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 A B S T R A C T

This paper aims at estimating both unidirectional and multi-directional waves from noisy measured ship motion 
data, with a focus on the inclusion of the vessel’s forward speed to reflect real-world operating conditions. The 
technique is based on an Adaptive Kalman Filter for estimating wave elevation and wave spectrum parameters, 
including significant wave height, peak period, and wave direction. The proposed method was tested using 
simulated ship motion data, and its performance was evaluated by comparing the estimated wave spectrum 
with reference values used in the simulation model and with results from a widely used baseline frequency 
domain approach. The results demonstrate that the method effectively estimates the wave spectrum in a short 
measuring window with a reasonable degree of accuracy when accounting for varying forward speed, indicating 
strong potential for real-time wave estimation to aid in improving navigation, safety, and operational efficiency.
1. Introduction

Accurate estimation of the encountered wave excitation is crucial 
for the safety and operational efficiency of vessels, as highlighted in 
several studies (e.g., [1,2]). For example, by anticipating wave patterns, 
operators can make real-time decisions regarding the vessel speed and 
heading, ensuring the ship operates within safe limits and extending its 
service life [3]. Accurate identification of the encountered wave energy 
density spectrum also allows consideration of the vessel’s fatigue life 
consumption in comparison with the design environment [3]. These 
proactive measures significantly enhance both safety and operational 
efficiency at sea [1].

One of the most cost-effective methods for wave estimation is 
to consider a ship itself as a wave buoy, commonly known as the 
‘‘Ship as a Wave Buoy’’ (SAWB) analogy [4,5]. This approach uses 
measurements of the ship’s wave-induced motions, such as heave, pitch, 
and roll to estimate the encountered wave spectrum. By combining 
these motion measurements with a transfer function that describes the 
relationship between the wave input and the ship’s motion response, 
the SAWB method provides an affordable alternative to more expensive 
techniques like radar [1,6] or satellite measurements.

SAWB can be performed in either the time or the frequency do-
main, with most previous studies focusing on the frequency domain 
(see e.g., [7–12]). In these studies, the energy spectrum of vessel 
responses is combined with Response Amplitude Operators (RAOs), 
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linear operators describing how ship motions result from wave excita-
tion, through spectral analysis to estimate the exciting wave spectrum. 
Findings indicate that this approach provides a reasonable estimate 
of the wave spectrum (e.g., [7,13,14]). However, the precision of 
the estimated spectral parameters heavily relies on a reliable RAO, 
which is dependent on vessel speed and loading conditions. Further-
more, this approach assumes stationary sea and vessel conditions since 
spectral analysis typically requires a minimum time window of 10−15
min [7]. This assumption may not hold true if the vessel speed or 
heading changes or if the sea state varies during the analysis period; 
consequently, the estimates may become unreliable [15].

To tackle these disadvantages, the time domain methods have been 
introduced. Based on the literature, two model types have been devel-
oped to estimate sea states in the time domain: data-driven (e.g., [16–
20]) and model-based approaches, where model-based methods include 
a stepwise procedure (e.g., [21,22]), Kalman filtering (e.g., [23–26]), 
and brute-force (e.g., [27]). Both data-driven and model-based ap-
proaches have their advantages and limitations: data-driven methods 
need extensive data for accurate model training, whereas model-based 
methods depend on the precision of the RAOs and the assumption 
of linearity within those RAOs. For a more detailed comparison and 
discussion of the time-domain approaches, refer to the literature review 
by [28].
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In the context of the SAWB analogy, the Kalman Filter (KF) has 
proven to be both fast and capable of handling potential model inaccu-
racies and sensor noise [29]. Additionally, the KF is easy to implement 
for inverse analysis and efficient in terms of computational cost, though 
only a few studies have yet been performed to utilize these advantages.
Pascoal and Guedes Soares used the KF to estimate unidirectional waves 
using simulated data, assuming the ship’s speed to be zero [23]. They 
later evaluated the method with onboard ship motion measurements; 
however, there were limitations in identifying high-frequency waves 
where the ship’s response is weak. Building on this work, Kim et al.
introduced a combined approach using the KF and the Wiener filter 
to estimate both unidirectional and multi-directional waves using sim-
ulated ship motion data [24]. In their method, usage of the Wiener 
filter improved the signal-to-noise ratio, particularly in cases where 
the vessel acted as a low-pass filter, leading to inaccurate estimates 
in the high-frequency region. However, their method was limited by 
several restrictive conditions: the vessel’s forward speed was set to zero 
and measurement noise characteristics were assumed to be fully known 
within the model. These limitations constrain the method’s evaluation 
in real-world scenarios where varying forward speeds and unknown 
noise characteristics are the operational reality.

1.1. Paper objective and novelty

Usage of the Kalman filter for sea state estimation from vessel 
motion measurements would allow real-time estimations since only a 
short measuring window is needed until convergence, and it would 
allow fusion with other sensor sources to handle inaccuracies in mea-
surements and model definitions. However, there is as yet no baseline 
Kalman filter model for inverse sea state estimation that is suited to 
application in real-world conditions based on non-stationary vessel 
conditions. In this study, we aim to address that gap by presenting an 
Adaptive Kalman Filter (AKF) model to estimate both unidirectional 
and multi-directional wave conditions from measured ship motion 
responses while incorporating the effects of varying forward speed 
and noisy measurements. The method’s performance is evaluated by 
comparing the estimated wave spectrum parameters with reference 
values, assessing the accuracy of the method under realistic conditions. 
The method is also compared with a widely used frequency domain 
method [10]. It is important to note that this frequency domain method 
has been adapted and used as a baseline for further estimation im-
provements, such as using machine learning in a hybrid estimation 
approach [30]. Our aim here is not to evaluate the AKF approach 
against all possible frequency domain approaches, but to benchmark 
our AKF approach to the baseline frequency domain method and offer 
a parallel time-domain baseline.

It is further worth noting the challenge facing SAWB model-based 
methods regarding the use of linear RAOs. Apart from data-driven [16–
20] and step-wise [21] approaches, most SAWB methods, including 
the one presented here, make use of linear RAOs to describe the rela-
tionship between wave excitation and wave-induced motion responses. 
Such an assumption proves limiting when moderate to large waves 
and high vessel speeds are relevant, where non-linearities and motion 
coupling cannot be ignored. While it is necessary to consider and model 
such non-linearities within the estimations for practical implementation 
of SAWB onboard vessels, that is beyond the scope of this current paper 
and is left to future work.

