
Delft Center for Systems and Control

Distributed Collision Free
Trajectory Optimization for the
Reconfiguration of a Spacecraft
Formation

Floris van Dam

M
as

te
ro

fS
cie

nc
e

Th
es

is

Distributed Collision Free
Trajectory Optimization for the
Reconfiguration of a Spacecraft

Formation

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Floris van Dam

October 18, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

In recent years there has been an increasing interest in formation flying with many lightweight
spacecraft, as satellite missions can potentially become cheaper and more flexible. An exam-
ple of such mission is the Silicon Wafer Integrated Femtosatellites mission, consisting of 100
to 1000 spacecraft with a mass of 0.1 kg. Due to modest control capabilities of the spacecraft
and a higher risk of collisions, the requirements on trajectory optimization algorithms are
increased. In this thesis a distributed trajectory optimization algorithm is developed which
minimizes the required fuel for collision-free reconfiguration trajectories. First, the balance
between cooperation in the formation and fuel consumption is investigated: with less coop-
eration the trajectory optimization algorithm can easily be distributed but the resulting fuel
consumption is higher. The problem can also be distributed using dual methods, which can
result in the same solution as a centralized algorithm. In literature both dual decomposi-
tion and the Alternating Direction Method of Multipliers (ADMM) in consensus form are
proposed to solve this specific problem. In this thesis it is demonstrated that the Jacobian
decomposition of the Augmented Lagrangian Method outperforms both dual decomposition
and ADMM in terms of convergence rate. Furthermore it is shown that this algorithm does
also converge in an asynchronous setting. Finally, the synchronous algorithms are significantly
accelerated using Heavy Ball acceleration, the Fast Iterative Shrinkage-Threshold Algorithm
and Anderson Acceleration.

Master of Science Thesis Floris van Dam

ii

Floris van Dam Master of Science Thesis

Table of Contents

Acknowledgements xi

1 Introduction 1
1-1 State of the Art . 3
1-2 Research Problem and Questions . 5
1-3 Main Contributions . 6
1-4 Thesis Outline . 7

2 Problem Formulation 9
2-1 The Non-convex Trajectory Optimization Problem 9
2-2 Initial, Final and Dynamical Constraint . 10

2-2-1 Reference Frames . 10
2-2-2 Perturbations in Low Earth Orbit . 11
2-2-3 Models in Literature . 12
2-2-4 The Xu-Wang Relative Dynamics Model 12
2-2-5 Linearization and Discretization . 14
2-2-6 Passive Periodic Relative Orbits . 15

2-3 A Convex Collision Avoidance Constraint . 15
2-4 The Convex Problem with Sequential Convex Programming 16
2-5 Simulation Specifics . 18
2-6 Summary and Conclusions . 19

3 Distributed Optimization with Decreased Cooperation 21
3-1 Centralized algorithm . 21
3-2 Distributed Algorithm without Cooperation . 22

3-2-1 Model Predictive Control . 23
3-3 Hybrid Algorithm . 24
3-4 Simulations . 25
3-5 Summary and Conclusions . 29

Master of Science Thesis Floris van Dam

iv Table of Contents

4 Dual Methods 31
4-1 Dual Decomposition . 31

4-1-1 Selecting an appropriate stepsize . 33
4-2 Augmented Lagrangian Methods . 40

4-2-1 Alternating Direction Method of Multipliers in Consensus Form 40
4-2-2 Gauss-Seidel Decomposition of Augmented Lagrangian Method 42
4-2-3 Jacobian Decomposition of Augmented Lagrangian Method 47
4-2-4 Simulation and Comparison . 48

4-3 Asynchronous Algorithm . 50
4-4 Summary and Conclusions . 53

5 Accelerated Dual Methods with Sequential Convex Programming 55
5-1 Accelerating Dual Algorithms . 55

5-1-1 Heavy Ball Acceleration . 55
5-1-2 Fast Iterative Shrinkage-Threshold Algorithm 58
5-1-3 Anderson Acceleration . 61
5-1-4 Summarizing Acceleration Figures . 63

5-2 Simulations with Sequential Convex Programming 66
5-2-1 Four Spacecraft Reconfiguration . 66
5-2-2 Ten Spacecraft Reconfiguration . 66
5-2-3 Computation Times . 66

5-3 Summary and Conclusions . 70

6 Conclusions 71
6-1 Summary of the Research and Answers to Sub-Questions 71
6-2 Conclusion of the Research . 73
6-3 Recommended Future Work . 74

Bibliography 77

Glossary 81
List of Acronyms . 81
List of Symbols . 82

Floris van Dam Master of Science Thesis

List of Figures

1-1 The difference between a constellation, formation and swarm is characterized by
the required control accuracy and inter-satellite distance. Adopted and adjusted
from [1]. 2

2-1 Visualization of the Earth Centered Initial (ECI) frame (X̂, Ŷ , Ẑ) and the Local-
Vertical-Local-Horizontal (LVLH) frame (x̂, ŷ, ẑ), adapted and adjusted from [2]. 11

3-1 Relative distances between the spacecraft pairs before and after collisions are
avoided. When the constraint is active, all relative trajectories are pushed above
Rcol. 26

3-2 Acceleration magnitudes corresponding to Figure 3-1. As each spacecraft (Sc) has
6 DOF control, the magnitudes of the accelerations in all DOF are summed per
sampling instance. 27

3-3 Obtained acceleration magnitudes when (2-14) is solved with objective
∑N
i ‖Ui‖1

instead of
∑N
i

1
2U

T
i Ui. This results in sparse acceleration vectors. 28

4-1 Dual decomposition with diminishing stepsize ρ = 5×10−5

k versus constant stepsize
ρ = 3× 10−5. 34

4-2 Lagrangian function value in stable versus unstable dual decomposition. 38
4-3 Unstable dual decomposition, relative distances between spacecraft pairs in itera-

tion 6 versus iteration 7. 39
4-4 Two instances of the scaled Lagrangian function value over the iterations. This

function value changes twice per iteration: after the u-update and after the y-
update. Close to convergence, the u-update in which the Lagrangian should be
minimized does not always decrease the Lagrangian function value. 39

4-5 Consensus ADMM for 4 spacecraft with different stepsizes ρ. 42
4-6 Convergence of GS-ALM with 4 spacecraft for different stepsizes ρ. 44
4-7 Convergence of all residual elements: most of them are negative and thus collision-

free, only few are positive. Top figure: when ρ is chosen too large, different residual
elements become largest over the iterations. Lower figure: when ρ is chosen small
enough, the largest residual element converges almost monotonically. 45

Master of Science Thesis Floris van Dam

vi List of Figures

4-8 The average required velocity change over the iterations for ρ = 5 × 10−3 versus
ρ = 7 × 10−4. Note the y-scales: the top figure is much closer to ∆V̄ ∗ than the
lower figure. 46

4-9 Convergence of GS-ALM: 4 spacecraft with random spacecraft update order. The
properly chosen stepsize still results in convergence, whereas the stepsize chosen
too large results in oscillations due to overcompensation of the spacecraft which
updates first. 46

4-10 Convergence of J-ALM with 4 spacecraft for different stepsizes ρ and relaxation
parameters ν. The red line with ρ = 7 × 10−4 and ν = 0.5 converges fastest,
although the primal residual is zero between iteration 145 and 235. Decreasing ν
to 0.2 results in much slower convergence, increasing it to 0.7 results in undesired
oscillations. 48

4-11 Asynchronous J-ALM, waiting for 2 control vector updates per iteration, random
delay with Tmax = 5 and ν = 0.5. The stepsize suitable for synchronous J-ALM
results in oscillations in the asynchronous case, but dividing the stepsize through
the maximum delay results in convergence. 52

4-12 Asynchronous J-ALM, waiting for 2 control vector updates per iteration, random
delay with Tmax = 15, ρ = (7/15) × 10−4 and ν = 0.5. Also for larger delays
convergence can be obtained when the stepsize is adjusted appropriately. 52

5-1 Heavy Ball on dual decomposition, with ρ = 3 × 10−5 and different values for
momentum parameter β. 56

5-2 Heavy Ball on synchronous J-ALM with ρ = 7× 10−4, ν = 0.5 and β = 0.5. Up-
dating U in the same way as dual vector y has a large influence on the convergence
rate. 57

5-3 Heavy Ball on asynchronous J-ALM with ρ = 1.4×10−4, ν = 0.5, Tmax = 5 and a
central node waiting for 2 control vectors. Momentum parameter β = 0.1 results
in little acceleration whereas β = 0.5 does not converge. The algorithm can be
more significantly accelerated with β = 0.3. 58

5-4 The two forms of FISTA in comparison with standard dual decomposition. Stan-
dard and FISTA-CD are simulated with ρ = 3 × 10−5; for FISTA-BT the largest
converging stepsize was ρ = 1 × 10−7. FISTA-CD can significantly accelerate
convergence. 59

5-5 Synchronous J-ALM with different implementations of FISTA. All algorithms are
simulated with ρ = 7 × 10−4 and ν = 0.5. When U is updated using the same
momentum rule as y, the algorithm diverges; only FISTA-CD on y converges. . . 60

5-6 Synchronous J-ALM compared to FISTA-CD. When ρ is lowered from ρ = 7×10−4

to ρ = 3× 10−4, the convergence rate increases. 60
5-7 Anderson Acceleration on dual decomposition with different values of mk. All

simulations are performed with ρ = 3× 10−5. 62

5-8 Anderson Acceleration on synchronous J-ALM with ρ = 4× 10−4; again the con-
vergence rate is largest when U is updated using a similar rule as y. For this setup,
mk = 2 and mk = 5 perform nearly similar. 62

5-9 Standard versus Anderson Accelerated asynchronous J-ALM with ρ = 1.4× 10−4;
when a lower bound on a is included, Anderson Acceleration can accelerate con-
vergence. 63

5-10 Regular dual decomposition compared with different acceleration algorithms. All
algorithms are simulated with ρ = 3×10−5, Anderson Acceleration clearly outper-
forms the other acceleration methods. 64

Floris van Dam Master of Science Thesis

List of Figures vii

5-11 Standard synchronous J-ALM compared with three different acceleration algo-
rithms, all with ρ = 4× 10−4 and ν = 0.5. 65

5-12 Standard asynchronous J-ALM compared with Heavy Ball and Anderson Acceler-
ation, all with ρ = 1.4× 10−4 and ν = 0.5. 65

5-13 Four spacecraft: AA on dual decomposition with SCP. The algorithm converges
consistently despite the updated collision avoidance constraint in each SCP itera-
tion. Convergence in 7 SCP iterations. 67

5-14 Four spacecraft: AA on synchronous J-ALM with SCP. Convergence in 7 SCP
iterations. 68

5-15 Ten spacecraft: AA on dual decomposition with SCP. Convergence in 4 SCP
iterations. 69

5-16 Ten spacecraft: AA on synchronous J-ALM with SCP. Convergence in 4 SCP
iterations. 69

Master of Science Thesis Floris van Dam

viii List of Figures

Floris van Dam Master of Science Thesis

List of Tables

3-1 Four spacecraft reconfiguration: Averaged convergence characteristics over 10 runs
with σ = 0.1 km. The computation time is given per spacecraft per iteration. . . 26

3-2 Ten spacecraft reconfiguration: Averaged convergence characteristics over 10 runs
with σ = 0.3 km. Computation time is given per spacecraft per iteration. 28

3-3 Convergence characteristics for 100 spacecraft formation. 28

4-1 Convergence characteristics for the three different algorithms on 4 spacecraft re-
configurations averaged over 3 simulations. 49

5-1 Convergence characteristics of Anderson Acceleration on dual algorithms in SCP. 67
5-2 Time to solve one dual iterations and to solve one SCP iteration for the two

accelerated dual methods. 68

Master of Science Thesis Floris van Dam

x List of Tables

Floris van Dam Master of Science Thesis

Acknowledgements

This report is written as graduation thesis for the master Systems and Control at the Delft
University of Technology.

I would like to thank my supervisors, dr.ir. T. Keviczky for his guidance when in doubt
about the next steps in this research, and Dr.ir. R. Fónod for his accurate and detailed fault
detection and quality control. Furthermore, I am grateful to Stein Stroobants for discussing
all bumps in the research road last year, and to Anna Kay Mastenbroek for an endless amount
of support and good coffee. Finally, special thanks to my parents, who always keep faith in
me.

Delft, University of Technology Floris van Dam
October 18, 2019

Master of Science Thesis Floris van Dam

xii Acknowledgements

Floris van Dam Master of Science Thesis

“The first principle is that you must not fool yourself - and you are the easiest
person to fool.”
— Richard P. Feynman

Chapter 1

Introduction

In this research a distributed trajectory optimization algorithm is developed which minimizes
the total fuel consumption of collision-free reconfiguration trajectories. This algorithm is
especially relevant for formations with a large number of lightweight spacecraft with modest
hardware capabilities.

Lightweight satellites have been around already since the sixties, with OSCAR-1, a simple 10
kg radiotransmitter launched to Low Earth Orbit (LEO), and the ECHO-I Balloon satellite,
a 60 kg satellite being the world’s first communication satellite [1]. However, these were
passive spacecraft, without any means of control. The development of functionalities on small
satellites has skyrocketed since 1999, the year in which the CubeSat design was proposed.
This is a standardized platform of (possibly) multiple blocks with sides of 10 cm and a mass of
maximum 1.33 kg connected to each other [3]. At first this platform was used for educational
purposes on universities, but nowadays also government and industry is involved. At present
all parties have developed and launched fully controllable nanosatellites [4]. Satellites are
classified as nanosatellites when they have a weight between 1 and 10 kg. With a mass
between 0.1 and 1 kg they are called picosatellites [5].

The Delft University of Technology is making its own contribution to this trend with the
development of the Delfi-PocketQube (Delfi-PQ) picosatellite [6]. This project aims to de-
velop a platform based on connected cubes with sides of 5 cm. The platform secures basic
functionalities, but can easily be outfitted with more advanced payloads and subsystems by
any interested party. As such lightweight spacecraft have only limited hardware capabilities,
the strength comes mainly from its numbers. An example of an application with a large
number of lightweight spacecraft is Planet Labs, a company with over 150 nanosatellites in
a constellation with the goal of imaging the Earth. As they have so many spacecraft, they
are able to monitor most of the places on Earth twice a day with a resolution of under 4
meters [7]. In the Silicon Wafer Integrated Femtosatellites (SWIFT) mission, hundreds of
100 gram spacecraft are proposed in a swarm architecture. Possible applications for such a
mission are massive distributed sensor networks and atmospheric sampling. In Figure 1-1 the
difference between a constellation, formation and swarm is visualized. Most of the launched
and proposed missions with a large number of spacecraft are constellation missions. As the

Master of Science Thesis Floris van Dam

2 Introduction

inter-satellite distance is large, the risk of collisions is low. The required positions of space-
craft in a constellation are defined with respect to Earth, which means that each spacecraft
is responsible for tracking a pre-determined orbit. In general the required control accuracy
is low. In swarms, the trajectories of a large group of spacecraft can be defined either with
respect to Earth, or to each other. The required accuracy of the relative distances is still not
so important; as long as the swarm covers a certain area or volume and the spacecraft in the
swarm do not collide. In formation flying missions on the other hand, most spacecraft track
a trajectory which is defined with respect to other spacecraft instead of to Earth. Accurate
control is required to obtain and maintain these relative states. A possible application for
formation flying missions with a large number of spacecraft is space-based interferometry:
instead of one large telescope, many smaller telescopes attached to spacecraft can be used to
make an image of for example a part of the solar system. When the smaller telescopes are
exactly at the right position at a specific time, the resulting images can be combined in an
image with a far higher resolution than the image from the large telescope. Examples of such
missions are MAXIM [8] and the Stellar Imager mission [9].

Figure 1-1: The difference between a constellation, formation and swarm is characterized by the
required control accuracy and inter-satellite distance. Adopted and adjusted from [1].

Formation flying with many smaller spacecraft is more difficult than formation flying with
few larger spacecraft due to four challenges: a high degree of autonomy in the formation is
required, nano- and picosatellites can carry only little fuel, a high control accuracy is required
despite modest hardware capabilities and the formation configuration has to be flexible. These
challenges will be first be discussed more elaborately.
First, optimal collision-free trajectories cannot be computed by a centralized unit anymore.
As the collision avoidance constraint is defined between each pair of spacecraft, the number
of constraints increases quadratically with the number of spacecraft. To obtain flexibility
and safety also in off-nominal situations, the spacecraft should be able to optimize their own
trajectories without the need of a central processor.
Second, the reconfiguration and collision avoidance challenges have to be solved while mini-
mizing the fuel consumption of the spacecraft. Whereas the spacecraft can be provided with
solar panels to load batteries, the on-board propellant is limited and thus a limiting factor
for the life-time of nano- and picosatellites in the formation.
Third, in formation flying missions a higher control accuracy is required than in swarms
and constellations. The state-of-the-art in terms of control accuracy was demonstrated in

Floris van Dam Master of Science Thesis

1-1 State of the Art 3

the Canadian Advanced Nanospace eXperiment-4&5 (CanX-4,5) mission which launched in
2014. Two 7 kg nanosatellites demonstrated four different configurations with a varying
separation distance from 1 km to 50 meter. The two spacecraft were able to obtain a relative
position control accuracy of less than one meter [10]. This means that the two spacecraft
obtained a dynamical range, i.e. the inter-satellite distance divided by the control accuracy,
of 103. This dimensionless quantity can be used to indicate the complexity of formation
flying control. Future missions such as the MAXIM or Stellar Imager mission require a much
higher dynamical range of 108 [11]. If the separation distance is for example 10 km, a control
accuracy of 0.1 mm is required. This is far more accurate than present day accomplishments.
Note that to obtain a high control accuracy also the state estimation should be very accurate.
This is another challenge for nano- and picosatellites in a formation, but outside the scope of
this research.

As a fourth challenge, formation flying missions require more flexible formation configurations.
Whereas a spacecraft in a constellation typically remains in the same orbit after it is brought
there, a formation might need to resize or rotate dependent on the mission objective [12],
collisions have to be avoided within the formation and it has to adjust when spacecraft are
added or subtracted from the formation. Both designing a reconfiguration maneuver and
communicating the plans through the formation is a challenge for larger formations.

This research addresses the first two challenges: solving the collision-free trajectory opti-
mization problem in a distributed way while minimizing the total fuel consumption. In this
introduction chapter, first the state of the art of distributed trajectory optimization and asyn-
chronous optimization is discussed. This is followed by the research problem and questions.
Third, the main contributions of this research are summarized, and finally the outline of the
entire thesis is given.

1-1 State of the Art

Before the research questions are defined, a small overview is given of the state of the art
of distributed trajectory optimization and asynchronous optimization. Here distributed opti-
mization is defined as an optimization problem in which multiple agents cooperate to minimize
a global objective, without the need of a central agent. Distributing the spacecraft trajectory
optimization problem is typically done by either decreasing the cooperation or by solving an
equivalent dual problem [13].

One way to relax the problem formulation is to relax the cooperation, i.e. the responsibility
for avoiding collisions. In a centralized algorithm, if two spacecraft are on track to collide
both of them are responsible for avoiding the collision while minimizing the combined fuel
consumption. The spacecraft thus fully cooperate to avoid the collision. Removing the co-
operation is demonstrated for example in [2]. Here Morgan et al. assign varying collision
avoidance responsibility to the spacecraft. Now only one spacecraft per pair is responsible
to avoid a collision. All spacecraft minimize only their own fuel cost which will be relatively
low for some spacecraft, but higher for the spacecraft which have to avoid many neighboring
spacecraft. The trajectory optimization problem is cast in a Sequential Convex Program-
ming (SCP) framework, where the iteration at which a trajectory converges depends on the
collision-avoidance responsibility of the spacecraft. Due to the removal of cooperation, the

Master of Science Thesis Floris van Dam

4 Introduction

distributed solution may be further away from optimal than a centralized solution. A quanti-
tative comparison of fuel consumption in fully cooperating versus non cooperating algorithms
is not yet described in literature.

Dual methods are a popular choice for distributed optimization as they are able to obtain
exactly the same solution as a centralized algorithm. Instead of increasing the cost, the
iterative dual methods increase the time required to solve the problem. Different dual methods
such as dual decomposition and Alternating Direction Method of Multipliers (ADMM) are
often used for distributed optimization, with applications for example in power systems [14]
and large scale image processing [15, 16]. Dual decomposition is applied to the spacecraft
trajectory optimization problem in [17], where it is shown that the algorithm iteratively
converges to the same collision-free trajectories as a centralized solution. Dual decomposition
methods are however known for their slow convergence and the convergence rate is sensitive
to parameter selection.

Many authors have applied the ADMM to the trajectory optimization problem, not only for
spacecraft but also for robots [18], vehicles [19] or general agents in a network [20]. ADMM
can be seen as a robust version of dual decomposition. The problem is decoupled as each
agent solves the optimization problem using fixed estimates of the trajectories of other agents.
Again in an iterative way, consensus is obtained between the estimates and the actual control
vectors, eventually resulting in collision-free trajectories. ADMM is generally known to con-
verge fast to modest accuracy, but very slow to high accuracy [21]. Instead of the consensus
form of ADMM which uses three sets of variables, i.e. the control acceleration vectors, the
estimates of trajectories and the dual vector, the algorithm can also be extended to more sets
of variables. The control vector of each agent is then defined as a separate set of variables, re-
sulting in the sequential update of each control vector followed by the dual update [22]. This
algorithm, which is called the Gauss-Seidel decomposition of the Augmented Lagrangian
Method (GS-ALM), is not yet implemented on the trajectory optimization problem. In a
separate paper, the authors show that a slightly modified algorithm can also converge when
all agents update in parallel, called Jacobian decomposition of the Augmented Lagrangian
Method (J-ALM) [16]. This algorithm is demonstrated to converge in a shorter time than a
commercial state-of-the-art optimization solver.

When problems and datasets become larger and distributed over multiple sites, which is the
case for example in the machine learning field, the need for new asynchronous distributed
optimization algorithms and convergence results increases. One possibility to implement
asynchronous distributed optimization is by using an asynchronous incremental aggregated
gradient method, as proposed in [23]. When the objective function is strongly convex and
possibly constrained by convex constraints, a linear convergence rate is proven. Dual decom-
position can also be implemented in an asynchronous way, as is shown in [24]. Instead of one
agent updating the dual vector when all gradients are collected, the dual vector is updated
with part of the gradients being just collected and accurate, and the other gradients stored in
memory from a previous iteration and thus outdated. When an analytic expression is avail-
able for the dual gradient, it is shown that the convergence rate can be expressed analytically
as well.

