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Layman’s abstract

This thesis aims to introduce the reader to the cap set problem: a combinatorial problem that can be
formulated in terms of the game SET. This is a card game where each card pictures symbols in various
ways. The cards of SET have four features and each feature can take three values. For example a
card can have the colour red, green, or purple. Players simultaneously search for SETs: three cards
that for every feature are all the same or all different, see Figure 1. The game starts with twelve cards
faced up, but if the players agree that these do not contain a SET, three extra cards may be added. A
natural thing to question is how many cards can be added until the cards must contain a SET. Or in
other words, what is the biggest possible collection of cards without SETs? We call such a collection
of cards a cap, hence the name of the cap set problem.

The card game SET has four features, so we say that the dimension is four. In dimension four the
problem has been solved. The cap set problem tries to solve the problem for a general dimension:
how large can a collections of cards without SETs be, where the cards have a general number of
features?

To figure out what the maximum size of a cap in a general dimension is, we will try to find a constant
𝑐 such that a maximum cap in dimension 𝑑 contains at least 𝑐𝑑 cards. We refer to this constant 𝑐
as an ‘asymptotic lower bound’ on the size of cap sets. To find good asymptotic lower bounds, we
need to construct caps in high dimensions. This can be done by combining some big caps we know
in low dimensions. This thesis explains a construction (called the extended product construction) that
combines caps in a smart way and how this construction has been used to improve the asymptotic
lower bound.

This thesis adds to the literature by expanding on the concepts that are used in the extended product
construction. We incorporate examples of some special collections of caps (called extendable collec-
tions) in dimensions 1, 2, and 3. Moreover, we prove that there exist ‘recursively admissible sets’ where
all elements of the set consist of exactly 2 or 3 non-zero coordinates by giving explicit constructions
and proving that the resulting sets satisfy all necessary conditions. Lastly, we show that how effective
the extended product construction may be in high dimensions, it does not allow us to build maximum
caps in low dimensions.

I. Pelupessy
Delft, June 2024

Figure 1: The three cards have the same colour, but for all other features they are all different.
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Abstract

The objective of the cap set problem is finding the maximum size of a 𝑑-cap: a subset of 𝔽𝑑3 not
containing three elements in line. This thesis aims to give a comprehensive overview of constructions
for the cap set problem, with a focus on improvements of the asymptotic lower bound on the size of
caps that have already been made.

Finding an asymptotic lower bound on the size of caps boils down to finding a cap 𝐶 in a dimension
𝑑 such that its solidity, given by 𝑑√|𝐶|, is as large as possible. We start with studying caps in low
dimensions, of which the maximum sizes are exactly known. Then to further improve the asymptotic
lower bound we turn to caps in higher dimensions. Here, the art lies in carefully combining large caps
in low dimensions to construct large caps in higher dimensions by taking products. One construction
that allows us to do this is the extended product construction, which extends extendable collections of
caps with admissible sets.

This thesis explains the extended product construction and gives an overview of how it has been used
and expanded to repeatedly increase the asymptotic lower bound. As the literature sometimes lacks
detail, this thesis adds to the literature by incorporating examples, explicit constructions of (recursively)
admissible sets, and experiments with the extended product construction.

In Chapter 6, we prove the existence of recursively admissible sets of constant weight 2 and 3 for any
dimension 𝑘 by giving explicit constructions and proving that the resulting sets satisfy all necessary
conditions. Moreover, we classify all admissible sets in dimensions 2 and 3 and all extendable collec-
tions in dimensions 1, 2, and 3. Then, we use these to deduce that the extended product construction
is less effective in low dimensions by showing that the largest possible caps we can construct this way
in dimensions 4, 6, and 8 are never as large as caps constructed by taking direct products of maximum
caps.

I. Pelupessy
Delft, June 2024
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1
Introduction

In 1974, geneticist Marsha Falco was doing research into the heredity of epilepsy among German
Shepherds when she invented the card game SET. To study the genes, Falco made cards with symbols
to represent blocks of data for each dog. She used symbols with different properties to indicate different
combinations of genes. She then tried to find patterns among the cards and realized that this was quite
a fun game. 17 years later SET was shared with the public [1].

The cards of SET have four features and each feature can take three possible values. For example
the feature colour can take values red, green, or purple. Three cards form a SET together if for every
feature the three cards are all different or all the same (see Figure 1 for an example). The players
simultaneously look for SETs among a collection of faced up cards: the fastest player may keep the
SET they find and whoever has the most SETs at the end of the game wins. The game starts with
twelve cards on the table, but if the players agree that these do not contain a SET, three extra cards
may be added. Now, one may wonder how many cards we can keep adding until a SET is guaranteed.
Or equivalently: what is the biggest possible collection of cards without three cards forming a SET?

Mathematically this problem is described as finding the biggest possible subset of 𝔽43 without three
points in line, where 𝔽3 denotes the field of three elements. We call a subset of 𝔽𝑑3 with no three points
in line a cap set (or cap), hence the name of the cap set problem. As for the game SET, where the
dimension is four, this problem is solved. In fact, for dimensions one through six the maximum sizes of
caps are known. For dimensions seven and up this is still an open problem.

The cap set problem is a combinatorial problem that has many connections with other areas of mathe-
matics. The solution to the cap set problem would for instance partially prove the sunflower conjecture.
A 𝑘-sunflower is a collection of sets 𝐴1, 𝐴2, … , 𝐴𝑘 such that the pairwise intersections equal the 𝑘-wise
intersection. Imagine the Venn diagram of such a collection and see where a sunflower gets its name.
The sunflower conjecture states that given any 𝑘 there is a constant 𝑏𝑘 such that we can find a 𝑘-
sunflower in any subset of (ℤ/𝑚ℤ)𝑑 of size at least (𝑏𝑘)𝑑. The solution to the cap set problem would
solve the sunflower conjecture for 𝑚 = 3. Another application of the cap set problem is the Games
graph: the largest known locally linear strongly regular graph, consisting of 729 vertices, each having
112 incident edges. This graph was constructed with the help of caps. Lastly, the upper bounds on
caps imply lower bounds on certain types of algorithms for matrix multiplication. For a more detailed
exposition of the applications of the cap set problem the reader is referred to [2].

The aim of this thesis is to give an overview of the best constructions for the cap set problem, with
a focus on the asymptotic solidity of cap sets. This is the number that the solidity of maximum caps
approaches as the dimension grows larger. This is given by sup𝑑 𝑑√𝑎𝑑 (as defined in [3]), where 𝑎𝑑
denotes the maximum size of a cap in 𝔽𝑑3 . Since the asymptotic solidity is at least the solidity of any cap
we find, finding an asymptotic lower bound on the size of cap sets comes down to finding a cap such
that its solidity is as large as possible. This thesis mainly focuses on explaining constructions for large
cap sets in high dimensions, where the art lies in carefully combining large caps in low dimensions by
taking products, such that their solidity improves the asymptotic lower bound.
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This report is structured as follows. First, Chapter 2 introduces the space 𝔽𝑑3 and explains how the ele-
ments of this space correspond to cards of a 𝑑-dimensional SET game. Then, Chapter 3 treats what is
known about maximum caps in low dimensions. After this we proceed with higher dimensions, where
the problem boils down to creating caps such that their solidity is as large as possible. This can be
done by combining low dimensional maximum caps to create a large cap in a higher dimension. One
construction that takes products of caps in a very smart way, is the extended product construction by
Edel, which is explained in Chapter 4. The extended product construction was used several times in lit-
erature to repeatedly improve the asymptotic lower bound, of which Chapter 5 gives an overview. Next,
Chapter 6 adds to the literature by expanding on the concepts ‘extendable collections’ and ‘admissible
sets’ used in the extended product construction. This chapter classifies extendable collections and
admissible sets in low dimensions, gives explicit constructions for (recursively) admissible sets, and
experiments with constructing maximum caps in low dimensions (of which the maximum size is known)
using the extended product construction. Lastly, Chapter 7 gives conclusions and recommendations
for further research.



2
The cap set problem

This chapter gives an introduction to the cap set problem. First it is explained how we go from the cap
set problem in terms of the card game SET to the problem of finding the largest subset of 𝔽𝑑3 without
lines. Then we elaborate on 𝔽𝑑3 , the 𝑑-dimensional vector space over the field of three elements, and
its subspaces.

2.1. From SET cards to elements of 𝔽43
This section is based on ‘The card game SET’, by Davis and Maclagan [3], which gives a nice and clear
introduction to the cap set problem. In this section it is explained how the cards of SET can be seen
as elements of 𝔽43.
The cards of SET have four features: shape, colour, shading, and number of shapes. Each feature has
three possible outcomes. The shape, for example, can be oval, squiggle, or diamond. The features
and their possible outcomes are in Table 2.1.

Table 2.1: The four features of SET cards.

Shape Colour Shading Number
0 Oval Red Solid One
1 Squiggle Green Striped Two
2 Diamond Purple Open Three

Suppose that for each feature, the three outcomes are numbered 0, 1 and 2. In Table 2.1 the rows
are numbered accordingly. Each card of SET can then be modelled as a 4-dimensional vector, where
a position corresponds to a feature and the entry in that position corresponds to the outcome of that
feature. For example, if the second entry of a vector is 0, then the colour of the figures on the cor-
responding card is red. In Figure 2.1 it is demonstrated how a card that pictures three solid, purple
squiggles is translated to a vector.

�⃗� =
⎡
⎢
⎢
⎣

shape = squiggle
colour = purple
shading = solid
number = three

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1
2
0
2

⎤
⎥
⎥
⎦

Figure 2.1: The SET card corresponding to the vector �⃗� = (1, 2, 0, 2)𝑇.
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Observe that this way each of the 81 cards of SET corresponds to a unique element in {0, 1, 2}4. We
can define the set {0, 1, 2} as a field of three elements, denoted 𝔽3. Definition 2.1 gives the formal
definition of a field.

Definition 2.1. Field.
A field 𝐹 is a set of elements together with two binary operations, called addition and multiplication,
such that:

• Addition and multiplication are associative, that is, for all 𝑎, 𝑏, 𝑐 ∈ 𝐹:
(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) and (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐).

• Addition and multiplication are commutative, that is, for all 𝑎, 𝑏, 𝑐 ∈ 𝐹:
𝑎 + 𝑏 = 𝑏 + 𝑎 and 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎.

• There are distinct elements 0 and 1, called the additive- and multiplicative identity respectively,
such that for all 𝑎 ∈ 𝐹:
𝑎 + 0 = 𝑎 and 𝑎 ⋅ 1 = 𝑎.

• Every element 𝑎 has an additive inverse, denoted (−𝑎), such that 𝑎 + (−𝑎) = 0.
• Every non-zero element 𝑎 has a multiplicative inverse, denoted 𝑎−1, such that 𝑎 ⋅ 𝑎−1 = 1.
• Multiplication is distributive over addition, that is, for all 𝑎, 𝑏, 𝑐 ∈ 𝐹:
𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐).

Some commonly known infinite fields are the rational numbers ℚ and the real numbers ℝ. Consider
the finite field 𝔽3 = {0, 1, 2}. Addition and multiplication are as how we normally use ‘+’ and ‘⋅’, but then
we calculate modulo 3. Then the elements of 𝔽3 add and multiply as follows:

+ 0 1 2
0 0 1 2
1 2 0
2 1

⋅ 0 1 2
0 0 0 0
1 1 2
2 1

Note that the additive identity is 0 and the multiplicative identity is 1. The additive inverses are:
• 0 + 0 = 0
• 1 + 2 = 0
• 2 + 1 = 0

This should not come as a surprise since −1 ≡ 2 (mod 3) and −2 ≡ 1 (mod 3). The multiplicative
inverses of the non-zero elements are:

• 1 ⋅ 1 = 1
• 2 ⋅ 2 = 4 ≡ 1 (mod 3)

As mentioned before, the SET cards correspond to 4-dimensional vectors. More specific, each card is
an element of the 4-dimensional vector space over the field of three elements {0, 1, 2}4 = 𝔽43. Informally,
a vector space is a set whose elements may be added together and multiplied (“scaled”) by elements
of a field, called scalars. The elements of the vector space are called vectors. Any vector space may
be seen as an affine space by “forgetting” the special role played by the zero vector, as in an affine
space there is no distinguished point that serves as an origin. The elements of an affine space are
commonly called points.

2.2. Lines in 𝔽𝑑3
In the previous section we have seen that a card of SET can be modelled as an element of 𝔽43. But
looking at elements of 𝔽43 makes the SET game more abstract, as the pictures have been omitted.
When do three elements of 𝔽43 form a SET together? To define this, consider the following proposition:

Proposition 2.2. If 𝑎, 𝑏 and 𝑐 are three distinct elements of 𝔽3, then 𝑎+𝑏+𝑐 = 0 if and only if 𝑎 = 𝑏 = 𝑐
or {𝑎, 𝑏, 𝑐} = {0, 1, 2}.
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Proof. It is trivial that if 𝑎 = 𝑏 = 𝑐 or {𝑎, 𝑏, 𝑐} = {0, 1, 2}, then 𝑎 + 𝑏 + 𝑐 = 0 (mod 3).
For the other direction, suppose that 𝑎 + 𝑏 + 𝑐 = 0. If 𝑎, 𝑏 and 𝑐 are all different or all the same we are
done. We are left with the case where only two are the same. But if 𝑎 = 𝑏, then since 𝑎+𝑏+𝑐 = 0 ⟺
𝑎−𝑏 = 𝑏 − 𝑐, we also have 𝑏 = 𝑐, so this case cannot occur. Therefore if 𝑎 + 𝑏 + 𝑐 = 0 then 𝑎 = 𝑏 = 𝑐
or {𝑎, 𝑏, 𝑐} = {0, 1, 2}.

Recall that three cards form a SET if for every feature they are all the same or all different, so for each
feature either 𝑎 = 𝑏 = 𝑐 or {𝑎, 𝑏, 𝑐} = {0, 1, 2} in the corresponding coordinate. Thus by Proposition 2.2,
three cards form a SET if and only if their associated vectors add up to zero. This argument works if
the dimension 4 is replaced for any positive integer 𝑑.
Three elements of 𝔽𝑑3 form a line if and only if the vectors add up to zero. Therefore essentially, in a
𝑑-dimensional SET game the players are searching for lines contained in a subset of 𝔽𝑑3 (the cards on
the table). The cap set problem asks how many cards can be on the table without any sets, that is, we
are looking for subsets of 𝔽𝑑3 that do not contain any lines. A subset that does not contain any lines is
called a 𝑑-cap:
Definition 2.3. 𝑑-cap.
𝐴 ⊂ 𝔽𝑑3 is called a 𝑑-cap if 𝐴 does not contain any lines, i.e. for all distinct 𝑥, 𝑦, 𝑧 ∈ 𝐴we have 𝑥+𝑦+𝑧 ≠ 0.
Strictly speaking, the term ‘cap’ in general refers to a subset of a finite affine space with no three in
line. In the specific case where the affine space is over the field 𝔽3 the term ‘cap set’ is used. However,
Definition 2.3 defines the field to be 𝔽3, so in this report we will refer with the term ‘cap’ to a cap set
in 𝔽𝑑3 .
In terms of the card game SET, the cap set problem can be defined as follows:

Question 1. What is the largest possible collection of SET cards not containing any SETs?

We can reformulate this question in terms of the 𝑑-dimensional vector space over the field of three
elements:

Question 2. What is the maximum size of a 𝑑-cap in 𝔽𝑑3?

2.3. Caps of the same type
A natural question is if maximum 𝑑-caps we find are unique. The answer is no. To demonstrate this
consider the cap in Figure 2.2(a). Permuting the colours obtains a cap of the same type, given in
Figure 2.2(b).

Figure 2.2: (a) A cap. (b) A cap with permuted colours.

Besides permuting the colours there are many more permutations possible to produce new caps of
same size as the original one. Stated as in [3]: permutations of 𝔽𝑑3 that take caps to caps are exactly
those that take lines to lines and are called affine transformations. These are of the form 𝜎(�⃗�) = 𝐴�⃗�+�⃗�,
where 𝐴 is an invertible 𝑑 × 𝑑-matrix with entries in 𝔽3 and �⃗�, �⃗� ∈ 𝔽𝑑3 . We say that two caps are of the
same type if there is an affine transformation taking one to the other. Note that since 𝐴 is invertible, the
operation is reversible, so we define an equivalence relation.

The set of 𝑑 × 𝑑 invertible matrices with entries in 𝔽3 is a group (𝐺𝐿𝑑(𝔽3)) that is generated by the
elementary matrices. That means that 𝐴 in 𝜎(�⃗�) is a product of elementary matrices. An elementary
matrix is a matrix which differs from the identity matrix by one single elementary row operation. The
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elementary row operations are switching rows, taking nonzero scalar multiples of rows, and adding
(multiples of) rows to rows. These operations preserve invertibility. We show next that these operations
also take lines to lines:

Let 𝑥, 𝑦, 𝑧 ∈ 𝔽𝑑3 . We call the entries in the same position a row, e.g. {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖} is the 𝑖’th row. Suppose
that 𝑥, 𝑦 and 𝑧 are a line, i.e. 𝑥 + 𝑦 + 𝑧 = 0.

• Switching rows.
For all coordinates 𝑖 we have 𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖 = 0, so the rows can be reordered.

• Scalar multiples.
Let 𝑎 ∈ 𝔽3. Multiplying row 𝑖 with 𝑎 gives
𝑎𝑥𝑖 + 𝑎𝑦𝑖 + 𝑎𝑧𝑖 = 𝑎(𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖) = 𝑎0 = 0.

