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We assess the effect of substrate heterogeneity on the metabolic response of P. chrysogenum in industrial
bioreactors via the coupling of a 9-poolmetabolicmodelwith Euler-Lagrange CFD simulations. In thiswork,
we outline how this coupled hydrodynamic-metabolic modeling can be utilized in 5 steps. (1) A model
response study with a fixed spatial extra-cellular glucose concentration gradient, which reveals a drop in
penicillin production rate qp of 18—50% for the simulated reactor, depending on model setup. (2) CFD-
based scale-downdesign,wherewedesign a 1-vessel scale down simulator based on the organism lifelines.
(3) Scale-down verification, numerically comparing themodel response in the proposed scale-down simu-
latorwith large-scaleCFD response. (4) Reactor designoptimization, reducing thedrop inpenicillin produc-
tion by a change of feed location. (5) Long-term fed-batch simulation, where we verify model predictions
against experimental data, and discuss population heterogeneity. Overall, these steps present a coupled
hydrodynamic-metabolic approach towards bioreactor evaluation, scale-down and optimization.

� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to the presence of gradients in substrate concentration
(Enfors et al., 2001), dissolved oxygen concentration (Oosterhuis
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and Kossen, 1984) and other process variables in industrial bio-
reactors, organisms are subject to temporal variations in their envi-
ronment. Such variations impose stresses on these organisms (Lara
et al., 2006; Neubauer and Junne, 2010; Wang et al., 2014), which
may in turn affect the process yield (de Jonge et al., 2011). There
are cases where extra-cellular variations appear to be advanta-
geous (Enfors et al., 2001), but typically the impact is negative as
the process is driven away from the conditions set for yield opti-
mization (de Jonge et al., 2011; Wang et al., 2015). Being related
to mixing behavior, these gradients may occur in any reactor type,
and are expected to amplify upon scale-up, which may hence come
with a yield loss that should be considered when judging scale-up
economics. Furthermore, knowledge on the impact of bioreactor
heterogeneity can be used to guide design changes to the reactor
and, with genetic engineering, the micro-organism itself.

Previously, we used Euler-Lagrange computational fluid
dynamics (CFD) to study the environmental fluctuations experi-
enced by micro-organisms (called lifelines) (Haringa et al., 2016),
and showed how fluctuation statistics can be acquired from such
simulations to guide scale-down (SD) simulator design (Haringa
et al., 2017a). These works focused on simulation and fluctuation
quantification using the substrate uptake (qs) lifeline, and did not
quantitatively consider the metabolic response. When a dynamic
metabolic model is available for the studied organism, coupled
metabolic-hydrodynamic simulations can be used to evaluate the
expected metabolic impact (Lapin et al., 2004, 2006). Combined
with experiments in representative scale-down simulators, such
a coupled hydrodynamic-metabolic approach can be used for: (1)
scale-down verification: does a scale-down simulator result in
the same metabolic response as observed in the large-scale CFD
simulation? and (2) design optimization: what is the expected
impact of reactor design changes or metabolic modifications based
on numerical assessment? The most promising changes can then
be experimentally tested in representative scale-down simula-
tions, offering a powerful approach to rational bioreactor design
and scale-up (Wang et al., 2014, 2015).

We numerically study five topics, outlined in Fig. 1, highlighting
the different aspects of the CFD-based scale-down workflow. A
penicillin production process is used as a case-study. Part I consid-
ers the coupled hydrodynamic-metabolic simulation of a 54 m3

industrial P. chrysogenum fermentation (Haringa et al., 2016),
focusing on mixing dynamics and neglecting slow processes such
as biomass growth. We study the impact of mixing on metabolic
variations using a 9-pool metabolic model (Tang et al., 2017). Part
II focuses on the design of a representative lab-scale SD-simulator
for the 54 m3 reactor. In part III, we perform numerical verification
Fig. 1. Graphical outline of the 5 subjects covered in this paper. I: Metabolic response si
scale-down reactor performance. IV: Numerical full-scale design optimization. V: Indust
of the proposed SD-simulator performance, first assuming ideal
mixing, and second by a CFD simulation of a 3 L reactor with
dynamic feed. In part IV, we discuss process optimization and pro-
pose a simple reactor alteration to improve the penicillin yield. To
conclude, in part V we simulate 60 h of a fed-batch fermentation
for comparison with industrial data. With this, we explore various
aspects of the use of coupled hydrodynamic-metabolic modeling
for process evaluation and optimization.
2. Methodology

All CFD simulations were conducted in ANSYS FLUENT 15:7,
MATLAB 8:6:0 was used for post-processing and ideal mixing
simulations.

2.1. Metabolic model

The 9-pool metabolic model for P. chrysogenum developed by
Tang et al. (2017) contains 5 intra-cellular metabolite and 4 enzy-
matic pools, and couples to the extra-cellular substrate concentra-
tion Cs and phenylacetic acid (PAA) concentration CPAA. The
metabolite pools are: Glycolytic intermediates (Xgly), Amino acids
(XAA), Storage polymers (Xsto), ATP (XATP) and intra-cellular PAA
(XPAA), all reported in lmol=gdw with gdw being the dry biomass
weight. Three dimensionless enzyme pools influence metabolic
rates: XE;11 (the substrate uptake capacity), XE;32 (PAA export capac-

ity) and XE;4 (storage capacity). The 4th enzyme pool controls the
biomass specific penicillin production rate qp (Douma et al.,
2010) and is reported in molp=Cmolx=h (van Gulik et al., 2000;
Douma et al., 2010; de Jonge et al., 2011). For brevity, the mathe-
matical model formulation is provided in Supplementary material
A, together with additional information regarding FLUENT cou-
pling. The effect of oxygen limitations has not been studied suffi-
ciently to be included currently model (Haringa et al., 2016; Tang
et al., 2017). Hence we currently assume sufficient oxygen supply
in all cases; oxygen limitations will be considered in future exten-
sions. For a model overview, we refer to Tang et al. (2017).