As all dual methods use a subgradient method to update the dual vector, various acceleration
methods can be used to accelerate convergence. Well known methods are Heavy Ball Accelera-
tion (HBA) [25] and a Nesterov type of acceleration called Fast Iterative Shrinkage-Threshold

Floris van Dam Master of Science Thesis

1-2 Research Problem and Questions 5

Algorithm (FISTA) [26, 27], which use memory of the previous iterate to accelerate the update
of the present iterate. A more advanced acceleration method is Anderson Acceleration (AA),
which is recently also applied to constrained gradient methods [28].

1-2 Research Problem and Questions

This research aims to improve the state of the art of distributed trajectory optimization
algorithms for finite-time collision-free reconfigurations. Different distributed algorithms will
be compared on their ability to minimize the fuel consumption and on their convergence rate.
To limit the scope of the research, some assumptions are introduced.

Assumptions:

• The initial and desired final states are given for and known to each spacecraft;
• All spacecraft have exact knowledge of their relative state with respect to the formation
center;
• The reconfigurations discussed in this research take place in LEO;
• The spacecraft are homogeneous picosatellites, and all spacecraft have a specific thruster
configuration capable of providing 3 Degree of Freedom (DOF) accelerations;
• The spacecraft have unlimited propellant onboard, they can perform arbitrary large
reconfigurations;
• Attitude control is assumed to be perfect and instantaneous so that the 3 DOF accelera-
tion control is in the direction of the axes of the Local-Vertical-Local-Horizontal (LVLH)
frame;
• All spacecraft have an omni-directional antenna which has a specified maximum com-
munication range. This enables spacecraft to communicate with each other when they
are within this communication distance from each other;
• No communication delay or data loss is present.

Under these assumptions, this research formulates an answer to the following question:

How to design a distributed collision-free trajectory optimization algorithm for a large
formation of spacecraft which finds the minimum-fuel solution in finite time?

This research question implies that the developed algorithm has some constraints:

1. It should provide collision free trajectories in a finite time;
2. It should be scalable with the number of spacecraft;
3. The calculations should be performed in a distributed way.

Master of Science Thesis Floris van Dam

6 Introduction

This question will be discussed with help of the following sub-questions:

1. How does the fuel consumption of a collision-free reconfiguration maneuver depend on
the degree of cooperation within the formation?

2. Would J-ALM be better suited to solve the collision-free trajectory optimization problem
than dual decomposition and Consensus ADMM?

3. Under what conditions does an asynchronous implementation of a dual method con-
verge?

4. How do acceleration techniques such as HBA, FISTA and AA influence the convergence
rate of both the synchronous and asynchronous dual methods?

5. Would dual methods be a feasible alternative to diminished cooperation algorithms for
solving the collision-free trajectory optimization problem in real time?

In the next section, the accomplishments of the research are summarized.

1-3 Main Contributions

The research discussed in this thesis has four main contributions.

The development of a hybrid cooperative trajectory optimization algorithm which is scal-
able, flexible, and results in a near-optimal solution This algorithm combines a distributed
algorithm in which the spacecraft do not cooperate with a centralized algorithm in which all
spacecraft fully cooperate. In the resulting hybrid algorithm spacecraft on track to collide
from pairs which solve a small centralized problem together, all other spacecraft solve the
distributed algorithm without cooperation. This algorithm approaches the solution of the
centralized algorithm, while the problem complexity approaches the distributed algorithm.

The development of an algorithm based on J-ALM for collision-free trajectory optimization
This algorithm converges at a higher rate than two dual methods which have been applied to
the collision-free trajectory optimization problem before, which are dual decomposition and
Consensus ADMM. The calculations in J-ALM can distributed and performed in parallel by
all spacecraft.

The demonstration of convergence of asynchronous J-ALM J-ALM still converges in
an asynchronous setting if the stepsize suitable for synchronous J-ALM is divided by the
maximum delay. This can potentially lower the convergence time of the algorithms when
communication is subject to delays or spacecraft require different amounts of time to solve
their part of the decoupled trajectory optimization problem.

The implementation of Anderson Acceleration on dual methods Anderson Acceleration
manages to significantly increase the convergence rate of all synchronous dual methods. It
outperforms both HBA and FISTA. This is the first time that Anderson Acceleration is used
to accelerate an Augmented Lagrangian Method.

Floris van Dam Master of Science Thesis

1-4 Thesis Outline 7

1-4 Thesis Outline

In Chapter 2 the collision-free trajectory optimization problem is defined in mathematical
terms. All constraints and their convex approximations are discussed, followed by a short
explanation of the convex problem with SCP. The chapter concludes with specifics about the
simulations performed throughout this research. Next, Chapter 3 discusses three algorithms
with varying cooperation: a centralized benchmark algorithm, a distributed algorithm which
removes the cooperation within the formation and a hybrid algorithm which combines the
centralized and distributed algorithms. The three algorithms are compared on their total
required velocity change and computation times for different reconfigurations. Distributing
the collision-free trajectory optimization problem using dual methods is the topic of Chapter
4. These methods are all able to arrive at the same solution as the centralized algorithm but in
an iterative manner with varying convergence rates. The chapter ends with a discussion of an
asynchronous implementation of one of the dual methods. In Chapter 5 different acceleration
methods are discussed and simulated. These accelerated algorithms are then combined with
SCP to be able to compare them to the hybrid cooperation algorithm. Finally, Chapter 6
concludes on the research, answers the research questions and provides recommendations for
future work.

Master of Science Thesis Floris van Dam

8 Introduction

Floris van Dam Master of Science Thesis

Chapter 2

Problem Formulation

This chapter discusses the mathematical description of the trajectory optimization problem.
The non-convex problem is given in Section 2-1. In Sections 2-2 and 2-3 the convex ap-
proximations of the dynamic and collision avoidance constraint are discussed respectively. In
Section 2-4 the resulting convex problem is given, together with an explanation of the SCP
algorithm. In Section 2-5 an overview is given of simulation scenarios and parameters, which
will be used in the simulations throughout this thesis. In Section 2-6 the most important
parts of this chapter are summarized and concluded on.

2-1 The Non-convex Trajectory Optimization Problem

The non-convex trajectory optimization problem is given in (2-1). Vector ui,t ∈ R3 is the 3
DOF control acceleration vector of spacecraft i at time t. The total number of spacecraft is
denoted with N , and Tf is the time at which all spacecraft should have acquired their desired
final states xi,fin. As this research assumes homogeneous picosatellites for which fuel is limited,
the objective is to minimize the total required accelerations. This can easily be related to the
total required force (and thus to fuel consumption) by multiplying the total acceleration with
the mass of a spacecraft. The first constraint enforces the initial and final states; here vector
xi,t ∈ R6 is the state vector of spacecraft i at time t consisting of positions and velocities
in three directions, and vector xi,in is the given initial state. Both the initial and the final
states are defined with respect to the formation center. The second constraint enforces the
dynamics, the third constraint bounds the maximum acceleration per DOF by umax and the
final constraint is the collision avoidance constraint, with matrix G = [I3×3, 03×3] where 03×3
is a zero matrix with size 3 by 3 and I3×3 is the identity matrix. Matrix G thus selects only
the positions from the state vectors. Finally Rcol denotes the minimum separation distance
between two spacecraft to prevent collisions.

Master of Science Thesis Floris van Dam

10 Problem Formulation

min
ui ∀i

1
2

N∑
i=1

∫ Tf

t=0
uTi,t ui,t

subject to xi,Tf = xi,fin, xi,0 = xi,in, ∀i
ẋi,t = f(xi,t, ui,t), t ∈ [0, Tf), ∀i
‖ui,t‖∞ ≤ umax, t ∈ [0, Tf), ∀i
‖G(xj,t − xi,t)‖2 ≥ Rcol, t ∈ [0, Tf), ∀ i, j

(2-1)

As a solution to this problem has to be found by the spacecraft in real time, this non-convex
problem is transformed to a convex problem. Transforming the constraints to convex ones
will be topic of the next sections, starting with the dynamical constraint.

2-2 Initial, Final and Dynamical Constraint

To find a control acceleration vector which brings a spacecraft from its initial to the desired
final state, a relative dynamical model is required. First the relevant reference frames and
environmental perturbations in LEO are introduced. Then a short overview is given of possible
choices for the dynamical model, followed by a detailed explanation of the chosen one. The
discussion is continued with the linearization and discretization of this model. Finally, this
section discusses the concept of Passive Periodic Relative Orbits (PPRO), which will be used
to generate initial and final states for the spacecraft.

2-2-1 Reference Frames

To describe the relative dynamics of a spacecraft with respect to another spacecraft or a
formation center, two reference frames are required.

The first reference frame, which describes the dynamics of the formation center with respect
to the center of mass of the Earth, is the Earth Centered Initial (ECI) frame. As this frame is
inertial, it does not rotate or accelerate. The X̂ vector is directed to the vernal equinox, the
Ẑ vector is directed at the geographic North Pole and the Ŷ axis completes the right-handed
coordinate system [29].

The second required reference frame is the LVLH frame, which describes the states of a
spacecraft in the formation with respect to the formation center. The origin of this frame lies
in the center of the formation. The x̂ vector points in the radial direction which is always
directed away from the Earth, the ẑ vector points in the cross-track direction and it is aligned
with the angular momentum vector, and the ŷ vector points in the along-track direction and
completes the right handed coordinate frame. Both frames are visualized in Figure 2-1. The
remaining symbols in the figure are required to describe the dynamics of both the formation
center and the spacecraft; they are discussed in Section 2-2-4.

Floris van Dam Master of Science Thesis

2-2 Initial, Final and Dynamical Constraint 11

Figure 2-1: Visualization of the ECI frame (X̂, Ŷ , Ẑ) and the LVLH frame (x̂, ŷ, ẑ), adapted and
adjusted from [2].

2-2-2 Perturbations in Low Earth Orbit

The motion of a spacecraft around Earth is perturbed mainly by three factors: a variance in
the gravity potential, atmospheric drag and solar pressure. The variance in gravity potential
is caused by an unevenly mass distribution of Earth [30]. It can be modeled by a higher order
potential function. The dominant part of this function is the second order effect, also called
the J2 perturbation. This is caused by the fact that the Earth is not a perfect sphere: it has
a bulge around the equator and is thus described as an oblate spheroid. This J2 potential
has been modeled accurately [30] and can be included in dynamical models for spacecraft
trajectories. It is shown that the J2 perturbation has significant influence if the orbit altitude
is less than 800 km.

The second perturbation of a spacecraft orbit is atmospheric drag. This effect decreases with
altitude, but is shown to be still one of the dominant perturbations up to an altitude of 800
km [31]. The exact drag force depends on the atmospheric density at the specific altitude, the
velocity of a spacecraft, the drag coefficient, and the surface area of the spacecraft in contact
with Earth’s atmosphere. This means that the drag varies with attitude, which makes it
difficult to model accurately; especially since the attitude is perturbed by itself due to various
disturbance torques such as the residual magnetic dipole torque, the atmospheric torque and
the gravity-gradient torque [31].

The third orbit perturbation is the solar radiation force: when the light of the sun falls on
the surface of a spacecraft it loses energy and therefore exerts a force on the spacecraft [31].
The resulting acceleration is a function of the surface area of the spacecraft in contact with
sunlight, the reflectivity of the spacecraft material, the distance of the spacecraft to the sun

Master of Science Thesis Floris van Dam

12 Problem Formulation

and the angle between the sunlight and the spacecraft surface. Clearly this perturbation
disappears when a spacecraft is flying in the shade of another planetary body. Generally
speaking, for altitudes above 800 km this perturbation becomes dominant [31].
At an altitude of 500 km, the J2 and atmospheric drag perturbations are thus dominant.
Simulations show that for a formation with hundreds of 100 gram spacecraft at this altitude,
neglecting both the J2 potential and the atmospheric drag results in an offset of approxi-
mately 15 m per orbit per spacecraft when compared to a model which does include both
perturbations. Neglecting only the drag results in an offset of approximately 1.5 m per orbit
[32].
To accurately compare trajectory optimization algorithms on their ability to minimize fuel
consumption it is important to take the dominant perturbations into account. As the re-
configurations will be performed on the scale hundreds of meters and within one orbit, it is
expected that J2 is a dominant perturbation, but that including atmospheric drag and solar
pressure does not have a significant effect on the simulations. Therefore, the relative dynamics
model used in this research will only include the J2 potential.
In case a highly accurate controller is to be developed for real-time trajectory optimization,
which is one of the other open challenges for formation flying with picosatellites, at least the
atmospheric drag model should definitely be included, as an offset of 1.5 meters per orbit is
significant when meter or centimeter control accuracy is required. Specific simulations should
then also be performed to investigate the exact effect of the solar-pressure perturbation.
Designing such high accuracy controller is however outside the scope of this research.

2-2-3 Models in Literature

Over the years, many different relative dynamics models have been developed, ranging in
complexity and accuracy. An extensive survey and assessment of models is given in [33] and
[34]. In the first survey, it is shown that models based on Relative Orbital Elements (ROE) can
describe the relative dynamics accurately. Examples are the State-Transition Matrix (STM)
developed by by Gaias and D’Amico [35] and the STM by Koenig and D’Amico [36]. However,
these models describe the relative motion of spacecraft in the ECI frame instead of the LVLH
frame, which requires extra transformations in the trajectory optimization algorithms. In the
survey by Wang [34], it is shown that the most accurate model describing relative dynamics
directly in the LVLH frame is the nonlinear exact Xu-Wang model [37]. It takes the J2
perturbation into account, but neglects atmospheric drag and solar pressure. This model is
relatively simple: it can be easily linearized to obtain a system with 11 first order equations.

2-2-4 The Xu-Wang Relative Dynamics Model

The Xu-Wang relative dynamics model consists of two parts. The first five equations describe
the dynamics of the center of the formation, i.e. the origin of the LVLH frame, in the ECI
frame. These dynamics are described using compact Reference Satellite Variables (RSV), a
new set of variables introduced by Xu and Wang. The last 6 equations establish the spacecraft
dynamic equations in the LVLH frame, which are dependent on the RSV and thus parameter
varying. As this model is simple yet accurate, it will be used in the trajectory optimization
algorithms throughout this thesis and explained in detail in the next sections.

Floris van Dam Master of Science Thesis

2-2 Initial, Final and Dynamical Constraint 13

Reference Satellite Variables

In 2008, Xu and Wang proposed a new set of variables to describe the motion of a spacecraft
orbiting a planetary body, which they called the Reference Satellite Variables (RSV) [37].
This set of variables is not the most simple method to describe orbit dynamics, but has the
advantage that the relative dynamics of a second spacecraft relative to the first spacecraft
can be described as a function of only the RSV.

The original model uses six differential equations to describe the formation center dynamics in
RSV in the rotating LVLH frame. These equations are shown in (2-2), where r̄ is the position
vector of the formation center with respect to Earth, r̂ is the magnitude of this position vector,
vx is the radial velocity, h is the angular momentum vector, ic is the inclination, θ is the true
anomaly and Ω is the Right Ascension of Ascending Node (RAAN). Furthermore, µ is the
gravitational parameter of the Earth and cJ2 = 3J2µR

2
e/2 is defined for notation purposes,

where J2 is the second zonal harmonic coefficient of the Earth, and Re is the Earth’s equatorial
radius. Furthermore, the trigonometric functions are denoted as sinθ ≡ sin(θ). As the first five
differential equations are independent of Ω, the reference satellite can be entirely described
by the set {r̄, vx, h, θ, ic}, which forms the first 5 equations of the Xu-Wang model and are
also called the Compact RSV.

˙̄r = vx̂

v̇x̂ = − µ
r̂2 + h2

r̂3 −
cJ2
r̂4 (1− 3 sin2

ic sin2
θ)

ḣ = −
cJ2 sin2

ic sin2
2θ

r̂3

θ̇ = h

r̂2 +
2cJ2 cos2

ic sin2
θ

hr̂3

i̇c = −cJ2 sin2ic sin2θ
2hr̂3

Ω̇ = −2cJ2 cosic sin2
θ

hr̂3

(2-2)

Relative Dynamics

The relative dynamics for spacecraft j with respect to the formation center are based on the
Lagrange equation given in (2-3), where the Lagrangian is defined as L = K − P , i.e. the
difference between kinetic and potential energy.

d

dt

(
∂Lj
∂ ˙̄jr

)
− ∂Lj
∂r̄j

= uj (2-3)

The kinetic energy and potential energy of the jth spacecraft can be calculated as is shown in
(2-4). Here r̄j is the position vector of spacecraft j in the ECI frame and γ is the Geocentric
latitude.

Master of Science Thesis Floris van Dam

14 Problem Formulation

Kj = 1
2

˙̄rTj ˙̄rj

Pgrav,J2 = −µ
r̂
− cJ2

r̂3

(1
3 − sin2

γ

) (2-4)

By substituting (2-4) in (2-3), a nonlinear exact relative dynamics model can be obtained.
This nonlinear model is given and explained in detail in [37]. For the purpose of designing
a trajectory optimization algorithm, the model has to be linearized and discretized. In the
next section, this linearized model will be given in detail.

2-2-5 Linearization and Discretization

The linearized relative dynamics equations are given in (2-5). The model consists of six first-
order equations, describing position and velocity of a spacecraft with respect to the formation
center, i.e. the center of the LVLH frame [34]. The parameters of this model are the compact
RSV, so the model is linear parameter-varying.

ẋj = Axj +Buj (2-5)

with

A =
[
03×3 I3×3
A1 A2

]
, B =

[
03×3
I3×3

]

A1 =

2 µ
r3 + h2

r4 + 4cJ2(1−3 sin2
ic

sin2
θ)

r5
−2vxh
r3 + 3cJ2 sin2

ic
sin2θ

r5
5cJ2 sin2ic sinθ

r5

2vxh
r3 + 5cJ2 sin2

ic
sin2θ

r5 − µ
r3 + h2

r4 −
cJ2(1+2 sin2

ic
−7 sin2

ic
sin2

θ)
r5

3cJ2vx sin2ic sinθ
r4h − 2cJ2 sin2ic cosθ

r5

5cJ2 sin2ic sinθ
r5 −3cJ2vx sin2ic sinθ

r4h − µ
r3 −

cJ2(3−2 sin2
ic
−5 sin2

ic
sin2

θ)
r5

A2 =

 0 2h
r2 0

−2h
r2 0 −2cJ2 sin2ic sinθ

r3h

0 2cJ2 sin2ic sinθ
r3h 0

(2-6)

This linear relative dynamics system can be discretized using a zero-order hold assumption:

uj(t) = uj,κ, t ∈ [tκ, tκ+1), κ = 0, . . . , Tf − 1
with ∆t = tκ+1 − tκ, tf = Tf∆t

(2-7)

Here κ is the discrete time instance. This results in

xj,κ+1 = Aκxj,κ +Bκuj,κ κ = 0, . . . , Tf − 1

with Aκ = eA(tκ)∆t, Bκ =
∫ ∆t

0
eA(tκ)τBdτ

(2-8)

A convenient way to quickly calculate the entire trajectory is to stack the iterations of (2-8)
in large matrices as follows, where Xj ∈ R6(Tf−1) is a vector containing all positions and
velocities of spacecraft j for κ = 1, . . . , Tf and vector Uj = [uTj,0, . . . , uTj,Tf−1]T ∈ R3(Tf−1) is
the total control acceleration vector from time κ = 0, . . . , Tf − 1.

Floris van Dam Master of Science Thesis

2-3 A Convex Collision Avoidance Constraint 15

Xj = Oxj,0 + TUj (2-9)

Matrices O and T are defined as follows:

O =

A1
A2A1

...
1∏

κ=Tf−1
Ak

, T =

B1 0 . . . 0

A2B1 B2
.

...
... . . . 0

1∏
κ=Tf−2

AkB1

1∏
κ=Tf−3

AkB2 . . . BTf−1

(2-10)

The final state can then easily be obtained by only using the last block row of O and T : Ō
and T̄ :

xj,f = Ōxj,0 + T̄Uj

=

 1∏
κ=Tf−1

Ak

xj,0 +

 1∏
κ=Tf−2

AkB1

1∏
κ=Tf−3

AkB2 . . . BTf−1

Uj (2-11)

With this dynamical constraint, the initial and final state can be linked using the control
acceleration vector. To ensure that no collision occur also before and after the reconfiguration,
the initial and final states are chosen to be on PPRO, which are shortly explained next.

2-2-6 Passive Periodic Relative Orbits

Fuel-efficient spacecraft formation keeping trajectories can be designed using PPRO. Passive
relative orbits are the relative trajectories spacecraft follow when no actuation is applied.
When these are periodic, this means that the formation remains bounded without any control
effort. In [32], Morgan et al. showed that with a specific set of initial conditions the average
drift of all spacecraft in a formation was only 7.55 mm/orbit. This was obtained by enforcing
all spacecraft to rotate around the same point, i.e. the center of the formation, and by
energy matching all spacecraft using the exact J2 perturbed Xu-Wang model. This set of
conditions to obtain PPRO given in [32] will be used to generate the initial and final states
for the reconfiguration maneuver, to make sure that both before and after the reconfiguration
maneuver the spacecraft do not collide.

2-3 A Convex Collision Avoidance Constraint

The collision avoidance constraint as defined in (2-1) is non-convex, as it forms a sphere around
each spacecraft which other spacecraft may not enter. As such nonlinear constraint results in
many possible solutions and large computational complexity of the problem, the non-convex
problem cannot be solved in real time for larger formations. Therefore the collision avoidance
constraint has to be approximated by a convex one.
If all spacecraft have full responsibility to avoid collisions, the obtained fuel cost will be
lowest as the spacecraft use maximum cooperation: some spacecraft can increase their own

Master of Science Thesis Floris van Dam

16 Problem Formulation

fuel consumption in order to decrease the total consumption. For such problem, the constraint
is approximated as follows, where x̄ denotes the best available predicted state:

(x̄j,κ − x̄i,κ)TGTG(xj,κ − xi,κ) ≥ Rcol ‖G(x̄j,κ − x̄i,κ)‖2
∀ κ = 0, . . . , Tf − 1

(2-12)

Proof that this approximation is sufficient to guarantee collision free trajectories is given in
[2] or [17]. In standard notation, the constraint can be expressed as a function of the control
vectors:

Aij(Uj − Ui)−Bij ≤ 0
with Aij = MijĜT

Bij = MijĜO(xj,0 − xi,0)−RcolDij

(2-13)

Here, matrix Mij ∈ R(Tf−1)×3(Tf−1) is a block diagonal matrix consisting of the position
differences of the predicted trajectories G(x̄j,κ − x̄i,κ). Matrix Ĝ is a block diagonal matrix
consisting of copies of G, and vectorDij ∈ RTf−1 contains the 2-norm of the position difference
of the predicted trajectories ‖G(x̄j,κ − x̄i,κ)‖2. Note that Aij(Uj − Ui)− Bij is equivalent to
Aji(Ui − Uj) − Bji. This collision avoidance constraint can be interpreted as two parallel
planes separated by distance Rcol, oriented perpendicular to the line connecting the predicted
positions of the two spacecraft. For each sampling instance κ = 0, . . . , Tf − 1, a new pair of
planes is introduced.

