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Stellingen

Stellingen behorende bij het proefschrift Observation and Modeling of Biological
Colloids with Neutron Scattering Techniques and Monte Carlo simulations

door Léon Ferdinand van Heijkamp, 2010.

I. De geleidelijke destabilisatie van een colloïdale suspensie tijdens gelatie
kan gemodelleerd worden als een overgang van reactie-gelimiteerde naar
diffusie-gelimiteerde aggregatie van clusters van deeltjes.

II. Er is een duidelijk verschil in fractale dimensionaliteit en typische lengte-
schalen van caseïnegels wanneer deze langzaam gevormd worden door
een geleidelijk toenemende zuurtegraad en wanneer deze gevormd worden
door een plotselinge toevoeging van zuur.

III. Het wiskundig vatten van de ruimtelijke verdeling van een structuur in
een getal genaamd fractale dimensie, doet geen recht aan de complexe
aard hiervan.

IV. De dichtheids-autocorrelatiefunctie van een holle bol is het duidelijkst te
onderscheiden van die van een massieve bol van gelijke grootte, als de
wanddikte 10% van de diameter bedraagt.

V. De dichtheids-autocorrelatiefunctie van een ui brengt tranen in de ogen.

VI. Nieuwe stralingstechnieken met neutronen en protonen, zoals SESANS
en protonradiotherapie, herbergen nog onverkende mogelijkheden voor
diagnostiek en behandeling binnen de oncologie.

VII. De grote toename van wetenschappelijke publicaties gedurende de recente
decennia wordt steeds meer een obstakel in plaats van een voordeel voor
het verwerven van kennis.

VIII. De Impact Factor van wetenschappelijke tijdschriften zou logaritmisch
herschaald moeten worden en worden hernoemd tot Relevancy Factor.

IX. Publieke weerstand tegen nucleaire energie biedt een gezond tegenwicht
aan lobbyisten en verhoogt de aandacht voor veiligheidaspecten.

X. Het is beter om het wiel opnieuw uit te vinden, dan klakkeloos aan te
nemen dat het vierkant moet zijn.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor, prof. dr. I.M. de Schepper.



Propositions

Propositions accompanying the thesis Observation and Modeling of Biological
Colloids with Neutron Scattering Techniques and Monte Carlo simulations

by Léon Ferdinand van Heijkamp, 2010.

I. The gradual destabilization of a colloidal suspension during gelation,
can be modeled as a transition from reaction limited to diffusion limited
aggregation of clusters of particles.

II. The fractal dimensionality and typical length scales of casein gels are dis-
tinctly different when formed slowly through a gradual increase in acidity,
as opposed to when formed through a step-wise acidification.

III. Capturing structural information mathematically into the single number
called fractal dimension, does not do justice to the complex nature of
these structures.

IV. The density auto-correlation function of a hollow sphere is most clearly
distinguishable from that of a solid sphere of equal size, when the thick-
ness of the shell is 10% of the diameter.

V. The density auto-correlation function of an onion brings tears to the eyes.

VI. Novel radiation techniques employing neutrons and protons, like SESANS
and proton radiotherapy, still have unexplored capabilities for diagnostic
and therapeutic cancer treatment.

VII. The large growth in scientific publications over recent decades is starting
to become more of an obstacle than an advantage for gaining knowledge.

VIII. The Impact Factor of scientific journals should be rescaled logarithmically
and renamed Relevancy Factor.

IX. Public opposition to nuclear power provides a healthy counterweight to
lobbyists and increases the focus on industrial safety.

X. It is better to reinvent the wheel than to unquestioningly agree it should
be square.

These propositions are regarded as opposable and defendable, and have been
approved by the supervisor, prof. dr. I.M. de Schepper.
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CHAPTER 1

Introduction

1.1 Preface

Articles are the backbone of science. The book before you attempts to
sensibly combine three publications dealing with colloidal aggregation,

neutron scattering and computer simulations. This rich tapestry of subjects has
a motive, which is woven by the theme of spherical particles floating through
water. These particles are solid or hollow, sometimes of different sizes and
they may stick together over time. Exposing specimens to a beam of neutrons,
causes some neutrons to scatter over small angles. These signals are measured
with scattering techniques and described using mathematical models. If the
structure in a sample changes, the scattered neutron signal changes accord-
ingly. Depending on the length scales involved and the interaction between
the substances and neutrons, varying particle composition, such as light–heavy
water exchange, or changes in mutual distance between the particles, such as
aggregation, are observable. Colloidal aggregation can be modeled using simu-
lation techniques to gain insight into the process and resulting structures.

The colloidal particles under investigation here, are smaller than a microm-
eter. Their aggregation results in the formation of a gel structure, which can
take rather long in microscopic terms. This is a plus point when using relatively
weak neutron sources, compared to for example the number of photons in X-
ray techniques, but long time scales are a drawback for computer simulations.
Part of the significance of this work lies in how neutron signals of different, but
complementary, techniques should be interpreted and reconciled. Other new as-
pects involve the modifications made to an existing simulation model, in order
to describe the slow aggregation of colloids at low reaction speeds. This study
may expand the techniques available to biology, contribute to innovations in
food industry and improve simulation work on the formation of non-analytical
materials.
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1.2 Materials

Colloids consist of particles substantially larger than atoms or ordinary molecules
but too small to be visible to the unaided eye. Colloidal systems may exist as
dispersions of one substance in another, like mayonnaise which consists of oil
droplets in vinegar, or as single materials, such as rubber or the membrane of
a biological cell. Generally at least one dimension of the colloidal particle has a
size ranging from 1 nm to 10 µm, including thin films and fibers. Many colloids
fall into the soft condensed matter category. Colloidal dispersions are classified
by their two phases. The categories divide all combinations of solid, liquid and
gaseous phase except gas–gas, which mixes on a molecular level. Systems of
solid particles suspended in a solid or liquid medium are called sols. Suspensions
of a liquid in a solid are called gels and emulsions when dispersed in another
liquid. Microscopic gas bubbles in a solid or a liquid are called foams. Solid and
liquid particles suspended in a gas, like smoke and clouds, are called aerosols.

Suspended colloidal particles do not precipitate under standard conditions.
In solid media, they are fixed in a matrix. In liquids and gases, the thermal
motion of the molecules counters the force gravity exerts on the much larger
particles. These random collisions result in Brownian motion of the particles.
In stable colloidal suspensions, the forces between particles are mostly short-
range and repulsive. Hard sphere colloids can therefore be modeled using the
same techniques used to describe the behavior of ideal gases. To remain sus-
pended, particle sizes are limited by the difference in weight between particle
and medium; for common densities these sizes are too small to be observed with
a normal microscope. Particles may be separated from the medium using an
ultra-filtration membrane or deposited on a surface using an ultra-centrifuge.
Colloid formation occurs spontaneously in systems through attractive physical
forces between molecules, such as the Van der Waals force, or through mini-
mization of the Gibbs free energy, where the self-organizing processes are driven
by reduction of the chemical potential at constant pressure and temperature.
Colloidal particles can also be created using techniques involving high shear,
which finely distributes one phase throughout another in a composition of two
non-mixable states.

1.3 Processes

Understanding the clustering behavior of randomly distributed components has
many applications in science, industry and everyday life. Cluster analysis is a
common statistical technique, used for pattern recognition in artificial intel-
ligence and neural networking in bio-informatics, but also for social network
analysis in sociology and to study group disease cases in epidemiology. Physics
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examines the clustering behavior of many natural phenomena. The clustering
of stellar material is studied in astrophysics to understand the gravitational col-
lapse within giant molecular clouds, which leads to the formation of stars, star
clusters and galaxies. In statistical thermodynamics clustering can explain phase
transitions of matter. The Ising model for example, describes the behavior of
ferromagnets near the Curie point, but also of fluids at the vapor/liquid critical
point. Insight into clustering processes allows the prediction of network struc-
ture, denseness, cohesion and average path length. Phase transitions caused
by clustering of matter are studied in physical chemistry. The sol–gel transition
occurs when suspensions of solid particles in a liquid aggregate into a solid
matrix that encapsulates the liquid. Gelation changes many properties, such as
a drastic increase in viscosity, as a liquid-like system becomes solid-like.

To study the sol–gel phase transition of colloids, a sticky sphere model is
used in a Monte Carlo scheme to simulate the aggregation of the particles
into clusters and of these clusters into a network. This is usually done for the
case of immediate bonding when particles touch. However, actual aggregation
processes do not necessarily occur under high reactivity conditions. When the
reactivity is very low compared to particle diffusion, a great many more particle
collisions is required for bonding, which does not only take much more time,
but also results in different structures. Many clustering processes also show
an increase in reactivity throughout aggregation. During the gelation of milk
to yogurt for example, the pH in milk starts roughly neutral, but decreases as
bacterial cultures increase the acidity. The milk micelles therefore aggregate
with an increasing reactivity.

1.4 Optics

Neutrons are uncharged mass particles with a magnetic moment, which exist
bound in the nuclei of all atomic elements and isotopes, except hydrogen (1H).
Free neutrons have a mean life-time of about 15 minutes and, being sub-atomic
particles, propagate as waves according to quantum mechanics. Having no
charge, neutrons have little interaction with electrons, but they do interact
with the atomic nuclei. This strong force interaction is very short ranged, so
that neutrons have to pass close to a nucleus to feel it. Since the nucleus is so
much smaller than the atom’s electron cloud, neutrons can travel considerable
distances in matter. Because of their different interaction with matter, beams
of neutrons have different diffraction properties than X-rays.

Diffraction is an interference phenomenon of waves. It occurs whenever a
wave encounters an obstacle of comparable size. The size of a wave is given
by its wavelength, which for radiation is determined by its energy. The angle of
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diffraction is determined by the ratio of the wavelength of the wave and the size
of the obstacle. Enlarging the object decreases the diffraction angle. A wave
can bend around smaller objects or create a wide pattern when leaving larger
openings. Such openings are called apertures when used for beams of radiation.
The diffraction pattern is inversely related to the shape of the aperture. Fig-
ure 1.1 shows an example for a circular or spherical object, such as a disk or a
sphere. Multiple closely-spaced openings provide a complex pattern of varying
intensities, from which the geometry of the obstructing object can be inferred.
Radiation with wavelengths in the range of Å can be used to investigate the
structure of crystals.

Figure 1.1: Computer generated image of the
Airy diffraction pattern, which is observed
when waves exit a circular aperture with a di-
ameter in the order of the wavelength. The
intensities of the pattern are by determined by
a Fourier transform of the shape of the aper-
ture, which yields a damped first order Bessel
function. The bright central region, called the
Airy disk, is surrounded by weak concentric
rings of decreasing intensity.

Scattering is a type of diffraction
where non-uniformities in a medium
cause a beam of radiation to deviate
from a straight trajectory. Scattering
techniques are applied to materials
with length scales larger than the unit
cells of crystals. These length scales
are determined by the sizes of the
inhomogeneities, usually particles, or
the distances separating them. Scat-
tered intensity patterns provide infor-
mation about sizes that occur in ma-
terials. The mathematical description
of how a material scatters incident ra-
diation uses the product of a form fac-
tor and a structure factor. These are
basically Fourier transforms of the in-
ternal and external structure of the
particles. The structure factor is a
particularly useful tool in the inter-
pretation of interference patterns ob-
tained in X-ray, electron and neutron
diffraction experiments. If the kinetic
energy of the photons, electrons or
neutrons is not conserved, scattering is inelastic. Energy-resolved techniques
measure the dynamic structure factor, whereas elastic scattering techniques
measure the static structure factor.
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1.5 Techniques

The Spin-Echo Small Angle Neutron Scattering (SESANS) machine is a cor-
relometer for density fluctuations that scatter neutrons elastically over small
angles. It probes these density separations in one direction in real-space using a
polarized neutron beam, magnets and flippers to encode the scattered intensity
as loss in polarization. Structures with typical lengths between 10 nm and 10
µm can be observed. The measured signal consists of the scattered neutron
intensity and a projection of the density correlation function, describing the
structure of the sample. The resolution function of SESANS is given by the
empty beam polarization as a function of spin-echo length and can simply be
divided out of the signal. The loss of empty beam polarization at large spin-
echo lengths is the main limiting factor for the resolvable length scale range.
A good signal-to-noise ratio in SESANS requires relatively large amounts of
coherent scattering, compared to similar techniques. Ideal samples have suffi-
ciently high neutron transmission and a large scattering contrast. In colloidal
suspensions the contrast is between the small particles and the surrounding ho-
mogeneous liquid and for dilute cases the scattering power is roughly linear with
concentration. See § 3.2.1 for a more detailed description of the technique.

Ultra Small Angle Neutron Scattering (USANS) is a neutron diffraction
machine that measures scattered intensity at very small angles. This high res-
olution in reciprocal space makes USANS sensitive to a large range in length
scale, comparable to the resolving range of SESANS. The measured signal con-
sists of a projection of the scattered intensity in momentum-space, convoluted
with the USANS resolution function. The USANS setup uses a monochromator
and an analyzer crystal, which is either constantly bent or continuously rocked
during measurement. The length scale range is limited both by the crystal’s
fixed curvature respectively range of rotation-angle, as well as by the resolution
of the detector. §3.2.2 provides further details on the technique and the data
treatment.

Monte Carlo (MC) simulations are a stochastic method for exploring the
phase-space of a system by random sampling of a quantity that drives the
simulation. In this study MC is used to model the aggregation of colloids in order
to study gelation. In this case the random sampling involves displacing single
and clustered particles in a box as opposed to their simultaneous movement,
and to a variable degree the random formation of bonds between particles. This
variable degree provides control of the clustering mechanism. § 4.2.2 offers the
particulars of the model.
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1.6 Thesis overview

This study focuses on spherical particles suspended in water as sols, emulsions
and gels. Of interest are both the internal structure of the spherical colloids
and the external structure formed by the aggregation of homogeneous colloids.
SESANS and USANS are the primary and secondary experimental methods that
have been employed to observe structures and the kinetics of their formation.
Dynamic Light Scattering has also been used to obtain a priori knowledge and
to verify results. Measurements have been described by modeling systems and
curve fitting the model parameters to the experimental data. MC simulations
in 3D of adhesive spheres have been performed in order to gain better insight
into the process of gelation, which is not yet well understood.

Chapter 2 deals with observations on and modeling of the internal structure
of biological colloids by means of SESANS and includes some DLS measure-
ments. A detailed comparison is made between predicted signals from solid,
hollow and filled spheres with SESANS measurements on liposomes and Es-
cherichia coli bacteria. A numerical outlook is provided for the usefulness of
SESANS in drug targeting studies for cancer treatment.

Chapter 3 studies the kinetics of the gelation of milk to yoghurt using SESANS
and USANS observations and MC simulations. The size distribution of casein
micelles in milk is observed, as well as the increase in length scales and change
in dimensionality when milk gelates to yoghurt are observed, along with the
time scale of the process. The MC simulations describe gelation as clustering
of monodisperse spheres, producing a numerical density correlation function,
which is compared to neutron scattering data.

Chapter 4 deals exclusively with the MC simulations on a 3D lattice, studying
the effect of varying reactivity with monomer concentrations varying from dilute
to concentrated. A numerical recipe is given to model the sol–gel transition
of monodisperse hard spheres using a time-dependent reactivity. This allows
for a range of regimes to be explored from Reaction Limited Cluster–cluster
Aggregation (RLCA) at extremely low reactivity to Diffusion Limited Cluster–
cluster Aggregation at maximum reactivity. New algorithms are described to
speed up the code when motion becomes sporadic and for when bonding is
scarce.

Chapter 5 shows the derivation of the optimal sample thickness for SESANS
experiments. This is achieved by defining the quantity that expresses signal
quality, expressing the measurement error in the signal as a function of the
sample thickness and finding the minimal value as a function of known param-
eters.



CHAPTER 2

SESANS analysis of liposomes and bacteria

Léon F. van Heijkamp, Ana-Maria Sevcenco, Diane Abou, Remko van Luik, Gerard C.
Krijger, Peter-Leon Hagedoorn, Ignatz M. de Schepper, Bert Wolterbeek, Gerben A.
Koning and Wim G. Bouwman, ‘Spin-Echo Small Angle Neutron Scattering analysis of
liposomes and bacteria’, J. Phys. Conf. Ser. 247 (2010) 012016.

Abstract

Two types of liposomes, commonly used in drug delivery studies, and E. coli
bacteria, all prepared in H2O, were resuspended in D2O and measured with
Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed
using correlation functions for solid spheres and hollow spheres. The signal
strength and curve shape were more indicative of hollow particles, indicating
that the H2O–D2O exchange occurred too fast to be observed with the available
time resolution. Fitting the particle diameter and membrane thickness of the
hollow sphere model to the data, gave results which were in good agreement
with Dynamic Light Scattering (DLS) data and literature, showing as a proof-
of-principle that SESANS is able to investigate such systems.

SESANS may become a good alternative to conventional tritium studies
or a tool with which to study intracellular vesicle transport phenomena, with
possible in vivo applications. Calculations show that a substantial change in
numbers of a mixed system of small and large biological particles should be
observable. A possible application is the destruction by external means of great
numbers of liposomes in the presence of tumor cells for triggered drug release
in cancer treatment. Since SESANS is both non-invasive and non-destructive
and can handle relatively thick samples, it could be a useful addition to more
conventional techniques.
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2.1 Introduction

Delivery of drugs or contrast agents to tumors and their uptake by tumor
cells is of great interest to the medical community to aid the diagnosis

and treatment of cancer [1–5]. In order to develop improved methods to identify
and destroy malignant tumor tissue, research has focused on the transport of
substances across the bi-lipid layer using encapsulation by liposomes [1, 6–10].
These lipid vesicles have a similar composition to cellular mebranes and are
therefore also used as a model in transport studies. The cellular transport
of water is an important quantity for medical diagnostic tools using cellular
contrast agents. Much work has been done studying two key processes: the
internalization of small cells and particles by larger cells [11–14] and the rate
at which water can diffuse in and out of cells [15–17]. For the development of
cancer treatment it is desirable to be able to observe both liposomal uptake by
tumor cells and cellular water exchange as directly as possible in living patients,
using non-invasive methods. Many observations can be done down to the
cellular level in a laboratory or inside living patients, using methods as Dynamic
Light Scattering (DLS) and Magnetic Resonance Imaging (MRI).

Water transport is often studied using tritiated water (T2O, HTO) as a
tracer. Changing concentrations of this isotope produce local changes in lev-
els of radioactivity. This technique is used to observe metabolic processes in
laboratory animals [11], but not generally applied in vivo to larger organisms
because of its radioactivity, which increases the chance of cancer when applied
internally. For water transport studies with liposomes, the tritiated liposomes
have to be separated from the medium. Since it is a weak β-particle emitter,
experiments require either large quantities or the very sensitive liquid scintil-
lation detectors. All this makes it unsuitable for in vivo application, whereas
SESANS does not have these limitations. Furthermore, the exchange rate of
this super-heavy water with normal, light water (H2O) provides little informa-
tion on cellular structure.

Small Angle Neutron Scattering has been employed in the past to study cellu-
lar components, such as ribosomes [12], DNA (including helical structure) [13],
protein [14] and lipid structures [18, 19] and protein hydration [20]. Using
Spin-Echo Small Angle Neutron Scattering (SESANS) microstructures of 20
nm to 20 µm can be observed, corresponding to sub-cellular and cellular sizes.
The sample thickness depends on the neutron transmission of the investigated
substance. The sensitivity of neutron scattering experiments to the hydrogen-
deuterium contrast is often exploited in watery samples. Typical sample thick-
nesses in SESANS are one centimeter when containing mostly light water, and
up to several centimeters when using mostly heavy water, or deuterium oxide
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(D2O, HDO). Neutron scattering is non-invasive and a SESANS measurement
exposes samples only to small doses of radiation, because it requires limited
neutron intensities with moderate wavelengths. For stable biological samples,
this technique can be easily applied in vitro when containing either light or
heavy water or both. SESANS can in principle also be applied to organisms in
vivo without deuterating, if there is enough contrast and no more than a few
centimeters of water in the beam. Water transport across cell membranes can
be studied in vitro with SESANS by observing changes in contrast, due to local
changes in light and heavy water concentration. Although deuterium is a non-
radioactive isotope, large amounts of this heavy water can still be harmful to
organisms. Some normal reactions in cells, especially cell division, are disrupted
by the stronger hydrogen bonds formed. Toxic levels of deuteration range from
around 30% to 50% for rodents and large mammals respectively [21, 22]. Since
it is not possible to replace large amounts of water with D2O without any harm-
ful effects, an in vivo SESANS study focussing on water exchange in human
cells will be difficult.

SESANS experiments were performed on liposomes and bacteria, as proto-
types for small and large cells. The aim was to observe both as whole cells
and investigate water transport through the membranes. All samples were pre-
pared or grown in H2O -based buffers or growth media and finally resuspended
in D2O. The liposomal polydispersity was determined using DLS. Fitting the
measurement data showed the average cell diametersI, cell-wall thicknesses and
the inner contrast with respect to the medium, which were in good agree-
ment with expected values from other techniques and literature. The rate
of hydrogen–deuterium exchange could only be observed if the timescale was
within the temporal resolution of the technique, which was not the case for
any of the measured liposomes. A neutron source with a higher flux and larger
wavelength should significantly increase the temporal resolution of the SESANS
setup. Anticipating future developments, time-dependent measurements may
become possible so that water exchange may be observed as well.

Model calculations predicted that large-scale removal of liposomes from a
sample, through destruction by external means or biological process, should be
observable with SESANS. A large drop in the liposome population of an inves-
tigated system would result in a change of curve shape and more noticeably, a
change in the polarization saturation level, due to a change in the scattering
power of the whole sample. SESANS measurements performed so far on small
amounts of tumor cells exhibited too little scattering for a significant signal.
Measurements on combined systems of liposomes with much higher concentra-
tions of tumor cells are to be performed in the future.
I To our knowledge, the first time observing entire cells using neutrons.
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The aim of this paper is to show as a proof of principle that SESANS has
the potential to contribute to studies on biological bulk-phenomena, without
disturbing the investigated systems. It may therefore become a useful addition
to the broad range of techniques already available, with possible applications in
the field of cancer research.

2.2 Biological background

2.2.1 Liposomes

A liposome is a spherical vesicle that consists of a bilayered phospholipid mem-
brane, entrapping an aqueous phase. In this study the lipid vesicles only contain
H2O or D2O or both. The membrane is made of natural substances: lipids and
cholesterol that confer biocompatibility, non-toxicity, and biodegradable prop-
erties. The phospholipids are amphiphilic, consisting of a hydrophilic phosphate
head group and two hydrophobic tails, which causes them to self-organize into
lipid bilayers in an aqueous environment. Over the last decade, liposomes have
largely been used in the medical field as a tool for drug delivery for therapeutic
purposes and, more recently, for molecular imaging in disease diagnoses.

Liposomes are classified as Large Multilamellar Vesicles (LMV) or as Large
and Small Unilamellar Vesicles (LUV and SUV). The SUV is the main interest
of the present study, because it is the most used type of liposome in the medical
field. The optimum liposome diameter for an efficient extravasation out of the
blood into a tumor is known to be around 100 nm. This is an important property
for passive drug-targeting of the diseased area, especially for tumor-targeting of
multiple types of cancers. Stealth® liposomes are grafted with PolyEthylene
Glycol (PEG)-chains and offer additional advantages, such as avoiding self-
aggregation of the particles and enhancing the in vivo half-life by reducing the
interaction with the blood plasma proteins. For this study, DSPC and DPPC
SUV PEGylated liposomes have been synthesized with a diameter D of about
100 nm and a membrane thickness T of about 5 nm [23] and characterized using
DLS and SESANS. DSPC and DPPC liposomes posses different membrane
rigidity and therefore different water exchange properties.

2.2.2 Escherichia coli

The microorganism Escherichia coli (E. coli) is a well known species of bac-
terium, discovered by German pediatrician and bacteriologist Theodor Escherich
in 1885. E. coli is placed on the bacteria branch in the phylogenetic tree of
life as a gram negative bacterium, and can grow easily under both aerobic and
anaerobic conditions and by fermentation. Optimal growth occurs at 37℃, but
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Molecule Formula b [fm] Vm [Å3] ρs [nm−2]

DPPC C40H80NO8P 27.63 1,232 2.2⋅10−5

head C10H18NO8P 60.1 326 18.4⋅10−5

tails C30H62 32.4 891 -3.6⋅10−5

Cholesterol C27H46O 13.25 629 2.1⋅10−5

Phases ∣∆ρs∣ [nm−2]

H2O ÐD2O 6.89⋅10−4

lipid ÐH2O 0.76⋅10−4

lipid ÐD2O 6.13⋅10−4

Table 2.1: Coherent neutron scattering lengths, component
volumes and scattering length densities for DPPC, its head
and tails, and cholesterol [25]. By comparison, DSPC con-
sists of C7H16NO4P (head group) and C37H72O4 (tails), giving
C44H88NO8P.

Table 2.2: Absolute differences
in scattering length density of
phases under consideration.

in some cases multiplication occurs at temperatures below 25℃ and up to 49℃.
The cells may have flagella and are about 2 µm long and 0.8 µm in diame-
ter [24], with a volume of 0.6–0.7 µm3. Strains that possess flagella can swim
and are motile. There are many different types of E. coli based on the antigen
type: the somatic (O) antigen, the capsular (K) antigens and the flagellar (H)
antigen. There are over 170 O antigens, over 100 K antigens and over 50 H
antigens.

Bacteria do not posses a cell nucleus or any other large structures, but have
their components scattered throughout the cytoplasm. Since none of these are
observable with the techniques used in this study, E. coli will also be considered
as empty vesicles. The strain K12 was selected, since it is safe to handle and easy
to grow, with cell division occurring every 20 minutes under absolutely optimal
conditions. It is also easily-manipulated, making it one of the most-studied
prokaryotic model organisms, and an important species in biotechnology.

2.2.3 Contrast of lipid bilayers

Coherent neutron scattering occurs in materials due to fluctuations in scattering
length density (SLD), defined as the total bound coherent scattering length b
divided by the occupied volume Vm . In this system, the largest SLD-difference
arises between either H2O inside and D2O outside the liposomes and bacteria,
or between their lipid bilayers and the D2O medium. For the lipid bilayers the
average SLD is taken, so that the SLD-profile over the membrane is represented
by a constant. Using the chemical formulas and the mass or number densities
of the compounds, the overall SLD of lipid bilayers can be calculated according
to

ρs =
∑

i

ni bi

∑

i

ni Vm,i
. (2.1)

Estimating the mass densities of the organic compounds to be between 0.8
and 1.0 kg/m3 and using tabulated scattering lengths [26], yields values around
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ρs=2⋅10−5 nm−2 for both liposomesII. This result is irrespective of the 1
3 molar

cholesterol, since it has a similar SLD. The few molar % contributions of the
PEG chains are neglected. Literature values [25] of molecular volumes for
DPPC and cholesterol support these assertions, giving ρs=2.2⋅10−5 nm−2 and
ρs=2.1⋅10−5 nm−2 using eq. 2.1, as summarized in table 2.1. Lacking the
necessary data to calculate the SLD for the membrane of E. coli, the lipsome
values have been used under the assumption that both membranes have an SLD
of the same order of magnitude. H2O and D2O have similar mass densities
of ρ=1.0 and 1.1 kg/m3 respectively, but massively different scattering length
densities of ρs=Ð5.6⋅10−5 and +6.33⋅10−4 nm−2. The resulting SLD-differences
between the lipid membrane, H2O and D2O are listed in table 2.2.

2.3 Experimental

2.3.1 Sample preparation

Liposomes
List of chemicals. — 1,2-distearoyl-sn-glycero-3-phosphorylcholine (DSPC,
with chemical formula C44H88NO8P), 1,2-dipalmitoyl-sn-glycero-3-phosphocho-
line (DPPC with formula C40H80NO8P) and 1,2-distearoyl-sn-glycero-3-phos-
phoethanolamine-N-[methoxy-(polyethylene glycol)-2000] (DSPE-PEG2000
-OMe) were supplied by Lipoid AG, Cham, Switzerland. Cholesterol (C27H46O)
was purchased from Avanti polar Inc., Alabaster, AL, USA.

Formulation. — DSPC and DPPC liposome batches were prepared indepen-
dently. The first batch consisted of 200 µmol total compound amount with
DSPC:cholesterol:DSPE-PEG2000-OMe ratios of 1.75:1:0.25 dissolved 1:1 in
chloroform (CHCl3) and methanol (MeOH). The second batch consisted of 100
µmol with DPPC:cholesterol:DSPE-PEG2000-OMe ratios of 1.85:1:0.15, which
were dissolved 1:1 in dichloromethane (CH2Cl2) and MeOH. Both mixtures were
vacuum-dried to obtain thin lipidic films, which were hydrated and resuspended
in MilliQ. These mixtures were subsequently extruded through polycarbonate
membrane filters with a pore size of 200 nm (ten times) and 100 nm (ten
times), using Lipofast extruder (Avestin, Canada). The temperature during the
extrusion was set around 50℃. The extruded solution was ultra-centrifuged for
60 minutes at 4℃ at 45 krpm (0.30 Mg) and at 40 krpm (0.23 Mg) respec-
tively for both batches, using an ultracentrifuge Beckman L7, rotor 50 Ti. The
pellets were separated from the supernatant and injected into cuvettes with 5
ml D2O.
II Ranging from 1.5⋅10−5 to 1.9⋅10−5 nm−2(DSPC) and from 1.8⋅10−5 to 2.3⋅10−5 nm−2(DPPC).
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E. coli

Wild-type E. coli K12 strains were grown at 37℃ overnight in 200 ml Luria
Bertani medium in 500 ml Erlenmeyer flasks under shaking conditions until a
standard optical density was reached (O.D.=2 using a wavelength of 600 nm).
The cells were spun down using a Jouan CR 4.11 centrifuge at 3.5 krpm at 4℃
for 60 minutes. Wet pellets were re-suspended in D2O after washing with 10
ml D2O to eliminate the excess of water in between the cells. Centrifugation
was repeated and the obtained new pellets were re-suspended in 2 ml D2O
each after vortexing with a home-made bead beater at 2.5 krpm at 4℃ for 30
minutes. Four homogeneous pellets totaling 0.4 g were injected into a cuvet
with 4 ml D2O.

