Thus, EST i,j(vp) is a

lower bound on the availability time of any free core in v′p.

Fact 2. If Ji,j is not the first segment of job Ji (i.e., j > 1),

then it already has a claimed core and does not execute on a

free core. Thus, the availability of each free core in vp remains

the same in v′p. In combination with Fact 1, we get PA ⊇{
max{EST i,j(vp),A

min
x (vp)} | 1 ≤ x ≤ m − |C(vp)|

}
and

CA ⊇ {
max{EST i,j(vp),A

max
x (vp)}|1 ≤ x ≤ m−|C(vp)|

}
.

Fact 3. Because we assume a work-conserving scheduler,

if Ji,j is the first segment of Ji (i.e., j = 1), it will

start executing on the first available free core in vp. All

the other cores will thus keep the same availability interval.

Therefore, in combination with Fact 1, we get that PA ⊇{
max{EST i,j(vp),A

min
x (vp)} | 2 ≤ x ≤ m − |C(vp)|

}
and

CA ⊇ {
max{EST i,j(vp),A

max
x (vp)}|2 ≤ x ≤ m−|C(vp)|

}
.

Fact 4. If Ji,j is not the first or last segment of job Ji (i.e.,

1 < j < ni), then it does not release the core claimed by Ji.
Thus, the set of free core in v′p is the same as in vp.

Fact 5. If Ji,j is the last segment of Ji (i.e., j = ni), then

it releases the core claimed by Ji at the end of its execution.

Thus, the core that was claimed by Ji in vp becomes free for

other jobs to execute on in v′p. That released core is available

122

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

at the earliest at the EFT of Ji,j , and at the latest at the LFT

of Ji,j . Hence, PA ⊇ EFT i,j(vp) and CA ⊇ LFT i,j(vp).

Fact 3 proves the first case in the definitions of PA and

CA, respectively. The combination of Facts 3 and 5 prove the

respective second cases. Fact 4 proves the third cases, and the

combination of Facts 2 and 5 proves the fourth case.

H. Merge Phase

In order to delay a potential state-space explosion by

considering every scenario in a different path, we introduce

Rule 1 that merges two nodes of the graph into a single node

that covers all states covered by the initial two nodes. This

slows down the growth of the SAG (in terms of the number

of nodes) while maintaining soundness.

Rule 1 (Merge rule). Two nodes vp and vq are merged if
J P = JQ and ∀x, 1 ≤ x ≤ m− |C|, Ax (vp)∩Ax (vq) �= ∅.

When two states vp and vq are merged into vz , each free-

core availability interval Ax (vz), claimed core availability

interval Clx(vz), and shared resource availability interval

SRx (vz) in the merged state vz are computed so as to fully

cover the intervals of the initial states vp and vq .

Ax (vz) =
[
min{Amin

x (vp), A
min
x (vq)},

max{Amax
x (vp),A

max
x (vq)}

]
(16)

Clx (vz) =
[
min{Clmin

x (vp), Cl
min
x (vq)},

max{Clmax
x (vp),Cl

max
x (vq)}

]
(17)

SRx (vz) =
[
min{SRmin(vp), SR

min(vq)},
max{SRmax(vp), SR

max(vq)}
]

(18)

We now prove that a merge maintains soundness.

Lemma 12. For two states vp and vq merged according to
Rule 1, the set of claimed cores in vp and vq are assigned to
the same job segments.

Proof: Every job that has started and did not yet finish

its execution until reaching state vp has a claimed core in vp .

Since by Rule 1, the set of job segments in the path to vp and

vq are identical (i.e., J P = JQ), all jobs that claimed core

in vp must also have a claimed core in vq , and all jobs that

claimed a core in vq must also have claimed a core in vp .

Lemma 13. For two states vp and vq merged according to
Rule 1, the number of free-core availability intervals are the
same in vp and vq .

Proof: Lemma 12 proves that the claimed cores in vp and

vq are assigned to the same job segments. Thus, the number

of claimed cores must be the same in vp and vq . Hence, the

number of free cores must also be the same since the sum of

claimed and free cores is always equal to m. It follows that

we have as many free-core availability intervals in vp as in

vq .