Introducing these planes instead of spheres decreases the set of possible trajectories in a
reconfiguration. Therefore, using the convex constraint might result in a higher total fuel
consumption than when using the original constraint. However, when the entire optimization
problem is convex, there is only one optimal solution which results in deterministic solutions.

2-4 The Convex Problem with Sequential Convex Programming

By discretizing the control acceleration vector as a piece-wise continuous vector and by using
the dynamic constraint given in (2-11) and the collision avoidance constraint given in (2-12),
the following convex problem is obtained:

min
Ui ∀i

1
2

N∑
i=1

UTi Ui

subject to xi,f = Ōxi,0 + T̄Ui, ∀i
‖Ui‖∞ ≤ umax, ∀i
Aij(Uj − Ui)−Bij ≤ 0, ∀ i, j

(2-14)

As the dynamical constraints and the maximum control acceleration constraints are defined
for each spacecraft separately they will be abbreviated with the following constraint: Ui ∈ Ui,
where Ui is the convex set of vectors Ui which satisfy both constraints.

In (2-14) the collision avoidance constraint is approximated using the best available solution
of the trajectories. To make sure that this solution is accurate, SCP is used: an iterative
method which approximates the collision avoidance constraint using the solution of the last

Floris van Dam Master of Science Thesis

2-4 The Convex Problem with Sequential Convex Programming 17

iteration. The algorithm is warm-started using the solution of (2-14) without the collision
avoidance constraint, which results in a decoupled problem. SCP continues to iterate until
the maximum change in a trajectory at all times κ is smaller than a specified tolerance εSCP:∥∥∥G(xlj,κ − xl−1

j,κ)
∥∥∥

2
< εSCP, κ = 0, . . . , Tf − 1 (2-15)

Here l indicates the SCP iteration number. To distinguish it from the discrete time indice κ
in the subscript, l will be added as a superscript.

Characteristics of the problem

Let Rd = (−umax, umax) denote the domain of f(u). Objective function f : Rd → R as given
in (2-14) is convex and differentiable, and its gradient is denoted with ∇f(u). We say that a
function is strongly convex with parameter m> 0 if for all u1, u2 ∈ Rd:

f(u1) ≥ f(u2) +∇f(u2)T (u1 − u2) + m

2 ‖u1 − u2‖2 (2-16)

As f(u) is a quadratic function of the form 1
2u

TQu, where Q in this case is the identity matrix,
it is strongly convex with parameter m = 1. This can be interpreted as a quadratic lower
bound to the objective function. If instead of the quadratic objective function an objective
with the 1-norm of the control acceleration vector is chosen, this objective is not strongly
convex anymore but only convex. Minimizing the quadratic function will result in a control
acceleration vector with many nonzero elements, but each element is relatively small as the
element squared contributes to the cost. Minimizing the objective with the 1-norm of the
accelerations will result in a sparse control acceleration vector, but the nonzero terms will be
relatively large. This will be discussed in more detail in Section 3-4. The choice depends on
the specific spacecraft architecture [2], but as the quadratic function has stronger convergence
properties this will be used throughout this thesis.
A function is Lipschitz continuous with constant D on a convex domain iff:

f(u1) ≤ f(u2) +∇f(u2)T (u1 − u2) + D

2 ‖u1 − u2‖2 (2-17)

In the case of (2-14), f(u) is Lipschitz continuous with D = umax on the domain Rd. This can
be interpreted as a quadratic upper bound to the objective function in the specific domain.

The convergence of algorithms in this research will mainly be shown through simulations.
Most of the simulation parameters will remain constant for all simulations performed in this
research: they are given in the next section.

Master of Science Thesis Floris van Dam

18 Problem Formulation

2-5 Simulation Specifics

The simulations shown and discussed in this thesis are performed to compare the convergence
characteristics of different algorithms. In Chapter 3 of main interest are the total required
velocity change of the collision-free trajectories and the computation times of the solver. In
Chapter 4 the dual methods are compared on convergence rate, the shape of the convergence
(monotonic or oscillating convergence or divergence) and the computation times of solvers.
As the convergence characteristics are dependent on the specific reconfiguration maneuver,
which are randomly generated in this research, Monte Carlo simulations are required to make
quantitative comparisons. However, this research does not aim to provide a ready-made
algorithm for a specific mission but rather gives a proof of concept of various algorithms
and provides insight in the parameter selection process. Therefore it is decided to define
one reconfiguration scenario, i.e. one specific set of initial and final states, and simulate all
algorithms on this scenario. The simulations can thus serve as a starting point for the design
of a mission-specific trajectory optimization algorithm, or can provide insight when selecting
a dual method to solve a new problem.

First, the orbit initialization and simulation parameter values are discussed. Then the solver
choice and implementation of the problem is shortly discussed.

Parameter values

The formation center is initialized at an altitude of 500 km. One orbit takes 5677 seconds
at this altitude. The reconfiguration maneuver should be performed in tf = 5520 seconds.
This is selected to have exactly 23 sampling instances in one reconfiguration maneuver with a
sampling time of ∆t = 240s, which means that at sampling instance 23 the final configuration
should be obtained. The Reference Satellite Variables are initialized by {r, vx, h, θ, ic,Ω} =
{6878 km, 0, 2π/tf km2/s, 0, 45 deg, 60 deg}.

The positions of the initial and final states are drawn from a random distribution with stan-
dard deviation σ around the formation center. In the few cases when multiple scenarios
are required, different sets of initial and final states are obtained by shuffling the random
number generator of MATLAB and saving the resulting seed. For a formation of four space-
craft σ = 0.1 km, and for a formation of 10 spacecraft σ = 0.3 km. In the initial and final
configurations, the positions of the spacecraft are selected to be at least distance Rcol apart.

The collision free radius Rcol is selected to be 0.15 km. It is chosen this large as it is only
enforced at the discrete time instances. The communication distance Rcomm is chosen to be
100 km such that all spacecraft can communicate with each other. The maximum thruster
acceleration in one DOF is 1 × 10−4 km/s2. The convergence tolerance for SCP is chosen
to be εSCP = 1× 10−3, which corresponds to a maximum change in trajectory between SCP
iterations of 1 meter.

To compare the fuel consumption of different algorithms and reconfiguration maneuvers, the
average required velocity change to obtain the reconfiguration is introduced, i.e. ∆V̄ =∑N

i=1‖Ui‖1∆t
N . The total velocity change to perform the reconfiguration can then easily be

calculated as ∆V = ∆V̄ N . The required force to perform a reconfiguration can be obtained
by multiplying the control accelerations with the mass of a spacecraft.

Floris van Dam Master of Science Thesis

2-6 Summary and Conclusions 19

Solver specifics

In this research, all numerical simulations are performed using the Gurobi solver [38] in
MATLAB. This solver is able to solve linear, quadratic, and mixed integer models using two
main algorithms: a simplex algorithm and a barrier algorithm [39]. The choice for specific
algorithm depends on the problem definition and the numerical sensitivity of the model.

In general, according to the Gurobi documentation the barrier algorithm is the fastest option,
but the dual simplex algorithm is least sensitive to numerical errors [39]. In (2-14), the control
acceleration vector is given in units km/s2. This results in an optimal solution with 1

2u
T
i ui

approximately of order O(10−14). To decrease the risk of numerical errors when such high
accuracy is required, the dual simplex algorithm is selected. Also, the units of the control
acceleration vector are changed to m/s2 when used in the solver, to decrease the objective
coefficient range. The computation times of both algorithms were comparable for simulations
with ∆t = 240s and N = 4, indicating that such problem does not yet qualify as a large scale
problem.

The computer used for the simulations uses a 2.5 GHz Intel Core i5 chip with 8 GB of RAM,
and it runs on Windows 10. For parallel algorithms, the MATLAB "parfor" command is used,
which distributes the calculations over 2 workers.

2-6 Summary and Conclusions

In this chapter first the problem description is translated to a mathematical formulation.
As the problem should be solved in a distributed way by the spacecraft themselves, this
non-convex problem is transformed to a convex problem by linearizing the dynamical model,
discretizing the entire problem and approximating the non-convex collision avoidance con-
straint. The Xu-Wang dynamical model is chosen as it is an exact model which takes the
J2 perturbation into account. The collision avoidance constraint is transformed to a convex
form by approximating the spheres as affine planes separating the spacecraft. For this ap-
proximation, an estimation of the trajectories is required. Therefore, the convex problem is
solved in an SCP framework in which the solution of each iteration is used as an estimation
for the next iteration. SCP is warm-started using the solution to the convex optimization
problem without the collision avoidance constraint.

Now that the convex problem is mathematically defined, different algorithms can be developed
to solve the problem.

Master of Science Thesis Floris van Dam

20 Problem Formulation

Floris van Dam Master of Science Thesis

Chapter 3

Distributed Optimization with
Decreased Cooperation

This chapter aims to answer the question how the fuel consumption of a collision-free re-
configuration maneuver depends on the degree of cooperation between spacecraft. First, the
convex problem in combination with SCP as discussed in Section 2-4 will be solved using a
centralized structure, assuming that a central unit has complete knowledge of all initial and
final states of the formation. This will be the topic of Section 3-1. Then the problem will
be solved in a distributed way by removing the cooperation between spacecraft. This can be
done by transforming the convex collision avoidance constraint, as will be shown in Section
3-2. Third, in Section 3-3 a hybrid architecture is investigated which combines characteris-
tics of the centralized and distributed algorithms. Finally, Section 3-4 shows simulations to
compare the performance of the three algorithms.

3-1 Centralized algorithm

As in the centralized algorithm all spacecraft are responsible to avoid collisions and minimize
the total cost of the entire formation, the centralized algorithm yields the optimal solution to
the convex trajectory optimization problem. This centralized algorithm is given in Algorithm
1. Here Û li is the control acceleration vector of spacecraft i in SCP iteration l. Furthermore,
0 is used to denote a zero vector with appropriate size.

As discussed in the introduction, a centralized algorithm is unsuitable for larger formations,
as in the centralized algorithm all calculations are performed by only one agent, on which the
entire formation depends. Also, for larger formations even state-of-the-art solvers might not
be able to solve the problem as the collision avoidance constraint scales quadratically with
the number of spacecraft. To ensure safe operation also in off-nominal conditions and to make
use of the computational capabilities of all spacecraft, a distributed algorithm is required.

Master of Science Thesis Floris van Dam

22 Distributed Optimization with Decreased Cooperation

Algorithm 1 Centralized SCP Algorithm
1: Initialize U0 = 0, l = 1
2: Calculate initial U1

i , ∀i

U1
0 , . . . , U

1
N ← arg min

U0,...,UN

1
2

N∑
i=1

UTi Ui

s.t. Ui ∈ Ui, ∀i
3: Update Xi ∀i

X1
i ← Oxi,0 + TU1

i , ∀i
4: while

∥∥∥G(xli,κ − xl−1
i,κ)

∥∥∥
2
≥ εSCP, κ = 0, . . . , Tf − 1, ∀i do

5: l← l + 1
6: Update collision avoidance constraints Aij , Bij , ∀i, j
7: Calculate U li , ∀i

U l0, . . . , U
l
N ← arg min

U0,...,UN

1
2

N∑
i=1

UTi Ui

s.t. Ui ∈ Ui, ∀i
Aij(Uj − Ui)−Bij ≤ 0,∀i, j

8: Update Xi ∀i
X l
i ← Oxi,0 + TU li

3-2 Distributed Algorithm without Cooperation

The convex problem given in (2-14) can not yet be solved in a distributed way due to the
coupled cost and the coupled collision avoidance constraint. The cost can easily be decoupled
by making each spacecraft minimize only its own cost. The collision avoidance constraint
can be decoupled by replacing one of the optimization variables with the same best available
solution which is used to turn the non-convex constraint into a convex one. This is shown
in (3-1), where state xi depends on optimization variable Ui and state xj is now fixed to
be x̄j . This constraint can be interpreted as plane again oriented perpendicular to the line
connecting the two predicted positions, but now also tangent to the sphere with radius Rcol
around x̄j,k.

(x̄j,κ − x̄i,κ)TGTG(x̄j,κ − xi,κ) ≥ Rcol ‖G(x̄j,κ − x̄i,κ)‖2
∀ κ = 0, . . . , Tf − 1

(3-1)

Above constraint can be transformed to standard form in a way similar way to (2-13), where
Ūj is the best available solution of control acceleration vector Uj :

Aij(Ūj − Ui)−Bij ≤ 0 (3-2)

To decide which spacecraft are responsible to avoid collisions, priority values πi ∈ R+ are
introduced [2]. Each spacecraft gets assigned a different priority value, either at random,
based on the amount of fuel left in the tank or based on another criteria. A spacecraft then
has to avoid all spacecraft which have a higher priority value, which means that there will
always be one spacecraft which does not have to avoid any other spacecraft. When this is
implemented in the SCP framework, a spacecraft keeps updating its trajectory until the SCP

Floris van Dam Master of Science Thesis

3-2 Distributed Algorithm without Cooperation 23

convergence tolerance εSCP is met and the trajectories of all spacecraft which have to be
avoided are converged already.

For each spacecraft i, the set of other spacecraft it has to avoid based on the priority values
is given by Pi. The set of spacecraft which are within communication distance Rcomm of
spacecraft i is given by Ni. Spacecraft in set Ni will also be called the neighbors of i. The
spacecraft which have to be avoided are thus in the set {Ni ∩ Pi}

Using the decoupled cost together with the convex approximation of the collision avoidance
constraint given in (3-2) and priority values results in the distributed problem given in (3-3).
This problem can be solved separately by each spacecraft i = 1, . . . , n. The total cost can be
obtained by summing all costs of individual spacecraft.

min
Ui

1
2U

T
i Ui

subject to Ui ∈ Ui
Aij(Ūj − Ui)−Bij ≤ 0, j ∈ {Ni ∩ Pi}

(3-3)

The distributed algorithm with SCP is given in Algorithm 2 for one spacecraft i. As all
calculations are performed on board the spacecraft and each spacecraft has to avoid only a
subset of its neighbors, this algorithm is both scalable and flexible. However, as it lacks any
form of cooperation in avoiding collisions, the total fuel consumption will be higher than the
solution of the centralized algorithm.

3-2-1 Model Predictive Control

As a spacecraft can only detect other spacecraft when they are within its communication
radius, collisions are avoided only between neighbors and only at the specific discrete time
instances. A spacecraft pair which starts outside each others communication radius does
not avoid each other and thus can still collide during the flight to the new configuration.
This can be solved by implementing the distributed SCP algorithm in a Model Predictive
Control (MPC) framework, as is demonstrated in [2]. Instead of executing the entire obtained
control acceleration vector, only the control vector for the first time instance is executed. Each
discrete time instance κ the SCP algorithm is then solved again from time κ0 to κ0 + Tf − 1
using updated initial states, set of neighbors and priority values, until the final configuration
is obtained. The MPC framework makes sure that all potential collisions between spacecraft
started outside each others communication radius will be taken into account later in the
reconfiguration. Next to this, there is also a possibility that spacecraft start outside each
others communication radius, but fly with such speed that they collide within one sampling
instance. To prevent this, an extra constraint on the spacecraft velocity can be introduced:
‖[03×3, I3×3]xi,κ‖2 ≤ vmax, κ = k0, . . . , k0 + Tf − 1. Now ∆t, Rcomm and vmax can be chosen
such that the velocities of two spacecraft can never be large enough to collide within ∆t
seconds if they start outside each others communication radius. The details of this proof can
be found in [2].

An extra advantage of the MPC framework is that it adds robustness with respect to sensor
and actuator uncertainties. For real-time implementations, a combination of SCP with MPC
would thus be preferred.

Master of Science Thesis Floris van Dam

24 Distributed Optimization with Decreased Cooperation

Algorithm 2 Distributed SCP Algorithm for one spacecraft i
1: Initialize U0 = 0, l = 1
2: Calculate initial U1

i

Û1
i ← arg min

U0,...,UN

1
2U

T
i Ui

s.t. Ui ∈ Ui
3: Share πi and U1

i with neighbors j ∈ {Ni ∩ Pi} and receive theirs
4: Update state trajectory Xi

X1
i ← Oxi,0 + TU1

i

5: while
∥∥∥G(xli,κ − xl−1

i,κ)
∥∥∥

2
≥ εSCP, κ = 0, . . . , Tf − 1 and j ∈ {Ni ∩ Pi} are not converged

yet do
6: l← l + 1
7: Update Aij , Bij , ∀j
8: Calculate U li

U li ← arg min
Ui

1
2U

T
i Ui

s.t. Ui ∈ Ui
Aij(U l−1

j − Ui)−Bij ≤ 0, j ∈ {Ni ∩ Pi}
9: Share U li with neighbors j ∈ {Ni ∩ Pi} and receive theirs

10: Update Xi

X l
i ← Oxi,0 + TU li

11: Share with neighbors j ∈ {Ni ∩ Pi} that trajectory is converged

3-3 Hybrid Algorithm

The centralized algorithm has full cooperation between the spacecraft when avoiding colli-
sions, but is not scalable and flexible. The distributed algorithm is scalable and flexible, but
has no cooperation whatsoever. A hybrid algorithm is proposed to combine the properties of
both algorithms.

This algorithm is mainly based on the algorithm without any cooperation, but here two space-
craft are allowed form a cooperating pair and solve a small centralized problem for the two of
them. This could be implemented as follows. First, each spacecraft i calculates its trajectory
without taking collision avoidance into account. After sharing with and receiving these tra-
jectories from its neighbors in set Ni, each spacecraft makes a list of neighbors it potentially
collides with, Ci ∈ Ni, which is sorted based on the time instance of the potential collision.
If two spacecraft find each other on top of this list, they form a cooperating pair. If the first
spacecraft potentially causing a collision is already cooperating with another spacecraft, it
checks with the next spacecraft causing a potential collision, and so forth. When two space-
craft form a cooperating pair, one of the two spacecraft solves a centralized problem for the
two of them and shares the solution with the other. All spacecraft which do not form a pair,
either because they are not on track to any potential collision or because all potential colliding
spacecraft have already formed another pair, solve the distributed problem explained in the
previous section. The priority values are still used to determine which remaining spacecraft
in list Ci should be avoided and which not.

Floris van Dam Master of Science Thesis

3-4 Simulations 25

Essentially the hybrid algorithm thus consists of two algorithms: the cooperating pairs solve
(3-4) for the two of them where the two spacecraft in the pair are denoted with sc1 and sc2, all
other spacecraft solve the distributed problem (3-3). Such hybrid algorithm is expected to be
particularly useful when it is implemented in the MPC framework, as then in each new MPC
iteration new pairs can be formed. Of course such scheme could also be extended to larger
cooperating groups, essentially creating an hierarchical trajectory optimization algorithm.

min
Usc1,Usc2

1
2
(
UTsc1Usc1 + UTsc2Usc2

)
subject to Ui ∈ Ui, i = sc1, sc2

Asc1,sc2(Usc2 − Usc1)−Bsc1,sc2 ≤ 0
Aij(Ūj − Ui)−Bij ≤ 0, i = sc1, sc2, j ∈ {Ni ∩ Pi}

(3-4)

Now that three algorithms with varying cooperation have been introduced, their performance
can be compared using simulations.

3-4 Simulations

First, a result of the centralized algorithm will be discussed in detail to give insight in char-
acteristics of the solution. Then the three algorithms discussed in previous sections will be
compared on different reconfiguration scenarios.

In Figure 3-1 the relative distances during a reconfiguration maneuver are shown without and
with the collision avoidance constraints. The black dotted line indicates the minimum safe
distance Rcol. In the top plot, the constraint is mainly violated by spacecraft 1 and 2, but
also a little by the pairs 1-4 and 2-4. In the lower plot it is clear that all relative distances
remain on or above the minimum safe distance. Due to the final configuration constraint, an
adjustment in one part of the relative distance plot influences the entire trajectory and thus
three relative trajectories. This can be seen for example in the relative distance plots of pair
1-3: in the top plot they remain almost 0.2 km apart, but in the lower plot this distance is
decreased to 0.15 km due to the adjustments for pair 1-2. As the trajectories often can not
be independently altered, an algorithm can show very different convergence rates for different
scenarios.

In Figure 3-2 the magnitudes of the control accelerations corresponding to Figure 3-1 are
shown. Especially the accelerations of spacecraft 1 and 2 are increased, in order to increase
their relative distance. The acceleration vectors are piece-wise continuous as they are dis-
cretized using the zero-order hold assumption. Furthermore, they are all nonzero due to the
quadratic objective function in the problem definition. If instead the 1-norm is minimized,
the resulting control acceleration vector is sparse, as is shown in Figure 3-3. It is interesting to
note that for the problem with objective function

∑N
i

1
2U

T
i Ui. the required average velocity

change is ∆V̄ = 0.5064 m/s, whereas the problem with objective function
∑N
i ‖Ui‖1 results

in an average velocity of ∆V̄ = 0.3325 m/s. This is a substantial difference, which definitely
has to taken into account when designing the spacecraft architecture and controller.

Now that the solution characteristics are clear, the three algorithms can be compared on their
convergence characteristics. First, ten different scenarios are simulated for a reconfiguration

Master of Science Thesis Floris van Dam

26 Distributed Optimization with Decreased Cooperation

0 5 10 15 20 25
0

0.2

0.4

0.6

S
e
p
a
ra

ti
o
n
 d

is
ta

n
c
e
 [
k
m

]

Relative distances without collision avoidance
Pair 1,2

Pair 1,3

Pair 1,4

Pair 2,3

Pair 2,4

Pair 3,4

Rcol

0 5 10 15 20 25

Sampling instance

0.1

0.2

0.3

0.4

0.5

S
e
p
a
ra

ti
o
n
 d

is
ta

n
c
e
 [
k
m

]

Relative distances with collision avoidance

Figure 3-1: Relative distances between the spacecraft pairs before and after collisions are avoided.
When the constraint is active, all relative trajectories are pushed above Rcol.

of four spacecraft. The averaged results are listed in Table 3-1. Both the distributed and
the hybrid implementation results in a larger mean ∆V̄ and standard deviation than the
centralized implementation. The distributed algorithm also required more SCP iterations to
converge on average, whereas the hybrid algorithm actually converged in fewer iterations on
average. The results of the hybrid algorithm show that the combination of the distributed
architecture with cooperating pairs indeed can combine centralized and distributed character-
istics: the obtained solution is relatively close to the solution of the centralized architecture,
whereas the calculations are distributed over almost all spacecraft. For four spacecraft, the
computation times per iteration per spacecraft are similar for the three algorithms.