• Adding (multiples of) rows to rows.
Let 𝑎 ∈ 𝔽3. Suppose we add 𝑎 times row 𝑖 to row 𝑗. Then row 𝑗 becomes
(𝑥𝑗 + 𝑎𝑥𝑖) + (𝑦𝑗 + 𝑎𝑦𝑖) + (𝑧𝑗 + 𝑎𝑧𝑖) = (𝑥𝑗 + 𝑦𝑗 + 𝑧𝑗) + 𝑎(𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖) = 0 + 𝑎0 = 0.

Translations are given by �⃗� in 𝜎(�⃗�) and also take lines to lines:
• Translations.
Let 𝑎 ∈ 𝔽3. Translating row 𝑖 with 𝑎 gives
(𝑥𝑖 + 𝑎) + (𝑦𝑖 + 𝑎) + (𝑧𝑖 + 𝑎) = (𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖) + 3𝑎 = 0.

Note that this section demonstrates why the previously defined 𝑑-dimensional vector space over the
field of three elements 𝔽𝑑3 is in fact an affine space, as any point can be mapped to the zero vector by
an affine transformation, so there is no distinguished point that serves as an origin.

2.4. Subspaces of 𝔽𝑑3
This section treats subspaces of 𝔽𝑑3 and some implications which will be used in proving the maximum
sizes of caps in dimensions 2 and 3 in Section 3.1.
Definition 2.4. Subspace.
A subset 𝑆 of a vector space 𝑉 is called a subspace if it is a vector space itself with the same addition
and scalar multiplication as 𝑉. That is, if 𝑥, 𝑦 ∈ 𝑆 and 𝛼, 𝛽 ∈ 𝔽3, then 𝛼𝑥 + 𝛽𝑦 ∈ 𝑆.
Definition 2.5. Basis.
A set of linearly independent vectors 𝐵 is called a basis for a vector space 𝑉 if every vector in 𝑉 is a
linear combination of elements in 𝐵, i.e. 𝐵 spans 𝑉.
Definition 2.6. Dimension of a subspace.
The dimension of a subspace 𝑆 of 𝔽𝑑3 equals the number of elements in a basis 𝐵 for 𝑆.

• a 0-dimensional subspace is called a point.

• a 1-dimensional subspace is called a line.

• a 2-dimensional subspace is called a plane.

• a (𝑑 − 1)-dimensional subspace of 𝔽𝑑3 is called a hyperplane.

Consider a 1-dimensional subspace 𝑆, with basis 𝐵 = {𝑎}, where 𝑎 ∈ 𝔽𝑑3 . Since 𝑆 is closed under scalar
multiplication, 0𝑎 = 0 ∈ 𝑆 and 2𝑎 ∈ 𝑆, so each 1-dimensional subspace of 𝔽𝑑3 contains two non-zero
vectors. That means that the number of lines through ‘the origin’ is given by:

3𝑑 − 1
2 (2.1)

Since there are 3𝑑 vectors in total, one is zero, and each line contains two non-zero vectors. Recall,
however, that in an affine space we “forget” the special role played by the zero vector: any 𝑎 ∈ 𝔽𝑑3 can
be mapped to 0 with an affine transformation, so we can in fact say for any point in 𝔽𝑑3 that the number
of lines containing that point equals (2.1). Another way to look at this is by considering the fact that any
pair of points determines a unique third point to make a line. Thus for any point 𝑎 there are 3𝑑−1 points
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in 𝔽𝑑3 unequal to 𝑎, and half of these determine the lines through 𝑎. Figure 2.3 shows two examples of
how for 𝑑 = 2 each point is contained in exactly 4 lines. In Section 3.1 we will use this fact in the proof
for the maximum size of a 2-cap.

Figure 2.3: Every point in 𝔽23 lies on exactly four lines.

Since 𝔽𝑑3 contains 3𝑑 points, the number of lines through each point equals (2.1), and each line contains
three points (so each line in 𝔽𝑑3 is counted three times), the total number of lines in 𝔽𝑑3 is given by:

3𝑑−1 ⋅ 3
𝑑 − 1
2 (2.2)

Formula (2.2) gives the total number of possible SETs in a 𝑑-dimensional SET game.

Each pair of points 𝑎, 𝑏 ∈ 𝔽33 is contained in exactly four planes. To see this, remember that a pair of
points determines a line and observe that non-parallel planes intersect at a line (see Figure 2.4). The
line determined by 𝑎 and 𝑏 contains three points, so there are 33 − 3 = 24 points in 𝔽33 apart from the
line. On the other hand, each plane has 9 − 3 = 6 points not on the line. That means that each line is
contained in 24

6 = 4 planes. In Section 3.1 we will use this fact in the proof for the maximum size of a
3-cap.

Figure 2.4: Non-parallell planes intersect at a line.



3
Maximum caps

This chapter gives an overview of maximum caps in low dimensions: for dimensions 1 through 6 the
maximum sizes are exactly known, and for dimension 7 the largest known cap is given. Then we
elaborate on finding maximum caps in high dimensions, where the cap set problem amounts to finding
an asymptotic lower bound on the size of caps.

3.1. Maximum caps in low dimensions
The cap set problem tries to find themaximum size of caps in fixed dimensions. That means that when
we find a maximum cap in some dimension 𝑑, no other element of 𝔽𝑑3 can be added to the cap and
there is no way to construct another cap in 𝔽𝑑3 of bigger size. Let 𝑎𝑑 denote the maximum size of a cap
in dimension 𝑑. A trivial lower bound for 𝑎𝑑 is the size of any 𝑑-cap we find: surely the maximum size
of a 𝑑-cap will be at least the size of the cap we have found.

Next, we will look at the maximum size of caps in low dimensions. Up until 𝑑 = 4 we can view 𝔽𝑑3
as cards of SET. For example, for 𝑑 = 3 you can imagine playing an simpler version of SET by playing
only with cards that picture one shape. In the next sections we start with one feature and then add
features one by one.

Dimension 1: 𝔽13 = {0, 1, 2}
Suppose we play SET with only one feature, say shape. We then have only three cards, pictured in
Figure 3.1. Note that the three cards form a SET: they are all different in the feature ‘shape’. In the
one dimensional SET game it is trivial to see what the maximum size of a cap is: any subset of two
elements is a cap, but a 1-cap cannot contain all three elements of 𝔽3, so 𝑎1 = 2.

Figure 3.1: The cards of a one dimensional SET game.

Dimension 2: 𝔽23 = {0, 1, 2}2
Let us now consider a two dimensional SET game by adding a feature, say colour. This results in nine
cards, pictured in Figure 3.2. Taking the four corner cards gives us a 2-cap: see for yourself that these
four cards do not contain a SET. By the existence of a 2-cap of size four, we know 𝑎2 ≥ 4. Now the
next question is if it is possible to construct a 2-cap of size 5. Proposition 3.1 states that no such cap
exists.

8
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Figure 3.2: The cards of a two dimensional SET game, a 2-cap schematically, and four cards of a 2-cap.

Proposition 3.1. A maximum 2-cap has size four [3].

Proof. Assume to a contradiction that there is a 2-cap with five points. The plane 𝔽23 can be decom-
posed as the union of three parallel lines, as in Figure 3.3(a), and each of these lines can contain
maximum two points. Then one of these lines, say 𝐻, contains only one point, 𝑥5, of the cap. Any point
of 𝔽23 lies on exactly four lines that cover the plane together, thus apart from 𝐻, there are exactly three
other lines that contain 𝑥5: 𝐿1, 𝐿2, and 𝐿3, see Figure 3.3(b). By the pigeonhole principle1 one 𝐿𝑖 has
to contain two points of the cap other than 𝑥5. That means that there is a line with three points of the
cap, contradicting that the five points are a 2-cap. We conclude that 𝑎2 = 4.

Figure 3.3: (a) Three parallel lines in 𝔽23. (b) The lines containing 𝑥5.

Dimension 3: 𝔽33 = {0, 1, 2}3
Let us now consider a three dimensional SET game by adding another feature, say shading. This
results in 27, pictured in Figure 3.4, together with a 3-cap of size 9 schematically. We see that 𝑎3 ≥ 9.
In fact, by Proposition 3.2, 𝑎3 = 9.
Proposition 3.2. A maximum 3-cap has size nine [3].

Proof. The proof is similar to the proof of Proposition 3.1. Assume to a contradiction that there is a 3-
cap with ten points. The space 𝔽33 can be decomposed into three parallel planes. The plane containing
the fewest number of points of the cap, say 𝐻, has at least two points, say 𝑎 and 𝑏, and at most three
points, leaving at least seven points that are not on 𝐻. Now 𝑎 and 𝑏 are contained in exactly three other
planes than 𝐻. The seven points that are not on 𝐻 need to be distributed over these three planes, so
one of the planes that contains 𝑎 and 𝑏 must also contain three of the remaining points. This means
we find a plane with five points of the cap: a contradiction with 𝑎2 = 4.

For a more detailed proof the reader is referred to [3].
1Also known as Dirichlet’s box principle: if 𝑛 items are put into 𝑚 boxes, with 𝑛 > 𝑚, then at least one box must contain more
than one item.
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Figure 3.4: The cards of a three dimensional SET game and a 3-cap schematically.

Dimension 4 and 5
Now suppose we add another feature (number of shapes), with which we obtain the complete card
game of SET. We then have 81 cards, representing the elements of 𝔽43 = {0, 1, 2}4. A 4-cap of size
20 is shown schematically in Figure 3.5. By the existence of a 4-cap of size 20, we know 𝑎4 ≥ 20.
Pellegrino proved in 1971 already that 𝑎4 < 21 in [4], but a nice proof is also given in [3], which uses
the method of counting marked hyperplanes via hyperplane triples.

Figure 3.5: A 4-cap of size 20 schematically.

Now suppose that the cards of SET have an extra feature. Imagine, for example, that the cards have
a furry, sticky or smooth texture. We then obtain a five dimensional SET game, where we ‘play’ with
the elements of 𝔽53 = {0, 1, 2}5. A 5-cap of size 45 is known to exist. In 2002 Edel, Ferret, Landjev,
and Storme proved that a cap of size 46 does not exist in [5], making use of an exhaustive computer
search. For a summary of the proof the reader is referred to [3]. It has to be mentioned that the proof
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uses concepts that are not defined yet and will not be defined in this report, such as hyperplanes and
the Fourier analysis bound.

3.2. The Hill cap and the Calderbank-Fishburn cap
In this section the Hill cap is explained, which gives a 6-cap of size 112. Potechin proved in 2008 that
this is the maximum size of a cap in 𝔽63 in [6]. The Calderbank-Fishburn cap, which is based on the Hill
cap, gives a 7-cap of size 236, the biggest cap known in dimension 7.
The Hill cap is based on a 2-(6, 3, 2) block design 𝐷, given in Table 3.1. The blocks represent which
positions in a vector �⃗� ∈ 𝔽63 are non-zero. Thus each block contains 23 different vectors. We call the
positions where a vector is non-zero the support of the vector. We call the number of positions where
a vector is non-zero the weight of a vector.

Table 3.1: The blocks of 𝐷: 2-(6, 3, 2)

123 236
124 245
135 256
146 345
156 346

The following comments give some further explanation on the parameters in the notation ‘2-(𝑣, 𝑘, 𝜆)’,
where 𝑣 = 6, 𝑘 = 3, and 𝜆 = 2, and the corresponding properties of the block design 𝐷:

• A vector �⃗� ∈ 𝔽63 has 6 potential positions where the entry could be non-zero. Thus there are 𝑣 = 6
elements that the blocks can contain: {1, 2, 3, 4, 5, 6}.

• The size of each block is 𝑘 = 3, meaning that each vector �⃗� ∈ 𝔽63 has weight 3.
• Each pair of positions occurs in exactly 𝜆 = 2 blocks, where the fact that we are considering pairs
is indicated by the first 2. For example the pair 12 is contained in exactly two blocks: 123 and
124. A result of this property is that whenever two blocks have two points in common, there is
no third block contained in their union, i.e. all other blocks have at least one non-zero coordinate
where the two original blocks have zeros.

To summarize, 𝐷 is a set of vectors ∈ 𝔽63 such that each vector has weight 3 and support given by one
of the blocks of 𝐷. There are 10 ⋅ 23 = 80 vectors contained in 𝐷.

Let 𝑅 be the vectors of 𝔽63 with weight 6 and an even number of 2’s (and thus also an even number of
1’s). Then 𝑅 contains 32 vectors and the union of 𝑅 with 𝐷 gives a cap:

Proposition 3.3. The Hill cap.
𝐷 ∪ 𝑅 is a cap of size 112 in 𝔽63.

Proof. The fact that 𝐷 is a cap follows from the properties of a block design. 𝑅 is a cap since for any
𝑥, 𝑦, 𝑧 ∈ 𝑅 there is a coordinate where {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖} = {1, 2} (since all vectors in 𝑅 have weight 6).
To check if 𝐷 ∪ 𝑅 is a cap, we need to check two cases:

1. 𝑥, 𝑦 ∈ 𝐷 and 𝑧 ∈ 𝑅:
First observe that each pair of vectors 𝑥, 𝑦 ∈ 𝐷 has overlapping support in one or two positions.
Since each pair has at least one common non-zero position and the vectors have weight 3 and
dimension 6, there is a coordinate 𝑖 where 𝑥𝑖 = 𝑦𝑖 = 0. Since 𝑧 ∈ 𝑅 has weight 6, we find
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = (0, 0, ∗), where ∗ is a non-zero entry. This is visualised in Figure 3.6.

2. 𝑥 ∈ 𝐷 and 𝑦, 𝑧 ∈ 𝑅:
Since 𝑦 + 𝑧 has even weight for any 𝑦, 𝑧 ∈ 𝑅 and −𝑥 has weight 3, we cannot have 𝑦 + 𝑧 = −𝑥
and therefore the sum of 𝑥, 𝑦 and 𝑧 cannot be equal to 0.

We conclude that in any case 𝑥 +𝑦+𝑧 ≠ 0. Thus 𝐷∪𝑅 is a cap of size |𝐷|+ |𝑅| = 80+32 = 112.
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Figure 3.6: 𝐷 has at least one overlapping non-zero entry and 𝑅 has no zeros.

Let �̄� be the complement of 𝐷, where 123𝐶 = 456, for example. Then �̄� contains the weight 3 vectors
of 𝔽63 with supports that are not given in 𝐷. Note that there are (63) ⋅ 2

3 = 160 vectors of weight 3 in
total, so 𝐷 and �̄� partition all weight 3 vectors of 𝔽63 into two equal parts. �̄� ∪ 𝑅 is an isomorphic copy
of 𝐷 ∪ 𝑅 and is also a cap.

Now let U be all 12weight 1 vectors of 𝔽63. 𝑈 is a cap since if we take three distinct elements 𝑥, 𝑦, 𝑧 ∈ 𝑈, in
any case there will be a coordinate 𝑖 where {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖} has two 0’s and one non-zero entry, so 𝑥+𝑦+𝑧 ≠ 0.
We can combine 𝐷, �̄�, 𝑅 and 𝑈 into a cap in 𝔽73, where we use Notation 1:
Notation 1. Let (𝑎, 𝑋) ⊂ 𝔽𝑑+13 denote {𝑎} × 𝑋 for 𝑎 ∈ 𝔽3 and 𝑋 ⊂ 𝔽𝑑3 .
Proposition 3.4. The Calderbank-Fishburn cap.
(0, 𝐷) ∪ (0, 𝑅) ∪ (1, �̄�) ∪ (1, 𝑅) ∪ (2, 𝑈) is a cap of size 236 in 𝔽73.

Proof. Suppose we have 𝑥, 𝑦, 𝑧 in the collection with 𝑥+𝑦+𝑧 = 0. Then the first coordinate has to add
up to 0, so the prefixes are either all the same or all different. Since 𝐷 ∪ 𝑅, �̄� ∪ 𝑅, and 𝑈 are caps, the
prefixes can not all be 0, all be 1, or all be 2, so the prefixes are {0, 1, 2}. Let 𝑧 ∈ (2, 𝑈). Then 𝑧 has
weight 2 and 𝑥 +𝑦 must also have weight 2 for 𝑥 +𝑦+ 𝑧 = 0, but in all cases 𝑥 +𝑦 has weight unequal
to 2:
1. 𝑥 ∈ (0, 𝐷) and 𝑦 ∈ (1, �̄�):

Since no element of 𝐷 has the same support as an element of �̄�, vectors in 𝐷+�̄� have weight≥ 2,
so 𝑥 + 𝑦 has weight ≥ 3.

2. 𝑥 ∈ (0, 𝐷) and 𝑦 ∈ (1, 𝑅) or 𝑥 ∈ (0, 𝑅) and 𝑦 ∈ (1, �̄�):
Vectors in 𝐷 + 𝑅 or �̄� + 𝑅 have weight ≥ 3, so 𝑥 + 𝑦 has weight ≥ 4.

3. 𝑥 ∈ (0, 𝑅) and 𝑦 ∈ (1, 𝑅):
Vectors in 𝑅 + 𝑅 have even weight, so 𝑥 + 𝑦 has odd weight and is thus unequal to 2.

We conclude that there exist no 𝑥, 𝑦, 𝑧 such that 𝑥 + 𝑦 + 𝑧 = 0.

3.3. Asymptotic lower bound
So far we have seen that we already know a lot about maximum caps in low dimensions. But what can
be said about maximum caps in high dimensions? Maximum caps in low dimensions can be combined
into higher dimensional caps by the direct product construction, which is stated in Proposition 3.5.

Proposition 3.5. The Direct Product Construction.
If 𝐴 ⊂ 𝔽𝑛3 and 𝐵 ⊂ 𝔽𝑚3 are caps, then 𝐴 × 𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ⊂ 𝔽𝑛+𝑚3 is a cap of size |𝐴||𝐵|.