2.3.2 The SESANS Technique

Principles

Spin-Echo Small Angle Neutron Scattering (SESANS) is a non-destructive tech-
nique that probes density correlations in real space directly from 20 nm up to 20
µm. SESANS uses spin-echo to encode small scattering angles of neutrons when
traversing a sample and it measures the effective loss of polarization of a neutron
beam as a function of spin-echo length. This method is used to study the struc-
ture of suspensions of mesoscopic particles and its range of accessible length
scales makes it suitable for a variety of materials, including large colloids [27]
and granular matter [28]. The used SESANS setup consists of a monochro-
matic, polarized neutron beam traveling in the horizontal x-direction through
two magnetic field regions, in between which a sample is placed. Experiments
are performed by varying the magnetic field strength to probe correlations along
the vertical spin-echo length z. The technique is not sensitive to the y-direction
and can be described classically, as the net Larmor precession of neutrons of a
polarized neutron beam [29], or quantum-mechanically, as the vertical splitting
and recombination of two neutron eigenstates, due to their different interaction
with a magnetic field [30, 31]. The polarization P of the beam, normalized
with the empty beam polarization P0, depends on the scattered fraction of the
beam Σ ` and on the normalized, dimensionless function G(z):

P

P0

(z) = eΣ ` [G(z) − 1] (2.2)

where ` is the neutron path length through the sample, i.e., the sample thick-
ness, Σ is the average number of times a neutron scatters per unit length
and G(z) is a measure of the microstructure. It is the projection along the
neutron beam of the density auto-correlation function, which correlates SLD-
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Figure 2.1: A solid sphere of diameter D has a
homogeneous SLD-distribution ρs(r) inside the
sphere, where the average difference ∆ρs is with
respect to the SLD of the medium outside the
sphere.

Figure 2.2: Examples of the projected cor-
relation functions for solid, hollow and filled
spheres, using T =

1
10D for the shell thickness

and s = 0.1 for the core contrast. See the text
for further details.

fluctuations throughout the sample and is denoted γ(r) for isotropic systems,
such as here. Long-range correlations disappear beyond distances zsat, so that
G(z ≥ zsat) = 0, causing the polarization signal to saturate. The amount of
scattering Σ depends on beam and sample properties:

Σ = λ2 ⟨∆ρ2
s ⟩ ξ

binary= λ2 φ
V
(1−φ

V
)∆ρ

2
s ξ (2.3)

with neutron wavelength λ, SLD-variance ⟨∆ρ2
s ⟩ and correlation length ξ. For

a two-phase system the mean-squared SLD-difference can be expressed as the
squared average difference ∆ρ

2
s (contrast) between the two phases, multiplied

with the volume fraction φ
V

of the suspended phase and the medium. The
correlation length ξ is defined as the integral over γ(r) along x at z=0 and can
be interpreted as the average length that neutrons travel through one phase
before encountering another phase, making ξ a measure of typical length scale.

Correlation Functions

For dilute systems, the auto-correlation function γ(r) gives the shared volume
fraction of an object with an overlapping copy of itself. Analytical expressions
for γ(r) and its projection G(z) have been derived for several dilute, monodis-
perse [32] and polydisperse [33] model systems such as solid and multi-layered
spheres, using geometry and calculus.

Solid spheres. — A solid sphere of diameter D has a constant density distri-
bution ρs(r) inside volume Vsphere = 1

6πD3. The density correlation function is
equal to the shared volume fraction of two identical spheres when separated by
a distance 0≤r≤D from center to center. This lens shaped volume consists of
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Figure 2.3: A hollow sphere of diameter D and
shell thickness T has a constant SLD-difference
∆ρs distributed over a spherical shell, with re-
spect to the medium on the inside and the out-
side.

Figure 2.4: The hollow sphere correlation length
ξHS of diameter D as a function of shell thick-
ness T , between the limits of an infinitely thin
shell (T ↓0) and a solid sphere (T = 1

2D).

two equal sphere caps, so that γ
SS
(r)=1−1 1

2
r
D + 1

2 (rD)3 is readily derived. The
analytical expression for the projected correlation function is

G
SS
(z) = R

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
1−(zD)

2 [1+ 1
2
(z
D
)2] + 2(zD)

2 [1− 1
4
(z
D
)2] ln

z
D

1+

√

1−(z
D
)

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

(2.4)
where R denotes the real part. The correlation length of a solid sphere is

ξ
SS
= 3

4
D. (2.5)

Hollow spheres. — A hollow sphere of outer diameterD and shell thickness T
has its density homogeneously distributed in a spherical shell of volume Vshell=
πD2T−2πDT 2+4

3πT 3 and is obtained by subtracting the density distribution of a
sphere from that of a larger sphere. The elaborate expression for the correlation
function (not shown) has been derived analytically by auto-convolution of the
density distribution of the hollow sphere [32]. The projected correlation function
is given by

G
HS

(z;D,T ) = 2
3
F ( 2

D
z, D−2T

D
)/f(D−2T

D
) . (2.6)

The normalization ofG
HS

(z) is performed by the smooth dimensionless function

f(σ) = (1 − σ) (1 − σ3) + 1
2
(1 − σ2)2

ln
1 + σ
1 − σ . (2.7)

with argument 0 ≤ σ < 1, where σ = D−2T
D

is the ratio between inner and outer
diameter. When considering a fixed diameter D, then for an infinitely thin shell
T ↓ 0 gives lim f(σ↑1) = 0, and for T = 1

2D the shell fills the sphere, so that
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Figure 2.5: A filled sphere has two values
∆ρs(r) characterized by the parameter s, as
the core and the shell have separate SLD-
differences with the medium. It is equal to
a hollow sphere for s=0 and to a solid sphere
for s=1.

Figure 2.6: The correlation length ξFS of a filled
sphere of diameter D as a function of shell thick-
ness T , with s ranging from a hollow sphere (s=0)
to a solid sphere (s=1). For infinitely thin shells
(T ↓ 0) only the core remains if s > 0, giving
ξFS =ξSS .

f(σ=0) = 1. From this function the correlation length has been derived, which
is given by

ξ
HS

= 2T

D
(1 + 2

3

D2 − 2DT + T 2

D2 − 2DT + 4
3
T 2

ln
D − T
T

) 3
4
D. (2.8)

For the limiting case of a shell of half the diameter ξ
HS

becomes equal to
ξ
SS

in nearly constant fashion, and for a hollow sphere with an infinitely thin
membrane ξ

HS
can be shown to approach zero nearly linearly. Figure 2.4 shows

the dependency of the correlation length of a hollow sphere on the relative shell
thickness.

F (ζ, σ) expresses the correlations between different parts of the geometry
of a hollow sphere in a dimensionless function

F (ζ, σ) =H(2, ζ) − H(1+σ, ζ) + H(1−σ, ζ)
+ σ4H(2, ζ

σ
) + σ4H( 1−σ

σ
, ζ
σ
) − σ4H( 1+σ

σ
, ζ
σ
)

− 2σ3h1(1−σ, ζ) + 3
8
(1−σ2)2 [h2 (1+σ, ζ) − h2(1−σ, ζ)] .

(2.9)

which is constructed from

h1(α, ζ) = 2R{
√
α2 − ζ2}

h2(α, ζ) = R{ln
2α + h1(α, ζ)
2α − h1(α, ζ)

} (2.10)

H(α, ζ) = (1 − 3
8
α + 1

64
α3 + 3

128
αζ2) h1(α, ζ) − 3

8
ζ2 (1 − 1

16
ζ2) h2(α, ζ)
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using the dimensionless spin-echo length σ and inner–outer diameter ratio ζ

σ = D − 2T

D

ζ = 2z

D

as short-hand symbols.

Filled spheres. — An intermediate model is that of the filled sphere, which
has a solid spherical core with a shell around it. A filled sphere has the density
distribution of a hollow sphere filled with a third phase. The corresponding
correlation function is constructed from the hollow sphere model by addition of
a dimensionless parameter s, defined as the ratio between differences in SLD of
core and shell with the medium:

s = ρcores −ρmedium
s

ρshells −ρmedium
s

= ∆ρcores

∆ρshells
. (2.11)

The projected correlation function for a filled sphere then becomes

G
FS

(z;D,T, s) = 2
3

F (2z
D ,

D−2T
D

) + s
1−s H(2, 2z

D
) − s (D−2T

D
)4 H(2, 2z

D−2T
)

f(D−2TD ) + s
1−s − s (D−2TD )4

.

(2.12)
The behaviour of this correlation function is very close to that of hollow spheres
and solid spheres, when s is close to 0 and 1 respectively. How quickly it deviates
with s from these two cases, depends on the value of T . The difference between
a filled sphere and a hollow sphere is negligable for 0≤ s≲ 2T

D . The correlation
length of a filled sphere is

ξ
FS

=
(1−s) f(D−2TD ) + s − s(1−s) (D−2T

D
)4

1 − (1−s2) (D−2TD )3
3
4
D. (2.13)

An example of the projected correlation functions for dilute, monodisperse solid,
hollow and filled spheres is shown in figure 2.2, using a shell thickness T = 1

10D
for the hollow and filled spheres and a value of s = 1

10 for the filled spheres,
giving their core 10% of the ∆ρs between shell and medium.
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2.3.3 SESANS Experiments

Experiments & Sample stability

SESANS measurements were performed with a neutron wavelength λ=2.09 Å
on the DSPC and DPPC batches of liposomes and on E. coli. All samples were
measured in quartz cuvettes of thickness `=1.00 cm, with volume fractions of
respectively φ

V
=0.02 and φ

V
=0.09 for the liposome and E. coli samples. The

DSPC liposome concentration was found by phosphate determination accord-
ing to Rouser; the E. coli concentration was calculated from the pellet mass,
assuming weight densities equal to H2O and assuming no losses during the final
suspension. Repeat measurements and DLS showed the liposome samples to
remain stable for several days. An onset of sedimentation was observed for the
E. coli after one day, most likely because of cell death as the D2O environ-
ment contained no nutrients. Measurements with lower E. coli concentrations
provided similar data with regards to particle dimensions.

Modeling

Two cases were considered for curve fitting: no H2O–D2O exchange versus
full exchange. All fits were performed using non-linear least-squares regression
with 95% confidence bounds. The first case could be represented by droplets
of H2O in a D2O environment, since the effect of the cell membrane on the
neutron signal would then be negligible. This model consisted of the projected
correlation function G(z) for dilute, monodisperse solid spheres and curve fit-
ting was performed for the amount of scattering and particle size, i.e., the
saturation level Psat and diameter D. In the second case, the H2O would be
extremely diluted throughout the D2Oinside and outside the cells, making the
cell membrane contribute significantly to the signal. This system was mod-
eled as hollow spheres filled with D2O using the G(z) for dilute, monodisperse
spherical shells. Fitting was performed for saturation level Psat, outer diameter
D and membrane thickness T .

Assumptions

All samples were treated as isotropic systems and modeled with analytical ex-
pressions for monodisperse spherical particles. Since the concentrations used
were dilute to semi-dilute, excluded volume effects were insignificant. Sam-
ples without sedimentation were isotropic suspensions, since all particles had
rotational freedom. Particle size distributions were not considered to have a
substantial effect and not included in the modeling, based on the very small
degree of liposomal polydispersity as observed with DLS and the fact that E.
coli multiply through cell-division, causing a uniform and highly monodisperse
population under standard conditions.
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Figure 2.7: Distribution of DSPC and
DPPC liposome diameters acquired by
DLS. The inset shows approximately nor-
mal size distributions on a log-scale.
Curves were fit using a lognormal distri-
bution of arbitrary amplitude. Mean li-
posomal diameters are shown for compar-
ison.

In order to avoid over-parameterization certain assumptions were made. The
liposomes were assumed to be spherical since there was no cause for defor-
mation. As a first approximation, the aspect ratio of the E. coli cells was
disregarded. However, E. coli are more rod-like than spherical with an aspect
ratio of 2.5. The correlation function of a rod differs from that of a sphere,
although arguably less for a hollow body than for a solid one.

2.4 Results

2.4.1 Characterization of liposomes with DLS

To confirm the consistency of the two liposome formulations, dynamic light
scattering was used to establish their size distributions in order to characterize
them by their average diameter and polydispersity. Due to faster degradation,
there was not enough E. coli material available to use DLS to confirm their
monodispersity. Both liposome size distributions had modes (peak-positions)
around 125 nm with an approximately normal distribution of diameters on a
logarithmic scale, as shown in the inset of figure 2.7.

The average diameter and distribution width were acquired by fitting a log-
normal distribution of diameters to the DLS data, using arbitrary amplitude

Parameter Meaning DSPC liposomes DPPC liposomes

µ fit value 4.854 ± 0.004 4.905 ± 0.006
σ fit value 0.174 ± 0.004 0.251 ± 0.005

Dmode [nm] peak 124.4 ± 0.5 126.7 ± 0.8
Dmedian [nm] middle 128.3 ± 0.5 135.0 ± 0.8
Dmean [nm] average 130.2 ± 0.5 139.3 ± 0.9
PDI [–] width 0.094 ± 0.002 0.138 ± 0.003

Table 2.3: Log-normal fit results of the size distribution of DSPC and DPPC liposomes acquired
by DLS. Fit parameters µ and σ were converted to a mean diameter and polydispersity index.



22 SESANS analysis of liposomes and bacteria

Figure 2.8: SESANS data of DSPC liposomes. Figure 2.9: SESANS data of DPPC liposomes.
Both figures include log-scale insets. The curves are fits for the solid and hollow sphere models.

and obtaining parameters µ and σ, see Table 2.3. The distribution width was
expressed by the polydispersity index (PDI), where a large PDI would cause the
mean and median (the diameter halving the population) to shift away from the
mode. The median and mean diameters of the DSPC liposomes were close to
the mode and with a PDI just below 0.1, the DSPC liposomes were effectively
monodisperse particles with a diameter of 130 nm. The DPPC liposomes had
a slightly wider distribution with a PDI of 0.14, resulting in an average size of
140 nm.

2.4.2 SESANS Results

Liposomes

Less than 4% scattering was observed for the liposome suspensions in D2O,
requiring more than half a day of measurement time to reach an acceptable
signal quality such as shown in figures 2.8 and 2.9. For both the DSPC and
the DPPC batch, the polarization saturated at spin-echo lengths zsat above
150 nm and at a saturation level Psat=0.965, where both quantities contained
length scale information. Since the liposomes were approximately monodisperse,
zsat corresponded to the diameter of the liposomes, which also determined
the saturation level through the correlation length (see eq. 2.3 and eq. 2.2
for G(z)=0). The amount of scattering provided a constant for the product
of contrast and correlation length ∆ρ

2
s ξ, where ξSS and ξ

HS
were calculated

according to eq. 2.5 and eq. 2.8 for the solid and hollow sphere models. The
difference in SLD between particle and medium was retrieved as

∣∆ρs∣ =
√

− lnPsat

`λ2 φ
V
(1 − φ

V
) ξ (2.14)



2.4 Results 23

Figure 2.10: SESANS measurement of E. coli
and fit curves for solid and hollow spheres.
The inset shows the same data on a log-scale.

For solid spherical particles of ≈150 nm the correlation length was ξ
SS
=110 nm,

yielding ∣∆ρs∣=1.9⋅10−4 nm−2, which was a factor 3.6 smaller than the H2O–
D2O SLD-difference. For hollow spheres of outer diameter ≈150 nm and shell
thickness ≈5 nm, the correlation length ξ

HS
≈25 nm, which gave ∣∆ρs∣=4.1⋅10−4

nm−2, a factor 1.5 smaller than calculated between membrane and D2O. The
scattered intensity therefore supported the notion that liposomes were better
described as hollow than as solid spheres.

E. coli

About four times more concentrated than the liposome samples, the E. coli
suspension in D2O exhibited an equally larger scattering power. In spite of
only six hours measurement time, an adequate SESANS signal quality could
therefore be reached. The polarization saturated around 88% at spin-echo
lengths above 700 to 800 nm, as shown in figure 2.10. Considering the E. coli
as solid spherical particles of ≈750 nm gave a correlation length ξ

SS
≈560 nm,

yielding ∣∆ρs∣=0.80⋅10−4 nm−2, which was a factor 8.6 smaller than the H2O–
D2O SLD-difference. For hollow spheres of outer diameter ≈750 nm and shell
thickness ≈5 nm, the correlation length ξ

HS
≈35 nm, which gave ∣∆ρs∣=3.3⋅10−4

nm−2, a factor 1.8 smaller than calculated between membrane and D2O. The
amount of scattering therefore indicated that modeling E. coli as hollow spheres
was more appropriate than as solid spheres.

Curve fitting

Describing the SESANS liposome data with the solid sphere model gave rea-
sonable fits, yielding an effective size of 120 nm for both batches with a relative
error of 8%, see table 2.4. Fitting the hollow sphere model to the data pro-
duced an apparently better fit for DSPC and worse for DPPC liposomes, with
diameters of 150 and 170 nm and shell thicknesses around 10 nm, as shown in
table 2.4. The relative errors were 7% and 15% for the diameters and 40% and
90% for the shell thicknesses, showing that the data were not very sensitive for
T . This was supported by the small correlations of T with the other param-
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Para-
meter

DSPC liposomes DPPC liposomes E. coli
Solid Hollow Solid Hollow Solid Filled
sphere sphere sphere sphere sphere sphere

Psat [%] 96.5± 0.1 96.4± 0.1 96.6± 0.1 96.5± 0.1 86.6 ± 0.9 88.3± 0.5
D [nm] 122± 9 152± 11 121± 11 169± 25 718± 106 818± 98
T [nm] – 13± 5 – 10± 11 – 8± 44
s [–] – – – – – 0.06± 0.26
g.o.f. χ58

2
= 2.27 χ57

2
= 1.37 χ48

2
= 1.38 χ47

2
= 2.08 χ28

2
= 3.22 χ26

2
= 0.97

Table 2.4: Fit results of SESANS measurements of liposomes and E. coli, modeled as solid,
hollow and filled spheres. Parameters are the polarization saturation level (scattering power)
and particle dimensions. Filled sphere E. coli values were obtained in the hollow sphere limit,
with s approaching zero. Goodness-of-fit indications are given by χ2

k, where k equals the number
of measured points minus the number of fitted parameters.

eters, as seen in table 2.5, which also shows that cross correlations between
parameters were acceptably low for both models. The largest interdependency
was observed between the saturation level Psat and the particle diameter D,
which were connected through the correlation length.

Modeling the E. coli data as monodisperse, solid spheres produced a diameter of
720 nm with a relative error of 15%, but did not capture the initial decay of the
measured data, see figure 2.10. The hollow sphere model seemed to produce
better fits, with a sharper initial decay. Minimizing χ27

2 to 1.51 produced a
saturation level Psat=0.885±0.007, an outer diameter D=815±133 nm, but an
unphysical shell thickness of T=120±30 nm. These hollow sphere values are
not shown in table 2.4. Using the filled sphere model helped to avoid this pitfall,
producing the same saturation level and outer diameter, as well as a realistic
shell thickness. The extra degree of freedom in this model was parameter s,
the ratio between the ∆ρs values of the core and the shell, both with respect
to the medium. A jump in the value for T to the unphysical range appeared
when s<0.0735, which was established by fitting with s fixed increasingly closer
to zero.

As shown in table 2.4, fitting with filled spheres without constraints produced
a physical but imprecise value of T=7.7±43.5 nm. The value s=0.064 was small
enough to effectively represent a hollow sphere, as the core–medium contrast
had a negligible contribution to the overall 3-phase contrast, corresponding
to a mere 3.6‰ of the shell–medium contrast. Since the hollow and filled
sphere models gave identical curves at these parameter values, these E. coli
dimensions were taken as an appropriate fit. Relative errors of the diameter
and shell thickness were 12% and 565%, with small correlations between T and
the rest of the model. The very large uncertainty for T meant, that even though
T could be established to be small compared to D, it could not be quantified
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Para-
meter

DSPC liposomes DPPC liposomes E. coli
Solid sphere Hollow sphere Solid sphere Hollow sphere Solid sphere Hollow sphere

Psat D Psat D T Psat D Psat D T Psat D Psat D T

Psat 1 0.4 1 0.5 0.2 1 0.4 1 0.4 0.3 1 0.5 1 0.6 0.2
D 0.4 1 0.5 1 0.0 0.4 1 0.4 1 0.2 0.5 1 0.6 1 0.1
T – – 0.2 0.0 1 – – 0.3 0.2 1 – – 0.2 0.1 1

Table 2.5: Correlations between parameters of solid and hollow sphere models fitted to SESANS
data of DSPC and DPPC liposomes and E. coli bacteria. Psat is the polarisation saturation
level, D is the particle diameter and T the shell thickness for hollow spheres.

accurately from this data. The cross correlations between all parameters were
similar to those of the liposome fits, see table 2.5.

2.5 Discussion

2.5.1 Measurement results

The DSPC and DPPC liposomes gave close to identical fit results using the
solid sphere model and similar, but less accurate fit results for the hollow sphere
model. The hollow sphere model exhibited a larger sensitivity to the shorter
spin-echo lengths within the resolvable range, than the solid sphere model.
Therefore the differences between the hollow sphere results of DSPC and DPPC
were attributed to the number of sampled spin-echo points below 150 nm. The
statistical quality of the measurements did not allow for any extension of the
modeling to include concentration effects, anisotropy, aspect ratios or polydis-
persity. The amounts of scattering from the DSPC and DPPC liposomes and
from the E. coli cells suggested that these samples with D2O medium were
better described by hollow spheres than by solid spheres. The SESANS observa-
tions were in better agreement with the contrast between lipid membranes and
D2O than with the contrast between H2O and D2O. The shells with mostly
hydrogen-atoms were therefore more likely enclosing D2O-cores than H2O-cores.

Results of curve fitting of the liposome data were ambiguous, finding a better
hollow sphere fit for DSPC and a better solid sphere fit for DPPC, despite
the strong similarities between the raw data of both samples. Comparison
with DLS results showed best agreement between solid spheres, with diameters
of 120 nm, and the modes of the size distribution at 125 nm. The hollow
sphere models produced 15% and 20% larger particle sizes of 150 and 170
nm for DSPC and DPPC than the mean diameters of 130 and 140 nm as
observed by DLS. However, since the DLS characterisations were performed
after the SESANS measurements and liposome samples are only semi-stable, it
is possible that the size distributions had shifted to somewhat smaller averages.
The shell thicknesses of the hollow spheres were determined to be between
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0 and 20 nm by fitting, where the data did not allow for a more accurate
assessment. The findings were nevertheless in reasonable agreement with the
expected value of 5 nm, which is commonly reported for the thickness of a
lipid bilayer membrane without PEGylation, and with the expected value of
about 10 nm for a membrane with PEG-brushes grafted to each side. E. coli
cells are known to have a cell length of 2 µm, a diameter of 0.8 µm and a
cell wall thickness of about 5 nm. The filled sphere model agreed best with
these expected values close to the limit of a hollow sphere, i.e., near zero
contrast between inside and outside, finding a diameter of 820±100 nm and
a thickness of 8±40 nm. The large uncertainties found in the diameter and
thickness were due to the aspect ratio of the rod-like bacteria and because the
cell wall is sandwiched between a thin plasma membrane and a thick outer
membrane capsule. Since E. coli multiply through cell-division, a high degree
of monodispersity was expected, but this could not be confirmed with DLS
due to lacking supplies of the fast degrading bacteria and their shape, which
complicated analysis.

2.5.2 Outlook

When a change in SESANS curve shape and/or polarization saturation level is
observed in experiments, a change in structure, concentration or contrast can
in principle be deduced. It is therefore worthwhile to investigate if SESANS
could be applied to study such a change in a biological system.

Liposomes can be destroyed by external factors, such as ultrasound, or taken
up and broken down through endocytosis by much larger cells, such as tumor
and white blood cells, or macrophages. Typical diameters of tumor cells are
5≤D≤7 µm in rats and 10≤D≤20 µm in humans, whereas macrophages are
about 13 µm in rats and about 21 µm in humans. SESANS measurements have
already been performed on tumor cells from the rat pancreatic CA20948 tumor
cell line with an approximate diameter of 6 µm, but only low concentrations
were available, causing too little scattering for a significant signal to be dis-
cerned. However, we can still show through a simple calculation that a change
in liposome population in situ may constitute a noticeable signal change.

Consider a dilute system of small liposomal vesicles and of much larger cells,
so it can be considered a bimodal distribution of spherical particles, say types
A and B. Take their size distributions as approximately monodisperse and let A
and B have similar contrasts with respect to the medium. The shape and level
of a SESANS curve then depend only on whether these particles are solid or
hollow in nature and on the two scattering contributions. If these contributions
are not comparable, then the curve will merely show the signal of the particles
which scatter the most: the presence or absence of the other particles cannot
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Figure 2.11: Predictive calculation of the
SESANS signal of a mixed liposome and
a rat tumor cell system, both modeled as
hollow spheres. Signals are shown before
and after decimating the liposome popu-
lation, and consist of scattering contribu-
tions of both particles as well as the cor-
relations up to spin-echo lengths z of 0.13
µm and 6.0 µm, which are the diameters
used for the liposomes and the tumor cells.
Further details are given in the text.

be observed. If the amounts of scattering are comparable, then the measured
signal is sensitive to the removal of smaller particles from the system. This can
affect both the shape of the curve, through the disappearance of a kink at the
diameter of the smaller particle, and the saturation level, as the total amount
of scattering is altered.

The scattering contributions for both types A and B depend on the two
correlation lengths and volume fractions, and will be comparable for similar
products φ

V
(1−φ

V
)⋅ξ. In the dilute regime cross-correlations can be neglected,

which gives a simple description of the signal as

P

P0

(z) = exp{`λ2 ∆ρ
2
s [φ

V,A ξA (G
A
(z)−1) + φ

V,B ξB (G
B
(z)−1)]} (2.15)

For solid spheres the correlation length scales with the diameter and is there-
fore much larger for the large particles. The correlation length of large hollow
spheres is however much smaller than of small hollow spheres with the same
shell thickness. An example calculation is shown in figure 2.11 for a system of
50 mg liposomes, 25 mg rat tumor cells and 5.5 grams of D2O, corresponding
to volume fractions of 1.0% and 0.5% for the liposomes and tumor cells. This
gave a total sample volume of 5.0 ml. A standard sample thickness of `=1.00
cm was used for the calculation and a wavelength λ=6 Å, was taken to increase
signal strength. Liposomes and tumor cells were modeled as hollow spheres of
130 nm and 6 µm with a lipid bilayer membrane thickness of 5 nm, giving
correlation lengths of 24 nm and 43 nm respectively. For the ∆ρs between
membrane and D2O the value 6.13⋅10−4 nm−2 from table 2.2 was used.

The situation afterwards was calculated by removal of 90% of the lipo-
somes, corresponding to exactly 1.8⋅105 liposomes per tumor cell. The tumor
cell and D2O fractions (mole, mass and volume), as well as the total sample
volume were hardly affected with less than 1% difference and were therefore
neglected. In the unlikely case of massive endocytosis by tumor cells, the tu-
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mor cell volume would only change significantly when internalizing more than
∼10,000 liposomes. When modelling with solid spheres about 100 times less
liposomal and tumor material was required for good signal strength, but the
differences before and after were much less pronounced.

2.6 Conclusions

Liposomal vesicles and E. coli bacteria have been observed in their entirety by
SESANS. Samples have been prepared in H2O and resuspended in D2O; a state
of relative neutron invisibility for the membrane and other cellular components,
leaving solid spherical droplets of H2O in D2O. However, the liposomes and E.
coli data from SESANS are better described with the projected correlation func-
tion for a hollow sphere, as they exhibit little scattering and a sharp initial decay
of the polarization curves. It is therefore evident that the H2O/D2O-exchange
has occurred before or during the initial stages of the SESANS measurements,
i.e., within at most half an hour. To observe H2O/D2O-exchange measurement
times need to be reduced drastically, requiring higher neutron fluxes, preferably
in combination with a larger wavelength than available for this study. Fulfilling
these prerequisites should make SESANS a viable alternative to in vitro tritium
studies, since tritiated water has more undesirable properties than deuterated
water.

Fit results using the hollow sphere model are in reasonable agreement with
DLS for liposomes and in good agreement with literature on E. coli, but better
statistics are required for accurate quantitative fitting, especially in the low spin-
echo range. Although no new insights have been obtained on liposomes and E.
coli themselves, the results constitute a proof-of-principle that SESANS is able
to non-invasively observe entire microscopic biological entities with typical sizes
between 50 nm and 20 µm in bulk. Under the right conditions it may be possible
to observe changes in a system composed of two different biological species,
as has been shown for a mix of small particles (e.g., liposomes) and large cells
(e.g., tumor cells). Considerable change in signal requires great numbers of
small particles to disappear per large cell. Here SESANS may be an additional
tool for drug delivery studies, where liposomes are destroyed by external means
to release drugs at the tumor site.
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CHAPTER 3

Milk gelation studied with neutron scattering and simulations

Léon F. van Heijkamp, Ignatz M. de Schepper, Markus Strobl, R. Hans Tromp, Jouke R.
Heringa, Wim G. Bouwman, ’Milk gelation studied with Small Angle Neutron Scattering
techniques and Monte Carlo simulations’, J. Phys. Chem. A 114 (2010) 2412-2426.
The symbol $ in this chapter corresponds to θ in the original publication.