Model simplifications. Tang et al. developed and validated their
model against a range of experimental data (Tang et al., 2017;
van Gulik et al., 2000; de Jonge et al., 2011) including 360 s
feast-famine cycles (de Jonge et al., 2011). These results provide
confidence that the model is able to capture the impact of
circulation-timescale substrate variations. However, instabilities
in XATP were encountered in our CFD simulations, which resulted
from the sensitivity of the storage pool fluxes to turbulence-
mulation. II: CFD-guided scale-down simulator design. III: Numerical verification of
rial fed-batch simulation.
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induced Cs fluctuations on the sub-second timescale, which were
not accounted for in model development (for details see supple-
mentary material A). A structural solution of this issue requires
deeper analysis of the signaling mechanism behind storage
dynamics. As we currently lack the information to develop such
improvements, we instead opted for a patch solution by assuming
the ATP pool is in quasi-steady state, meaning the fluxes in- and
out of the ATP pool balance, giving dXATP=dt � 0 (Nikerel et al.,
2012). This converts the dynamic ATP-balance in an algebraic
expression:

0 ¼
Xi

ðv iðXgly;XAA;XATP; . . .ÞÞ ð1Þ
For the current non-linear kinetics, Eq. (1) was evaluated for

100;000 randomly generated sets of intra-cellular pools. Subse-
quent correlation showed XATP can be modeled as
XATP ¼ 8:25 � X3

gly=ð10:53 þ X3
glyÞ. The model response was deemed

satisfactory under all tested conditions. Further details on the
approach and verification against experimental data are reported
in supplementary material A).

2.2. CFD setup

2.2.1. 54m3 reactor setup
We use the 54 m3 reactor simulation (Haringa et al., 2016) with

simplified single-phase hydrodynamics as the industrial base-case.
We furthermore simulate the same case including aeration, with a
superficial gas velocity of Ug ¼ 0:05 m=s, measured under STP con-
ditions. The headspace pressure in the reactor was 1:85 bar, which
gives an air density of 2:4 kg=m3 based on the log-mean pressure;
the gas flowrate in the vessel was adjusted accordingly. The total
domain height Ht ¼ 11 m to account for broth expansion upon gas-
sing, the gas-filled headspace is removed during parcel tracking
(Haringa et al., 2017a). A discrete population balance (8 bins,
0:5—12:7 mm) with the kernels of Luo and Svendsen (1996) was
employed to capture the bubble size distribution. A Sauter mean
diameter db ¼ 7 mm was observed; we lack experimental data to
verify this, unfortunately. Furthermore we used the standard
k� � model (dispersed turbulent formulation), multiple-reference
frame impeller modeling, and the universal drag model for inter-
phase momentum exchange. Other inter-phase forces were
neglected (Khopkar et al., 2003; Gunyol et al., 2009; Haringa
et al., 2017a). Simulations using Casson rheology (Roels et al.,
1974) diverged in volume fraction a. For simplicity, we hence set
the broth rheology equal to water (Newtonian, ll ¼ 0:001). We
realize this is a strong deviation from reality; we defend this
assumption by observing that the measured air-broth circulation
time lies in between the circulation times in pure water and air-
water (Table 1), and capturing the range suffices for the current
purpose. The air-water surface tension r ¼ 0:072 N=m, the turbu-
lent Schmidt number was set to Sct ¼ 0:2. Both single-phase and
aerated simulations were conducted in a mesh with 180� periodic-
ity. 235 � 103 hexahedral grid cells were used for single-phase
cases, 923 � 103 hexahedral cells for aerated cases.
Table 1
Validation parameters of 54 m3 fermentor simulations. The holdup for air-water is aver
circulation time is based on 5% saturation of the probe signal (mixing time s95 is based on 9
recording the time lag between H2SO4 insertion at the top and probe response at the bott

Parameter Exp. water Exp. broth Exp. air-wat

Gas hold-up n=a n=a 16:4� 0:8
db ½mm� n=a n=a n=m
scirc ½s� 19:3 77:0 41:6

n/a = not applicable; n/m = not measured.
The gas flow number Fl ¼ Qg=ND
3 ¼ 0:1 implies the fermentor

operates at the boundary of the 3—3 cavity regime and recircula-
tion regime, where the mixing time s95 is equal to or above that
of single phase-flow, respectively (van der Lans and van’t Riet,
2011). Available industrial data on the circulation time (Haringa
et al., 2016) (scirc � s95=4, Noorman, 2011) suggests the latter;
the circulation time scirc is compared to simulation results in
Table 1. The single-phase and two-phase simulation under- and
over-estimate scirc for aerated broth with 30%, respectively. Note
the experimental value is based on a single measurement and
hence comes with a significant margin of error; furthermore, tran-
sient effects may lead to a natural variability in recorded mixing
times (McClure et al., 2015), introducing additional uncertainty.
With the present industrial data, it is unfortunately not possible
to quantify this uncertainty. We regard the single-phase and aer-
ated simulation as a lower and upper bound mixing time scenario,
with the true mixing behavior in the range. This level of accuracy
suffices for our current demonstration purposes, but we stress
the need for further investigation into modeling true aerated,
non-Newtonian fermentation broths, and associated with that, a
wider range of large-scale validation data (gas hold-up, local mix-
ing curves and preferably local DO/substrate concentrations).
Table 1 shows the gas-holdup is over-estimated compared to both
air-water and air-broth experiments. This is likely an effect of
model approximations, such as omitting inter-phase forces (except
drag) and the empirical nature of inter-phase models/pop. balance
kernels. For broth, the simplified rheology and effect of surfactants
and anti-foam on the broth-water surface tension r play an addi-
tional role. Currently we are not directly interested in gas-
holdup, but in case oxygen dynamics are included, this aspect
requires further study.
2.2.2. 3-l laboratory reactor setup
A round-bottom vessel with a working volume of 3 L (Tang

et al., 2017) is simulated for scale-down verification (452 � 103 hex-
ahedral grid cells. Geometric parameters are reported in supple-
mentary information B. The gas flowrate applied in prior scale-
down experiments is 2 L=min (0:66VVM) (Wang et al., 2017;
Tang et al., 2017)), giving Fl ¼ 0:009 with an agitation rate of
N ¼ 10 s�1 (600 RPM) (Tang et al., 2017). This value is outside of
the range probed in mixing experiments (van der Lans and van’t
Riet, 2011), but implies s95 is similar to or slightly higher than
for single-phase conditions. For simplicity, we hence ignore the
effect of gas flow and model single-phase water. All walls were
no-slip while the top surface had a no-shear free surface condition.
Computational mixing simulations at 600 RPM yield a dimension-
less mixing time Ns95 ¼ 22, in excellent agreement with experi-
ments (supplementary information B); the dimensionless
circulation time scirc � s95=4 (Noorman, 2011).