Proof. Suppose there are 𝑥 = (𝑥𝑎 , 𝑥𝑏), 𝑦 = (𝑦𝑎 , 𝑦𝑏), 𝑧 = (𝑧𝑎 , 𝑧𝑏) ∈ 𝐴 × 𝐵, with 𝑥𝑎 , 𝑦𝑎 , 𝑧𝑎 ∈ 𝐴 and
𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏 ∈ 𝐵 such that 𝑥 + 𝑦 + 𝑧 = 0. Then we must have 𝑥𝑎 + 𝑦𝑎 + 𝑧𝑎 = 0 and 𝑥𝑏 + 𝑦𝑏 + 𝑧𝑏 = 0,
contradicting that 𝐴 and 𝐵 are caps.

By taking the direct product of {0, 1} (which is a cap in 𝔽3), we see that {0, 1}𝑑 ⊂ 𝔽𝑑3 is a cap for every
dimension 𝑑, so we know that the size of a maximum cap in any dimension is at least 2𝑑. Writing
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this differently gives 2 ≤ 𝑑√𝑎𝑑. This brings us to the concept of solidity, which is used to compare the
“largeness” of caps from different dimensions.

Definition 3.6. Solidity.
Let 𝐴 be a cap in 𝔽𝑑3 . The solidity of 𝐴 is defined as 𝑐(𝐴) = 𝑑√|𝐴|.
Now, the question is what happens to 𝑐(𝐴) as we take maximum caps in dimension 𝑑 → ∞. Thus, we
are interested in lower (and upper) bounds of asymptotic solidity:

Definition 3.7. Asymptotic Solidity.
The asymptotic solidity of maximum caps is defined as 𝑐 = sup𝑑 𝑑√𝑎𝑑, where 𝑎𝑑 denotes the maximum
cap size in dimension 𝑑.
Since any cap contains less than 3𝑑 points, we know that 𝑐 ≤ 3. In fact, in 2017 Ellenberg and Gijswijt
proved that 𝑐 ≤ 2.756 in [7] by adapting a proof of Croot, Lev, and Pach for a related problem in [8].

Since the asymptotic solidity is at least the solidity of any cap, 𝑐 is at least 2. The following theorem
shows how the direct product construction can be used to derive an asymptotic lower bound for the
cap set problem:

Theorem 3.8. Let 𝐴 ⊂ 𝔽𝑛3 be a cap of size 𝑐𝑛. Then for any 𝜖 > 0 there is an𝑀 such that for all 𝑚 ≥ 𝑀
there is a cap in 𝔽𝑚3 of size greater than (𝑐 − 𝜖)𝑚.

Proof. Suppose that 𝐴 is a cap in 𝔽𝑛3 of size 𝑐𝑛, thus 𝑛√|𝐴| = 𝑐.

For any 𝑚 we can write 𝑚 = 𝑛𝑘 + 𝑟, where 0 ≤ 𝑟 < 𝑛. Since 𝑟 < 𝑛, for any 𝑚 ≥ 𝑀 we have 𝑟
𝑚 < 𝑛

𝑀 ,
so 1 − 𝑛

𝑀 < 1 −
𝑟
𝑚 .

Let 𝜖 > 0. We can always choose 𝑀 large enough such that 𝑐1−
𝑛
𝑀 > 𝑐 − 𝜖. To see this note that as

𝑀 → ∞, 1 − 𝑛
𝑀 will approach 1, so 𝑐1−

𝑛
𝑀 will approach 𝑐. By applying the direct product construction 𝑘

times to 𝐴 we find a cap in 𝔽𝑛𝑘3 with:

| 𝐴 × ⋯ × 𝐴⏝⎵⎵⏟⎵⎵⏝
𝑘 𝑡𝑖𝑚𝑒𝑠

| = 𝑐𝑛𝑘 = 𝑐𝑚−𝑟 = (𝑐1−
𝑟
𝑚 )𝑚 > (𝑐1−

𝑛
𝑀 )𝑚 > (𝑐 − 𝜖)𝑚

Since 𝑛𝑘 ≤ 𝑚, 𝐴 ×⋯ × 𝐴⏝⎵⎵⏟⎵⎵⏝
𝑘 𝑡𝑖𝑚𝑒𝑠

is a cap in 𝔽𝑚3 of size greater than (𝑐 − 𝜖)𝑚.

Theorem 3.8 shows that finding an asymptotic lower bound comes down to finding a cap 𝐴 ⊂ 𝔽𝑑3 where
𝑑√|𝐴| is as large as possible. By taking the maximum cap of size 112 in 𝔽63 we see that 𝑐 ≥ 6√112 =
2.196. Note that the asymptotic lower bound allows us to draw conclusions about maximum cap sizes
in high dimensions, so for large enough 𝑑. To demonstrate what happens for a dimension that is too
low, consider that in two dimensions we would conclude 𝑎2 ≥ (2.196)2 > 4, while we know that 𝑎2 = 4.

3.4. Conclusion
In summary, the cap set problem tries to find the biggest possible subset of 𝔽𝑑3 not containing lines.
For low dimensions much is already known about the maximum sizes 𝑎𝑑 of caps. Table 3.2 gives an
overview of the exactly known maximum sizes 𝑎𝑑 in dimensions 1 up until 6, and the size of the biggest
known cap in dimension 7.

Table 3.2: Sizes of maximum caps in dimensions 1 up to 6 and the best lower bound in dimension 7.

𝑑 1 2 3 4 5 6 7
𝑎𝑑 2 4 9 20 45 112 ≥ 236

For large enough 𝑑, we have found the lower bound 𝑐𝑑 on the maximum size of a cap, where 𝑐 denotes
the asymptotic solidity from Definition 3.7. The 6-cap of size 112 gives an asymptotic lower bound of
2.196. The aim is now to construct a cap 𝐴 ⊂ 𝔽𝑑3 such that 𝑑√|𝐴| is as large as possible.



4
The extended product construction

In this chapter the extended product construction will be explained. This construction takes maximum
caps in lower dimensions and combines them carefully to create large caps in higher dimensions.

4.1. The extended product construction
In this section an explanation of the extended product construction (due to Edel) is given, based on
[9]. The extended product construction relies on the concepts ‘extendable collections of caps’ and
‘admissible sets’.

The basic idea of the extended product construction is applying an 𝑚-dimensional admissible set 𝑆 ⊂
{0, 1, 2}𝑚 to an extendable collection of 𝑛-caps 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽𝑛3 to obtain a new cap in 𝔽𝑛𝑚3 . If 𝑆 is not
only admissible, but also recursive, we even find a new extendable collection of caps in 𝔽𝑛𝑚3 , to which
we can again apply an admissible set to obtain a higher-dimensional cap.

Now, let us go into detail. Suppose we have three sets 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽𝑛3 . These sets form an extendable
collection of caps if they are all caps and if they satisfy the two conditions in Definition 4.1, to be later
referred to as ‘Ext1’ and ‘Ext2’.

Definition 4.1. Extendable collection of caps
A collection of caps 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽𝑛3 is said to be extendable if the following two conditions hold:

1. If 𝑥, 𝑦 ∈ 𝐴0 and 𝑧 ∈ 𝐴1 ∪ 𝐴2 then 𝑥 + 𝑦 + 𝑧 ≠ 0
2. If 𝑥 ∈ 𝐴0, 𝑦 ∈ 𝐴1 and 𝑧 ∈ 𝐴2 then 𝑥 + 𝑦 + 𝑧 ≠ 0

To get a good grasp on Definition 4.1, there are a few things to note about it:

• Taking 𝑥 = 𝑦 in Ext1 shows that 𝐴0 is disjoint from 𝐴1 and 𝐴2.
• Each pair 𝑥, 𝑦 ∈ 𝔽𝑛3 determines a point 𝑧 ∈ 𝔽𝑛3 such that 𝑥 + 𝑦 + 𝑧 = 0, so in order to satisfy Ext1
there is a “forbidden” point in 𝐴1 ∪ 𝐴2 for each pair of points 𝑥, 𝑦 ∈ 𝐴0. Therefore 𝐴0 should be
relatively small.

• 𝐴0 ∪ (𝐴1 ∩ 𝐴2) is a cap:
Taking 𝑥, 𝑦 ∈ 𝐴0 and 𝑧 ∈ 𝐴1 ∩ 𝐴2 in Ext1 and 𝑥 ∈ 𝐴0 and 𝑦, 𝑧 ∈ 𝐴1 ∩ 𝐴2 in Ext2 both gives us
𝑥 + 𝑦 + 𝑧 ≠ 0. Moreover 𝐴0 and 𝐴1 ∩ 𝐴2 contain no lines themselves since they are caps. This
shows that 𝐴0 ∩ (𝐴1 ∪ 𝐴2) contains no lines and is thus a cap.

Before we continue to defining admissible sets we introduce some notation.

Notation 2. Let ∗ denote a non-zero element, i.e. ∗ ∈ {1, 2}.
We refer to the 𝑖’th entries of a set of vectors as a row. For example, {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖} is the 𝑖’th row of the
triple 𝑥, 𝑦, 𝑧. In the definition for admissible sets we will define a condition that asks every triple in the

14
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set to have a row that either has {𝑠′𝑘 , 𝑠″𝑘 , 𝑠″𝑘} = {0, 1, 2}, or {𝑠′𝑘 , 𝑠″𝑘 , 𝑠″𝑘} = {0, ∗} where the row has two 0’s
and one ∗. For convenience, we define two sets of ordered triples:
Notation 3. Let Ν012 denote the set of ordered triples containing every element of 𝔽3 exactly once:

Ν012 = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)}

Notation 4. Let Μ00∗ denote the set of ordered triples containing two 0’s and one non-zero element:

Μ00∗ = {(∗, 0, 0), (0, ∗, 0), (0, 0, ∗)}

Now, we are ready to define an admissible set, which is a subset 𝑆 ⊂ {0, 1, 2}𝑚 that satisfies the
conditions in Definition 4.2, to be later referred to as ‘Adm1’ and ‘Adm2’.

Definition 4.2. Admissible set
A set 𝑆 ⊂ {0, 1, 2}𝑚 is said to be admissible if the following two conditions hold:

1. For all distinct 𝑠, 𝑠′ ∈ 𝑆, there are coordinates 𝑖 and 𝑗 such that 𝑠𝑖 = 0 ≠ 𝑠′𝑖 and 𝑠𝑗 ≠ 0 = 𝑠′𝑗 .
2. For all distinct 𝑠, 𝑠′, 𝑠″ ∈ 𝑆, there is a coordinate 𝑘 such that (𝑠′𝑘 , 𝑠″𝑘 , 𝑠″𝑘) ∈ Ν012 ∪Μ00∗.

There are some special types of admissible sets, such as recursive or constant weight sets. In Sec-
tion 4.3 these types will be defined and in Chapter 6 some explicit constructions and examples of these
admissible sets are given.

Now that we have defined extendable collections of caps and admissible sets, we need to define an
operation that links these concepts:

Let 𝐴0, 𝐴1, 𝐴2 be sets in 𝔽𝑛3 . An element 𝑠 = (𝑠1, … , 𝑠𝑚) is applied to these sets by the following opera-
tion:

𝑠(𝐴0, 𝐴1, 𝐴2) = 𝐴𝑠1 ×⋯× 𝐴𝑠𝑚 ⊆ 𝔽𝑛𝑚3 (4.1)

Now, using this operation we can finally define the extended product construction:

Theorem 4.3. The extended product construction.
If 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽𝑛3 is an extendable collection of caps and 𝑆 ⊂ {0, 1, 2}𝑚 is an admissible set, and we
take the union of all the elements of 𝑆 applied to the extendable collection, as in equation (4.2), then
the result 𝑆(𝐴0, 𝐴1, 𝐴2) is a cap in 𝔽𝑛𝑚3 .

𝑆(𝐴0, 𝐴1, 𝐴2) =⋃
𝑠∈𝑆
𝑠(𝐴0, 𝐴1, 𝐴2) (4.2)

A condensed version of the proof is given here, but for a more detailed proof the reader is referred to
Tyrrell [9].

Proof. It needs to be checked that for all distinct 𝑥, 𝑦, 𝑧 ∈ 𝑆(𝐴0, 𝐴1, 𝐴2) we must have 𝑥 + 𝑦 + 𝑧 ≠ 0.
There are three cases where 𝑥, 𝑦, 𝑧 could come from:
1. 𝑥, 𝑦, 𝑧 all come from the same vector 𝑠.

Since each 𝑠(𝐴0, 𝐴1, 𝐴2) is a cap by the direct product construction, no lines would be formed.
2. 𝑥 and 𝑦 come from 𝑠 and 𝑧 comes from 𝑠′ where 𝑠 and 𝑠′ are distinct vectors.

By Adm1 there is a coordinate where 𝑠𝑗 = 0 ≠ 𝑠′𝑗 , thus we would find 𝑥𝑠𝑗 , 𝑦𝑠𝑗 ∈ 𝐴0 and 𝑧𝑠′𝑗 ∈ 𝐴1∪𝐴2,
so by Ext1 𝑥 + 𝑦 + 𝑧 ≠ 0.

3. 𝑥, 𝑦 and 𝑧 all come from distinct vectors 𝑠, 𝑠′ and 𝑠″.
By Adm2we find (𝑠𝑘 , 𝑠′𝑘 , 𝑠″𝑘) ∈ Μ00∗, and then the argument for case 2 again applies, or (𝑠𝑘 , 𝑠′𝑘 , 𝑠″𝑘) ∈
Ν012, and then by Ext2 𝑥 + 𝑦 + 𝑧 ≠ 0.

Thus since 𝑆(𝐴0, 𝐴1, 𝐴2) contains no lines, it is a cap.
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4.2. An example of the extended product construction
In this section an example is covered to demonstrate the extended product construction.

Notation 5. The elements of 𝔽23 in a grid.
We schematically represent the elements of 𝔽23 in a two-dimensional grid. The columns are numbered
left to right and give the first coordinate. The rows are numbered top to bottom and give the second
coordinate.

Figure 4.1: The cards of a two-dimensional SET game and their corresponding vectors represented in a grid.

Consider the collection of caps 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽23:

𝐴0 = {[
0
0] , [

1
0]} , 𝐴1 = {[

0
1] , [

0
2]} , 𝐴2 = {[

1
1] , [

1
2]} (4.3)

It is easy to check that this is an extendable collection in 𝔽23 by drawing the caps according to Notation 5:

𝐴0 𝐴0 ×
𝐴1 𝐴2
𝐴1 𝐴2

(4.4)

Clearly 𝐴0 is disjoint from 𝐴1 ∪ 𝐴2. If we take the two different points in 𝐴0 we would form a line with
(2, 0)𝑇, so this is a ‘forbidden point’. We see that the collection of caps satisfies Ext1. Note that there
are also no lines to be made with 𝑥 ∈ 𝐴0, 𝑦 ∈ 𝐴1 and 𝑧 ∈ 𝐴2, so the collection satisfies Ext2.
Now, consider the following set:

𝑆 = {[02] , [
1
0]}

This set is admissible: there are no distinct triples and it is trivial to see that the only distinct pair satisfies
Adm1. Let us apply 𝑆 to the extendable collection. We then find a new cap in dimension 𝑛𝑚 = 4, which
is explicitly given in equation (4.5).

𝑆(𝐴0, 𝐴1, 𝐴2) = (𝐴0 × 𝐴2) ∪ (𝐴1 × 𝐴0)

=
⎧

⎨
⎩

⎡
⎢
⎢
⎣

0
0
1
1

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
0
1
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
0
1
1

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
0
1
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
1
0
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
1
1
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
2
0
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
2
1
0

⎤
⎥
⎥
⎦

⎫

⎬
⎭

(4.5)

It can be manually checked that any triple in 𝑆(𝐴0, 𝐴1, 𝐴2) does not add up to 0, since it has a coordinate
𝑖 where {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖} = {0, 1}, {0, 2} or {1, 2}. This means that any triple has a ‘feature’ where the three are
not all different nor all the same, thus 𝑆(𝐴0, 𝐴1, 𝐴2) is a 4-cap. It is also possible to run this check by a
computer (see Appendix B.1).
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4.3. Recursive and constant weight admissible sets
In this section recursive and constant weight admissible sets are defined and their useful results are
stated. This section is again based on [9].

Recall the definition of admissible sets (Definition 4.2): a set 𝑆 ⊂ {0, 1, 2}𝑚 is said to be admissible if
all distinct pairs satisfy Adm1, i.e. we find 𝑠𝑖 = 0 ≠ 𝑠′𝑖 and 𝑠𝑗 ≠ 0 = 𝑠′𝑗 , and if all distinct triples satisfy
Adm2, i.e. we find (𝑠𝑘 , 𝑠′𝑘 , 𝑠″𝑘) ∈ Ν012 ∪ Μ00∗. An admissible set is called recursive if all distinct pairs
also satisfy one of the two conditions in Definition 4.4, to be later referred to as ‘Rec1’ and ‘Rec2’.

Definition 4.4. Recursively admissible set
𝑆 is a recursively admissible set if 𝑆 is an admissible set (Definition 4.2), |𝑆| ≥ 2, and for all distinct
pairs 𝑠, 𝑠′ ∈ 𝑆 at least one of the following holds:

1. There are coordinates 𝑖 and 𝑗 such that {𝑠𝑖 , 𝑠′𝑖} = {0, 1} and {𝑠𝑗 , 𝑠′𝑗} = {0, 2}.
2. There is a coordinate 𝑘 such that 𝑠𝑘 = 𝑠′𝑘 = 0.

Note that each distinct pair in 𝑆 needs to satisfy Rec1 or Rec2, thus it is sufficient if one of the two
conditions holds for each pair. Moreover, not all pairs need to satisfy the same condition: some pairs
may satisfy Rec1 while others may satisfy Rec2.