Theorem 2. Merging two states vp and vq according to Rule 1
and Equations 16, 17, and 18 is safe, i.e., it does not remove
any potentially reachable system state from the graph.

Proof: Rule 1 ensures that the sets of segments that have

started executing on the path to vp and vq are identical for vp
and vq . Hence, the set of segments that still need to execute

in the merged state vz is the same as in vp and vq .

According to Lemmas 12 and 13, the set of claimed cores and

the number of free cores in state vp and vq are the same, and

are thus the same in the merged state too. Since the availability

interval of shared resources and free and claimed cores in

the merged state vz are the union of those in vp and vq , any

possible combination of a given number of cores and set of

resources becoming available at a given time that is possible

in either state vp or vq is also possible in the merged state vz .

Hence, all sequences of segment executions that may follow

from vp and vq are also possible in vz and the set of all system

states reachable from vz includes every state that is reachable

from the original states vp and vq .

I. Correctness

We now put all the pieces together and establish soundness.

Theorem 3. For any execution scenario such that segment
Ji,j completes at t, there is a path 〈v1, ..., vp, v′p〉 in the SAG
such that Ji,j is the label of the edge connecting vp to v′p and
t ∈ [EFT i,j(vp),LFT i,j(vp)].

Proof: Assume that there is a path 〈v1, ..., vp〉 such that

the claim is respected for all segments that started to execute

before Ji,j in the execution scenario that led Ji,j to finish at

time t. Furthermore, assume that the availability intervals of

state vp correctly bound the actual availability times of the

shared resources, free cores, and claimed cores.

We prove that t ∈ [EFT i,j(vp),LFT i,j(vp)], that a new

system state v′p is created from scheduling Ji,j in vp, and

that the availability intervals of state v′p correctly bound the

actual availability times of the shared resources, free cores,

and claimed cores after executing Ji,j .

Under the inductive assumption stated above, Lemma 1 and

Lemma 6 prove that EST i,j(vp) and LST i,j(vp) are safe

lower- and upper-bounds on the start time of Ji,j , respectively.

Because segments execute non-preemptively, Equations (12)

and (13) are thus safe lower- and upper-bounds on t (i.e., we

proved that t ∈ [EFT i,j(vp),LFT i,j(vp)]). Further, by the

inductive assumption, the condition of Theorem 1 must hold

for Ji,j and Line 7 of Alg. 1 ensures that the graph is expanded

with a new node v′p. Then, by Lemmas 10 and 11 and the

discussion of Alg. 2, the availability intervals of v′p correctly

bound the actual availability of shared resources and cores

afters executing Ji,j . Therefore, the inductive assumption is

respected for v′p. Finally, according to Lemma 10, potentially

merging v′p with another node (lines 14 to 18 of Alg. 1)

maintains the validity of the inductive assumption.

Crucially, the inductive assumption (i.e., correct availability

intervals) obviously holds for v1 (in which all cores and shared

123

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

resources are supposed to be available) and thus follows by

induction on all the states created by Alg. 1.

V. EMPIRICAL EVALUATION

We conducted a large-scale schedulability study to evaluate

any gains in accuracy and to test for scalability limitations.

A. Setup and Workloads

To obtain a large corpus of diverse workloads with varied

contention characteristics, we generated task sets as follows.

For a given number of cores m ∈ {2, 4}, we generated

n ∈ {m + 1, 2m, 3m, 5m} periodic tasks that shared nr ∈
{2m, 5m} resources. Each task was configured to have a

number of critical sections chosen uniformly at random from

{0, 1, . . . , ncs}, for ncs ∈ {5, 15}. The length of each crit-

ical section was drawn uniformly at random from either

[1μs, 15μs], [10μs, 50μs], or [50μs, 150μs] (short, interme-
diate, or long critical sections, respectively). Additionally, to

obtain Fig. 2b, task sets for a specific setup with m = 6,

n = 12, ncs = 5 and nr = 12 were generated as well.

For each considered combination of m, n, nr, ncs, and

critical section lengths, we varied the total utilization U from

5% to 95% in steps of 5, and for each U , we generated 250
task sets, for a total of more than 450,000 task sets.