Abstract

The sol–gel transition of fat-free milk by acidification was studied with neutron
scattering experiments and Monte Carlo simulations. Spin Echo Small Angle
Neutron Scattering (SESANS) and Ultra Small Angle Neutron Scattering (US-
ANS) experiments were performed to measure the static structure of milk and
yoghurt, as well as the aggregation kinetics. Colloidal gelation was simulated
from a reaction limited domain (RLCA) to the diffusion limited regime (DLCA)
as cluster–cluster aggregation of adhesive, hard spheres on a 3D lattice. Com-
parisons were drawn between experimental and numerical correlation functions.
Milk was modeled as a suspension of casein micelles in water and its structure
was described as a a dilute log-normal size distribution of solid spheres. The
structure and formation of yoghurt were described with a self-affine model, used
for systems containing heterogeneities with a wide range of sizes.

Observations by SESANS and USANS of milk particle sizes and yoghurt
length scales were consistent and agreed well with literature. Kinetic USANS
data yielded reliable information about the growth of typical length scale during
aggregation. The simulation model predicted the measurement data qualitatively
best staying close to the RLCA-regime until large structures had formed. Corre-
lation lengths were in good quantitative agreement, but longest simulated length
scales were a factor 2 1

2 below experimental findings. We conclude that small,
mobile aggregates are formed during the first three hours, mostly influencing the
dimensionality of the system and that large, inert structures are formed from two
up to eight hours, which determine the typical length scale.
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3.1 Introduction

It can be a challenging endeavour to observe the bulk structure of colloidal
dispersions in biology and industry. Many health care and food products

consist of, or are prepared from, colloids. Typical materials are often concen-
trated and opaque and may contain particle sizes over several orders of mag-
nitude. Milk is such a colloidal suspension, and the formation of yoghurt from
milk is hard to observe in bulk using conventional methods, such as microscopy
or light scattering. Yoghurt is formed by the aggregation of milk particles sus-
pended in water [34, 35]. Its texture is determined by the mechanism and
kinetics in which the structure is formed. A gradual increase of acidity from
pH=6.8 to pH≈4.5 causes the casein micelles to aggregate into large clusters,
which subsequently form a percolating network [36]. Figure 3.1 depicts two
casein micelles in contact. After about a half to a full day all large clusters
have aggregated, forming a gel.

The aggregation of milk particles can be studied using image analysis of
optical microscopy, but not inside the sample and only for a limited number
of particles [37]. Conventional light scattering is also widely employed, but
on extensively diluted samples. Glatter et al. have measured the gelation of
milk by means of Dynamic Light Scattering (DLS) on very thin samples [38],
which could be disputed to contain bulk information [39]. Gel formation can
be measured using rheology, even though applied mechanical stress and strain
disturb the developing gel [40].

Small Angle Neutron Scattering (SANS) is widely employed as a non-de-
structive method to measure the form factors of suspensions of mesoscopic
particles. However, the scattering from particles larger than 100 nm falls within
the beam stop and cannot be observed [41]. Ultra Small Angle Neutron Scat-
tering (USANS) and Spin-Echo Small Angle Neutron Scattering (SESANS) are
more suitable than SANS to study such large structures as certain colloids,
gels, foams and granular matter [27, 28]. SESANS uses spin echo to encode
the scattering angle. It probes density correlations in real space directly from
20 nm up to 20 µm, overlapping the resolved SANS range, but observing much
larger particles. USANS provides a resolution in reciprocal space of the or-
der of 10−5 Å−1 , which is much higher than SANS, so that intensities can be
measured corresponding to µrad in scattering angles and to µm structures in
real space [42]. SESANS does not suffer from the inverse relationship between
measured intensity and resolution, as opposed to SANS and USANS, nor does
it require beam collimation, as opposed to traditional SANS [43, 44].

Aggregation of colloidal particles can be numerically simulated in 3D as
random movements on a grid of clusters of hard spheres, which may bond
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Figure 3.1: Cartoon of two casein micelles coming into contact. Because of a short-range repulsive
interaction, these micelles behave like hard spheres. An increase in acidity, heat or enzymatic
activity can destabilize the micelles, weakening their repulsion. Mutual contact then leads to
bonding, causing aggregation and eventually flocculation of the suspension.

when occupying neighboring positions. Much work has been done on Diffusion
Limited Cluster–cluster Aggregation (DLCA)[45–48] by means of Monte Carlo,
simulating systems with very high reactivity with respect to the particle diffu-
sion. During yoghurt formation however, the reactivity of the casein micelles is
initially negligible and increases over time as the pH decreases. A Monte Carlo
simulation of this gelation process should therefore commence in the Reaction
Limited Cluster–cluster Aggregation (RLCA) domain with a time-dependent
reactivity.

In this paper we present SESANS and USANS observations of the gelation
of milk and Monte Carlo simulations to numerically model these observations.
The bulk microstructure of casein micelles, as well as the structure and forma-
tion kinetics of yoghurt are determined experimentally, to which a log-normal
distribution of solid spheres and a self-affine model are fitted respectively. An
increasing reaction rate simulates the production process of actual yoghurt and
the calculation of numerical correlation functions at various stages allows for
comparison to the experiments.

3.2 Theory

3.2.1 The SESANS Measurement Technique

Principles

Spin-Echo Small Angle Neutron Scattering is a real space technique that mea-
sures length scales by encoding small angle scattering as depolarization. The
method can be described classically by the net Larmor precession ∆ϕ [29] as
figure 3.2 shows, or quantum-mechanically, by the splitting and recombination
along the vertical spin-echo length z of two neutron eigenstates, due to their
different interaction with a magnetic field [30, 31]. The SESANS setup con-
sists of a monochromatic, polarized neutron beam traveling in the horizontal
x-direction through two magnetic field regions, in between which a sample is
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Figure 3.2: Side view schematic of the SESANS setup, consisting of two identical magnetic fields
with inclined faces but opposing field-strengths B, through which neutrons will precess with
angles ϕ1 and ϕ2. Diffraction of the polarized neutron beam over a sample in between the two
regions over a small angle 2θ will result in ∆ϕ≠0, measured as depolarization.

placed. Experiments are performed by varying the magnetic field strength to
probe correlations along z from 20 nm up to 20 µm . The technique is not
sensitive to correlations in the y-direction. When neutrons are scattered over
small angles by a sample, the polarization encoded by the first magnetic region
cannot be fully restored by the second, resulting in apparent depolarization of
the beam. The measured polarization P is normalized with the empty beam
polarization P0 . The normalized polarization depends on the coherently scat-
tered fraction Σ ` of the beam when traversing a path length ` equal to the
sample thickness, and on the normalized, dimensionless function G(z):

P

P0

(z) = eΣ ` (G(z) − 1). (3.1)

The polarization signal saturates when long-range correlations in a sample dis-
appear beyond distances zsat, with G(z ≥ zsat) = 0. Here the beam fraction
retaining polarization is equal to the probability for a neutron not to scatter:

Psat ≡ lim
z→∞

P

P0

(z) = P

P0

(zsat) = e−Σ `. (3.2)

G(z) is a measure of the microstructure. It can be shown that G(z) is the
projection along the neutron beam of the correlation function of the sample
densities [32, 49]. Since these are commutative operations, G(z) is also the
projection of the density auto-correlation function γ(x, y, z). This correlation
function is symmetric by definition and the SESANS technique is not sensitive
to the y-component, so that

G(z) = 2

ξ

∞

∫
0

γ(x,0,z) dx, (3.3)

where G(z) is normalized with the correlation length ξ

ξ ≡ 2

∞

∫
0

γ(x,0,0) dx. (3.4)
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The correlation length can be interpreted as the chord length of a phase, i.e.,
the average length that neutrons travel through a phase of a structure before
encountering another phase. Since movements of large colloidal particles in
a solute are negligible with respect to neutron speeds, we assume that the
density correlation function is independent of time [50]. The scattering length
density ρs (SLD) has units of inverse area and is defined as the total coherent
scattering length of a phase divided by its volume, so that ρs = N bcoh with
number density N and coherent scattering length bcoh. Scattering occurs at
inhomogeneities of materials, due to their difference in ρs. Correlations between
the SLD fluctuations in volume V at all points separated by the vector r⃗ =
(x, y, z) are described by the normalized, dimensionless function γ(r⃗):

γ(r⃗) = 1

⟨∆ρ2
s ⟩

⟨∆ρs(0) ∆ρs(r⃗)⟩
V

= 1

⟨∆ρ2
s ⟩ V

∫
V

∆ρs(r⃗′) ∆ρs(r⃗′ + r⃗) dr⃗′. (3.5)

The coherently scattered fraction of the beam per unit of sample thickness is

Σ = − lnPsat

`
= λ2 ⟨∆ρ2

s ⟩ ξ (3.6)

with neutron wavelength λ and SLD variance ⟨∆ρ2
s ⟩. This variance of the

density inhomogeneities is equal to the mean squared SLD fluctuation ⟨ρ2
s ⟩ −

⟨ρs⟩
2
, which is related to the chemical composition. In binary systems, solely to

be considered henceforth, it reduces to ⟨∆ρ2
s ⟩

binary= φ
V
(1−φ

V
)∆ρ

2
s with volume

fraction φ
V

and contrast ∆ρ
2
s , which is the squared average SLD-difference.

For isotropic systems, r⃗ reduces to the scalar distance r = ∣r⃗∣ and the projection
of γ(r) is performed by the Abel transform:

G(z) isotropic= 2

ξ

∞

∫
z

r√
r2−z2

γ(r) dr, (3.7)

ξ
isotropic= 2

∞

∫
0

γ(r) dr. (3.8)

In the case of dilute, monodisperse solid spheres of radius R, the correlation
function γ

SS
(r;R) is a third-degree polynomial [32] for 0 ⩽ r ⩽ 2R and zero
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elsewhere:

γ
SS
(r;R) =

⎧⎪⎪⎨⎪⎪⎩

1 − 3
2
( r

2R
) + 1

2
( r

2R
)3

if 0⩽r⩽2R

0 if r>2R.
(3.9)

The projection of γ
SS
(r;R) is given by

G
SS
(z;R) = R

⎡⎢⎢⎢⎢⎣
(1+ 1

2
ζ2)

√
1−ζ2 − 2ζ2 (1− 1

4
ζ2) ln

1+
√

1−ζ2

ζ

⎤⎥⎥⎥⎥⎦
, (3.10)

where ζ = z
2R . This system has a correlation length of ξ = 3

2
R.

Log-normal Distributions

In the case of polydisperse particles a size distribution has to be applied to
either γ(r;R) or G(z;R), preferably to the latter for numerical convenience.
The logarithm of the casein micelle sizes can be accurately described with a
normal distribution [34] with mean µ and standard deviation σ. Applying the
log-normal probability distribution function (eq. A.1) to the projected correlation
function for a solid sphere (eq. 3.10) gives

G
LN

(z;µ,σ) = 1

σ
√

2π

Rmax

∫
0

G
SS
(z;R)
R

exp

⎡⎢⎢⎢⎢⎣
−( lnR −µ

σ
√

2
)

2 ⎤⎥⎥⎥⎥⎦
dR, (3.11)

with correlation length ξ = 3
2
⟨R⟩. The average radius of a log-normal distri-

bution is ⟨R⟩ = R0 e σ
2
/2, with median radius R0 = eµ. When applying this

distribution, integration must be performed up to a variable integration limit
Rmax, which should be large enough to ensure that the most relevant sizes are
included. Rmax can be established from the inverse of the cumulative distri-
bution function (see the appendix). Eq. 3.11 can be used for systems ranging
from nearly monodisperse to very polydisperse, but computations can become
too slow for fitting purposes. For SESANS measurements this approach works
for average radii up to only several micrometers.

A more robust expression can be derived to tackle the problem of the variable
integration limit. Substitution of R by z

2ζ gives:

G
LN

(z ∶ µ,σ) = 1

σ
√

2π

1

∫
ζmin

G
SS
(2ζ; 1) exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎡⎢⎢⎢⎢⎢⎣

⎛
⎝

ln z
2ζ −µ
σ
√

2

⎞
⎠

2

+ ln ζ

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
dζ, (3.12)

thereby reducing the integration range and the effect of the singularity at R=0
(see the appendix). The lower integration limit ζmin ≠ 0 may be as small as
10−307, depending on available numerical accuracy. Not only is this method
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faster, it can also handle an extremely wide range of distributions, from atomic
to macroscopic, with half-widths at half-maximum from 0.05 Å to ∼1 cm. For
SESANS purposes this is anything wider than a δ-peak.

Self-affine materials

Yoghurt is a bi-continuous gel with both solid and liquid characteristics, as it
consists of a continuous water phase and a continuous solid phase. It is formed
by acidification of milk, which causes aggregation of the milk protein micelles.
During flocculation, large micelle clusters form in the continuous water phase,
which grow and attach to one another without sedimentation. At a certain
point, a percolating network forms, causing a phase inversion as the solid phase
becomes continuous. Finally, all remaining clusters will attach to the network
to form a jammed configuration and complete the sol-gel transition. On a
macroscopic scale yoghurt appears to be a homogeneous substance.

Figure 3.3: Yoghurt as seen through a
Confocal Scanning Laser Microscope.
The solid phase is a sponge-like
protein network, constructed out of
clusters of casein micelles. The con-
tinuous water phase is contained in
the pores of the solid framework,
creating a bi-continuous gel with both
solid and liquid characteristics.

However, Confocal Scanning Laser Micro-
scopy reveals the microstructure of yoghurt
to be strongly inhomogeneous, consisting of
branched chains. Figure 3.3 shows the con-
tinuous protein network to resemble a sponge
with pores of many sizes, encapsulating the
water-phase. Casein micelles are transported
by Brownian motion and need to come into
contact in order to cluster. The speed of the
aggregation process depends on the number
of collisions and the amount required for clus-
tering. The gel time is therefore determined
by reactivity and diffusion. Considering con-
stant temperature, and thus fixed viscosity of
water, and assuming equal composition for all
micelles, the transport of a casein micelle is
determined by its mass.

Colloidal particles can aggregate through nucleation into fractals. These
structures have a non-Euclidean geometry and are self-similar, meaning that
for a wide range of length scales their pieces can be rescaled and reoriented to
resemble the larger whole. Because of this scale-invariance, the mass of these
fractals propagates as a powerlaw through the enveloping space. The density
of clusters formed from micelle monomers is therefore ρ(r) ∝ r dF−dE with
Hausdorff dimension dF inside envelope space dE . The Hausdorff dimension is
0≤dF ≤dE and not necessarily integer, hence the name fractal dimension. The
fractal dimension dF can be obtained from the number of self-similar structures



38 Milk gelation studied with neutron scattering and simulations

N(ε) of linear size ε needed to cover the whole structure:

dF = − lim
ε→0

logN(ε)
log ε

(3.13)

This opposed to the enveloping space, which has integer dimensionality dE ∈
{0,1,2,3}, analogous to the Euclidean objects dots, needles, membranes and
spheres. To obtain bulk information on aggregating structures, 3D systems
need to be considered, thus henceforth dE =3.

Self-affine materials have less stringent criteria for self-similarity. Systems
containing heterogeneities with a wide range of sizes can be described with self-
affine models. The density distribution of such a system is self-similar in overall
appearance, but the scaling is not necessarily identical in different directions.
It is nevertheless statistically identical to itself within a certain range of sizes
and can therefore be described as a powerlaw with cut-offs. Cluster–cluster
aggregation produces a network of clusters and pores, both of many sizes,
and is thus more likely to create random self-affine structures, than the more
isotropic fractal structures seen in large single clusters produced by aggregating
monomers only.

The microstructure of yoghurt is formed through aggregation of clusters of
micelles, which have a certain compactness and size. The dimensionality dF of
the aggregates is determined by the diffusion versus the reactivity regime. Two
regimes can be distinguished:

• Diffusion Limited Aggregation (DLA) [46, 51], which forms open, tree-like
structures with dF = 2.5

• Reaction Limited Aggregation (RLA) [52], which forms more dense, cloud-
like structures with dF ≈2,

where both values apply to 3D systems. The actual dimensionality for RLA
clusters depends on how small the reactivity of monomers is compared to their
diffusion, reaching Brownian diffusion trajectories with dF ≡2 in the limit for zero
reactivity. RLA clusters are more dense than DLA clusters and therefore leave
larger cavities, when considering equal average densities, i.e., equal amounts
of particles aggregating in equal volumes of space. RLA clusters from equal
concentrations of particles are therefore overall less space filling, in spite of
their higher local densities, and consequently have a lower dimensionality than
DLA clusters.

Analogous to DLA and RLA, two regimes are distinguished for cluster–cluster
aggregation: DLCA and RLCA, which respectively correspond to high and low
reactivity for equal cluster mobility. The reactivity and initial concentration
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of suspended monomers determine the distribution of cluster shapes and sizes
formed during the flocculation stage and the time scale of the process. The
particles are assumed to have a constant density, i.e., not to overlap when
aggregating. A minimal concentration is required for a percolating structure
to form; RLCA requires more monomers for percolation than DLCA, since low
reactivity induces compactness of the aggregates. Conversely, at high volume
fractions the configuration might already be jammed, giving an upper-limit
to the suspendable concentration and drastically reducing gel time. Gimel et
al. [46] observed this in simulations at volume fractions of monomers above
31%. A constant volume fraction in the mid-range of 10% will be assumed
from now on.

No analytical expression has been derived for the correlation function γ(r)
or the projected correlation function G(z) of such a system. For a pure fractal
the correlation function γ(r) is described by a powerlaw of r with power dF −
dE . Self-affine systems resemble themselves on different length scales and also
show a powerlaw behaviour. These media contain heterogeneities with a wide
range of sizes. A self-affine model might be appropriate to model yoghurt as
an isotropic random network of fractal entities. The Von Kármán correlation
function describes density distributions of random self-affine media [53, 54] as

γ
SA

(r;a,H) = 2

Γ(H) ( r
2a

)
H

KH (r
a
) (3.14)

with typical length a and Hurst exponent H, where Kn is the modified Bessel
function of the second kind and Γ is the Gamma function. The correlation
length ξ depends on a and H [32]:

ξ
SA

= 2
√
πa

Γ(H+ 1
2
)

Γ(∣H ∣) . (3.15)

The Hurst exponent is half the difference between fractal dimension dF and
Euclidean dimension dE , describing the dimensionality of 3D-systems as

H
3D= 1

2
(dF − 3) . (3.16)

The analytical projection of the isotropic Von Kármán correlation function [32]
is

G
SA

(z;a,H) = γ
SA

(z;a,H+ 1
2
). (3.17)
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Position Sensitive
Detector

Neutrons

Sample
Position

Monochromator

Analyser

Figure 3.4: Top view schematic of the V12a USANS setup, consisting of an asymmetric perfect
Silicium crystal monochromator and a completely asymmetric Silicium bent-crystal analyzer.
The curvature of the analyzer causes slightly differing Bragg conditions along the crystal and
therefore the neutrons are reflected with respect to their Q⃗-values. The corresponding coordi-
nates in k-space relate to different positions in real space in the analyzer.

3.2.2 The USANS Measurement Technique

Principles

When neutrons scatter, they undergo a momentum transfer h̵ Q⃗. In Ultra Small
Angle Neutron Scattering on an isotropic sample, the scattering is observed as
broadening of the direct beam peak. Intensities are measured as a function of
the wavevector transfer Q⃗ of the scattered neutrons, i.e., the resultant between
the incident and scattered wavevectors. Its modulus is proportional to the sine
of half the scattering angle θ

Q = ∣Q⃗∣ ≡ ∣k⃗out − k⃗in∣ =
4π

λ
sin

θ

2
(3.18)

and by applying Bragg’s law of diffraction to neutrons, i.e., λ = 2d sin θ
2 with

distance d, it is evident that Q = 2π
d corresponds to the inverse of a typical

length scale in the sample.

Figure 3.4 illustrates the V12a USANS setup, which consists of two single crystal
slabs. The first is a monochromator, which reflects a wavelength symmetrically.
The larger analyzer crystal is asymmetric and bent in order to reflect the in-
tensity onto a 2-dimensional position sensitive detector (PSD). Conventional
USANS setups rotate the analyzer to obtain a rocking curve. The advantage of
this setup is its use of the full neutron bundle exiting the sample, thereby gain-
ing in intensity. The instrumental resolution in Q⃗ is tunable by the curvature
of the analyzer at the expense of its Q⃗-range. The disadvantages of the rela-
tively long analyzer crystal are that it is limited to single reflections and that it
induces asymmetries in the signal, mainly due to attenuation. For a monochro-
matic neutron beam, the intensity scattered onto the detector depends on the
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microscopic differential cross-section dσ
dΩ (Q⃗) [42]

Is(Q⃗) = c dσ

dΩ
(Q⃗) (3.19)

where c is a scaling constant containing properties of the neutron beam and the
sample. The cross-section is the property under investigation for any scattering
experiment, giving information about the microstructure, usually by means of
expressions for form and structure factors. It is also the Fourier transform of
the density correlation function:

dσ

dΩ
(Q⃗) =

RRRRRRRRRRRRR
∫
V

∆ρs(r⃗) eiQ⃗dr⃗

RRRRRRRRRRRRR

2

= V ⟨∆ρ2
s ⟩∫

V

γ(r⃗) eiQ⃗dr⃗ (3.20)

Since USANS involves a projection of Is(Q⃗) and SESANS involves a projec-
tion of γ(r⃗), USANS measurements yield the inverse-space equivalent of the
projected density correlation function G(z).

Measured intensity

In USANS, the scattered intensity contains information in one direction perpen-
dicular to the beam, with a resolved range roughly identical to SESANS. For
elastic scattering, the momentum transfer is zero in the direction of the beam,
so that Q⃗ = (Qy,Qz). The measured intensity Im(Qz) consists of a scattered
signal, a part of the incident beam and a background contribution Ib, with Σ `
the scattered fraction of the incoming beam. Due to slit-height smearing, both
the direct and scattered beam are projected in the y-direction and subsequently
convoluted with the instrumental resolution, yielding the resolution function
R(Qz) for the direct beam and R(Qz) ⊗ Is(Qz) for the scattered signal. The
measured intensity therefore becomes [42]

Im(Qz) = ∫ R(Qz−qz) [∫ Is(q⃗) dqy]dqz + (1−Σ `)R(Qz) + Ib. (3.21)

Scattering function

The Fourier transform of the Von Kármán correlation function (eq. 3.14) is a
Lorentzian function, raised to the power H+ 3

2
, yielding the isotropic scattering

function

Is(Q;a,H) = c 4πa3 (2H+1)
[(aQ)2 + 1]H+

3
2

. (3.22)
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The analytical projection of this function is facilitated by the symmetry of
Lorentzians, allowing for a bisection of the integration range:

Īs(Qz;a,H) = 2

∞

∫
0

Is(
√
qy2+Qz

2) dqy =
√
π

a

Γ(H+1)
Γ(H+ 3

2
) Is(Qz;a,H−1

2
) (3.23)

Data analysis

The reduced measured data can be described with a length scale a, dimensional-
ity H and scattered fraction Σ `, the latter which can be (optionally) expressed
as function of a and H if the contrast of the sample is known. For a given
background level Ib and using the convolution of Īs(Qz;a,H) with R(Qz), the
fitting expression becomes:

Ifit(Qz;a,H) = Σ ` I0(a,H) Iconv(Qz;a,H) + (1−Σ `) R(Qz) + Ib, (3.24)

showing the convoluted scattered intensity, part direct beam and background.
The prefactor can be calculated from

I0(a,H) = ∫ ∞0 R(Qz) dQz

∫ ∞0 Iconv(Qz;a,H) dQz
(3.25)

where

Iconv(Qz;a,H) =
∞

∫
−∞

R(Qz − qz)
[(a qz)2+1]H+1

dqz (3.26)

where I0(a,H) has replaced c4π
3
2 a2 (2H+1) Γ(H+1)/Γ(H+ 3

2). These pref-
actors have been expressed in eq. 3.25 as a function of the scattered fraction
and the attenuation, which is the loss of total signal intensity as the neutrons
pass through the sample. The attenuation is derived by normalization of the
measured intensities Isample(Qz) with the sample transmission, i.e., Im(Qz) ≡
Isample(Qz)/Tsample. Tsample is the ratio between the total intensities of the
sample and of the medium only. All this results in equal total intensities for the
measured signal and the resolution curve:

∞

∫
0

Im(Qz) dQz =
∞

∫
0

R(Qz) dQz. (3.27)

By substituting eq. 3.21 into this relation, and using equations 3.22 and 3.23
for the projection of the scattering function, expression eq. 3.25 remained for the
prefactors after some rearranging. The Qz-dependent part of the convolution
was written as eq. 3.26 for notational convenience.
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3.2.3 Simulation Model

Principles

The gelation process of milk to yoghurt can be described as colloidal aggrega-
tion of adhesive hard spheres [55]. A numerical model employing Monte Carlo
simulations has been devised by Gimel and co-workers [45–48], in which the
reactivity is fixed at a high value compared to diffusion, corresponding to a
DLCA regime. Milk gelation does not occur at high reactivity however, as the
pH decreases only gradually. Figure 3.5 shows that cluster–cluster aggregation
in a reaction limited domain produces a structure, which seems to correspond
well with the structure of yoghurt. In doing so, the system evolves initially in
an RLCA domain, but can finish up in a DLCA regime at the end of the simula-
tion, having had similar timescales for clustering and cluster transport at some
point in between. Figure 3.6 shows two resulting structures using two different
conditions for the reactivity.
Density correlation functions can be calculated from the simulated structures
for the discrete case in accordance with eq. 3.5, where integration is replaced
by summation. These can subsequently be compared to the measured struc-
tures and kinetics of the dairy formation. The simulation model consists of N0

monomer particles, which are randomly placed on a grid with N sites, allowing
no overlap. Each monomer is assigned unit scattering length density and the
dispersion medium is described as vacuum. The average SLD of the system
is then identical to the fraction φ

N
=N0/N and the density distribution of the

simulation box is

ρs(x, y, z) =
⎧⎪⎪⎨⎪⎪⎩

1 if occupied (at N0 sites)
0 if empty (at N−N0 sites).

(3.28)

The simulation box consists of a lattice of N =Lx×Ly×Lz sites with Periodic
Boundary Conditions (PBC). The correlation function of all directions becomes

γ(x, y, z) = 1

1 − φ
N

⎡⎢⎢⎢⎢⎣

1

N0
C(x, y, z) − φ

N

⎤⎥⎥⎥⎥⎦
, (3.29)

where C(x, y, z) is evaluated along the discrete grid axes of L sites

C(x, y, z) = 1

V

Lx

∑
x′=1

Ly

∑
y′=1

Lz

∑
z′=1

ρs(x′, y′, z′)ρs(x′+x, y′+y, z′+z)∆x′∆y′∆z′. (3.30)

The system volume is V =N∆x∆y∆z, where ∆x, ∆y and ∆z define the grid
spacing and are measures of length. For single unit spacings in all three direc-
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Figure 3.5: Box slabs before and after simulation using $ =106, showing spatial configurations
of the adhesive hard spheres. Compare the simulated structure to figure 3.3.

tions, the system volume V equals the number of sites N and the occupied
volume fraction φ

V
=φ

N
. The isotropic function γ(r) is obtained from a spline

fit of the radial average of γ(x, y, z), reducing the 3D function to a single curve
of much higher resolution, but leaving the error undetermined. This approach
assumes very little anisotropy amongst lattice directions, which is reasonable
for large systems of many thousands of particles.

In order to compare simulation results with measurements, γ(r) is projected
and normalized with the correlation length, using equations 3.7 and 3.8, yielding
the projected correlation function G(z). Here z no longer represents the vertical
direction, but any arbitrary direction, since the orientation of the box in space
is undefined. It shows the simulated structure at the time of extraction and
can be compared to structural information from SESANS measurements. The
error in the simulated G(z)-curve is obtained by three separate projections of
the correlation function in three orthogonal directions. Summation of γ(x, y, z)
along x, y and z yields three unique projected correlation functions, of which the
normalized average corresponds to G(z) and the root-mean-squared deviation
is a measure for the error of G(z).
The correlation length ξ = ∑Lxx=1 γ(x,0,0)∆x can also be calculated from the
fluctuation formula

ξ = 1

N0

Ly

∑
y=1

Lz

∑
z=1

{
Lx

∑
x=1

ρs(x, y, z) −LxφN
}

2

, (3.31)

shown here as obtained by projection along the x-direction. The correlation
length can also be calculated by projection in the y- and z-directions with
analogous expressions. For sufficiently large systems these should produce nearly
equal results.
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Algorithm

Each simulation cycle one out of Nc clusters is randomly selected and, depend-
ing on its size, allowed to move in a random direction. All particles within close
proximity to each other are then allowed to bond irreversibly, depending on the
global stickiness. Aggregation occurs when particles of different clusters bond,
causing the growth of clusters and reducing their number. After that, simu-
lated time is updated and the whole cycle is repeated. Aggregation continues
until one super aggregate (Nc = 1) remains, forming a fully gelated network. A
fraction φ

N
of the sites of the initial box is filled with monomers. The monomer

diameter is equal to the distance between adjacent sites, to represent monodis-
perse, adhesive hard spheres. Each monomer has unit mass, so that the cluster
mass Mc of a cluster is equal to its number of monomer constituents. Move-
ment is limited to translation to an adjacent site and clustering is restricted to
nearest neighbour particles on the lattice.