1.2. Paper composition

This paper is organized as follows: Section 2 outlines the methodol-
ogy for wave parameter and spectrum estimation, beginning with the 
expressions for wave elevation and ship response. It then discusses the 
estimation of both unidirectional and multi-directional wave spectra 
using the AKF. Section 3 presents the simulation setup and results, 
with a focus on analyzing the effects of frequency and directional 
discretization. Finally, Section 4 summarizes the key findings of the 
study.
2 
2. Methodology

The overall process followed for sea state estimation from ship mo-
tion measurements with the inclusion of forward speed using the AKF 
is illustrated in Fig.  1. First, Section 2.1 presents the wave elevation 
and ship response expressions that link ship motion measurements to 
the wave spectrum. Next, Section 2.2 describes the implementation of 
the AKF, including the formulation of the process and measurement 
models, to estimate complex wave components. Finally, Section 2.3 
explains how the estimated complex wave components are used to 
determine key sea state parameters such as significant wave height, 
peak period, and mean wave direction. Note: in general the term ‘‘sea 
state’’ is used to describe encountered wave conditions, quantified by 
the significant wave height, peak period, and wave direction. This sea 
state is not to be confused with the estimated states within the AKF 
itself, here the complex wave components, and care is taken within the 
paper to distinguish these terms.

2.1. Wave elevation and ship response expressions

The wave elevation 𝜁 (𝑡) for unidirectional waves at time 𝑡 can be 
described as a sum of 𝑁 elementary waves as follows: 

𝜁 (𝑡) =
𝑁
∑

𝑖=1
𝐴𝑖 cos(𝜔𝑖𝑡 + 𝜖𝑖), with 𝐴𝑖 =

√

2𝑆(𝜔𝑖)𝛥𝜔𝑖, (1)

where:

• 𝑁 is the total number of wave frequencies.
• 𝐴𝑖 is the wave amplitude of the 𝑖th wave component.
• 𝜔𝑖 is the 𝑖th absolute wave frequency.
• 𝜖𝑖 is a random phase uniformly distributed between 0 and 2𝜋.
• 𝑆(𝜔) is the unidirectional wave spectrum.
• 𝛥𝜔 is the absolute frequency interval.
For unidirectional waves, all wave energy propagates along a single 

direction. However, the complexity of actual ocean conditions often 
leads to a scenario where wave components do not uniformly travel 
in a single direction. This means that sea waves, in reality, are multi-
directional. To accurately represent this phenomenon, the directional 
wave spectrum 𝑆(𝜔, 𝛽) is used, incorporating a spreading factor 𝑠
that accounts for the distribution of energy across various directions. 
This effect is usually modeled using a spreading function 𝐷(𝛽), here 
using the Longuet-Higgins directional spreading function [31]. The 
directional wave spectrum is expressed as follows: 
𝑆(𝜔, 𝛽) = 𝐷(𝛽) × 𝑆(𝜔), (2a)

𝐷(𝛽) =
2(2𝑠−1)𝑠!(𝑠 − 1)!
𝜋(2𝑠 − 1)!

cos2𝑠 (𝛽 − 𝛽), for |𝛽 − 𝛽| < 𝜋
2
, (2b)

where 𝛽 is the relative wave direction, 𝛽 is the mean wave direction 
with reference to the vessel frame, with 180◦ as head seas and 0◦ as 
following seas, and 𝑠 is the spreading factor which controls the width of 
the distribution (larger values of 𝑠 indicate a more concentrated wave 
direction, while smaller values indicate more spread-out directions). 
Note that the integral of the directional spreading function over all 
directions should be unity because the energy remains constant before 
and after spreading (see, e.g., [32]). The Longuet-Higgins form for the 
directional spreading function was chosen for this study because it is 
a widely used model for representing the directional distribution of 
ocean waves. This form is commonly employed in wave theory, as it 
effectively captures the shape of wave spectra, especially in conditions 
where the wave energy is concentrated in specific directions.

The wave elevation for multi-directional waves at time 𝑡 can then 
be described as follows: 

𝜁 (𝑡) =
𝑁
∑

𝑀
∑

𝐴𝑖𝑗 cos(𝜔𝑖𝑡 + 𝜖𝑖) with 𝐴𝑖𝑗 =
√

2𝑆(𝜔𝑖, 𝛽𝑗 )𝛥𝜔𝑖𝛥𝛽𝑗 , (3)

𝑖=1 𝑗=1
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Fig. 1. Process of sea state estimation from ship motion measurements using the AKF.
where 𝛥𝛽 and 𝑀 represent the relative wave direction interval and the 
total number of relative wave directions, respectively. 𝐴𝑖𝑗 represents 
the wave amplitude for the 𝑖th frequency and the 𝑗th direction.

We further consider a ship with non-zero forward speed 𝑈 . To 
account for this, both the wave spectrum and the wave frequency must 
be transformed from the absolute to the encounter domain, as outlined 
by [33]. This transformation accounts for the relative motion between 
the vessel and the waves, influenced by the Doppler shift effect, and 
adjusts the absolute wave frequencies accordingly. The mapping of the 
absolute frequency 𝜔 to the encounter frequency 𝜔e is expressed by 
Eq. (4a). Additionally, the encounter wave spectrum 𝑆(𝜔e) is calculated 
using the derivative of Eq. (4a) with respect to 𝜔, and using Eq. (4b), 
as shown in Eq. (4c). Here Eq. (4b) represents the energy equivalence 
theorem, which ensures that the energy is conserved between the 
absolute wave spectrum and the encounter wave spectrum. 