For a given U and n, we generated n per-task utilizations u1,

u2, u3, . . . that sum to U using Emberson et al.’s RandFixed-
Sum method [17]. To reflect that nonpreemptive scheduling

is used in practice only for workloads with short jobs, for

each task, an initial cost value C ′
i was drawn from a normal

distribution with mean 3ms and standard deviation 1.5ms
(values of less than 10μs were re-drawn). To avoid unrealistic

periods, we then selected the task period Ti ∈ {5, 8, 10, 12,

15, 20, 25, 30, 50, 75, 100, 150, 200, 250, 300, 500}ms closest

to C ′
i/ui and set the task’s WCET to ui · Ti (but no less than

the sum of maximum critical section lengths).

The total WCET was randomly distributed across the task’s

segments Cmax
i,1 , Cmax

i,2 , . . . while respecting the corresponding

maximum critical-section lengths (if any). Each segment was

assigned a BCET Cmin
i,j by drawing a value uniformly at

random from [0.1Cmax
i,j , 0.5Cmax

i,j]. Each critical section was

assigned a minimum length of 0μs with probability 0.25, and

otherwise chosen at random as Lmin
i,j ∈ [0.1Lmax

i,j , 0.5Lmax
i,j].

Finally, tasks were assigned unique priorities using the DkC

heuristic for fixed-priority scheduling [14]. Afterwards, as a

necessary test, one hyperperiod of the task set was simulated

assuming that each job executes for its WCET (without any

blocking). If the simulation already exhibited a deadline miss,

then the task set was discarded to avoid generating task sets

that are obviously infeasible under nonpreemptive scheduling.

B. Implementation and Baselines

We implemented the proposed analysis, which we denote as

{EDF, FP}-SAG-SR in the following (under global nonpre-

emptive EDF and FP scheduling, respectively), by extending

Nasri et al.’s open-source SAG tool [2,23].

As there exists no directly comparable analysis to compare

against (the proposed solution is the first of its kind), we

further considered the following loosely related baselines to

provide context: 1) {EDF, FP}-SAG-NO-BLOCKING: Nasri

et al.’s analysis [23] without any blocking. This analysis is

not sound in the presence of shared resources; it merely

serves to indicate an upper bound on attainable schedulability.

2) {EDF, FP}-SAG-INF: Nasri et al.’s analysis [23] with

an inflation-based blocking analysis where each job’s WCET

is increased prior to response-time analysis to account for

possible blocking based on the holistic blocking analysis

approach [9, Ch. 5.4]. This analysis is sound, but structurally

pessimistic (not scenario-aware), and thus provides a simple

lower bound on schedulability that the proposed analysis

should exceed. 3) EDF-NO-BLOCKING: the schedulability

tests for preemptive global EDF provided in the open-source

SchedCAT library [1] without any blocking, as an upper

bound on schedulability under preemptive EDF scheduling.

4) FP-NO-BLOCKING: similarly, the schedulability tests

for preemptive global FP scheduling in SchedCAT without

any blocking. 5) {EDF, FP}-FMLP-SHORT: inflation-based

holistic blocking analysis [9] of non-preemptive FIFO-ordered

spin locks (i.e., “FMLP for short resources” [7]), as provided

in SchedCAT. 6) {EDF, FP}-OMLP: inflation-based holistic

blocking analysis of the suspension-based global OMLP lock-

ing protocol [11], as provided in SchedCAT. 7) FP-FMLP–
LONG: Yang et al.’s analysis [28] of the suspension-based

“FMLP for long resources” [7]. 8) FP-PIP: similarly, Yang et

al.’s analysis [28] of the suspension-based PIP [16,25].

C. Results

In total, our experimental setup considered 14 individual

analyses for over 95 different scenarios (i.e., parameter com-

binations). Due to space constraints, we cannot report the

complete set of results here; a representative selection of our

results is shown in Fig. 2 with the specific parameter choices

given in each plot. To avoid clutter, only a subset of the 14

curves is shown in each graph.

Fig. 2a shows a comparison of the various SAG analyses for

m = 4. First, there is little difference w.r.t whether jobs are

prioritized according to fixed task-level DkC priorities [14]

or by job-level EDF priorities. More importantly, however,

the results show a large gain in schedulability relative to the

inflation-based baseline. For example, while FP-SAG-INF only

deemed about 15% of the task sets to be schedulable at 45%

total utilization, FP-SAG-SR shows that more than 60% of the

tested task sets are actually schedulable. Overall, the proposed

analysis closes more than half of the gap between the inflation-

based baseline and the upper bound on attainable schedulabil-

ity represented by {EDF, FP}-SAG-NO-BLOCKING, which

highlights a significant reduction in pessimism.