At high Cx, the high effective liquid viscosity ll may practically
lead to transitional flow, possibly increasing h95 significantly. Pre-
vious non-Newtonian simulations of aerated lab-scale reactors
did not produce realistic mixing results due to stagnant zones
(Moilanen et al., 2007), and preliminary work using a low� Re
aged over 3 experiments, while a single experiment is reported for broth. The CFD
5% saturation). For the experimental data, the half-circulation time was determined by
om.

er Exp. air-broth CFD water CFD air-water

12:6 n=a 20:4
n=m n=a 7:1
25:7 18:2 32:9



Table 2
Comparison of the assumptions between 1-way and 2-way coupling method used in
this work. 1-way coupling is here used for chemostat cultivation, and 2-way coupling
for fed-batch cultivation.

Method 1-way coupling 2-way coupling

Parcel tracking FLUENT 15.7 FLUENT 15.7
Metabolic
computation

MATLAB 8.6.0 (post-
process)

FLUENT 15.7 (in-
process)

Cx Fixed Variable
XE11 Fixed Variable
l Variable, stat. steady Variable
Dr stat. steady, Dr ¼ l Dr � 0 (fed-batch)
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k� � model with ll ¼ 0:15 Pa s led to parcel tracking issues, with
parcels sticking in the impingement point of the impeller discharge
stream. We hence opted to decrease the agitation rate N to 1:67 s�1

to assess the effect of mixing time on the performance of a lab-
scale scale-down simulator, and again assume a Newtonian fluid
with ll ¼ 0:001. This approach suffices for our current interest in
the qualitative effect of a significant change in s95; we do stress
that for predictive quantitative modeling a more realistic rheology
model is required. For 600 and 100 RPM, scirc ¼ 0:55 and 3:3 s,
respectively. Experimental evaluation of mixing behavior in real
fermentation broths is required to comment on whether this range
of scirc represents lab-scale practice.

2.2.3. Metabolic model coupling
The 9-pool metabolic model (Tang et al., 2017) is coupled to

the Lagrangian (parcel) phase to study the response of micro-
organisms to environmental variations (Lapin et al., 2004, 2006;
Haringa et al., 2017b). In the 9-pool model the glucose uptake
rate qs is subject to transporter control, where the availability

of transporter (XE;11) is controlled by growth rate l ðh�1Þ. This
means that strictly speaking 2-way coupling is required to
resolve the substrate environment, which requires simulating
long timespans (OðhÞ) due to the long transporter adaptation
time, and is therefore computationally expensive (see supple-
mentary material C).

The long adaptation time allows for the assumption that the
average transport capacity XE;11 is homogeneous in the fermentor.
As XE;11 ¼ f ðlÞ, its value can be estimated based on growth rate
under ideally mixing conditions, lid. For the applied model, the
average growth rate under dynamic conditions l was typically
close to lid, and the estimated XE;11 was similarly close. A-priori
estimation of XE;11 allows to use 1-way coupling, as was done in
earlier work (Haringa et al., 2016, 2017a; McClure et al., 2016),
which means the number of tracked parcels Np does not influence
the substrate gradient and can be freely chosen. This simplification
does not hold when intra-cellular dynamics affect qs at short time-
scales (� scirc) (Lapin et al., 2004, 2006; Haringa et al., 2017b), or
when XE;11 under dynamic conditions differs strongly from the
ideal-mixing assessment.

The above 1-way coupled approach was used to study mixing-
timescale dynamics, assuming constant Cx;XE;11, feed rate F and
liquid-filled height H. This practically represents a chemostat culti-
vation, where the dilution rate Dr is equal to the mean growth rate
l. Parcel tracking for both 1- and 2-way coupling is conducted in
FLUENT, but segregating the extra-cellular and intra-cellular reac-
tions allows 1-way coupling to be executed after rather than dur-
ing the FLUENT simulation, using MATLAB to perform the
metabolic computations. Additional information regarding the
practical implementation of the metabolic computations is pro-
vided in supp. mat. A. The (statistical) steady state allows to simu-
late Oð10Þ mixing times to acquire fluctuation statistics; lifelines of
80 h are subsequently generated to study the adaptation of qp to

mixing-time dynamics (with constant Cx;XE;11 by construction)
by joining together individual lifelines, exploiting the
statistically-steady extra-cellular nature.

For the fed-batch simulation we use 2-way coupling to include
temporal changes in Cx and XE;11, meaning the metabolic computa-
tions are conducted in FLUENT as part of the simulation. The long
variation time of both parameters allows the assumption that Cx

and XE;11 are spatially homogeneous (XE;11 may be heterogeneous
within the population, but to a same degree at every spatial loca-
tion). This means that each timestep Cx and XE;11 can be calculated
as the parcel population ensemble average, and the local uptake
rate can be computed from the Eulerian framework as Eq. (2):
rs;c ¼ Cx � k11 � XE;11 � Cs

Ks þ Cs
ð2Þ

This simplified 2-way coupling requires the parcel number to be
sufficient to capture overall heterogeneity, for which Np ¼ Oð103Þ
typically suffices (Haringa et al., 2016; McClure et al., 2016); full
2-way coupling would require Np ¼ Oð105Þ � Oð106Þ (Haringa
et al., 2017b). 1- and 2-way coupling require similar computation
time per hour flow-time, but 2-way coupling does require the full
fermentation time to be simulated to account for changes in Cx and
XE;11. A comparison of the assumptions between 1 and 2-way cou-
pling is given in Table 2.
2.3. Overview of cases

We provide an overview of all simulations (Table 3), both con-
ducted with CFD (FLUENT) and with the ideal or instantaneous
mixing assumption (MATLAB), including the made assumptions
and sections where these simulations are conducted. There is some
variability in the applied timestep size Dt in FLUENT; in all cases it
was ensured the particle trajectories were completed within the
default accuracy settings. In all cases, glucose concentration Cs

was variable, and the PAA concentration was fixed at
CPAA ¼ 3 mmol=kg.

As noted in Section 2.2.3, the uptake capacity qs;max ¼ k11 � XE;11

in the 9-pool model depends on the growth rate l. In the chemo-

stat simulations, we aimed at l � 0:03 h�1 to maximize qp; at this
value of l, the 9-pool model predicts qs;max � 1:13 mmol=gdw=h
under well mixed conditions, which is markedly lower than the
qs;max ¼ 1:6 mmol=gdw=h reported by de Jonge et al. (2011), mea-

sured for l ¼ 0:05h�1. The large scale simulations TU-A, TG-A,
MU-A were conducted with qs;max ¼ k11 � XE;11 ¼ 1:13 mmol=gdw=h
and Ks ¼ 9:8 lmol=kg.