The dynamics [45] are expressed as the probability Ψmove for a randomly
selected cluster i of Mi monomers to move:

Ψmove,i =M−α
i , (3.32)

with main parameter α = 1
dF

, the inverse of the expected fractal dimension
of the final structure. If this movement probability exceeds a random number
between 0 and 1, the selected cluster will move in a random direction. In total
three random numbers are required for the movement procedure: selecting a
cluster, deciding if it moves and selecting a direction. On contact, particles can
link irreversibly, determined by the probability of bonding Ψbond, or stickiness.
In reality, the reaction rate depends on the acidity, which increases over time
as the pH decreases. We have therefore made the stickiness dependent on
simulated time. The rate of increase of stickiness is controlled by the second
main parameter $:

Ψbond(t) = 1 − e−t/$. (3.33)

The stickiness is set globally for all clusters, but whether or not a pair of
adjacent clusters will bond is determined at random. For each pair of neighbours
a random number between 0 and 1 is selected and if the global stickiness
exceeds this number, bonding will occur. The stickiness can increase from
close to Ψmin =0% (RLCA) to Ψmax =100% (DLCA), corresponding to reaction
times for particle bonding which are respectively much slower and much faster
than transport. These limits are adjustable by writing eq. 3.33 as Ψbond(t) =
Ψmax + (Ψmin −Ψmax) e−t/$.
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The algorithm for the simulation time tsim uses an increasing time step per
simulation cycle, labeled nstep

∆tsim = 1

Nc
, (3.34)

where Nc is the number of clusters present. As the simulation progresses, the
number of clusters decreases due to aggregation and each remaining cluster is
more frequently selected for movement. The simulation time algorithm takes
this into account and compensates by increasing the time step, thus ensuring
that clusters of constant size have constant diffusion.

A neighbourhood list, which keeps track of the direct surroundings of each
particle, is employed to reduce computational time by one order of magnitude.
It eliminates the need to loop over all particle pairs during each step, when
investigating if a site is available for movement or occupied with a candidate
for bonding. Large clusters have a rather small probability to move. Thus,
for a system with relatively large clusters, it may take many evaluated steps
before any movement occurs, hence resulting in a large amount of dead time.
To save another order of magnitude in computational time, we have devised an
additional algorithm to calculate the probability Ψdead(n) that in the next n
steps no movements occur from the cluster-size distribution. Eq. 3.32 gives the
probability for a single cluster to move in any single step, from which it follows
that the probability that no clusters move is

Ψdead(1) = 1 −
Nc

∑
i=1

Ψmove,i

Nc
= 1 −

Nc

∑
i=1

M−α
i

Nc
. (3.35)

It follows that the probability that none have moved after n steps is

Ψdead(n) = (1 −
Nc

∑
i=1

M−α
i

Nc
)
n

. (3.36)

Comparing Ψdead(n) to a random number 0≤Q1≤1 yields the number of steps
nskip to be skipped, after which the movement of a certain cluster is to be
enforced:

Ψdead(nskip) ≥ Q1 ⇔ nskip = ⌈logQ/ log(1 −
Nc

∑
i=1

M−α
i

Nc
)⌉ . (3.37)

We have imposed that, after skipping nskip steps, the total probability is 100%
that a cluster moves. The probability that cluster j moves at that moment,
is equal to its probability of moving in a single step, normalized with the total
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 v=1
DLCA

v=106

RLCA

Figure 3.6: Simulation boxes before (top) and after gelation. $ = 1 corresponds to Diffusion
Limited Cluster Aggregation (bottom left), whilst $ =106 corresponds to Reaction Limited
Cluster Aggregation (bottom right). Notice the larger pores in the RLCA structure.

probability of any cluster moving in a single step:

Ψmove,j(nskip) =
M−α
j

∑Nc
i=1M

−α
i

. (3.38)

The cluster j to be moved can now be determined by comparison of the cumu-
lative probability over the set of clusters to a second random number 0≤Q2≤1

j

∑
i=1

Ψmove,i(nskip) ≥ Q2 ⇒ j, (3.39)

yielding cluster label j. Movement in a random direction requires a third random
number, just as in the original cluster movement procedure.
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3.3 Experimental

3.3.1 Sample preparation

Deuterated fat-free milk samples were prepared at room temperature by sus-
pending 10.0 wt.% NILAC milk powder in D2O. The milk powder consisted
for 30% out of casein proteins, of which a large majority (80–90%) formed
micelles with a hydrated density of about 25 mg/l. The volume fraction of
casein micelles in the prepared milk samples was therefore roughly φ

V
=10%.

Cuvettes of 10×18 mm transection were filled up to about 1.5 cm. The biolog-
ical process of milk to yoghurt coagulation with bacteria did not work well in
D2O. Therefore, coagulation was induced by addition and gentle mixing of 2.5
wt.% glucone-δ-lactone (GDL), which dissociated gradually during a few hours
until the acidity (pD) reached ≈4.5, similar to the pH value expected for the
same concentration of GDL in H2O. Due to sample size limitations, it proved
difficult to establish the acidity accurately during the process. No data was
available on the dissociation of GDL in D2O, which is less acidic than H2O,
with pD=7.43 [56] at 25℃. The yoghurt samples fully gelated after half a day
at room temperature [43]. GDL concentrations of 1.7 and 3.8 wt.% were also
used to investigate the sensitivity of the structure for acidity deviations.

3.3.2 SESANS measurements

The bulk structure of milk particles before and after gelation was measured stat-
ically with the SESANS setup at the Reactor Institute Delft, The Netherlands.
Deuterated milk and yoghurt samples of 18.0 mm thickness were scanned dur-
ing about a day with a wavelength λ=2.09±0.04 Å at spin-echo lengths of up
to 5 µm for the milk and up to 12 µm for the yoghurt. Model parameters were
fitted to P

P
0
(z)measurement data using eq. 3.1 with models for the correlation

function G(z). Curve fitting consisted of non-linear least squares regression
with 95% confidence bounds, i.e., a likelihood within two standard deviations
of the measurement data.

SESANS measurements of milk were described using model correlation func-
tions for a dilute system of homogeneous, solid spheres. Given the typical sizes
of the milk micelles, the measurements provided information about the aver-
age scattering length density over the space occupied by the micelles. The
inhomogeneities in their internal structure were outside the resolvable range of
SESANS and excluded from modeling. Both the monodisperse and the polydis-
perse case were investigated, using G

SS
(z;R) for spheres of radius R (eq. 3.10)

and G
LN

(z;µ,σ) for spheres with a log-normal distribution of sizes, determined
by µ and σ (eq. 3.12). The self-affine modelG

SA
(z;a,H) was fitted to SESANS

data on yoghurt, yielding length scale and dimensionality (eq. 3.17).
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An attempt was made to follow the coagulation process by time-resolved mea-
surements of the polarisation at z-values of 70 nm, 300 nm, 1000 nm and 3000
nm. The neutron flux of the 2 MW Delft reactor did not provide an acceptable
time-resolution however. It was therefore decided to perform the kinetic ex-
periments using the USANS setup at the Helmholtz Centre Berlin, possessing
a 10 MW reactor, which assured a large improvement in time-resolution. The
SESANS and USANS techniques had roughly identical resolving ranges and
yielded the same information on microstructure.

3.3.3 USANS measurements

All USANS measurements were performed on the V12a double crystal diffrac-
tometer [57] at the HMI in Berlin, Germany. A sample thickness of `=10.0
mm and a neutron wavelength λ=4.76 Å were used. GDL was added at time
0 hours to commence the gelation process and the structure was measured for
10 minutes per snapshot. The bulk structure of the dairy samples was stat-
ically measured before and after gelation over periods of 1.0 and 1.5 hours
respectively, and scaled afterwards to 10 minute signals.

Raw 2D data was summed along the detector columns and corrected for
the transmission profile of the analyzer crystal, after which the background was
subtracted. The reduced data curves only contained information in the positive
Qz-range. All curves were normalized with the sample transmission, in order to
obtain integral intensities equal to the resolution curve area. A non-scattering
reference sample, consisting of 10.0 mm D2O, was measured for 1 hour and
reduced to obtain the resolution curve R(Qz) and background level Ib, which
were needed to evaluate eq. 3.21. The computational shape of R(Qz) was
determined for negative and positive Qz-range separately (see the appendix).
The background Ib = 40±3 [counts/10min.] was calculated from the average
intensity in the tail of the curve, between 0.0050≤Qz ≤0.0182 nm−1.

3.3.4 Simulations

The simulation boxes consisted of a distribution of empty and occupied sites.
The density correlation function γ(x, y, z) was calculated by summation of the
product of a box with a copy shifted along (x, y, z) using PBC. The projected
correlation function G(z) was extracted from a spline fit through the radial
average γ(r) and a consecutive Abel transform. The error in G(z) was obtained
from the standard deviation of single summations of γ(x, y, z) in the x-, y- and
z-directions, taking the root-mean-squared deviation of these projections from
their average.

Runs were performed on cubic systems of 50 × 50 × 50 grid points, using a
particle diameter D of 1 grid unit with 10% of the sites occupied. The start-
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ing configurations consisted of a uniform distribution of 12,500 non-overlapping
monomers, where the occupied sites were randomly chosen. Initial runs showed
that finite size effects did not contribute significantly to the development of
structures in systems containing in excess of 10,000 particles. The final struc-
tures had dimensionalities around 2 and therefore a fixed value of α= 0.5 was
used for the parameter controlling the diffusion. In this range, small variations
of α have nearly no influence on the kinetics [45, 46, 58].

All simulation runs were performed without any initial reactivity. Three
cases were examined for the increase of reactivity from RLCA to DLCA: an
instantaneous transition (lim$ ↓ 0), an intermediate transition and the case
where the system never left the RLCA regime (lim$→∞). For systems above
10,000 particles this transition did not depend on system size and these three
cases corresponded to $∼100, $∼103 and $∼106. Figure 3.6 shows the initial
box and two configurations resulting from the smallest and largest $ value
used. The influence of the degrees of freedom for movement and bonding on
the structures were also investigated. Several smaller runs were performed with
both parameters varied between {6,18,26} directions and {

√
1,

√
2,

√
3} bond

lengths respectively, corresponding to the nearest neighbours in body-centered
cubic stackings. These simulations will be discussed in more detail in a future
publication by this author.

3.4 Results

3.4.1 SESANS Results

Static measurements

Figure 3.7 shows SESANS polarization data and fitted curves, revealing the
structure of deuterated milk and yoghurt samples. Both measured curves had
approximately equal initial slopes. The amount of scattering Σ increased by
a factor 3.2, easily calculated from the drop in saturation level Psat. However
the spin-echo lengths zsat, where the polarization signals began to saturate,
increased from 250 nm to ∼5 µm, indicating that the largest sizes with a relevant
contribution to the signal increased by a factor 20.

The slope of the approximately linearly decaying part of a SESANS curve can
be shown to be proportional to Σ/ξ [32]. Since SESANS uses a monochromatic
neutron beam, this part of the curve relies on the chemical composition ⟨∆ρ2

s ⟩.
The measurements therefore indicate a similarity in the overall composition of
the isolated casein micelles in milk and the aggregated micelles in yoghurt, from
which it follows that the correlation lengths ξ are directly proportional to the
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Figure 3.7: Static measurements on deuterated milk and yoghurt. Top dotted and solid lines are
the solid sphere and log-normal fit for milk; bottom solid line the self-affine model for yoghurt.
The inset shows the same data on a log-log scale. The initial decay shows similar behaviour in
both curves.

amount of scattering. This typical length scale merely increases by a factor 3.2,
as opposed to the factor 20 for largest sizes present in the samples.

Log-normal fit of milk measurements

The correlation function of dilute, solid spheres (eq. 3.10) was fit to measure-
ment data for radius R and saturation level Psat. These two parameters deter-
mined the width and the height of the curve respectively, and were not strongly
correlated. Since casein micelles have been reported with average radii between
100 and 120 nm in domains ranging from 30 to 300 nm [34], a better result
was achieved using a projected correlation function G

LN
(z;µ,σ) (eq. 3.12) for

a log-normal distribution of solid spheres. Results for both cases are listed in
table 3.1.

The mean µ and standard deviation σ of the natural logarithm of the distri-
bution, mostly determined the peak-position and the distribution-width respec-
tively (see the appendix). Both parameters determined the width and decay
of the measured polarization curve, whereas the height only depended on the
saturation level Psat. The three parameters in this model did not show strong
correlations with one-another. A weak correlation was observed between µ and
Psat; presumably due to their dependency on the correlation length ξ, whereas
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Monodisperse Log-normal Log-normal
solid spheres distribution NIZO sample

Psat [%] 92.5 ± 0.3 92.1 ± 0.2 91.9 ± 0.2
R [nm] 75.7 ± 7.6 – –

µ – 4.38 ± 0.10 4.59 ± 0.06
σ – 0.89 ± 0.20 0.57 ± 0.13

g.o.f. χ48
2
= 2.61 χ47

2
= 1.14 χ20

2
= 0.80

⟨R⟩ [nm] 76 119 ± 24 116 ± 11
PDI [%] 0 48 ± 8 33 ± 7
ξ [nm] 114 ± 11 178 ± 36 174 ± 17
Σ [m−1] 4.3 ± 0.2 4.6 ± 0.1 4.7 ± 0.1

⟨∆ρ2s ⟩ [nm−4] 8.7⋅10−7 5.9⋅10−7 6.1⋅10−7

Self-affine model

Psat [%] 76.5 ± 0.8
a [nm] 1524 ± 445
H -0.28 ± 0.03

g.o.f. χ27
2
= 1.97

Σ [m−1] 14.9 ± 0.6
dF 2.44 ± 0.07

ξ [nm] 577

Table 3.1: Results obtained from describing the
SESANS measurements of milk samples (see fig. 3.7)
as dilute, solid spheres for the monodisperse and log-
normal distribution cases. Goodness- of-fit indications
are given by the reduced χ2. To check reproducibility
a log-normal distribution was fitted through SESANS
data from another milk sample, prepared by NIZO.
Log-normal parameters have been recalculated to an
average radius and polydispersity to allow comparison
with the solid sphere fit, yielding the correlation length
ξ = 3

2 ⟨R⟩, the amount of scattering Σ = − lnPsat/` and
the SLD variance ⟨∆ρ2s ⟩ = Σ/ (λ2 ξ).

Table 3.2: Parameters obtained from
fitting the self-affine model to the
SESANS measurement of yoghurt, see
figure 3.7. Goodness-of-fit indications
are given by the reduced χ2. The
amount of scattering Σ was calculated
from Psat, the fractal dimension from
H and the correlation length from Σ
using the SLD variance found for milk,
see table 3.1. The correlation length ξ
was 3.2 times larger for yoghurt than
for milk.

σ purely contained information about the occurrence of all other lengths in the
sample.

Self-affine fit of yoghurt measurements

The yoghurt measurement was described with the self-affine model of eq. 3.14.
The resulting values for the parameters are listed in table 3.2. The substantial
uncertainty of 29% in the length scale parameter a could be explained by the
somewhat large correlation with dimensionality parameter H in this model,
in combination with the relatively limited number of measured data points,
especially in the very short and very long z-range. Nevertheless, the scattered
fraction of 27% is close to the optimum condition for SESANS measurements,
regarding the signal-to-noise ratio. As can be seen from eq. 3.1, extractingG(z)
from the polarization involves taking the logarithm from a number between 0
and 1. Too strong a signal would therefore blow up the error bars, whereas too
weak a signal would be hidden in the noise.

3.4.2 USANS Results

Kinetic measurements

The structural change of deuterated milk during gelation was measured kineti-
cally with USANS every 10 minutes; whereas the static initial and final states
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Figure 3.8: Kinetic USANS measurements on coagulation of milk to yoghurt, showing measured
data and fitted curves for D2O, the initial structure, a 10 minute scan of the structure halfway
and the final structure. The static measurement times were 1.0, 1.0 and 1.5 hours respectively.
The dotted line shows the resolution function R(q) and the dashed line the background level Ib.

were measured for longer times to improve statistics, see figure 3.8. The US-
ANS measurement data was reduced to a set of 92 kinetic curves and two static
curves. Initially a length scale a, Hurst exponent H and scattered fraction Σ `
were fitted to these curves. However, since the amount of scattering is actually
determined solely by the length scale and dimensionality of the sample, this
parameter could be eliminated from fitting and Σ` was subsequently calculated
from a and H.

Self-affine fits of kinetic measurements

The USANS signals were described with the inverse space version of the self-
affine model, see eq. 3.22. Curve fitting was performed using equations 3.24,
3.26, 3.25 and the resolution function R(Qz), see eq. A.9 and table A.1 in the
appendix. Figures 3.9, 3.10 and 3.11 show fit results of all data sets for length
scale a, Hurst exponent H and scattered fraction Σ `.

Results for a were noisy and no clear result for H was achieved for the
initial data sets. The scattered fraction Σ ` was easily determined from the
measurements, depending largely on the measured peak height. Data collected
during the first few hours was not sensitive to the actual value of H and initial
values were non-physical at H < − 1

2
, yielding negative scattered intensities in

eq. 3.22, corresponding to negative correlations in real space, see eq. 3.14.
After about 8 hours a final level of H ≈ − 3

8 could be reasonably well established
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static milk kinetic (t=3 hrs) static yoghurt

a [nm] undetermined 543 ± 165 850 ± 100
H undetermined -0.39 ± 0.08 -0.38 ± 0.02
Σ [m−1] 20 ± 11 33 ± 1 49 ± 1
g.o.f. χ291

2
= 9.0 χ291

2
= 2.4 χ291

2
= 6.0

a [nm] 276 ± 13 551 ± 18 837 ± 10
H - 38 - 38 - 38
Σ [m−1] 16 ± 1 32 ± 1 49 ± 1
g.o.f. χ293

2
= 9.2 χ293

2
= 2.4 χ293

2
= 6.0

Table 3.3: Parameters a, H and Σ, i.e., the length scale and dimensionality of the self-affine
model and the scattered fraction per unit of sample thickness, fitted to the static and kinetic
USANS measurements before, during and after gelation (see fig. 3.8). Top half of the table shows
results obtained by fitting with all three parameters free; the bottom half contains results fitting
only for a, with fixed H and Σ expressed as a function of both. Goodness-of-fit indications are
given in both cases by the reduced χ2.

however, corresponding to a fractal dimension dF ≈ 2 1
4 . A much better result

could be achieved by fitting with H fixed to its final value and using additional
relations 3.6 and 3.15. Fitting all curves only for a with constrained H and
calculated Σ `, produced the much less noisy result seen in black in figure 3.9,
together with figures 3.10 and 3.11. The quality of the fits, as expressed by χ2,
was nearly identical for all 94 curves to the values found when all parameters
were let free, thus demonstrating that the number of correlated parameters had
been reduced with an insignificant influence on the outcome for a.

The final result was that the typical length scale a initially remained steady
for two hours at 276± 13 nm, but increased by a factor 3.0 during the next six
hours as the micelles aggregated, reaching a final value of 837 ± 10 nm.

3.4.3 Simulation Results

Structures

Runs were performed to examine the effect of different speeds for the increasing
reactivity during simulation, starting with no initial stickiness. Three different
cases were examined for the time-development of Ψbond(t): a very fast increase,
a gradual increase and very little increase, corresponding to very low, medium
and very high values of $. In the first case, using $=1, the sticking probability
increased quickly from 0% to 100%, rapidly moving the system from an RLCA
to a DLCA regime. Medium values, such as $=103, caused a gradual increase
towards 100% stickiness and the system developed from RLCA to DLCA over
the entire run time. Only for very high values, such as $ = 106 or higher, the
reactivity stayed close to 0% and the system developed well inside the RLCA
domain.
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during aggregation. Fitting was performed for
free a, H and Σ `, with a noisy result. Subse-
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Figure 3.10: Fitted results for the dimension-
ality of the system during aggregation. Initial
values are non-physical and fits are not sensitive
to the actual value, as long as − 1

2
≤H ≤0. The

final level at − 3
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Figure 3.11: Fit results for USANS measure-
ments showing the increase of the scattered frac-
tion Σ` of the direct beam, using a sample thick-
ness `=1 cm.

Figure 3.12 shows correlation functions obtained for one run with $ = 1 and
one with $ = 106, see subplots A and B. The simulated aggregation caused an
increase in both the largest contributing lengths zsat and the correlation length
ξ. Correlations between density fluctuations became negligible at lengths zsat,
the point at which a curve appeared to saturate, starting from a single monomer
diameter D and growing up to at most 8 times during the simulation. The
correlation length showed an increase during simulation by a factor 2.7 in the
DLCA regime, but by a factor 3.2 in the RLCA domain, see table 3.4, indicating
larger and denser structures for the latter. The slight broadening of the band
around each consecutive curve signified an increased uncertainty in the value of
G(z) as the structure developed. This set of error bars was determined from
the variation between three orthogonal projections of the correlation function.
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$ = 1 $ = 106

ξ(final)/ξ(initial) 2.7 3.2
zsat(final)/zsat(initial) 4 8
tstat [−] ∼ 50 ∼ 500

Table 3.4: Changes in main length scales and indication of simulation time scale from simulations
in DLCA and RLCA regimes. Typical lengths are expressed by ξ, showing a vertical drop in
saturation level. Longest lengths are expressed by zsat, giving the distance beyond which
correlations disappear.

The increase in these variations remained small however, and in this respect
there was no noticeable difference between the DLCA and RLCA runs.

Time dependency

The aggregation process consisted of two stages. Initially clusters grew to larger,
less mobile aggregates at the expense of small, mobile clusters. Toward the end
of the simulation these large aggregates slowly formed a network by percolating
the system. In order to track the evolution of correlations at different length
scales, values of G(z) at different z-values were plotted against simulated time
tsim, see subplots C and D in figure 3.12. Spin-echo lengths z/D of 0, 1,
2, 3 and 25 were selected to examine the time development of short range
correlations and the longest correlation possible in a system of V = 50×50×50 D3.

TheGz=0(tsim)-curves showed constant monomer contributions for both regimes,
because the amount of monomers did not change. Dimer (z =D) and trimer
(z =2D) correlations increased during aggregation. For four monomer correla-
tions (z = 3D) a depletion effect was observed in DLCA, which was not seen
in RLCA, as the curve dipped below the longest correlations (z =25D) around
tsim = 10. These correlations at z = 3D disappeared due to initial clustering of
dimers and trimers, creating more empty space around them, and reappeared as
larger clusters were created, which contained all shorter range correlations from
that point on. Five monomer correlations and higher (z≥4D) developed nearly
equal to the largest correlations, corresponding also to the time development of
the correlation length ξ(tsim). The time tsim=tstat at which these Gz=25D(tsim)
curves saturated, showed a stationary situation before actual gelation. Hence,
any clustering after tstat did not contribute significantly to the correlations of
the system. In the DLCA regime little to no change was observed after tstat≈50
and for RLCA after tstat≈500.
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Figure 3.12: Time-evolution of G(z) from simulations quickly moving to a DLCA regime (left
side) and staying well within the RLCA regime (right side), with insets on a semi-log scale.
Top subplots show snapshots of G(z) labeled with the simulated time tsim, which were selected
for optimal clarity. Bottom subplots show the time dependency of G(z) for fixed values of
the spin-echo length z. The errors in G(z) are presented as bands around the curves and the
vertical axes show (G − 1) ξ/D to allow for easier comparison to the SESANS measurements
(compare with the argument of the exponent in eq. 3.1).
Subplots A and B show how length scales develop during simulated time. Both the horizontal
and vertical axes demonstrate that in RLCA larger structures develop, with larger long range
correlations and a larger correlation length. Subplots C and D show the time-dependency
of G(z) at fixed short range spin-echo lengths z of 0, 1, 2, 3 D and at the longest possible
correlations of z = 25D. Here Gz=25D(tsim) corresponds to ξ(tsim), shown by the dropping
levels in the top row. The speed of development is expressed by the steepness of the curves in
the bottom row and the time labels in the top row.
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3.5 Discussion

3.5.1 Measurements

Reproducibility

Different SESANS measurements showed nearly identical results for several milk
samples and similar results for yoghurt samples. The USANS measurements
were performed at tenfold higher time resolution, producing results consistent
with the SESANS experiments. This allowed for a kinetic investigation of the
structural development during the gelation process. The consistency of SESANS
with USANS results, validated the assumption made in the Theory section 3.2.1,
that the correlation functions of semi-stable colloidal suspensions are indepen-
dent of time.

The main issue in the reproducibility of all measurements, was the exactness
of the sample preparation. Primarily, the quality of the milk powder determined
both the milk and yoghurt structure. Storage under Argon-atmosphere in a
glove box avoided exposure of the powder to moisture, which proved more im-
portant to prevent aging than cooling at 7℃. Of secondary importance was the
sensitivity of the process to the addition and proper mixing of a precise amount
of GDL and the influence of temperature on the reaction rate. Deviations within
a few percent were deemed to have negligible effects on reproducibility, after
comparing different samples and GDL concentrations.

SESANS on milk

Describing the SESANS measurement data for milk as a system of dilute, monodis-
perse solid spheres, produced a radius of about 75 nm, see table 3.1. By applying
a log-normal distribution and fitting to µ and σ, an average radius of about
120 nm was achieved, with a polydispersity of almost 50%, showing that the
system was far from monodisperse, see table 3.1. These results were in good
quantitative agreement with literature on sedimentation field flow and dynamic
light scattering [34, 35] and previous SESANS measurements [43], as well as a
DLS experiment, which showed a wide distribution and a peak around 100 nm.

Previous SESANS measurements on NILAC samples prepared by NIZO [43]
compared quite well, with approximately the same mean radius around 115
nm, but a narrower distribution with 33% polydispersity, most likely due to
a difference in milk powder composition or sample preparation. A consistent
SLD variance of 6⋅10−7 nm−4was found for the different milk samples. Any
short-range interactions, such as an excluded volume effect for concentrations
exceeding the dilute regime, would be smoothened by the the considerable
polydispersity [59].
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SESANS milk vs. yoghurt

Comparing the SESANS curves of milk and yoghurt, a factor 20 increase in
the long length scale was observed, whereas the correlation length increased by
a factor 3.2. From this it was inferred that aggregates were created about 20
micelles long, but with an average cross-section of about 3 micelles. The overall
composition of these micelles was not affected by aggregation, as could be seen
from the similar initial slopes of both curves, supporting the adhesive sphere
model. The yoghurt was modeled as a network of fractal constituents with a
density auto-correlation function γ(r) of (eq. 3.14) containing a length scale
and a dimensionality. Although for r≪ a this correlation function diverges to
infinity if 1

2
≤H ≤0, this small length domain is outside the SESANS resolution.

More importantly, the projected correlation function G(z) (eq. 3.17) does not
diverge, but converges to 1 for lim

r↓0
.

SESANS vs. USANS

The milk particle size could be consistently determined with both SESANS and
USANS. An average casein micelle diameter around 240 nm was observed with
SESANS, with which the initial length scale found in the kinetic USANS mea-
surements agreed reasonably well. Using the log-normal and self-affine models
respectively, neither technique was able to establish the dimensionality of milk.
USANS data produced unphysical values H < − 1

2
. However, the presumption

that the density of milk particles propagates in a space-filling manner, was
strengthened by fitting the self-affine model to the SESANS data, resulting in
dF =3, see table 3.5.

With USANS the typical length scale of milk was observed to persist for
about two hours after acidification, after which micelle coagulation caused it
to increase, reaching a final size three times larger after about eight hours,
see figure 3.9. After about 3 hours a constant value dF = 2 1

4 seemed to have
been reached, right in between values expected for DLA and RLA clusters, as
discussed in the section on self-affine materials. This indicated that the process
for cluster-cluster aggregation is either somewhere in between the RLCA and
DLCA regimes or that the gelation occurs in a combination of both, which was
the starting hypothesis. The dimensionality of yoghurt was in good agreement
with the range of values found by Vétier et al. for casein aggregates, in spite
of their having used diluted systems [60].

However, SESANS measurements on yoghurt yielded a typical length scale two
times larger with a significantly larger dimensionality, as described by the same
model used for the USANS data. An alteration to this model was made, by
replacing the modified Bessel function KH( r

a
) of eq. 3.14 in section 3.2.1 with
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SESANS SESANS USANS
MILK Log-normal Self-affine Self-Affine

a [nm] 238 ± 48 (88 ± 29) 276 ± 13
ξ [nm] 178 ± 36 (66 ± 22) (3110 ± 146)
dF [–] – 3.0 ± 0.3 (2.25)

Σ/λ2 [µm−3] 105 ± 3 103 ± 3 71 ± 5

YOGHURT Fractal Network Self-affine Self-affine

a [nm] 834 ± 283 (1524 ± 221) 837 ± 10
ξ [nm] 570 (211) (9430 ± 113)
dF [–] 2.29 ± 0.06 2.44 ± 0.07 2.25

Σ/λ22 [µm−3] 344 ± 15 341 ± 14 216 ± 4

Table 3.5: Comparison of length scale, dimensionality and scattering, before and after milk gela-
tion as observed with SESANS and USANS, using different models. The amount of scattering
is divided by squared wavelength to allow for direct comparison. Values in brackets are deemed
unreliable and only shown for sake of completeness.

an exponential tail exp(− r
2a

) to model the long-range interactions as those of
a random inhomogeneous solidI. This new correlation function was dubbed
a Fractal Network [32] and was in excellent agreement with USANS both in
length scale and dimensionality, see table 3.5. Apparently, the self-affine model
did not fit the SESANS data for milk and yoghurt as well, as it did the USANS
data, indicating that both techniques, although very similar in many respects,
are not interchangeable and have their own particular sensitivities. Due to the
larger wavelength used in USANS, (4.76/2.09)2 ≈5 times more scattering was
expected than with SESANS, but only about 3.5 times more was observed in
milk and yoghurt; a factor of about 1.5 discrepancy, see table 3.5. In SESANS,
the values for the scattered fraction Σ ` were established solely from the satu-
ration level of the polarization and well-defined, whereas in USANS consistent
values for Σ ` were obtained more indirectly, namely through calculating after
fitting only for the length scale a.