𝜔e = 𝜔 − 𝜔2𝜓, with 𝜓 = 𝑈
𝑔
cos(𝛽), (4a)

𝑆(𝜔e)𝛥𝜔e = 𝑆(𝜔)𝛥𝜔, (4b)

𝑆(𝜔e) = 𝑆(𝜔) 1
1 − 2𝜔𝜓

, (4c)

where 𝑔 is the acceleration due to gravity. Therefore, the wave eleva-
tion described by Eq. (3) can be refined to include the effects of the 
ship’s forward speed, as follows: 

𝜁 (𝑡) =
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝐴e,𝑖𝑗 cos(𝜔e,𝑖𝑡+𝜖𝑖), with 𝐴e,𝑖𝑗 =

√

2𝑆(𝜔e,𝑖, 𝛽𝑗 )𝛥𝜔e,𝑖𝛥𝛽𝑗 , (5)

where 𝛥𝜔e,𝑖 is the encounter frequency interval.
To calculate a vessel’s 𝑙th degree of freedom (DOF) response to the 

defined wave elevation (where 𝑙 represents the DOF of the vessel’s mo-
tion, such as surge, heave, pitch, or roll), the linear RAO model, which 
characterizes the vessel’s response to incoming waves, is applied. This 
RAO is complex, comprising both amplitude and phase components, 
and is a function of the degree of freedom 𝑙, wave frequency 𝑖, and wave 
direction 𝑗. The RAO amplitude and RAO phase can be determined via:

|RAO𝑙𝑖𝑗 | =
√

Re(RAO𝑙𝑖𝑗 )2 + Im(RAO𝑙𝑖𝑗 )2, (6a)

𝜑𝑙𝑖𝑗 = tan−1
Im(RAO𝑙𝑖𝑗 )
Re(RAO𝑙𝑖𝑗 )

, (6b)

where Re(RAO𝑙𝑖𝑗) and Im(RAO𝑙𝑖𝑗) represent the real and the imaginary 
parts of the RAO model, respectively.

The vessel’s 𝑙th DOF motion response accounting for forward speed 
is then obtained by multiplying the wave elevation described in Eq. (5) 
3 
with the complex RAO model, as shown below: 

𝑦𝑙(𝑡) =
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
RAO𝑙𝑖𝑗 × 𝐴e,𝑖𝑗 cos(𝜔e,𝑖𝑡 + 𝜖𝑖), (7)

where RAO𝑙𝑖𝑗 is the complex RAO model for the 𝑙th DOF. Note that the 
RAO model is dependent on the vessel speed and loading condition.

In order to represent Eq. (7) with respect to the complex wave 
components, which represent the states within the AKF to be estimated, 
we decompose it into its quadrature components, as outlined by [23]. 
Then Eq. (7) becomes: 

𝑦𝑙(𝑡) =
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
RAO𝑙𝑖𝑗 × (𝑥1,𝑖𝑗 cos(𝜔e,𝑖𝑗 𝑡) + 𝑥2,𝑖𝑗 sin(𝜔e,𝑖𝑗 𝑡)), (8)

where 𝑥1,𝑖𝑗 = 𝐴e,𝑖𝑗 cos(𝜖𝑖) and 𝑥2,𝑖𝑗 = −𝐴e,𝑖𝑗 sin(𝜖𝑖) represent the real and 
imaginary components of the complex wave for the 𝑖th frequency and 
𝑗th direction, respectively.

Rewriting Eq. (8) using the magnitude and phase of the RAO results 
in:

𝑦𝑙(𝑡) =
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
|RAO𝑙𝑖𝑗 | cos(𝜔e,𝑖𝑡 + 𝜑𝑙𝑖𝑗 )𝑥1,𝑖𝑗

+
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
|RAO𝑙𝑖𝑗 | sin(𝜔e,𝑖𝑡 + 𝜑𝑙𝑖𝑗 )𝑥2,𝑖𝑗 , (9)

Finally, Eq. (9) will be used in the measurement model of the KF, 
as further described in Section 2.2.

2.2. Adaptive Kalman filter implementation

The KF is a recursive algorithm widely used in various applications 
for reliable state estimation [34]. To implement the filter, it is essential 
to first establish a state-space model. This model includes a process 
model, which describes the evolution of the states we aim to estimate 
over time, and a measurement model, which relates the observed 
data to the states. Additionally, the uncertainties in both the system 
dynamics and measurements are accounted for and are modeled as 
Gaussian using covariance matrices for process and measurement noise.

In this study, we use the KF to estimate the system states, specif-
ically complex wave components, from noisy ship motion measure-
ments. The process model equation can be represented as follows:
𝑥𝑘+1 = 𝜙𝑘𝑥𝑘 +𝑤𝑘, with 𝑤𝑘 ∼  (0, 𝑄), (10)

where:
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• 𝑥𝑘 = [𝑥1,𝑖𝑗 ⋯ 𝑥1,𝑁𝑀 , 𝑥2,𝑖𝑗 ⋯ 𝑥2,𝑁𝑀 ]𝑇  is the state vector at time 
instance 𝑘 of the complex wave components with dimension 
2𝑁𝑀 .

• 𝑥𝑘+1 is the state vector at the next time instant.
• 𝜙 is the transition matrix with dimension 2𝑁𝑀 × 2𝑁𝑀 . It is an 
identity matrix as the sea state is assumed to be stationary within 
a given time window.

• 𝑤𝑘 is the 2𝑁𝑀 dimensional process noise vector.
•  (0, 𝑄) is a normal distribution with zero mean and a process 
covariance error 𝑄.

Based on Eq. (9), the measurement model in discrete time for the 
wave-induced ship responses can be expressed as follows: 
𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘, with 𝑣𝑘 ∼  (0, 𝑅𝑘), (11)

where: 

𝐻𝑘 =

⎡

⎢

⎢

⎢

⎣

𝐶111 ⋯ 𝐶1𝑖𝑗 ⋯ 𝐶1𝑁𝑀 𝑆111 ⋯ 𝑆1𝑖𝑗 ⋯ 𝑆1𝑁𝑀

⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝐶𝐿11 ⋯ 𝐶𝑙𝑖𝑗 ⋯ 𝐶𝐿𝑁𝑀 𝑆𝐿11 ⋯ 𝑆𝑙𝑖𝑗 ⋯ 𝑆𝐿𝑁𝑀

⎤

⎥

⎥

⎥

⎦

,

(12)

with:

𝐶𝑙𝑖𝑗 = |RAO𝑙𝑖𝑗 | cos(𝜔e,𝑖𝑘𝛥𝑡 + 𝜑𝑙𝑖𝑗 ),

𝑆𝑙𝑖𝑗 = |RAO𝑙𝑖𝑗 | sin(𝜔e,𝑖𝑘𝛥𝑡 + 𝜑𝑙𝑖𝑗 ).

• 𝐿 is the number of vessel responses used in the KF technique.
• 𝑦𝑘 is the 𝐿−dimensional ship motion measurement vector at time 
𝑘.

• 𝑥𝑘 is the state vector with dimension 2𝑁𝑀 .
• 𝑣𝑘 is the 𝐿−dimensional measurement noise vector with zero 
mean and covariance 𝑅𝑘.