Using a recursively admissible set in the extended product construction yields a nice result, stated in
Lemma 4.5.

Lemma 4.5. If 𝐴0, 𝐴1, 𝐴2 is an extendable collection of caps, and 𝑆 ⊆ {0, 1, 2}𝑚 is a recursively admis-
sible set, then (𝑆(𝐴0, 𝐴1, 𝐴2), 𝐴𝑚1 , 𝐴𝑚2 ) is an extendable collection of caps.

This result means that by applying an 𝑚-dimensional recursively admissible set to an extendable col-
lection of caps in 𝔽𝑛3 , we find a new extendable collection of caps in 𝔽𝑛𝑚3 , to which we can again apply
an admissible set.

Let the weight of a vector be the number of non-zero entries it has. If a set of vectors all have the same
weight, it is said to be constant weight, as is defined in Definition 4.6.

Definition 4.6. Constant weight admissible set
𝑆 ⊆ {0, 1, 2}𝑚 is a constant weight admissible set if it is an admissible set consisting of vectors all of
the same weight 𝑤. An admissible set cannot have two distinct elements with the same support, so
|𝑆| ≤ (𝑚𝑤). We write:

• 𝑆 = 𝐼(𝑚,𝑤) if the set is full size: |𝑆| = (𝑚𝑤).

• 𝑆 = ̃𝐼(𝑚,𝑤) if in addition 𝑆 is recursively admissible.

• 𝑆 = 𝐴(𝑚,𝑤) if 𝑆 is admissible and constant weight, but not full size: |𝑆| < (𝑚𝑤).
When constant weight admissible sets are applied to an extendable collection we find the nice property
that for each 𝑠 ∈ 𝑆 ⊂ {0, 1, 2}𝑚 with weight 𝑤 we have that 𝑠(𝐴0, 𝐴1, 𝐴2) consists of 𝑚 − 𝑤 “blocks” of
𝐴0 and 𝑤 “blocks” of 𝐴1 or 𝐴2. That means that if |𝐴1| = |𝐴2|, there is an explicit formula for the size of
𝑆(𝐴0, 𝐴1, 𝐴2), presented in Lemma 4.7.
Lemma 4.7. If we extend an extendable collection of caps 𝐴0, 𝐴1, 𝐴2 by 𝑆 = 𝐼(𝑚,𝑤) ⊆ {0, 1, 2}𝑚, where
|𝐴1| = |𝐴2|, then

|𝑆(𝐴0, 𝐴1, 𝐴2)| = (
𝑚
𝑤)|𝐴0|

𝑚−𝑤|𝐴1|𝑤



5
Asymptotic lower bounds

In this chapter an overview is given of how the asymptotic lower bound on the size of cap sets has little
by little been improved using the extended product construction. The best asymptotic lower bound yet
equals 2.2203 and has been found with admissible sets that were discovered with the help of a Large
Language Model.

5.1. The Hill cap extendable collection
Recall the 6-cap of size 112 from Section 3.2:

• 𝐷 are the 80 vectors in 𝔽63 of weight 3, with their supports given by the blocks of a 2-(6, 3, 2) block
design (see Table 3.1).

• 𝑅 are the 32 vectors in 𝔽63 of weight 6.
• �̄� are the 80 vectors in 𝔽63 of weight 3, with their supports not given in 𝐷.
• 𝐷 ∪ 𝑅 and �̄� ∪ 𝑅 are caps of size 112.

Also recall from Section 3.2 that 𝑈 is a cap, where 𝑈 are the 12 vectors in 𝔽63 of weight 1. It turns out
that the three mentioned caps form an extendable collection together:

Lemma 5.1. [10] Let 𝐴0 = 𝑈, 𝐴1 = 𝐷 ∪ 𝑅, and 𝐴2 = �̄� ∪ 𝑅. Then 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽63 is an extendable
collection with |𝐴0| = 12 and |𝐴1| = |𝐴2| = 112.

Proof. (from [9])
Ext1: Let 𝑥, 𝑦 ∈ 𝐴0 and 𝑧 ∈ 𝐴1 ∪ 𝐴2. Then since all vectors in 𝐴0 have weight 1, 𝑥 + 𝑦 has weight 0, 1
or 2. But all vectors in 𝐴1 ∪ 𝐴2 have weight ≥ 3, so 𝑥 + 𝑦 + 𝑧 ≠ 0.
Ext2: By checking that 𝐷 + �̄�, 𝑅 + 𝑅, 𝐷 + 𝑅, and �̄� + 𝑅 do not contain any weight 1 vectors, it follows
that 𝐴1 + 𝐴2 = 𝔽63 ⧵ 𝐴0. Suppose there are 𝑥 ∈ 𝐴0, 𝑦 ∈ 𝐴1, and 𝑧 ∈ 𝐴2 with 𝑥 + 𝑦 + 𝑧 = 0. Then
𝑦 + 𝑧 = 2𝑥 ∈ 𝐴0, but also 𝑦 + 𝑧 ∈ 𝐴1 + 𝐴2 = 𝔽63 ⧵ 𝐴0, so we find a contradiction. We conclude that no
such 𝑥, 𝑦, 𝑧 exist.
We conclude that 𝐴0, 𝐴1, 𝐴2 with 𝐴0 = 𝑈, 𝐴1 = 𝐷 ∪ 𝑅, and 𝐴2 = �̄� ∪ 𝑅 is an extendable collection in
𝔽63.

Realize that it is quite special that the extendable collection from Lemma 5.1 exists, since 𝐴1 and 𝐴2
are of maximum size in dimension 6. Both Tyrrell and Edel used this extendable collection as starting
position in their constructions that improved the asymptotic lower bound.

18
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5.2. Lower bounds by the extended product construction
The lower bounds found by Tyrrell [9], based on the ideas of Edel [10], are obtained by applying the
extended product construction twice, using constant weight admissible sets. For the construction, the
following result is needed:

For each dimension 𝑘 ≥ 2 it is possible to construct a recursively admissible set with constant weight
𝑘 − 1, as is stated in Lemma 5.2. The set is constructed by taking the 𝑘 vectors with a 0 in exactly one
position and letting all the entries before the 0 be 1 and all the entries after the 0 be 2 in each vector.
If we take for example dimension 𝑘 = 4, the result is the set as shown in expression (5.1).

̃𝐼(4, 3) =
⎧

⎨
⎩

⎡
⎢
⎢
⎣

0
2
2
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
0
2
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
1
0
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
1
1
0

⎤
⎥
⎥
⎦

⎫

⎬
⎭

(5.1)

Lemma 5.2. For any 𝑘 ≥ 2 there exists a recursively admissible set ̃𝐼(𝑘, 𝑘 − 1).
For the proof that ̃𝐼(𝑘, 𝑘 − 1) is recursively admissible the reader is referred to [9].
Now let us turn to the construction: in general, we start with some extendable collection 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽𝑛3
with |𝐴1| = |𝐴2| and we obtain a new cap in a higher dimension using the extended product construction
by the following two steps:

1. We extend the collection with 𝑆 = ̃𝐼(𝑘, 𝑘 − 1), which we know exists by Lemma 5.2. Then we
obtain a cap 𝐵 = 𝑆(𝐴0, 𝐴1, 𝐴2) ⊂ 𝔽𝑛𝑘3 . Since 𝑆 is constant weight and |𝐴1| = |𝐴2|, by Lemma 4.7
we know the size of 𝐵:

|𝐵| = 𝑘|𝐴0||𝐴1|𝑘−1 (5.2)

Since 𝑆 is recursively admissible, we obtain a new extendable collection (𝐵, 𝐴𝑘1 , 𝐴𝑘2) ⊂ 𝔽𝑘𝑛3 , where
𝐵 = 𝑆(𝐴0, 𝐴1, 𝐴2).

2. We extend the resulting collection with 𝑇 = 𝐼(𝑚,𝑤). Then we obtain a cap �̃� = 𝑇(𝐵, 𝐴𝑘1 , 𝐴𝑘2) ⊂
𝔽𝑘𝑛𝑚3 . Since 𝑇 is constant weight and |𝐴𝑘1 | = |𝐴𝑘2 |, again by Lemma 4.7 we know the size of �̃�:

|�̃�| = |𝑇||𝐵|𝑚−𝑤|𝐴𝑘1 |𝑤

= (𝑚𝑤)(𝑘|𝐴0||𝐴1|
𝑘−1)𝑚−𝑤|𝐴1|𝑘𝑤

= (𝑚𝑤) (𝑘|𝐴0|)
𝑚−𝑤|𝐴1|𝑘𝑚−(𝑚−𝑤)

(5.3)

Now, suppose we start with the extendable collection 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽63 with |𝐴0| = 12 and |𝐴1| = |𝐴2| =
112 from Section 5.1 to obtain a cap �̃� ⊂ 𝔽6𝑘𝑚3 . Filling in the sizes for 𝐴0, 𝐴1, and 𝐴2 in equation (5.3)
gives:

|�̃�| = (𝑚𝑤) (𝑘 ⋅ 12)
𝑚−𝑤 ⋅ 112𝑘𝑚−(𝑚−𝑤) (5.4)

The cap �̃� ⊂ 𝔽6𝑘𝑚3 gives an asymptotic lower bound of |�̃�|
1

6𝑘𝑚 on the size of cap sets. Since the goal is
to find a lower bound as high as possible, the next step is to find suitable 𝑆 = ̃𝐼(𝑘, 𝑘−1) and 𝑇 = (𝑚,𝑤)
such that |�̃�|

1
6𝑘𝑚 is as large as possible. By Lemma 5.2, we know that 𝑆 = ̃𝐼(𝑘, 𝑘 − 1) exists for any

𝑘 ≥ 2, thus we start with a 𝑇 = 𝐼(𝑚,𝑤) and then optimize 𝑘 such that |�̃�|
1

6𝑘𝑚 is as large as possible.
The following constant weight admissible sets are found with a computer search by Tyrrell:

Lemma 5.3. [9] There exist admissible sets 𝐼(11, 7), 𝐼(11, 6) and 𝐼(10, 6)1.
For each option for 𝑇 = 𝐼(𝑚,𝑤) from Lemma 5.3 we use equation (5.4) to find the best 𝑆 = 𝐼(𝑘, 𝑘 − 1)
and the resulting lower bound:
1The sets can be found on Tyrrell’s webpage http://fredtyrrell.com/cap-sets
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• 𝑇 = 𝐼(10, 6) gives |�̃�| = (106 ) (𝑘 ⋅ 12)
4 ⋅ 11210𝑘−4.

Then |�̃�|
1
60𝑘 has an extremum at 𝑘 = 6.66, so we choose 𝑆 = ̃𝐼(7, 6).

By applying 𝑆 = ̃𝐼(7, 6) and 𝑇 = 𝐼(10, 6) we find a lower bound |�̃�|
1
420 = 2.21756.

• 𝑇 = 𝐼(11, 6) gives |�̃�| = (116 ) (𝑘 ⋅ 12)
5 ⋅ 11211𝑘−5.

Then |�̃�|
1
66𝑘 has an extremum at 𝑘 = 7.44, so we choose 𝑆 = ̃𝐼(7, 6).

By applying 𝑆 = ̃𝐼(7, 6) and 𝑇 = 𝐼(11, 6) we find a lower bound |�̃�|
1
462 = 2.21795.

• 𝑇 = 𝐼(11, 7) gives |�̃�| = (117 ) (𝑘 ⋅ 12)
4 ⋅ 11211𝑘−4.

Then |�̃�|
1
66𝑘 has an extremum at 𝑘 = 5.95, so we choose 𝑆 = ̃𝐼(6, 5).

By applying 𝑆 = ̃𝐼(6, 5) and 𝑇 = 𝐼(11, 7) we find a lower bound |�̃�|
1
396 = 2.21798.

The best new lower bound found by Tyrrell in [9] is (2.21798)𝑛. Edel used essentially the same method
with 𝑆 = ̃𝐼(8, 7) and 𝑇 = (10, 5) to find the lower bound (2.21739)𝑛 in [10].

5.3. Using meta-admissible sets
In [9], Tyrrell improved the asymptotic lower bound found in the previous section even further, by extend-
ing Edel’s methods. Tyrrell mimicks the extended product construction for caps to find large admissible
sets. To do this, extendable collections of admissible sets need to be defined. Then a similar construc-
tion to the extended product construction (Theorem 4.3) yields a new admissible set. To prove this we
are going to need the following proposition, stated without proof:

Proposition 5.4. If 𝑆 and 𝑇 are admissible sets, then so is their direct product 𝑆 × 𝑇.
A collection of admissible sets is called meta-extendable if the admissible sets satisfy the three condi-
tions in Definition 5.5, to be later referred to as ‘Meta-Ext1’, ‘Meta-Ext2’, and ‘Meta-Ext3’.

Definition 5.5. Meta-Extendable.
A collection of admissible sets (𝑆0, 𝑆1, 𝑆2) ⊂ {0, 1, 2}𝑚 is said to be meta-extendable if:

1. For any 𝑠 ∈ 𝑆0 and 𝑠′ ∈ 𝑆1 ∪ 𝑆2 the weight of 𝑠 is less than the weight of 𝑠′.
2. If 𝑥, 𝑦 ∈ 𝑆0 and 𝑧 ∈ 𝑆1 ∪ 𝑆2, then there is a coordinate 𝑘 such that (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) ∈ Ν012 ∪Μ00∗.
3. If 𝑥 ∈ 𝑆0, 𝑦 ∈ 𝑆1 and 𝑧 ∈ 𝑆2, then there is a coordinate 𝑘 such that (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) ∈ Ν012 ∪Μ00∗.

Now, we can apply the extended product construction in the same way as for caps to an extendable
collection of admissible sets, to find an admissible set again in a higher dimension:

Theorem 5.6. If (𝑆0, 𝑆1, 𝑆2) ⊂ {0, 1, 2}𝑚 is a meta-extendable collection of admissible sets and 𝑇 ⊂
{0, 1, 2}𝑟 is an admissible set, then

𝑇(𝑆0, 𝑆1, 𝑆2) =⋃
𝑡∈𝑇
(𝑆𝑡1 ×⋯× 𝑆𝑡𝑟)

is an admissible set.

For a detailed proof the reader is referred to [9], but here a condensed version is given:

Proof. For the pairwise condition of admissible sets (Adm1) it needs to be checked that any pair 𝑥, 𝑦 ∈
𝑇(𝑆0, 𝑆1, 𝑆2) has coordinates 𝑖 and 𝑗 such that 𝑥𝑖 = 0 ≠ 𝑦𝑖 and 𝑥𝑗 ≠ 0 = 𝑦𝑗. If 𝑥 and 𝑦 come from the
same vector 𝑡 then we are done since the direct product 𝑆𝑡1 × ⋯ × 𝑆𝑡𝑟 is admissible. If 𝑥 and 𝑦 come
from distinct 𝑡 and 𝑡′, then since 𝑇 is admissible we find 𝑡𝑘 = 0 ≠ 𝑡′𝑘 and 𝑡𝑙 ≠ 0 = 𝑡′𝑙 , so we find a block
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from 𝑆0 in 𝑥 at the same ‘height’ as a block from 𝑆1 ∪ 𝑆2 in 𝑦 and vice versa, as in (5.5):

𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑠1 ∈ 𝑆𝑡1
⋮

𝑠𝑘 ∈ 𝑆0
⋮

𝑠𝑙 ∈ 𝑆∗
⋮

𝑠𝑟 ∈ 𝑆𝑡𝑟

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑦 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑠′1 ∈ 𝑆𝑡′1
⋮

𝑠′𝑘 ∈ 𝑆∗
⋮

𝑠′𝑙 ∈ 𝑆0
⋮

𝑠′𝑟 ∈ 𝑆𝑡′𝑟

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.5)

By Meta-Ext1 all vectors from 𝑆0 have more zeros than any vector from 𝑆1 ∪ 𝑆2, so we find 𝑥𝑖 = 0 ≠ 𝑦𝑖
in the blocks 𝑠𝑘 and 𝑠′𝑘, and 𝑥𝑗 ≠ 0 = 𝑦𝑗 in the blocks 𝑠𝑙 and 𝑠′𝑙 .
For the triples condition of admissible sets (Adm2) it needs to be checked that any triple 𝑥, 𝑦, 𝑧 ∈
𝑇(𝑆0, 𝑆1, 𝑆2) has a coordinate 𝑘 such that (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) ∈ Ν012 ∪Μ00∗.

• If 𝑥, 𝑦, 𝑧 come from the same 𝑡 we are done.
• If 𝑥 and 𝑦 come from 𝑡 and 𝑧 comes from 𝑡′, then since 𝑇 is admissible there is a 𝑘 such that
𝑡𝑘 = 0 ≠ 𝑡′𝑘, so 𝑥𝑘 , 𝑧𝑘 ∈ 𝑆0 and 𝑧𝑘 ∈ 𝑆1∪𝑆2. By Meta-Ext2 we find a row (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) ∈ Ν012∪Μ00∗.

• If 𝑥, 𝑦, and 𝑧 come from distinct vectors 𝑡, 𝑡′, and 𝑡″, then since 𝑇 is admissible there is a 𝑘 where
on of the following two cases holds:

1. (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) ∈ Μ00∗, so two of 𝑥, 𝑦, 𝑧 are in 𝑆0 and one is in 𝑆1 ∪ 𝑆2.
2. (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) ∈ Ν012, so 𝑥, 𝑦, 𝑧 are from three different sets in (𝑆0, 𝑆1, 𝑆2).

In case 1 by Meta-Ext2 and in case 2 by Meta-Ext3 we find a row in Ν012 ∪Μ00∗.
Thus any pair satisfies Adm1 and any triple satisfies Adm2 in 𝑇(𝑆0, 𝑆1, 𝑆2).