Multiple scattering did not affect the results from the measurements. The
SESANS technique is inherently not-sensitive to it, see eq. 3.1, and the USANS
measurements on 10 mm samples were checked by comparing to signals from
18.0 mm samples, producing curves of similar shape. In spite of the high
scattered fractions found in the USANS measurements, up to about half of the
incident beam for yoghurt, multiple scattering did not seem to be an issue.
I as conjectured by Debye, Anderson and Bueche



3.5 Discussion 61

3.5.2 Simulations

RLCA vs. DLCA

Cluster diffusion was modeled using parameter α and the increase of reactivity
during simulated time with parameter$. Higher values for α decreased mobility
of large clusters (DLCA), and higher values for $ decreased reactivity (RLCA).
Higher mobility favoured movement, especially of small clusters, causing the
formation of locally denser structures, of globally equal density. Higher reac-
tivity facilitated branching and caused the formation of more open structures.
It played the more important role in the quick formation of a network from
large aggregates. Reactivity depended on the stickiness, the sticking range and
translational freedom for movement.

A higher overall probability for sticking with identical cluster mobility, would
correspond to lower $ values at fixed α. For identical values of $, increas-
ing the sticking range effectively increased the reactivity, by allowing for more
configurational freedom and decreasing correlations along grid lines, creating
less-linear clusters. Higher values of the translational freedom also effectively
increased reactivity, since more diverse configurations were explored, causing
more collisions in the same number of steps and decreasing the number of
steps before bonding occurred. The longest length scales zsat and correlation
lengths ξ were greatest in structures with high values for $. By staying in the
RLCA regime longer, denser aggregates were formed on the short length scale,
leading to larger pores in the final network. Not surprisingly, the time needed for
such a gelation was an order of magnitude larger than for DLCA. More results
will be discussed at length in a future publication by this author.

Monte Carlo vs. Experiments

All measurements showed an increase of at least a factor of 3 in length scale
after gelation, considering the typical and correlation lengths, with which RLCA
findings agree well. However, the largest lengths observed in SESANS increased
up to a factor 20, which could not be reproduced with this simulation model.
Apparently, even more dense structures were created during actual gelation,
than during simulation. It might be that the actual process stays even longer in
RLCA. It is also possible that off-lattice simulations would produce longer ag-
gregates, or that the log-normal distribution of casein micelles sizes contributes
to more dense packings. Simulations in continuous space would require a much
more elaborate approach. Polydispersity cannot be properly taken into account
for particles on a grid, but would be easily incorporated in an off-lattice simula-
tion. Likewise, the role of the medium was neglected in this simulation model.
The spheres could only interact with each other, effectively simulating aggrega-
tion in a vacuum. Although any contribution of the medium was not expected
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to influence the formation of individual aggregates much, it is quite possible
that the formation of much larger pores in the gel would be favoured due to
surface tension of water.

3.6 Conclusions

The casein micelle size distribution in fat-free milk was determined accurately
with SESANS. Using a log-normal distribution of solid spheres, the most fre-
quent milk particle size, the average particle size and the degree of polydispersity
were easily determined. The average size concurred with USANS observations,
described with a self-affine model. Overall an average milk casein micelle diam-
eter of D=240 nm was found, consistent with literature on other milk samples
using different techniques, previous SESANS experiments and DLS measure-
ments. The dimensionality of milk was expected to be dF =3, but proved hard
to determine experimentally. Because the milk particles were small with respect
to the sensitive ranges of SESANS and USANS, no information was acquired
about their internal structure.

The structure of yoghurt contained length scales from half a micrometer up
to 5 micrometers according to SESANS. A typical length scale of about 840
nm was established for yoghurt, corresponding to 3.5 milk micelles, on which
SESANS and USANS were in excellent agreement with each other, whereas the
longest length scale corresponded to 20 micelles, which could only be observed
with SESANS. The dimensionality was determined to be dF =2.3 with SESANS
and USANS, and agreed with literature values. However, both measurement
methods only agreed well using different models. The fractal dimension indi-
cated that the gelation mechanism is either somewhere between or a combi-
nation of the RLCA and DLCA regimes for cluster–cluster aggregation. This
supported our hypothesis that the process was initially reaction limited, but
became diffusion limited later on, due to a gradual increase of reactivity.

Reliable information about the kinetics of the milk to yoghurt coagulation
were obtained with USANS. Since the aggregation of micelles was pD-driven
in D2Oand pH-driven in H2O, the onset of aggregation was determined by
the dissociation of GDL. The cluster–aggregation kinetics relied both on acid-
ity and cluster diffusion. It took about two hours before a change in lengths
was observed, which became roughly stationary after eight hours, whereas the
dimensionality of the system was determinable three hours into the process.
However, the simulations showed that the formation of a network from large
aggregates was a slow process, with little contribution to the measured signal.
The actual gel time was therefore not extracted from the kinetic measurements.
The overall structure of the casein micelles did not appear to be affected by
the gelation. Therefore, all observed differences were due to a rearrangement
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of their external structure, in support of the adhesive sphere model. Two mech-
anisms could be at work during formation of the final structure:

• the clustering of small aggregates out of mobile monomers, dimers and trimers,
in a relatively low reactivity regime, where the acidity had started to increase
slowly,

• and the formation of large, much less mobile structures from small aggregates,
in an increasingly reactive regime, until gelation occurred.

The dimensionality of the system, would depend largely on the first mecha-
nism. The typical length scale increase in the system would be largely due to
the second mechanism. Therefore it was concluded, that the first mechanism
continued during the first three hours and that the second mechanism started
after two hours up to eight hours and beyond. The simulations showed a simi-
lar progression, where structures most comparable to the experimental findings
were produced in an environment with initially very little and slowly increasing
reactivity.

These mechanisms, which determine the structure and kinetics of acid-induced
gel formation in milk, depend on temperature [61] and on the rate of acidifica-
tion, which also depends on the temperature [62]. At constant temperature, we
find that structure and kinetics of this gelation are best described by a transi-
tion from RLCA towards DLCA. The change from initial fast Brownian motion
with low reactivity to a decreasing diffusion speed with increasing reactivity,
determines the locally dense and globally more open structure. Low mobility,
both from locally constrained motion of particles in the forming gel and the
slow diffusion of large aggregates, causes the gel time to be significantly larger
than the time required for the acidity to reach its final value. This combination
of different mechanisms in colloidal gel formation are consistent with literature
published during the last few years [63].



64 Milk gelation studied with neutron scattering and simulations

Acknowledgments

The author thanks Chris Duif, Jeroen Plomp, Robert Andersson and Ad van
Well (all NPM2/R3/TU Delft, The Netherlands) for assisting with the SESANS
measurements and their valuable discussions; Krishna Kowlgi (DCT/TU Delft,
The Netherlands) for performing DLS measurements; Prof. D. Kearley (Ansto,
Menai, Australia) for advising on simulation techniques and Peter Walter, Sven-
Oliver Seidel and Robert Monka (all HCB, Berlin, Germany) for assisting with
the USANS measurements.
This work is part of the research programme of the Stichting voor Funda-
menteel Onderzoek der Materie (FOM), which is financially supported by the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).
This research project has been supported by the European Commission under
the 6th Framework Programme through the Key Action: Strengthening the
European Research Infrastructures. Contract n○: RII3-CT-2003-505925 (NMI
3).



CHAPTER 4

From RLCA to DLCA in 3D Monte Carlo

Léon F. van Heijkamp, Jouke R. Heringa, Ignatz M. de Schepper and Wim G. Bouwman.
This chapter consists of an article to be submitted to the Journal of Colloid and Interface
Science for publication under the title ‘From Reaction to Diffusion Limited Cluster–cluster
Aggregation in 3D Monte Carlo with increasing reactivity’.

Abstract

In a 3D Monte Carlo simulation study of cluster–cluster aggregation on a lat-
tice with Periodic Boundary Conditions, we control the reaction rate of clusters
diffusing and bonding on a grid, to study the transition from reaction limited
cluster–cluster aggregation (RLCA) to diffusion limited cluster–cluster aggrega-
tion (DLCA). The aggregation of a destabilizing colloidal system is simulated
using a time-dependent, global reactivity with a tunable relaxation time. For a
volume fraction φV all neighboring monomers immediately form clusters with
an average mass around 1/(1− 3φV) in DLCA with a broad size distribution in
non-dilute systems.

A transition from RLCA to DLCA occurs when the reaction time is smaller
than the monomer diffusion time, which occurs when the relaxation time is well
below the maximum reactivity. The transition is analytical in non-concentrated
systems and can only occur before the cluster mass distribution starts to col-
lapse, which is independent of concentration. For reaction times far exceeding
the monomer diffusion time, aggregation remains reaction limited and initial
systems consist predominantly of monomers. RLCA occurs with long living,
narrow distributions of primarily small clusters. Their diffusion leads to larger
coordination numbers, more bond formation and lower dimensionality. The
extended percolation and gelation time result in denser gels with larger cavities.
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4.1 Introduction

Soft condensed matter systems can kinetically arrest, which is specifically
significant for colloidal suspensions. Because of the much larger space and

time scales, colloids are more readily studied than their atomic counterparts. At
large packing fractions colloids can undergo a glass transition, which has been
well described in recent years [64–66]. However at low densities the kinetic
arrest is poorly understood. The sol–gel transition is a major field in physical
chemistry, but with a disputed underlying mechanism. A lot of contradict-
ing experimental results and conflicting models have been presented over the
years [67], but no unifying theoretical framework exists. Predicting structural
and dynamical properties of gels, requires an understanding of their formation.

A variety of gel materials are formed through the transition of the solid phase
from discrete into continuous, which impedes the liquid phase from flowing and
leads to a bi-continuous structure or even a phase inversion. Gelation creates
materials with remarkable properties ranging from elastic like jelly to rigid like
silica gel. Stable colloidal suspensions without long-range repulsive interactions
behave like hard spheres. Many colloidal particles have a short-range attractive
potential which is only exhibited when a short-range repulsive interaction is
removed. This destabilization causes the particles to form aggregating clusters,
frequently modeled as adhesive hard spheres forming a network [68, 69]. Insight
into clustering of such randomly distributed components has many applications
in science, industry and everyday life. A numerical model for lattice Monte
Carlo simulations has been devised by Gimel et al. for diffusion limited cluster–

Figure 4.1: A snapshot of a DLCA simulation
at 25% gel time. The two largest clusters of
the total 269 clusters are shown, composed
of 35,980 (red) and 16,604 (blue) monomers,
with 100,000 monomers in total.

cluster aggregation (DLCA) [45–48]. In
DLCA the reactivity is constant and
large with respect to diffusion, caus-
ing neighboring particles to bond im-
mediately. Hence only moving clusters
need be considered. Fig. 4.1 shows
an example of two clusters in a late-
intermediate stage of DLCA. In the ini-
tial stages of DLCA, systems with con-
centrations well below the critical vol-
ume fraction φ

V
= 0.3116 [70] will con-

sist of many small clusters, which can
move and grow quickly throughout the
system. As the clusters become more
massive during flocculation, their num-
bers drop and they lose mobility, causing
the process to slow down. Eventually a
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large percolating cluster forms, onto which the remaining material aggregates
to form a fully gelated structure. Systems with concentrations above the criti-
cal volume fraction consist for a large part of neighboring particles, which bond
immediately at high reactivity. Such concentrated DLCA systems are therefore
very likely to contain a percolating structure from the start [71].

However, aggregation processes do not necessarily occur under high reac-
tivity conditions. In reaction limited cluster–cluster aggregation (RLCA) the
reactivity is very low compared to particle diffusion, requiring many particles
to come into contact before a bond is formed. Comparing for equal mobility,
RLCA requires much more time and results in denser structures than DLCA.
These processes have been simulated using very low bonding probabilities [72],
without explicitly securing the reactivity. It is also quite common for processes
to show an increase in reactivity throughout aggregation. They may start as
RLCA and finish as DLCA, having had similar timescales for bonding and dif-
fusion somewhere in between. In the gelation of milk micelles to yogurt for
example, the pH in milk starts roughly neutral and decreases as bacterial cul-
tures convert lactose sugar into lactic acid, increasing the reactivity while the
micelles aggregate until gelation [33, 55].

Previous work using lattice Monte Carlo and comparable techniques, such
as off-lattice Monte Carlo and Brownian Dynamics simulations [47, 48, 73,
74] assumes percolation as the underlying mechanism for gelation, defining the
gel point as the instant where a cluster connects to itself across the lattice.
Percolation theory is a well-established branch of mathematics with many ap-
plications and for which a mean-field theory has been developed [75–77]. Lu
et al. [78] argue that gelation of spherical particles with short-range attraction
occurs through spinodal decomposition, where DLCA corresponds to formation
of strong bonds and RLCA to weaker or reversible bonding. In this paper we in-
vestigate the similarities and differences between systems aggregating in DLCA
and RLCA, using a 3D Monte Carlo model with increasing reactivity. We have
modified the model by Gimel et al. to incorporate an explicitly defined global
reactivity, decoupling bond formation from cluster movement. Bonds may form
both intra- and inter-cluster at any time and bonding probabilities depend on
the reactivity and the time step. To model the gelation of an initially stable
colloidal suspension through acidification, we have chosen a convenient time-
dependent reaction speed k(t) to represent a generic acid-base titration curve.
The rate of reactivity increase is controlled by a main parameter and can be
varied from a step function (instantaneously selecting DLCA) to nearly zero
increase (remaining in RLCA). This way the reactivity can model both quickly
and slowly destabilizing colloidal suspensions. We show both analytically and
numerically, that if the reactivity increases fast enough, initial RLCA processes
can convert to DLCA.
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4.2 Simulation

4.2.1 Chemistry

A sol is a suspension of discrete colloidal particles in a continuous liquid medium.
A gel is a semi-solid, which has both solid and liquid characteristics. It consists
of a continuous solid matrix encapsulating a liquid phase. If the liquid becomes
fully segregated in the gel, the sol–gel phase transition is a phase inversion.
The colloidal particles in suspension can be considered an ideal gas. At ther-
mal equilibrium, all particles and clusters have the same average kinetic energy,
equal to the thermal energy of the medium. Without rotational or vibrational
degrees of freedom, the kinetic energy manifests as translations only. A cluster
of mass mc has a mean-squared velocity of 3kBT /mc, with Boltzmann con-
stant kB and temperature T . The Einstein-Smoluchowski relation states that
Brownian motion is characterized by a self-diffusion coefficient equal to half the
mean-squared displacement per unit of time. To account for the inertia of the
clusters, their random momentum has to be distributed according to a diffusion
coefficient that depends on their mass. Clustering is the result of irreversible
bonding reactions, which occur nearly exclusively between pairs of clusters at
non-constant reaction speed k(t):

An +Bm
k(t)Ð→ Cn+m

[Cn+m]
dt

= k(t) [An][Bm],
(4.1)

where any two clusters A and B of mass n and m form a new cluster C of mass
n+m.

4.2.2 Model

The simulation model consists of an initial random configuration ofN0 monodis-
perse monomer particles, placed on separate lattice points. Each monomer is
assigned mass m and diameter D. Simulation time is defined by monomer dif-
fusion, as shown in section 4.2.3. Expressing length, mass and time in terms of
monomer properties, gives dimensionless physical quantities for the whole sim-
ulation. The Brownian motion is modeled as random, mass-dependent move-
ment. Particle interactions are those of adhesive, hard spheres. The dispersion
medium has no properties and no interaction with the particles, i.e., it is de-
scribed as a vacuum.

The layout of the simulation algorithm is shown schematically in fig. 4.2. The
main problem is the simultaneous movements of many particles if it causes
them to overlap in space. In Monte Carlo this is overcome by allowing at most
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one cluster to move each cycle and adjusting the time-frame accordingly. The
simulation box is a cubic grid of side L with lattice spacing D in all three
directions and with Periodic Boundary Conditions (PBC). The system volume
V =L3 equals the number of lattice sites, so that the overall density is equal to
the volume fraction φ

V
= N0

V occupied by the monomers. A lattice poses severe
restraints on cluster orientation and displacement, but has substantially less
computational costs than off-lattice simulations, thus enabling runs of larger
systems. The density distribution of the simulation box is

ρ(x, y, z) =
⎧⎪⎪⎨⎪⎪⎩

1 if occupied (at N0 sites)
0 if empty (at V −N0 sites).

(4.2)

The simulation starts at time t=0 with Nc(0) initial clusters and Nb(0) initial
bonds, which if zero gives N0 clusters. A neighborhood list is constructed to
store all bound and unbound particle pairs. Each cycle nstep, one out of the

Figure 4.2: Flowsheet of the main
simulation procedures.

Nc clusters is randomly selected for move-
ment. This cluster has a movement proba-
bility Pmove, determined by its mass mc. If
this probability exceeds a random number, the
cluster is translated by one monomer diameter
in one randomly selected direction from a set
of allowed directions, but only if no particle
overlap will occur, i.e., if all the sites to be
occupied are available. If a cluster movement
is performed, the neighborhood list is updated
accordingly.

Regardless of cluster movement, new
bonds may then be irreversibly formed between
all unbound adjacent particles. This happens
according to the bonding probability Pbond(t),
which is a global property of the system and
depends on the reactivity k(t) and variable
time step ∆t. A bond can be formed once
between any pair of particles within bonding
range and fixes their relative positions. Bond
formation is evaluated for each particle pair
individually, including pairs belonging to the
same cluster. Aggregation occurs when parti-
cles of different clusters form a bond and one
cluster assimilates the other. Thus aggrega-
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Figure 4.3: The reactivity k as a function of
simulated time t for the θ-values shown in
the legend. This main parameter controls the
time required to reach maximum reactivity
kmax at 20N0, using N0=105 monomers and
φV =0.1.

Figure 4.4: The bonding probability Pbond

as a function of t (see eq. 4.8), for the runs
shown in fig. 4.3. The dependency on increas-
ing time-step and reactivity, causes the bond-
ing probability to increase faster than k(t) for
equal θ.

tion causes the growth of clusters and reduces their number. Simulated time is
then incremented by ∆t and the cycle repeated until one aggregate remains.

For non-concentrated systems, clusters will initially grow as nucleation and
diffuse. As clusters grow larger, they may connect or interpenetrate. When a
cluster grows beyond the size of the box, it may connect to itself and percolate
the system in one direction. The earliest instance is called the percolation
time tperc. All clusters ultimately connect to each other into a final aggregate,
which in general will percolate isotropically. This continuous phase constitutes a
3D-network and its formation time is considered to correspond to the gelation
time tgel. The simulation is ended when Nc = 1, since movement becomes
meaningless, although some unbound particle pairs may remain.

4.2.3 Algorithm

As clusters are assimilated during simulation cycles, the ones remaining are
selected more often. To ensure that the sampling frequencies remain equal, the
simulation time is incremented each cycle by the probability for selection

∆t = 1

Nc(t)
∈ [ 1

N0
; 1
2
] . (4.3)

The cluster dynamics are expressed as the probability Pmove for a randomly
selected cluster i of mc,i monomers to move [45]. This probability models the
diffusion coefficient of a cluster and is defined to scale as a negative powerlaw
of the cluster mass with exponent α and given by

Pmove,i =mc,i
−α. (4.4)
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If its movement probability exceeds a random number between 0 and 1, a
selected cluster will move. In total three random numbers are required for the
movement procedure: selecting a cluster, deciding if it moves and selecting one
of the allowed directions. Main parameter α is the inverse of the expected fractal
dimension dF of the final structures, which are expected to have a dimensionality
somewhere around 2 [79]. Small variations of α in this range have nearly no
influence on the kinetics [45, 46, 58]. A fixed value α= 1

2 is used.

The bonding probability Pbond depends on the global reaction speed k and
the time interval ∆t during which the particles are in contact. The time-
dependent reaction speed k(t) is chosen to be a smooth, monotonically grow-
ing function from 0 to kmax, resembling typical titration curves in acid-base
reactions. Its rate of increase is controlled by the second main parameter θ, a
relaxation time that scales the reaction time:

k(t) = kmax (1 − e−t/θ) . (4.5)

The relaxation time from zero to maximum reactivity is determined by θ. The
maximum reaction speed is an arbitrarily large constant kmax above zero. The
initial reaction acceleration d

dtk(0) is given by the ratio kmax/θ. The reaction
acceleration goes to zero for times much larger than θ.

For θ = 0 the reactivity k = kmax at all times and clustering is diffusion
limited, i.e., the regime is DLCA. Using any θ > 0 causes the system to start
with RLCA, as the reactivity starts at zero and continuously increases towards
maximum. Fig. 4.3 shows the reaction speeds used in five runs with different
rates of increase. The amount of bonds Nb formed over time is opposite to the
change in unbound particle pairs Nu and is linear in k and Nu. For very large
systems the time step becomes very small, which allows to write

dNb(t)
dt

= − dNu(t)
dt

= k(t)Nu(t). (4.6)

The reactivity is therefore equivalent to the relative change in unbound neigh-
bors, which does not depend on concentration. The solution of eq. 4.6 is

Nu(t) = Nu(0) eθ k(t)−kmax t, (4.7)

where Nu(0) is determined by the initial coordination number. Bond formation
can be evaluated per particle or per pair, reducing the computational effort by
half. Defining Pbond as the number of bonds Nb formed per unbound particle
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pair Nu during interval ∆t, makes Pbond equal to the relative decrease in Nu:

Pbond(t) =
Nu(t −∆t) −Nu(t)

Nu(t −∆t) = 1 − eθ∆k(t)−kmax ∆t, (4.8)

where we have written ∆k(t) = k(t) − k(t−∆t). All a priori criteria for the
bonding probability are satisfied, since it cannot be negative or exceed one,
goes to zero when ∆t, kmax or both go to zero and goes to one when θ
approaches zero. Evaluating bonding per particle in stead of per pair would be
equivalent to using double kmax, which follows from eq. 4.8 when evaluating
Pbond + (1 − Pbond)Pbond. Since Pbond(t)=1 in DLCA, the minimum value for
kmax follows from exp (−kmax∆t)↓0, which gives

kmax ≫ N0, (4.9)

where we have used kmax =2 ⋅ 106 for all runs. Eq. 4.8 is global for all clusters
and depends on the reactivity during the time interval ∆t. Whether or not
a pair of adjacent clusters will bond is determined by comparison of Pbond(t)
at nstep with a random number between 0 and 1. Fig. 4.4 shows the result-
ing bonding probability for all unbound particle pairs obtained from runs with
N0 = 105 particles and φ

V
= 0.1 volume fraction. The probability can increase

substantially even at very low reactivity, when time steps become large enough
near the end of the simulation.

4.2.4 Code speed-ups

Neighborhood list

A neighborhood list is used to keep track of the direct surroundings of each par-
ticle with respect to other particles and bonds formed. It is used to investigate
site-occupancy and reduces computational time by one order of magnitude, by
eliminating the need to loop over all particle pairs when moving and bond-
ing. The neighborhood list is updated accordingly, requiring substantially less
computational resources than rescanning the full configuration.

Scarce movement

Large clusters have a rather small probability to move. Thus, for a system with
relatively large clusters, it may take many evaluated steps before any movement
occurs, hence resulting in a large amount of dead time. To save another order
of magnitude in computational time, we have devised an additional algorithm to
calculate the probability Pdead(n) that in the next n steps no movements occur
from the cluster-mass distribution. This procedure allows the system to skip
many steps in which nothing happens. It is only applied when no clusters are in



4.2 Simulation 73

contact with one another, since the number of clusters must remain unchanged.
The probability that any cluster moves during a single step is Pmove/Nc and
the probability that no cluster moves is therefore

Pdead(1) = 1 −
Nc

∑
i=1

Pmove,i

Nc
= 1 −

Nc

∑
i=1

mc,i
−α

Nc
. (4.10)

It follows that the probability that none have moved after n steps is

Pdead(n) = (1 −
Nc

∑
i=1

mc,i
−α

Nc
)
n

. (4.11)

Comparing Pdead(n) to a random number 0⩽Q1⩽1 yields the number of steps
nskip to be skipped, after which the movement of a certain cluster is to be
enforced:

Pdead(nskip) ⩾ Q1 ⇔ (1 −
Nc

∑
i=1

mc,i
−α

Nc
)
n

⩾ Q1

⇒ nskip = ⌈logQ1/ log(1 −
Nc

∑
i=1

mc,i
−α

Nc
)⌉ . (4.12)

We have imposed that, after skipping nskip steps, the total probability is 100%
that a cluster moves. The probability that cluster j moves at that moment,
is equal to its probability of moving in a single step, normalized with the total
probability of any cluster moving in a single step:

Pmove,j(nskip) =
mc,j

−α

∑Nc
i=1mc,i

−α
(4.13)

The cluster j to be moved can now be determined by comparison of the cumu-
lative probability over the set of clusters to a second random number 0⩽Q2⩽1

j

∑
i=1

Pmove,i(nskip) ⩾ Q2 ⇒ j, (4.14)

yielding cluster label j. Movement in a random direction requires a third random
number, just as in the original cluster movement procedure. After skipping nskip

steps, clusters may have come into contact and Pbond between two different
clusters has to be evaluated over ∆t = 1

Nc as before. However, the particle pairs
inside a cluster were already in contact and therefore have a larger probability
to form additional bonds amongst each other. For them Pbond is also evaluated
after skipping, but using ∆t = nskip

Nc
, where Nc has remained constant.
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Sporadic bonding

The straight-forward approach to bond formation requires the comparison be-
tween a random number and the bonding probability for each unbound, neigh-
boring particle-pair. In reaction limited aggregation the bonding probability
is usually assumed lower than one per mill [73] and the formation of a bond
requires many evaluations. At such extremely low probabilities, it becomes
computationally advantageous to use an alternative algorithm in which bonds
are distributed randomly between unbound pairs [80] with a frequency deter-
mined by the reactivity. This procedure is analogous to the procedure for scarce
movement and avoids many evaluations for unlikely events. However, here the
amount to skip may exceed the number of possibilities, in which case no bond
is formed.

A random number determines at which particle i a bond may be formed,
if there is an unbound neighboring particle j present. Each particle has three
directions in which it may form a bond. When looping over all possible bonding
positions b from 1 to 3N0, a random number Q determines how many to skip:

bskip = bstart + ⌊− lnQ

k(t) ⌋ , (4.15)

with bstart =1 for the first cycle and bstart = bskip + 1 every next cycle. A small
value for k(t) gives a large bskip, resulting in few evaluations per cycle. The
particle number is given by i = ⌈ 1

3bskip + 1
3⌉ during the loop. Particle j follows

from the neighborhood list, using ⌊bskip − 3 ⌊ 1
3bskip⌋ + 1⌉ to obtain one of the

three bonding directions. Only if a neighbor j is present and has no bond with
i, a bond is created between them. Next Q is assigned a new random number
and the start is set to bstart=bskip+1. The loop is continued using eq. 4.15 until
bskip exceeds 3N0. Any remainder is then taken into account by multiplying Q
with the inverse of 3N0 − bskip:

Qnew = Qold ⋅ e(3N0−bstart) k(t), (4.16)

to be used the next instance this procedure is called.

4.2.5 Predictions

The initial simulation behavior can be analytically predicted when allowing for
two main assumptions. The first assumption is that the initial coordination
number is proportional to the monomer concentration, which would be true
were the grid independently filled. In reality, the available space for monomers
diminishes during filling, since their total number is fixed and they are not
allowed to overlap. All coordinates on a 3D grid with PBC have six nearest
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positions and the probability for any arbitrary site to be occupied is φ
V
. At

t=0 there are approximately 6V φ
V

2 adjacent occupied sites. The coordination
number is the average number of neighbors each monomer has and therefore
≈ 6φ

V
. The expected initial number of neighbor-pairs Nn becomes

Nn(0)∗ = 3N0φV
, (4.17)

where the asterix denotes the first assumption. Except in highly concentrated
systems initial clustering consists nearly exclusively of dimer and trimer forma-
tion, which do not contain any internal bonds. The second assumption is that
every bond formed in the early stages of the simulation, lowers the number of
clusters by one, i.e., Nc(t)=N0−Nb(t).

Since the system is assumed to be composed of primarily monomers and a
fraction of pairs, a limited number of particle movements will have almost no
effect on the coordination number. Therefore, the third assumption is that the
coordination number remains constant during the initial stage. The amount of
bonds formed during this stage is equal to the change in the number of initial
unbound particle pairs, or Nb(t)=Nn(0)−Nu(t). The values at which DLCA
will start are therefore

N○

b ≈ 3φ
V
N0 (4.18)

N○

c ≈ (1 − 3φ
V
)N0 (4.19)

for the amount of bonds and clusters, where the circle denotes θ=0 under both
assumptions. For θ>0 the development of numbers of bonds from 0 to N○

b and
clusters from N0 to N○

c can be predicted using the same assumptions. All pairs
will be unbound, or Nu(0)=Nn(0), so eq. 4.7 gives

N●

b(t) = N○

b (1 − eθ k(t)−kmax t) (4.20)

N●

c (t) = N0 −N○

b (1 − eθ k(t)−kmax t) . (4.21)

The bullet denotes θ>0 under both assumptions.