• 𝑘 is the number of the time step.
• 𝛥𝑡 is the time interval.
After formulating the process and measurement models, the state 

vector 𝑥𝑘 can be estimated from ship motion measurements 𝑦𝑘. This 
estimation is carried out in three main steps (see Fig.  1): initialization, 
prediction, and correction.

2.2.1. Initialization
In the initialization step, at 𝑘 = 0, the initial state �̂�+0  is set. 

Since no prior knowledge of �̂�+0  is available, it is initialized to zero. 
Additionally, since the sensor noise is unknown to the model and may 
vary due to changes in the ship’s forward speed, the measurement error 
covariance matrix 𝑅𝑘 is adaptively estimated (see Eq. (14b)). Instead of 
using a constant 𝑅𝑘, it is estimated through innovation-based adaptive 
estimation [34]. On the other hand, the process error covariance matrix 
𝑄 is fixed through a tuning process. The AKF assumes independent, 
identically (Gaussian) distributed noise, and can handle the noise well 
with proper tuning of the measurement noise covariance, such as in 
this case, although performance will of course degrade for larger noise 
covariances. However, if the noise is non-Gaussian and the signal 
contains outliers, this will degrade the filter’s performance. This could 
be mitigated by using pre-processing techniques like removing outliers 
or applying band-pass filtering to remove high-frequency noise before 
passing the measurements to the Kalman filter, but that is considered 
to be outside the scope of this work. Such techniques are especially 
important when working with real (instead of simulated) data. Or if 
the noise has known (but still non-Gaussian) characteristics, e.g., a bias, 
this can be dealt with by, e.g., an offset within the process model.

Note that to mitigate the overestimation at high wave frequencies 
where the ship response is weak (as seen by, e.g., [35]), we assign 
low 𝑄 values to these high wave frequencies compared to the other 
frequencies; the cut-off for defining ‘‘high wave frequencies’’ is based on 
4 
where the RAO amplitudes tend to negligible responses. We set a large 
initial state error covariance 𝑃0 to account for uncertainty between the 
estimated and the ground truth state at 𝑘 = 0. Since the ground truth is 
unknown, we set 𝑥0 = 0 and 𝑃0 large enough to account for this uncer-
tainty. However, similar to 𝑄, we adjust 𝑃0 based on wave frequency to 
ensure the initial state uncertainty aligns with the expected dynamics. 
To determine the most effective implementation, we tested both a 
strict division where a fixed cut-off frequency separates high and low 
wave frequencies and a smooth transition using a sliding scale. Since 
both approaches gave similar results, we opted for the strict division 
for its simplicity. Additionally, we compared this approach with the 
Wiener filter-based method proposed by [24] and found that assigning 
low 𝑄 values to high wave frequencies achieved a similar objective. 
However, our approach is simpler to implement, as it only requires 
adjusting 𝑄 and 𝑃0 rather than modifying the RAO model itself. This 
adjustment of 𝑄 and 𝑃0 also indicates how the noise intensity affects the 
model performance: when the signal-to-noise ratio is low (such as the 
low motion responses in high frequencies), the model estimation can 
suffer, and some adjustment of the model may be necessary to improve 
estimation accuracy.

2.2.2. Prediction
In the prediction step, the current state �̂�−𝑘  is predicted from the 

previous estimated state �̂�+𝑘  using the state transition matrix 𝜙𝑘 (see 
Eq. (13a)). The uncertainty in this prediction, 𝑃−

𝑘 , is calculated using 
the process error covariance 𝑄 (see Eq. (13b)). 

�̂�−𝑘 = 𝜙𝑘�̂�
+
𝑘 , (13a)

𝑃−
𝑘 = 𝜙𝑘𝑃

+
𝑘 𝜙

𝑇
𝑘 +𝑄. (13b)

2.2.3. Correction
In the correction step, the predicted state �̂�−𝑘  and its corresponding 

covariance 𝑃−
𝑘  are updated using the error between the current ship 

motion measurements and the predicted measurements, weighted by 
the Kalman gain 𝐾𝑘 (see Eqs.  (14e) and (14f)), to obtain a more 
accurate estimate. The Kalman gain, defined in Eq. (14d), optimally 
balances the predicted state with the observed measurement data, 
minimizing the estimation error. The �̂�+𝑘  and 𝑃+

𝑘  are then used for the 
next prediction cycle. 

Innovation: 𝑒𝑘 = 𝑦𝑘 −𝐻𝑘�̂�
−
𝑘 (14a)

Updated measurement error covariance: 𝑅𝑘 = 𝛼𝑅𝑘−1 + (1 − 𝛼)(𝑒𝑘𝑒𝑇𝑘
−𝐻𝑘𝑃

−
𝑘 𝐻

𝑇
𝑘 ) (14b)

Innovation covariance: 𝑆𝑘 = 𝐻𝑘𝑃
−
𝑘 𝐻

𝑇
𝑘 + 𝑅𝑘 (14c)

Kalman gain: 𝐾𝑘 = 𝑃−
𝑘 𝐻

𝑇
𝑘 𝑆

−1
𝑘 (14d)

Updated state: �̂�+𝑘 = �̂�−𝑘 +𝐾𝑘𝑒𝑘 (14e)

Updated state covariance: 𝑃+
𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃−

𝑘 (14f)

In Eq. (14b), 𝛼 is a smoothing factor that determines how much 
weight is given to the previous 𝑅𝑘; it is chosen between 0 and 1. The 
size of the AKF matrices for multi-directional wave estimation are given 
in Table  1. For unidirectional wave estimation, note that 𝑀 = 1, as the 
wave direction is assumed to be known.

Finally, the AKF continuously improves the accuracy of the state 
estimates within a stationary window, making it effective in handling 
Gaussian noise or incomplete data.