Recall the admissible set 𝐼(11, 7) from Lemma 5.3. Let 𝑆1 = 𝐼(11, 7) and let 𝑆2 be equal to 𝐼(11, 7)
with all 1’s and 2’s swapped. Then by a computer search, an admissible set 𝑆0 of size |𝑆0| = 37 can
be found such that (𝑆0, 𝑆1, 𝑆2) is meta-extendable2. Now let us apply 𝑇 = ̃𝐼(142, 141), which exists by
Lemma 5.2, to this meta-extendable collection of admissible sets. We then find an admissible set �̃�:

• �̃� has dimension 𝑚𝑘 = 11 ⋅ 142 = 1562
• |�̃�| = |𝑇||𝑆0||𝑆1|141 = 142 ⋅ 37 ⋅ (117 )

141

• Each element 𝑥 ∈ 𝑆𝑡1 ×⋯× 𝑆𝑡142 contains 141 blocks from 𝑆1 ∪ 𝑆2 and one block from 𝑆0, so the
weight of each vector is 141 ⋅ 7 + 3 = 990.

If we now use 𝑆 = ̃𝐼(6, 5) and �̃� ⊂ {0, 1, 2}1562 to extend the extendable collection 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽63 from
Section 5.1 using the construction from Section 5.2, we find a cap �̃� in dimension 6 ⋅ 6 ⋅ 1562 = 56232
of size:

|�̃�| = |�̃�|(|𝑆| ⋅ |𝐴1|5 ⋅ |𝐴0|)1562−990(|𝐴1|6)990

= 142 ⋅ 37 ⋅ (117 )
141

⋅ 6572 ⋅ 12572 ⋅ 1128800
(5.6)

Since |�̃�|
1

56232 = 2.21802, Tyrrell has found a slight improvement compared to the lower bound of
2.21798 from the previous section.

5.4. Using a large language model
A team of researchers of Google used artificial intelligence to find a breakthrough in the cap set problem
in [11]. The researchers developed FunSearch (short for searching in the function space): an interaction
between a pretrained large language model (LLM) and an evaluator. Initially a specification of the
problem is fed to the LLM, which consists of an ‘evaluate’ function and an initial program to solve.
2The set 𝑆0 can be found on Tyrrell’s webpage http://fredtyrrell.com/cap-sets

http://fredtyrrell.com/cap-sets
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FunSearch works best if the initial program has the form of a skeleton, so that FunSearch is only used
to evolve the crucial part. For example, to construct caps as large as possible the researchers gave a
specification consisting of the following functions:

• A priority function:
This is the crucial part to evolve by FunSearch. The function maps the elements of {0, 1, 2}𝑑 to a
real number, scoring all the candidate elements.

• A solve function:
The solve function sorts all the elements of {0, 1, 2}𝑑 by the priority function. Then a cap is built
by considering the elements one by one, from highest priority to lowest priority. An element is
only added to the cap if it is allowed (it does not make a line with elements already in the cap),
otherwise it is skipped.

• An evaluate function:
The evaluate function checks if the resulting set is a cap and if it is, returns the size of the set.
This way biggest caps get highest scores.

Note that the solve function calls the priority function that the LLM still has to come up with.

The LLM initially uses the specification to generate solutions for the priority function. These solutions
are evaluated and then stored in the program database. Next, each iteration a sample of best scoring
programs is taken from the database to create the prompt for the LLM. The LLM combines and extends
the best scoring solutions to create a better priority function. At any time the best-scoring program can
be taken as ‘the solution’ of the problem.

Using the LLM ‘Codey’, the researchers found a cap of size 512 in dimension 8 (the priority function
that results in this cap can be found in Figure 4b of [11]). By the doubling of the projective cap3 of size
248 in 𝔽73 found in [12], the previously largest known cap in 𝔽83 has size 496. Thus the cap in 𝔽83 of size
512 is a significant improvement of the lower bound on 𝑎8.
The researchers used the same strategy to create constant weight admissible sets, where a priority
function rates elements of {0, 1, 2}𝑚 to iteratively grow admissible sets. Starting from a trivial constant
function, FunSearch finds one that provides us with a full size 𝐼(12, 7). The discovery of 𝐼(12, 7) already
improves the asymptotic lower bound from 2.21802 to 2.21844.
Now, since FunSearch provides us not the exact solution (here is ‘an’ admissible set), but how to
obtain the solution, by studying the priority function the researches found that it treats the coordinates
of elements of {0, 1, 2}𝑚 in a highly symmetric way. Now the researchers could push the boundaries of
what admissible sets can be constructed by searching directly for symmetric admissible sets, allowing
higher dimensions and weights. This led the researchers to the discovery of a full size 𝐼(15, 10) and
an admissible set 𝐴(24, 17) of size 237984. These discoveries yield new asymptotic lower bounds of
2.21948 and 2.22023 respectively.
To summarize, thanks to FunSearch new admissible sets were found, with better lower bounds as a
result:

• The full size admissible set 𝐼(12, 7).
𝑇 = 𝐼(12, 7) together with 𝑆 = ̃𝐼(7, 6) results in a lower bound of 2.2184.

• The full size admissible set 𝐼(15, 10).
𝑇 = 𝐼(15, 10) together with 𝑆 = ̃𝐼(5, 4) results in a lower bound of 2.2195.

• The admissible set 𝐴(24, 17) of size 237984.
𝑇 = 𝐴(24, 17) together with 𝑆 = ̃𝐼(4, 3) results in a lower bound of 2.2202.

3We have not discussed projective caps in this report. Note that a projective cap in 𝔽73 is not the same as an affine 7-cap (how
we defined caps in Definition 2.3). Therefore the projective cap of size 248 does not improve the best known lower bound of
236 in dimension 7. However, a doubling of a projective 𝑑-cap of size |𝐶| yields an (𝑑 + 1)-cap of size 2|𝐶| by the doubling
construction.
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5.5. Conclusion
In Table 5.1 the improvements of the asymptotic lower bound on the size of caps from this chapter are
summarized. Each row has a better lower bound than the previous row. The first row is due to Edel.
The middle four rows are found by Tyrrell using Edel’s methods. The last of these rows uses a constant
weight admissible set 𝐴(1562, 990) of size 142⋅37 ⋅(117 )

141
, which is due to Tyrrell’s extension of Edel’s

methods with meta-extendable admissible sets. The last three rows are due to the researchers of
Google, who discovered new admissible sets thanks to FunSearch. The constant weight admissible
set 𝐴(24, 17) in the last row has size 237984.

Dimension Recursively Admissible 𝑆 Admissible 𝑇 Asymptotic Lower Bound
480 ̃𝐼(8, 7) 𝐼(10, 5) 2.21738
420 ̃𝐼(7, 6) 𝐼(10, 6) 2.21756
462 ̃𝐼(7, 6) 𝐼(11, 6) 2.21795
396 ̃𝐼(6, 5) 𝐼(10, 6) 2.21798
56232 ̃𝐼(6, 5) 𝐴(1562, 990) 2.21802
504 ̃𝐼(7, 6) 𝐼(12, 7) 2.21844
450 ̃𝐼(5, 4) 𝐼(15, 10) 2.21948
576 ̃𝐼(4, 3) 𝐴(24, 17) 2.22023

Table 5.1: Lower bound improvements from the trivial bound 2 until the best known bound 2.22023.

In all constructions discussed in this chapter the starting point is the extendable collection in 𝔽63 based
on the Hill cap with |𝐴0| = 12 and |𝐴1| = |𝐴2| = 112 from Section 5.1. The size of the resulting caps
can be computed with the formula in (5.4), with 𝑘 from 𝑆 = ̃𝐼(𝑘, 𝑘−1) in the second column of Table 5.1
and 𝑚 and 𝑤 from 𝑇 = 𝐼(𝑚,𝑤) (or 𝐴(𝑚,𝑤)) in the third column of Table 5.1.



6
Admissible sets and extendable

collections

This chapter expands on admissible sets and extendable collections. We classify extendable collec-
tions and admissible sets in low dimensions and we give explicit constructions for some recursively
admissible sets of constant weight.

6.1. Constructions for admissible sets
Conjecture 6.1. Tyrrell’s conjecture.
For any 𝑚 > 𝑤 > 0 there exists an admissible set 𝐼(𝑚,𝑤) consisting of (𝑚𝑤) vectors.
If Tyrrell’s conjecture turns out to be true, then this would imply a lower bound of 2.233 by using 𝑆 =
𝐼(𝑚, 28𝑚31 ) with large 𝑚 to obtain a cap in 𝔽6𝑚3 of size 124𝑚 [9]. The new bound 2.233 would improve
the current best known bound 2.2202 from Section 5.4. It is therefore valuable to invent constructions
for constant weight recursively admissible sets that exist in any dimension, for example the recursively
admissible set ̃𝐼(𝑘, 𝑘 − 1) from Section 5.2.

According to Tyrrell the constant weight admissible sets ̃𝐼(𝑘, 0), ̃𝐼(𝑘, 1), ̃𝐼(𝑘, 2), ̃𝐼(𝑘, 3), ̃𝐼(𝑘, 𝑘 − 1), and
̃𝐼(𝑘, 𝑘) are known to exist. Of course, ̃𝐼(𝑘, 0), ̃𝐼(𝑘, 1) and ̃𝐼(𝑘, 𝑘) are quite trivial and we have already
seen ̃𝐼(𝑘, 𝑘−1). Tyrrell states that “we can prove the existence of admissible sets of weight 2 and 3 for
all 𝑘, via a similar construction”. However, no constructions and proofs are given in [9]. This section
gives an overview of these constant weight admissible sets, besides ̃𝐼(𝑘, 𝑘−1), including constructions
and proofs.

The cases ̃𝐼(𝑘, 0) and ̃𝐼(𝑘, 𝑘) are trivial. Since (𝑘0) = (
𝑘
𝑘) = 1, these sets must contain exactly one vector

and thus automatically satisfy Adm1, Adm2, Rec1, and Rec2, since the sets do not contain pairs or
triples. Explicit examples of these constant weight recursively admissible sets are ̃𝐼(𝑘, 𝑘) = {0⃗} and
̃𝐼(𝑘, 𝑘) = {1⃗}.
Another quite trivial case is the existence of ̃𝐼(𝑘, 1), stated in Lemma 6.2.
Lemma 6.2. For any 𝑘 ≥ 2 there exists a recursively admissible set ̃𝐼(𝑘, 1).

Proof. If 𝑘 = 2, then ̃𝐼(𝑘, 1) = ̃𝐼(𝑘, 𝑘 − 1), which exists by Lemma 5.2.
For 𝑘 ≥ 3 let 𝑆 = {𝑒1, … , 𝑒𝑘}, where 𝑒𝑖 denotes the vector (0, … , 1, … , 0)𝑇 with the 1 in the 𝑖’th position.
Then 𝑆 is recursively admissible with |𝑆| = 𝑘:
Since each pair of vectors has their non-zero entries in two different positions, each pair satisfies Adm1.
Moreover, since each triple of vectors has their non-zero entries in three different positions, we can find
a position 𝑘 such that the 𝑘’th row of the triple is in Μ00∗ (with non-zero entry 1), so the triple satisfies

24
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Adm2. Lastly, each pair of vectors has 𝑘 − 2 coordinates where both entries equal 0, thus for 𝑘 ≥ 3
each pair satisfies Rec1.

Now we turn to the more complicated cases ̃𝐼(𝑘, 2) and ̃𝐼(𝑘, 3), stated in Lemma 6.3 and Lemma 6.4.
Lemma 6.3. For any 𝑘 ≥ 3 there exists a recursively admissible set ̃𝐼(𝑘, 2).

Proof. If 𝑘 = 3, then ̃𝐼(𝑘, 2) = ̃𝐼(𝑘, 𝑘 − 1), which we know exists by Lemma 5.2. For 𝑘 ≥ 4, let 𝑆
consist of the (𝑘2) vectors with zeros in exactly 𝑘 − 2 positions, where no two vectors have the same
support. For each vector, let the first non-zero entry be 1 and the second non-zero entry be 2. Then 𝑆
is recursively admissible.

We prove that 𝑆 = ̃𝐼(𝑘, 2) is recursively admissible by using induction with base case 𝑘 = 4.
If 𝑘 = 4, the resulting set is as shown in expression (6.1).

̃𝐼(4, 2) =
⎧

⎨
⎩

⎡
⎢
⎢
⎣

1
2
0
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
0
2
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
0
0
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
1
2
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
1
0
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
0
1
2

⎤
⎥
⎥
⎦

⎫

⎬
⎭

(6.1)

It can be manually checked that this set satisfies Adm1 and Adm2, and that each pair satisfies either
Rec1 or Rec2. In Appendix A.1 a code can be found to run this check by a computer. We continue with
the ascertainment that ̃𝐼(4, 2) is recursively admissible.
̃𝐼(𝑘, 𝑘−2) can be written in a structural way: start with 𝑠1 = 1 and 𝑠𝑖 = 2 for 𝑖 = 2,… , 𝑘 to create the first
𝑘−1 columns, then move on to 𝑠1 = 0, 𝑠2 = 1 and 𝑠𝑖 = 2 for 𝑖 = 3,… , 𝑘 to create the next 𝑘−2 columns,
and continue like this. Note that ̃𝐼(4, 2) is written like this in expression (6.1). If we write ̃𝐼(5, 2) in the
same way, and we present the elements 𝑠 ∈ ̃𝐼(5, 2) as columns of a matrix, then the resulting set is as
shown in matrix (6.2).

1 1 1 1 0 0 0 0 0 0
2 0 0 0 1 1 1 0 0 0
0 2 0 0 2 0 0 1 1 0
0 0 2 0 0 2 0 2 0 1
0 0 0 2 0 0 2 0 2 2

(6.2)

The key observation is that the lower right block in the matrix is equal to ̃𝐼(4, 2). In general, for 𝑘 ≥ 5,
the elements can be written as the columns in matrix (6.3):

1 1 … 1 0 … 0
2 0 … 0
0 2 … 0 ̃𝐼(𝑘 − 1, 2)
⋮ ⋱ ⋮
0 0 … 2

(6.3)

The upper left box is a row consisting of only 1’s. The upper right box is a row consisting of only 0’s.
The lower left box is an (𝑘−1)×(𝑘−1) diagonal matrix with 2’s on the diagonal. The lower right box is
equal to ̃𝐼(𝑘 − 1, 2). Now we can prove that ̃𝐼(𝑘, 2) is recursively admissible for all 𝑘 ≥ 4 by induction,
using as base case that ̃𝐼(4, 2) is recursively admissible. Let us split the elements of ̃𝐼(𝑘, 2) into two
sets by the vertical bar in matrix (6.3): the elements to the left are in 𝑆1 and the elements to the right
are in 𝑆2.
Let 𝑘 ≥ 5.

• All pairs 𝑠, 𝑠′ ∈ ̃𝐼(𝑘, 2) have weight 2, so there are at least 𝑘 − 4 coordinates 𝑖 where 𝑠𝑖 = 𝑠′𝑖 = 0.
Since 𝑘 ≥ 5 we find at least one such 𝑖. Thus all pairs satisfy Rec2.
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• Adm1

• Let 𝑠, 𝑠′ ∈ 𝑆1. Then there exist indices 𝑖 and 𝑗 such that 𝑠𝑖 = 2 and 𝑠′𝑖 = 0 and 𝑠𝑗 = 0 and
𝑠′𝑗 = 2.

• Let 𝑠, 𝑠′ ∈ 𝑆2. Since ̃𝐼(𝑘 − 1, 2) is admissible, the pair satisfies Adm1.
• Let 𝑠 ∈ 𝑆1, 𝑠′ ∈ 𝑆2. Then 𝑠1 = 1 ≠ 0 = 𝑠′1. Moreover, after deletion of the first coordinate of 𝑠
and 𝑠′, the new 𝑠 has weight 1 and the new 𝑠′ has weight 2, so there is an index 𝑗 ≥ 2 such
that 𝑠𝑗 = 0 ≠ 𝑠′𝑗 .

Thus all pairs satisfy Adm1.

• Adm2

• Let 𝑠, 𝑠′, 𝑠″ ∈ 𝑆1. Then there is an index 𝑖 such that (𝑠𝑖 , 𝑠′𝑖 , 𝑠″𝑖 ) ∈ Μ00∗ with non-zero entry 2.
• Let 𝑠, 𝑠′, 𝑠″ ∈ 𝑆2. Since ̃𝐼(𝑘 − 1, 2) is admissible, the triple satisfies Adm2.
• Let 𝑠, 𝑠′ ∈ 𝑆1, 𝑠″ ∈ 𝑆2. The pair 𝑠, 𝑠′ has an 𝑖 such that 𝑠𝑖 = 2 and 𝑠′𝑖 = 0 and a 𝑗 such that
𝑠𝑗 = 0 and 𝑠′𝑗 = 2. For 𝑘 ≥ 5 there are at least 2 coordinates where 𝑠 and 𝑠′ both have zeros.
There are 2 cases:

1. 𝑠″ has at least one of its non-zero entries in a coordinate where 𝑠 and 𝑠′ have zeros, so
we find a row in Μ00∗.

2. 𝑠″ has none of its non-zero entries in a coordinate where 𝑠 and 𝑠′ have zeros, so
{𝑠″𝑖 , 𝑠″𝑗 } = {1, 2} and we find a row in Ν012.

• Let 𝑠 ∈ 𝑆1, 𝑠′, 𝑠″ ∈ 𝑆2. Then (𝑠1, 𝑠′1, 𝑠″1) = (1, 0, 0) ∈ Μ00∗.
Thus all triples satisfy Adm2.