The scale-down analysis and associated lab-scale CFD simula-
tions (part II and III) were conducted before the 9-pool model was
available, which meant we had to rely on the kinetic parameters
of de Jonge et al. (2011), as in our previous work where we solely
considered glucose uptake (Haringa et al., 2016). For consistency,
we hence report a set of CFD simulations (TU-B, TG-B, MU-B) which
use the 9-pool model, but with the uptake kinetics as published by
De Jonge et al., Ks ¼ 7:8 lmol=kg and qs;max ¼ 1:6 mmol=gdw=h. We
note that the fluctuations in qs and the intra-cellular pools are too
strong in these cases. The purpose of these simulations is to show
that the intra-cellular response predicted between the industrial
and lab-scale simulations matches; not to predict the metabolic
response in the absolute sense.

Part I: Model response study. Part I focuses on TU-A (1-phase
hydrodynamics, top feed) and TG-A (2-phase hydrodyn., top feed),
to study the metabolic response to extra-cellular variations in an
industrial-scale reactor with a statistically steady extra-cellular
environment. As in our earlier work, a late fermentation stage



Table 3
Overview of all the simulations, both CFD and ideal/instantaneous-mixing based (IDM), conducted in this work. All cases were conducted as chemostats, except for TU=ID� FB,
which are a fed-batch simulations. Naming convention: T = top feed. M = mid feed (impeller discharge stream). U = ungassed. G = gassed. FB = fed-batch (2-way coupled). ID =
instantaneously mixed. SD = scale-down. 9� P indicates the 9-pool model of Tang et al. (2017) is used for metabolic coupling, 1� P indicates the Dynamic Gene Regulation model
of Douma et al. is used (Douma et al., 2010). A and B indicate which kinetic parameter values are used. SD� 100 and SD� 600 indicate agitation rates of 100 and 600 RPM,
respectively.

Name CFD=IDM Met. Model. Part Gassing Coupling Feed qs;max ½mmol=gdw=h� Ks ½lmol=kg� Cx ½gdw=kg� Np Dt ½s�
TU-A CFD 9� P I no 1-way top 1:13 9:8 55 4000 0:1
TG-A CFD 9� P I yes 1-way top 1:13 9:8 55 4000 0:2
MU-A CFD 9� P IV no 1-way imp. 1:13 9:8 55 4000 0:3
TU-B CFD 9� P I no 1-way top 1:6 7:8 55 4000 0:03
TG-B CFD 9� P I yes 1-way top 1:6 7:8 55 4000 0:2
MU-B CFD 9� P IV no 1-way imp. 1:6 7:8 55 4000 0:3
TU-1P CFD 1� P I no 1-way top 1:6 7:8 55 n/a st. st.
ID-1P IDM 1� P I n/a n/a n/a 1:6 7:8 55 n/a st. st.
ID-9P IDM 9� P I n/a n/a n/a 1:6 7:8 55 n/a st. st.

ID-SD-27 IDM 9� P II/III n/a n/a n/a 1:6 7:8 27 n/a 0:03
ID-SD-55 IDM 9� P II/III n/a n/a n/a 1:6 7:8 55 n/a 0:03

CFD-SD-100 CFD 9� P III no 1-way top 1:6 7:8 27 5000 0:01
CFD-SD-600 CFD 9� P III no 1-way top 1:6 7:8 27 5000 0:002
ID-1P-FB IDM 9� P V n/a n/a n/a var. 9:8 var. n/a 1
TU-FB CFD 9� P V no 2-way top var. 9:8 var. 2000 0:2

n/a = not applicable; var. = variable; st. st. = simulation conducted in steady state.
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was modeled, with Cx ¼ 55 g=kg and substrate feed rate
F ¼ 1:23g=m3s (Haringa et al., 2016). The 1-way coupling approach
means XE;11 remains unchanged in time. All other pools were vari-
able, and initialized based on ideal mixing results. For consistency
with part II, III, TU-B and TG-B are also reported here. The results
are compared with a CFD simulation coupled with the dynamic
gene regulation model of Douma et al. (1-phase, top feed, case
TU-1P), and ideal-mixing simulations with both the dynamic gene
regulation (ID� 1P) and 9-pool (ID-9P) model.

Part II: Scale-down design. In part II we show how a representa-
tive single-vessel SD-simulator with dynamic feed can be designed
from the lifelines gathered in part I, using CFD-case TU � 1B as a
basis. Two designs are proposed, with biomass concentrations
Cx ¼ 55 g=kg and Cx ¼ 27:5 g=kg, respectively. As noted above,
the uptake kinetics of de Jonge et al. (2011) were used. As in pre-
vious work (Haringa et al., 2017a), the default SD protocol is based
on matching qs-lifelines between the scales.

Part III: Scale-down verification. First the performance of the
scale-down protocols from part II is assessed assuming ideal mix-
ing (cases ID-SD-27 and ID-SD-55). Next, CFD simulations of the
3 L lab scale reactor were conducted with the Cx ¼ 27:5gdw=kg
scale-down protocol, to study the effect of non-ideal mixing on
SD performance. Instantaneous feed pulse injection was assumed
in a small volume near the top surface. The hydrodynamics were
frozen, but the substrate field was updated every timestep. The
feed pulse scheme was supplied to FLUENT via a user defined func-
tion coupled to a lookup table. The fast mixing required time res-
olutions of Dt ¼ 0:002 s for N ¼ 600 RPM (case CFD-SD-600),
Dt ¼ 0:01 s for N ¼ 100 RPM (case CFD-SD-100); this limited the
resolved flow-time to 650 s, in which 42 feed pulses were applied.
This number is too small for a proper replication of the industrial-
scale fluctuation statistics; therefore, scale-down performance was
judged by comparing the model performance with the ideal-
mixing response for the same 42 pulses.

Part IV: Design optimization. Industrial-scale CFD simulations
were conducted with the substrate feed directly in the top impeller
discharge stream (1-phase hydrodynamics), referred to as MU-A
and MU-B.