The distributed algorithm resulted in a higher ∆V̄ cost than the centralized algorithm in
every one of the ten runs. This was however not the case for the hybrid algorithm: in one
reconfiguration maneuver the hybrid algorithm outperformed the centralized one in terms of
∆V̄ cost. This shows that the centralized algorithm is not optimal in itself, which is expected
as its collision avoidance constraint is still a conservative approximation which excludes a
large part of the solution space. Due to the specific structure with varying responsibility to
avoid collisions, the distributed and hybrid algorithm find other solutions than the central-
ized algorithm, which results in different convex approximations of the collision avoidance
constraint in the next SCP iteration. In some cases, this might even result in a lower ∆V̄ .

∆V̄ Standard deviation SCP iter. Time per iter. [s]
Centralized 0.4572 (100%) 0.1113 10.2 0.5111
Hybrid 0.4694 (103%) 0.1211 9.3 0.5506

Distributed 0.5157 (113%) 0.1460 13.2 0.4629

Table 3-1: Four spacecraft reconfiguration: Averaged convergence characteristics over 10 runs
with σ = 0.1 km. The computation time is given per spacecraft per iteration.

Floris van Dam Master of Science Thesis

3-4 Simulations 27

0 5 10 15 20 25
0

0.5

1

1.5

2

A
c
c
.
m

a
g
n
it
u
d
e
 [
k
m

/s
2
]

10
-7 Acceleration magnitude before collision avoidance

Spacecraft 1

Spacecraft 2

Spacecraft 3

Spacecraft 4

0 5 10 15 20 25

Sampling instance

0

0.5

1

1.5

2

A
c
c
.
m

a
g
n
it
u
d
e
 [
k
m

/s
2
]

10
-7 Acceleration magnitude after collision avoidance

Figure 3-2: Acceleration magnitudes corresponding to Figure 3-1. As each spacecraft (Sc) has 6
DOF control, the magnitudes of the accelerations in all DOF are summed per sampling instance.

The averaged convergence characteristics for a 10 spacecraft reconfiguration are shown in
Table 3-2. Again the distributed algorithm performed worse than the centralized and hybrid
one, but the difference is much smaller now than with the four spacecraft reconfiguration.
This can be explained by looking at the standard deviation used to randomly generate initial
and final states for the reconfiguration maneuvers. The results obtained in this section depend
largely on this standard deviation. If σ is chosen relatively large, the initial and final states are
likely to be far away and even without the collision avoidance constraint the fuel cost will be
relatively high. However, not many collisions have to be avoided during this reconfiguration.
If σ is chosen relatively low, initial and final states are not that far away from each other and
the spacecraft can move to their final state at a low fuel cost. Now many collisions have to be
avoided however. Therefore, with relatively small σ the performance of the three algorithms
will vary more than for a large σ. This means that an objective comparison of performance
for general scenarios requires many different simulations. For now, we can conclude that
the distributed algorithm results in solutions with a higher ∆V̄ than the solutions of the
centralized and hybrid algorithms, but the specific performance difference depends on the
chosen reconfiguration scenario. In terms of computation time, the differences between the
three algorithms are more clear: in the centralized algorithm one spacecraft has to solve
the entire problem whereas the hybrid and distributed algorithm share the workload with the
entire formation. This results in a reduction of computation time per spacecraft per iteration.

Finally, one simulation is performed with 100 spacecraft where the initial and final states are
drawn from a random distribution with σ = 2 km. If no collisions are avoided, 6 different
spacecraft pairs collide during their reconfiguration trajectories. The convergence character-
istics of the three algorithms are given in Table 3-3. As the centralized algorithm has to
solve the entire problem again in each SCP iteration, the time to solve one iteration remains
almost constant, approximately 30 seconds. The algorithm did not converge yet in iteration
71 as in each iteration some trajectories were slightly altered, even if they already converged

Master of Science Thesis Floris van Dam

28 Distributed Optimization with Decreased Cooperation

0 5 10 15 20 25

Sampling instance

0

0.2

0.4

0.6

0.8

1

1.2

A
c
c
.
m

a
g
n
it
u
d
e
 [
k
m

/s
2
]

10
-6 Accelerations minimizing 1-norm in objective

Spacecraft 1

Spacecraft 2

Spacecraft 3

Spacecraft 4

Figure 3-3: Obtained acceleration magnitudes when (2-14) is solved with objective
∑N

i ‖Ui‖1

instead of
∑N

i
1
2U

T
i Ui. This results in sparse acceleration vectors.

∆V̄ Standard deviation SCP iter. Time per iter. [s]
Centralized 1.1260 (100%) 0.1362 12.9 0.7726
Hybrid 1.1387 (101%) 0.1413 18.1 0.4420

Distributed 1.1487 (102%) 0.1385 23.6 0.3241

Table 3-2: Ten spacecraft reconfiguration: Averaged convergence characteristics over 10 runs
with σ = 0.3 km. Computation time is given per spacecraft per iteration.

in previous iterations. The hybrid and distributed algorithms did not have this problem: the
converged trajectories were not allowed to change anymore. These algorithms converged in
respectively 9 and 25 iterations. The computation time per spacecraft in the first iteration
for the hybrid and distributed algorithm remains below one second even for this large recon-
figuration. As most spacecraft do not have to avoid any collisions but still have to use much
control acceleration to reach the desired final states, the relative gain of using a centralized
or hybrid algorithm to avoid collisions instead of a distributed one is very small.

Another advantage of the distributed and hybrid algorithm is that it allows for fuel balancing
in the formation. The priority values can be selected based on amount of fuel left per space-
craft. This way, the spacecraft with less fuel left can be spared, at the cost of a higher fuel
consumption for other spacecraft. This might increase the total life-time of the formation.

SCP iter. Total time [s] Time per sc. in iter. 1 [s] ∆V̄ /∆V̄ ∗
Centralized Stopped at 71 2085 32.1 1
Hybrid 9 143 0.5798 1.000034

Distributed 25 198 0.5691 1.000054

Table 3-3: Convergence characteristics for 100 spacecraft formation.

Floris van Dam Master of Science Thesis

3-5 Summary and Conclusions 29

3-5 Summary and Conclusions

In this chapter the collision-free reconfiguration problem is solved in a distributed way by
removing the cooperation between spacecraft. As in such distributed approach all spacecraft
minimize only their own required velocity change, the average required velocity change over
the spacecraft is higher than the one obtained using the centralized algorithm. As this differ-
ence originates from the way collisions are avoided, a hybrid algorithm is proposed in which
spacecraft on track to collide form cooperating pairs. These pairs solve a small centralized
problem for the two of them. Such setup is shown to reduce the total required velocity change
in a reconfiguration, approaching the centralized solution. Furthermore, the hybrid algorithm
is flexible and scalable with the number of spacecraft as each optimization problem remains
relatively small. However, the hybrid algorithm still requires more fuel than the centralized
algorithm.

There is also a possibility to obtain exactly the centralized solution, but in a distributed way
using dual methods. This will be the topic of next chapter.

Master of Science Thesis Floris van Dam

30 Distributed Optimization with Decreased Cooperation

Floris van Dam Master of Science Thesis

Chapter 4

Dual Methods

Instead of distributing the problem by removing or decreasing the cooperation in the for-
mation, the problem can also be distributed using dual methods. This chapter answers the
questions whether J-ALM would be better suited to solve the collision-free trajectory opti-
mization problem than dual decomposition and Consensus ADMM, and how to develop an
asynchronous implementation of a dual method. In dual methods not the objective function is
minimized, but the Lagrangian function which consists of the objective function plus the colli-
sion avoidance constraints multiplied with dual vectors. This will be explained in detail in the
following sections. First, dual decomposition is discussed, followed by a Consensus ADMM,
a sequential and a parallel decomposition of the Augmented Lagrangian Method (ALM).
Then, an asynchronous algorithm based on the parallel decomposition of ALM is discussed,
and convergence of the algorithms is shown through simulations. All dual methods discussed
in this chapter solve only the first iteration of the SCP algorithm, to be able to accurately
compare the different convergence rates. The simulations in this chapter are all based on the
same reconfiguration with four spacecraft, unless stated otherwise.

4-1 Dual Decomposition

In this section, first the dual decomposition algorithm is explained. Then, with the help of
simulations the selection of an appropriate stepsize for the dual update is discussed. This
discussion is interesting as it differs from standard subgradient theory due to the fact that
the coupling is introduced in inequality instead of equality constraints.

The Lagrangian is given in (4-1). It consists of the objective function plus a collision avoidance
constraint for each pair i, j multiplied by a dual vector yij ≥ 0. This constraint comes from
the fact that the collision avoidance constraints are inequality constraints. A separate dual
vector is introduced for each spacecraft pair i, j. In contrast to the coupled convex trajectory
optimization problem as given in (2-14) the Lagrangian in combination with the two separable
constraints results in a decoupled problem: each spacecraft in the formation can minimize its

Master of Science Thesis Floris van Dam

32 Dual Methods

own part separately.

L(u, y) = 1
2

N∑
i=1

UTi Ui +
N−1∑
i=1

∑
j>i

yTij
[
Aij(Uj − Ui)−Bij)

]
=

N∑
i=1

[1
2U

T
i Ui −

∑
j>i

yTij(AijUi +Bij) +
∑
j<i

yTjiAjiUi
]

=
N∑
i=1

Li(ui, y)

(4-1)

In dual decomposition, minimizing the Lagrangian over u is alternated with maximizing the
dual problem over y. This dual problem is defined as follows:

max
y≥0

min
u

L(u, y) (4-2)

Maximization over y can be done using a subgradient method as residual vector rij = Aij(Uj−
Ui) − Bij is a subgradient of the Lagrangian with respect to yij . This residual vector is a
measure for the collision avoidance constraint violation of spacecraft pair i, j which means
that an element of yij is increased when the corresponding element of rij is positive, and
decreased or kept zero otherwise. The dual vector thus acts as a price on violating the
collision avoidance constraint which increases more for larger constraint violations. The dual
vector is updated as follows, where k is the iteration number of the dual algorithm and ρ is
the dual update stepsize:

yij,k+1 = yij,k + ρrij,k (4-3)

The dual decomposition algorithm is given in Algorithm 3. Here [.]+ denotes the projection
operator to R+. We assume that there exists a finite vector U for which strict collision
avoidance constraints are satisfied. With this assumption in combination with the fact that
f(u) is convex, Slater’s condition is satisfied and there is no duality gap, which means that
the solution to the dual decomposition algorithm equals the centralized solution.

Algorithm 3 Dual decomposition algorithm
1: Initialize y1 = 0, k = 0, Aij , Bij , ∀i, j
2: repeat
3: k ← k + 1
4: Update Ui in parallel:
5: for i = 1, . . . , N do
6: Ui,k ← argmin

Ui

Li(ui, yk) s.t. Ui ∈ Ui

7: for all i, j do
8: rij,k ← Aij(Uj − Ui)−Bij
9: yij,k+1 ← [yij,k + ρrij,k]+

10: until [rij,k]+ ∈ ∅ ∀i, j

As discussed, minimizing the Lagrangian over u can be solved separately by each spacecraft.
However, the subgradients have to be aggregated in order to update the dual vector, a task

Floris van Dam Master of Science Thesis

4-1 Dual Decomposition 33

for which some sort of coordination is required. As each spacecraft pair has its own dual
vector, these dual vectors can be updated in a distributed way as well if all spacecraft share
their updated control acceleration vectors with each other. A specific communication scheme
has to be introduced in order to make sure that all dual vectors are updated accurately.

As dual methods are iterative algorithms, a measure for the convergence is needed. Two
residuals are introduced for this goal. The first one is the primal residual which is defined
to be the maximum violation of the collision avoidance constraint, i.e. the maximum of
vectors rij ∀i, j. The second residual is the control vector residual which will be called the
dual residual. This residual measures the maximum change of an element of the control
acceleration vectors. Both residuals are defined in (4-4). Note that the standard definition
of the dual residual is defined for the case when N = 2; the dual residual then only contains
the second agent (in this case U2). This is adjusted as in this research N ≥ 2 and all agents
are equally important.

prk = max {prij,k, ∀i, j}
= max{max {[Aij(Uj,k − Ui,k)−Bij]+}, ∀i, j}

drk = max {‖Ui,k − Ui,k−1‖∞, ∀i, j}
(4-4)

For real-time implementation, these residuals can be used as stopping criteria. As the collision
avoidance constraint has units km2/s2, a bound of pr ≤ 1× 10−6 corresponds to a maximum
violation of the collision avoidance constraint of 1 meter. The optimal control acceleration
vector typically consists of accelerations of the order O(1×10−7) in units km/s2. To make sure
a dual algorithm is converged, a bound can be selected of dr ≤ 1× 10−11, which corresponds
to a changes only from the fifth nonzero element of the control acceleration vector on. In
the simulations in this thesis these stopping criteria are usually not activated, as the entire
convergence of the algorithms provides useful insights for the comparison of the algorithms.

As the Lagrangian and control acceleration vectors reach their solution asymptotically, they
will be plotted on logarithmic scale as |L∗ − Lk|/L∗ and |∆V̄ ∗ − ∆V̄k|/∆V̄ ∗, where ∆V̄ ∗
denotes the solution obtained with the centralized algorithm, and ∆V̄k denotes the solution
of the dual algorithm at iteration number k.

4-1-1 Selecting an appropriate stepsize

In [25], the standard rules for selecting stepsize ρ are given for subgradient methods, together
with a convergence proof. It is shown that a subgradient method converges as follows when
y0 = 0:

Lbest
k − L∗ = ‖y

∗‖22 +
∑k
i=1 ρ

2
i ‖ri‖22

2
∑k
i=1 ρi

(4-5)

Here y∗ denotes the optimal dual vector. If ρ is chosen to be square summable but not
summable as shown in (4-6), the algorithm converges; i.e. Lbest

k → L∗ for k →∞.

∞∑
k=1

ρk =∞,
∞∑
k=1

ρ2
k <∞ (4-6)

Master of Science Thesis Floris van Dam

34 Dual Methods

A simulation of dual decomposition with such diminishing stepsize, specifically ρ = 5×10−5

k , is
shown in the blue line in Figure 4-1. On logarithmic scale, the plot remains almost constant;
it is clear that it will take many more than 2000 iterations before the stopping criteria of
pr ≤ 1× 10−6 is met.

For constant ρ, it is shown in [25] that a subgradient method converges as follows:

Lbest
k − L∗ = ‖y

∗‖22 + ρ2∑k
i=1‖ri‖22

2kρ (4-7)

This shows that in case ‖ri‖2 remains the same order of magnitude, say ‖rk‖2 ≤ S, ∀k would
be an appropriate approximation, then if k →∞ a residual of S

2ρ
2 remains.

As the dual variable y is initialized to be zero, the first iteration of dual decomposition does
not take the collision avoidance constraint into account, and the solution is likely to be far
off the optimal solution. When the algorithm is nearly converged, very detailed dual update
steps have to be taken in order to reach the optimal solution with high accuracy. Therefore
it makes sense to choose a stepsize which starts large but diminishes over the iterations.

However, the red line of Figure 4-1, which represents the same simulation but now with
constant ρ = 3 × 10−5, shows that the algorithm converges at a much higher rate than the
algorithm with diminishing ρ, to pr ≈ 1×10−15 in approximately 3300 iterations. This shows
that for this specific problem, a constant stepsize ρ is actually better suited than a diminishing
stepsize.

0 500 1000 1500 2000 2500 3000 3500
10-20

10-15

10-10

10-5

100

k
m

2
/s

2

Primal residual

Diminishing stepsize

Constant stepsize

0 500 1000 1500 2000 2500 3000 3500

10-20

10-15

10-10

k
m

/s
2

Dual residual

0 500 1000 1500 2000 2500 3000 3500

Iteration count

10-15

10-10

10-5

100

0 500 1000 1500 2000 2500 3000 3500

Iteration count

10-15

10-10

10-5

100

Figure 4-1: Dual decomposition with diminishing stepsize ρ = 5×10−5

k versus constant stepsize
ρ = 3× 10−5.

The fact that the algorithm still converges despite the constant stepsize can be explained
by looking into the dual decomposition algorithm in more detail. Some authors discuss the
convergence of dual decomposition with constant stepsize. For example in [40] Boyd et al.
comment that a constant stepsize results in convergence if the dual function is differentiable,

Floris van Dam Master of Science Thesis

4-1 Dual Decomposition 35

but no further details are discussed. In [41], Nedic et al. develop convergence proofs and
bounds for dual decomposition with constant stepsize, but their results are based on the
average optimization variable (the control acceleration vector averaged over the iterations)
instead of the latest optimization variable. To understand exactly what happens in dual
decomposition for solving the collision free trajectory problem, this thesis discusses the topic
in more detail with a focus on the value of the Lagrangian function over the iterations.
Although it is likely that such discussion can be found in literature, a thorough search did
not yield any similar discussion yet.

First, a shorter notation of the Lagrangian is introduced. An example of the shorter notation
of the collision avoidance constraint residuals for four spacecraft is given as follows:

r =

r12
r13
r14
r23
r24
r34

=

−A12 A12 0 0
−A13 0 A13 0
−A14 0 0 A14

0 −A23 A23 0
0 −A24 0 A24
0 0 −A34 A34

U12
U13
U14
U23
U24
U34

−

B12
B13
B14
B23
B24
B34

(4-8)

The acceleration vectors and dual variable vectors are all stacked in one large vector as follows:

U = [UT1 , . . . , UTi , . . . , UTN]T

y = [yT12, y
T
13, . . . , y

T
N−1,N]T

(4-9)

Now we can define the collision avoidance constraint residual for two spacecraft as follows:

rij =
[
[Fij]1, . . . , [Fij]N

]
U −Bij (4-10)

with
[Fij]j = Aij , [Fij]i = −Aij ,

[Fij]{1,...,N}\{i,j} = 0
(4-11)

These residuals can be stacked in block rows using a separate block row for each spacecraft
pair: F =

[
[F12]T , [F13]T , . . . , [FN−1,N]T

]T
. The Bij matrices can also be stacked as follows:

B = [BT
12, B

T
13, . . . , B

T
N−1,N]T . Now all residual vectors can be included in the following total

residual vector:
r = FU −B (4-12)

This results in a shortened notation of the Lagrangian given in (4-1):

L(u, y) = 1
2U

TU + yT (FU −B)

= f(u) + yT r
(4-13)

Now the dual decomposition algorithm can be discussed in more detail. Two parameters are
important for this: the function value f(u) =

∑N
i U

T
i Ui and its relation to residual vector

r, and the change in value of the Lagrangian function ∆Lk = Lk+1 − Lk. As y0 = 0, both
parameters f(u0) and L(u0, y0) start below their optimal values, and thus have to increase. Let

Master of Science Thesis Floris van Dam

36 Dual Methods

us look first at ∆Lk in detail. The dual decomposition algorithm consists of two optimization
steps per iteration: the subgradient step which updates y to maximize the Lagrangian, and
the control acceleration vector update which minimizes the Lagrangian. This is shown in
(4-14). Note that the > and < signs are used, instead of ≥ and ≤. This is valid except for
the case when the algorithm is converged, but then the stopping criteria are met anyway.

L(uk, yk+1) > L(uk, yk) → f(uk) + yTk+1rk > f(uk) + yTk rk

L(uk+1, yk+1) < L(uk, yk+1) → f(uk+1) + yTk+1rk+1 < f(uk) + yTk+1rk
(4-14)

Furthermore, as uk minimizes L(u, yk) and f(u) is strictly convex:

L(uk+1, yk) > L(uk, yk)→ f(uk+1) + yTk rk+1 > f(uk) + yTk rk (4-15)

The change in value of the Lagrangian, ∆L, can thus be expressed as the maximization step
plus the minimization step.

∆Lk = L(uk+1, yk+1)−L(uk, yk) =
(
L(uk, yk+1)−L(uk, yk)

)
+
(
L(uk+1, yk+1)−L(uk, yk+1)

)
(4-16)

In order to obtain an exact expression for this term, let us look at those two terms separately.
The maximization step can be characterised as follows:

L(uk, yk+1)− L(uk, yk) = f(uk) + yTk+1rk − (f(uk) + yTk rk)
= (yTk+1 − yTk)rk

(4-17)

For the characterization of the minimization step, the relation in (4-15) is used:

f(uk+1)− f(uk) > yTk (rk − rk+1) (4-18)

Then, an expression for the minimization step can be obtained, using above result.

L(uk+1, yk+1)− L(uk, yk+1) = f(uk+1) + yTk+1rk+1 − f(uk)− yTk+1rk

= f(uk+1)− f(uk)− yTk+1(rk − rk+1)
> −(yTk+1 − yTk)(rk − rk+1)

−(yTk+1 − yTk)(rk − rk+1) < L(uk+1, yk+1)− L(uk, yk+1) < 0

(4-19)

By summing (4-17) and (4-19) an expression is obtained for ∆L:

∆Lk > (yTk+1 − yTk)rk − (yTk+1 − yTk)(rk − rk+1) = (yTk+1 − yTk)rk+1 (4-20)

From the first relation in (4-14) we know that (yTk+1 − yTk)rk > 0. Furthermore, as yk+1 =
[yk + ρrk]+, if ρk → 0, yk+1 → yk and resulting from this, rk+1 → rk. Concluding, ρ can
always be chosen small enough to make sure that ∆Lk > 0 (except when the algorithm is
converged).

What is important to notice is that the y-update increases the Lagrangian function value only
by increasing the yT r term in L = f(u)+yT r. Over the iterations, the minimization step thus

Floris van Dam Master of Science Thesis

4-1 Dual Decomposition 37

shifts the weight from minimizing f(u), which is the dominant factor in the first iterations, to
minimizing yT r, which becomes dominant when the algorithm approaches convergence. This
has the consequence that f(u) becomes larger over the iterations. Now, if f(uk+1) > f(uk),
all values of the residual vector corresponding to the positive elements in yk+1 will decrease,
as is demonstrated using the second relation in (4-14):

f(uk+1)− f(uk) < yTk+1(rk − rk+1)
if f(uk+1)− f(uk) > 0

then yTk+1(rk − rk+1) > 0
(4-21)

As all nonzero elements of vector yk+1 are mapped to zero due to the presence of only
inequality constraints, the only way the last line of (4-21) is satisfied is when all elements of
r corresponding to the positive elements of yk+1 decrease. Consequentially, as r equals the
subgradient of y, the rate at which the dual vector increases will decrease for the elements of
r which are greater than zero (the elements which violate the collision avoidance constraint).
Then the same argument applies as before; if yk+2 → yk+1, also rk+2 → rk+1, which means
that the constant stepsize ρ likely still results in ∆L > 0.

The only moment when f(uk+1) can become smaller than f(uk) is when elements in dual vec-
tor y become too large, causing overshoot in both f(u) and Lagrangian function L. Therefore
it is important to have graceful convergence towards f(u∗) and L(u∗, y∗).