4.2.6 Approach

In total 96 simulation runs were performed on a Linux workstation. Cubic
boxes of side L consisted of a simple cubic stacking of sites, occupied by a
fraction φ

V
. The boxes used PBC and all sites had six nearest neighbors. Initial

configurations were randomly generated from N0=φV
L3 sites on boxes of either

L = 50D or L = 100D and varying φ
V
. A maximum reactivity kmax = 2 ⋅ 106

was used for all runs, which was 20 times larger than the largest N0 used. No
finite size effects were observed in trial runs when system sizes exceeded 10,000
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monomers. Bonding and movement were performed along the three orthogonal
grid directions and restricted to distances corresponding to particle diameter D.

Simulation runs were primarily characterized by cluster mass growth, bond
formation and cluster movement. Other quantities under investigation were the
percolation time tperc and gelation time tgel, as well as coordination number,
radius of gyration and radial distribution function. To explore the effects of
varying reactivity regimes, runs were performed with θ-values differing orders of
magnitude, where θ=0 would corresponded to DLCA and very large θ to RLCA.
The effect of lower reactivity on these quantities was studied for several large,
semi-dilute systems and for many smaller boxes with a range of concentrations.

Boxes of L = 100D were filled with 105 monomers in order to grow large
clusters, and were run for θ ∈{0,1,103,106,109}. In these semi-dilute systems
of φ

V
= 0.1, the maximum reactivity was 20 times in excess of N0, satisfying

condition eq. 4.9. The large systems allowed analysis for a wide range of clus-
ter masses and sizes and for large particle-particle distances. Typical computing
times varied from weeks to months. Boxes of L=50D were filled with concen-
trations from very dilute to concentrated beyond the bulk critical percolation
threshold [70], above which a random configuration is expected to percolate.
Volume fractions φ

V
∈ {0.01,0.02,0.05,0.1,0.2,0.3116,0.5} were each run for

θ ∈ {0, 1, 10, 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011}. In these
systems N0 ranged from 1250 to 62500, so that kmax was factors 1600 to 32
larger.Run times were in the order of days.

4.3 Results

4.3.1 Aggregation

Percolation and gel time

Percolation and gelation time are known to depend only on φ
V
in DLCA for

sufficiently large L [46]. Table 4.1 gives percolation and gelation times of large
runs for θ’s of increasing orders of magnitude. Figure 4.3.1 shows how the
decreasing reactivity influences these times. The percolation time is constant
for θ’s from 0 to 1000, but triples when θ = 109. Gel times fluctuate around
250 when θ ⩽ 106 and increase when θ = 109. Table 4.2 gives DLCA gel times
for volume fractions from 0.01 to 0.5, where the gel time seems to be ap-
proximately proportional to the inverse square of the concentration as shown
in figure 4.6. Gelation becomes instantaneous when the volume fraction ap-
proaches one. When θ = 1011, the gel time of a system with φ

V
= 0.5 is up to

two orders of magnitude larger than for DLCA. For systems with φ
V
=0.01 the
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gel time appears nearly constant. However, the large stochastic fluctuations in
these results make a small increase in gel time difficult to ascertain.

Number of clusters

The decrease of the total amount of clusters during aggregation is given by the
decay of Nc(t). In fig. 4.7 plateaus are observed at N○

c in this decay for θ’s from
0 to 1000 when φ

V
=0.1. Increasing θ causes the drop from 1 to N○

c to shift to
larger times. When θ=106 the decay does not coincide with the DLCA plateau,
but is still in accordance with DLCA for the last 10% of clusters, ending at a
similar gelation time. Gelation time is substantially larger for θ=109.

θ tperc tgel tperc/tgel

0 49 340 14%
1 57 257 22%
103 47 313 15%
106 79 231 34%
109 155 489 32%

Table 4.1: Percolation time tperc, gel time
tgel and their ratio with varying θ, in boxes
of L = 100D and semi-dilute concentration
φV =0.1.

Figure 4.5: Percolation and gelation time
as a function of θ, see table 4.1.

φV tgel

0.01 6435
0.02 3865
0.05 525
0.1 171
0.2 39
0.3116 24
0.5 14

Table 4.2: Gel times for DLCA at varying
concentrations. Results are from boxes of L=
50D for θ=0.

Figure 4.6: DLCA gel times at varying
concentrations, see table 4.2.
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Cluster mass

Fig. 4.8 shows the average cluster mass development for φ
V
= 0.1. ⟨Mc⟩(t) is

the average number of monomer constituents per cluster N0/Nc(t). This gives
the arithmetical mean over the population, as opposed to the also common
mass-weighted number average. Systems which contain only monomers start
at unit average mass and gel structures have mass N0. For DLCA the cluster
mass starts at N0/N○

c , but when θ>0 there are no initial bonds. Runs with θ
up to 104 coincide nearly perfectly with calculated ⟨M●

c ⟩(t)=N0/N●

c(t) values.
The average cluster grows at identical rates for any θ ⩽ 106, once it is larger
than about 10 monomers. Close to gelation, development is less smooth due
to stochastics. These cluster mass results are generalized for a range of volume
fractions in section 4.3.2.

Number of bonds and moves

Fig. 4.9 shows the amount of bonds formed per monomer Nb(t)/N0 at φ
V
=0.1.

Initially each monomer has on average N○

b/N0 =0.3 monomers, corresponding
to half the coordination number 6φ

V
. The number of bonds and clusters ini-

tially show equal opposite change, in agreement with the first assumption in
section 4.2.5. However, non-linear clusters of more than three monomers can
also form bonds internally without affecting the number of clusters. This ul-
timately allows Nb to increase faster than Nc decreases. The final number of
bonds in the gel structure cannot be predicted a priori and is observed to be
Nb(tgel)/N0=1.123 ± 0.001 at φ

V
=0.1 for θ⩽106. Using θ=109 increases the

number of gel bonds by 13%, as shown in fig. 4.16 for φ
V
= 0.1. The time-

derivative of Nb(t) is plotted in fig. 4.10, showing at which times bonds are
formed. The solid lines show the bond formation given by eq. 4.6, using eq. 4.7
for the number of unbound pairs and eq. 4.5 for the reactivity. Fig. 4.11 shows
the cumulative number of performed moves Nm(t) for φ

V
= 0.1. For θ ⩽ 106

the number of moves is roughly equal to the simulation time up to t≲ 1, and
for θ=109 this applies up to t≳50. Beyond these times, the inertia of growing
clusters begins to diminish movement. The systems comes to full arrest at tgel.

Initial DLCA behavior

For DLCA, the reactivity is maximum from the beginning, causing all neighbor-
ing monomers to bond immediately. In fig. 4.7 and fig. 4.9 the initial numbers
of clusters and bonds are at DLCA levels of approximately 0.7 and 0.3 per
monomer, as predicted by N○

c (eq. 4.19) and N○

b (eq. 4.18). For any θ > 0
the simulation starts at zero reactivity with only monomers and no bonds,
which means that all pairs are unbound. For 0 < θ ⩽ 106 values, the num-
ber of clusters first decreases from N0 to N○

c and the number of bonds first
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Figure 4.7: Decay of the number of clusters
Nc per monomer for N0=105 and φV =0.1,
using θ=0 (△), θ=1 (◻), θ=103 (◯), θ=106

(◇) and θ=109 (▽). Solid lines show values
for eq. 4.21.

Figure 4.8: The average cluster mass
⟨Mc⟩ is inversely proportional to Nc.
For small θ the initial ⟨Mc⟩ goes to
N0/N

○
c =1.43, shown as solid lines.

Figure 4.9: Average number of bondsNb per
monomer for the runs of fig. 4.7. Solid lines
show values calculated with eq. 4.20.

Figure 4.10: Momentary increase in the
number of bonds dNb/dt. Solid lines
show bond formation calculated with
eq. 4.6.

Figure 4.11: Average total number of moves
Nm performed per monomer throughout
the simulation, for the runs of fig. 4.7.
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Figure 4.12: The transition time t1/2 as a function
of θ for a series of concentrations, giving nearly
equal results. The legend shows φV -values and
the solid line corresponds to eq. 4.23.

increases from 0 to N○

b , as shown
in fig. 4.7 and fig. 4.9. The solid
lines show that N●

c (t) (eq. 4.21) and
N●

b(t) (eq. 4.20) accurately predict
the transition from RLCA up to half
the initial DLCA level for the in-
vestigated θ-range. Fig. 4.12 shows
the reaction time t1/2, which is de-
fined as the time where half the ini-
tial amount of unbound neighbors has
bonded. This means that N●

b(t1/2) =
1
2N○

b , which can be rewritten to

θ (1 − e−t1/2/θ) − t1/2 = ln 1
2

kmax
. (4.22)

using equations 4.5 and 4.20. In a Taylor-expansion of the exponential term
around t1/2 = 0, the constant and linear terms cancel. Using t1/2 > 0 gives for
θ≫t1/2 the square root relationship

t1/2 =
√

2 ln 2
θ

kmax
, (4.23)

where θ/kmax = d
dtk(0). Taking t1/2 as a measure of typical reaction time and

equating it to the diffusion time, a critical θ=1.4⋅106 follows. Below critical θ,
the typical reaction time is less than the average movement time for monomers,
which enables systems to develop from RLCA into DLCA. Above critical θ,
aggregation is not diffusion limited and development is too slow to catch up
with DLCA. For very large θ the coordination number does not remain constant
and eq. 4.23 overestimates t1/2 due to invalidity of our third assumption. The
determined values for t1/2 become less accurate at low θ, due to decreasing time
resolution.

4.3.2 Cluster mass

Distribution

Average cluster mass does not disclose information on how the individual values
are distributed. Figure 4.13 shows the mass fractions φmu(t) for several small
and large masses mc, each for a different θ ∈ {0,1,103,106,109}. These were
calculated from cluster mass histograms as mc ⋅Nc(t;mc)/N0. The monomers
(purple, dot), dimers (blue, dash) and trimers (cyan, dash-dot) are shown sep-
arately. Because of their smaller numbers, tetramers and pentamers (green,
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Figure 4.13: The evolution of cluster mass fraction φmu from runs of N0=105 monomers with
φV =0.1 for a series of θ-values. The fractions were calculated from cluster mass histograms
as the total mass present in clusters of mc constituents divided by the total mass of the
system N0. Mass histograms were rebinned for clarity, using the cluster mass binsizes mc

shown in the legend in the top-left plot. The total cluster mass fraction sums to 100% over
these bins at any time t.
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wide dash) and mc = 6 − 9 (yellow, wide dash-dot) were binned together. All
higher cluster masses (red, solid) were stored in the final bin of mc=10 − 105.

For θ = 0 fig. 4.13 shows that the DLCA plateau consists predominantly
of monomers, dimers and trimers until t≈ 0.02. Around t≈ 1 the cluster mass
distribution becomes increasingly wider, until it starts to collapse and after t≈50
only large clusters remain. When θ=1 initially only monomers and some dimers
exist, but after t ≈ 0.002 the system has caught up with DLCA and develops
similarly. When θ =103 the system starts with monomers only and catches up
to DLCA around t≈0.07. However, when increasing θ to 106, no dimers appear
until t≈0.002 and no trimers until t≈0.1. The fractions of small clusters can no
longer catch up to the DLCA levels, but the larger clusters still show the same
rapid development. No aggregation is seen for θ = 109 until t ≈ 0.1 and rapid
system development occurs much later. With only monomers much longer and
the later creation of small clusters, the larger clusters appear too late to overlap
with DLCA evolution.

Density series

In order to generalize gelation results with respect to bulk density, sets of runs
have been performed with varying monomer concentrations φ

V
from very dilute

to concentrated for θ-values from DLCA to RLCA. Fig. 4.14 shows a selection of
results with sets of number density φ

V
∈ {0.01,0.02,0.05,0.1,0.2,0.3116,0.5}

for six selected values of θ∈{10,103,105,107,109,1011}.
When θ = 0 the initial average cluster mass is ⟨M●

c ⟩ ≈ 1/ (1 − 3φ
V
). This

DLCA plateau is visible for most densities when θ ⩽106 and more pronounced
for concentrated systems, since it is close to one for very dilute systems. Runs
with the largest two densities show only slight humps for θ = 105, whereas no
trace of a plateau can be discerned when θ=107.

4.3.3 Reactivity

Cluster bonds

Different reactivity regimes cause different clustering behavior, expressed by
differences in cluster mass development and bond formation. The initial amount
of bonds in DLCA is approximately equal to half the coordination number and
linear in φ

V
, according to eq. 4.18. Fig. 4.15 shows Nb(0) results for θ=0 from

L=50D runs. The prediction is shown as a straight line with unitary slope in
the log-log plot, and is very accurate, despite the finite size effects for dilute
cases, which can cause strong fluctuations in initial coordination number. The
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Figure 4.14: The average cluster mass ⟨Mc⟩ development for a series of densities from concen-
trated to dilute and the effect of increasing θ two orders of magnitude. Data for each θ is
shown in a separate plot, containing seven volume fractions φV = 0.5 (▲), φV = 0.3116 (△),
φV =0.2 (◆), φV =0.1 (◯), φV =0.05 (∎), φV =0.02 (▽) and φV =0.01 (▼), see top-left legend.
Runs were performed in boxes with L=50D with N0=L

3φV monomers.
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Figure 4.15: Average number of bonds Nb per
monomer at t=0 for θ=0 as a function of con-
centration φV . Results are in excellent agree-
ment with N○

b(φV)/N0 for DLCA (eq. 4.18),
shown as a solid line.

Figure 4.16: Average number of bonds Nb per
monomer at t=tgel as a function of θ for con-
centrations φV of 0.01 (▼), 0.02 (▽), 0.05
(∎), 0.1 (◯), 0.2 (◆), 0.3116 (△) and 0.5 (▲).
Lines are provided as a guide-to-eye.

number of bonds per monomer can vary between zero and three. The final
number of bonds characterizes the gel structure. Fig. 4.16 shows the gel bonds
as a function of θ for different concentrations. Higher densities give gels with
more bonds. When decreasing reactivity, the gel structure seems unaffected up
to θ =106. For larger values, the number of bonds increases in all cases. This
increase seems to flatten for concentrated systems beyond θ≫1011.

Diffusion vs. reactivity

A common criterion to distinguish diffusion limited from reaction limited aggre-
gation, is the number of moves required for a bond to form. Fig. 4.17 shows the
average number of cluster bonds Nb/Nc at time t plotted against the number
of cluster moves Nm/Nc at time t. For any 0 < θ ⩽ 106 bonding can still catch
up to DLCA and continue as such, because the reactivity increases fast enough
with respect to diffusion. For the investigated system sizes, a diagonal line
separates the diffusion limited from the reaction limited regions, which develop
in parallel beyond approximately 100 bonds per cluster. This represents the
ratio of bonds versus moves that distinguishes DLCA from RLCA. For θ=109,
Nm/Nb shows no overlap with ratios from lower θ’s during any point of the
simulation. It is reasonable to expect that Nm will become huge with respect
to Nb for even higher values of θ.

In fig. 4.18 cluster bond formation is plotted as a function of cluster mass.
Fits with straight lines through the origin give a linear relationship for Mc≳10.
When clusters are larger than about 10 monomers, their amount of bonds
appears to scale linearly with their mass. The dashed line for θ’s up to 106 has
a slope of 1.13, whereas the dotted line for θ = 109 has a slope of 1.27, both
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Figure 4.17: Average number of bonds per
cluster Nb/Nc plotted against the average
number of moves per cluster Nm/Nc, for θ-
values of 0 (△), 1 (◻), 103 (◯), 106 (◇) and
109 (▽). Results are at equal t for N0 = 105

monomers with φV = 0.1. Values calculated
with eq. 4.20 are shown as solid lines.

Figure 4.18: Average number of bonds per
cluster Nb/Nc plotted as a function of aver-
age cluster mass ⟨Mc⟩ for the runs in fig. 4.17.
Cluster bonds grow linearly for large masses,
indicating stable coordination numbers in
large clusters. More bonds are observed when
θ=109 than for the lower θ’s.

with an accuracy of ±0.005. The slope has increased by 12%, which is in good
agreement with the 13% increase in Nb(tgel) seen in fig. 4.9.

4.3.4 Structure

Coordination number

The third assumption in section 4.2.5 states that the coordination number ini-
tially remains constant. The histograms in section 4.3.2 show that for any θ>0,
semi-dilute systems consist almost entirely of monomers until clustering reaches
DLCA-levels. Since Brownian diffusion on a grid cannot significantly affect the
number of neighbors Nn in a large random configuration of monomers, the
coordination number remains constant with some minor fluctuations. Fig. 4.19
shows that the number of neighbors indeed remains constant at first and then
increases due to clustering. This development is similar to that of of the number
of bonds in fig. 4.9, but without the transition to the DLCA-level. This shows
that clustering beyond the DLCA-level occurs due to cluster diffusion causing in-
creases in coordination number, which are subsequently fixed through bonding.
For 0 ⩽ θ ⩽ 103, the evolution in coordination number cannot be distinguished
from DLCA. For 106 the increase is delayed, but sharp enough to correspond to
DLCA eventually. For 109 the coordination number increases much later and
to larger values, creating more contact sites and thereby causing more bond
formation.

The difference between half the coordination number and the number of
bonds per monomer, is shown in fig. 4.20. For DLCA there is no difference, as
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Figure 4.19: The average number of nearest neigh-
bors Nn per monomer for N0=105 monomers with
φV =0.1. Results are for θ=0 (△), θ=1 (◻), θ=103

(◯), θ=106 (◇) and θ=109 (▽) and show the de-
velopment of half the coordination number. These
are similar to Nb (fig. 4.9) without the initial tran-
sition.

Figure 4.20: Difference between numbers of
nearest neighbors Nn and bonds Nb, for
results shown in fig. 4.19. For θ > 0 ini-
tial values are 3φVN0 as given by Nn(0)∗

(eq. 4.17).

any unbound neighbor will immediately bond. Increasing θ causes the system to
start at the initial coordination number and reduce this difference later, as bonds
are formed increasingly slower. For 109 there is actually a very slight increase
in coordination number, before the major bond formation starts, showing how
small, non-reactive clusters become surrounded by the more mobile monomers.

Radius of gyration

The density of clusters of mass mc is determined by their size. The spatial
dimensions of a cluster of random shape can be determined from the distribution
of mass in space. The radius of gyration Rg in units of monomer diameter D
is a measure for typical length and defined as the root-mean-squared-deviation
of the mc coordinates from the center of mass

Rg
2 = 1

mc

mc

∑
i=1

(xi2+ yi2+ zi2) − 1

mc
2
[(∑xi)

2+ (∑ yi)
2+ (∑ zi)

2] . (4.24)

In PBC clusters can extend outside the box, which requires them to be folded
out. However, a percolating cluster has a gyration tensor with at least one infi-
nite component [81], which makes it effectively infinitely large. Since the center-
of-mass is then undetermined, the radius of gyration is undefined. Fig. 4.21
shows ⟨Rg⟩ as a function of ⟨Mc⟩ for varying θ, where ⟨Rg⟩ is the mean over
the whole ensemble of non-percolating clusters. Percolation cause the growth
of the mean to become erratic, since only the smaller, non-percolating clusters
can be taken into account. Therefore, ⟨Rg⟩ loses meaning at tperc. However,
clusters formed for θ = 109 are significantly smaller, down to about half the
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Figure 4.21: Average radius of gyration ⟨Rg⟩

as a function of average cluster mass ⟨Mc⟩ for
N0 =105 monomers with φV =0.1. At θ=109

typical sizes are smaller thus clusters are more
dense. The average is over non-percolating
clusters.

Figure 4.22: Radial distribution function
g(r) development for DLCA. Times are se-
lected to show the intermediate change in
short-range structure. Results are for θ = 0
with N0 = 105 monomers and volume frac-
tion φV =0.1.

typical size at equal mass. Cluster size growth may follow a powerlaw after
⟨Mc⟩≳10, as curves seem linear on a log-log scale before percolation.

Radial distribution function

The structure of isotropic systems has a radial density distribution ρ(r) [73].
The pair-correlation function g(r) gives the probability to find another particle
in a spherical shell of radius r and width dr around any arbitrary center particle
in the system, where Nshell(r) is the expected value. This radial distribution
function (RDF) shows how the local number density of a system converts over
distance into the mean number or bulk density φ

V
, calculated from a normalized

histogram of particle pair distances

g(r) = 2

N0Nshell(r)
N0−1

∑
i=1

N0

∑
j=i+1

δr,∣r⃗i−r⃗j ∣

Nshell(r) = φV
4
3
π [(r + 1

2
dr)3 − (r − 1

2
dr)3]

(4.25)

where δ is the Kronecker delta, which is one when the distance between i and
j equals r and is zero everywhere else. There is zero probability to find two
particles overlapping, therefore g(0)=0.

The aim is to see structure emerge from the initial configuration, which
requires a normalization of the RDF for the number of integer squared lattice
distances. The RDF of any initial box now shows the uniform distribution
of monomers as a practically horizontal series of points around g(r) = 1 with
minor fluctuations due to finite box size. This is shown as a series of dots in
fig. 4.23 and its inset. However, g(r) results in later stages of the simulation
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Figure 4.23: Radial distribution function
g(r) at tgel for runs with N0=105 monomers
with φV = 0.1. Values at t = 0 are shown as
gray dots. Results are given for lowest and
highest θ-values since results at intermedi-
ate θ do not differ from DLCA. The inset
shows a linear plot around the minimum.

Figure 4.24: The RDF at tperc of single, iso-
lated percolating clusters for θ = 0 and 109

for runs with N0 = 105 and φV = 0.1. Short-
range results are nearly identical to those at
tgel (see fig. 4.23). A powerlaw fit produced
g(r ≥ 5)= 1.18r−0.207 for the percolating DLCA
cluster, shown as a solid line.

exhibit spikiness in the short range r ≲ 3D, which can only be attributed to
a grid effect, as the large number of these distances in the system diminishes
the stochastics. This is supported by the smoothness of g(r) at large r, which
occur much less frequently.

Snapshots of the RDF at four different times are shown for θ=0 in fig. 4.22.
The evolution of the RDF for different θ’s shows initial clustering around 0<t≲1
for θ’s 0, 1 and 103, whereas no clustering is observed for 106 and 109. At r=D
dimer formation produces a peak and a small dip between

√
2D and

√
6D,

due to a short-range depletion effect. Their magnitudes increase over time,
slightly delayed for larger θ. The formation of larger clusters is observed around
1 ≲ t ≲ 10 as both width and amplitude of the peak and dip roughly double.
For low θ results become nearly identical. A similar RDF with less magnitude
arises for 106, whereas it remains unchanged for 109. Short-range oscillations
appear and disappear due to cluster movements, but are eventually dampened
by aggregation, which fixes minimum values of g(r). At times larger than t≳10
differences become negligible between results for θ∈{0,1,103,106} as the peak
and dip grow towards their final widths and values, whereas for 109 only initial
dimer formation becomes observable.

For any θ, the RDF evolution comes to a standstill during tperc ≤ t ≤ tgel,
with a different result for 109 from the lower θ’s. The gel structures for θ = 0
and 109 are shown in fig. 4.23, where the inset shows that peak and dip are of
larger magnitude and width. This indicates that this network is formed from
denser clusters and has larger cavities. The values of g(D) show a factor 13.0%
increase and correspond to Nn(tgel)/ (3φV

) in concordance with fig. 4.19. In
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both cases, the short-range gel structure g(r ≤ 5D) is determined mainly by
the percolating cluster when compared to fig. 4.24, whereas the long-range
gel structure is indistinguishable from the initial configuration. The long-range
structure of the percolating DLCA cluster shows powerlaw behavior with an
exponent of -0.2. For θ = 109 the long-range structure g(r > 5D) cannot be
characterized by a single power, but seems to consist of multiple exponents
ranging from -0.4 to -0.1. For DLCA the long-range structure would correspond
to dF = 1.81 in two dimensional envelope space [58, 82], which is a frequently
reported value in literature [47, 48, 73, 74]. However, no clear argument is
supplied in literature why a two dimensional case should apply to a 3D system.

4.4 Discussion

Our model is based on a global, time-dependent reactivity k(t; θ, kmax), where
particle bonding is decoupled from cluster movement and the rate of increase
is controlled by θ for a given maximum reactivity kmax. For θ=0 the reactivity
is k(t) = kmax throughout the simulation and aggregation is diffusion limited.
Using a kmax ≪N0 prohibits all pairs present at t = 0 to bond and does not
give rise to an initial DLCA plateau, as seen in DLCA models which allow only
moving clusters to bond [45]. If kmax ≫ N0 the reaction time goes towards
zero, causing immediate bonding of all initial pairs, which leads to an initial
plateau in the number of clusters and bonds. The initial coordination number is
approximately 3φ

V
and all of these neighbors cause clustering, since the amount

of internal cluster bonds is negligible in non-concentrated systems. Continued
aggregation requires further increase of the coordination number, which occurs
on the scale of typical monomer diffusion time.

For θ > 0 there is negligible initial reactivity and the system starts reaction
limited. If k(t) increases fast enough with respect to diffusion, a transition from
RLCA to DLCA is made and the system continues developing as DLCA. The
typical reaction time determines the rate of this transition and is proportional to√
θ/kmax. Gel times are independent of θ when θ<kmax/(2 ln 2), but increase

radically for larger θ. When θ>kmax/(2 ln 2) a system of N0 monomers cannot
make the transition to DLCA, since the typical reaction time is larger than the
typical diffusion time. The transition from RLCA to DLCA is analytical in dilute
and semi-dilute systems, but large structures with internal bonds complicate the
analytical description in highly concentrated systems.

Because of the very low reactivity, small clusters survive longer in RLCA.
The coordination number in RLCA develops along a distinctively different tra-
jectory from DLCA. Local fluctuations in coordination number are not locked
immediately, but re-equilibrate. In RLCA the overall mobility remains longer be-
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cause the rise in inertia occurs later. Exposed sites become surrounded by small
clusters and the low reactivity also allows large clusters to inter-penetrate more
deeply. The coordination number becomes substantially larger than in DLCA,
resulting in more bond formation and more compact clusters. For θ = 109 the
average cluster size develops slower and stays smaller than at lower θ, as seen
from the radius of gyration. Average Rg values as a function of cluster mass
are also substantially smaller, evidence of the increased average denseness of
the clusters.

Rottereau, Gimel and many others define the gel point as the first instance
of a percolating cluster to occur [45, 46]. The underlying assumption seems
to be that percolation in one direction represents a continuous phase, without
clarifying how percolation in one direction would block the flow of the medium
in a 3D system. In this model the percolating structure constitutes a part of
the total mass and, depending on the initial concentration and reactivity, many
clusters remain in its pores. We also see that the radial distribution function
g(r) does not significantly change after the formation of a percolating cluster,
which determines the short-range gel structure, with a homogeneous long-range
structure. Lu et al. [78] argue that gelation of spherical particles with short-
range attraction occurs through spinodal decomposition. Their work shows
that thermodynamic instability gives density fluctuations which ultimately lead
to spanning clusters that dynamically arrest. They claim that it is phase sepa-
ration and not percolation that corresponds to gelation in models for attractive
spheres. We also interpret the sol–gel phase transition as the formation of a ki-
netically arrested structure from clustering monomers. A gel has a sponge-like,
continuous matrix and the gel structure percolates isotropically, or at least in
three orthogonal directions, so that its gyration tensor consists of three infinite
components [81]. We therefore treat the percolating structure at tperc as the
skeleton of the gel and let all let moving clusters arrest onto it, and argue that
this formation time tgel corresponds better to the actual physical gelation time.

Our choice of model requires gelation for RLCA to occur before the reactivity
increases too much. Despite the very low reactivity k(t)<5⋅10−7 kmax through-
out for θ=109, the bonding probability does not stay below the commonly used
Pbond ≤ 0.001 for RLCA [73] in the late stages. This is primarily due to the
large time steps in the end. The increase in Pbond shortens gel time, causes
bond-saturated structures and hinders deeper inter-penetration of the few large
remaining clusters. This impedes further increase of the coordination number,
preventing an even denser gel structure to arise. An improvement would be
to run RLCA systems of N0 = 105 monomers at θ≫ 109. Possible other im-
provements on our model would involve rotational freedom, running off-lattice,
incorporating monomer polydispersity and modeling particle-medium interac-
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tions. The latter may realign clusters to create larger gel-pores and reduce the
surface tension of the encapsulated medium.

4.5 Conclusions

In Monte Carlo models with constant diffusion speed, the regime in which
clusters aggregate can be controlled from reaction limited to diffusion limited
by varying the reaction speed. In systems without initial reactivity, an increasing
reaction rate causes a transition from RLCA into DLCA when typical reaction
time exceeds typical diffusion time. The clustering during this transition is
analytical if the coordination number is moderate and unaffected by diffusion,
which is true in non-concentrated systems during typical diffusion time. The
transition has no effect on gel structure, shown by cluster mass distributions
and coordination numbers.

Tuning the reaction time to be comparable to the diffusion time creates
an aggregation regime of comparable reactivity and mobility. Despite initial
aggregation being reaction limited, final gel structures still compare to those of
DLCA. At much larger reaction times, systems stay in RLCA and produce gels
with higher coordination numbers. The distribution of cluster masses is broad
in DLCA, goes from narrow to broad when a transition occurs and is narrow
in RLCA. Very low reactivity also decreases differences in aggregation behavior
between different densities. The aggregation regime can be seen most clearly
when comparing the number of moves required for bond formation.