2.3. Wave spectrum and parameter calculation

After estimating the complex wave components �̂�+𝑘  using the AKF, 
we calculate the wave elevation and the spectral parameters based on 
those estimates as follows:
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Table 1
Variables and their dimensions in the AKF model for multi-directional wave
estimation.
 Variable Description No. of rows No. of columns 
 𝑥𝑘 State vector 2𝑁𝑀 1  
 𝑦𝑘 Measurement vector 𝐿 1  
 𝜙 State transition matrix 2𝑁𝑀 2𝑁𝑀  
 𝐻𝑘 Output matrix 𝐿 2𝑁𝑀  
 𝑃𝑘 State covariance matrix 2𝑁𝑀 2𝑁𝑀  
 𝐾𝑘 Kalman gain matrix 2𝑁𝑀 𝐿  
 𝑄 Process error covariance matrix 2𝑁𝑀 2𝑁𝑀  
 𝑅𝑘 Measurement error covariance matrix 𝐿 𝐿  

• Estimated encounter wave spectrum: This can be determined 
using the estimated complex wave components by: 

𝑆(𝜔e,𝑖, 𝛽𝑗 ) =
1

2𝛥𝜔e,𝑖𝛥𝛽𝑗
× (�̂�+21,𝑖𝑗 + �̂�

+2
2,𝑖𝑗 ), (15)

where �̂�+21,𝑖𝑗 and �̂�+22,𝑖𝑗 represent the estimated real and imaginary 
complex wave components of the 𝑖th encounter frequency of the 
𝑗th relative wave direction, respectively. Note that for unidirec-
tional waves, where 𝛽 is fixed, the term 𝛥𝛽𝑗 is removed as the 
wave energy is assumed to propagate in a single direction.

• Estimated absolute wave frequency and spectrum: The trans-
formation between the absolute frequency domain and the en-
counter frequency domain is controlled by the Doppler shift, as 
described by Eq. (4a). This process varies with relative wave di-
rection and ship speed. In head sea conditions, the transformation 
is straightforward (each encounter frequency directly matches a 
single absolute frequency). However, for following seas when the 
encounter frequencies are below a certain threshold (𝜔e < 1∕4𝜓), 
the transformation becomes complex, as one encounter frequency 
can correspond to three absolute frequencies, as demonstrated 
by [33].
Subsequently, the transformation of the wave energy spectrum 
from the encounter domain to the absolute domain relies on the 
fact that the energy must be conserved, as shown in Eq.  (4b). In 
this case, the absolute wave spectrum for unidirectional waves 
can be estimated based on Eqs. (4a) and (4b), as follows: 

𝑆(𝜔) = 𝑆e(𝜔e)
𝛥𝜔e
𝛥𝜔

= 𝑆e(𝜔e)(1 − 2𝜔𝜓). (16)

For the multi-directional waves, the estimated absolute wave 
spectrum can be calculated using the following formula: 

𝑆(𝜔, 𝛽) = 𝑆e(𝜔e, 𝛽)(1 − 2𝜔𝜓). (17)

It is important to note that under head sea conditions, Eq. (17) 
can be used directly to calculate the absolute wave spectrum. 
However, in following/ stern-quartering seas, a more complex ap-
proach is required, as there is no unique transformation solution, 
and the encounter frequency domain must be mapped to three 
corresponding ordinates in the absolute wave-frequency domain. 
For a detailed explanation of this method, refer to [33]. In the 
current paper following seas are not considered.

• Estimated mean wave direction: For multi-directional waves, 
the estimated mean direction can be determined using the fol-
lowing formula: 

𝛽 = arctan
(𝑑
𝑐

)

, (18)

where: 

𝑐 = ∫

𝜋

−𝜋 ∫

∞

0
𝑆(𝜔, 𝛽) cos(𝛽) 𝑑𝜔𝑑𝛽, (19)

𝑑 = ∫

𝜋

−𝜋 ∫

∞

0
𝑆(𝜔, 𝛽) sin(𝛽) 𝑑𝜔𝑑𝛽. (20)
5 
Fig. 2. USCGC STRATTON [36].

• Estimated significant wave height: This can be calculated ei-
ther from the estimated encounter wave spectrum or absolute 
wave spectrum, as energy must be conserved in both domains. 
The significant wave height can also be calculated from the wave 
elevation: 

𝑀0 = ∫ 𝑆e(𝜔e)𝑑𝜔e = ∫ 𝑆(𝜔)𝑑𝜔, (21a)

𝐻s = 4
√

𝑀0 = 4 × 𝜎, (21b)

 where 𝑀0 represents the zeroth spectral moment of the estimated 
wave energy and 𝜎 is the standard deviation of the estimated 
wave elevation 𝜉(𝑡). Note that for the multi-directional case, 𝑆(𝜔)
is obtained by integrating 𝑆(𝜔, 𝛽) over 𝛽.

• Estimated peak period: This is estimated from the peak of the 
calculated absolute wave spectrum. 
𝜔𝑝 = argmax(𝑆(𝜔)), (22a)

𝑇p = 2𝜋
𝜔p
, (22b)

 where 𝜔𝑝 represents the angular frequency corresponding to the 
maximum amplitude in the estimated wave spectrum.

• Estimated wave elevation: This can be estimated as follows: 
𝜉(𝑡) = [ cos(𝜔e,11𝑡),… , cos(𝜔e,𝑁𝑀 𝑡),

sin(𝜔e,11𝑡),… , sin(𝜔e,𝑁𝑀 𝑡)] ⋅ [�̂�+1,11,… , �̂�+1,𝑁𝑀 , �̂�
+
2,11,… , �̂�+2,𝑁𝑀 ]𝑇 .

(23)

3. Case study and discussion

The proposed method for wave spectrum estimation from measured 
ship motion responses with the inclusion of forward speed was tested 
using synthetic ship motion data. The measurements used in the AKF 
are surge, sway, heave, roll, and pitch motions. The model of the 
United States Coast Guard Cutter (USCGC) STRATTON was employed, 
as illustrated in Fig.  2. Table  2 specifies the ship’s dimensions. The 
RAOs for this vessel at different forward speeds were provided by the 
Maritime Research Institute Netherlands (MARIN), which has carried 
out extensive monitoring campaigns for this vessel (see, e.g., [36,37]).

3.1. Simulation details

The simulated ship motion responses for unidirectional waves were 
generated using Eq. (7), and multi-directional waves were generated 
using the equal energy method instead of the traditional double sum 
method commonly used in the literature [24,38]. The equal energy 
method was chosen to ensure a more accurate representation of the 
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Table 2
Main particulars of the vessel [37].
 Main particular Ft/m  
 Length overall 418.60 ft/127.29 m  
 Length between perpendiculars 390.00 ft/118.87 m  
 Beam, waterline 48.89 ft /14.9 m  
 Beam, maximum 54.00 ft/16.46 m  
 Design draft 14.40 ft/4.39 m  
 Block coefficient 0.492/0.492  
 Displacement (fully appended) 4500 LT/4571 tonnes 

random ergodic nature of ocean waves, which are stationary and 
homogeneous for limited time durations [39]. The double sum method 
does not provide an ergodic solution due to interactions between 
waves of the same frequency but in different directions. By using the 
equal energy method, wave energy is uniformly distributed across all 
frequencies and directions, overcoming this limitation.