We conclude that ̃𝐼(𝑘, 2) is recursively admissible.

Lemma 6.4. For any 𝑘 ≥ 4 there exists an admissible set 𝐼(𝑘, 3) and for any 𝑘 ≥ 6 there exists a
recursively admissible set ̃𝐼(𝑘, 3).

Proof. Let 𝑆 consist of the (𝑘3) vectors with zeros in exactly 𝑘 −3 positions, where no two vectors have
the same support. For each vector, let the first non-zero entry be 2, the second non-zero entry be 1,
and the third non-zero entry be 2. Then 𝑆 is admissible for 𝑘 ≥ 4:
Since all vectors have different support, for any pair 𝑠, 𝑠′ ∈ 𝑆 we find 𝑖, 𝑗 such that 𝑥𝑖 = 0 ≠ 𝑦𝑖 and
𝑥𝑗 ≠ 0 = 𝑦𝑗, so Adm1 is satisfied.
Let 𝑠, 𝑠′, 𝑠″ ∈ 𝑆. For Adm2 we need the triple to have a coordinate 𝑖 such that (𝑠𝑖 , 𝑠′𝑖 , 𝑠″𝑖 ) ∈ Ν012 ∪Μ00∗.
We say that an element of the support of a vector is covered if one of the other vectors has an element of
their support in the same position. For example, in Figure 6.1 the second and third non-zero elements
of 𝑠 are covered by 𝑠″ and 𝑠′ respectively.

Figure 6.1: The second and third element of the support of 𝑠 are covered.
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If the supports of the three vectors do not all cover each other, then the triple satisfies Adm2, since we
find an 𝑖 where (𝑠𝑖 , 𝑠′𝑖 , 𝑠″𝑖 ) ∈ Μ00∗. Figure 6.2 demonstrates this.

Figure 6.2: At least one of 𝑠, 𝑠′ and 𝑠″ has a support that is not entirely covered.

We are left with the cases where all three supports are covered by each other. We can assume that
the only triples that could possibly form a problem have supports that are aligned in the following way,
where the third support element of 𝑧 is in one of the places marked with ‘⋅’:

𝑠 𝑠′ 𝑠″
× ×
× × ⋅
× × ⋅

× ×

Why is this ‘the only’ shape where all three supports overlap?

• The supports of 𝑠 and 𝑠′ need to overlap in at least two positions, since otherwise the support of
𝑠″ would have to cover four or more support elements of 𝑠 and 𝑠′.

• No two vectors in 𝑆 have the same support, so two vectors have overlapping support in at most
two positions.

• Two support elements of 𝑠″ must cover the uncovered support elements of 𝑠 and 𝑠′.
• The third support element of 𝑠″ may only be placed at the marks ‘⋅’ since otherwise it would be
uncovered.

We see that if all three supports are covered by each other there are at most four rows with non-zero
entries: the rest of the rows have only zeros. Thus we only need to check if 𝑆 is recursively admissible
for 𝑘 = 4:

𝑆 = ̃𝐼(4, 3) =
⎧

⎨
⎩

⎡
⎢
⎢
⎣

0
2
1
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

2
0
1
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

2
1
0
2

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

2
1
2
0

⎤
⎥
⎥
⎦

⎫

⎬
⎭

It can easily be verified that any triple in this set contains a row in Ν012. We conclude that 𝑆 satisfies
Adm2.

For 𝑘 ≥ 6, 𝑆 is also recursive. All vectors have weight 3, so any pair of vectors 𝑠, 𝑠′ ∈ 𝑆 has at least
𝑘 − 6 coordinates 𝑖 where 𝑥𝑖 = 𝑦𝑖 = 0. So for 𝑘 > 6, the pairs in 𝑆 satisfy Rec2. If 𝑘 = 6 and there is
a pair 𝑠, 𝑠′ ∈ 𝑆 with no 𝑖 such that 𝑥𝑖 = 𝑦𝑖 = 0, the supports of 𝑠 and 𝑠′ are disjoint, so we must find 𝑖, 𝑗
such that {𝑠𝑖 , 𝑠′𝑖} = {0, 1} and {𝑠𝑗 , 𝑠′𝑗} = {0, 2}, and 𝑆 satisfies Rec1.
We conclude that 𝑆 is admissible for 𝑘 ≥ 4 and recursively admissible for 𝑘 ≥ 6.

6.2. Potential construction for admissible 𝐼(𝑘, 𝑘 − 2)
In this section we discuss an attempt to make a construction for an admissible set 𝐼(𝑘, 𝑘−2) that works
for any dimension 𝑘. That is, we try to build a 𝑘-dimensional admissible set that consists of ( 𝑘

𝑘−2)
vectors, where each vector has exactly two zeros.
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The basic idea of the structure is using blocks of ̃𝐼(𝑘, 𝑘 − 1), which exists by Lemma 5.2. For example,
to build an admissible set 𝐼(5, 3) consisting of 10 vectors, we would fix the following structure:

0 0 0 0

̃𝐼(4, 3)

∗ ∗ ∗
0 0 0

̃𝐼(3, 2)

∗ ∗
∗ ∗
0 0
0 1
2 0

∗
∗
2
0
0

(6.4)

The non-zero elements, marked ∗, in (6.4) still have to be determined. In Appendix A.4 a code can be
found that checks all possibilities for these non-zero elements. Note that in the last vector, one non-zero
entry already has been fixed to be 2. This is because when this non-zero entry equals 1 no admissible
sets are found. For the remaining nine non-zero elements, there are 256 ways of filling these in that
result in admissible sets 𝐼(5, 3). None of these sets are recursively admissible.
Now, let us try to use these results to build an admissible 𝐼(6, 4) of the same structure, by first con-
sidering one of the 256 admissible sets 𝐼(5, 3) that were found in the previous step: take all non-zero
elements in (6.4) equal to 2. That leaves us with the following structure for 𝐼(6, 4):

0 0 0 0 0

̃𝐼(5, 4)

∗ ∗ ∗ ∗
0 0 0 0

̃𝐼(4, 3)

∗ ∗ ∗
2 2 2
0 0 0

̃𝐼(3, 2)

∗ ∗
2 2
2 2
0 0
0 1
2 0

∗
2
2
2
0
0

(6.5)

The first row in (6.5) still has ten non-zero entries left to be determined. That means that there are 210 =
1024 possibilities to consider. The code in Appendix A.4 checks all options and finds 512 admissible
sets 𝐼(6, 4), containing the fixed admissible set 𝐼(5, 3).
Now, to consider all possible admissible sets we fix the following structure for 𝐼(6, 4):

0 0 0 0 0

̃𝐼(5, 4)

∗ ∗ ∗ ∗
0 0 0 0

̃𝐼(4, 3)

∗ ∗ ∗
∗ ∗ ∗
0 0 0

̃𝐼(3, 2)

∗ ∗
∗ ∗
∗ ∗
0 0
0 1
2 0

∗
∗
∗
2
0
0

(6.6)

Since it is only necessary to consider fillings of the non-zero entries in (6.4) that result in admissible
sets 𝐼(5, 3), and we found 256 of such fillings, one would have to check 256 ⋅ 1024 = 262144 options.
The code in Appendix A.4 does this in a reasonable time and counts 131072 admissible sets 𝐼(6, 5)
with the fixed structure of (6.6).

To continue to finding admissible sets 𝐼(7, 5), one would have to check 131072 ⋅ 215 (approximately 4
billion!) options. We see that as we move on to higher dimensions, the number of options to consider
quickly explodes. This is why we end the experiment here.

From this experiment, no conclusions can be drawn yet about whether it is possible to construct an
admissible set 𝐼(𝑘, 𝑘 − 2) using blocks of ̃𝐼(𝑘, 𝑘 − 1). Thus far we did not find a pattern that seems to
work in every dimension 𝑘. However, neither did we find a reason to rule out the option that it might
work. The problem of finding an admissible 𝐼(𝑘, 𝑘 − 2) remains unresolved.

6.3. Admissible sets in two dimensions
In this section we list all admissible sets in two dimensions. To construct an admissible set in two
dimensions, we pick from the nine elements in {0, 1, 2}2. In Appendix A.3 a code can be found that,
given a size |𝑆|, checks for all the possibilities of picking |𝑆| cards from the deck if the picked cards
form an admissible set or a recursively admissible set. Obviously, any set of size 1 satisfies Adm1 and
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Adm2, since there are no pairs and triples, thus we only consider sizes |𝑆| ≥ 2. In two dimensions we
find two admissible sets and two recursively admissible sets:

{[01] , [
2
0]} and {[

0
2] , [

1
0]} are recursively admissible

{[01] , [
1
0]} and {[

0
2] , [

2
0]} are admissible

There are some operations that can be applied to an admissible set that preserve the conditions for
admissible sets:

• Swapping all 1’s and 2’s.
• Swapping rows, i.e. switching the 𝑖’th entry with the 𝑗’th entry in every element of the set.

If one admissible set can be turned into another admissible set by a sequence of these operations, then
we call these sets equivalent. Thus the two recursively admissible sets are equivalent to each other
and the two admissible sets as well. That means that there is essentially one admissible set and one
recursively admissible set in two dimensions.

6.4. Admissible sets in three dimensions
In this section we list all admissible sets in three dimensions. To construct an admissible set in three
dimensions, we pick from the 27 elements in {0, 1, 2}3. Given a size |𝑆|, the code in Appendix A.3 can
check if subsets of {0, 1, 2}3 of this size are (recursively) admissible sets. Again we only consider sizes
|𝑆| ≥ 2. We find the following:

• |𝑆| = 2
There are 54 recursively admissible sets and 30 admissible sets.

• |𝑆| = 3
There are 16 recursively admissible sets and 48 admissible sets. All the sets are constant weight.

• |𝑆| = 4
No (recursively) admissible sets of size 4 are found. Since a subset of any admissible set again
has to be admissible, there are also no (recursively) admissible sets of sizes larger than 4.

The larger the admissible set we use in the extended product construction, the larger the resulting cap
will be. Thus, in order to find large caps, it is most interesting to look at the admissible sets of size 3.
There are 16 recursively admissible sets. Recall however that some of these might be equivalent to
each other.

Example 1. The following sets are equivalent. The first ‘=’ is by swapping rows and the second ‘=’ is
by swapping 1’s and 2’s.

{[
0
1
1
] , [
2
2
0
] , [
2
0
1
]} = {[

0
1
1
] , [
2
0
2
] , [
2
1
0
]} = {[

0
2
2
] , [
1
0
1
] , [
1
2
0
]}

That splits the 16 recursively admissible sets into four equivalence classes, with the following repre-
sentatives:

Admissible sets with constant weight 1:

• {[
0
0
1
] , [
0
1
0
] , [
1
0
0
]}

A set with every non-zero entry the same element.

• {[
0
0
1
] , [
0
1
0
] , [
2
0
0
]}
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A set where two elements have the same non-zero entry and the third element has a different
non-zero entry.

Admissible sets with constant weight 2:

• {[
0
2
2
] , [
1
0
2
] , [
1
1
0
]}

A set where one element has two 1’s, one element has two 2’s and one element has a 1 and a
2. Note that this is ̃𝐼(𝑘, 𝑘 − 1) with 𝑘 = 3 from Lemma 5.2.

• {[
0
1
2
] , [
2
0
1
] , [
1
2
0
]}

A set where every element has a 1 and a 2.
In conclusion, there are four different 3-dimensional recursively admissible sets of size 3.

6.5. Extendable collections
In this section we try to find extendable collections in low dimensions and we treat symmetries in ex-
tendable collections.

Recall that an extendable collection is a collection of caps 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽𝑛3 , that satisfy the conditions
Extendable 1 and Extendable 2 (Definition 4.1):

• Extendable 1: If 𝑥, 𝑦 ∈ 𝐴0 and 𝑧 ∈ 𝐴1 ∪ 𝐴2 then 𝑥 + 𝑦 + 𝑧 ≠ 0
• Extendable 2: If 𝑥 ∈ 𝐴0, 𝑦 ∈ 𝐴1 and 𝑧 ∈ 𝐴2 then 𝑥 + 𝑦 + 𝑧 ≠ 0

The following results are directly implied by the definition of extendable collections (see also the remarks
after Definition 4.1):

• 𝐴0 is disjoint from 𝐴1 ∪ 𝐴2
• For each distinct pair of points 𝑥, 𝑦 ∈ 𝐴0 there is a point 𝑧 that is not allowed in 𝐴1 ∪ 𝐴2
• 𝐴0 ∪ (𝐴1 ∩ 𝐴2) is a cap

Though it is not a requirement in Definition 4.1, in the following sections we try to find extendable
collection where none of the caps are empty. Thus we assume |𝐴0|, |𝐴1|, |𝐴2| ≥ 1. Furthermore, we
try to find extendable collections where |𝐴1| = |𝐴2|, so that we can use Lemma 4.7. It is however
also possible to have the code in Appendix B.2 and Appendix B.3 find extendable collections with
|𝐴1| ≠ |𝐴2|.

One-dimensional extendable collections
In this section we show that there is no useful extendable collection in 𝔽3. Playing a 1-dimensional SET
game can be imagined as playing SET with only one feature, say shape, while the other features are
omitted (as in Figure 3.1 in Section 3.1).

Let 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽3 be an extendable collection. Note that the three elements of 𝔽3 form a line, so 𝐴0
does not contain all three cards: |𝐴0| ≠ 3. This leaves two cases for the size of 𝐴0:
1. If |𝐴0| = 2, then 𝐴0 contains a pair which determines a ‘forbidden’ card in 𝐴1∪𝐴2 in order to satisfy

Ext2. Since 𝐴0 should also be disjoint from 𝐴1 ∪ 𝐴2, there are no cards left to put in 𝐴1 ∪ 𝐴2.
2. If |𝐴0| = 1, then there are two cards left to put in 𝐴1 and 𝐴2. If we put the two cards in the two

different sets, then Ext2 is not satisfied, but if we put both cards in the same set, then one set is
empty. Thus only one card can be used and it is used double, such that 𝐴1 = 𝐴2.

We conclude that the only extendable collection of non-empty caps in 𝔽3 has |𝐴0| = |𝐴1| = |𝐴2| = 1
and 𝐴1 = 𝐴2. However, extendable collections turn out to not be of added value when 𝐴1 = 𝐴2.
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Lemma 6.5. Using an extendable collection 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽𝑑3 with 𝐴1 = 𝐴2 in the extended product
construction does not have advantage compared to the direct product construction.

Proof. Note that if 𝐴1 = 𝐴2, then (𝐴1 ∩ 𝐴2) = (𝐴1 ∪ 𝐴2), so since 𝐴0 ∪ (𝐴1 ∩ 𝐴2) is a cap, 𝐴0 ∪ 𝐴1 ∪ 𝐴2
is a cap. But 𝑠(𝐴0, 𝐴1, 𝐴2) = 𝐴𝑠1 ×…×𝐴𝑠𝑚 ⊂ (𝐴0 ∪𝐴1 ∪𝐴2) ×…× (𝐴0 ∪𝐴1 ∪𝐴2) for any 𝑠 ∈ {0, 1, 2}𝑚,
so that means that the cap obtained by applying the extended product construction with an admissible
set will never be better than taking the direct product of (𝐴0 ∪ 𝐴1 ∪ 𝐴2).

Therefore it can be assumed that 𝐴1 ≠ 𝐴2 for an extendable collection 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽𝑑3 and we conclude
that there is no (useful) extendable collection in 𝔽3.

Symmetries in extendable collections
Before we turn to extendable collections in 𝔽23, we will look at symmetries in extendable collections.
Recall the elementary row operations from Section 2.3: switching rows, scalar multiplication of rows,
and adding (multiples of) rows to rows. These row operations as well as translations preserve Ext1
and Ext2. We see that we can define equivalent extendable collections similarly to how we have de-
fined caps of the same type: if we can take one extendable collection in 𝔽𝑑3 to another by using the
transformation 𝐴�⃗� + �⃗�, then we call these extendable collections equivalent. Here, 𝐴 is an invertible
𝑑 × 𝑑-matrix and �⃗� represents a translation. 𝐴 can be written as a product of elementary matrices.

Example 2. Equivalence in 2-dimensional extendable collections.
Recall that the elements of 𝔽23 can be schematically represented in a 2-dimensional grid using Nota-
tion 5.

In 𝔽23 there are four elementary matrices. These are listed below, followed by an explanation how the
operations affect the grid.

1. [1 1
0 1] [

𝑥
𝑦] = [

𝑥 + 𝑦
𝑦 ]

In the grid the second row shifts one place to the right and the third row shifts two places to the
right (or equivalently one place to the left). The first row (where 𝑦 = 0) remains the same.

In terms of the vector (𝑥, 𝑦)𝑇 this is a row sum, where the second row is added to the first.

2. [1 0
1 1] [

𝑥
𝑦] = [

𝑥
𝑥 + 𝑦]

This shifts the second column one place downwards and the third column two places downwards
(or equivalently one place upward). The first column (where 𝑥 = 0) remains unshifted.

3. [−1 0
0 1] [

𝑥
𝑦] = [

−𝑥
𝑦 ]

This swaps the second and third column of the grid.

In terms of the vector (𝑥, 𝑦)𝑇 it is a scalar multiplication, with scalar 2 = −1.

4. [1 0
0 −1] [

𝑥
𝑦] = [

𝑥
−𝑦]

This swaps the second and third row of the grid.

Extendable collections in 𝔽23
In this section we turn to extendable collections in 𝔽23. A 2-dimensional SET game can be imagined as
playing SET with two features, say shape and colour.