Looking back at the residual defined in [21] for constant stepsize ρ given in (4-7), we see
that the approximation ‖rk‖2 ≤ S ∀ k is too conservative for this problem: instead of an
approximately constant rk this value decreases over the iterations, i.e.

∑k
i=1‖ri‖22 < ∞,

which has the effect that the residual ρ
∑k

i=1‖ri‖
2
2

2k → 0 for k →∞ also for constant stepsize ρ.

Convergence of the Lagrangian

In Figure 4-2 the consequence of a too large stepsize ρ can be seen. For ρ = 3 × 10−5,
∆L is always greater than zero which means that both the peaks and the valleys of the
plot (corresponding to the Lagrangian function value after the y-update and the u-update
respectively) increase monotonically. For ρ = 5×10−5, already in the third iteration (counter
5 to 7) ∆L < 0, resulting in divergence of the algorithm. In Figure 4-3 it can be seen why
the algorithm diverges for too large stepsize ρ. In iteration 6, the spacecraft pair 1-2 does not
satisfy the collision constraint around sampling instance 5. Then, as ρ is chosen too large,
some elements of dual vector y are increased too much. This causes the relative distance
plot at iteration 7 to be almost opposite of the plot at iteration 6: spacecraft pair 1-2 is now
collision-free around sampling instance 5, but some pairs which were safe before are pushed
below the Rcol bound. This means that the solutions are oscillating, preventing the algorithm
from converging properly.

It is interesting to see that the Lagrangian value in Figure 4-1 starts to oscillate already around
iteration 1750, whereas the primal residual continues to converges until iteration 3300. This
can be explained by zooming in on the Lagrangian value over the iterations, as is shown
in Figure 4-4. In the first iterations, the u-update decreases the Lagrangian value. When
the algorithm approaches the optimal solution, the u-update cannot always minimize the

Master of Science Thesis Floris van Dam

38 Dual Methods

Lagrangian anymore, probably due to the limited numerical accuracy of the convex solver.
What is important to notice however, is that the y-update is still increasing yT r, and thus
the weight is still shifting from minimizing f(u) to minimizing yT r. Therefore, despite the
Lagrangian oscillating already from around iteration 1700, the primal residual and ∆V̄ are
still converging until iteration 3300.

1 2 3 4 5 6 7 8 9

Counter (2 counts per iteration)

1.9

2

2.1

2.2

2.3

2.4

10-7 All changes in Lagrangian function value

Figure 4-2: Lagrangian function value in stable versus unstable dual decomposition.

Floris van Dam Master of Science Thesis

4-1 Dual Decomposition 39

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

S
e

p
a

ra
ti
o

n
 d

is
ta

n
c
e

 [
k
m

]

Relative distances between the spaceraft, iteration 6

0 5 10 15 20 25

Sampling instance

0

0.2

0.4

0.6

0.8

S
e

p
a

ra
ti
o

n
 d

is
ta

n
c
e

 [
k
m

]

Relative distances between the spaceraft, iteration 7

Figure 4-3: Unstable dual decomposition, relative distances between spacecraft pairs in iteration
6 versus iteration 7.

1510 1515 1520 1525 1530 1535

Change in Lagrangian count

8.6

8.8

9

9.2

9.4

9.6

9.8

M
a
g
n
it
u
d
e
 o

f
L
a
g
ra

n
g
ia

n

10
-7

(a) Before convergence |L∗ − Lk| decreases after
the y-update and increases after the u-update.

2885 2890 2895 2900 2905 2910

Change in Lagrangian count

4

4.2

4.4

4.6

4.8

5

M
a
g
n
it
u
d
e
 o

f
L
a
g
ra

n
g
ia

n

10
-13

(b) Close to convergence |L∗ − Lk| decreases after
the y-update but sometimes also decreases after the
u-update.

Figure 4-4: Two instances of the scaled Lagrangian function value over the iterations. This
function value changes twice per iteration: after the u-update and after the y-update. Close to
convergence, the u-update in which the Lagrangian should be minimized does not always decrease
the Lagrangian function value.

Master of Science Thesis Floris van Dam

40 Dual Methods

4-2 Augmented Lagrangian Methods

There are multiple methods to increase the convergence rate of dual decomposition based
on ADMM. In ADMM instead of the Lagrangian the augmented Lagrangian is used, which
includes an extra 2-norm of the included constraint. This can thus be seen as a robust version
of dual decomposition. When the problem consists of more than two agents, a popular choice
is to solve the problem with Consensus ADMM. This will be introduced first. Another way to
solve such problem with more than two agents is the direct extension of ADMM. In general
such algorithm is called an ALM. Both the Gauss-Seidel decomposition and the Jacobian
decomposition of ALM are discussed as well, followed by a comparison of their convergence
characteristics.

4-2-1 Alternating Direction Method of Multipliers in Consensus Form

If a problem consists of more than two agents, typically the consensus form of ADMM is
used. In this form, consensus variables are introduced to decouple the problem [21]. Many
authors have used such method to solve the collision free trajectory optimization problem [18,
19, 20, 42, 43]. It is based on the following idea. All agents calculate (approximate) solutions
for (a subset of) the other agents. Using these estimations, local versions of the collision
avoidance constraint can be defined. ADMM is then used to obtain consensus between the
estimations and the actual optimization variables. The various papers differ in their exact
implementation of this idea: it is still possible to choose exactly which variables are local and
which are global, when and what information is shared and how each minimization problem
is defined. One possibility is for example to let each agent estimate solutions for all agents,
and to introduce a global consensus variable which is the average of the estimated solutions
of the spacecraft [21].
As the specific problem setup by [20] can be clearly interpreted as a relaxed implementation
of the centralized problem, this setup is recreated in this research. The problem which is
solved using this implementation of Consensus ADMM is given in (4-22).

min
Ui, Wi, Wj,i ∀i,j

1
2

N∑
i=1

UTi Ui

subject to Ui ∈ Ui, ∀i
Aij(Wi,j −Wi)−Bij ≤ 0, ∀ i, j
Ui = Wi = Wj,i, ∀i, j

(4-22)

Each agent makes a local copy of its own control vector which it denotes with Wi and con-
structs an estimation of the control vectors of the other spacecraft in its neighborhood,
Wi,j , ∀j ∈ Ni. One spacecraft can now minimize its own control vector, while using the
estimations of the trajectories in the collision avoidance constraints. If the last equality con-
straint of (4-22) is satisfied, the problem equals the convex problem given in (2-14). However,
in Consensus ADMM this last equality constraint is included in the augmented Lagrangian,
which means that the constraint will only be satisfied for k →∞.
The distributed Consensus ADMM algorithm is given for one spacecraft i in Algorithm 4,
where h(Wi,Wi,j) = Aij(Wi,j−Wi)−Bij is the collision avoidance constraint on the consensus

Floris van Dam Master of Science Thesis

4-2 Augmented Lagrangian Methods 41

variable vectors Wi, Wi,j . It works as follows. The control vector Ui has to satisfy both
separable constraints Ui ∈ Ui, but neglects the collision avoidance constraint. In its update,
it has to obtain consensus with both Wi (the collision free estimation made by spacecraft
i itself) and Wj,i (the collision free estimation of Ui made by spacecraft j). Consensus is
obtained through the dual vectors yi and yj,i. In the next step, the consensus variables are
updated. Vectors Wi and Wi,j can neglect the separable constraints in their update, but have
to be collision free. Consensus vector Wi has to obtain consensus with Ui using dual vector
yi, and the estimations Wi,j have to obtain consensus with Uj using vector yi,j,k.

It is shown in e.g. [20] that both consensus is achieved and an objective is minimized in a finite
number of iterations. An advantage of this method is that each agent can update its control
vector Ui in parallel. As all spacecraft construct a separate dual vector for each estimated
control vector Wi,j , i.e. each Wi,j has its own dual vector yi,j , all spacecraft can update the
dual vectors on their own in parallel and share them afterwards. Consensus ADMM is thus
a fully distributed algorithm; all tasks are distributed over the entire formation.

As mentioned, this algorithm can be interpreted as a relaxed implementation of the central-
ized problem. Using this relaxation, the algorithm becomes a scalable alternative for larger
formations. In step 3 of Algorithm 4, each spacecraft calculates its control vector without tak-
ing the collision avoidance constraint into account. In step 5 of Algorithm 4 essentially each
spacecraft solves the entire centralized problem, but without the two separable constraints,
i.e. the final configuration and maximum acceleration constraints. This largely simplifies
the centralized problem. By dividing the constraints over two problems, both step 3 and
step 5 become relatively computationally cheap, while the dual variable enforces consensus.
ADMM reaches a modest accuracy relatively fast, but is known to converge very slowly to
high accuracy [21]. In the following simulations it will be shown that this is indeed true for
Consensus ADMM.

Algorithm 4 Consensus ADMM for spacecraft i
1: Initialize W0 = 0, y1 = 0, k = 0, Aij , Bij , ∀j
2: repeat
3: k ← k + 1
4: Update Ui,k ∀i = 1, . . . , N

Ui,k ← arg min
Ui

1
2U

T
i Ui + ρ

2‖Ui −Wi,k−1 + yi,k
ρ ‖

2 +
∑
j∈Ni

ρ
2‖Ui −Wj,i,k−1 + yj,i,k

ρ ‖
2

s.t. Ui ∈ Ui
5: Share Ui and receive Uj of neighbors j ∈ Ni
6: Update Wi, {Wi,j}j∈Ni ∀i = 1, . . . , N

Wi,k, {Wi,j,k}j∈Ni ← arg min
Wi,{Wi,j}j∈Ni

ρ
2‖Ui,k−Wi+

yi,k
ρ ‖

2 +
∑
j∈Ni

ρ
2‖Uj,k−Wi,j + yi,j,k

ρ ‖
2

s.t. Aij(Wi,j −Wi)−Bij ≤ 0, ∀j ∈ Ni
7: Update yi, {yi,j}j∈Ni ∀i = 1, . . . , N

yi,k+1 ← yi,k + ρ(Ui,k −Wi,k)
yi,j,k+1 ← yi,j,k + ρ(Uj,k −Wi,j,k) ∀j ∈ N

8: Share yi,k+1, yi,j,k+1, receive yj,k+1, yj,i,k+1 from neighbors j ∈ Ni
9: until Stopping criteria are met

Master of Science Thesis Floris van Dam

42 Dual Methods

Consensus ADMM Simulations

Three simulations of Consensus ADMM with varying stepsizes are shown in Figure 4-5. For a
relatively small stepsize, ρ = 3, monotonous convergence of primal residual, Lagrangian and
u can be seen. When ρ is increased slightly, the convergence rate is increased. This however
comes at the cost of oscillations in the Lagrangian value, and consequently also oscillations in
∆V̄ and the primal and dual residuals. Increasing ρ even more decreases the convergence rate
again, as the oscillations become too large. Interesting to see is that ‖U −W‖2, a measure
for the consensus convergence, has to have an accuracy of approximately 1 × 10−10 in order
to obtain a trajectory with pr < 1× 10−6.

Now that the convergence characteristics of Consensus ADMM are more clear, the algorithm
can be compared to the Augmented Lagrangian methods. First, these algorithms will be
explained in the next sections.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration count

10
-20

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 500 1000 1500 2000

Iteration count

10
-10

10
-5

10
0

0 500 1000 1500 2000
10

-20

10
-15

10
-10

10
-5

10
0

0 500 1000 1500 2000

10
-20

10
-15

10
-10

k
m

/s
2

Dual residual

0 500 1000 1500 2000

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 4-5: Consensus ADMM for 4 spacecraft with different stepsizes ρ.

4-2-2 Gauss-Seidel Decomposition of Augmented Lagrangian Method

Another method to solve the collision-free trajectory problem in a distributed way is to
extend regular ADMM from two to N separable convex functions. The augmented Lagrangian
then includes the collision avoidance constraint directly again, both in affine and quadratic
expressions. Due to these quadratic expressions the problem is not decoupled anymore. A
solution is to update the control acceleration vectors sequentially, using the most recent control
vectors of the other spacecraft in the quadratic expression. This is called the GS-ALM. This
means that a spacecraft receives a vector with the most recent control vectors of all spacecraft,
updates its own part of this vector and shares the entire vector with the next spacecraft. The
last spacecraft in the sequence first updates its part of the total control vector and then
updates the dual vector. It shares both vectors again with the first spacecraft of the sequence

Floris van Dam Master of Science Thesis

4-2 Augmented Lagrangian Methods 43

for the next iteration. This algorithm is again distributed, although the updating sequence
has to be known to all spacecraft. A simple choice is Round Robin [44], which is also used in
the GS-ALM simulations in this research.

The augmented Lagrangian for GS-ALM is shown in (4-23), where s is a slack variable vector
which models the projection operator [−]+: only positive elements should contribute in this
two-norm. The augmented Lagrangian method with Gauss-Seidel decomposition is given
in Algorithm 5. When N > 2, convergence of the algorithm is not guaranteed anymore,
although the algorithm performs well in numerical simulations [45]. When the dual update
is combined with a correction step based on dual variables at the previous iterate, i.e. a
relaxation step, convergence can be guaranteed again [22]. In this research the algorithm
is implemented without the relaxation step, as also for this specific problem the algorithm
indeed converges properly. The fact that the control vectors are updated sequentially could
lead to large waiting times for larger formations.

LA(u, y, s) =
N∑
i=1

1
2 UTi Ui + ρ

2

N−1∑
i=1

∑
j>i

∥∥∥∥Aij(Uj − Ui)−Bij + sij + yij
ρ

∥∥∥∥2

2
(4-23)

Algorithm 5 Augmented Lagrangian method with Gauss-Seidel update scheme
1: Initialize U0 = 0, y1 = 0, k = 0, Aij , Bij , ∀i, j
2: repeat
3: k ← k + 1
4: Update Ui sequentially:
5: for i = 1, . . . , N do
6: Receive vector UT = [UT1,k, . . . , UTi−1,kU

T
i,k−1, U

T
i+1,k−1, . . . , U

T
N,k−1]T

7: Ui,k ← arg min
Ui

LA,i(U, yk, s)

s.t. Ui ∈ Ui
s ≥ 0

8: Update Ui,k in U and share U with neighbor i+ 1
9: Agent N updates yij ∀i, j

yij,k+1 ← [yij,k + ρ(Aij(Uj,k − Ui,k)−Bij)]+
Shares yk+1 with agent 1

10: until Stopping criteria are met

GS-ALM Simulations

In contrast with dual decomposition, GS-ALM can converge with arbitrary stepsize ρ, as long
as the solver is able to accurately solve the constrained minimization problem. The challenge is
thus not to find the largest stable stepsize, but the one which results in the highest convergence
rate. This is demonstrated in Figure 4-6, where the convergence is shown for different values
of ρ. If the stepsize is chosen too small, the dual vector adjusts very slowly, and GS-ALM has
similar convergence characteristics as dual decomposition: it monotonically increases f(u)
until f(u) = f(u∗). If it is chosen too large, something interesting happens: the primal and
dual residuals start to decrease quickly, but after a breaking point the convergence rate drops.

Master of Science Thesis Floris van Dam

44 Dual Methods

In the next section it will be explored why this would happen. Stepsize ρ = 7×10−4 seems to
result in largest convergence rate with a monotonic decrease of the primal and dual residuals.

0 50 100 150 200 250
10

-20

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 50 100 150 200 250
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

0 50 100 150 200 250

Iteration count

10
-10

10
-5

10
0

0 50 100 150 200 250

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 4-6: Convergence of GS-ALM with 4 spacecraft for different stepsizes ρ.

Choosing the GS-ALM Stepsize Too Large

In Figure 4-6 the plot corresponding to ρ = 5 × 10−3 behaves in an unexpected way: in
the first few iterations it converges with a high rate, but after a breaking point, in this case
around iteration 30, the convergence rate drops. The breaking point can be explained by
looking at top plot in Figure 4-7, which shows all the positive elements of the residual vector
for the simulation with ρ = 5 × 10−3. The primal residual is defined to be the maximum of
this plot. As can be seen, at iteration 7 and 28 different elements become largest, explaining
the sudden changes in convergence rate of the primal residual plot. This in contrast to the
lower plot in Figure 4-7, which shows the positive residuals for ρ = 7× 10−4, which decrease
monotonically.

The fact that the convergence rate decreases also on the logarithmic scale has to do with
the minimization of LA. The residual r depends on the balance between minimizing the left
hand side of LA, i.e. ∆V̄ , and minimizing the right hand side, i.e. the residual multiplied
by the dual vector. If ρ is selected small enough, the dual vector updates only slowly and
this balance shifts gradually. As ∆V̄ approaches ∆V̄ ∗ from below, updates in the dual vector
have a relatively large weight. The result is a monotonically increasing left hand side and
a monotonically decreasing right hand side. If ρ is chosen too large however, the dual is
updated with larger steps which results in overshoot. The left hand side of LA now becomes
too large. The dual update compensates for this, but as ∆V̄ approaches ∆V̄ ∗ from above, the
updates in the dual vector have a relatively small weight. This results in slower adjustment
and a lower convergence rate. In Figure 4-8 it is demonstrated that for ρ = 5 × 10−3, ∆V̄k

Floris van Dam Master of Science Thesis

4-2 Augmented Lagrangian Methods 45

overshoots and then approaches ∆V̄ ∗ from above. Note that in iteration 15 ∆V̄ is already
relatively close to ∆V̄ ∗. The plot with ρ = 7 × 10−4 on the other hand approaches ∆V̄ ∗
from below at a much lower rate. A large stepsize thus results in modest accuracy relatively
fast, but when it overshoots the convergence rate drops resulting in slow convergence to high
accuracy.

Another way to show that the stepsize is chosen too large is by adjusting the algorithm
slightly: instead of always minimizing the control acceleration vectors in the same sequential
order (from spacecraft 1 to 4), the order can also be randomized. The result of this is
shown in Figure 4-9. For ρ = 5 × 10−3, the spacecraft which is first in the update sequence
always overcompensates, resulting in an inaccurate dual vector update and oscillations in the
residuals and Lagrangian. If the stepsize is chosen small enough, also the first spacecraft
updates properly, resulting in accurate dual updates, less oscillations and faster convergence.

Although GS-ALM shows good convergence properties, the sequential updates of the control
vectors result in large waiting times for individual spacecraft. Especially in larger formations
the time required to run the algorithm one iteration will increase as all spacecraft have to
wait for each other. This can be solved by using a Jacobian decomposition instead of the
Gauss-Seidel decomposition, as will be explained in the next section.

0 50 100 150
10

-15

10
-10

10
-5

10
0

k
m

2
/s

2

0 50 100 150

Iteration counter

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Figure 4-7: Convergence of all residual elements: most of them are negative and thus collision-
free, only few are positive. Top figure: when ρ is chosen too large, different residual elements
become largest over the iterations. Lower figure: when ρ is chosen small enough, the largest
residual element converges almost monotonically.

Master of Science Thesis Floris van Dam

46 Dual Methods

15 17 19 21 23 25 27 29 31 33 35

0.5261

0.52611

0.52612

0.52613

0.52614

m
/s

15 17 19 21 23 25 27 29

Iteration count

0.51

0.515

0.52

0.525

Figure 4-8: The average required velocity change over the iterations for ρ = 5 × 10−3 versus
ρ = 7× 10−4. Note the y-scales: the top figure is much closer to ∆V̄ ∗ than the lower figure.

0 50 100 150

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual, Randomized GS-ALM

0 50 100 150
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

0 50 100 150

Iteration count

10
-15

10
-10

10
-5

10
0

0 50 100 150

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 4-9: Convergence of GS-ALM: 4 spacecraft with random spacecraft update order. The
properly chosen stepsize still results in convergence, whereas the stepsize chosen too large results
in oscillations due to overcompensation of the spacecraft which updates first.

Floris van Dam Master of Science Thesis

4-2 Augmented Lagrangian Methods 47

4-2-3 Jacobian Decomposition of Augmented Lagrangian Method

In the Jacobian decomposition algorithm, all spacecraft update their control vectors in par-
allel, instead of the sequential Gauss-Seidel decomposition. This algorithm then requires a
master node to update the dual variable. There are ways to distribute this task as well. As
the coupled collision avoidance constraint, and thus also the corresponding dual vector, is de-
fined for spacecraft pairs, it is possible to let one of the two spacecraft in each pair update the
dual vector. Next to this, each spacecraft should share its latest obtained control acceleration
vector with all other spacecraft. With these modifications, again all tasks are distributed over
the formation. Such distribution scheme is demonstrated for example in [17]. The J-ALM
algorithm is given in Algorithm 6.

When ALM is altered using the Jacobi scheme, the standard convergence proofs do not
hold anymore, even for N = 2 [16]. To guarantee convergence again, a relaxation step is
introduced [16]. Instead of using the output of one dual iteration directly as the input for
the next iteration, the output is combined with a relaxation step, as is shown in step 10
of Algorithm 6. In [16] it is shown that an appropriately chosen relaxation parameter can
ensure strict contraction of the iterations. It is proven that J-ALM will converge if relaxation
parameter ν is chosen to be ν ∈ (0, 2(1−

√
N
N+1)), which means for N = 4 that ν ∈ (0, 0.2111).

This result was however obtained for a problem with coupling in only equality constraints. It
is likely that with inequality instead of equality constraints in the Lagrangian this relaxation
parameter can be chosen less conservative, just like the stepsize in dual decomposition as
discussed in Section 4-1-1.

Algorithm 6 Augmented Lagrangian method with Jacobi update scheme
1: Initialize U0 = 0, y1 = 0, k = 0, Aij , Bij , ∀i, j
2: repeat
3: k ← k + 1
4: Central agent shares Uk−1 and yk with all spacecraft i = 1, . . . , N
5: Update Ui in parallel
6: for i = 1, . . . , N do
7: Receive vector UT = [UT1,k−1, . . . , U

T
i−1,k−1U

T
i,k−1, U

T
i+1,k−1, . . . , U

T
N,k−1]T

8: Ûi,k ← arg min
Ui

LA,i(U, yk, s)

s.t. Ui ∈ Ui
s ≥ 0

9: Return Ûi,k to central agent
10: Central agent updates yij ∀i = 1, . . . , N − 1, j > i and U

ŷij,k+1 ← yij,k + ρ(Aij(Ûj,k − Ûi,k)−Bij)
yij,k+1 ← [yij,k − ν(yij,k − ŷij,k+1)]+
Uk ← Uk−1 − ν(Uk−1 − Ûk)

11: until Stopping criteria are met

Master of Science Thesis Floris van Dam

48 Dual Methods

J-ALM Simulations

Again the algorithm is simulated with varying stepsizes and relaxation parameters. The result
is shown in Figure 4-10. For relatively large ρ = 3 × 10−3 and ν = 0.5 convergence is again
fast to modest accuracy, but slower afterwards. The stepsize which was optimal for GS-ALM,
ρ = 7×10−4, now results in overshoot in the Lagrangian and a jump of the primal residual to
zero between iteration 150 and 225. Decreasing ρ even further with ν = 0.5 results in linear
convergence, but at a slower rate. In the fourth and fifth lines of Figure 4-10 the influence of
relaxation parameter ν is demonstrated: for ρ = 4×10−4 and ν = 0.5 the algorithm converges
linearly, but for ν = 0.7 the algorithm starts to oscillate as the subgradients obtained in a
parallel way are not entirely accurate. Lowering ν to 0.2 results in relatively slow convergence.