The 𝑙th motion response at a given point (𝑥, 𝑦) can be described 
using the equal energy method as follows:

𝑦𝑙(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1

√

2|RAO𝑙𝑖|2𝑆(𝜔e,𝑖)𝛥𝜔e,𝑖 cos(𝜔e,𝑖𝑡 − 𝜅𝑖(𝑥 cos(𝛽𝑖) + 𝑦 sin(𝛽𝑖))

+ 𝜖𝑖 + 𝜑𝑙𝑖), (24)

where:

• 𝜅𝑖 is the wave number.
• 𝛽𝑖 is the random direction vector, determined using the equal 
energy method. In this method, the directional spreading function 
is used as a probability density function to assign a propagation 
direction to each wave component. For a detailed description of 
the procedures followed, refer to [40].

The simulations focused on estimating various sea states, as further 
described in Sections 3.2–3.3. A JONSWAP wave spectrum was em-
ployed with a peak enhancement parameter 𝛾 of 3.3 to simulate the 
waves [41]. To avoid repetition effects after 2𝜋∕𝛥𝜔e, a large number of 
frequencies (500) were used to generate the ship motions. Sensor noise 
with a signal-to-noise ratio of 20 was added to the simulated response 
motions to closely simulate real-world conditions; note that the sensor 
noise description was still considered as an unknown within the AKF 
implementation. The encounter wave frequency 𝜔e was used instead 
of the absolute frequency 𝜔 to account for the ship’s forward speed. 
Multiple cases, where the ship is moving with a constant forward speed, 
9.26 m∕s (18 kts), 14.4 m∕s (28 kts), or a varying one, decreasing from 
9.26 m∕s to 5 m∕s over the last 400 s, were analyzed to evaluate the 
impact of (varying) speed on the estimation process. The method was 
also tested for other forward speeds with a Froude number below 0.42 
to ensure its applicability. Note that when we choose a forward speed 
with a Froude number higher than 0.3, the nonlinear effects become 
significant, and adjustments to the ship model may be required.

The AKF was applied using the simulated ship motion responses. 
The number of encounter frequencies 𝑁 and the encounter frequency 
interval 𝛥𝜔e used in the output matrix of the AKF were determined 
through a series of numerical experiments to assess the filter’s effec-
tiveness in estimating the wave spectrum. It is important to note that 
selecting a small 𝛥𝜔e results in a larger number of complex wave 
components to estimate, as its size is 2𝑁𝑀 . As a result, the number of 
unknown parameters increases, which can reduce the filter’s accuracy 
due to the added complexity. Therefore, finding the optimal number of 
frequencies is critical for ensuring accurate wave spectrum estimation. 
The values of AKF parameters are given in Table  3, where 𝐼 is the 
identity matrix with the dimension in Table  1.
6 
3.2. Unidirectional waves

From Eq. (15), the encounter unidirectional wave spectrum is deter-
mined by averaging the estimated wave components over the 500 last 
seconds. This approach smooths out short-term fluctuations, making it 
easier to compare theoretical predictions with the inverse estimation 
results. Then, the estimated absolute wave spectrum is obtained using 
the transformation from encounter to absolute domain via Eq. (17).

Fig.  3 compares the simulated and estimated absolute wave spectra 
for unidirectional waves, corresponding to a significant wave height 
of 3 m and a peak period of 9 s, with the relative direction of 180◦
(case 2 in Table  4). The figure shows two estimation results: one using 
a uniform 𝑄 across all frequencies and another using the modified, 
non-uniform 𝑄 which has lower values at high frequencies (𝜔 >
1.15 rad/s), first introduced in Section 2.2.1. We notice that there is 
an overestimation at high frequencies when a uniform 𝑄 is applied 
(blue line in Fig.  3). This is because the vessel motion RAO amplitudes 
tend to zero at higher wave frequencies, causing sensor noise in the 
measured signal to be amplified. In contrast, assigning lower values 
to 𝑄 for high frequencies (orange line in Fig.  3) effectively mitigates 
the high-frequency overestimation, preventing the divergence observed 
by [35].

When using this modified, non-uniform 𝑄, we observe that the 
estimated absolute wave spectrum closely aligns with the simulated 
spectrum across a range of frequencies, demonstrating the robustness 
of the estimation process, especially at lower frequencies where wave 
energy is concentrated. However, some underestimation does occur in 
certain areas, likely due to the filter’s limitations with non-matching 
frequencies. Specifically, the output matrix of the AKF is based on 
frequencies that do not perfectly match those of the original motion 
signal. This mismatch occurs because these frequencies are unknown, 
adding complexity to the estimation process.

Increasing the number of frequencies to address the underestimation 
is not a viable solution, as it introduces more unknown parameters, and 
consequently, the filter may not perform well under these conditions. 
Thus, after a series of numerical experiments, a sampling frequency 
of 0.02 rad/s was selected. The estimated spectrum obtained with this 
sampling frequency provides a satisfactory balance between minimizing 
underestimation and maintaining overall accuracy.

Based on the estimated complex wave components, the wave ele-
vation was obtained using Eq. (23). Fig.  4 presents both the simulated 
and estimated wave elevations for the last 100 s of the simulation. The 
figure shows that the simulated and estimated wave elevation are in 
good agreement with a correlation of 0.89, demonstrating the accuracy 
of the estimation method.

Based on the estimated wave spectrum, the significant wave height 
and peak period were evaluated over time, as shown in Figs.  5(a)
and 5(b). The estimated parameters start converging to the simulated 
values around 300 s and thereafter of the simulation time. This effective 
convergence demonstrates that the AKF becomes more accurate and 
stable over time and further indicates the short measurement windows 
required for implementing the AKF for inverse wave estimation.

Fig.  6 presents the simulated heave motion before the addition of 
measurement noise, and the heave motion predicted by the AKF. The 
figure shows that the predicted motion aligns closely with the simulated 
motion, with a correlation of 0.96. This observation suggests that the 
AKF effectively captures the motion dynamics and is able to filter out 
the added noise.