In general we can conclude that for different reactivities clusters aggregate in
similar fashion but on different time scales, as long as the coordination number
remains unchanged. Compared to DLCA, gelation in RLCA occurs much slower,
creates denser clusters and gels with larger cavities and of different fractal
dimension. Regardless of reactivity, clusters of equal compactness are created
up to the average cluster mass of a high-reactivity DLCA system, but not with
the same distribution.
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CHAPTER 5

Sample thickness optimization for SESANS

Léon F. van Heijkamp, Wim G. Bouwman and Ignatz M. de Schepper.

5.1 Introduction

SESANS measurement data is primarily characterized by the shape and the
magnitude of the decaying polarization signal. The shape of the signal

is determined by the projected density correlation function G(z), expressing
structure as spatial correlations between density fluctuations in a sample. The
magnitude of the signal is the overall loss in polarization, which is determined
by the thickness and scattering power of the sample. The quality of the signal
is determined by the count rate in the detector; a product of the incident
neutron flux and the transmission of the sample. Figure 5.1 shows a photo
of a SESANS setup with two magnetic field regions, one before and one after
the sample position. The spin-echo length z is set by the field strength. The
length scales in a sample are probed by measuring the polarization for a range
of spin-echo lengths. Length scales are measured from the width of a SESANS
signal, of which the magnitude depends on the coherently scattered fraction of
the neutron beam. The polarization can be observed to saturate at spin-echo
lengths beyond the largest length scale present in the sample, if the scattering
power is between 0.05 and 1.5. Measurements can therefore be performed with
samples causing mostly single scattering up to a lot of multiple scattering.

Scattering is caused by inhomogeneities in the scattering length density (SLD)
of a material. The likelihood for a neutron to scatter or be adsorbed when
traversing a material increases for longer path lengths. Increasing the thick-
ness of a sample causes more coherent scattering events, observed as less con-
servation of the polarization of the beam. Multiple scattering increases the
polarization error, causing the relative error to blow up for strong signals and
diminishing the sensitivity for G(z). A thicker sample therefore results in a
stronger, but less accurate signal.

The attenuation of the beam also increases when increasing sample thickness
and the count rate at the detector drops. The optimal thickness is therefore
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Figure 5.1: Photo of the SESANS setup at the Reactor Institute Delft, with the neutron guide
exiting the reactor hall at the left. A crystal monochromator uses the Bragg condition to
select a wavelength at a specific angle, after which a polarizer selects neutrons that have the
same combination of their spin-eigenstates. Two magnets comprise the first magnetic region
encoding the neutron spin, which can be described classically as Larmor precession or quantum-
mechanically as the vertical separation of two neutron eigenstates. The selected magnetic field
strength is proportional to the desired spin-echo length. A sample is placed on a translation
table and moved in and out of the beam, in order to measure both empty beam and sample
under equal conditions. Two magnets to the right form the second magnetic region decoding the
neutron spin. This region has a geometry identical to the first, but with opposite field values.
The echo condition is achieved by fine-tuning the four magnets with respect to each other. The
polarization is measured by a combination of analyzer and detector.

a trade-off between signal strength and attenuation, giving an optimum in the
signal-to-noise ratio. The signal strength and attenuation are characterized by
the macroscopic coherent scattering cross section Σ and the linear attenuation
coefficient µ, which both depend on the neutron wavelength and the neutron
interaction with the materials in the sample. For a monochromatic beam of
known wavelength, the amount of coherent scattering is determined by the
average SLD-fluctuation and the typical separation between those fluctuations,
and the attenuation is determined primarily by the incoherent scattering and
absorption cross section.

Many samples contain H2O D2O and/or aluminum in SESANS. Table 5.2
shows the scattering length densities and attenuation factors for light water,
heavy water and aluminum, which are calculated from the scattering lengths
and nuclear bound cross sections of hydrogen, deuterium, oxygen and aluminum,
shown in table 5.1. Light water, heavy water and aluminum all have different
orders of magnitude of attenuation. The factor µ is the inverse of the 1/e-
length, at which about 37% of the neutrons are transmitted. The neutron
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Element bcoh (fm) binc (fm) σcoh (b) σinc (b) σabs (b)
1
1H –3.74 25.28 1.758 8.027 0.333
2
1H (D) 6.67 4.04 5.592 2.050 0.001
16
8 O 5.81 0.00 4.232 0.000 0.000
27
13Al 3.45 0.00 1.495 0.008 0.231

Table 5.1: Tabulated scattering lengths and cross sections of hydrogen,
deuterium, oxygen and aluminum for thermal neutrons [26, 83]. Con-
ventional units are the Fermi (1 fm = 10−13 cm) and the Barn (1 b =
10−24 cm−2).

Substance Mass density SLD ρs Linear attenuation
(kg/m3) (1010 cm−2) factor µ (cm−1)

H2O 1.00 –0.56 5.392
D2O 1.07 6.16 0.132
Aluminum 2.70 2.08 0.017

Table 5.2: Scattering length densities (SLD) and attenuation factors
for three common substances, calculated using scattering lengths and
cross sections listed in table 5.1, number densities obtained from mass
densities and molecular weight. A neutron wavelength of λ = 2.09
Å was used to calculate the attenuation factor. See the website
http://www.ncnr.nist.gov of the Center for Neutron Research of the
National Institute of Standards and Technology for further details.

transmission of H2O is limited primarily due to incoherent scattering, whereas
aluminum is nearly transparent for neutrons. It is not a trivial issue to decide
which range of sample thicknesses are suitable for a SESANS measurement. A
relationship is desired to establish on forehand which thickness gives an optimal
signal, given values for attenuation and scattering. In this chapter a criterion
is established for the optimal SESANS signal as a function of sample thickness
and apparatus parameters. This is reduced to a solvable problem, the solution
of which yields the optimal sample thickness `opt in terms of µ and Σ.

5.2 Formalism

5.2.1 Relations

Intensity

A neutron wave function has two possible states of angular momentum, eigen-
states with spin +½ and –½. A fully polarized neutron beam consists of neutrons
with the same combination of eigenstates and has intensity I

↑
. In the SESANS

technique an analyzer in front of the detector allows ↑- and ↓-intensities to be
counted separately in order to measure the polarization of the beam after the
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Sample Volume fraction Sample thickness Macroscopic cross section
φV ` [cm] Σ [cm−1]

Liposomes 0.02 1.00 0.036
E. coli 0.09 1.00 0.124
Milk 0.10 1.80 0.046
Yoghurt 0.10 1.80 0.149

Table 5.3: Measured macroscopic coherent scattering cross sections Σ of sols suspended in
D2O. The liposomes and E. coli bacteria are biological colloids of which the lipid mem-
branes are observed. Fat-free milk and yoghurt are colloidal food materials that consist of
casein micelles. Measurements were performed at a wavelength λ=0.209 ± 0.004 nm, i.e., a
monochromatic neutron beam with 2% spread. The systems and experiments are discussed
in chapter 2 and chapter 3.

sample. Neutron counts are generally taken to follow a Poisson distribution, for
which the count error is given by the square root of the counts. Intensities are
calculated by normalizing detector counts with either counting time or monitor
counts, which are used to take fluctuations in the neutron flux into account.
The counting time can be controlled with very high accuracy and does not con-
tribute to inaccuracy of the measured signal. The monitor counts exceed the
number of detector counts by several orders of magnitude and have therefore
no significant contribution to signal errors. For a fixed counting time and a
constant neutron flux, the errors in intensity therefore become

∆I
↑
=
√
I
↑

and ∆I
↓
=
√
I
↓
. (5.1)

Transmission

The constant total transmitted intensity of both states I
↑
+ I

↓
as registered by

the detector is Itot. The neutron transmission of a sample is the ratio of this
transmitted intensity and the incoming intensity

TN = Itot

I0
, (5.2)

where I0 is the incoming intensity of the beam without a sample present. The
transmission is the fraction of neutrons not attenuated by the sample, which
decreases exponentially with sample thickness

TN(`) = e−µ`, (5.3)

where µ is the linear attenuation coefficient, which depends on the material and
the neutron wavelength (see table 5.2). Combining both relations gives

Itot = I0 e−µ`. (5.4)
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Polarization

Despite being electrically neutral, neutrons posses a magnetic moment caused
by their charged quarks and therefore interact with magnetic fields. The ori-
entation of the magnetic moments is represented by the polarization tensor,
of which the diagonal determines the coordinate system, i.e., the frame of
reference. In an unpolarized beam of neutrons the magnetic moments are ran-
domly oriented, whereas they all point the same way in a fully polarized neutron
beam. The SESANS technique employs polarized neutrons to measure scatter-
ing through loss of polarization as a function of spin-echo length z. Very weak
signals carry little depolarization and are difficult to distinguish from experimen-
tal noise, whereas very strong signals are in the region of full depolarization.
When a beam retains only a small amount of polarization, it becomes difficult
to measure this amount accurately, which causes an inflation of the measure-
ment errors. The polarization of the beam after traversing a sample is given
by

PS =
I
↑
− I

↓

I
↑
+ I

↓

=
I
↑
− I

↓

Itot
, (5.5)

where the difference between the two intensities depends on z. To determine
the error in the polarization, the two intensities can be considered independent
of each other, which results in

∆PS =

¿
ÁÁÀ(∂PS

∂I
↑

∆I
↑
)

2

+ (∂PS

∂I
↓

∆I
↓
)

2

. (5.6)

The partial derivatives are

∂PS

∂I
↑

=
2 I
↓

Itot
2

and
∂PS

∂I
↓

=
−2 I

↑

Itot
2
, (5.7)

which gives

∆PS =
2 I
↑
I
↓

Itot
2

¿
ÁÁÀ(

∆I
↑

I
↑

)
2

+ (
∆I

↓

I
↓

)
2

. (5.8)

The errors in intensity are given by eq. 5.1, resulting in

∆PS =
2 I
↑
I
↓

Itot
2

¿
ÁÁÀ 1

I
↑

+ 1

I
↓

= 2
3
√
Itot

√
I
↑
I
↓
. (5.9)

Using I
↑
= 1

2Itot (1 + PS) and I
↓
= 1

2Itot (1 − PS) and substituting eq. 5.4 for the
total intensity, reduces the error in the polarization to

∆PS =
e
µ
2 `

√
I0

√
1 − PS

2. (5.10)
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Projected correlation function

The projected density correlation function is given by

G(z) = lnPN(z)
Σ `

+ 1. (5.11)

with normalized polarization PN, sample thickness ` and macroscopic scattering
cross-section Σ. The projected correlation function decays from one to zero, so
that G(0)=1 and G(z ≥zsat)=0. The resolution function of a SESANS setup
is given by the polarization of the empty beam P0, which is divided out of PS

to give PN. This normalized polarization starts at one for z = 0 and saturates
beyond zsat. The fraction of the beam that scatters does not recover its original
polarization. The part retaining polarization corresponds to the probability for
a neutron not to scatter:

Psat = PN(zsat) = e−Σ `. (5.12)

The product Σ ` is the scattering power of the sample and determines the
strength of the polarization signal. The macroscopic scattering cross section
Σ corresponds to the total number of scattering events per volume per time
divided by the neutron beam flux in neutrons per area per time, which gives
the number of scattering events per neutron per unit sample thickness. It is
the product of the squared neutron wavelength λ and the variance and typical
size of the SLD fluctuations.

Σ = λ2 ⟨∆ρ2
s ⟩ ξ

binary= λ2 φ
V
(1−φ

V
)∆ρ

2
s ξ. (5.13)

The variance ⟨∆ρ2
s ⟩ is the average squared magnitude of the fluctuations, i.e.,

the mean squared deviation. For a two phase system it is the product of the two
volume fractions and the squared difference between the two scattering length
densities present. The typical size of the inhomogeneities is determined by the
separation between the SLD fluctuations and characterized by the correlation
length ξ.

Assumptions

Although the polarization is in praxis recorded at each z-value for both the
empty beam and the beam with a sample in it, the empty beam polarization
can in principle also be determined on forehand with high accuracy. At low
magnetic field strength the empty beam polarization remains roughly constant
and decays towards zero at large z. For purposes of simplification, we consider
a theoretical perfect SESANS machine with P0 = 1 and ∆P0 = 0, which gives
PN = PS and ∆PN = ∆PS. Since Σ and ` are sample properties, the error
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in G(z) depends only on the measured polarization. Due to the logarithmic
relationship in eq. 5.11, it is given by the relative error in PS

∆G(z) = 1

Σ `

∆PS(z)
PS(z)

. (5.14)

Substitution of the polarization error with eq. 5.10 gives an expression for the
error in G(z):

∆G(z) = 1√
I0

e
µ
2 `

Σ `

√
1 − PS(z)2

PS(z)
(5.15)

The dependency of the error in G(z) on the measured polarization is largest
for smallest values of PS. The smallest polarization is generally observed at the
saturation level Psat for large z-values, unless no saturation occurs. Applying
eq. 5.12 with PS=Psat reduces 5.15 to

∆G∣zsat
= 1√

I0

e
µ
2 `

Σ `

√
e2Σ ` − 1, (5.16)

in which I0, µ and Σ are properties of machine and sample and can in principle
be known a priori . This error has a broad minimum as a function of `, which
gives a range for the optimal sample thickness. For the case µ=0 an example
is shown in figure 5.2 using a typical values for I0. Such neutron transparent
samples have the smallest measurement error at ` = 1

2
(2 +W (−2e−2)) /Σ ≈

0.8/Σ, where the Lambert W -function is defined as the inverse function for
which it holds that x =W (x)eW (x). The derivative of ∆G∣zsat

with respect to
` is

∂∆G∣zsat
(`)

∂`
= 1√

I0

[ Σ e2Σ `

(e2Σ ` − 1) −
1

`
+ µ

2
] e

µ
2 `

√
e2Σ ` − 1

Σ `
. (5.17)

At the minimum error this derivative equals zero. The condition for the optimal
sample thickness `opt is therefore

∂∆G∣zsat
(`)

∂`
= 0, (5.18)

which needs to be solved for `. This amounts to equating the square bracket
term in eq. 5.17 to zero, which reduces to

µ = 2
e2Σ `opt −Σ `opt e2Σ `opt − 1

`opt (e2`optΣ − 1)
, (5.19)
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Figure 5.2: Example of the error in G at large z as a function of
scattering power for samples with varying attenuation coefficient µ,
using a typical empty beam intensity I0 = 6⋅104. The gray vertical
lines show the position of the minima.

from which `opt cannot be isolated. This result is the inverse of the desired
solution, where `opt is a function of µ and Σ. The inverse is easily achieved
numerically, which is shown in figure 5.3. In order to find an analytical ap-
proximation of the desired result, the error in eq. 5.16 is squared and written
as

(∆G∣zsat
)2 = 1

I0

eαs (e2s − 1)
s2

, (5.20)

where s = Σ ` and α = µ/Σ. The derivative with respect to s is

∂ (∆G(z))2

∂s
= − 2

I0 s3
e(α+2) s [1 + (α

2
− 1) s + (α

2
s − 1) e−2s] . (5.21)

Condition 5.18 needs to be solved for s, which amounts to equating the term
in the square brackets to zero and expanding the exponential term. The Taylor
expansion of e−2s up to fourth order around s = 0 reads 1−2s+2s2− 4

3s
3+ 2

3s
4,

which gives
s − (α + 2) s2 + (α + 4

3
) s3 − 2

3 (α + 1) s4 = 0. (5.22)
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Figure 5.3: The dimensionless optimal sample thickness ` as a function
of the ratio of the linear attenuation coefficient µ and the macroscopic
scattering cross-section Σ. For neutron transparent materials the opti-
mal thickness is roughly 0.8/Σ, whereas it is approximately 1/µ for neu-
tron opaque materials. The approximate analytical expression eq. 5.23
is shown as a dotted line. A double logarithmic plot of the same data
is shown in the inset.

The solution is

s(α) = 1

α + 2
+

α + 4
3

(α + 2)3
+ 2

(α + 4
3
)2

(α + 2)5
− 2

3

α + 1

(α + 2)4
. (5.23)

which is also shown in figure 5.3. The optimal thickness is `opt = s( µΣ )/Σ. This
expression is a good approximation for small µ and nearly exact when µ ≳Σ.
When µ≫ Σ the material is relatively opaque for neutrons with respect to the
amount of scattering. At such large α, the first term in eq. 5.23 is dominant,
which gives 1

α+2 ⇔ `opt = 1
µ+2Σ ≈ 1

µ . The optimal sample thickness in opaque
materials is therefore practically the 1/e-length.
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5.3 Discussion and conclusions

Although the total transmitted intensity is constant, both ↑- and ↓-intensities are
measured separately for increased accuracy, and ∆G(z) goes with

√

1−PS(z)
2
/

PS(z) (eq. 5.15). When counting either only I
↓
or I

↑
for a known sum Itot,

this term changes into the larger terms
√

2−2PS(z)/PS(z) or
√

2+2PS(z)/PS(z) re-
spectively. The error propagation of G(z) has therefore been derived for two
independent intensities. The empty beam polarization is in reality not equal
to one, but is generally measured with higher accuracy than the sample. The
inclusion of P0 and its error into the error propagation leads to a more compli-
cated and elaborate model, in which P0 acts as a scaling factor without a large
effect on the general conclusions.

The model presented in this chapter gives an estimate of the best thickness
for a sample in a SESANS experiment with known attenuation and scattering
power. This optimum is found at the minimum of the error in G(z), at which
the scattering power is at most 0.8 for any sample thickness. The optimal
sample thickness `opt does not depend on the incoming flux, but is a function
of the linear attenuation coefficient µ and the macroscopic coherent scattering
cross section Σ. Neutron transparent samples have µ≪Σ, in which case only
the scattering power is relevant and the optimal sample thickness `opt≈0.8/Σ.
When attenuation and scattering power are within one order of magnitude, both
make a significant contribution to the optimum. The optimal sample thickness
then goes through a transition with `opt ranging from 0.8/Σ to 0.1/Σ. For
µ≫Σ the sample material is opaque for neutrons and the optimal thickness is
determined by attenuation only and given by `opt≈ 1

µ .



APPENDIX A

Appendix

A.1 G(z) with a size distribution

Log-normal distribution

Events can occur through a combination of random causes. The multi-
plicative central limit theorem states that the logarithm of a product of

a sufficiently large number of non-negative, independent random variables ap-
proaches a normal distribution. Many physical quantities, which can only have
positive values, are the products of different random factors. Since the loga-
rithm of a product is equal to the sum of the logarithms of the factors, the
product itself approaches a log-normal distribution. In a log-normal probability
distribution function (pdf), the natural logarithm of sizes is normally distributed
with mean µ and standard deviation σ:

pdf(R;µ,σ) =
exp [− ( lnR−µ

σ
√

2
)

2
]

R σ
√

2π
. (A.1)

The mode is at the peak of the distribution, given by

d

dR
pdf(R;µ,σ) = 0 ⇒ Rmode = eµ−σ

2

. (A.2)

The expectation value of an ensemble of sizes ∫ ∞0 R pdf(R;µ,σ)dR, is identical
to the average radius

⟨R⟩ = R0 eσ
2
/2 = eµ+σ

2
/2. (A.3)

with error ⟨R⟩
√

(∆µ)2+(σ∆σ)2. Here R0 is the median, or the radius separat-
ing the higher half of the probability distribution from the lower half. The poly-
dispersity index (PDI) depends only on σ as can be calculated from the width
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of the distributed G(z) curve at half height, i.e., for P
P0

(z
HWHM

) = 1 − 1
2Psat:

PDI = z
HWHM

⟨R⟩ =
1
2
R0 (eσ−1)

⟨R⟩ = 1
2
(eσ−1) e−σ

2
/2 (A.4)

with error 1
2 [(1 − σ) eσ+σ] e−σ

2
/2 ∆σ. The total probability to find sizes up to

radius R is ∫ R0 pdf(R′;µ,σ)dR′, given by the cumulative distribution function
(cdf), which gives

cdf(R;µ,σ) = 1
2
+ 1

2
erf( lnR−µ

σ
√

2
) (A.5)

for the log-normal distribution.

Log-normally distributed G(z) – standard

The projected correlation function G(z) can be distributed for a polydisperse
system, if a distribution function is specified, such as the log-normal distribution
in eq. A.1:

G
LN

(z;µ,σ) =
∞

∫
0

G
SS
(z;R) pdf(R;µ,σ) dR

=
Rmax

∫
0

G
SS
(z;R)

R σ
√

2π
exp

⎡⎢⎢⎢⎢⎣
−( lnR−µ

σ
√

2
)

2⎤⎥⎥⎥⎥⎦
dR,

(A.6)

where it is evident that for numerical evaluation the upper integration limit
cannot be infinity. In stead there should be a cut-off size Rmax, which should
depend on the width of the distribution and for which cdf(Rmax;µ,σ) is close
to one. Taking any very small, but finite number ε, this largest size can be
established from the quantile

Rmax = e µ+σ
√

2 inverf(1−2ε), (A.7)

so that cdf(Rmax;µ,σ) is close enough to 1 for all realistic values of µ and σ.

Log-normally distributed G(z) – alternate

Substitution of R with z
2ζ for fixed values of z in eq. A.6 gives lim

R ↓ 0
G

LN
(z) =

lim
ζ→∞

G
LN

(z) for small sizes and lim
R→∞

G
LN

(z) = lim
ζ ↓ 0

G
LN

(z) for large sizes. Using
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these relations, one may write equation A.6 as

G
LN

(z;µ,σ) =
0

∫
∞

G
SS
(z; z

2ζ )
z
2ζ σ

√
2π

exp

⎡⎢⎢⎢⎢⎣
−(

ln z
2ζ − µ
σ
√

2
)

2⎤⎥⎥⎥⎥⎦
d( z

2ζ
)

= 1

σ
√

2π

0

∫
∞

( −z
2ζ2

) 2ζ

z
G

SS
(2Rζ;

z

2ζ
) exp

⎡⎢⎢⎢⎢⎣
−(

ln z
2ζ − µ
σ
√

2
)

2⎤⎥⎥⎥⎥⎦
dζ

= 1

σ
√

2π

1

∫
ζmin

G
SS
(2ζ;1) exp

⎧⎪⎪⎨⎪⎪⎩
−
⎡⎢⎢⎢⎢⎣
(

ln z
2ζ − µ
σ
√

2
)

2

+ ln ζ

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
dζ.

(A.8)

for which it is evident that the terms in the Kernel equal 0 for all ζ > 1, since
G

SS
(z;R)=0 for z>2R. Therefore the final result of eq. A.8 requires integration

only up to ζ = 1. The lower integration bound ζmin in eq. 3.12 can be taken
extremely small (10−307), but not zero, limited by the numerical accuracy of the
computer and routines used for exponential and logarithm operations. Hence
no analytical solution is available and ζmin must be established by numerical
evaluation of lim

ζ↓0
(Kernel).

A.2 Determination of the USANS resolution func-
tion

The resolution functionR(Qz) was acquired by fitting a sum of three Lorentzian-
type functions (eq. A.9) to the reduced data from a reference sample measure-
ment, for negative and positive Qz-range separately ( A.1).

R(Qz) =
R0

3

3

∑
i=1

1

(ciQz)2i+1
. (A.9)

negative Qz positive Qz

c1 [nm] 2831 ± 180 3327 ± 109
c2 [nm] 1483 ± 44 1996 ± 42
c3 [nm] 3442 ± 155 3031 ± 71
g.o.f. χ79

2 = 10.1 χ294
2 = 3.5

Table A.1: Coefficients for the fitted res-
olution function with a peak R0 of 5208
counts per 10 minutes.
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A.3 Simulation cycles

The only quantity that explicitly depends on the simulation cycle nstep, is the
simulated time t. Inverting this relationship gives nstep(t), which is plotted in
figure A.1, taken from runs with of N0 = 105 monomers and φ

V
= 0.1. The

result is very similar to fiure 4.11. Plotting Nm versus nstep gives figure A.2,
showing that Nm ≈ nstep/N0.

Figure A.1: Relation between simulation cy-
cles nstep and simulated time t for varying
θ.

Figure A.2: Comparison between number of
moves Nm and simulation cycles for varying
θ.



Bibliography

1. Koning, G. A. & Krijger, G. C. Targeted Multifunctional Lipid-Based
Nanocarriers for Image-Guided Drug Delivery. Anti-Cancer Agents in Medic-
inal Chemistry 7, 425–440 (2007).

2. Park, J. Liposome-based drug delivery in breast cancer treatment. Breast
Cancer Res 4, 95–99 (2002).

3. Kong, G. et al. Efficacy of Liposomes and Hyperthermia in a Human Tumor
Xenograft Model: Importance of Triggered Drug Release. Cancer Research
60, 6950–6957 (2000).

4. Vasey, P. et al. Phase I Clinical and Pharmacokinetic Study of PK1 [N-(2-
Hydroxypropyl)methacrylamide Copolymer Doxorubicin]: First Member of a
New Class of Chemotherapeutic Agents–Drug-Polymer Conjugates. Clinical
Cancer Research 5, 83–94 (1999).

5. Copland, M. et al. Liposomal delivery of antigen to human dendritic cells.
Vaccine 21, 883–890 (2003).

6. Myhr, G. Multimodal ultrasound mediated drug release model in local cancer
therapy. Medical Hypotheses 69, 1325–1333 (2009).

7. Wang, X., Yang, L., Chen, Z. & Shin, D. M. Application of Nanotechnology
in Cancer Therapy and Imaging. CA: A Cancer Journal for Clinicians 58 58,
97–110 (2008).

8. Dreher, M. R. & Chilkoti, A. Toward a Systems Engineering Approach to
Cancer Drug Delivery. JNCI Journal of the National Cancer Institute 99,
983–985 (2007).

9. Ponce, A. M. et al. Magnetic Resonance Imaging of Temperature-Sensitive
Liposome Release: Drug Dose Painting and Antitumor Effects. JNCI Journal
of the National Cancer Institute 99, 53–63 (2007).

10. Dromi, S. et al. Pulsed-High Intensity Focused Ultrasound and Low Temper-
ature Sensitive Liposomes for Enhanced Targeted Drug Delivery and Antitu-
mor Effect. Clinical Cancer Research 13, 2722–2727 (2007).

11. McCabe, B. J. & Previs, S. F. Using isotope tracers to study metabolism:
application in mouse models. Metabolic Engineering 6, 25–35 (2004).

12. Briganti, G., R. Giordano AND, P. L. & Pedone, F. SANS measurements on
sulfolobus solfataricus ribosome as a function of temperature and magnesium
concentration. Physica B: Condensed Matter 234-236, 225–227 (1997).



108 BIBLIOGRAPHY

13. Hammermann, M. et al. The diameter of the DNA superhelix decreases with
salt concentration: SANS measurements and Monte Carlo simulations. Jour-
nal of Applied Crystallography 33, 526–529 (2000).

14. Thiyagarajan, P., Henderson, S. & Joachimiak, A. Solution structures of
GroEL and its complex with rhodanese from small-angle neutron scattering.
Structure 4, 79–88 (1996).

15. Paganelli, C. & Solomon, A. The rate of exchange of tritiated water across the
human red cell membrane. The Journal of General Physiology 41, 259–277
(1957).

16. Mazur, P. Kinetics of Water Loss from Cells at Subzero Temperatures and
the Likelihood of Intracellular Freezing. The Journal of General Physiology
47, 347–369 (1963).

17. Herbst, M. & Goldstein, J. A review of water diffusion measurement by NMR
in human red blood cells. AJP - Cell Physiology 256, C1097–C1104 (1989).

18. Bu, Z., Wang, L. & Kendall, D. A. Nucleotide Binding Induces Changes in
the Oligomeric State and Conformation of Sec A in a Lipid Environment:
A Small-angle Neutron-scattering Study. Journal of Molecular Biology 332,
23–30 (2003).

19. Labischinski, H., Goodell, E., Goodell, A. & Hochberg, M. Direct proof of a
"more-than-single-layered" peptidoglycan architecture of Escherichia coli W7:
a neutron small-angle scattering study. The Journal of Bacteriology 173, 751–
756 (1991).

20. Svergun, D. et al. Protein hydration in solution: Experimental observation by
x-ray and neutron scattering. Proceedings of the National Academy of Sciences
of the United States of America 95, 2267–2272 (1998).

21. Czajka, D. M., Finkel, A. J., Fischer, C. S. & Katz, J. J. Physiological effects
of deuterium on dogs. AJP - Legacy 201, 357–362 (1961).

22. Schloerb, P. R., Friis-Hansen, B. J., Edelman, I. S., Solomon, A. & Moore, F.
D. The measurement of total body water in the human subject by deuterium
oxide dilution with a consideration of the dynamics of deuterium distribution.
The Journal of Clinical Investigation 29, 1296–1310 (1950).

23. Nagle, J. F. & Tristram-Nagle, S. Structure of lipid bilayers. Biochimica et
Biophysica Acta 1469, 159–195 (2000).

24. Takeuchi, S., DiLuzio, W. R., Weibel, D. B. & Whitesides, G. M. Controlling
the Shape of Filamentous Cells of Escherichia coli. Nano Letters 5, 1819–1823
(2005).

25. Pencer, J., Jackson, A., Kuèerka, N., Nieh, M.-P. & Katsaras, J. The influence
of curvature on membrane domains. Eur Biophys J 37, 665–671 (2008).

26. Sears, V. F. Neutron scattering lengths and cross sections. Neutron News 3,
29–37 (1992).

27. Krouglov, T. et al. Structural transitions of hard-sphere colloids studied by
spin-echo small-angle neutron scattering. Journal of Applied Crystallography
36, 1417–1423 (2003).

28. Andersson, R., Bouwman, W., Luding, S. & de Schepper, I. Stress, strain
and bulk microstructure in a cohesive powder. Physical Review E 77, 051303
(2008).



BIBLIOGRAPHY 109

29. Rekveldt, M. T. et al. Spin-echo small angle neutron scattering in Delft. Re-
view of Scientific Instruments 76, 033901 (2005).