0 50 100 150 200 250 300 350

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 50 100 150 200 250 300 350 400
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

0 50 100 150 200 250 300 350 400

Iteration count

10
-15

10
-10

10
-5

10
0

0 50 100 150 200 250 300 350 400

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 4-10: Convergence of J-ALM with 4 spacecraft for different stepsizes ρ and relaxation
parameters ν. The red line with ρ = 7 × 10−4 and ν = 0.5 converges fastest, although the
primal residual is zero between iteration 145 and 235. Decreasing ν to 0.2 results in much slower
convergence, increasing it to 0.7 results in undesired oscillations.

Just like in GS-ALM, choosing ρ too large results in fast convergence to moderate accuracy,
and slow convergence to high accuracy, as is shown in Figure 4-10. However, as in J-ALM
all spacecraft update their control acceleration vector in parallel, it is not just one spacecraft
which overcompensates: all updates are not entirely accurate. This increases the effect on
the convergence rate discussed in Section 4-2-2.

4-2-4 Simulation and Comparison

In the previous sections, already some simulations are shown to give insight in the convergence
characteristics of the algorithms for different parameter values. To make sure that the previous
simulations are a good indication of general convergence characteristics, the three algorithms
are simulated on two more reconfiguration scenarios. The convergence iteration is recorded
at which both residuals met the stopping criteria pr ≤ 1 × 10−6 and dr ≤ 1 × 10−11. For

Floris van Dam Master of Science Thesis

4-2 Augmented Lagrangian Methods 49

all algorithms ρ is tuned to balance rise time and overshoot of the Lagrangian, i.e. fast but
smooth convergence. Three to four different stepsizes ρ have been simulated, the fastest result
is recorded.

The convergence results of the three algorithms averaged over three reconfiguration scenarios
are given in Table 4-1. For different scenarios, all algorithms required new tuning of the
stepsize, a time-consuming process. Although Consenus ADMM requires the lowest compu-
tational time per iteration, both ALM algorithms converge in much less iterations on average.

GS-ALM J-ALM Consensus ADMM
Av. Convergence iter. 36.3 70.7 278

Av. comp time per iter. [s] 3.12 2.47 1.67

Table 4-1: Convergence characteristics for the three different algorithms on 4 spacecraft recon-
figurations averaged over 3 simulations.

The ALM algorithms clearly outperform this specific implementation of the consensus
ADMM algorithm for the generation of collision free trajectories. This difference is likely
due to two reasons. The first reason is that the ALM makes use of an inequality constraint
in the augmented Lagrangian, whereas the Consensus ADMM uses an equality constraint.
Using the inequality constraint, the dual variable has to influence the control vector only at
the parts which are not yet collision free. However, with the equality constraint each element
of the control vector has to be influenced to reach consensus. All dual variables have to be
balanced very accurately, which requires much more iterations. Compare for example Figures
4-5 and 4-6: the consensus ADMM plot has many oscillations in primal and dual residual,
Lagrangian and cost, indicating oscillations in the dual vector as well. GS-ALM has much
less oscillations, with primal and dual residual converging monotonically for properly chosen
stepsize. This also relates to the discussion about dual decomposition with coupling in the
inequality constraints which can converge even with constant stepsize.

The second reason is the required accuracy of the algorithm. The Lagrangian of the ALM
algorithms acts on the collision avoidance constraint directly. If the algorithm reaches a
constraint satisfaction accuracy of 1 × 10−6, this translates directly to the stopping criteria
on pr. However, the Lagrangian of the consensus ADMM algorithm includes the equality
constraints between optimization variables and consensus variables. It only meets the stopping
criteria on pr when consensus is obtained up to a constraint satisfaction accuracy of 1×10−10,
as can be seen in for example Figure 4-5. Consensus ADMM thus has to converge to an
accuracy 4 orders of magnitude higher than the ALM algorithms to meet the stopping criteria.

As the ALM methods can converge more predictable and are able to find a solution with
modest accuracy more quickly than this implementation of the Consensus ADMM, it is con-
cluded that the ALM methods are better suited to solve the collision free trajectory opti-
mization problem. As J-ALM scales better with the size of the formation than GS-ALM
without significant loss of convergence rate, this algorithm seems most promising. Whether
other implementations of Consensus ADMM yield similar performance is a question which
could be looked into in future work.

Master of Science Thesis Floris van Dam

50 Dual Methods

4-3 Asynchronous Algorithm

When using J-ALM to optimize the reconfiguration trajectories, the central node waits for
all spacecraft to return their updated control vectors before the dual vector is updated.
Especially for larger formations where some spacecraft may require more time to update the
control vectors (they could have more neighbors and thus a larger problem for example) or
where a varying communication delay is present, this may again result in long idle times of the
individual spacecraft. Therefore it is interesting to look at an asynchronous implementation
of J-ALM. The asynchronous algorithms for respectively the central node and one agent in the
network are shown in Algorithms 7 and 8. The tasks of the central node can be distributed in
the same way which is discussed for synchronous J-ALM, although now all spacecraft should
hold also the previous control acceleration vectors of neighbors in memory to use in case they
did not yet return the most recent control vector.

Algorithm 7 Central node
1: Initialize U0 = 0, y1 = 0, k = 0, Aij , Bij , ∀i, j
2: repeat
3: k ← k + 1
4: Send all spacecraft i ∈ N the dual vector y, the most recent control sequences Ui ∀ i =

1, . . . , N and a request for an update of Ui
5: Wait for a set W of spacecraft to return their updated control vectors
6: for i = 1, . . . , N do
7: if i ∈ W then
8: Update Ui,k
9: else

10: Ui,k ← Ui,k−1

11: Update subgradients rij,k = Aij(Uj,k − Ui,k)−Bij , ∀i, j
12: Update dual vector and control vectors:

ŷk+1 ← yk + ρrk
yk+1 ← [yk − ν(yk − ŷk+1)]+
Uk ← Uk−1 − ν(Uk−1 − Ûk)

13: Send spacecraft i ∈ W vectors yk+1 and Ui,k ∀ i = 1, . . . , N , request new control
vectors Ui,k+1, ∀i ∈W

14: until Convergence criteria are met

Algorithm 8 Agent
1: Receive y and Ui ∀ i = 1, . . . , N
2: Update Ui
3: Send updated control vector to central node with certain delay

Asynchronous convergence results for incremental gradient methods are obtained before for
large scale distributed optimization in the paper by Aytekin and Johansson [23]. However,
their results require a strongly convex dual problem. Asynchronous dual decomposition is
discussed in [24]. In their proof of the convergence characteristics, explicit solutions of the
minimization of the augmented Lagrangian are required. These are however not available for

Floris van Dam Master of Science Thesis

4-3 Asynchronous Algorithm 51

the collision free trajectory optimization problem. Therefore, proving asynchronous conver-
gence for the trajectory optimization problem is not trivial.

An intuitive approach to implementing J-ALM in an asynchronous way, is to divide a suitable
stepsize for synchronous J-ALM trough the maximum delay present in the asynchronous
setting, Tmax. Here Tmax is defined to be a delay of a certain number of iterations. This
means that the maximum delay is defined relatively to other spacecraft: if Tmax = 5 this
means that in 5 iterations each spacecraft has returned a control vector at least once. If for
small changes in the dual vector the residual changes linearly, the total dual vector update in
the asynchronous algorithm after Tmax iterations with ρ/Tmax would be more accurate than
the update in the synchronous algorithm with ρ in 1 iteration. This is because the control
vector update of the agent with Tmax delay is used Tmax times, and thus has the same effect
on the dual update as one update in the synchronous algorithm, whereas the spacecraft which
update more frequently actually result in more accurate updates of the dual vector than the
synchronous algorithm. If this approach would be valid, then convergence is expected within
Tmax times the convergence iteration of J-ALM; i.e. compare for example with J-ALM (see
Figure 4-10): for Tmax = 5, ρ = 7×10−4

5 = 1.4 × 10−4, convergence would be expected before
iteration 5× 350 = 1750.

This simulation is performed for four spacecraft with a random delay T , Tmax = 5 iterations,
ρ = 1.4 × 10−4, ν = 0.5, and the central node waits for 2 updated control vectors before
it updates the dual vector. In the simulation, each iteration 2 agents are chosen using an
uniform distribution, unless an agent did not update its control vector for four iterations;
then this agent is chosen to return its control vector update in the next iteration. The result
is shown in the blue line in Figure 4-11. The algorithm does converge properly, with only small
oscillations. This indicates that for small changes in the dual vector, we can expect small
changes in the residual as well, and if ρ is small enough than we can still expect convergence
of the asynchronous algorithm. In the first few hundreds of iterations, the dual residual
regularly jumps to O(1× 10−18). This happens when two spacecraft which are both already
collision free return their control vector updates. Those trajectories are not influenced by the
updated dual vector, so they do not change. The case when ρ is not decreased properly is
shown in the red line in Figure 4-11. Here, the stepsize is not divided by the maximum delay,
so ρ = 7× 10−4 and ν = 0.5, for Tmax = 5. It is clear that ρ is too large, the algorithm is not
able to converge further than pr ≈ 1× 10−6.

Finally, in Figure 4-12 it is shown that decreasing ρ proportional to Tmax also works for larger
maximum delays. Here, Tmax = 15, ρ = 7×10−4

15 , ν = 0.5 and the central node waits for 2
control vector updates before it updates the dual vector. Clearly, both the primal residual
and the control acceleration vector converge smoothly again, and convergence is obtained
around iteration 4000, which is smaller than Tmax × 350 = 5250.

Master of Science Thesis Floris van Dam

52 Dual Methods

0 200 400 600 800 1000 1200 1400

10
-15

10
-10

10
-5

k
m

2
/s

2

Primal residual

0 200 400 600 800 1000 1200 1400

10
-20

10
-15

10
-10

k
m

/s
2

Dual residual

0 200 400 600 800 1000 1200 1400

Iteration count

10
-15

10
-10

10
-5

Figure 4-11: Asynchronous J-ALM, waiting for 2 control vector updates per iteration, random
delay with Tmax = 5 and ν = 0.5. The stepsize suitable for synchronous J-ALM results in
oscillations in the asynchronous case, but dividing the stepsize through the maximum delay results
in convergence.

0 500 1000 1500 2000 2500 3000 3500 4000

10
-15

10
-10

10
-5

k
m

2
/s

2

Primal residual

0 500 1000 1500 2000 2500 3000 3500 4000

10
-20

10
-15

10
-10

k
m

/s
2

Dual residual

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration count

10
-15

10
-10

10
-5

Figure 4-12: Asynchronous J-ALM, waiting for 2 control vector updates per iteration, random
delay with Tmax = 15, ρ = (7/15)× 10−4 and ν = 0.5. Also for larger delays convergence can be
obtained when the stepsize is adjusted appropriately.

Floris van Dam Master of Science Thesis

4-4 Summary and Conclusions 53

4-4 Summary and Conclusions

In this chapter various dual algorithms are compared on their convergence rate to solve the
collision free trajectory optimization problem, respectively dual decomposition, Consensus
ADMM, GS-ALM, synchronous J-ALM and asynchronous J-ALM. All algorithms converge
to the same solution as a centralized algorithm. Dual decomposition requires an order of
magnitude more iterations to converge than the ADMM and synchronous ALM methods.
Synchronous GS- and J-ALM also outperformed Consensus ADMM: although they required
more time per iteration they converged in much less iterations. As J-ALM is also better
scalable than GS-ALM due to the parallel instead of sequential update of the gradients, J-
ALM seems most promising to solve the collision-free trajectory optimization problem at this
point.

By simulation it is shown that J-ALM can also converge in an asynchronous setting, when
the stepsize suitable for synchronous J-ALM is divided by the maximum delay. This poten-
tially decreases the time required to solve the problem, as the idle time of spacecraft can be
decreased.

Before the algorithms are simulated in the SCP framework, an effort is made to accelerate
the convergence rates. Various acceleration methods are known to accelerate the conver-
gence of gradient methods. These acceleration methods will be discussed and applied to dual
decomposition, synchronous and asynchronous J-ALM in the next chapter.

Master of Science Thesis Floris van Dam

54 Dual Methods

Floris van Dam Master of Science Thesis

Chapter 5

Accelerated Dual Methods with
Sequential Convex Programming

In this chapter first the acceleration of dual decomposition and the synchronous and asyn-
chronous implementations of J-ALM are discussed. Again all simulations are performed using
the same four spacecraft reconfiguration. Then, the accelerated algorithms are simulated with
SCP, to see how SCP influences the convergence rate and to be able to compare the dual
methods to the hybrid cooperation algorithm.

5-1 Accelerating Dual Algorithms

Many acceleration techniques have been proposed to increase the convergence rate of gradient
methods. Most of those acceleration techniques use memory of previous iterates in order to
improve the accuracy of the next step direction. In this research, three acceleration methods
will be discussed: HBA, FISTA and AA. First the methods will be explained, and some
simulations are shown to explain the effect of varying the acceleration parameters. Then
all acceleration methods will be simulated on dual decomposition, synchronous J-ALM and
asynchronous J-ALM to be able to compare the different acceleration methods with each
other.

5-1-1 Heavy Ball Acceleration

The HBA is the most simple way to include memory, or a momentum term, in the dual
update. The new search direction is based on a combination of the new subgradients and
the old search direction [25]. For dual decomposition, the update is given as follows, with
momentum parameter β > 0:

yij,k+1 = [yij,k + ρrij,k + β(yij,k − yij,k−1)]+ (5-1)

Master of Science Thesis Floris van Dam

56 Accelerated Dual Methods with Sequential Convex Programming

A simulation of HBA implemented on dual decomposition is shown in Figure 5-1. The con-
vergence rate can be significantly increased. For β = 0.7, the primal residual convergence plot
starts to oscillate a little in the first 25 iterations and for β = 0.9 the convergence is fastest
but with many oscillations.

0 500 1000 1500
10

-20

10
-10

10
0

Primal residual [km
2
/s

2
]

0 500 1000 1500
10

-20

10
-15

10
-10

Dual residual [km/s
2
]

0 500 1000 1500

Iteration count

10
-20

10
-10

10
0

0 500 1000 1500

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-1: Heavy Ball on dual decomposition, with ρ = 3 × 10−5 and different values for
momentum parameter β.

For the synchronous and asynchronous J-ALM algorithms the Heavy Ball dual update looks
similar as for dual decomposition; it only includes the extra relaxation parameter:

ŷij,k = yij,k + ρrij,k

yij,k+1 = [yij,k + ν(ŷij,k − yij,k) + β(yij,k − yij,k−1)]+
(5-2)

However, whereas in dual decomposition each spacecraft minimizes its own control accelera-
tion vector without taking into account the control vectors of other spacecraft, in J-ALM the
augmented Lagrangian also includes fixed control acceleration vectors from other spacecraft.
If only the dual vector is updated with Heavy Ball momentum term, there is a mismatch
between the dual vector and the fixed control acceleration vectors. Instead of the regular
J-ALM u-update as given in Algorithm 6, it can also be updated as follows:

Uk ← Uk−1 − ν(Uk−1 − Ûk) + β(Uk−1 − Uk−2) (5-3)

In Figure 5-2, HBA on synchronous J-ALM is simulated, both with the regular u-update
and with the Heavy Ball u-update given in (5-3). It is clear that both methods accelerate
the convergence, but adjusting U together with the dual vector has a much larger effect; it
converges approximately twice as fast.

Floris van Dam Master of Science Thesis

5-1 Accelerating Dual Algorithms 57

0 50 100 150 200 250 300 350
10

-20

10
-10

10
0

Primal residual [km
2
/s

2
]

0 100 200 300 400
10

-20

10
-15

10
-10

10
-5

Dual residual [km/s
2
]

0 100 200 300 400

Iteration count

10
-15

10
-10

10
-5

10
0

0 100 200 300 400

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-2: Heavy Ball on synchronous J-ALM with ρ = 7 × 10−4, ν = 0.5 and β = 0.5.
Updating U in the same way as dual vector y has a large influence on the convergence rate.

The HBA on asynchronous J-ALM is more difficult, as both yk as yk−1 are obtained with
partly outdated control vectors and thus not entirely accurate. Possibly the same reasoning
can be used as with the selection of a proper the stepsize: if the maximum delay is for
example 5 iterations, then β could be chosen to be 0.5/5 = 0.1. This way, the control
vector of the agent which suffers maximum delay will contribute the same to the dual vector
update as in the synchronous case with β = 0.5, whereas control vectors which are updated
more frequently actually increase the accuracy. As J-ALM in combination with HBA was
accelerated significantly with ρ = 7× 10−4, ν = 0.5 and β = 0.5, the asynchronous algorithm
with Tmax = 5 would then potentially be accelerated with ρ = (7/5) × 10−4, ν = 0.5 and
β = 0.1. The result of this simulation is shown in Figure 5-3. Again U is updated using the
same momentum update rule as y.

For β = 0.1 indeed a small acceleration is obtained, resulting in convergence around iteration
1200 instead of 1300. For β = 0.5 the algorithm does not converge: the momentum parameter
is too large resulting in oscillating solutions. The simulation with β = 0.3 shows that heavy
ball acceleration can increase the convergence rate, but this specific value is found by trial
and error, without proper justification.

Master of Science Thesis Floris van Dam

58 Accelerated Dual Methods with Sequential Convex Programming

0 200 400 600 800 1000 1200

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 200 400 600 800 1000 1200
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

0 200 400 600 800 1000 1200

Iteration count

10
-15

10
-10

10
-5

10
0

0 200 400 600 800 1000 1200

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-3: Heavy Ball on asynchronous J-ALM with ρ = 1.4 × 10−4, ν = 0.5, Tmax = 5
and a central node waiting for 2 control vectors. Momentum parameter β = 0.1 results in
little acceleration whereas β = 0.5 does not converge. The algorithm can be more significantly
accelerated with β = 0.3.

5-1-2 Fast Iterative Shrinkage-Threshold Algorithm

A method similar to HBA but with improved worst-case convergence bound is FISTA, an
acceleration method based on Nesterov acceleration [26]. It improves the convergence rate
bound from O(1/k) to O(1/k2). The algorithm as given in [27] is shown in Algorithm 9. As
this version of FISTA is proposed by Beck and Teboulle, it is called FISTA-BT.

Algorithm 9 FISTA-BT on dual decomposition
1: Initialize y1 = 0, ŷ0 = 0, k = 0, τ1 = 1, Aij , Bij , ∀i, j
2: repeat
3: k ← k + 1
4: Update Ui in parallel:
5: for i = 1, . . . , N do
6: Ui,k ← argmin

Ui

Li(u, yk) s.t. Ui ∈ Ui

7: ŷk ← yk + ρrk

8: τk+1 ←
1+
√

1+4τ2
k

2
9: yk+1 ← [ŷk + τk−1

τk+1
(ŷk − ŷk−1)]+

10: until [rk]+ ∈ ∅

However, often in practice the convergence is not as fast as expected due to oscillations. In
[27] the authors discuss a simple yet effective solution first proposed by Chambolle and Dossal:
step 8 of Algorithm 9 is replaced by τk+1 ← k+75

75 . This version will be called FISTA-CD.

Floris van Dam Master of Science Thesis

5-1 Accelerating Dual Algorithms 59

Whereas with FISTA-BT the factor τk−1
τk+1

rises to 0.5 in iteration 4 and to 0.95 in iteration 5,
the adjusted factor of FISTA-CD rises to 0.5 in iteration 75, and to 0.95 in iteration 1500.
FISTA-CD is thus relaxed version of FISTA-BT. The authors of [27] propose the value 75 in
the update of τ , but they comment that there is no proper justification for specifically this
value. In general, the higher this value, the later the previous dual vector gets significant
weight on the new dual update. The optimal value has to chosen by trial and error.

In Figure 5-4 the two versions of FISTA are simulated on the dual decomposition algorithm.
As in FISTA-BT the multiplication factor rises very quickly, the algorithm in combination
with ρ = 3× 10−5 diverges directly. Therefore, a smaller ρ = 1× 10−7 is chosen: the largest
for which the algorithm did not diverge. However, it does not converge either. The other
algorithms are simulated with ρ = 3 × 10−5. FISTA-CD clearly accelerates the convergence
rate significantly.

0 200 400 600 800 1000 1200

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 200 400 600 800 1000 1200
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual Standard

FISTA-BT

FISTA-CD

0 200 400 600 800 1000 1200

Iteration count

10
-15

10
-10

10
-5

10
0

0 200 400 600 800 1000 1200

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-4: The two forms of FISTA in comparison with standard dual decomposition. Standard
and FISTA-CD are simulated with ρ = 3 × 10−5; for FISTA-BT the largest converging stepsize
was ρ = 1× 10−7. FISTA-CD can significantly accelerate convergence.

In Figure 5-5 the two forms of FISTA are simulated on synchronous J-ALM. Just like with
heavy ball acceleration, U can be updated using a similar FISTA rule as y, or only y can be
updated using the FISTA update rule. It is clear that updating both U and y does not con-
verge. It is interesting to see that FISTA-CD first converges, but when multiplication factor
τk−1
τk+1

becomes too large, the algorithm starts to oscillate and diverge. This is not happening
when only U is updated with the standard J-ALM update. In Figure 5-6 the convergence
of FISTA-CD is compared with standard J-ALM: interesting enough the convergence rate is
increased when a slightly smaller ρ is chosen. The explanation is likely similar to the one
discussed in Section 4-2-2.

Master of Science Thesis Floris van Dam

60 Accelerated Dual Methods with Sequential Convex Programming

0 50 100 150 200 250 300 350
10

-20

10
-10

10
0

k
m

2
/s

2

Primal residual

0 50 100 150 200 250 300 350
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual FISTA BT on y and U

FISTA-BT on y

FISTA-CD on y and U

FISTA-CD on y

0 50 100 150 200 250 300 350

Iteration count

10
-15

10
-10

10
-5

10
0

0 50 100 150 200 250 300 350

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-5: Synchronous J-ALM with different implementations of FISTA. All algorithms are
simulated with ρ = 7× 10−4 and ν = 0.5. When U is updated using the same momentum rule
as y, the algorithm diverges; only FISTA-CD on y converges.