Part V: Full-scale fed-batch Verification. We simulated a 60 h
timespan of a fed-batch fermentation (top feed, 1-phase hydro-
dyn.) which was conducted in the current 54 m3 geometry, named
TU � FB, to verify model performance with industrial data which
was kindly provided by the DSM biotechnology center. The simula-
tion was started at t ¼ 10 h after the batch start Cx ¼ 14 g=L. All
model parameters are initialized based on the ideally-mixed 9-
pool model outcome for the given starting conditions. In the indus-
trial fermentation the total broth mass increased from 36 to
46 � 103 kg over the simulated timespan. However, explicitly mod-
eling the volume change is computationally costly. As an approxi-
mation, kept the volume constant at 54 m3, with the
hydrodynamics of MU � 1; as both impellers are submerged at
all times, the change in scirc over the course of the fermentation
is assumed to be minor. To compensate for the higher volume,
the provided feed profile (reported in Fig. 6) was adjusted to ensure
an equal feed in g=kg=s between the simulation and industrial fer-
mentation at all times. Experimental data for qp and lwere used to
evaluate model performance for TU � FB, as well as an ideal-mixed
simulation with the model of Douma et al., case ID� 1P � FB.
3. Results and discussion

3.1. Part I: Model response study

3.1.1. CFD simulations
We study the long-term adaptation of P. chrysogenum exposed

to a strong substrate gradient. The most notable difference
between TU-A/B and TG-A/B is the higher scirc for the latter, as dis-
cussed in Section 2.2.1, yielding qs fluctuations of longer duration.
As qs is locally saturated in all cases, the fluctuation amplitude
hardly differs. Examples of single lifelines for TU-A and TG-A are
shown in Fig. 2, top panel.

Fig. 2 shows the pool dynamics over an 80 h period for TU-A, TG-
A, TU-B, TG-B. All cases show qualitatively similar behavior, but the
higher XE;11 for TU/TG-B has a clear negative impact on qp. This illus-
trates the error introduced by taking kinetic parameters directly
from literature, without accounting for the adaptation of qs;max to l.

Practically, qp is controlled by Xgly: high Xgly inhibits synthesis of
penicillin producing enzyme, but it increases growth rate l which
enhances enzyme synthesis. The first effect scales with X6

gly (Tang
et al., 2017), meaning that high values of Xgly are highly repressive,
but below-average values of Xgly are hardly influential. This
explains the large difference in qp between the cases, even though

all cases have a nearly equal average Xgly. The cases with the high-
est Xgly buildup show the biggest qp loss. For aerated cases,the
higher scirc translates to prolonged exposures to excess conditions,
resulting in strong Xgly accumulation. Similarly, the higher trans-



Fig. 2. Long-term 9-pool model response for TU-A (black), TG-A (red), TU-B (gray), TG-B (orange). The top panel shows examples of extra-cellular variations experienced by a
single parcel in TU-A, TG-A. For Xgly and l, the solid lines represent the mean, the dashed lines represent single parcel tracks to indicate the variations. All other lines represent
are averages of 100 parcels. Intra-cellular pools Xgly;XAA;Xsto and XPAA have units lmol=gdw . l has units h�1. qp has units mol=Cmolx=h. All other pools are dimensionless. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Comparing yields and productivity between experimental data of van Gulik et al. (2000), the black box (BB) model of Douma et al. (2010) and the 9-pool model (Tang et al., 2017)
with ideal mixing assumption and the 9-pool (9P) of Tang et al. (2017).

Case F ½mols=Cmolx=h� l ½h�1� qp ½molp=Cmolx=h� Ysx ½Cmolx=Cmols� Ysp ½molp=mols� Da

Exp. 0:0118 0:029 5:33 � 10�4 0:41 0:045 n/a

ID-1P 0:0125 0:032 4:94 � 10�4 0:43 0:040 0

ID-9P 0:0125 0:033 4:40 � 10�4 0:44 0:035 0

TU-1P 0:0125 0:043 0:73 � 10�4 0:57 0:006 n/a

TU-A 0:0125 0:032 3:57 � 10�4 0:44 0:029 32:1

TG-A 0:0125 0:035 3:28 � 10�4 0:47 0:026 58:0

TU-B 0:0125 0:033 2:99 � 10�4 0:44 0:024 57:0

TG-B 0:0125 0:027 2:38 � 10�4 0:36 0:019 103

n/a = not applicable.

Video 1
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port capacity for TU/TG-B causes increased glycolytic accumulation.
The effect of both kinetics and scirc is summarized in the Damköhler
number Da ¼ scirc=srxn, where we take srxn ¼ Ks=ðqs;maxCxÞ, the limit
for Cs ! 0. This definition for srxn does not require specifying a
value of Cs, which makes it straightforward to evaluate for both
experimental and CFD cases. Including the impeller-fed cases
MU-A/B (part IV), a linear trend between the penicillin yield Ysp

(Table 4) and Da is observed: Ysp ¼ 0:3417� 0:0015Da

(R2 ¼ 0:97), graphically shown in supp. material D.
Within the range of fluctuations, the effect of Xgly on l, while

non-linear in nature (Tang et al., 2017), can be reasonably lin-
earized. Hence, the effect of high and low Xgly values on l nearly

averages out: lðXglyÞ � lðXglyÞ. Only the most extreme case (TG-
B) deviates from this; the very lengthy exposures to starvation con-
ditions leads to a lower l. The data clearly shows that the duration
of exposures to excess- and starvation conditions strongly impacts
the metabolic response. Since these time periods are highly dis-
tributed, there is considerable heterogeneity in Xgly at any given
location. This feature is clearly visible in supplementary videos
(available online), and is inherently not captured by black-box
models that instantaneous adaptation of the intra-cellular to the
extra-cellular domain.
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XE;32 and XE;4 are hardly affected in case TU/TG-Bwhere XE;11 was

preconditioned for l ¼ 0:03 h�1, whereas the higher uptake for TU/
TG-B causes some changes in these pools. XAA is hardly affected in
all cases. The value of these pools is homogeneous within the pop-
ulation (supp. material E).

3.1.2. Experimental data and yields
The CFD results are compared with experimental chemostat

data (van Gulik et al., 2000) and ideal-mixing simulations using
both the model of Douma et al. (2010) (ID-1P) and the model of
Tang et al. (2017) (ID-9P) in Table 4. Both models are known to

under-predict qp around l ¼ 0:03 h�1 compared to steady-state
experiments. As shown in Table 4, the CFD simulations show a
yield loss between 18% (TU-A) and 46% (TG-B) compared to the
9-pool model with ideal mixing. The real circulation time for the
54 m3 reactor lies in between the extremes simulated here; based
on the Da-correlation a yield loss of 22% is expected for

scirc ¼ 25:7 s, using XE;11 value for l ¼ 0:03 h�1.
For demonstration, we have also coupled the model of Douma

directly to FLUENT (TU-1P), which yields an extreme 85% decrease
in Ysp and strong increase in Ysx (discussed in detail in Haringa et al.
(2016)). These results are deemed unrealistic; the model of Douma
was not designed to cope with rapid substrate concentration fluc-
tuations, and the results show that applying the model in a situa-
tion where such fluctuations are present leads to extreme results.
Returning now to the 9-pool model of Tang et al.; Although the
chemostat assumption used here introduces some simplifications,
we are confident the overall trends hold, making the outlined
method suitable for a quick assessment of the impact of design
changes on the fermentation process. The most promising cases
can subsequently be studied in more detail with 2-way coupling
and experimental scale-down assessment.