In Appendix B.1 a code can be found with functions for checking if sets are caps, and if collections of
(cap) sets are extendable. In Appendix B.2 a program is written that uses these functions to find all
extendable collections in 𝔽23, given |𝐴0| = 1, 2 or 3. The program uses a prefixed 𝐴0 and a ‘deck’ of
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cards that are left as potential elements of 𝐴1 ∪ 𝐴2. When the program runs it asks you to input sizes
for 𝐴0, 𝐴1 and 𝐴2 and then finds all extendable collections.
Suppose we start with |𝐴0| = 1.
We start with 𝐴0 = 0⃗ and the ‘deck’ of possible cards for 𝐴1 ∪ 𝐴2 is in this case 𝔽23\{0⃗}. The maximum
size of a cap in two dimensions is 4 so for |𝐴1| = |𝐴2| it is possible to choose sizes 1, 2, 3, and 4.

• There are 24 extendable collections with |𝐴0| = 1 and |𝐴1| = |𝐴2| = 1. Note that this can easily
be deduced without any code, since 0⃗ is contained in exactly 4 lines, so there are (82) − 4 = 24
extendable collections.

• There are 198 extendable collections with |𝐴0| = 1 and |𝐴1| = |𝐴2| = 2.
• There are 192 extendable collections with |𝐴0| = 1 and |𝐴1| = |𝐴2| = 3.
• There are 3 extendable collections with |𝐴0| = 1 and |𝐴1| = |𝐴2| = 4.

The larger the sets are of the extendable collection we use in the extended product construction, the
larger the resulting cap will be. Since in the list above the size of 𝐴0 is fixed, the most useful result is
the fact that there exist 3 extendable collections with |𝐴0| = 1 and |𝐴1| = |𝐴2| = 4. These turn out to
all be equivalent to each other (by repeatedly using the operation that shifts the second row one place
and the third row two places to the right) and one representative is shown in Figure 6.3.
Now, suppose we start with |𝐴0| = 2.

𝐴0 𝐴1 𝐴1
𝐴1 𝐴2 𝐴2
𝐴1 𝐴2 𝐴2

Figure 6.3: Extendable collection in 𝔽23 with |𝐴0| = 1 and |𝐴1| = |𝐴2| = 4

Since for any two points we can apply an affine transformation to obtain a favorable starting position,
we can choose and fix the two cards of 𝐴0. We leave these two cards plus the ‘forbidden card’ they
determine out of the deck of possible cards for 𝐴1 ∪ 𝐴2. We find the following:

• There are 9 extendable collections with |𝐴0| = 2 and |𝐴1| = |𝐴2| = 1.
• There are 9 extendable collections with |𝐴0| = 2 and |𝐴1| = |𝐴2| = 2.
• There are no extendable collections with |𝐴0| = 2 and |𝐴1| = |𝐴2| = 3 or 4.

Again, it is most useful to look at extendable collections with the sizes of 𝐴1 and 𝐴2 as big as possible, so
we turn to the extendable collections with |𝐴1| = |𝐴2| = 2, which are represented in the two-dimensional
grids in Figure 6.4.

Now, let us consider which extendable collections are equivalent to each other:

• (1) ∼ (4), (2) ∼ (5), and (3) ∼ (6) by swapping the second and third row.
• (1) ∼ (2) by swapping the first and second column. This can be done by shifting all columns one
place to the right, then swapping the second and third column, and then shifting all columns two
places more to the right (or equivalently one place back to the left).

• (1) ∼ (3) by shifting the second row one place (and the third row two places) to the right and then
swapping the first and second column using the same trick as before.

We conclude that (1), (2), (3), (4), (5), and (6) are all equivalent to each other.
• (7) ∼ (8) by shifting the second row one place and the third row two places to the right.

• (8) ∼ (9) by shifting the second row one place and the third row two places to the right again.

We conclude that (7), (8), and (9) are equivalent to each other.
If |𝐴0| = 3, we can formally prove that an extendable collection 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽23 with |𝐴1| = |𝐴2| = 3
cannot exist.
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𝐴0 𝐴0 ×
𝐴1/𝐴2 𝐴1 𝐴2

(1)

𝐴0 𝐴0 ×
𝐴1 𝐴1/𝐴2 𝐴2

(2)

𝐴0 𝐴0 ×
𝐴1 𝐴2 𝐴1/𝐴2

(3)

𝐴0 𝐴0 ×

𝐴1/𝐴2 𝐴1 𝐴2
(4)

𝐴0 𝐴0 ×

𝐴1 𝐴1/𝐴2 𝐴2
(5)

𝐴0 𝐴0 ×

𝐴1 𝐴2 𝐴1/𝐴2
(6)

𝐴0 𝐴0 ×
𝐴1 𝐴2
𝐴1 𝐴2

(7)

𝐴0 𝐴0 ×
𝐴1 𝐴2

𝐴2 𝐴1
(8)

𝐴0 𝐴0 ×
𝐴1 𝐴2

𝐴2 𝐴1
(9)

Figure 6.4: Extendable collections in 𝔽23 with |𝐴1| = |𝐴2| = 2

Lemma 6.6. There exists no extendable collection of caps 𝐴0, 𝐴1, 𝐴2 in 𝔽23 with |𝐴0| = |𝐴1| = |𝐴2| = 3

Proof. Assume to a contradiction that there exists an extendable collection 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽23 with |𝐴0| =
|𝐴1| = |𝐴2| = 3. For each pair 𝑥, 𝑦 ∈ 𝐴0 there is a 𝑧 such that 𝑥 + 𝑦 + 𝑧 = 0, so 𝑧 ∉ 𝐴1 ∪ 𝐴2 in order to
satisfy Extendable 1. Then |𝐴1 ∪ 𝐴2| ≤ 3, since {0, 1, 2}2 contains 9 elements in total, the 3 elements
of 𝐴0 are not in 𝐴1 ∪ 𝐴2, and the 3 pairs of 𝐴0 determine 3 forbidden points in 𝐴1 ∪ 𝐴2. Then:

3 ≥ |𝐴1 ∪ 𝐴2| = |𝐴1| + |𝐴2| − |𝐴1 ∩ 𝐴2| = 6 − |𝐴1 ∩ 𝐴2| ⟹ |𝐴1 ∩ 𝐴2| ≥ 3

But since 𝐴0 ∪ (𝐴1 ∩ 𝐴2) is a cap we find a cap in 𝔽23 of size at least 6, which is impossible.

Now, this does not rule out the possibilities that there exist extendable collections with |𝐴1| = |𝐴2| = 1
or 2. However, when |𝐴0| = 3, the program in Appendix B.2 checks all options and finds no extendable
collections at all. We conclude the following from this section:

Proposition 6.7. Except for symmetry, the only extendable collections of caps 𝐴0, 𝐴1, 𝐴2 in 𝔽23 of sizes:
• |𝐴0| = 1 and |𝐴1| = |𝐴2| = 4
• |𝐴0| = |𝐴1| = |𝐴2| = 2 and |𝐴1 ∩ 𝐴2| = 1
• |𝐴0| = |𝐴1| = |𝐴2| = 2 and 𝐴1 ∩ 𝐴2 = ∅

Extendable collections in 𝔽33
In this section we try to find extendable collections in 𝔽33 = {0, 1, 2}3. This can be imagined as playing
a SET game with three features, say shape, colour, and shading. It is again useful to use the notation
introduced in the previous section, only in order to show three dimensions in a two-dimensional grid
we place three grids next to each other: the first numbered 0, the second numbered 1 and the third
numbered 2. The element (2, 0, 1)𝑇 for example corresponds to the third grid (the grid on the right), the
first column and the second row. In Figure 6.5 a maximum cap in 𝔽33 is represented this way.

× ×

× ×
×

×
× ×

×

Figure 6.5: A maximum cap in 𝔽33.

In Appendix B.3 a code is written that finds an extendable collection in 𝔽33, given 𝐴0, a ‘deck’ of possible
cards for 𝐴1 ∪ 𝐴2, and some size for |𝐴1| = |𝐴2|. For choosing a cap 𝐴0 to start with we will make a
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subset of the maximum cap in Figure 6.5. Recall that each pair of points in 𝐴0 determines a ‘forbidden’
point in 𝐴1 ∪𝐴2. Thus, if we want |𝐴0| ≥ 4, it is a good starting position to choose either the four points
in the first or the four points in the third grid, since then two pairs of points rule out the same point,
leaving one card extra in the potential deck for 𝐴1 ∪ 𝐴2.

Suppose that |𝐴0| = 4, where 𝐴0 = {(0, 0, 0)𝑇 , (0, 2, 0)𝑇 , (0, 0, 2)𝑇 , (0, 2, 2)𝑇} (the four crosses in the first
grid of Figure 6.5). Then the code in Appendix B.3 finds extendable collections for sizes |𝐴1| = |𝐴2| = 1
up to 5. For |𝐴1| = |𝐴2| ≥ 6 no extendable collections are found. It has to be mentioned that running
the code with |𝐴1| = |𝐴2| = 6 is very time consuming.

Suppose that |𝐴0| = 5. To find suitable extendable collections we start with

𝐴0 = {[
0
0
0
] , [
0
2
0
] , [
0
0
2
] , [
0
2
2
] , [
1
1
1
]} ,

the crosses in the first and second grid in Figure 6.5. The four elements in the first grid rule out all
the other elements in the first grid. The element (1, 1, 1)𝑇 in the second grid paired up with each each
element in the first grid rules out the corner points of the third grid. This leaves a potential deck of
8 cards in the second grid plus 5 cards in the third grid for 𝐴1 ∪ 𝐴2. The code in Appendix B.3 asks
for an input size |𝐴1| = |𝐴2|, then makes two subsets of the potential deck of 13 cards with this size,
and stops once it finds that 𝐴0 together with the two subsets form an extendable collection. For sizes
|𝐴1| = |𝐴2| = 1 up to 4 extendable collections are found. There are no extendable collections with
|𝐴0| = 5 and |𝐴1| = |𝐴2| ≥ 5.

6.6. Experimenting with the extended product construction
Up to (and including) dimension 6, the maximum size of a cap is known. One may wonder if the ex-
tended product construction can be used to find some of the already known maximum caps in lower
dimensions. Is it for example possible to apply a 2-dimensional admissible set to an extendable col-
lection in 𝔽23 to find a cap in 𝔽43 of the maximum size 20, or at least a size close to 20? In this section
we experiment with applying the extended product construction to try to find (close to) maximum caps
in lower dimensions.

Trying to Find a Cap in 𝔽43
Let us first try to use the extended product construction to find a cap in 𝔽43 of a size 20. The extended
product construction finds a cap in 𝔽𝑛𝑚3 , where 𝑛 is the dimension of the extendable collection we start
with, and 𝑚 is the dimension of the admissible set we use to extend the collection. Since 4 = 2 ⋅ 2,
we are looking for an extendable collection and an admissible set that are both two-dimensional. Of
course also 4 = 1 ⋅ 4, but 𝔽13 has no (useful) extendable collections (see Section 6.5) and applying a
one-dimensional admissible set is useless as this amounts to just taking one of the caps 𝐴0, 𝐴1 or 𝐴2.

Now, let 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽23 be an extendable collection. In Section 6.3 we found that the only two-
dimensional admissible sets have constant weight 1. Thus in any case we apply 𝑆 = 𝐼(2, 1) and
then the resulting cap has size 2|𝐴0||𝐴1|. In Section 6.5 we found that the extendable collections with
|𝐴0| = 1 and |𝐴1| = |𝐴2| = 4 and the extendable collections with |𝐴0| = |𝐴1| = |𝐴2| = 2 were the best
options. In both cases the result is a 4-cap of size 8, which is way smaller than 20.

Trying to Find a Cap in 𝔽63
Let us now try to use the extended product construction to find a cap in 𝔽63. The best direct product
construction we can make to obtain a cap in 𝔽63 is by taking the direct product of a maximum cap in
𝔽13 and a maximum cap in 𝔽53, resulting in a cap of size 2 ⋅ 45 = 90. Here, we use caps from different
dimensions, while the extended product construction always combines caps in the same dimension. If
we restrict ourselves to taking the direct product of caps with equal dimension, then the best we can do
is taking the direct product of maximum caps in 𝔽33, resulting in a cap of size 9 ⋅ 9 = 81. Thus, we want
to use the extended product construction to find a cap of size at least 81, but ideally even at least 90.

Since 6 = 2 ⋅ 3 there are two ways to use the extended product construction:
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1. Starting with a 2-dimensional extendable collection and applying a 3-dimensional admissible set:
Let 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽23 be an extendable collection. In Section 6.4 we found admissible sets 𝐼(3, 2)
and 𝐼(3, 1), so 𝐵 = 𝑆(𝐴0, 𝐴1, 𝐴2) ⊂ 𝔽63 has size either 3|𝐴0||𝐴1|2 or 3|𝐴0|2|𝐴1|. But again the best
extendable collections we can find in 𝔽23 have |𝐴0| = 1 and |𝐴1| = |𝐴2| = 4, or |𝐴0| = |𝐴1| =
|𝐴2| = 2, thus the best result we find is |𝐵| = 3 ⋅ 1 ⋅ 42 = 48, which is way smaller than 81.

2. Starting with a 3-dimensional extendable collection and applying a 2-dimensional admissible set:
Let 𝐴0, 𝐴1, 𝐴2 ⊂ 𝔽33 be an extendable collection. In Section 6.3 we found that all two-dimensional
admissible sets have size 2 and constant weight 1. Then 𝐵 = 𝑆(𝐴0, 𝐴1, 𝐴2) ⊂ 𝔽63 has size
2|𝐴0||𝐴1|. In Section 6.5 we found that the best extendable collections have |𝐴0| = 4 and
|𝐴1| = |𝐴2| = 5 or |𝐴0| = 5 and |𝐴1| = |𝐴2| = 4. In both cases |𝐵| = 40, which is again not
merely close enough to the maximum cap size in 𝔽63.

Trying to Find a Cap in 𝔽83
Lastly, let us try to use the extended product construction to find a cap in 𝔽83. Using the direct product
construction to obtain a cap in 𝔽83, while restricting ourselves to taking caps with equal dimension, re-
sults in either taking two maximum caps in 𝔽43 or taking four maximum caps in 𝔽23. This results in caps
of sizes 202 = 400 and 44 = 256, respectively. Since 8 = 2 ⋅ 2 ⋅ 2 we will start with an extendable
collection in 𝔽23 and apply ̃𝐼(2, 1) twice.

In Section 6.5 the best extendable collections in 𝔽23 we found were:
• 𝐴0, 𝐴1, 𝐴2 with |𝐴0| = 1 and |𝐴1| = |𝐴2| = 4, which yields a cap in 𝔽83 of size 256.
• 𝐴0, 𝐴1, 𝐴2 with |𝐴0| = 2 and |𝐴1| = |𝐴2| = 2, which yields a cap in 𝔽83 of size 64.
• It was proved that there are no extendable collections in 𝔽23 with |𝐴0| = 3.

Now, suppose we do not restrict ourselves to taking an extendable collection with |𝐴1| = |𝐴2|. Then
the general size of the cap �̃� we obtain is |𝐴0|(|𝐴1| + |𝐴2|)(|𝐴1|2 + |𝐴2|2). If |𝐴0| = 1 we can never
do better than |𝐴1| = 4 and |𝐴2| = 4, so the best cap remains one of size 256. If |𝐴0| = 2, we could
try {|𝐴1|, |𝐴2|} = {2, 3}, {2, 4}, or {3, 4} to improve the size of the cap obtained. However, there are
no extendable collections of these sizes in 𝔽23 (see the code in Appendix B.2). Thus the best result is
the cap of size 256, which is equal to the size of the cap obtained by taking the direct product of four
maximum caps in 𝔽23. This is the closest result in our experiments, but it is still a lot smaller than the
best we can do with the direct product construction by taking two maximum caps in 𝔽43.

In conclusion, using the extended product construction to find caps in 𝔽43, 𝔽63, or 𝔽83 does not lead
to better results than the direct product construction.



7
Conclusion and discussion

This thesis gives a comprehensive overview of what is known about constructions for the cap set
problem. In dimensions 1 through 6 there exist explicit constructions of caps that are proved to be of
maximum size, from dimension 7 up we know some constructions for caps, but none are proved to
be of maximum size yet. To compare caps in different dimensions we use the solidity of caps (𝑑√|𝐶|).
To obtain information about the maximum cap size in high dimensions we consider which number
the solidity of caps approaches as the dimension grows larger: the asymptotic solidity. The cap set
problem then amounts to finding asymptotic bounds on the size of caps. This thesis mainly focused
on improvements of the asymptotic lower bound by means of the extended product construction (EPC).

The EPC, due to Edel, extends extendable collections of cap sets by constant weight (recursively)
admissible sets. Tyrrell enhanced the methods of Edel by mimicking the extended product construc-
tion to find large admissible sets and found the best lower bound for the time. Researchers of Google
then found a better lower bound by cause of the discovery of new constant weight admissible sets with
the help of a large language model. This lower bound is currently the best known lower bound. This
result combined with the upper bound found by Ellenberg en Gijswijt, leads to the following conclusion
about the current best bounds on the asymptotic solidity 𝑐:

2.2202 ≤ 𝑐 ≤ 2.2756

If Tyrrell’s conjecture, which states the existence of constant weight admissible sets for all weights
smaller than the dimension, is true, the asymptotic lower bound would be improved to 2.2331. The
EPC makes use of the existence of a recursively admissible set of constant weight 𝑘 −1 in any dimen-
sion 𝑘, which has been proven. In this thesis we in addition proved that there exist constant weight
admissible sets of weight 𝑤 = 0, 1, 2, 3, 𝑘 for all dimensions larger than 𝑤. All of these sets are also
recursive, with exception of the admissible set of weight 3, which is recursive for 𝑘 ≥ 6.