0 50 100 150 200 250 300 350
10

-20

10
-10

10
0

k
m

2
/s

2

Primal residual

0 100 200 300 400
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

0 100 200 300 400

Iteration count

10
-15

10
-10

10
-5

10
0

0 100 200 300 400

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-6: Synchronous J-ALM compared to FISTA-CD. When ρ is lowered from ρ = 7× 10−4

to ρ = 3× 10−4, the convergence rate increases.

Any form of FISTA on asynchronous J-ALM diverged. This is not unexpected: the mul-
tiplication factor in FISTA increases asymptotically to 1, but the heavy ball acceleration
simulations showed that the algorithm did not converge already for β = 0.5.

Floris van Dam Master of Science Thesis

5-1 Accelerating Dual Algorithms 61

5-1-3 Anderson Acceleration

This acceleration method searches for the solution of a fixed point iteration problem, which
means that it searches for a specific y for which the subgradients are zero. The new vector y
is constructed out of a linear combination of previous dual vectors, and the weight vector a
is obtained by solving the following minimization problem:

a = argmin
a=[a0,...,am]T

‖Fka‖2 s.t.
m∑
i=0

ai = 1 (5-4)

Here Fk is a matrix containing the subgradients of the dual variable of iteration k−m+ 1 till
k − 1 and m = min{k,mk} is the number of previous residuals and dual vectors used. The
AA update scheme finds the solution of the fixed point iteration problem if (close enough
to the optimum) the subgradient of y is linearly related to y. As in AA the new dual
variable vector is constructed out of previous dual variable vectors, it can be interpreted as
a momentum acceleration method just like HBA and FISTA, but with variable weights and
a memory of more than one previous iterate. Therefore AA should be able to obtain even
higher convergence rates. Just like the other two acceleration methods, one agent can collect
all the control vectors and update the dual vector. However, due to the optimization problem,
the AA dual update is significantly more complex than the HBA or FISTA update.

In Figure 5-7 convergence of AA on dual decomposition is shown. The maximum number of
previous dual vectors taken into account, mk has a large effect on the convergence rate: for
mk = 10 the algorithm oscillates without showing any sign of converging, but for mk = 5 or
3 the convergence rate is accelerated significantly. These results are obtained using a scaled
residual matrix Fk/‖Fk‖2, as the numerical accuracy of the solver influenced the solutions
when the algorithm started to converge. The oscillations for mk = 10 can be explained by
the fact that the sum of the weight vector a is constrained to be one: the higher the value of
mk, the smaller the weight on the last dual vector.

The simulations of AA on synchronous J-ALM are shown in Figure 5-8. Here ρ = 4×10−4 and
ν = 0.5. The algorithm with Anderson update of only the dual vector (AA on y) is compared
to Anderson updates of both the dual vector and control acceleration vectors (AA on y and
U). Again, updating U in a similar way as y results in the most significant acceleration.
Parameter mk = 5 slightly outperforms mk = 2, but this difference is only marginal.

Asynchronous J-ALM did not converge when combined with regular Anderson Acceleration,
neither when only y was updated using the Anderson update, nor when both y and U were
updated this way. One hypothesis to explain this is the possibility that in the asynchronous
algorithm sometimes a dual update is required which temporarily increases the residuals,
instead of monotonic decreasing residuals. This might happen as only some of the control
vectors are updated per iteration. AA however aims to minimize the residual vector in each
iteration, which would prevent the algorithm from finding the optimal solution.

A second hypothesis is that the asynchronous algorithm cannot deal well with large values in
a. As only the sum of a is constrained to be 1, the individual values in a may take on large
values. If the control vectors with which the update is performed are inaccurate, large values
in a may also lead to inaccurate dual vector updates. A simulation of AA with an extra lower
bound a ≥ −0.3 is shown in Figure 5-9. Now AA on asynchronous J-ALM does converge,

Master of Science Thesis Floris van Dam

62 Accelerated Dual Methods with Sequential Convex Programming

it is slightly accelerated when compared to the standard asynchronous J-ALM. It might also
be the case that constraining a from below results in solutions with give more weight to
the latest dual vector, which in turn eventually results in convergence. The convergence of
this accelerated algorithm should be investigated more before more sound conclusions can be
drawn.

0 50 100 150 200 250
10

-20

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 50 100 150 200 250
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

0 50 100 150 200 250

Iteration count

10
-15

10
-10

10
-5

10
0

0 50 100 150 200 250

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-7: Anderson Acceleration on dual decomposition with different values of mk. All
simulations are performed with ρ = 3× 10−5.

0 50 100 150 200 250 300 350
10

-20

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 100 200 300 400
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

0 100 200 300 400

Iteration count

10
-15

10
-10

10
-5

10
0

0 100 200 300 400

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-8: Anderson Acceleration on synchronous J-ALM with ρ = 4 × 10−4; again the con-
vergence rate is largest when U is updated using a similar rule as y. For this setup, mk = 2 and
mk = 5 perform nearly similar.

Floris van Dam Master of Science Thesis

5-1 Accelerating Dual Algorithms 63

0 200 400 600 800 1000 1200

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 200 400 600 800 1000 1200
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

0 200 400 600 800 1000 1200

Iteration count

10
-15

10
-10

10
-5

10
0

0 200 400 600 800 1000 1200

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-9: Standard versus Anderson Accelerated asynchronous J-ALM with ρ = 1.4 × 10−4;
when a lower bound on a is included, Anderson Acceleration can accelerate convergence.

5-1-4 Summarizing Acceleration Figures

To be able to compare the different acceleration methods on the three dual methods, the best
results per dual method are given in one figure.
In Figure 5-10 all dual decomposition acceleration algorithms are compared to regular dual
decomposition. All simulations are performed with ρ = 3 × 10−5. For HBA, β = 0.9,
and AA is simulated with mk = 3. It is clear that AA outperforms the other acceleration
methods; for dual decomposition a varying momentum parameter thus has a large influence
on the convergence rate. HBA and FISTA-CD converged in a similar number of iterations;
although HBA with its constant parameter β started faster, the convergence rate of FISTA-
CD increased significantly over the iterations due to the increasing momentum parameter.
In Figure 5-11 standard synchronous J-ALM is compared to the three acceleration methods.
All algorithms are simulated with ρ = 4 × 10−4, which differs from the HBA and FISTA
simulations in previous sections as this smaller stepsize resulted in faster convergence. Fur-
thermore, ν = 0.5, HBA is simulated with β = 0.5 and AA with mk = 2. The resulting
figure looks comparable to the dual decomposition overview: AA is by far the fastest, HBA
and FISTA reach convergence in the same number of iterations although HBA starts faster,
and all three acceleration methods outperform the standard synchronous J-ALM. It is inter-
esting to note that the total weight of each dual vector update is actually higher for HBA
and FISTA than for AA. In the latter, the sum of a is constrained to be one, no matter how
many previous iterations are taken into account in the update. In HBA, the total weight is
given as 1 +β ≥ 1 and in FISTA-CD it is 1 + τk−1

τk+1
≥ 1. Therefore it is expected that AA can

achieve an even higher convergence rate when the bound on the sum of a is increased.
Finally in Figure 5-12 asynchronous J-ALM is compared to HBA with β = 0.3 and AA
with mk = 3 and a ≥ −0.3. For all simulations, ν = 0.5, Tmax = 5 and the dual vector

Master of Science Thesis Floris van Dam

64 Accelerated Dual Methods with Sequential Convex Programming

0 100 200 300 400 500 600
10

-20

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 100 200 300 400 500 600
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual
Standard

Heavy Ball

FISTA-CD

Anderson Acceleration

0 100 200 300 400 500 600

Iteration count

10
-15

10
-10

10
-5

10
0

0 100 200 300 400 500 600

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-10: Regular dual decomposition compared with different acceleration algorithms. All
algorithms are simulated with ρ = 3× 10−5, Anderson Acceleration clearly outperforms the other
acceleration methods.

is updated with two updated control vectors. For both acceleration methods it was difficult
to find settings which resulted in convergence; only small acceleration is obtained. As the
dual decomposition and synchronous J-ALM simulations showed that AA significantly out-
performed other acceleration methods, it is expected that AA on asynchronous J-ALM can
also be improved. This requires more insight in the asynchronous convergence characteristics.

Floris van Dam Master of Science Thesis

5-1 Accelerating Dual Algorithms 65

0 50 100 150 200 250 300 350
10

-20

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 50 100 150 200 250 300 350
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual
Standard

Heavy Ball

FISTA-CD

Anderson Acceleration

0 50 100 150 200 250 300 350

Iteration count

10
-15

10
-10

10
-5

10
0

0 50 100 150 200 250 300 350

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-11: Standard synchronous J-ALM compared with three different acceleration algorithms,
all with ρ = 4× 10−4 and ν = 0.5.

0 200 400 600 800 1000

10
-15

10
-10

10
-5

10
0

k
m

2
/s

2

Primal residual

0 200 400 600 800 1000
10

-20

10
-15

10
-10

10
-5

k
m

/s
2

Dual residual

Standard

Heavy Ball

Modified Anderson Acceleration

0 200 400 600 800 1000

Iteration count

10
-15

10
-10

10
-5

10
0

0 200 400 600 800 1000

Iteration count

10
-15

10
-10

10
-5

10
0

Figure 5-12: Standard asynchronous J-ALM compared with Heavy Ball and Anderson Accelera-
tion, all with ρ = 1.4× 10−4 and ν = 0.5.

Master of Science Thesis Floris van Dam

66 Accelerated Dual Methods with Sequential Convex Programming

5-2 Simulations with Sequential Convex Programming

In the previous simulations of the dual methods, they are compared on the rate with which
they solved only one SCP iteration. In this section Anderson accelerated dual decomposition
and J-ALM are simulated with SCP. As stopping criteria, pr < 1× 10−6 and dr < 1× 10−11

are chosen. First a four spacecraft reconfiguration is simulated, then the performance of the
algorithms on a ten spacecraft reconfiguration is checked using simulations as well to see how
the algorithm scales with the number of spacecraft.

5-2-1 Four Spacecraft Reconfiguration

In Figure 5-13 the convergence characteristics of AA on dual decomposition with SCP is
shown for ρ = 5 × 10−3 and mk = 3. The SCP algorithm converged in 7 iterations and the
solution equals the centralized solution. The SCP iterations are clearly visible in the figure; as
the dual vector is initialized as a zero vector the primal residual increases at the start of each
SCP iteration. The algorithm converges in a total of 671 dual iterations, the computation
time is 624 seconds in total. Despite the fact that in each SCP iteration essentially a new
problem is solved due to the update of the collision avoidance constraint, the algorithm is
able to converge without changing its parameter values. In Figure 5-14 the simulation of AA
on synchronous J-ALM with SCP is shown. This algorithm completes the 7 SCP iterations
in 245 dual iterations, in a total of 823 seconds.

In both Figures 5-13 and 5-14 the lower two plots with scaled Lagrangian function value and
scaled ∆V̄ seem to remain constant for long periods of time. This has to do with the fact
that they both are scaled with L∗ and ∆V̄ ∗ obtained at the end of the last SCP iteration. As
the previous SCP iterations converge to different values, the scaled distance to the optimal
values remains almost constant.

5-2-2 Ten Spacecraft Reconfiguration

In Figure 5-15 AA on dual decomposition with SCP is applied to a ten spacecraft reconfig-
uration with ρ = 3 × 10−5 and mk = 3. This specific reconfiguration converged in 4 SCP
iterations, but the four iterations differ a lot in terms of convergence rate. This indicates that
the parameter selection might be optimized for the different SCP iterations. The algorithm
converged in a total of 335 iterations, which is less than the algorithm on the four spacecraft
scenario. The required number of iterations thus depends more on the number of collisions
which have to be avoided and the proximity of the spacecraft during the reconfiguration than
on the absolute number of spacecraft. The total computation time was 628 seconds. In Fig-
ure 5-16 the same ten spacecraft reconfiguration scenario is solved using AA on synchronous
J-ALM with SCP where ρ = 1 × 10−4 and mk = 3. This algorithm converged in a total of
220 iterations and 3429 seconds.

5-2-3 Computation Times

The convergence characteristics of the SCP simulations are summarized in Table 5-1.

Floris van Dam Master of Science Thesis

5-2 Simulations with Sequential Convex Programming 67

0 100 200 300 400 500 600 700

10
-6

10
-4

10
-2

k
m

2
/s

2

Primal residual

0 100 200 300 400 500 600 700
10

-13

10
-11

10
-9

10
-7

k
m

/s
2

Dual residual

0 100 200 300 400 500 600 700
10

-10

10
-5

10
0

0 100 200 300 400 500 600 700

Iteration count

10
-5

10
-3

10
-1

Figure 5-13: Four spacecraft: AA on dual decomposition with SCP. The algorithm converges
consistently despite the updated collision avoidance constraint in each SCP iteration. Convergence
in 7 SCP iterations.

N SCP iter. Dual iter. MATLAB time [s]
Dual decomp. 4 7 671 624
Dual decomp. 10 4 335 628
Sync. J-ALM 4 7 245 823
Sync. J-ALM 10 4 220 3429

Table 5-1: Convergence characteristics of Anderson Acceleration on dual algorithms in SCP.

All the dual method with SCP simulations are performed using the MATLAB “parfor” func-
tion in combination with 2 workers. To accurately compare the different computation times,
the MATLAB computation time has to be divided by N/2. The resulting computation time
per spacecraft is given in Table 5-2 for dual iterations and SCP iterations. This table also
includes the computation times for the hybrid algorithm for comparison.

It is clear that dual decomposition scales better with the number of spacecraft than J-ALM;
whereas in dual decomposition the computation time per iteration per spacecraft decreases for
the larger formation, in J-ALM the time almost doubles. This is probably caused by the fact
that in dual decomposition the collision avoidance constraint is included as affine expressions
in the objective, whereas in J-ALM the collision avoidance constraints are included as a
separate quadratic expression per constraint. Also the augmented Lagrangian in J-ALM
makes use of slack variables which increases the number of optimization variables. The
Lagrangian in dual decomposition does not have this, and is thus simpler to minimize. It
might be possible to reformulate the objective of the J-ALM minimization problem to a
matrix formulation, in order to lower the computation times. Also, all-to-all communication is
assumed in this research. A lower communication radius will decrease the problem complexity

Master of Science Thesis Floris van Dam

68 Accelerated Dual Methods with Sequential Convex Programming

0 50 100 150 200 250
10

-8
10

-6
10

-4
10

-2

k
m

2
/s

2

Primal residual

0 50 100 150 200 250
10

-13

10
-11

10
-9

10
-7

k
m

/s
2

Dual residual

0 50 100 150 200 250
10

-5

10
0

0 50 100 150 200 250

Iteration count

10
-5

10
-3

10
-1

Figure 5-14: Four spacecraft: AA on synchronous J-ALM with SCP. Convergence in 7 SCP
iterations.

N Time/spacecraft/dual iter. [s] Time/spacecraft/SCP iter. [s]
Dual decomp. 4 0.47 44.6

10 0.37 31.4
Sync. J-ALM 4 1.68 58.8

10 3.12 171.5
Hybrid 4 - 0.5506

10 - 0.4420

Table 5-2: Time to solve one dual iterations and to solve one SCP iteration for the two accelerated
dual methods.

for larger formations. At present both dual methods require two orders of magnitude more
time to solve one SCP iteration than the hybrid algorithm, due to the iterative nature of the
dual methods.

One disadvantage of obtaining exactly the centralized solution is that the SCP algorithm
might not converge, as was discussed in Section 3-4 for the 100 spacecraft scenario. In
each SCP iteration all spacecraft trajectories are optimized again. For large formations it
might happen that at least one spacecraft will adjust a little each iteration, preventing the
convergence tolerance to be met for all spacecraft at the same time. One way to prevent this
is to fix the trajectories of spacecraft once they meet the SCP convergence tolerance. This
way, both the convergence iteration of SCP and the computation time per iteration can be
significantly decreased. How such approximation affects the total required velocity change of
the formation could be investigated in future research.

Floris van Dam Master of Science Thesis

5-2 Simulations with Sequential Convex Programming 69

0 50 100 150 200 250 300 350

10
-6

10
-4

10
-2

k
m

2
/s

2

Primal residual

0 50 100 150 200 250 300 350
10

-13

10
-11

10
-9

10
-7

k
m

/s
2

Dual residual

0 50 100 150 200 250 300 350

10
-10

10
-5

10
0

0 50 100 150 200 250 300 350

Iteration count

10
-7

10
-5

10
-3

Figure 5-15: Ten spacecraft: AA on dual decomposition with SCP. Convergence in 4 SCP
iterations.

0 50 100 150 200 250

10
-7

10
-5

10
-3

k
m

2
/s

2

 Primal residual

0 50 100 150 200 250

10
-11

10
-9

10
-7

k
m

/s
2

Dual residual

0 50 100 150 200 250

10
-5

10
-3

10
-1

0 50 100 150 200 250

Iteration count

10
-5

10
-3

Figure 5-16: Ten spacecraft: AA on synchronous J-ALM with SCP. Convergence in 4 SCP
iterations.

Master of Science Thesis Floris van Dam

70 Accelerated Dual Methods with Sequential Convex Programming

5-3 Summary and Conclusions

In this chapter three different acceleration methods have been implemented on dual decompo-
sition and J-ALM, respectively HBA, FISTA and AA. It is shown that on dual decomposition
and synchronous J-ALM, AA can significantly accelerate the convergence, outperforming the
other two acceleration methods. Acceleration on asynchronous J-ALM acceleration is more
difficult as both the dual vector update and the control vector minimization is always per-
formed with inaccurate data. HBA and a modified version of AA were able to accelerate
convergence slightly, but more insight is needed to make full use of the acceleration methods.

Dual decomposition and synchronous J-ALM in combination with AA are also simulated with
SCP, to compare them to the hybrid cooperation algorithm and to see whether convergence
can also be obtained without changing the simulation parameters. It is shown that dual
algorithms in SCP do converge, but the varying convergence rates per SCP iteration indicate
that likely the simulation parameters can be optimized. Finally it is shown that the algorithms
also converge on a reconfiguration of ten spacecraft. For dual decomposition the computation
times per spacecraft are similar for a four and a ten spacecraft reconfiguration. For J-ALM the
computation time almost doubles however. One way to make the algorithm better scalable
is to lower the communication radius: this directly lowers the number of neighbors and thus
the problem complexity. It might also be possible to reformulate the objective of the J-ALM
minimization problem in order to lower the computation times. This is something which could
be researched in future work. For larger formations it is also necessary to adjust the SCP
scheme, as the centralized algorithm did not converge on a 100 spacecraft scenario. The dual
methods find exactly the same solution as the centralized algorithm, thus will suffer the same
drawback. This could be solved by fixing trajectories once they meet the SCP convergence
tolerance. How this effects the total required velocity change is not yet known.

Finally, due to the many dual iterations, much data has to be shared between spacecraft in
order to obtain collision free reconfiguration trajectories. This might consume more power
than is available onboard spacecraft. Therefore at present the hybrid algorithm seems to
outperform dual methods on the collision-free trajectory optimization problem.

Floris van Dam Master of Science Thesis

Chapter 6

Conclusions

In this chapter, first a summary of the research is given with answers to the research sub-
questions. Then the main research question is answered, followed by suggestions for future
work.

6-1 Summary of the Research and Answers to Sub-Questions

In this research, a distributed collision-free minimum fuel trajectory optimization is developed
for the reconfiguration of a large formation of picosatellites.

The relative dynamics of the spacecraft are modeled using the Xu Wang exact dynamical
model [37]. This model includes the J2 potential but neglects the atmospheric drag and
solar pressure perturbations. These are non-dominant for the simulations performed in this
research. Using this linearized and discretized dynamical model and a convex approximation
of the collision avoidance constraints, a convex optimization problem is defined. For each pair
of spacecraft a separate collision avoidance constraint is introduced.

This convex problem is first solved by a centralized solver. SCP is used to iteratively improve
the collision avoidance approximation. Although the solution of this algorithm is not optimal
as it excludes large parts of the solution space by approximating the collision avoidance con-
straints, it provides a good benchmark to compare other algorithms against. In the centralized
algorithm both spacecraft for which a collision avoidance constraint is defined are responsible
to avoid each other while minimizing the combined cost. The computations of this algorithm
can be distributed over all spacecraft in the formation by removing the cooperation in the
formation. In that case only one spacecraft per pair is responsible to avoid a collision. This
naturally leads to a higher fuel consumption of the total formation. In this research a hybrid
algorithm is proposed. Spacecraft on track to collide form cooperating pairs which can solve
a small centralized problem. All spacecraft not in a cooperating pair solve the distributed
problem.

The sub-questions as given in the introduction are answered as follows.

Master of Science Thesis Floris van Dam

72 Conclusions

1: How does the fuel consumption of a collision-free reconfiguration maneuver depend
on the degree of cooperation within the formation? The total required velocity change
∆V and thus the required fuel for a collision-free reconfiguration maneuver depends on many
factors such as distance the spacecraft have to travel to reach their desired state if they neglect
collision avoidance, the number of potential collisions and the amount of cooperation in the
formation. A centralized solution with maximum cooperation always finds a better solution
than a distributed solution without cooperation if they solve the same problem. Due to the
SCP framework, after one iteration the centralized and distributed algorithm actually solve a
different problem. Therefore in rare cases it might happen that after convergence of the SCP
algorithm the distributed algorithm has found a better solution than the centralized algorithm.
In the simulations in this thesis this did not happen however. The hybrid algorithm with
cooperating pairs results in a total required velocity change which is close to the centralized
solution. Especially for reconfigurations where many collisions have to be avoided, the hybrid
algorithm significantly outperforms the distributed algorithm in terms of fuel consumption.
For larger formations, the effect of distributed calculations on the computation time per
iteration is clear: already for ten spacecraft the distributed and hybrid algorithms are faster
than the centralized algorithm.

Instead of decreasing the cooperation in the formation, the coupled convex problem can also be
solved in a distributed way using dual methods. Dual decomposition and Consensus ADMM
are already proposed in literature to solve the collision-free trajectory optimization problem.
In this research the two methods are compared with decomposed Augmented Lagrangian
Methods.

2: Would J-ALM be better suited to solve the trajectory optimization problem than dual
decomposition and Consensus ADMM? All dual methods discussed in this research are
able to find the same solution as the centralized algorithm in finite time. It is shown that
synchronous J-ALM indeed outperforms both dual decomposition and Consensus ADMM in
terms of convergence rate. Also, calculations in J-ALM are performed in parallel onboard the
spacecraft. Finally, in J-ALM the solution can converge almost monotonically to the collision-
free solution, whereas Consensus ADMM converges with many oscillations. Therefore it
is concluded that J-ALM is better suited to solve the collision-free trajectory optimization
problem then dual decomposition and Consensus ADMM.