3.2. Part II: Scale-down design

A scale-down design analysis is conducted for TU-B. Feed proto-
cols for a single-vessel, fluctuating feed scale-down simulation
with variable pulse duration were designed based on the arc-
analysis methodology proposed in Haringa et al. (2016). In contrast
to earlier work, we did not divide the lifelines in regimes first; the
arc analysis method was directly applied to the full (smoothed)
lifelines, using a reference value qref ¼ 0:05qs;max. This means the
lifelines are divided in feast-arcs (qs=qs;max > 0:05) and famine-
arcs (qs=qs;max < 0:05). The arc duration sarc is registered as the time
between two consecutive crossings of qref , as graphically indicated
in Fig. 3A, B. The distribution in sarc is reported in Fig. 3C. For fam-
ine arcs, we can assume negligible magnitude: qs � 0, regardless of
duration. For feast arcs, the maximum qs=qs;max for each arc-
trajectory, called Xs;max, is recorded. This gives a correlation
between magnitude Xs;max and duration sarc (Fig. 3D). The rationale
behind qref ¼ 0:05 follows from the results; the famine arcs show a
complex distribution in sarc , but with negligible amplitude. For the
feast arcs, the sarc distribution is comparatively simple, and a clear
correlation between Xs;max and sarc exists. Together, these statistics
quantify qs-lifeline fluctuations and form a basis for representative
scale-down simulation.

Representative profiles of alternating feast-famine arcs are gen-
erated from the sarc-distributions by inverse transform sampling;
for each feast event, the maximum qs is retrieved from the mean
sarc-Xs;max correlation, Determining the feed rate F is straightfor-
ward from the mass balance, assuming an instantaneously mixed
lab-scale reactor. During famine intervals, F ¼ 0 and qs � 0 by con-
struction. The most truthful approach is to feed gradually over a
period of 0:5sarc , such that the arc-shape is symmetric (Fig. 3E);
this requires the lab-scale to operate at the industrial biomass con-
centration Cx ¼ 55 gdw=kg (case ID-SD-55). Applying instantaneous
feed pulse administration (Fig. 3F) relaxes this to Cx ¼ 27:5 gdw=kg
(ID-SD-27); the rate-of-change in qs is reduced as qs decreases over
the entire period sarc . The lower Cx leads to a reduced effective vis-
cosity (Roels et al., 1974) which may facilitate practical operation.
However, it must be ensured the change in rate-of-change does not
result in a different metabolic response. Further decreasing Cx

inherently compromises either the fluctuation duration or magni-
tude, and thereby the representation of qs-lifelines.
3.3. Part III: Scale-down verification

In this section we assess the scale-down protocols of part II, first
assuming instantaneous mixing and second using lab-scale CFD
simulations. Note that instantaneous/ideal mixing in this context
means the feed is immediately spatially distributed; due to the
pulsed feed nature, there are temporal variations in qs.
3.3.1. Instantaneous mixing
Both for ID-SD-55 and ID-SD-27, 5 statistically representative

lifelines were generated and analyzed. Table 5 lists the metabolic
response in qp and l compared to TU-B. Additionally, we conduct
a regime analysis (using the definitions of Haringa et al. (2016))
on the generated lifeline to determine the exposure to excess (E),
limitation (L) and starvation (S) conditions. Case ID-SD-55 slightly
over-estimates exposure to excess conditions. This results in a
higher l, mildly lower qp and minor offsets in the intra-cellular
pool sizes (reported in supp. material E), but overall we conclude
that both cases excellently represent the large-scale simulation.
The good performance of ID-SD-27 follows from the notion that

the total uptake within a pulse of length t;
R t
0 qsdt, is equal between

the two pulse administration methods, and the turnover time of
Xgly is sufficiently slow to yield similar responses in Xgly (see supp.
material E). If the turnover time of Xgly was well below sarc , the
metabolic response is expected to differ between the cases, and
lowering Cx might not be allowed. We hence regard the possible
reduction in Cx as a case-depended effect, and it should be evalu-
ated as such. Furthermore, operating at industrial Cx whenever
possible may avoid unforeseen responses, not captured by the
metabolic model. In case no predictions regarding the metabolic
response are available, a scale-down simulator should in any case
aim to produce the best possible replication of the extra-cellular
environment (qs-lifelines), and no compromises in Cx should be
made.
3.3.2. CFD verification
In many cases, lab-scale fermentors can be assumed as ideally

mixed. However, the combination of a very short srxn (due to a
low Ks) and mixing issues due to rheological issues (Moilanen
et al., 2007) could lead to spatial heterogeneity in lab-scale fermen-
tors. To assess whether this impacts scale-down performance, CFD
simulations of a SD-simulator were conducted with Cx ¼ 27:5 g=kg
to probe the possible impact of non-instantaneous mixing. Spatial
heterogeneity relates to the Damköhler number Da ¼ scirc=srxn.
Here, scirc � 0:5—3:3 s (for 600 and 100 RPM, respectively). As the
Cs field is now dynamic, we employ a more general definition of
the reaction time, srxn ¼ Cs=Rs ¼ ðCs þ KsÞ=ðqs;maxCxÞwith Cs the vol-
ume average substrate concentration. Right after pulse administra-
tion, Cs 	 Ks and Da 
 1: this implies the pulse will be mixed
before Cs and thereby srxn drop significantly, leading to a homoge-
neous broth and equal experiences by all micro-organisms in the
domain.
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This is reflected in the model response for both case CFD-SD-600
and CFD-SD-600. The qs lifelines in Fig. 4B (600 RPM) and C (100
RPM) show evidence of spatial heterogeneity directly following
pulse administration, which for case CFD-SD-600 rapidly wears
off, meaning the lifeline under the instantaneous mixing assump-
Table 5
Comparison of the instantaneous mixing cases ID-SD-27 and ID-SD-55 with CFD simulation
the ideal mixing benchmark ID-9P. The last three columns report the exposure (in %) to E (e
et al. (2016).