Fig. 2b focuses on EDF scheduling and shows similar

trends for m = 6, with EDF-SAG-SR attaining much higher

schedulability than EDF-SAG-INF. Furthermore, a compar-

ison with EDF-OMLP and EDF-FMLP-SHORT shows the

proposed analysis to be competitive with the state of the

art for preemptive systems (for the considered workloads),

especially considering that the EDF-NO-BLOCKING baseline

124

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

reveals that preemptive scheduling has a slight advantage in

this scenario. Note that our evaluation does not reflect any

differences in scheduling and runtime overheads, which can be

expected to be (much) lower under nonpreemptive scheduling.

Fig. 2c shows largely identical trends for m = 4.

Fig. 2d shows an analogous comparison for FP scheduling;

here preemptive scheduling has a significant advantage and

Yang et al.’s suspension-aware analysis [28] of the PIP and the

“long” FMLP variant stand out as particularly effective. How-

ever, note again that this is a somewhat lopsided comparison

due to workload differences (preemptive vs. nonpreemptive)

and since we are discounting lower spin-lock overheads.

Fig. 2e shows the effect of increasing the number of

tasks. Generally, schedulability drops as n increases, which

is unsurprising as an increase in tasks is correlated with an

increase in contention. Nonetheless, significant accuracy gains

are apparent compared to the inflation-based baseline. For

example, for n = 5 and U = 60%, FP-SAG-SR shows more

than 50% of the workloads to be schedulable, whereas FP-

SAG-INF can show this for less than 20% of the workloads.

In Fig. 2f, we look at the effect of varying the number of

cores. Here we clearly see that, for all investigated values of m,

the proposed analysis performs better than the inflation-based

baseline. Schedulability drops with increasing m since an

increase in parallelism corresponds to an increase in contention

(since n = 2m in the shown scenarios).

In Figs. 2g and 2h, we investigate the runtime of the

algorithm as a function of the total utilization, number of tasks

and number of cores. Since the experiments have been run

on several different machines (all being server-class machines

with large amounts of DRAM), we cannot relate the runtime

results to a single machine configuration. However, there are

still interesting trends to be observed. For example, in Fig. 2g,

the runtime increases with the utilization until U ≈ 30%. From

30% onwards, however, the runtime decreases. This is ex-

plained by the fact that when the utilization increases, we deal

with increased contention, which results in more branching

during the analysis, thereby leading to an increased runtime.

However, when the utilization becomes larger, there is also an

increasing chance to find more task sets to be unschedulable

at an early stage of the analysis. Therefore, the graph con-

struction is stopped earlier and the runtime decreases. We also

observe in Fig. 2g that the runtime increases significantly with

the number of tasks, which we link to an increasing number of

jobs in the observation window and thus an increasing number

of possible job segments execution orderings. In Fig. 2h we

investigate the impact of varying the number of cores on the

runtime (note that the number of tasks also changes in that

experiment since n = 2m). Non-surprisingly, we observe that

the runtime increases exponentially with the number of tasks

and cores. However, even in the worst configuration shown

in Fig. 2h, 95% of the generated task sets have an analysis

runtime below 2.7min. In the configurations of Fig. 2g, more

than 95% of the task set are analyzed in less that 40min. when

n ≤ 12, but task sets start to time out when n = 20.

Our evaluation also revealed some limitations. First, note

how in Fig. 2e the results for FP-SAG-SR for n = 20 tasks are

worse than for the baseline FP-SAG-INF, but not for lower task

counts. This is a result of the increased runtime of the proposed

analysis. In our experiments, we configured a timeout of 120

minutes per task set. As the runtime of the analysis increases

with n, FP-SAG-SR started to exhibit a significant number of

timeouts for n = 20. Scalability limitations also meant that

while it is certainly possible to analyze a given system and

even perform experiments for a chosen range of parameters

when m > 4 (e.g., Fig. 2b shows results for m = 6),

the general increase in runtime made an evaluation across

the entire parameter space (i.e., hundreds of thousands of
workloads, recall Sec. V-A) impractical for m ≥ 6.