The proposed method was evaluated for various unidirectional wave 
scenarios under different ship forward speeds, both constant and vary-
ing, as indicated in Table  4. This table represents the simulated and 
estimated sea state parameters (significant wave height 𝐻s and peak 
period 𝑇p). In terms of errors, significant wave height error ranges from 
0.23 m to 0.76 m, while peak wave period errors range from 0.37 
s to 0.76 s. Despite these errors, there is generally good agreement 
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Table 3
AKF parameters values used in the estimation of unidirectional waves and multi-directional waves.
 AKF parameters Unidirectional waves Multi-directional waves  
 Number of encounter wave frequencies 𝑁 99 40  
 Frequency range 𝜔 [rad/s] [0.02, 2] [0.05, 2]  
 Relative wave direction range 𝛽 [deg] – [90, 280]  
 Motion time length 𝑡 [s] 1000 1000  
 Sampling time 𝛥𝑡 [s] 0.1 0.1  
 Initial state vector 𝑥𝑘 0 0  
 Initial state error covariance 𝑃0 Diagonal values: 10, with lower values of 1 at 

high frequencies
Diagonal values: 10, with lower values of 1 at 
high frequencies

 

 Initial measurement error covariance 𝑅0 Diagonal values: 10−2 for translational motions and 
10−3 for rotational motions 

Diagonal values: 10−2 for translational motions and 
10−3 for rotational motions

 

 Process error covariance 𝑄 Diagonal values: 0.01, with lower values of 0.001 
at high frequencies

Diagonal values: 0.1, with lower values of 0.01 at 
high frequencies

 

Fig. 3. Simulated and estimated absolute wave spectrum with the uniform and non-uniform 𝑄 for case 2 (see Table  4).  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
Table 4
Comparison of simulated and AKF-estimated sea state parameters for unidirectional wave cases. Note that 𝐻s(= 4𝜎) is generated two ways: from 
the wave spectrum and from the wave elevation time series in parenthesis.
 Case No. Forward speed Simulated sea parameters AKF-Estimated sea parameters
 𝑈 [m/s] 𝐻s [m] 𝑇p [s] 𝛽 [deg] 𝐻s [m] 𝑇p [s]  
 1 9.26 4.97 (4.97) 9.00 180 4.50 (4.65) 9.23  
 2 9.26 3.99 (3.99) 9.00 180 3.67 (3.67) 8.97  
 3 9.26 3.99 (3.99) 9.00 210 3.71 (3.82) 9.23  
 4 14.40 3.99 (3.99) 9.00 180 3.73 (3.55) 8.97  
 5 From 9.26 to 5 4.97 (4.97) 8.99 180 4.45 (4.40) 9.67  
Fig. 4. Simulated and estimated wave elevation for unidirectional waves case 2 (see Table  4).
7 
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Fig. 5. Simulated and estimated sea state parameters over time for unidirectional waves case 2 (see Table  4).
Fig. 6. Simulated and estimated heave motion response for unidirectional waves case 2 (see Table  4).
between the estimated wave spectral parameters and the simulated 
spectral parameters across different sea states. This overall alignment 
suggests that the proposed method is reliable and effective in various 
sea conditions. Additionally, the results obtained for Case 5, which 
involved changes in the ship’s forward speed, indicate that the method 
performs well under non-stationary ship conditions.

Compared to existing work that focuses on estimating wave spectral 
parameters from ship motion responses in the time domain [23,24], 
the proposed method achieves a similar level of accuracy while addi-
tionally accounting for the challenges of forward speed and unknown 
measurement noise, which are not considered in those works.

3.3. Multi-directional waves

The proposed AKF approach was also tested for multi-directional 
seas, where the estimated wave spectra were determined using the 
equations described in Section 2. Here, the directional spreading factor 
𝑠 from Eq. (2b) is set to 2 to simulate moderate directional wave 
spreading, which is common in real-world scenarios; the wave energy 
is moderately concentrated around the peak direction but with some 
spread.

Fig.  7 illustrates the simulated and estimated absolute overall wave 
spectra corresponding to case 1 (𝐻s = 5 m, 𝑇p = 9 s  and 𝛽 = 180◦), 
where the ship forward speed is 9.26 m∕s (18 kts). We observe that 
the estimated absolute wave spectrum closely matches the original 
spectrum, demonstrating the effectiveness of the proposed method. 
However, similar to the unidirectional wave estimation, some under-
estimation is observed due to the AKF’s challenges with non-matching 
frequencies and the increased number of unknown parameters in the 
multi-directional case, which adds complexity to the estimation pro-
cess. Additionally, assigning lower 𝑄 values at high frequencies effec-
tively addresses the divergence in the high-frequency spectrum, as no 
overestimation is observed in this range (𝜔 > 1.15 rad/s).

The polar plots shown in Fig.  8 represent the simulated and es-
timated directional wave spectrum for case 2 (𝐻 = 5 m, 𝑇 =
s p
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9 s  and 𝛽 = 180◦), where the ship forward speed is 9.26 m∕s (18 
kts). From Fig.  8(b), we observe that the wave energy is concentrated 
primarily around 180◦, which indicates that the majority of wave 
energy is coming from this direction. This concentration aligns with 
the simulated mean wave direction in this particular case, as shown 
in Fig.  8(a). For this multi-directional wave estimation, we observe a 
discrepancy in the wave directional distribution, as seen in Fig.  8(b), 
where the estimated distribution appears asymmetric, while the simu-
lated wave data are symmetrically distributed. This discrepancy could 
be attributed to the discretization of both the frequency and direction in 
the model. In other words, the way the wave directions and frequencies 
are discretized might not be fine enough to fully capture the complexity 
of the wave field, leading to some directions being either overestimated 
or underestimated. Additionally, the fact that we are estimating a large 
number of states compared to the available measurements may affect 
the accuracy of the estimation. Another important note is that the AKF 
does not assume a shape or symmetry of the estimated wave spectrum, 
so we do not necessarily expect a symmetric spectrum estimation based 
on the known limitations discussed above. As a point of future work to 
improve the estimation, we propose to use more measurements, such 
as radar data, which can provide accurate information about wave 
directionality and may help correct asymmetries in the wave spectrum 
by adding more reliable directional data.