How useful the EPC may be to construct caps in high dimensions, it turns out not to be useful to
construct caps in low dimensions. In this thesis we have established all extendable collections in one,
two, and three dimensions. Starting from these we deduced that it is not possible to construct maximum
caps in dimensions 4, 6, and 8.

Considering the gap between the lower and upper bound on the asymptotic solidity, the cap set problem
has not yet been solved. As large language models evolve, it might be possible to obtain new break-
throughs in constructing large caps and admissible sets by creating better priority functions. Moreover,
as stepping stones to proving Tyrrell’s conjecture, it would be useful to further research constructions
of constant weight admissible sets that exist in any dimension. Another suggestion for further research
is to continue this thesis’ attempt to construct an admissible set 𝐼(𝑘, 𝑘 − 2) that works for any 𝑘 ≥ 3,
where either the idea of using blocks of ̃𝐼(𝑘, 𝑘−1) could be continued or one may come up with another
construction.
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A
Finding Admissible Sets

A.1. Settings and Functions
1 import math
2 from itertools import *
3 from sys import *
4 from collections import *
5

6 ########## IS ADMISSIBLE (function) ##########
7 # INPUT: the dimension m
8 # a subset of {0,1,2}^m, given as a list of lists
9 # OUTPUT: returns True if S subset of {0,1,2}^m is admissible and False if it is not
10

11 def is_admissible(S,m):
12 admissible_set = False
13

14 # check Adm1:
15 naughty_pair=[]
16 for x,y in permutations(S,2):
17 for i in range(m):
18 if x[i]==0 and y[i] != 0:
19 break
20 else:
21 naughty_pair.append([x,y])
22

23 # check Adm2:
24 naughty_triple=[]
25 for x,y,z in combinations(S,3):
26 for i in range(m):
27 coordinates = [x[i],y[i],z[i]]
28 count0 = coordinates.count(0)
29 count1 = coordinates.count(1)
30 count2 = coordinates.count(2)
31 if count0 == 1 and count1 == 1 and count2 == 1:
32 break
33 if coordinates.count(0) == 2:
34 break
35 else:
36 naughty_triple.append([x,y,z])
37 if not naughty_pair and not naughty_triple:
38 admissible_set = True
39 return admissible_set
40

41 ########## IS RECURSIVE (function) ##########
42 # INPUT: the dimension m
43 # a subset of {0,1,2}^m, given as a list of lists
44 # OUTPUT: returns True if S subset of {0,1,2}^m is recursive and False if it is not
45

46 def is_recursive(S,m):
47 naughty_list = []
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48

49 for x,y in combinations(S,2):
50 found_zero_zero = False
51 found_zero_one = False
52 found_zero_two = False
53

54 for i in range(m):
55 coordinates = {x[i],y[i]}
56 if coordinates == {0,0}:
57 found_zero_zero = True
58 break
59 if coordinates == {0,1}:
60 found_zero_one = True
61 if coordinates == {0,2}:
62 found_zero_two = True
63 if (found_zero_one == True) and (found_zero_two == True):
64 break
65 else:
66 naughty_list.append([x,y])
67 return not naughty_list
68

69 ########## IS CONSTANT WEIGHT (function) ##########
70 # INPUT: a subset of {0,1,2}^m, given as a list of lists
71 # OUTPUT: returns True if S subset of {0,1,2}^m is constant weight and False if it is not
72

73 def is_constant_weight(S):
74 constant = False
75 counts = set()
76 for vector in S:
77 count = 0
78 for i in vector:
79 if i == 0:
80 count += 1
81 counts.add(count)
82 if len(counts)==1:
83 constant = True
84 return constant

A.2. Admissible Sets ̃𝐼(𝑘, 2) and ̃𝐼(𝑘, 3)
1 ########## BUILD I(m,2) (function) ##########
2 # INPUT: the dimension m
3 # OUTPUT: builds a recursively admissible set I(m,2)
4

5 def build_set(m):
6 S = []
7 for i in range(m):
8 element = [0] * m
9 element[i] = 1
10 for j in range(i + 1, m):
11 new_element = element.copy()
12 new_element[j] = 2
13 S.append(new_element)
14 return S
15

16 ########## BUILD I(m,3) (function) ##########
17 # INPUT: the dimension m
18 # OUTPUT: builds a recursively admissible set I(m,3)
19

20 def build_set2(m):
21 S = []
22 for i in range(m):
23 element = [0]*m
24 element[i] = 2
25 for j in range(i+1,m):
26 new_element = element.copy()
27 new_element[j] = 1
28 for k in range(j+1,m):
29 new_new_element = new_element.copy()
30 new_new_element[k] = 2



A.3. Admissible Sets in Two and Three Dimensions 40

31 S.append(new_new_element)
32 return S

1 ########## CHECK I(m,2) AND I(m,3) ARE RECURSIVELY ADMISSIBLE AND CONSTANT WEIGHT (program)
##########

2

3 m = int(input(’Dimension: ’))
4 i = int(input(’Do you want to construct I(m,w) with weight 2 or 3? ’))
5 if i == 2:
6 S = build_set(m)
7 if i == 3:
8 S = build_set2(m)
9 print(’S =’,S)
10 print(’|S| =’,len(S))
11

12 # check if S is admissible:
13 if is_admissible(S,m):
14 print(’S is an admissible set’)
15

16 # check if S is recursive:
17 if is_recursive(S,m):
18 print(’S is recursive’)
19

20 # check weight of vectors:
21 if is_constant_weight(S):
22 print(’S is constant weight’)

A.3. Admissible Sets in Two and Three Dimensions
1 ########## FIND ALL (RECURSIVELY) ADMISSIBLE SETS IN TWO DIMENSIONS (program) ##########
2

3 deck = [[0, 0],[0, 1],[0, 2],[1, 0],[1, 1],[1, 2],[2, 0],[2, 1],[2, 2]]
4 i = int(input(’|S|=’))
5 for S in combinations(deck,i):
6 if is_admissible(S,2) and is_recursive(S,2):
7 print(S,’is recursively admissible’)
8 continue
9 if is_admissible(S,2):
10 print(S,’is admissible’)

1 ########## FIND ALL (RECURSIVELY) ADMISSIBLE SETS IN THREE DIMENSIONS (program) ##########
2

3 deck = [[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 1, 0], [0, 1, 1], [0, 1, 2], [0, 2, 0], [0, 2,
1], [0, 2, 2], [1, 0, 0], [1, 0, 1], [1, 0, 2], [1, 1, 0], [1, 1, 1], [1, 1, 2], [1, 2,
0], [1, 2, 1], [1, 2, 2], [2, 0, 0], [2, 0, 1], [2, 0, 2], [2, 1, 0], [2, 1, 1], [2, 1,
2], [2, 2, 0], [2, 2, 1], [2, 2, 2]]

4

5 i = int(input(’|S|=’))
6 count = 0
7 count2 = 0
8 for S in combinations(deck,i):
9 if is_admissible(S,3) and is_recursive(S,3):
10 count += 1
11 print(S,’is recursively admissible’)
12 continue
13 if is_admissible(S,3):
14 count2 += 1
15 print(S,’is admissible’)
16 print(’There are’,count,’recursively admissible sets in 3 dimensions (some might be

symmetrical) of size |S|=’,i,’.’)
17 print(’There are’,count2,’admissible sets in 3 dimensions (some might be symmetrical) of size

|S|=’,i,’.’)
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A.4. Attempt to Construct 𝐼(𝑘, 𝑘 − 2)
1 ########## GENERATE NON-ZERO ROW (function) ##########
2 # INPUT: the length of the row n
3 # OUTPUT: generates a set {1,2}^n
4

5 def generate_set(n):
6 elements = [1, 2]
7 result = list(itertools.product(elements, repeat=n))
8 return result
9

10 ########## FIND ADMISSIBLE I(5,3) WITH FIXED STRUCTURE USING I(k,k-1) BLOCKS (program)
##########

11

12 candidate_S = [[0,0,2,2,2],[0,1,0,2,2],[0,1,1,0,2],[0,1,1,1,0],
13 [None,0,0,2,2],[None,0,1,0,2],[None,0,1,1,0],
14 [None,None,0,0,2],[None,None,0,1,0],
15 [None,None,2,0,0]]
16

17 options_row1 = generate_set(6)
18 options_row2 = generate_set(3)
19

20 adm_sets_dim5 = []
21

22 # for each row option:
23 for row1 in options_row1:
24 S = candidate_S.copy()
25 for i in range(4,10):
26 for j in range(6):
27 S[i][0] = row1[j]
28 for row2 in options_row2:
29 S2 = S.copy()
30 for k in range(7,10):
31 for l in range(3):
32 S2[k][1] = row2[l]
33 if is_admissible(S2,5):
34 adm_sets_dim5.append(S2)
35 print(’There are’,len(adm_sets_dim5),’admissible sets I(5,3) with the fixed structure.’)

1 ########## FIND ADMISSIBLE I(6,4) WITH FIXED STRUCTURE AND CONTAINING FIXED I(5,3) (program)
##########

2

3 options_row0 = generate_set(10)
4 first_five = [[0, 0, 2, 2, 2, 2], [0, 1, 0, 2, 2, 2], [0, 1, 1, 0, 2, 2], [0, 1, 1, 1, 0, 2],

[0, 1, 1, 1, 1, 0]]
5

6 adm_set = [[0, 0, 2, 2, 2], [0, 1, 0, 2, 2], [0, 1, 1, 0, 2], [0, 1, 1, 1, 0], [2, 0, 0, 2,
2],

7 [2, 0, 1, 0, 2], [2, 0, 1, 1, 0], [2, 2, 0, 0, 2], [2, 2, 0, 1, 0], [2, 2, 2, 0,
0]]

8

9 adm_sets_dim6 = []
10 for m in range(len(options_row0)):
11 row0 = options_row0[m]
12 build_S3 = []
13 for k in range(10):
14 lists = adm_set.copy()
15 S3_k = lists[k]
16 new_element = [row0[k]]+S3_k
17 build_S3.append(new_element)
18 test_set = first_five + build_S3
19 if is_admissible(test_set,6):
20 adm_sets_dim6.append(test_set)
21

22 print(’There are’,len(adm_sets_dim6),’admissible sets I(6,4) with the fixed-fixed structure.’
)

1 ########## FIND ALL ADMISSIBLE I(6,4) WITH FIXED STRUCTURE (program) ##########
2

3 options_row0 = generate_set(10)
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4 first_five = [[0, 0, 2, 2, 2, 2], [0, 1, 0, 2, 2, 2], [0, 1, 1, 0, 2, 2], [0, 1, 1, 1, 0, 2],
[0, 1, 1, 1, 1, 0]]

5

6 adm_sets_dim6 = []
7 for adm_set in adm_sets_dim5:
8 for m in range(len(options_row0)):
9 row0 = options_row0[m]
10 build_S3 = []
11 for k in range(10):
12 lists = adm_set.copy()
13 S3_k = lists[k]
14 new_element = [row0[k]]+S3_k
15 build_S3.append(new_element)
16 test_set = first_five + build_S3
17 if is_admissible(test_set,6):
18 adm_sets_dim6.append(test_set)
19

20 print(’There are’,len(adm_sets_dim6),’admissible sets I(6,4) with the fixed structure.’)



B
Extendable Collections

B.1. Settings and Functions
1 import math
2 from itertools import *
3 from sys import *
4 from collections import *
5

6 ########## IS CAP SET (function) ##########
7 # INPUT: the dimension n
8 # a subset of {0,1,2}^n, given as a list of lists
9 # OUTPUT: returns True if the subset is a cap set and False if it is not
10

11 def is_capset(checkset,n):
12 lines = []
13 for x,y,z in combinations(checkset,3):
14 for j in range(n):
15 coordinates = {x[j], y[j], z[j]}
16 if len(coordinates) == 2:
17 break
18 else:
19 lines.append([x,y,z])
20 return not lines
21

22 ########## IS NOT A LINE (function) ##########
23 # INPUT: the dimension n
24 # a triple of elements of {0,1,2}^n, given as a list of lists
25 # OUTPUT: returns True if the triple is not a line (i.e. x+y+z is not equal to 0)
26

27 def is_not_a_line(triple,n):
28 x = triple[0]
29 y = triple[1]
30 z = triple[2]
31 not_a_line = False
32 for j in range(n):
33 coordinates = {x[j],y[j],z[j]}
34 if len(coordinates) == 2:
35 not_a_line = True
36 break
37 return not_a_line
38

39 ########## IS EXTENDABLE COLLECTION (function) ##########
40 # INPUT: the dimension n
41 # a list of three subsets of {0,1,2}^n, each a list of lists
42 # i = 1 if it needs to be checked if the subsets are cap sets (and i = 0 if we want

to skip this step)
43 # OUTPUT: returns True if the three sets form an extendable collection
44

45 def extendable_check(collection,n,i):
46 # check cap sets

43
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47 if i == 1:
48 for candidate in collection:
49 if not is_capset(candidate,n):
50 return False
51

52 A0 = collection[0]
53 A1 = collection[1]
54 A2 = collection[2]
55 extendable = False
56

57 # check Ext1:
58 naughty_1 = []
59 for x,y in combinations(A0,2):
60 for z1 in A1:
61 if not is_not_a_line([x,y,z1],n):
62 naughty_1.append([x,y,z1])
63 for z2 in A2:
64 if not is_not_a_line([x,y,z2],n):
65 naughty_1.append([x,y,z2])
66

67 # check Ext2:
68 naughty_2 = []
69 for x in A0:
70 for y in A1:
71 for z in A2:
72 if not is_not_a_line([x,y,z],n):
73 naughty_2.append([x,y,z])
74

75 if not naughty_1 and not naughty_2:
76 extendable = True
77 return extendable
78

79 ########## FINDS AN EXTENDABLE COLLECTION (function) ##########
80 # INPUT: the dimension n
81 # A0 (as a list of lists)
82 # a deck of potential elements for A1 U A2 (as a list of lists)
83 # the desired sizes for A1 and A2
84 # OUTPUT: returns the first extendable collection (A0,A1,A2) it finds of the desired sizes
85 # for A1 and A2
86

87 def find_extendable_collection(A0,deck,n,sizeA1,sizeA2):
88 for A1 in combinations(deck,sizeA1):
89 if not is_capset(A1,n):
90 continue
91 for A2 in combinations(deck,sizeA2):
92 if not is_capset(A2,n):
93 continue
94 if A2 == A1:
95 continue
96 if extendable_check([A0,A1,A2],n,0):
97 return [A0,A1,A2]

B.2. Finding Extendable Collections in Two Dimensions
1 ########## EXTENDABLE COLLECTION IN {0,1,2}^2 WITH |A0| = 1, 2 or 3 (program) ##########
2 n = 2
3

4 print(’Choose |A0| = 1, 2 or 3:’)
5 sizeA0 = int(input(’|A0| = ’))
6

7 # |A0|=1
8 if sizeA0 == 1:
9 A0 = [[0,0]]
10 deck = [[1,0],[2,0],[0,1],[1,1],[2,1],[0,2],[1,2],[2,2]]
11

12 # |A0|=2
13 if sizeA0 == 2:
14 A0 = [[0,0],[1,0]]
15 deck = [[0,1],[1,1],[2,1],[0,2],[1,2],[2,2]]
16
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17 # |A0|=3
18 if sizeA0 == 3:
19 A0 = [[0,0],[1,0],[0,1]]
20 deck = [[1,1],[2,1],[1,2]]
21

22 print(’Choose sizes for A1 and A2:’)
23 sizeA1 = int(input(’|A1| = ’))
24 sizeA2 = int(input(’|A2| = ’))
25

26 collections = []
27 count = 0
28

29 for A1 in combinations(deck,sizeA1):
30 if not is_capset(A1,n):
31 continue
32 for A2 in combinations(deck,sizeA2):
33 if not is_capset(A2,n):
34 continue
35 if A2 == A1:
36 continue
37 if extendable_check([A0,A1,A2],n,0):
38 if [A2,A1] in collections:
39 continue
40 count+=1
41 collections.append([A1,A2])
42 print(’There are’,count,’extendable collections with |A0| =’,sizeA0,’, |A1| =’,sizeA1,’and |

A2| =’,sizeA2)
43

44 ## uncomment to print the found extendable collections:
45 # for lst in collections:
46 # print(lst)

B.3. Finding Extendable Collections in Three Dimensions
1 ########## EXTENDABLE COLLECTION IN {0,1,2}^3 WITH |A0| = 4 or 5 (program) ##########
2 n = 3
3

4 print(’Choose |A0| = 4 or 5:’)
5 sizeA0 = int(input(’|A0| = ’))
6

7 if sizeA0 == 4:
8 A0 = [[0,0,0],[0,2,0],[0,0,2],[0,2,2]]
9 deck = [[1,0,0],[1,0,1],[1,0,2],[1,1,0],[1,1,1],[1,1,2],[1,2,0],[1,2,1],[1,2,2],
10 [2,0,0],[2,0,1],[2,0,2],[2,1,0],[2,1,1],[2,1,2],[2,2,0],[2,2,1],[2,2,2]]
11 if sizeA0 == 5:
12 A0 = [[0,0,0],[0,2,0],[0,0,2],[0,2,2],[1,1,1]]
13 deck = [[1,0,0],[1,0,1],[1,0,2],[1,1,0],[1,1,2],[1,2,0],[1,2,1],[1,2,2],
14 [2,0,1],[2,1,0],[2,1,1],[2,1,2],[2,2,1]]
15

16 print(’Choose sizes for A1 and A2:’)
17 sizeA1 = int(input(’|A1| = ’))
18 sizeA2 = int(input(’|A2| = ’))
19

20 print(find_extendable_collection(A0,deck,n,sizeA1,sizeA2))
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