Surprisingly, we also found some rare cases where {EDF,

FP}-SAG-SR perform (slightly) worse than the corresponding

{EDF, FP}-SAG-INF analyses even in the absence of timeouts.

Further investigation led us to discover a source of pessimism

related to the encoding of shared-resource availability. Our

current state abstraction assumes that the resource remains

locked (and thus unavailable) for the whole time from SRmin

until SRmax in the worst case. Although accurate in most

cases, this interval may become very long in comparison to

the actual critical section length in corner cases. There are thus

rare situations where even an inflation based test may perform

better. Such occasional instances can be easily handled by

running both analyses and retaining the better result.

Nonetheless, we overall conclude that almost always the

proposed analysis shows substantial accuracy gains in compar-

ison to the state of the art and, for the considered workloads,

is competitive with (or even superior to) solutions designed for

preemptive systems. The positive results virtually across the

board provide ample motivation to further improve accuracy

and scalability of the proposed approach in future work.

VI. CONCLUSION

We presented a new WCRT analysis for global JLFP

scheduling and non-preemptive tasks with repeating job-

release patterns that share resources protected by FIFO spin

locks. To the best of our knowledge, it is the first solution

to this problem. Our analysis implicitly explores all possible

execution and resource access orderings using a novel system-

state abstraction that explicitly models resource contention.

A comparison with inflation-based analyses has shown

that our work is substantially less pessimistic. The empirical

evaluation has also shown that, for the type of workloads

considered in the experiments, our solution comes much closer

to hypothetical blocking-free upper bounds and is competitive

even with solutions for preemptive systems, suggesting that

our analysis successfully discards many more scenarios that

reflect impossible combinations of shared resources access

orders, low-priority blocking and/or high-priority interference.

We also identified an intermittent source of pessimism, which

we plan on addressing at the same time as we work on scaling

the analysis to larger numbers of core counts using more

aggressive pruning techniques (such as partial-order reduction)

to disregard scenarios that do not contribute to the worst case.

125

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

(a) comparison of SAG analyses for m = 4 (b) comparison of EDF analyses for m = 6

(c) comparison of EDF analyses for m = 4 (d) comparison of FP analyses for m = 4

(e) schedulability for varying task set size n (f) schedulability for varying processor count m

(g) FP-SAG-SR runtime for varying task set size n (h) FP-SAG-SR runtime for varying processor count m

Fig. 2: Select experimental results. See Sec. V-B for an explanation of the considered analyses.

126

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] SchedCAT: The schedulability test collection and toolkit. https://github.
com/brandenburg/schedcat.

[2] nptest: an implementation of schedule-abstraction graph analysis.
https://github.com/brandenburg/np-schedulability-analysis.

[3] James H Anderson, Rohit Jain, and Kevin Jeffay. Efficient object sharing
in quantum-based real-time systems. In Proceedings of the 19th IEEE
Real-Time Systems Symposium (RTSS), pages 346–355. IEEE, 1998.

[4] Akesson Benny, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and
Robert I. Davis. An empirical survey-based study into industry practice
in real-time systems. In 2020 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2020.

[5] Alessandro Biondi and Björn B Brandenburg. Lightweight real-time
synchronization under p-edf on symmetric and asymmetric multipro-
cessors. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 39–49, 2016.

[6] Alessandro Biondi, Björn B Brandenburg, and Alexander Wieder. A
blocking bound for nested FIFO spin locks. In Proceedings of the
37th IEEE Real-Time Systems Symposium (RTSS), pages 291–302. IEEE,
2016.

[7] Aaron Block, Hennadiy Leontyev, Björn B Brandenburg, and James H
Anderson. A flexible real-time locking protocol for multiprocessors.
In 13th IEEE international conference on embedded and real-time
computing systems and applications (RTCSA 2007), pages 47–56. IEEE,
2007.

[8] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic
Network Calculus: From Theory to Practical Implementation. John
Wiley & Sons, 2018.

[9] Björn B Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[10] Björn B Brandenburg. Multiprocessor real-time locking protocols: A
systematic review. arXiv preprint arXiv:1909.09600, 2019.