Further, for the multi-directional case, the estimated wave elevation 
aligns reasonably well with the simulated wave elevation, as shown in 
Fig.  9. However, some underestimation or overestimation of the wave 
elevation is observed, which can be attributed to the increased number 
of parameters due to a larger range of directions and frequencies, which 
introduces further complexity.

The estimated significant wave height and peak period were eval-
uated over time, as shown in Figs.  10(a) and 10(b). The estimated 
parameters oscillate around the original wave parameters at approx-
imately 400 s and throughout the remainder of the simulation. This 
effective convergence demonstrates that the AKF is accurate and stable 
over time.
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Fig. 7. Simulated and estimated wave spectrum for multi-directional waves case 1 (see Table  5).
Fig. 8. Simulated and estimated polar plot of directional wave spectrum case 1 (see Table  5).
Fig. 9. Simulated and estimated wave elevation for multi-directional waves case 1 (see Table  5).
The proposed method was evaluated for various multi-directional 
wave scenarios under different ship forward speeds, both constant or 
varying, as described in Table  5. This table represents the estimated 
sea state parameters (significant wave height 𝐻s, peak period 𝑇p, and 
mean direction 𝛽) obtained from the AKF and the baseline frequency 
domain method from [10].

In general, both the AKF and the baseline frequency domain method 
estimate the significant wave height close to the simulated value, with 
the AKF estimates for a deviation of 0.27 m to 0.63 m, the peak period 
with a deviation of about 0.1 s to 0.6 s, and the mean direction of about 
0.6◦. The baseline frequency domain method’s estimates show similar 
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accuracy. The AKF approach introduced here gives similar results to 
the baseline frequency domain method but is easier to implement, 
requires less simulation time to convergence of sea state parameters (∼8
min vs. 10–15 min), and needs fewer assumptions for implementation, 
making it better suited for real-time applications with limited resources. 
Additionally, the AKF can estimate the wave spectrum even when the 
forward speed varies, as demonstrated by Case 5, making it suitable for 
dynamic conditions. However, the baseline frequency domain method 
assumes stationary conditions, which limits its ability to handle changes 
in forward speed effectively.
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Fig. 10. Simulated and estimated sea state parameters over time for multi-directional waves case 1 (see Table  5).
Table 5
Comparison of simulated and estimated wave spectrum parameters for multi-directional cases from the AKF and the baseline frequency domain (Baseline FD) method from [10]. 
Note that 𝐻s(= 4𝜎) is generated two ways: from the wave energy spectrum, and from the generated/estimated wave elevation time series in parenthesis.
 Case No. Forward speed Simulated sea parameters Estimated sea parameters
 AKF Baseline FD
 𝑈 [m/s] 𝐻s [m] 𝑇p [s] 𝛽 [deg] 𝐻s [m] 𝑇p [s] 𝛽 [deg] 𝐻s [m] 𝑇p [s] 𝛽 [deg] 
 1 9.26 4.97 (4.97) 9.03 180 4.73 (4.39) 8.97 180.46 5.40 8.97 178.65  
 2 9.26 3.99 (3.99) 9.03 180 3.76 (3.52) 9.66 179.06 3.67 8.97 179.72  
 3 9.26 3.99 (3.99) 9.03 210 4.04 (3.64) 9.66 201.24 4.21 8.97 194.27  
 4 14.40 3.99 (3.99) 9.03 180 3.36 (3.65) 9.66 182.10 3.67 8.97 179.72  
 5 From 9.26 to 5 4.97 (4.97) 9.03 180 4.47 (4.49) 8.76 179.66 – – –  
4. Conclusions

In conclusion, this paper presented a method using the AKF for es-
timating both unidirectional and multi-directional wave spectra based 
on vessel motion measurements with unknown Gaussian noise and 
the inclusion of forward vessel speed. Simulation results showed that 
the method accurately estimates wave parameters under real-world 
conditions, where the ship’s forward speed may vary, and it achieves 
almost the same degree of precision as existing techniques assuming 
either zero or constant forward speed [23–25,42]. To overcome the 
issue of overestimation at higher wave frequencies, we introduced the 
application of low 𝑄 and 𝑃0 at high wave frequencies. This reduces the 
filter’s sensitivity to high-frequency components, which are more prone 
to noise. The ship’s motion responses were generated using the equal-
energy method to ensure ergodicity, and a wide range of frequencies 
was used to avoid repetition of the signal after 2𝜋∕𝛥𝜔e and ensure 
that the frequencies do not necessarily match with those used in the 
AKF, which are considered unknowns. Some under or overestimation 
in the estimated wave spectrum was noticed due to the large number 
of parameters to be estimated. A potential solution to address this, and 
a plan for future work, is to integrate other sensor sources such as radar 
data, which can provide accurate directional estimates. This can help 
to reduce the number of directions, thereby decreasing the number of 
states to be estimated.

Another important point to address in the future is the inclusion 
of non-linearities. The proposed method was tested using simulated 
motion responses generated using the RAO model, which is based on 
linear assumptions. As a result, nonlinear effects were not included in 
the motion response generation. Additionally, AKF used in this study is 
also based on linear assumptions (the measurement model derived from 
the RAO model). This means that potential nonlinearities, especially 
in large waves, extreme sea conditions, or under significant forward 
speed, may affect the accuracy of sea state estimation. The proposed 
method has been validated for small to moderate wave amplitudes, 
where the linear assumptions of the RAO apply. This restriction should 
be taken into account, and future research could include nonlinear 
effects via more modern techniques, e.g., by replacing the linear RAO 
model with a nonlinear unified state-space model [43], which explicitly 
accounts for these effects. Additionally, employing nonlinear filtering 
techniques, such as the Extended or Unscented Kalman Filter, could 
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provide a more accurate estimation by handling the nonlinearities’ 
effect. Regardless, it is important to remember the possible limita-
tions stemming from this linear RAO assumption when implementing 
this or other model-based SAWB method. In the future, the proposed 
method will also be evaluated using real data collected from onboard 
motion sensors to assess its effectiveness in maritime conditions where 
nonlinearities are expected to play an important role.

Despite these points for future work, overall, the proposed method 
provides promising results for accurate time-domain estimation of a 
wave spectrum based on ship motion measurements with varying for-
ward speed, enabling wave estimation that reflects real-world con-
ditions. With the established time-domain approach presented here, 
further advantages of time domain estimation (e.g., sensor fusion, real-
time estimation, consideration of other non-stationary and non-linear 
conditions) can be leveraged for improved sea state estimation.
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