Case Cx ½g=kg� Feed l ½h�1� qp ½mo

TU-B 55:0 – 0:033 2:9
ID-SD-55 55:0 grad. 0:0386 2:9
ID-SD-27 27:5 inst. 0:0340 2:9

Fig. 3. A: and B: Graphical overview of the arc-analysis method for positive (feast arcs) an
Arc-time distributions famine (gray) and feast (black). D: Arc magnitude Xs;max under fea
timestep). Solid line: Xs;max vs: sarc from CFD simulation. E: Generated lifeline, gradual fee
G: Example of CFD-lifeline for TU-B. (For interpretation of the references to color in this
tion is retrieved (Fig. 4A). The heterogeneous period lasts longer
for CFD-SD-100, but eventually the population synchronizes, and
the metabolic response is hardly affected (Fig. 4D). To comment
on the role of non-ideal mixing in (aerated) SD-simulators with a
high liquid viscosity ll, experimental measurements are required,
TU-B. Inst. ¼ instantaneous feed, Grad. ¼ gradual feed. Dqp is reported with respect to
xcess), L (limitation) and S (starvation) conditions, based on the definitions of Haringa

lp=Cmolx=h� Dqp E L S

9 � 10�4 �31:8% 6:8 36:2 57:0

0 � 10�4 �33:7% 9:8 32:7 57:5

3 � 10�4 �33:2% 8:0 34:2 57:8

d negative (famine arcs) fluctuations with respect to qref ¼ 0:05qs;max , respectively. C:
st conditions as a function of arc time. Colors indicate bin fraction (normalized per
d pulses, Cx ¼ 55 g=L. F: Generated lifeline, instantaneous feed pulses, Cx ¼ 27:5 g=L.
figure legend, the reader is referred to the web version of this article.)



Fig. 5. Long-term 9-pool model response large-scale simulations for TU-A (black), MU-A (red), TU-B (gray), MU-B (orange). The top panel shows examples of qs-lifelines for
single parcels in TU-A,MU-A. For Xgly and l, the solid lines represent the average, the dashed lines represent single parcel tracks to indicate the variations. All other solid lines
represent are averages of 100 parcels. Intra-cellular pools Xgly;XAA;Xsto and XPAA have units lmol=gdw . l has units h�1. qp has units mol=Cmolx=h. All other pools are
dimensionless. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Particle tracks in scale-down simulation CFD. A: instantaneous mixing simulation. B: CFD-SD-600, 3 tracks. C: CFD-SD-100, 3 tracks. D: Response of intra-cellular pools
in the 3 L lab-scale reactor simulations. Black line: instantaneous mixing results. Red line: CFD-SD-600, average over 5000 tracks. Blue line: CFD-SD-100 simulation, average
over 5000 tracks. Intra-cellular pools Xgly ;XAA;Xsto and XPAA have units lmol=gdw . l has units h�1. qp has units mol=Cmolx=h. All other pools are dimensionless. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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but the results for CFD-SD-100 imply very poor mixing is required
to yield significant heterogeneity in the population, and to yield a
different metabolic response compared to the pulse-profile under
the assumption of instantaneous mixing. This stems positive for
practical application of fluctuating-feed SD-simulators.

3.4. Part IV: Design optimization

Part I revealed that reducing the frequency of qs variations
reduces the amplitude of Xgly fluctuations, which reduces inhibi-
tion of qp. Cronin et al. reduced s95 by a factor 2—2:5 by placing
the feed point just below the top impeller (Cronin et al., 1994;
Vrábel et al., 1999; van der Lans and van’t Riet, 2011). We find
s95 ¼ 23 s (1-phase hydrodyn., MU-A/B) when the feed is placed
Table 6
Comparing yields and productivity between experimental data of van Gulik et al. (2000), th
with ideal mixing assumption and the 9-pool (9P) of Tang et al. (2017).

Model Case F ½mols=Cmolx=h� l ½h�1�
9P ID mix 0:0125 0:033

9P TU-A 0:0125 0:033

9P TU-B 0:0125 0:032

9P MU-A 0:0125 0:030

9P MU-B 0:0125 0:030

Fig. 6. Response profiles of simulation TU-FB, comparing industrial data (diamonds), CF
rate per unit reactor volume. B: Biomass concentration. C: Growth rate. D: Penicillin pro
the solid line the mean and dashed lines �1 st. dev. (For interpretation of the references t
in the top-impeller discharge stream, a 2:7-fold reduction in s95
compared to the top feed. This exceeds expectations and may be
excessively low for a true penicillin fermentation when rheology
and aeration are accounted for, but we accept this result for the
sake of demonstration. The pool response for simulations MU-A
and MU-B is reported in Fig. 5.

Compared to TU-A, the qs-lifelines for MU-A show a lower fluc-
tuation amplitude, and strong reduction in fluctuation duration
(Fig. 5, top). This translates to much milder Xgly variations that
directly relate to a higher qp for MU-A/B cases (Table 6). Again,

Xgly and hence l remains virtually equal between the cases. The
qp loss is reduced to 8:6% (with respect to ID-9P), where the top-
feed case with equal scirc , TU-A, showed a yield loss of 17%. The
reduced exposure to starvation conditions furthermore is observed
e black box (BB) model of Douma et al. (2010) and the 9-pool model (Tang et al., 2017)

qp ½molp=Cmolx=h� Ysx ½Cmolx=Cmols� Ysp ½molp=mols�

4:40 � 10�4 0:44 0:035

2:99 � 10�4 0:44 0:024

3:57 � 10�4 0:43 0:029

4:02 � 10�4 0:40 0:032

3:83 � 10�4 0:40 0:031

D response (black line) and an ideal-mixed black-box simulation (red line). A: Feed
duction. Panel E shows the response of 6 slow-responding intra-cellular pools, with
o color in this figure legend, the reader is referred to the web version of this article.)
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to yield a higher Xsto for MU � 1 cases. An alternative process
improvement may be to modify increase Ks by modifying the glu-
cose transporter, thereby reducing sensitivity to Cs fluctuations.
Within the current metabolic model, this also requires altering
the sensitivity of the storage/release process to Cs; we did not fur-
ther pursue this option within the scope of this work.

3.5. Part V: Industrial-scale fed-batch simulation

The long-term metabolic response in an industrial fed-batch
reactor is simulated; the dynamic feed profile that was supplied
to the simulation is reported in Fig. 6A. Cx and l are well captured
((Fig. 6B and C, resp.), although an ideal-mixed simulation with
model of Douma et al. (2010) (ID-FB) better captures the final
20 h. The 9-pool CFD simulation, however, performs superior in
predicting the gradual reduction in qp (Fig. 6D). The initial offset
results from the lower peak qp prediction by the 9-pool model

around l ¼ 0:03 h�1.
The trends in intra-cellular pools (Fig. 6E) reveal major tempo-

ral changes in the pool averages (solid lines), as well as the emer-
gence of significant heterogeneity within the population; the
dashed lines in Fig. 6E represent the pool size standard deviation
over 2500 tracks. The decreasing trend in all enzyme pools is a con-
sequence of the reduction in l to 0:01 h; the drop in XE32 reduces
the PAA export capacity, giving rise to a strong PAA build-up. Sim-
ilarly, a buildup in Xsto is observed. As before, the AA pool is least
sensitive, although it undergoes some changes in later stages.
The strong rise in population heterogeneity roughly coincides with
the switch to a constant feed rate F � 1:6 kg=m3=h.