3: Under what conditions does an asynchronous implementation of a dual method con-
verge? This research demonstrates that J-ALM can also converge in an asynchronous frame-
work, in which the updated control vectors are returned with a maximum relative delay of a
specified number of dual iterations. Both the dual update and the control acceleration mini-
mization are thus performed using partly outdated data. It is shown trough simulations that
when the stepsize suitable for synchronous J-ALM is divided by the maximum delay, the asyn-
chronous algorithm converges in less iterations than the convergence iteration of synchronous
J-ALM multiplied with the maximum delay. When solvers of the spacecraft in a synchronous
implementation have large idle times, the asynchronous implementation of J-ALM can thus
potentially decrease the absolute convergence time.

Floris van Dam Master of Science Thesis

6-2 Conclusion of the Research 73

4: How do acceleration techniques such as HBA, FISTA and AA influence the convergence
rate of both the synchronous and asynchronous dual methods? In this research it is
demonstrated that all three acceleration algorithms can significantly accelerate both dual
decomposition and synchronous J-ALM. The HBA results in a nearly linear convergence rate
on logarithmic scale, whereas FISTA starts slower but gradually increases the convergence
rate on the logarithmic scale, reaching convergence at the same time as HBA. AA, originally
proposed for fixed-point iteration problems but applied for the first time to ALM in this
research, results in nearly linear convergence rate on logarithmic scale as well, while being
significantly faster than both HBA and FISTA. On asynchronous J-ALM both HBA and a
slightly modified version of AA are shown to be able to accelerate the convergence, although
the effect of both acceleration methods is only small.

5: Would dual methods be a feasible alternative to the diminished cooperation algorithms
for solving the collision-free trajectory optimization problem in real time? Both dual
decomposition and synchronous J-ALM in combination with AA are simulated with SCP for
a scenario with four and with ten spacecraft. A solution is obtained in finite time in all
simulations. This means that despite the problem changing in each SCP iteration due to the
update of the collision avoidance constraint, the parameters do not have to be updated. It is
however not yet investigated whether the convergence rate of the algorithms can be increased
using adaptive problem parameters. Especially dual decomposition is shown to scale well
with the number of spacecraft, although decreasing the computation time for J-ALM in
combination with large formations might be possible. Whether dual methods form a feasible
alternative to diminished cooperation methods depends on physical spacecraft characteristics
such as the power consumption of communications, the reliability of communication links and
the communication delay.

6-2 Conclusion of the Research

The main research question was stated as follows:

How to design a distributed collision-free trajectory optimization algorithm for a large
formation of spacecraft which finds the minimum-fuel solution in finite time?

Within the constraints and assumptions as stated in the introduction of this thesis, there are
two feasible options at this moment. The first is the hybrid algorithm, which is scalable due
to parallel computations and flexible as spacecraft only avoid other spacecraft with which
they can communicate. This algorithm however results in a solution with slightly more
fuel consumption than a centralized solution. The second is the Anderson Accelerated dual
decomposition. Although it required more dual iterations than accelerated J-ALM, it scales
better to larger formations. It finds the exact same solution as the the centralized algorithm,
but compared to the hybrid algorithm it takes much more time to find the solution due to
the iterative nature of dual methods. Another drawback of AA on dual decomposition is
the selection of the problem parameters. The stepsize ρ and memory parameter mk have
to be selected properly, as they have large influence on the convergence rate. Also different
reconfiguration maneuvers require different parameters to obtain the highest convergence rate.

Master of Science Thesis Floris van Dam

74 Conclusions

At present the parameters selection is performed by trial and error, which is a time consuming
process and not suitable for a real-time trajectory optimization algorithm. AA on J-ALM
has the potential to outperform AA on dual decomposition, as it requires approximately only
half the iterations. To make it a feasible alternative, the computation time per dual iteration
should be decreased for larger formations.

When a real scenario is considered subject to uncertainties, delays, noise and limited available
power, it is likely that the dual methods are not feasible to implement. Spacecraft need power
to send and receive data, so there is a limit on the feasible amount of communication between
spacecraft. In this research it is shown that AA has trouble accelerating asynchronous J-
ALM. This problem has to solved at least before communication delays and losses are included.
Therefore, at this moment the hybrid algorithm is the preferred choice, although the potential
of dual methods to save the extra percentages of fuel is recognized.

When looking at this research with a broader view, it can also be seen as an overview of
the possibilities and limitations of various distributed algorithms. Of course the algorithms
discussed in this research are not limited to spacecraft reconfigurations. With small adjust-
ments, for example in the relative dynamical model, the same algorithms can be used for
other robotic agents such as drones or vessels. Furthermore, dual methods have been used
to solve all kinds of problems in a distributed way, in the introduction power systems opti-
mization and large scale image processing were mentioned. The insights from this research
might inspire researchers working in other fields as well, to try new problem formulations or
acceleration methods.

6-3 Recommended Future Work

This research is performed under many assumptions. These make it possible to compare the
various reconfiguration optimization algorithms with each other, but also make the research
theoretical instead of directly applicable. Therefore, applying the algorithms discussed in this
research to real-life scenarios would likely result in many interesting insights. Most relevant
the question exactly how much power is required to communicate between spacecraft and the
question how dual methods converge when subject to uncertainties, noise and communication
losses. A large part of this research discusses dual methods, for which many questions remain
to be answered.

• How to develop adaptive stepsizes for dual methods? Searching the stepsize which
results in largest convergence rate is a time-consuming process at the moment. Also,
for each different reconfiguration a different stepsize is optimal. Parameter tuning rules
or adaptive stepsizes are necessary for the tuning of ADMM and ALM in order to make
the algorithms more flexible for solving different problems. The same point applies to
the selection of the relaxation parameter for J-ALM, the momentum parameter for HBA
or the memory parameter for AA.
• Does J-ALM outperform any Consensus ADMM algortihm for collision-free trajectory
optimization? This research demonstrated that synchronous J-ALM outperformed one
specific implementation of Consensus ADMM. A more general comparison is required to
strengthen the claim that J-ALM outperforms Consensus ADMM to solve this problem.

Floris van Dam Master of Science Thesis

6-3 Recommended Future Work 75

• How to make the synchronous J-ALM better scalable with the number of spacecraft?
The SCP simulations showed that the computation time per spacecraft almost dou-
bled for a ten compared to four spacecraft reconfiguration. This likely has to do with
the problem formulation, it might be possible to decrease the computation time by
implementing the problem differently.
• How does dual decomposition converge in an asynchronous framework? In this thesis
only J-ALM is simulated with asynchronous updates. However, as dual decomposition
seems better scalable to larger formations, it would be interesting to also investigate
the convergence characteristics of asynchronous dual decomposition.
• Does asynchronous J-ALM always converge when an appropriate stepsize is chosen
and the maximum delay is known? Convergence rate characterization and worst-case
complexity bounds are not yet available.
• How to accelerate asynchronous J-ALM even more? All three acceleration methods
failed to significantly accelerate the convergence of the asynchronous algorithm, which
is likely due to the decreased accuracy of the dual and control vector updates. Anderson
Acceleration however showed great promise accelerating synchronous dual methods.
More insight is needed to find a way to modify this acceleration method to also accelerate
the asynchronous dual methods significantly.

Master of Science Thesis Floris van Dam

76 Conclusions

Floris van Dam Master of Science Thesis

Bibliography

[1] P. Sundaramoorthy, “Lecture slides: Micro-Satellite Engineering (AE4-S10),” February
2018. Space Systems Engineering (SSE), Delft University of Technology.

[2] D. J. Morgan, Guidance and control of swarms of spacecraft. PhD thesis, University of
Illinois at Urbana-Champaign, 2015.

[3] S. Clark, “A chat with Bob Twiggs, father of the CubeSat,” 2014 March. Retrieved from
https://www.spaceflightnow.com/news/n1403/08cubesats/.

[4] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh,
“Review of formation flying and constellation missions using nanosatellites,” Journal of
Spacecraft and Rockets, vol. 53, pp. 567–578, 2016.

[5] E. Kulu, “Nanosats Database,” 2019 June. Retrieved from https://www.nanosats.eu.

[6] S. Radu, M. Uludag, S. Speretta, J. Bouwmeester, E. Gill, and N. Chronas Foteinakis,
“Delfi-PQ: The first pocketqube of Delft University of Technology,” in Proceedings of
69th International Astronautical Congress: Bremen, Germany [IAC-18-B4.6B. 5], Inter-
national Astronautical Federation, IAF, 2018.

[7] Planet Labs Inc, “Planet Monitoring,” 2019. Retrieved from https://www.planet.com/
products/monitoring/.

[8] R. J. Luquette, J. Leitner, K. Gendreau, and R. M. Sanner, “Formation Control for the
MAXIM Mission,” January 2004. Technical Report 20040081408, NASA Goddard Space
Flight Center; Greenbelt, MD, United States.

[9] K. G. Carpenter, C. J. Schrijver, R. G. Lyon, L. G. Mundy, R. J. Allen, J. T. Armstrong,
W. C. Danchi, M. Karovska, J. Marzouk, L. M. Mazzuca, et al., “The stellar imager
(SI) mission concept,” in Future EUV/UV and Visible Space Astrophysics Missions and
Instrumentation, vol. 4854, pp. 293–302, International Society for Optics and Photonics,
2003.

Master of Science Thesis Floris van Dam

https://www.spaceflightnow.com/news/n1403/08cubesats/
https://www.nanosats.eu
https://www.planet.com/products/monitoring/
https://www.planet.com/products/monitoring/

78 Bibliography

[10] G. Bonin, N. Roth, S. Armitage, B. Risi, and R. Zee, “The CanX-4&5 formation flying
mission: A technology pathfinder for nanosatellite constellations,” in Proceedings of the
AIAA/USU Conference on Small Satellites, Logan, UT, 2013.

[11] D. Maessen, Relative Navigation for Small Spacecraft. PhD thesis, Delft University of
Technology, 2014.

[12] L. F. Peñin, J. Araújo, and N. Ávila, “Design and evaluation of optimal reconfigura-
tion maneuvers for separated space interferometry,” Acta Astronautica, vol. 57, no. 2-8,
pp. 330–340, 2005.

[13] T. Yang, X. Yi, J. Wu, Y. Yu, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Li, and K. Jo-
hansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47,
pp. 278–305, 2019.

[14] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and
J. Lavaei, “A survey of distributed optimization and control algorithms for electric power
systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.

[15] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image restora-
tion: Fixed-point convergence and applications,” IEEE Transactions on Computational
Imaging, vol. 3, no. 1, pp. 84–98, 2016.

[16] B. He, L. Hou, and X. Yuan, “On full Jacobian decomposition of the augmented La-
grangian method for separable convex programming,” SIAM Journal on Optimization,
vol. 25, no. 4, pp. 2274–2312, 2015.

[17] J. Chu, Dynamics, Distributed Control and Autonomous Cluster Operations of Fraction-
ated Spacecraft. PhD thesis, Delft University of Technology, 2015.

[18] L. Ferranti, R. R. Negenborn, T. Keviczky, and J. Alonso-Mora, “Coordination of multi-
ple vessels via distributed nonlinear model predictive control,” in 2018 European Control
Conference (ECC), pp. 2523–2528, IEEE, 2018.

[19] R. Van Parys and G. Pipeleers, “Distributed model predictive formation control with
inter-vehicle collision avoidance,” in 2017 11th Asian Control Conference (ASCC),
pp. 2399–2404, IEEE, 2017.

[20] F. Rey, Z. Pan, A. Hauswirth, and J. Lygeros, “Fully decentralized ADMM for coordina-
tion and collision avoidance,” in 2018 European Control Conference (ECC), pp. 825–830,
IEEE, 2018.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Foundations
and Trends R© in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[22] B. He, M. Tao, and X. Yuan, “Alternating direction method with Gaussian back sub-
stitution for separable convex programming,” SIAM Journal on Optimization, vol. 22,
no. 2, pp. 313–340, 2012.

Floris van Dam Master of Science Thesis

79

[23] A. Aytekin, H. R. Feyzmahdavian, and M. Johansson, “Analysis and implementation
of an asynchronous optimization algorithm for the parameter server,” arXiv preprint
arXiv:1610.05507, 2016.

[24] K. Lee and R. Bhattacharya, “On the convergence analysis of asynchronous distributed
quadratic programming via dual decomposition,” arXiv preprint arXiv:1506.05485, 2015.

[25] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods; lecture notes of EE392o,
Autumn Quarter,” 2004-2005. Stanford University.

[26] Y. Nesterov, “A method for solving the convex programming problem with convergence
rate O(1/k2),” Dokl. Akad. Nauk SSSR, vol. 269, no. 3, pp. 543–547, 1983.

[27] J. Liang and C.-B. Schönlieb, “Faster FISTA,” arXiv e-prints arXiv:1807.04005, July
2018.

[28] V. V. Mai and M. Johansson, “Nonlinear Acceleration of Constrained Optimization Al-
gorithms,” in ICASSP 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4903–4907, IEEE, 2019.

[29] K. Alfriend, S. R. Vadali, P. Gurfil, J. How, and L. Breger, Spacecraft formation flying:
Dynamics, control and navigation, vol. 2. Elsevier Astrodynamics Series, 2009.

[30] J. Eyer, A dynamics and control algorithm for low earth orbit precision formation flying
satellites. PhD thesis, University of Toronto, 2009.

[31] P. A. Capó-Lugo and P. M. Bainum, Orbital Mechanics and Formation Flying: A Digital
Control Perspective, ch. 3, pp. 37–73. Elsevier, 2011.

[32] D. Morgan, S.-J. Chung, L. Blackmore, B. Acikmese, D. Bayard, and F. Y. Hadaegh,
“Swarm-keeping strategies for spacecraft under J2 and atmospheric drag perturbations,”
Journal of Guidance, Control, and Dynamics, vol. 35, no. 5, pp. 1492–1506, 2012.

[33] J. Sullivan, S. Grimberg, and S. D’Amico, “Comprehensive survey and assessment of
spacecraft relative motion dynamics models,” Journal of Guidance, Control, and Dy-
namics, vol. 40, no. 8, pp. 1837–1859, 2017.

[34] D. Wang, B. Wu, and E. K. Poh, Satellite Formation Flying: Relative Dynamics, For-
mation Design, Fuel Optimal Maneuvers and Formation Maintenance, vol. 87. Springer,
2016.

[35] G. Gaias, J.-S. Ardaens, and O. Montenbruck, “Model of J2 perturbed satellite relative
motion with time-varying differential drag,” Celestial Mechanics and Dynamical Astron-
omy, vol. 123, no. 4, pp. 411–433, 2015.

[36] A. W. Koenig, T. Guffanti, and S. D’Amico, “New state transition matrices for space-
craft relative motion in perturbed orbits,” Journal of Guidance, Control, and Dynamics,
vol. 40, no. 7, pp. 1749–1768, 2017.

[37] G. Xu and D. Wang, “Nonlinear dynamic equations of satellite relative motion around
an oblate Earth,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 5, pp. 1521–
1524, 2008.

Master of Science Thesis Floris van Dam

80 Bibliography

[38] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2018. Retrieved from
http://www.gurobi.com.

[39] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual: Choosing the right
algorithm,” 2018. Retrieved from https://www.gurobi.com/documentation/8.1/
refman/numerics_choosing_the_righ.html.

[40] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decomposition methods;
lecture notes of EE364B, Winter Quarter,” 2006-2007. Stanford University.

[41] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate analysis for dual
subgradient methods,” SIAM Journal on Optimization, vol. 19, no. 4, pp. 1757–1780,
2009.

[42] H. Y. Ong and J. C. Gerdes, “Cooperative collision avoidance via proximal message
passing,” in 2015 American Control Conference (ACC), pp. 4124–4130, IEEE, 2015.

[43] Z. Wang, Y. Zheng, S. E. Li, K. You, and K. Li, “Parallel Optimal Control for Cooper-
ative Automation of Large-scale Connected Vehicles via ADMM,” in 2018 21st Interna-
tional Conference on Intelligent Transportation Systems (ITSC), pp. 1633–1639, IEEE,
2018.

[44] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,”
IEEE/ACM Transactions on networking, no. 3, pp. 375–385, 1996.

[45] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of ADMM for multi-block con-
vex minimization problems is not necessarily convergent,” Mathematical Programming,
vol. 155, no. 1-2, pp. 57–79, 2016.

Floris van Dam Master of Science Thesis

http://www.gurobi.com
https://www.gurobi.com/documentation/8.1/refman/numerics_choosing_the_righ.html
https://www.gurobi.com/documentation/8.1/refman/numerics_choosing_the_righ.html

Glossary

List of Acronyms

AA Anderson Acceleration

ADMM Alternating Direction Method of Multipliers

ALM Augmented Lagrangian Method

CanX-4,5 Canadian Advanced Nanospace eXperiment-4&5

Delfi-PQ Delfi-PocketQube

DOF Degree of Freedom

ECI Earth Centered Initial

FISTA Fast Iterative Shrinkage-Threshold Algorithm

GS-ALM Gauss-Seidel decomposition of the Augmented Lagrangian Method

HBA Heavy Ball Acceleration

J-ALM Jacobian decomposition of the Augmented Lagrangian Method

LEO Low Earth Orbit

LVLH Local-Vertical-Local-Horizontal

MPC Model Predictive Control

PPRO Passive Periodic Relative Orbits

RAAN Right Ascension of Ascending Node

ROE Relative Orbital Elements

RSV Reference Satellite Variables

SCP Sequential Convex Programming

Master of Science Thesis Floris van Dam

82 Glossary

STM State-Transition Matrix

SWIFT Silicon Wafer Integrated Femtosatellites

List of Symbols

β Heavy Ball momentum parameter
κ Discrete time instance
εSCP Convergence tolerance for the SCP algorithm
γ Geocentric latitude
µ Gravitational parameter of Earth
Ω Right ascension of the ascending node
πi Priority value of spacecraft i
ρ Stepsize for the dual update
σ Standard deviation of positions in initial and final configuration
θ True anomaly

Ō Last block row of O
r̄ Position vector of the formation center with respect to Earth
T̄ Last block row of T
Ūj Best available prediction of the control acceleration vector Uj
x̄ Best available prediction of the state of a spacecraft
Ĝ Block diagonal matrix consisting of copies of G
r̂ Magnitude of position vector of formation center
Û li Control acceleration vector of spacecraft i at SCP iteration l
X̂ X-vector in ECI frame
x̂ X-vector in LVLH frame
Ŷ Y-vector in ECI frame
ŷ Y-vector in LVLH frame
Ẑ Z-vector in ECI frame
ẑ Z-vector in LVLH frame
a Weight vector in Anderson Acceleration
B Stacked matrices Bij
cJ2 Constant to simplify notation of the Xu-Wang dynamics model
D Lipschitz constant
Dij Vector which contains the 2-norm of the position differences of predicted trajec-

tories X̄i and X̄j

F Matrix used to shorten the notation of collision avoidance constraint residuals
for all spacecraft pairs

Fk Residual matrix for Anderson Acceleration

Floris van Dam Master of Science Thesis

83

G Matrix selecting positions from a state vector
h Angular momentum vector
ic Inclination
J2 Second zonal harmonic coefficient of the Earth
K Kinetic energy
k Iteration number in dual algorithms
L Lagrangian
l SCP iteration number
m Strong convexity parameter
mk Maximum number of previous dual vectors taken into account in Anderson Ac-

celeration
Mij Block diagonal matrix consisting of position differences of predicted trajectories

X̄i and X̄j

N Number of spacecraft
O Block matrix with products of matrices A used in dynamical constraint
P Potential energy
Rcol Minimum separation distance between two spacecraft
Rcomm Maximum distance for which two spacecraft can still communicate
Re Earth’s equatorial radius
rij Residual vector of spacecraft i and j: a measure for the collision avoidance

constraint violation
s Slack variable vector
T Block matrix with products of matrices A and B used in dynamical constraint
T Delay in asynchronous algorithm
Tmax Maximum delay in asynchronous J-ALM
Tf Time at which the spacecraft should have acquired the new formation
umax Maximum control acceleration per DOF
Uj Vector containing the control acceleration inputs over entire horizon
ui,t Control acceleration vector in 3 DOF for spacecraft i at time t
vx Radial velocity
Wi Consensus variable vector related to Ui
Xj Vector containing all states of spacecraft j over the prediction horizon
xi,fin Desired final state for spacecraft i
xi,in Given initial state of spacecraft i
xi,t State vector of spacecraft i at time t, consisting of position and velocity in three

directions
yij Dual vector for spacecraft pair i, j
∗ Optimal solution

[.]+ Projection operator to R+

∆V̄ Required velocity change to perform the a reconfiguration maneuver, averaged
over the number of spacecraft

Master of Science Thesis Floris van Dam

84 Glossary

Rd Domain of the trajectory optimization problem
0 Zero vector with appropriate size
Ci Set of neighbors which potentially collide with spacecraft i.
Ni Set of spacecraft within communication distance Rcomm of spacecraft i
Pi Set of spacecraft that spacecraft i has to avoid
Ui Convex set of vectors Ui which satisfy the dynamical and maximum control

acceleration constraints.

Floris van Dam Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	State of the Art
	Research Problem and Questions
	Main Contributions
	Thesis Outline

	Problem Formulation
	The Non-convex Trajectory Optimization Problem
	Initial, Final and Dynamical Constraint
	Reference Frames
	Perturbations in Low Earth Orbit
	Models in Literature
	The Xu-Wang Relative Dynamics Model
	Linearization and Discretization
	Passive Periodic Relative Orbits

	A Convex Collision Avoidance Constraint
	The Convex Problem with Sequential Convex Programming
	Simulation Specifics
	Summary and Conclusions

	Distributed Optimization with Decreased Cooperation
	Centralized algorithm
	Distributed Algorithm without Cooperation
	Model Predictive Control

	Hybrid Algorithm
	Simulations
	Summary and Conclusions

	Dual Methods
	Dual Decomposition
	Selecting an appropriate stepsize

	Augmented Lagrangian Methods
	Alternating Direction Method of Multipliers in Consensus Form
	Gauss-Seidel Decomposition of Augmented Lagrangian Method
	Jacobian Decomposition of Augmented Lagrangian Method
	Simulation and Comparison

	Asynchronous Algorithm
	Summary and Conclusions

	Accelerated Dual Methods with Sequential Convex Programming
	Accelerating Dual Algorithms
	Heavy Ball Acceleration
	Fast Iterative Shrinkage-Threshold Algorithm
	Anderson Acceleration
	Summarizing Acceleration Figures

	Simulations with Sequential Convex Programming
	Four Spacecraft Reconfiguration
	Ten Spacecraft Reconfiguration
	Computation Times

	Summary and Conclusions

	Conclusions
	Summary of the Research and Answers to Sub-Questions
	Conclusion of the Research
	Recommended Future Work

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