30. Gähler, R., Golub, R., Habicht, K., Keller, T. & Felber, J. Space-time de-
scription of neutron spin echo spectrometry. Physica B 229, 1–17 (1996).

31. Bouwman, W. G. et al. Real-space neutron scattering methods. Nuclear In-
struments and Methods in Physics Research A 586, 9–14 (2008).

32. Andersson, R. A., van Heijkamp, L. F., de Schepper, I. M. & Bouwman, W. G.
Analysis of spin-echo small-angle neutron scattering measurements. Journal
of Applied Crystallography 41, 868–885 (2008).

33. van Heijkamp, L. F. et al. Milk Gelation Studied with Small Angle Neutron
Scattering Techniques and Monte Carlo Simulations. J, Phys. Chem. A 114,
2412–2426 (2010).

34. de Kruif, C. Supra-aggregates of Casein Micelles as a Prelude to Coagulation.
Journal of Dairy Science 81, 3019–3028 (1998).

35. de Kruif, C. Casein micelle interactions. International Dairy Journal 9, 183–
188 (1999).

36. Andersson, V. J. & Lekkerkerker, H. N. Insights into phase transition kinetics
from colloid science. Nature 416, 811–815 (2002).

37. Lagaude, A., Fernandez, L., Cuq, J.-L. & Marchesseau, S. Characterization
of curd formation during the rennet coagulation of milk by an optical micro-
scopic method. International Dairy Journal 14, 1033–1039 (2004).

38. Lehner, D. et al. Characterization of Enzymatically Induced Aggregation of
Casein Micelles in Natural Concentration by in Situ Static Light Scattering
and Ultra Low Shear Viscosimetry. J. Colloid Interface Sci. 213, 445–456
(1999).

39. de Campo, L. et al. Five Component Food-Grade Microemulsions: Structural
Characterization by SANS. J. Colloid Interface Sci. 274, 251–267 (2004).

40. Hemar, Y., Singh, H. & Horne, D. Determination of early stages of rennet-
induced aggregation of casein micelles by diffusing wave spectroscopy AND
rheological measurements. Current Applied Physics 4, 362–365 (2003).

41. Krouglov, T., Kraan, W. H., Plomp, J., Rekveldt, M. T. & Bouwman, W. G.
Spin-echo small-angle neutron scattering to study particle aggregates. Journal
of Applied Crystallography 36, 816–819 (2003).

42. Jericha, E. et al. Ultra-small-angle neutron scattering studies of artificial lat-
tices. Journal of Applied Crystallography 36, 778–782 (2003).

43. Tromp, R. H. & Bouwman, W. G. A novel application of neutron scattering
on dairy products. Food Hydrocolloids 21, 154–158 (2007).

44. Bouwman, W. G., Pynn, R. & Rekveldt, M. T. A Comparison of the Perfor-
mance of SANS and SESANS. Physica B 350, E787–E790 (2004).

45. Gimel, J., Durand, D. & Nicolai, T. Transition between flocculation and perco-
lation of a Diffusion-Limited Cluster-cluster Aggregation process using three-
dimensional Monte Carlo simulation. Physical Review B 51, 11348–11358
(1995).

46. Gimel, J., Nicolai, T. & Durand, D. 3D Monte Carlo Simulations of Diffusion
Limited Cluster Aggregation up to the Sol-Gel Transition: Structure AND
Kinetics. Journal of Sol-Gel Science and Technology 15, 129–136 (1999).



110 BIBLIOGRAPHY

47. Rottereau, M., Gimel, J., Nicolai, T. & Durand, D. Monte Carlo simulation of
particle aggregation and gelation: I. Growth, structure and size distribution
of the clusters. The European Physical Journal E, 133–140 (2004).

48. Rottereau, M., Gimel, J., Nicolai, T. & Durand, D. Monte Carlo simulation of
particle aggregation and gelation: II. Pair correlation function and structure
factor. The European Physical Journal E, 141–148 (2004).

49. Krouglov, T., de Schepper, I. M., Bouwman, W. G. & Rekveldt, M. T. Real-
space interpretation of spin-echo small-angle neutron scattering. Journal of
Applied Crystallography 36, 117–124 (2003).

50. van Hove, L. Correlations in Space and Time and Born Approximation
Scattering in Systems of Interacting Particles. Physical Review 95, 249–262
(1954).

51. Sapoval, B. Universalités et fractales (Flam-marion-Champs, France, 2001).
52. Meakin, P. & Family, F. Structure and dynamics of Reaction Limited Aggre-

gation. Physical Review A 36, 5498–5501 (1987).
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Summary

Regular materials are composed of condensed phases, such as solids and
liquids, with a huge number of constituents. Soft condensed matter sys-

tems are compact materials with structures that are much larger than molecular
length scales and dynamics that are much slower, but still subject to thermal
fluctuations. These substances are often sensitive to external fields such as
electric fields, shear or gravity. These include colloids, such as sols, gels and
foams, but also granular matter, polymers and a variety of biological mate-
rials. Since the wavelength range of the visible light spectrum exceeds the
colloidal size range, optical microscopy generally does not have the resolution
to observe colloidal materials. High-resolution imaging techniques like electron
microscopy are usually unsuitable for sensitive materials like biological com-
pounds. However, various non-invasive scattering techniques are able to probe
colloidal length scales.

Many organic colloidal materials such as a lot of food products, are con-
centrated and opaque, which is a disadvantage for light scattering techniques.
Such materials and biological compounds consist largely of hydrogen, carbon
and oxygen atoms, and to a lesser extent of nitrogen, phosphor and sulfur atoms.
The smallest functional biological units are cells, which have a high water con-
tent. These types of colloids therefore have relatively low electron densities,
providing little contrast for X-rays. Neutron techniques are complementary to
the more common X-ray techniques. Neutrons have atomic wavelengths like
X-ray photons, but interact with atomic nuclei and have very different scat-
tering properties. Free neutrons are matter waves with a wavelength inversely
proportional to their speed and penetrate deeply into matter. A big advan-
tage is the very different neutron interaction between hydrogen and deuterium,
which allows control over the scattering power of biological samples. Mea-
surements in this study have used varying amounts of light and heavy water
(H2O and D2O), which is a facile method for tunable contrast. The colloidal
structures under investigation are large compared to the neutron wavelength,
causing scattering over small angles. The movement of the colloidal particles is
extremely slow compared to neutron speeds. Therefore neutrons scatter elas-
tically, changing direction but not momentum, resolving the static structure
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factor. To measure the structure of materials under investigation in this work,
such non-time-resolved techniques were used.

This thesis discusses two types of Small Angle Neutron Scattering (SANS)
techniques, which have been used to investigate the structure of colloidal sus-
pensions and gels. Spin-Echo Small Angle Neutron Scattering (SESANS) has
been used as the main technique, and Ultra Small Angle Neutron Scattering
(USANS) as the secondary. SESANS probes length scales by measuring the loss
of polarization of a neutron beam as a gauge for scattering. The shape of a
SESANS signal gives the Abel transform of the density-density correlation func-
tion of a sample. This is the projection in one spatial dimension of the inverse
Fourier transform of the static structure factor. USANS measures a projec-
tion of the scattering function, performing an integration over one coordinate
in momentum space. USANS measurements therefore yield the inverse-space
equivalent of SESANS measurements, which is demonstrated in this thesis by
comparison of measurements on the same samples.

SESANS resolves length scales over three orders of magnitude in size, which
has been applied to spherical colloidal particles. For monodisperse solid parti-
cles, a SESANS signal is described by the particle diameter and the variance
in scattering length densities (SLD) between colloid and medium. The particle
size determines the width of the signal and the scattered intensity, through the
correlation length. SESANS can distinguish between solid and hollow spheres.
Hollow spheres are spherical particles with a homogeneous SLD throughout the
shell and a core, which is identical to the medium. Filled spheres are hollow
spheres with a third phase as a core, observable for sufficiently large contrast
with both shell and medium. The hollow sphere correlation function exhibits
features distinctly different from the solid sphere correlation function. Monodis-
perse hollow spheres can be distinguished from solid spheres for a range of shell
thicknesses within the resolvable range of SESANS and well below the particle
radius. The scattering contrast of hollow spheres is between shell and medium,
whereas it is between core and medium for solid spheres. This has been used to
establish hollow sphere nature of monodisperse biological colloids, prepared in
H2O, and resuspended D2O, finding that SESANS measurement time exceeded
the exchange time of light and heavy water across the membranes. Diameters
around 160 nm have been found for two types of liposomes and around 800
nm for E. coli bacteria, all with shell thicknesses somewhere around 10 nm.
These results are all in good agreement with literature, although SESANS can-
not accurately measure the thickness of such thin membranes. Dynamic Light
Scattering (DLS) has been used to confirm their narrow size distributions. Pro-
cesses with slower exchange of H2O and D2O are in principle observable when
on a timescale of hours. This makes SESANS an additional technique that can
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be used as an alternative to tritium (T2O) techniques in drug targeting studies
for cancer treatment.

Size distributions of polydisperse spherical particles can be extracted from
SESANS data. An optimized procedure is described for a log-normal size distri-
bution, with which to fit the average size and distribution width. This procedure
has been applied to measurements on fat-free milk samples as the casein mi-
celles are polydisperse particles with a wide range of sizes. The destabilization of
colloidal particles causes them to flocculate and gelate. Gelation occurs when a
discrete solid phase suspended in a liquid phase, becomes continuous and forms
a macroscopic network structure that encapsulates the liquid. This rearrange-
ment of the particle configuration increases the scattered intensity and shifts it
to smaller scattering angles. The kinetics of milk to yoghurt gelation have been
studied from the changing SESANS and USANS signals and modeled as growing
self-affine structures and fractal-like aggregates, characterized by typical length
scales and a dimensionality. SESANS measurement data on casein micelles of
milk have shown an average diameter around 250 nm with 50% polydispersity
index, both in good agreement with literature, whereas without modeling data
with a size distribution the diameter would be significantly smaller. Simula-
tions of particles have been employed to create gelated structures using varying
stickiness. The numerical density correlation functions and numerical correla-
tion lengths have been calculated from these structures, for direct comparison
with the measurement data. At low stickiness the correlation length increases
more than three times, in good agreement with neutron scattering observations
on milk gelation. However, the longest length scales in yoghurt as observed by
SESANS, were not accurately simulated by the model.

This thesis also presents a more extensive study of gelation with 3D Monte
Carlo (MC) simulations, using adhesive particles performing Brownian motion
and using a global reactivity. The particles move randomly on a periodic grid
and bond randomly, forming branched clusters, until one large structure re-
mains. A changing reactivity is used for initially stable configurations of parti-
cles to model gradually destabilizing colloidal suspensions. The aggregation of
particles into large clusters corresponds to flocculation in real systems, whereas
the aggregation of clusters gives rise to a percolating fractal structure that
extends throughout the whole system. After the remaining clusters have ag-
gregated onto the percolating backbone, the solid phase is continuous in all
directions. This corresponds to fully gelated real systems. Varying degrees of
reactivity increase are used for different monomer concentrations to investigate
the effects on aggregation, where the reaction rate determines the aggregation
regime. At low reactivity the process is Reaction Limited Cluster–cluster Aggre-
gation (RLCA), whereas at high reactivity the cluster mobility is the restricting
factor and the process becomes Diffusion Limited Cluster–cluster Aggregation
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(DLCA). The formation of large clusters slows aggregation down due to their in-
ertia. In DLCA this causes a separation between percolation and gelation time,
which is a multitude of the percolation time. At low reactivity aggregation
occurs very slowly from the start, as particles move around with marginal bond
formation, resulting in large increases in percolation and gelation time. Two
MC algorithms are presented to speed up the simulation regardless of regime.
One algorithm circumvents unnecessary evaluations for the scarce movement
of heavy clusters and the other avoids needless computing of sporadic bond
formation for low reactivities.

In this study a transition is seen from RLCA to DLCA if the typical reac-
tion time is below typical monomer diffusion time. Simulation proceeds beyond
percolation until all clusters have aggregated. Once typical reaction time ex-
ceeds typical diffusion time, lowering the reactivity increases percolation and
gel time. At such low reactivities cluster mobility is prolonged and cluster mass
distributions remain narrower. This allows the coordination number to increase
more before bonding than in DLCA and results in denser gels with more bonds.
The coordination number is the average number of nearest particles neighbors
surrounding each particle. On a cubic lattice there are six nearest positions.
Dilute systems start with coordination numbers equal to six times the volume
fraction, whereas concentrated systems have slightly larger values. At high and
quickly increasing reactivities, DLCA gel structures consistently reach coordi-
nation numbers between 2.2 and 3.1 for concentrations increasing from 0.01
to 0.5. When leaving the DLCA regime these values increase. The largest
values have been observed at the lowest reactivity, which ranged from 2.7 to
3.6 for the same volume fraction range. A maximum coordination number has
not yet been established. The theoretical maximum of six would give a crys-
tal structure, which would require nucleation type simulations at extremely low
reactivities. This will clearly never be reached in cluster–cluster aggregation,
as cavities inside the branched structures will always occur due to the random
nature of the process. The increased denseness is also demonstrated by the de-
creased radii of gyration and the development of the radial distribution function
of gel structures, which show larger accumulation of mass and larger pore sizes.
This confirms the larger increase in correlation length during reaction limited
aggregation, as observed in the milk–yoghurt gelation study.

The polarization signal in a SESANS measurement is composed of the pro-
jected correlation function, where the strength of the signal is determined by the
scattered fraction of the beam. The quality of the signal is determined by the
incoming flux, the linear attenuation coefficient, the scattering cross section and
the sample thickness. A relationship has been derived between the error in the
correlation function and the sample thickness. The optimal sample thickness is
found at the minimum error and does not depend on the incoming flux, but is
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a function of scattering cross-section and attenuation coefficient. For samples
with high neutron transparency, the minimum error is at an average number of
close to 0.8 scattering events. When the attenuation coefficient comes to within
one order of magnitude of the scattering cross section, the optimal number of
scattering events drops to 0.1. When the attenuation coefficient is ten or more
times the cross section, it becomes the dominant factor in signal quality. In
samples with such relatively high neutron opacity, the optimal thickness is the
1/e-length.
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Samenvatting

Typische vaste en vloeibare materialen bestaan uit dichte fases met een
enorm aantal componenten. Zachte gecondenseerde materie is een groep

dichte materialen met structuren groter dan de lengteschalen van moleculen,
maar tragere dynamica en onderhevig aan thermische fluctuaties. Vaak is er
sprake van een gevoeligheid voor externe velden, zoals elektrische velden, af-
schuifkrachten en zwaartekracht. Onder deze stoffen vallen colloïdale materi-
alen in de hoedanigheid van bijvoorbeeld sol, gel of schuim, maar ook granulaire
materialen, polymeren en een verscheidenheid aan biologische materialen. Het
spectrum van zichtbaar licht bestaat uit golflengtes die overlappen met de col-
loïdale lengteschalen, zodat deze deeltjes niet met conventionele microscopie
geobserveerd kunnen worden. Hoge resolutie technieken zoals elektronenmi-
croscopie zijn echter ongeschikt voor de vaak gevoelige biologische materialen.
Verstrooiingstechnieken zijn niet-invasief en in staat om structuren op colloïdale
schaal te meten.

Organische colloïden zijn dikwijls geconcentreerd en ondoorzichtig, zoals
veel levensmiddelen, wat een belemmering is voor technieken met lichtverstrooi-
ing. Dergelijke materialen en biologische verbindingen bestaan grotendeels uit
waterstof, koolstof en zuurstof atomen en in mindere mate ook uit stikstof,
fosfor en zwavel atomen. Cellen zijn de kleinste functionele biologische een-
heden en bevatten veel water. Dit soort colloïden hebben derhalve een lage
elektrondichtheid, wat weinig contrast voor röntgen-straling oplevert. Neutro-
nenverstrooiing wordt daarom als complementaire techniek toegepast. Neu-
tronen hebben net als röntgen-fotonen golflengtes op atomaire schaal, maar
zijn gevoelig voor atoomkernen en verstrooien derhalve op geheel andere wijze.
Vrije neutronen dringen diep door in materie en zijn massagolven met golflengtes
omgekeerd evenredig aan de snelheid. Het grote verschil tussen de interactie
met waterstof en met deuterium is een belangrijk voordeel, omdat het controle
geeft over de mate waarin biologische materialen verstrooien. Voor dit onder-
zoek zijn wisselende hoeveelheden licht en zwaar water (H2O en D2O) gebruikt
om het contrast van monsters in te stellen. De onderzochte colloïdale deelt-
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jes zijn groot ten opzichte van de neutronengolflengte, waardoor de neutronen
over kleine hoeken verstrooien. De colloïdale deeltjes bewegen met verwaar-
loosbare snelheid ten opzichte van de neutronen, zodat de neutronen alleen van
richting en niet van snelheid veranderen. Deze elastische verstrooiing geeft ti-
jdonafhankelijke informatie over de structuur van materialen. In dit onderzoek
is elastische neutronenverstrooiing gebruikt om de statische structuurfactor te
bepalen.

Dit proefschrift behandelt Spin-Echo SANS (SESANS) en Ultra-SANS (US-
ANS), twee technieken waarbij neutronen over kleine hoeken worden verstrooid.
Deze technieken zijn gebruikt om de structuren van colloïdale suspensies en gels
te bestuderen. Lengteschalen worden geobserveerd met SESANS door het ver-
lies van polarisatie van een neutronenbundel te bepalen als een maat voor de
hoeveelheid verstrooiing. De vorm van een SESANS signaal levert de Abel
transformatie van de dichtheid-correlatiefunctie van een materiaal op. Dit is
gelijk aan de projectie op een vlak van de inverse Fourier-getransformeerde
statische structuurfactor. Met USANS wordt een projectie van de verstrooide
intensiteit gemeten, waarbij over één momentum-dimensie wordt geïntegreerd.
USANS is derhalve het inverse-ruimte equivalent van SESANS, wat in dit proef-
schrift aangetoond wordt middels een vergelijking van beide type metingen aan
dezelfde materialen.

SESANS kan drie ordes van grootte in lengteschaal onderscheiden, wat toe-
gepast is op bolvormige colloïdale deeltjes. In het geval van monodisperse vaste
deeltjes wordt een SESANS signaal beschreven aan de hand van de deeltjesdiam-
eter en de variantie in verstrooiingslengte-dichtheid (SLD) tussen de colloïden
en het medium. De deeltjesgrootte bepaalt de wijdte van het signaal, alsmede
de intensiteit middels de correlatielengte. SESANS kan solide en holle bollen
onderscheiden. Holle bollen zijn bolvormige deeltjes bestaande uit een schil
met een homogene SLD en een kern gevuld met medium. Gevulde bollen zijn
holle bollen waarvan de kern een derde fase bevat, wat bij voldoende contrast
met zowel schil als medium tot uitdrukking komt. De correlatiefunctie voor
holle bollen heeft kenmerken die duidelijk afsteken van de correlatiefunctie voor
solide bollen. Monodisperse holle bollen kunnen worden onderscheiden voor
schildiktes binnen het meetbereik van SESANS mits significant kleiner dan de
bolradius. Het contrast is tussen schil en medium, waar het tussen kern en
medium is in het geval van solide bollen. Dit is toegepast om het holle bol-
karakter te bepalen van suspensies in D2O van biologische colloïden bereid
in H2O. De uitwisseling van licht en zwaar water is sneller gebleken dan de
benodigde meettijd voor SESANS. Voor twee soorten liposomen zijn diameters
rond de 160 nm vastgesteld en rond de 800 nm voor E. coli bacteriën, allen
met schildiktes rond de 10 nm. Deze resultaten stemmen overeen met literatu-
urwaarden, hoewel met SESANS de diktes van dergelijk dunne membranen niet
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nauwkeurig kan worden bepaald. Middels dynamische lichtverstrooiing (DLS)
is de deeltjesgrootteverdeling van de liposomen en bacteriën bepaald, hetgeen
bevestigde dat de monsters nagenoeg monodispers waren. Tragere uitwisseling
van H2O en D2O over biologische membranen kan worden waargenomen als
deze processen enkele uren vergen. SESANS kan daarom worden gebruikt als
een toevoeging op bestaande technieken en als een alternatief voor het gebruik
van tritium in zogeheten drug-targeting studies voor kankerbehandeling.

De grootteverdeling van polydisperse deeltjes kan uit SESANS data bepaald
worden. Een geoptimaliseerde procedure wordt beschreven voor een log-normaal
distributie waarmee de gemiddelde grootte en de wijdte van de distributie vast-
gesteld kunnen worden. Dit is toegepast op meetdata van vetvrije melk, omdat
de polydisperse caseïne micellen een groot bereik aan diameters kunnen aan-
nemen. Door het destabiliseren van deze colloïdale deeltjes treden flocculatie
en gelatie op. Een discrete vaste fase, die gesuspendeerd is in een vloeistof,
wordt tijdens gelatie continu en vormt een macroscopische netwerkstructuur
die de vloeistof inkapselt. Deze herschikking van de deeltjesconfiguratie ver-
groot de verstrooide intensiteit en verschuift deze naar kleinere hoeken. De
kinetiek van melk-yoghurt gelatie is bestudeerd aan de hand van de verander-
ing in SESANS en USANS signalen. Het gelatieproces is gemodelleerd als het
groeien van zelf-affine structuren en fractale aggregaten, gekarakteriseerd door
typische lengtes en dimensionaliteiten. SESANS meetdata van melk toonden
dat caseïne micellen een gemiddelde diameter van rond de 250 nm hadden
met een polydispersiteitsindex van 50%, in goede overeenstemming met liter-
atuur, waar modelleren zonder deeltjesgroottedistributie een significant kleinere
diameter opleverde. Simulaties met deeltjes met wisselende plakkerigheid zijn
gebruikt om verschillende gelstructuren te creëren. De numerieke dichtheid-
correlatiefunctie en numeriek correlatielengte van deze structuren zijn berekend
om te vergelijken met de meetdata. Bij lage plakkerigheid wordt de correlatie-
lengte meer dan drie maal zo groot tijdens gelatie, wat goed overeenkomt met
de observaties van de neutronenverstrooiing aan de melk-gelatie. De langste
lengteschalen waargenomen met SESANS in yoghurt, kunnen echter niet met
dit model gereproduceerd worden.

Een grondigere studie van colloïdale gelatie via Monte Carlo simulaties (MC)
in 3D komt in dit proefschrift ook aan bod, waarbij gebruik wordt gemaakt van
deeltjes met Browniaanse diffusie en een globale reactiviteit. De deeltjes be-
wegen willekeurig op een periodiek rooster en vormen arbitrair bindingen met
elkaar, zodat vertakte clusters ontstaan totdat uiteindelijk één grote structuur
overblijft. Stabiele configuraties van deeltjes worden aan een veranderlijke re-
activiteit blootgesteld om geleidelijk destabiliserende colloïdale suspensies na
te bootsen. Het ontstaan van grote clusters van geaggregeerde deeltjes komt
overeen met flocculatie in echte systemen, terwijl de aggregatie van clusters tot
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de vorming van een percolerende fractale structuur leidt die het hele systeem
bestrijkt. Nadat de overgebleven clusters op dit percolerende skelet zijn geag-
gregeerd, is de vaste fase continu geworden in alle richtingen. Dit komt overeen
met volledig geleerde echte systemen. Het effect op de aggregatie van het var-
iëren van de toename in reactiviteit in systemen met wisselende monomeer
concentraties wordt bestudeerd, waar de reactiesnelheid het aggregatie regime
bepaalt. Bij lage reactiviteit is het proces reactiegelimiteerde cluster–cluster ag-
gregatie (RLCA), terwijl bij hoge reactiviteit the cluster mobiliteit de beperkende
factor is en het proces diffusie gelimiteerde cluster–cluster aggregatie (DLCA)
wordt. De formatie van grote clusters vertraagt de aggregatie vanwege hun
inertie. In DLCA is de gelatietijd derhalve een veelvoud van de percolatietijd.
Bij lage reactiviteit verloopt aggregatie vanaf het begin al langzaam, omdat de
bewegende deeltjes maar beperkt bindingen vormen, wat zowel de percolatie als
de gelatie vertraagt. Twee MC algoritmes worden besproken om de simulatie
te versnellen ongeacht het aggregatie regime. Het eerste algoritme vermijdt
onnodige evaluaties van de infrequente bewegingen van de zware clusters, het
tweede voorkomt overtollige berekeningen als de formatie van bindingen schaars
is door lage reactiviteit.

Deze studie laat een overgang zien van RLCA naar DLCA als de typische
reactietijd kleiner is dan de typische diffusietijd. De simulatie gaat na perco-
latie door totdat alle clusters geaggregeerd zijn. Zodra de typische reactietijd
de typische diffusietijd overstijgt, zal het verder verlagen van de reactiviteit
percolatie en gelatie vertragen. Dergelijk lage reactiviteit verlengt de cluster-
mobiliteit en vernauwt de clustermassadistributie. Hierdoor kan het coördinatie-
getal verder toenemen voordat het door bindingen wordt vastgelegd, wat resul-
teert in dichtere gels met meer bindingen. Het coördinatiegetal is het gemiddeld
aantal naburige deeltjes. Op een kubisch rooster kan een deeltje zes dichtst-
bijzijnde buren hebben. Verdunde systemen hebben initieel een coördinatiegetal
van zes maal de volume fractie, wat bij hogere concentraties iets hoger komt
te liggen. Bij hoge en snel-stijgende reactiviteit hebben DLCA gelstructuren
stelselmatig coördinatiegetallen tussen de 2.2 en 3.1 voor concentraties met
volumefracties van 0.01 tot 0.5. Buiten het DLCA regime worden deze waardes
hoger. Bij de laagste reactiviteit zijn de hoogste coördinatiegetallen waargenomen,
van 2.7 tot 3.6. Een maximale waarde is nog niet vastgesteld. Het theoretis-
che maximum van zes zou een kristalstructuur geven, wat een nucleatie bij
extreem lage reactiviteit zou vereisen. Dit zal duidelijk nooit het geval zijn
bij cluster–cluster aggregatie, omdat altijd holtes gevormd zullen worden door
de vertakte structuren inherent aan het kansgebonden proces. De toegenomen
dichtheid wordt tevens aangetoond door een afname in de gyratiestraal en de
ontwikkeling van de radiale distributiefunctie van de gelstructuren, waar een
grotere accumulatie van massa en grotere holtes te zien zijn. Dit bevestigt de
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grotere toename van de correlatielengte tijdens reactie-gelimiteerde aggregatie,
zoals vastgesteld bij de melk–yoghurt gelatie.

Het polarisatiesignaal van een SESANS meting wordt gevormd door de ge-
projecteerde correlatiefunctie en de sterkte wordt gegeven door de verstrooide
fractie van de bundel. De kwaliteit van het signaal wordt bepaald door de in-
vallende flux, de lineaire attenuatie coëfficiënt, de verstrooiingsdoorsnede en de
dikte van het te meten materiaal. Een verband is afgeleid tussen de onzekerheid
in de correlatiefunctie en de materiaaldikte. De optimale dikte geeft een mini-
male onzekerheid en hangt niet af van de inkomende flux, maar is een functie
van verstrooiingsdoorsnede en attenuatie coëfficiënt. Voor materialen die zeer
transparant zijn voor neutronen, is de onzekerheid minimaal rond een gemid-
delde van 0.8 verstrooiingen per neutron. Zodra de attenuatie coëfficiënt binnen
een order van grootte komt van de verstrooiingsdoorsnede, zakt het optimale
aantal verstrooiingen naar 0.1. Zodra de attenuatie coëfficiënt tien of meer
keer de verstrooiingsdoorsnede bedraagt, wordt dit de dominante factor die de
kwaliteit van het signaal bepaalt. In materialen die zo relatief ondoorzichtig
zijn voor neutronen, wordt de optimale dikte gegeven door de 1/e-lengte.
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In this study non-invasive neutron scattering techniques are used on soft condensed matter, probing colloidal length
scales. Neutrons penetrate deeply into matter and have a different interaction with hydrogen and deuterium,
allowing for tunable contrast using light and heavy water as solvents. The mesoscopic structure of materials
is determined by measuring the elastic scattering of neutrons over small angles. Spin-echo small angle neutron
scattering (SESANS) and the reciprocal-space equivalent ultra small angle neutron scattering (USANS) have been
used to investigate the structure of colloidal suspensions and gels by measuring the projections of the density-density
correlation function and of the scattering function. A hollow sphere model is developed and used to investigate
liposomes and E. coli bacteria. The sizes of liposomes and E. coli and their hollow sphere nature were confirmed.
Particle size and size distribution have been measured for milk, and the change in typical length scale during gelation
into yoghurt was measured kinetically.
3D Monte Carlo simulations of colloidal aggregation have been performed using a varying reactivity, ranging from
reaction limited (RLCA) to diffusion limited cluster–cluster aggregation (DLCA), to study the effect on structure
and formation. A comparison is made between simulated structures and SESANS measurements by calculating the
density correlation function. A relaxation time is introduced into the simulated reactivity to control aggregation
speed. The increase of typical sizes during gelation at low reactivity was consistently observed in measurements
and simulations, but longest length scales could not be accurately simulated. A transition from RLCA to DLCA
occurs if the typical reaction time is below typical monomer diffusion time. The increase in coordination number
becomes larger when aggregation remains reaction limited.
The optimal sample thickness for a SESANS measurement is derived as a function of scattering cross-section
and linear attenuation coefficient. The optimal sample thickness is at about 0.8 scattering events for neutron
transparent samples, whereas it is the 1/e-length when samples are neutron opaque.