For brevity, figures further detailing the onset of and degree of
population heterogeneity are reported in supp. material F. The high
degree of heterogeneity in the enzyme pools may be surprising at
first glance; their adaptation timescale strongly exceeds scirc , and
all parcels are expected to observe highly similar Cs fluctuations
during the cultivation. The link between l and XE;11 plays a key
role; a parcel residing in a famine zone (l � 0) for a prolonged time
undergoes a reduction in XE;11. This reduces subsequent substrate
uptake qs with respect to the population average, further decreas-
ing l and hence XE;11, thereby amplifying the original disturbance.
A deeper analysis in supp. material F shows that parcels with a
below-average XE;11 early on end in the bottom of the XE;11 distribu-
tion. A prolonged exposure to excess conditions could reverse the
disturbance, but the results show that this practically rarely occurs.
The further the deviation from the population average, the more
unlikely recovery becomes. We do recognize that the observation
that starving organisms lower their uptake capacity appears
counter-intuitive; we stress this is a model prediction, that should
be verified experimentally, thereby showing how coupled simula-
tions may generate new targets for experimental investigation. The
variation in all other intra-cellular pools eventually stems from the
variations in XE;11; in the chemostat simulations of part I, where
XE;11 was necessarily fixed, no population heterogeneity was
observed (supp. mat. E).

The parcels with high XE;11 are the fastest growers; some
acquire double the population average biomass over the cultiva-
tion time, whereas for the poorest growers l � 0 in the late pro-
cess stage. As a low l has a negative effect on qp, the fastest
growers are also among the best penicillin producers, whereas
the poor growers mostly accumulate storage material (supp. mat.
F). Whether or not the predicted degree of heterogeneity is realistic
requires an experimental scale-down study where population
heterogeneity is probed on the single-cell level (Zenobi, 2013;
Delvigne and Goffin, 2014). The simulations predict notable
heterogeneity enzyme levels, which may provide suitable targets
for fluorescent marking for experimental quantification. Besides
bench-scale scale-down, the use of microfluidic tools
(Grünberger et al., 2014; Dusny and Schmid, 2015) with highly
controllable substrate feed rates may be a promising route towards
studying the effects of substrate variations on enzyme expression
and population heterogeneity.
4. Concluding remarks

We reported on the use of coupled hydrodynamic-metabolic
simulations to assess large-scale fermentation processes in five
parts: (I) industrial-scale metabolic response analysis, (II) scale-
down design, (III) scale-down verification, (IV) design optimization
and (V) industrial-scale fed-batch analysis. Combined, these steps
provide a methodology for the analysis, scale-down and optimiza-
tion of large-scale fermentation processes. Combining the 9-pool
metabolic model for P. chrysogenum of Tang et al. (2017) with
CFD simulations of a 54 m3 fermentor (Haringa et al., 2016) (part
I), we report a predicted penicillin yield loss of 18—45%, which cor-
related linearly with the Damköhler number, assuming a chemo-
stat cultivation with 1-way metabolic coupling to simplify the
simulation. The yield loss resulted from level of glycolytic interme-
diates, relating the circulation time and substrate uptake capacity
of the organism. These observations provide targets for reactor-
and metabolic optimization.

The arc analysis methodology of (Haringa et al., 2016) was used
to design a representative single-vessel, dynamic-feed scale-down
simulator, based on the qs-lifelines (part II). Numerical evaluation
(part III) showed that the proposed scale-down design is predicted
to accurately reflect the metabolic response recorded in the indus-
trial reactor. Capturing the rate-of-change experienced by micro-
organisms on the industrial scale requires operating the lab-scale
at the industrial biomass concentration Cx ¼ 55 g=kg. The 9-pool
model response shows that it is possible to compromise the rate
of change without changing the metabolic response to some
degree, allowing for a factor 2 reduction in Cx. This would facilitate
operation, but may induce metabolic responses for which the
model does not account. Hence, we do emphasize that operating
the scale-down simulator at industrial Cx is preferred, especially
when no metabolic response prediction is available, to ensure the
best possible replication of qs-lifelines. CFD simulations of the pro-
posed scale-down simulator with pulsed feeding showed that non-
instantaneous mixing at the lab scale (assessed for circulation
times of 0:55 and 3:3 s) did not compromise the metabolic
response, which gives confidence in the practical application of
the proposed simulator. This operational window may depend on
the organism and geometry, and should be evaluated per-case.

Changing the substrate feed location in the industrial-scale fer-
mentor to improve substrate distribution reduced the yield loss
from 18:4% to 8:6% (part IV). This showcases the prospects for in
silico design optimization. To conclude, we present a 60 h fed-
batch study (part V) with 2-way metabolic coupling, showing good
agreement in l and qp compared to industrial data, while signifi-
cant intra-cellular heterogeneity was observed due to the interplay
between l and the glucose transport capacity XE;11. The results
illustrate the importance of simulating fed-batch dynamics includ-
ing 2-way coupling to capture population heterogeneity. We do
stress this does not imply that the 1-way coupled approach is
futile; it is preferred for a rapid assessment of the metabolic
response to design changes. We do, however, advise that the most
promising chemostat cases are subsequently simulated with 2-
way coupling (and/or experimentally assessed) to verify their per-
formance when population heterogeneity is included.

Altogether, we outlined the different roles of coupled
hydrodynamic-metabolic modeling in the assessment and
improvement of large-scale fermentor designs. In future work,
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the proposed scale-down simulators are to be tested to verify
model predictions; the predicted yield loss and population hetero-
geneity provide clear targets for assessment and model verifica-
tion. There is room for improvement in both the CFD models and
dynamic metabolic models, which would greatly benefit from a
broader availability of industrial-scale data for verification. Such
improvements act towards increasing the accuracy and reliability
of the here-shown coupled CFD approach, but will not influence
the methodology in itself. We believe the here-presented method-
ology, combined with practical scale-down simulation, opens up a
new approach towards rational fermentor design and scale-up,
accounting for the effect of large-scale reactor heterogeneity.
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