[11] Björn B Brandenburg and James H Anderson. Optimality results for
multiprocessor real-time locking. In 2010 31st IEEE Real-Time Systems
Symposium, pages 49–60. IEEE, 2010.

[12] Yang Chang, Robert I Davis, and Andy J Wellings. Reducing queue lock
pessimism in multiprocessor schedulability analysis. In Proceedings of
the 18th International Conference on Real-Time Networks and Systems
(RTNS), pages 99–108, 2010.

[13] Travis S Craig. Queuing spin lock algorithms to support timing
predictability. In Proceedings of the 14th IEEE Real-Time Systems
Symposium (RTSS), pages 148–157. IEEE, 1993.

[14] Robert I Davis and Alan Burns. Priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems. In
30th IEEE Real-Time Systems Symposium (RTSS), pages 398–409. IEEE,
2009.

[15] UmaMaheswari C Devi, Hennadiy Leontyev, and James H Anderson.
Efficient synchronization under global EDF scheduling on multiproces-
sors. In Proceedings of the 18th Euromicro Conference on Real-Time
Systems (ECRTS), pages 75–84, 2006.

[16] Arvind Easwaran and Björn Andersson. Resource sharing in global
fixed-priority preemptive multiprocessor scheduling. In Proceedings of
the 30th IEEE Real-Time Systems Symposium (RTSS), pages 377–386.
IEEE, 2009.

[17] Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques
for the Synthesis of Multiprocessor Tasksets. In Proceedings of the
1st International Workshop on Analysis Tools and Methodologies for
Embedded and Real-Time Systems (WATERS’10), 2010.

[18] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing memory
utilization of real-time task sets in single and multi-processor systems-
on-a-chip. In Proceedings of the 22nd IEEE Real-Time Systems Sympo-
sium (RTSS), pages 73–83. IEEE, 2001.

[19] Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Peri-
odicity of real-time schedules for dependent periodic tasks on identical
multiprocessor platforms. Real-time systems, 52(6):808–832, 2016.

[20] Philip Holman and James H Anderson. Locking in pfair-scheduled
multiprocessor systems. In Proceedings of the 23rd IEEE Real-Time
Systems Symposium (RTSS), pages 149–158. IEEE, 2002.

[21] Mitra Nasri and Björn B Brandenburg. An exact and sustainable
analysis of non-preemptive scheduling. In 2017 IEEE Real-Time Systems
Symposium (RTSS), pages 12–23. IEEE, 2017.

[22] Mitra Nasri, Geoffrey Nelissen, and Björn B Brandenburg. A response-
time analysis for non-preemptive job sets under global scheduling. In
30th Euromicro Conference on Real-Time Systems, pages 9:1–9:24,
2018.

[23] Mitra Nasri, Geoffrey Nelissen, and Björn B Brandenburg. Response-
time analysis of limited-preemptive parallel dag tasks under global
scheduling. In 31st Euromicro Conference on Real-Time Systems, pages
21:1–21:23, 2019.

[24] Saranya Natarajan, Mitra Nasri, David Broman, Björn B. Brandenburg,
and Geoffrey Nelissen. From code to weakly hard constraints: A
pragmatic end-to-end toolchain for timed c. In Proceedings of the 2019
IEEE Real-Time Systems Symposium (RTSS), pages 167–180. IEEE,
2019.

[25] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority in-
heritance protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

[26] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time
calculus for scheduling hard real-time systems. In Proceedings of the
2000 IEEE International Symposium on Circuits and Systems (ISCAS),
volume 4, pages 101–104. IEEE, 2000.

[27] Alexander Wieder and Björn B Brandenburg. On spin locks in autosar:
Blocking analysis of fifo, unordered, and priority-ordered spin locks. In
2013 IEEE 34th Real-Time Systems Symposium (RTSS), pages 45–56.
IEEE, 2013.

[28] Maolin Yang, Alexander Wieder, and Björn B Brandenburg. Global real-
time semaphore protocols: A survey, unified analysis, and comparison.
In 2015 IEEE Real-Time Systems Symposium (RTSS), pages 1–12. IEEE,
2015.

127

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2025 at 10:01:48 UTC from IEEE Xplore. Restrictions apply.

